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Abstract: In the convolutional retinex approach to image lightness processing, an image is filtered
by a centre/surround operator that is designed to mitigate the effects of shading (illumination
gradients), which in turn compresses the dynamic range. Typically, the parameters that define the
shape and extent of the filter are tuned to provide visually pleasing results, and a mapping function
such as a logarithm is included for further image enhancement. In contrast, a statistical approach
to convolutional retinex has recently been introduced, which is based upon known or estimated
autocorrelation statistics of the image albedo and shading components. By introducing models for
the autocorrelation matrices and solving a linear regression, the optimal filter is obtained in closed
form. Unlike existing methods, the aim is simply to objectively mitigate shading, and so image
enhancement components such as a logarithmic mapping function are not included. Here, the full
mathematical details of the method are provided, along with implementation details. Significantly, it
is shown that the shapes of the autocorrelation matrices directly impact the shape of the optimal filter.
To investigate the performance of the method, we address the problem of shading removal from text
documents. Further experiments on a challenging image dataset validate the method.

Keywords: lightness; retinex; convolution filter; least squares optimisation

1. Introduction

It is well known that the retinex theory [1,2] of colour vision pioneered by Land
postulates that the human visual system (HVS) has evolved to discount the illuminant. One
consequence is that lightness, the psychophysical interpretation of luminance measured on
a relative scale from dark to light, is thought to be more closely correlated with the relative
reflectance of a scene object rather than its luminance [1].

The original retinex algorithms [1–4] were path-based computations; however, in 1986,
Land proposed an alternative approach that could be interpreted as the convolution of an
image with a centre/surround filter [5]. The idea was to remove shading (illumination
gradients) by dividing the scene flux at each small area of interest by a weighted average of
the flux from an extended surround that assumed a 1/r2 functional form. Convolutional
retinex was developed further and applied to digital images by Jobson et al. using a
Gaussian surround [6]. They also developed a multiscale retinex (MSR) that uses a sum
of Gaussians of different spatial extents [7] and MSR with colour restoration (MSRCR) [8].
If we consider the single-scale retinex [6], the output can generally be modeled as

I(x, y) = g
(

c(x, y)
s(x, y) ∗ c(x, y)

)
, (1)

where c is the input image, s is the surround component of the centre/surround filter,
“∗” denotes convolution, and g is a global mapping function that scales the output to the
desired range [9].

Land [5], when performing his analogue experiments, took the global mapping func-
tion, g, to be the logarithmic function in order to approximate the nonlinear relationship
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between relative reflectance and lightness as perceived by the HVS [10]. Significantly,
Jobson et al. [6,7] also took g to be the logarithmic function. However, it has since been
argued that such a nonlinear mapping is not appropriate when dealing with retinex output
displayed on electronic devices [9,11], and some authors proposed a simple linear stretch
to the output range instead [11–13]. Indeed, the convolutional retinex algorithm of Job-
son et al. [6,7] renders image lightness, particularly in darker areas of the image, in a manner
that goes beyond the original premise of retinex, which was simply to mitigate gradients in
the illumination, i.e., shading. Instead, Jobson et al.’s algorithm can be regarded as a local
tone-mapping operator (TMO) for image enhancement that is tuned to provide visually
pleasing images [8,14,15].

Consequently, algorithms based on MSR [7–9,11,16,17] and variations/extensions
have been applied in diverse areas of image enhancement such as multi-sensor fusion [18],
HDR tone mapping, e.g., [19], medical imaging, e.g., [20], night-time image enhance-
ment, e.g., [21,22], underwater image enhancement, e.g., [23], image dehazing, e.g., [24],
and aerial image enhancement, e.g., [25]. Moreover, many other types of image enhance-
ment algorithms that take inspiration from the HVS have also been classed as retinex-based
methods. For example, see Refs. [26–28] for some recent surveys.

However, recall that the original premise of retinex in the context of lightness percep-
tion was that the HVS discounts shading (gradients in the illumination), which means that
lightness is thought to be more closely correlated with the relative reflectance of a scene
object rather than its luminance. This recently led us to introduce a statistical approach to
convolutional retinex that, in contrast to the above image enhancement methods, solely
aims to mitigate shading from images in an objective manner [29]. The method produces
convolution filters that are optimal, in a least squares sense, for removing shading from
specific categories of scenes or image datasets. The key quantities required are estimates of
the autocorrelation matrices for the image albedo (reflectance) and shading components.
Then, via a model-based approach, the optimal filter can be obtained in closed form. Con-
sequently, situations where the autocorrelation statistics can be more accurately estimated,
for example, where the shadings have a known functional form, will lead to a more effective
optimal filter. The method is an analytic reformulation of the earlier numerical approach of
Hurlbert and Poggio, who developed a novel least squares formulation of retinex back in
1988 [30,31].

Since our goal is to design optimal filters for removing shading rather than to enhance
images for viewing preference, we take the global mapping function g of Equation (1) to
be linear, or, more specifically, to be a division by the 99.7th quantile as described later
in Section 3.6. We actually carry out the filtering in the logarithmic domain in order to
facilitate the separation of illumination and albedo by transforming their product into a
sum, which enables us to apply our linear least squares optimisation; however, we then
exponentiate the result.

Figure 1 shows a cross-section of a centre/surround convolution filter (cropped near
to the origin for clarity) computed using our method that was optimised for the TM-DIED
image dataset [32]. This filter is derived later in this paper. An illustration of the type
of output result to be expected is shown in Figure 2. The upper image is an example
image from the TM-DIED dataset that contains natural shading due to the position of the
setting sun. After convolving the logarithm of this image with the filter of Figure 1 and
exponentiating the result, we arrive at the lower image of Figure 2, where it is clear that the
shading has largely been removed. Note that in order to preserve chromaticity, we only
filter the luminance channel [11,33].

Since the aim here is simply to objectively mitigate shading, it is important to notice
that the filtered image result given in the lower image of Figure 2, along with the filtered
image results given later in the final figure of this paper, are only subtly different from
the corresponding input images. The results are not directly comparable with those of
conventional convolutional retinex approaches, such as MSR, since the aim is different.
As mentioned earlier, the parameters of the MSR algorithm are adjusted for subjective
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viewing preference, and a logarithmic rather than linear mapping function is applied to the
convolved output. Furthermore, our filtered results will be very different from CNN-based
image enhancement methods [34], such as LLCNN [35] and MBLLEN [36], where the aim
is to enhance many aspects of image appearance.
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Figure 1. Cross section of our optimised convolution filter, f2d, for the TM-DIED image dataset.
The filter centre extends almost to unity but has been cropped close to the origin for clarity.

Figure 2. (upper) Example image from the TM-DIED dataset, which contains natural shading. (lower)
Output image after convolving the upper image with the optimised convolution filter illustrated in
Figure 1.

The main contributions of this paper can be summarised as follows:

• We introduce a linear optimisation approach to convolutional retinex that mitigates
shading (illumination gradients) from images. As described below, the theory is
an analytic reformulation and extension of an earlier 1988 paper by Hurlbert and
Poggio [30].

• The optimal linear filter adapts to known or estimated autocorrelation statistics of the
albedo and illumination components of a given image training dataset. Consequently,
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the filter can be optimised for particular image datasets or scene categories. As dis-
cussed later in the paper, more accurate estimates of the autocorrelation matrices,
for example situations where the illumination gradients have a known functional
form, will lead to a better optimal filter.

• Since the filter can be obtained in closed form, the method is computationally very simple.
• Since our method is a simple linear approach where the aim is only to mitigate shading,

the results will not be directly comparable to those of subjective image enhancement
methods, including the single- or multiscale versions of convolutional retinex [6,7].

• Our method could be incorporated into more sophisticated (and computationally
expensive) methods that utilise a linear step as part of their image enhancement
processing or could be used as a preprocessing stage for training CNNs [34].

The next section of this paper begins with a brief summary of the original least squares
optimisation approach to retinex taken by Hurlbert and Poggio [30]. Subsequently, full
mathematical details of our analytic reformulation are provided, along with full imple-
mentation details, which were not presented in our earlier publication [29]. In Section 4,
an optimal filter for removing shading applied to text documents is calculated. Significantly,
this application provides an error analysis for the method since the original shading-free
PDF pages can act as the ground truth. We also show how to determine an optimal filter
for the TM-DIED dataset [32], which was designed to contain images taken in challenging
lighting conditions.

2. Hurlbert and Poggio’s Method

We begin with a brief summary of the approach taken by Hurlbert and Poggio [30].
Let the colour signals (linear pixel values at image locations) be defined as

c′(x, y) = r′(x, y) e′(x, y), (2)

where r′ and e′ are the image albedo and shading components, respectively, and x, y denote
the pixel locations.

Now, suppose we have a large set of colour signals, randomly generated albedo images
and randomly generated shading images. As illustrated in Figure 3, each colour signal
must be the product of an albedo and shading image according to Equation (2). In the
Hurlbert and Poggio method, a large number of training examples are taken in the form
of image scan lines, i.e., one-dimensional (1d) training vectors of length p pixels extracted
from the set of images. Three such example sets of corresponding scan lines are illustrated
in Figure 3. (In order to preserve symmetry, flipped versions of all training vectors should
be included in the training set). The training vectors can be arranged as rows of a set of
matrices as follows:

C′ =


c′11 · · · c′1p
c′21 · · · c′2p

...
c′N1 · · · c′Np

, R′ =


r′11 · · · r′1p
r′21 · · · r′2p

...
r′N1 · · · r′Np

, E′ =


e′11 · · · e′1p
e′21 · · · e′2p

...
e′N1 · · · e′Np

. (3)

where N is the number of training vectors. Consequently,

C′ = R′ ⊙ E′, (4)

where ⊙ denotes the element-wise “Hadamard” product. However, by defining c(x, y) =
log c′(x, y), r(x, y) = log r′(x, y), and e(x, y) = log e′(x, y), Equation (2) can be converted to
the following sum:

c(x, y) = r(x, y) + e(x, y), (5)

and so Equation (4) becomes
C = R + E. (6)



J. Imaging 2024, 10, 204 5 of 25

Now, let us introduce a p × p matrix operator L that relates the colour signal and
albedo matrices,

CL ≈ R. (7)

By over-constraining the system so that N ≫ p, the optimum least squares solution is
given by

L =
(

C⊤C
)−1

C⊤R, (8)

where ⊤ denotes the transpose operator and
(
C⊤C

)−1C⊤ is the Moore–Penrose pseudoin-
verse. When applied to any colour signal scan line c(x), the solved-for matrix operator L
will best (in the least squares sense) recover the corresponding albedo scan line r(x).

Figure 3. The example colour signal (left) is the product of the albedo image (centre) and shading
image (right). The coloured lines are example corresponding scan lines or training vectors.

In digital imaging, it is more convenient to use a convolution filter rather than a matrix
operator. A 1d filter f can be extracted from L by simply taking the central column, in
which case

c ∗ f ≈ r, (9)

where “∗” denotes convolution. (Note that in the case of a circularly shift-invariant system,
L would be a circulant matrix, and so any column of L would be identical to the previous
column but would be circularly shifted down by one pixel).

The LHS of Figure 4 shows an example of a filter f obtained using the above method.
The albedo images were taken to be random Mondrian images, and the shading images
were a 50:50 mix of linear ramps and slowly varying sinusoids in the range [0.1351, 1],
with a random wavelength and phase and with the minimum wavelength being four times
the length of the training vectors. The optimum filter turns out to be a centre/surround
filter, with a single pixel centre that extends almost to unity, and a very shallow negative
surround. That is, in the logarithmic domain, we, at each pixel, remove the shading by
subtracting a weighted average calculated over neighbouring pixels.

Evidently, the main drawback of the method is that the filter surround is very noisy.
This is due to the relatively small number of training pairs (1,000,000 in this case) that
can be utilised in practice. Noisy filters are unfeasible from a biological perspective and
could also lead to artefacts when applied to real images. In contrast, the RHS of Figure 4
shows the smooth filter obtained using our analytic reformulation of Hurlbert and Poggio’s
method that will be the main subject of the next section.

Although not suggested by Hurlbert and Poggio, f can be straightforwardly converted
into a symmetric two-dimensional (2d) filter f2d simply by replicating the surround ra-
dially, interpolating as necessary [29]. Naturally, the surround subsequently needs to be
normalised so that its sum equals that of the 1d surround. The symmetry of the training
vectors will automatically be built into the filter. This can be applied in the Fourier domain
to directly estimate complete two-dimensional albedo images as follows:

F−1(F(C) F( f2d)) ≈ R, (10)

where F denotes the Fourier transform.
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Figure 4. (left) Example one-dimensional filter of length p = 161 pixels obtained using Hurlbert and
Poggio’s numerical method [30] with 1,000,000 pairs of training vectors. The illustration has been
cropped close to the horizontal axis for clarity. (right) The corresponding filter obtained using our
analytic reformulation.

3. Derivation of an Optimal Lightness Convolution Filter in Closed Form

In this section, full mathematical details of our method are presented. The key steps
are organised as follows:

• Given a training set of albedo vectors and shading vectors, an expression for a colour
signal matrix that contains all possible combinations of these vectors is derived.

• Significantly, an analytic decomposition of the least squares solution is performed,
which shows that the optimisation depends primarily upon R⊤R and E⊤E, which are
the autocorrelation matrices for the albedos and shadings, respectively.

• By introducing models for the albedo and shading training vectors, closed-form expres-
sions for R⊤R and E⊤E are obtained by integrating over all possible training vectors.

• The algorithm and implementation details are discussed.

3.1. The Set of All Colour Signals

Let us proceed by constructing training sets of n albedo vectors {r(x)} and m shading
vectors {e(x)}, all of which have length p pixels. As before, these are the logarithms
of {r′(x)} and {e′(x)}. The functional form for these vectors will be discussed later in
Sections 3.4 and 3.5. The vectors can be arranged as rows of the n×p matrix R and the m×p
matrix E as follows:

R =


r11 · · · r1p
r21 · · · r2p

...
rn1 · · · rnp

, E =


e11 · · · e1p
e21 · · · e2p

...
em1 · · · emp

. (11)

In contrast to the colour matrix of Equation (6), which is simply the sum of the two
sets, we instead seek to construct a colour signal matrix that includes all n × m possible
combinations of {r(x)} and {e(x)}. We use the construction idea from Ref. [37] but apply
it in the logarithmic domain.
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First, consider the kth row of E, which is a single shading vector ek(x) with k ∈ {1, · · ·m},
and construct an n×p matrix Ek with n identical rows, each defined by the chosen ek(x).
Its matrix elements can be written as

Ek =


ek1 · · · ekp
ek1 · · · ekp

...
ek1 · · · ekp

. (12)

Now, the total colour signal matrix C can be expressed as the sum of two large
concatenated albedo and shading matrices Rc and Ec,

C = Ec + Rc, (13)

where

Ec =


E1
E2
...

Em

, Rc =


R
R
...
R

. (14)

Ec is the concatenation of m different shading matrices Ek defined by Equation (12) with
k = 1, · · ·m, and Rc is the concatenation of m identical albedo matrices R defined by
Equation (11). Each matrix in Equation (13) has dimension (m×n)×p. This equation is a
generalisation of Equation (6).

3.2. Least Squares Solution

We seek the p × p linear matrix operator Lr,

CLr ≈ Rc. (15)

This is analogous to Equation (7), where C is now the concatenated colour matrix
of Equation (13) and Rc replaces R. In this case, by over-constraining the system so that
n × m ≫ p, the least squares solution is

Lr =
(

C⊤C
)−1

C⊤Rc. (16)

Again, a 1d convolution filter fr can be extracted by taking the central column of Lr.
(As an aside, it is also possible to introduce a matrix operator Le that best recovers

the shadings,
CLe ≈ Ec, (17)

which has least squares solution

Le =
(

C⊤C
)−1

C⊤Ec, (18)

from which a convolution filter fe can be extracted. Since we are in the logarithmic
domain, utilising Equation (13) reveals that Lr + Le = I, where I is the p × p identity
matrix. Consequently, the centre/surround convolution filters fr and fe sum to give a
delta function,

fr + fe = δ(x − x0), (19)

where x0 is the filter centre. This differs from typical centre/surround formulations where
the radial surround is chosen to integrate to unity [6]).

Clearly from Equation (16), the least squares solution is seen to fundamentally depend
upon the colour signal autocorrelation matrix C⊤C and the cross-correlation matrix C⊤Rc.
Physically, each matrix element

[
C⊤C

]
ij describes how colour signal values are correlated
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at pixel locations i, j in the image training set, while each
[
C⊤Rc

]
ij analogously describes

how colour signal values are correlated with albedo values.
As shown next, in order to obtain a closed-form solution for Lr, we must perform a de-

composition of C⊤Cc and C⊤Rc into terms that can themselves be evaluated in closed form.

3.3. Analytic Decomposition

Using Equation (13), the colour signal autocorrelation matrix is seen to be related to
the cross-correlation terms in the following way:

C⊤C = C⊤Ec + C⊤Rc. (20)

Crucially, it is shown in Appendix A that the cross-correlation terms can be decom-
posed as follows:

C⊤Ec = E⊤E + ⟨R⟩⊤⟨E⟩

C⊤Rc = R⊤R + ⟨E⟩⊤⟨R⟩.
(21)

• C⊤C is the colour signal autocorrelation matrix for the set of all m × n colour signals,
• E⊤E is the shading autocorrelation matrix for the starting set of m vectors {e} defined

by Equation (11),
• R⊤R is the albedo autocorrelation matrix for the starting set of n vectors {r} defined

by Equation (11),
• ⟨E⟩ is a row vector defined by the mean of the set {e},
• ⟨R⟩ is a row vector defined by the mean of the set {r}.

Now, substituting Equations (20) and (21) into Equation (16) yields the following
expression for the least squares matrix operator Lr:

Lr =
(

E⊤E + ⟨R⟩⊤⟨E⟩+ R⊤R + ⟨E⟩⊤⟨R⟩
)−1(

R⊤R + ⟨E⟩⊤⟨R⟩
)

. (22)

Since the mean terms ⟨R⟩ and ⟨E⟩ can be straightforwardly evaluated, the practical
utility of this equation is the resulting separation between the shading and albedo informa-
tion. As shown next (Section 3.4 and 3.5), the given functional forms for the possible albedo
and shading training vectors, closed-form expressions for E⊤E and R⊤R can be derived by
letting the number of training vectors m, n → ∞ and analytically integrating over the entire
parameter space. In other words, the training set will include all possible instances of the
training vectors.

3.4. Shading Autocorrelation Matrix

Given a functional form for the shading training vectors {e′(x)}, the shading auto-
correlation matrix elements in the logarithmic domain can, in principle, be evaluated by
integrating as follows: [

E⊤E
]

ij
=

v∫
u

p(e′) ei ej de′, (23)

where ei = log(e′i) and ej = log(e′j) are the (logarithmic) values of the shading vectors at
pixels i and j and p(e′) is the probability density function for shadings taking values in the
range [u, v], where u > 0 and v > u, e.g., [u, v] = (0, 1].

However, in order to derive a simple closed-form solution, a simpler way to proceed
is to assume that ei ≈ e′i and to use logarithmic units so that the interval [u, v] is replaced
by [log u, log v]. Now we can replace the above equation with the following:

[
E⊤E

]
ij
≈

log v∫
log u

p(e′) e′i e′j de′. (24)



J. Imaging 2024, 10, 204 9 of 25

A suitable way to model training vectors (scan lines) through shadings that might be
encountered in the real world without abrupt changes is to use slowly varying sinusoids.
Consider training vectors of length p pixels defined by the following function:

e′i =
A
2
+

A
2

sin(kx + ϕ), (25)

where x is a positional coordinate that can be expressed in terms of pixels {i} along a 1d
scan line (in any direction, as illustrated in Figure 3),

x =
i − 1
p − 1

, i = 1, 2, · · · p. (26)

Here, A is the amplitude in the interval [log u, log v] and the wavenumber is defined
by k = 2π/λ in the interval [0, kmax], where λ is the wavelength and ϕ is the phase. Here,
the maximum wavenumber is defined by kmax = 1/λmin, where λmin is the minimum
wavelength. For example, we could choose λmin = 2, which would mean that sinusoids
with a wavelength smaller than twice the length of the training vectors (p pixels) are
excluded from the training set. The function defined by Equation (25) is bounded in the
interval [log u, log v]. Examples are shown in Figure 5 using the corresponding non-log
units (where it is bounded in the interval [u, v]).

1 81 161 241 321

Pixel

0

0.5

1

Figure 5. Example sinusoidal shadings (denoted by curves of different colours) in the range
[u, v] = [0, 1], defined by Equation (25) with the minimum wavelength of λmin = 2, i.e., twice the
length of the training vectors (p = 321 pixels). Evidently, many of these sinusoids are approximately
straight line gradients.

The probability density function p(e′) depends upon those for the amplitude A in the
range [log u, log v], the phase ϕ, and the wavenumber k. Substituting Equation (25) into
(24) leads to the following volume integral:

[
E⊤E

]
ij
=

A2

4

∫ log v

log u

∫ 2π

0

∫ kmax

0
p(A) p(ϕ) p(k)

× (1 + sin(kx + ϕ))(1 + sin(ky + ϕ)) dA dϕ dk,
(27)

where x depends upon i according to Equation (26) and, similarly, y = (j − 1)/(p − 1) with
j = 1, 2, · · · p. For uniform probability distributions, we have

p(A) =
1

log v − log u
, p(ϕ) =

1
2π

, p(k) =
1

kmax
. (28)

By integrating, in turn, over the amplitude, phase (where several terms evaluate to zero),
and wavenumber (utilising the identity sin(A) sin(B) = 1

2 cos(B − A) − 1
2 cos(B + A)), we

arrive at the final result:
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[
E⊤E

]
ij
=

log2 u + log u log v + log2 v
12

(
1 +

sin (kmax(y − x))
2 kmax(y − x)

)
. (29)

The mean shading vector required by Equation (22) can be evaluated as

⟨E⟩ = A
2

∫ log v

log u

∫ 2π

0

∫ kmax

0
p(A) p(ϕ) p(k)(1 + sin(kx + ϕ)) dA dϕ dk. (30)

This turns out simply to be a constant (for all {i}), as defined by

⟨E⟩ = log u + log v
4

. (31)

The autocorrelation matrix E⊤E, Equation (29), is illustrated as a mesh plot in Figure 6,
where the minimum wavelength was taken to be λmin = 2, i.e., twice the length of the
training vectors. It has a Toeplitz structure due to the shift invariance that arises from
the integration over phase ϕ. Clearly, the autocorrelation decreases with distance from
the main diagonal due to the reduced correlation between pixel values separated by a
sinusoidal function with a minimum wavelength of λmin = 2.

Figure 6. Shading autocorrelation matrix for sinusoids defined by Equation (25) with p = 321, λmin = 2,
and logarithmic units in the interval [−6, 0], which corresponds to [0.0025, 1] in non-log units.

For completeness, in Appendix B, the autocorrelation matrix for straight line gradients
(linear ramps) is also derived. This matrix will not be shift-invariant since the ramps cannot
be shifted by a phase within the bounds. It is possible to use shadings that are a weighted
combination of sinusoids and linear ramps simply by weighting the autocorrelation matri-
ces accordingly.

3.5. Albedo Autocorrelation Matrix

For a given image dataset, recall from the beginning of Section 2 that the colour signal
autocorrelation matrix can be calculated numerically by using vectors that correspond to
1d scan lines of length p pixels taken from the images. By constructing the composite n × p
vector C, where N is the number of data values (or scan lines) per component [38], it can be
algebraically expressed as
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C⊤C =
1
N



N
∑

k=1
c2

k1

N
∑

k=1
ck1 ck2 · · ·

N
∑

k=1
ck1 ckp

N
∑

k=1
ck2 ck1

N
∑

k=1
c2

k2 · · ·
N
∑

k=1
ck2 ckp

...
...

. . .
...

N
∑

k=1
ckp ck1

N
∑

k=1
ckp ck2 · · ·

N
∑

k=1
c2

kp


(32)

In Ref. [39], it was found that for large image datasets such as ImageNet [40], shading
gradients are typically minimal on average in the central region of the images where the
autocorrelation matrix is found to have a Toeplitz structure. In other words, the albedo
autocorrelation matrix R⊤R for large datasets might be assumed to be a Toeplitz matrix.

Recall that Hurlbert and Poggio used Mondrian images as the albedo images in their
example training set [30]. Mondrian images consist of random arrangements of rectangular
patches of various sizes [2] and have been widely used in visual experiments [41–44].
(Their appearance is inspired by the abstract grid-based paintings of the Dutch artist Piet
Mondrian that first appeared in the early 1920s). Interestingly, it was found in Ref. [39] that,
for a particular construction of Mondrian images, the autocorrelation matrix for Mondrian
image datasets is a Toeplitz matrix. Furthermore, it is possible to find Mondrian datasets
that have the same Toeplitz matrix as real image datasets. In other words, a statistical model
for the autocorrelation matrix for Mondrian datasets, which can be obtained in closed form
(as shown in Ref. [39]), can be used as a proxy for that of real image datasets.

Following Ref. [39], scan lines through Mondrian images can be modelled by intro-
ducing a correlation between adjacent pixels via a “step” parameter α, where 0 ≤ α ≤ 1.
For a given pixel i, this describes the probability that the adjacent pixel takes on the same
value, p(ri+1 = ri) = α. The probability that ri+1 uniformly takes any other value in the
range [a, b] instead is then 1 − α. For general pixels i, j, it follows that

[
R⊤R

]
ij
=
∫ b

a
p(r′)ri dr′

(
α|j−i|ri +

(
1 − α|j−i|

)∫ b

a
p(r′)rj dr′

)
, (33)

where r = log(r′). Assuming a uniform probability distribution so that p(r′) = 1/(b − a),

[
R⊤R

]
ij
=

α|j−i|

b − a

(
b
(

log2 b − 2 log b + 2
)
− a
(

log2 a − 2 log a + 2
))

+
1 − α|j−i|

(b − a)2

(
b(log b − 1)− a(log a − 1)

)2
.

(34)

If [a, b] = (0, 1], then [
R⊤R

]
ij
= 1 + α|j−i|. (35)

Physically, the step parameter α controls the average or expected size of the steps in
the scan lines and therefore the expected size of the Mondrian patches. The expected step
size s along a scan line is related to α as follows [39]:

s =
1

1 − α
. (36)

An example scan line is illustrated in Figure 7. When α = 0, all pixel values are
uncorrelated, and so s = 1. This corresponds to a completely random Mondrian (or random
real scene). Accordingly, the autocorrelation matrix has maximum value along the main
diagonal and minimum value elsewhere. When α is increased, the correlation between
adjacent pixels increases and so the expected size of the Mondrian patches also increases.
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In other words, a larger α corresponds to real scenes that contain larger regions of constant
albedo values on average. Figure 8 illustrates how the autocorrelation matrix decreases
to its minimum value at a greater distance from the main diagonal for a larger α value.
In Section 3.7, it is shown how this directly impacts the shape of the optimum filter.

1 ppixel
0

0.5

1

a
lb
e
d
o

Figure 7. Example scan line of length p pixels through a Mondrian image with albedo values in the
range [a, b] = (0, 1].

Figure 8. Albedo autocorrelation matrix in the logarithmic domain for Mondrians with α = 0.981,
which corresponds to an expected step length of 52.6 pixels. The primal domain albedo values were
restricted to the range [0, 1].

Since the derivation of Equation (34) assumed a uniform probability distribution for
the albedo values, the mean albedo vector required by Equation (22) is given by

⟨R⟩ = 1
b − a

∫ b

a
ri dr′ =

1
b − a

(b(log b − 1)− a(log a − 1)), (37)

which is a constant for all {i}. However, it is likely that the mean albedo of the image dataset
differs from this value, in which case a scale and offset least squares fit to the autocorrelation
matrix for the dataset can be performed [39]. For consistency, ⟨R⟩ would then need to be
estimated using the image dataset instead of Equation (37). This procedure is discussed
further in the next section, which describes implementation details for the method.

3.6. Implementation
3.6.1. Designing a Filter

Given an image dataset for a specific category or type of scene, the goal of the algorithm
described below is to design an optimum filter for that scene category, which could also be
applied to other unseen images that fall under that category.
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1. Linearise the input images by inverting the gamma encoding curve and calculate the
luminance channel as the appropriate weighted sum of the RGB channels.

2. Based upon an estimate for the nature of the shadings present in the dataset, calculate
the shading autocorrelation matrix E⊤E and mean vector ⟨E⟩, for example by using
Equations (29) and (31). Considerations include the following:

• The type of shadings present such as sinusoids, linear ramps, or a weighted
combination. For sinusoids, the minimum wavelength can be changed.

• The spatial extent of the shadings (in pixels). This corresponds to the length of
the scan lines and hence the diameter of the output filter.

• The shading value limits [log u, log v]. If the image pixel values have been nor-
malised to the range [0, 1] in the primal domain, then v can be taken to be 1 and
an estimate can be made for u before converting to logarithmic units.

3. Calculate the albedo autocorrelation matrix R⊤R and mean vector ⟨R⟩. To do this,

(a) First, calculate C⊤C and the mean vector ⟨C⟩ for the dataset (logarithm of the
luminance channel) numerically using Equation (32). For every image in the
dataset, the scan lines (training vectors) of length p can be extracted by rotating
the images through all 360 single degree increments and taking a scan line
from a fixed position each time, for example by choosing the horizontal line
that passes through the centre of the images.

(b) Estimate R⊤R by rearranging Equation (A4),

R⊤R = C⊤C −
(

E⊤E + ⟨R⟩⊤⟨E⟩+ ⟨E⟩⊤⟨R⟩
)

, (38)

where ⟨R⟩ can be evaluated as

⟨R⟩ = ⟨C⟩ − ⟨E⟩. (39)

(c) In order to obtain a perfectly smooth closed-form solution, find the closest
Mondrian autocorrelation matrix. This can be achieved by applying scale and
offset parameters to Equation (34) and then performing a least squares fit to
Equation (38). The mean vector ⟨R⟩, which will be approximately constant,
can be smoothed by averaging its elements if necessary.

4. Calculate the matrix operator Lr using Equation (22). Use the central column as the
1d albedo filter and convert this to 2d.

Note that when calculating the matrix operator Lr, taking the pseudoinverse of C⊤C
can lead to a discontinuity at the filter edges when C⊤C has steep transitions, for example
when α is large. This is due to a natural consequence of the inverse of Toeplitz matrices [45].
The discontinuities can either be omitted, which has negligible effect on the overall effect
of the filter, or be eliminated by introducing a regularisation term that favours continuity
when solving the regression. In the latter case, Equation (16) is generalised to

Lr =

((
C⊤C

)−1
+ γD⊤D

)
C⊤Rc, (40)

where D is the derivative matrix operator and γ is the minimum scalar that eliminates
the discontinuity.

3.6.2. Filtering an Image

In order to filter an input image in practice,

1. Linearise by inverting the encoding gamma curve and calculate the luminance chan-
nel Y as the appropriate weighting of the RGB channels. Take the logarithm of the
luminance channel.
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2. Transform the log luminance image to the Fourier domain and multiply by the Fourier
transform of the 2d filter (zero padded if necessary) before converting back to the
primal domain. Since artefacts can arise from discontinuities at the image boundaries
due to the non-periodic nature of a typical real-world image, a computational trick to
remove these is to first convert the image into a continuous image that is four times as
large by mirroring in the horizontal and vertical directions [33].

3. Subtract the 99.7th quantile in order that the maximum value of the log luminance
image be zero. (Any values larger than zero should be clipped to zero). This generally
produces a lighter image, which is useful from an image preference point of view.

4. Exponentiate the filtered log luminance image from the previous step. Use the original
RGB channels (colour signals) together with the filtered luminance channel to calculate
a filtered colour image, appropriately scaling for the new luminance. Mathematically,

ĉi(x, y) = ci(x, y)× Ŷ(x, y)
Y(x, y)

, (41)

where {ĉi} with i = R, G, or B are the output colour signals, {ci} with i = R, G, or B are
the corresponding input colour signals, Y is the input luminance channel, and Ŷ is the
filtered output luminance channel. This colour mapping preserves chromaticity [11].
Finally, reapply the gamma encoding curve and renormalise the image to the desired
range as required.

3.7. Filter Shape

In this section, we have shown that Hurlbert and Poggio’s least squares approach to
determining an optimum filter for removing illumination gradients or shading from images
can be reformulated so that the optimisation can be solved in closed form. In particular,
the optimisation was seen to directly depend upon the autocorrelation statistics of the
albedo and shading components of the images in the training set.

An example model for the shading autocorrelation matrix E⊤E was derived, where
the training vectors (scan lines) were taken to be sinusoids or linear ramps. Significantly,
the closed-form solution was obtained by integrating over all possible training vectors.
In other words, an infinitely large training set was utilised.

By making an analogy between real image datasets and Mondrian image datasets,
a model for the albedo autocorrelation matrix R⊤R was derived where the α parameter
controls the average size of the Mondrian patches or equivalently models the average
size of constant regions in real images. Again, the closed-form solution was obtained by
integrating over all possible training vectors.

An important finding is that the shapes of both E⊤E and R⊤R directly impact the shape
of the optimised filter. To illustrate this, consider a fixed E⊤E for a 50:50 mix of sinusoids
and linear ramps, with an illumination range of [u, v] = [0.0025, 1]. Now, consider R⊤R for
a selection of different α values with albedo range [a, b] = (0, 1]. Row (a) of Figure 9 shows
an example Mondrian image for α = 0.788 (left figure), which corresponds to an expected
step length of s = 4.7 pixels according to Equation (36), along with R⊤R (centre figure) and
a cross-section of the 1d filter obtained from the optimisation (right figure). Clearly, R⊤R is
narrow and the filter surround is deep in order to capture the relatively local changes in
albedo. In row (b), α = 0.942, which corresponds to s = 17.2 pixels. Evidently, R⊤R widens
and the filter becomes shallower as changes in albedo become less localised on average.
This trend continues for row (c), where α = 0.942 and s = 34.5 pixels, and row (d), where
α = 0.988 and s = 83.3 pixels.
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Figure 9. For the selection of α values given in the main text, each row (denoted by (a), (b), (c), or (d))
shows an example Mondrian albedo image (left), the corresponding albedo autocorrelation matrix
(centre), and the optimised filter (right). Here, a p × p pixel grid was used with p = 321.

4. Results and Discussion

In this section, we present an experimental evaluation of our method. Firstly, in order
to evaluate the performance of the method objectively, we perform an experiment where
we use pages of text extracted from journal articles and books in PDF format. Since
these do not contain any shading, they can be used as a synthetic albedo ground truth.
By superimposing randomly generated synthetic shadings with a known functional form
on these pages and determining the optimised filter from the autocorrelation matrices,
the ability of the method to remove the shadings can be quantified.

Secondly, the qualitative ability of the method to mitigate shadings is investigated
for a challenging real-world image dataset (TM-DIED) by following the implementation
procedure described in Section 3.6.
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4.1. Text Image Processing

One might anticipate that an autocorrelation matrix for pages of text will very quickly
decrease to its minimum value away from the matrix diagonal; in other words, the peak
along the diagonal will be very narrow due to the fact that the lines of white space between
lines of text are short-ranged on average. This is indeed seen to be the case in Figure 10,
which shows the synthetic R⊤R trained on 50 randomly selected pages from our dataset
comprised of 3500 pages from randomly selected journal articles and books. The pages
were extracted at a resolution such that the page width was 641 pixels and the data were
normalised to the range [a, b] = (0, 1] before taking the logarithm. Note that since we are
determining a convolution filter, our dataset should be approximately shift-invariant on
average. In order to remove any overall order that could arise from page borders and
column spaces, the scan lines were extracted from a central p × p crop, where p = 321 pixels,
i.e., half the page width. This enabled shifts of the 50 sampled pages to be included in
the autocorrelation matrix calculation, i.e., 160 shifts to the left and 160 to the right, which
includes the corresponding vertical shifts from the included rotations.

Figure 10. Autocorrelation matrix R⊤R (in the logarithmic domain) for the dataset of text images on
a p × p pixel grid, where p = 321.

Along with the very narrow peak along the diagonal, observe that the autocorrelation
does not directly fall to its minimum value, instead decaying in a manner resembling a
wave. This is due to the periodicity of the lines of text, which will remain even when shifts
are included. Since the frequency of the lines of text is not the same in each page, this wave
structure represents the average frequency of the lines of text in the 50 sampled pages from
the dataset.

In order to obtain a closed-form expression for R⊤R, we applied scale and offset pa-
rameters to Equation (34) and then used least squares to find the Mondrian autocorrelation
matrix that is the closest representation of our numerically determined text autocorrela-
tion matrix. Cross sections of the diagonals of the two matrices are shown in Figure 11.
Evidently, the Mondrian model is able to provide a good fit for the narrow peak with
α = 0.594, which corresponds to an average step of 2.5 pixels according to Equation (36).
The Mondrian model is unable to capture the wave structure mentioned above, but, in any
case, we would expect the oscillations to eventually disappear if the size of the training
set were to be increased. The value of ⟨R⟩ was determined numerically to be −0.1557 for
all {i}.

Slowly varying sinusoids were used for the shadings (with the minimum wavelength
taken to be 4p, i.e., four times the length of the scan lines or training vectors), and so E⊤E
and ⟨E⟩ are given by Equations (29) and (31).
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Figure 11. Diagonal cross section of the numerically determined R⊤R (blue line) along with the best
Mondrian fit (red line).

Figure 12 illustrates a cross section of the optimised filter f2d for our text dataset, which
was determined using Equation (22) before converting to 2d. In order to visualise the type
of performance to be expected, randomly generated shadings were superimposed on pages
from a draft PDF copy of the present manuscript. Several results of filtering these pages
are illustrated in Figure 13. It can be seen that the filter does well at removing illumination
gradients and in general reproduces text without visible artefacts. However, white areas
are generally reproduced darker than they appear in the ground truth. We would expect
improved performance for a filter optimised for the manuscript itself.
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Figure 12. Cross section of the optimised 2d filter, f2d, for the text image dataset.

To quantify the performance, let us denote the ith colour signal by C′
i , which is the

product of the ith sinusoidal shading image E′
i (randomly generated) and R′

i, the latter
being the luminance channel of the ith text image (synthetic albedo) from the dataset. Note
that here we have reintroduced the prime symbols to indicate that the logarithm has not
yet been taken. Let R̂i denote the albedo image estimated by convolving Ci = log C′

i with
the optimised filter f2d, then

R̂i = exp(Ci ⋆ f2d). (42)

We would like to measure how close R̂i is to Ri. It should be noted that after performing
the convolution, we can arrive at the same colour image Ci given the pairs (Ri, Ei) and
(αRi, (1 − α)Ei) as there is an in-built scaling ambiguity. Thus, in considering how close
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R̂i is to Ri, let us allow a constant scaling term kR,i so that ∥kR,i R̂i − Ri∥ is minimised in a
least squares sense. Here and in the next two equations, ∥.∥ denotes the Frobenius norm.
Our percentage recovery error denoted by errorR is defined as

errorR(R̂i, Ri) = 100 × ∥kR,i R̂i − Ri∥
∥Ri∥

. (43)

Figure 13. Three example results using a draft copy of this manuscript. (a) Original PDF pages.
(b) Colour signals (i.e., with randomly generated shading superimposed). (c) Filtered results.

Of course, we must compare the error in our method to the error found when the
image Ci is not filtered at all, i.e., when no action has been taken to remove shading.
For consistency, we also allow a per image scaling term kC,i that is designed to minimise
∥kC,i Ci − Ri∥ in a least squares sense. Thus, the null error denoted by errorN is calculated as

errorN(Ci, Ri) = 100 × ∥kC,i Ci − Ri∥
∥Ri∥

. (44)

For 1000 randomly selected images {Ci}, i = 1, 2, · · · 1000 (each with randomly gener-
ated shadings), the percentage recovery and null errors can be visualised in the violin plot
of Figure 14. Note that only shadings with a mean null error above 10% were considered
since below this threshold, the visual effect of shading was often not significant, but at 10%,
the shading effect was always clearly evident. The mean of the null error (the error without
filtering) on the LHS (pink violin) is seen to be 30%, whereas the mean of the percentage
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recovery error on the RHS (blue violin) is 5.31%, and so the application of the filter has
reduced the overall error by a factor of over 5. Furthermore, the largest errors after filtering
are much diminished, as indicated by the top section of the violins.

Figure 14. Violin plot showing the percentage error with and without the application of the filter.

Although our method delivers good performance in terms of shading removal, as a
simple linear convolution based on least squares optimisation, it cannot be expected to
perform as well as a CNN-based method trained for this task [46].

4.2. Lightness Processing

Here, we test the ability of the method to mitigate shadings from a real-world image
dataset, namely the TM-DIED dataset [32], which was designed to contain images taken in
challenging lighting conditions.

Following the algorithm detailed in Section 3.6, we calculated the colour signal autocor-
relation matrix C⊤C using scan lines from the 222 images in the dataset. (For convenience,
the images were first resampled to 641 pixels on the shorter side). For the unknown shad-
ings present, we assumed a 50:50 mix of slowly varying sinusoids and linear ramps in
the range [log u, log v] = [−6, 0], also 641 pixels in length. This provided an approximately
smooth shift-variant estimate of R⊤R using Equation (38), which was then mapped to
the closest-fitting analytic Mondrian autocorrelation matrix using the central quadrant.
A diagonal cross-section of the fit is shown in Figure 15. The value for α was found to be
α = 0.99. A cross-section of the resulting 641 by 641 pixel filter, f2d, obtained from solving
the optimisation, was shown in Figure 1.

Although there is no shading-free ground truth for the TM-DIED dataset, we would
expect the removal of shadings to compress the dynamic range of the dataset images. In-
deed, the dynamic range compression problem exists because of illumination. The dynamic
range of reflectances is no more than 100 to 1. Yet, real scene luminance ratios can easily
be 10,000 to 1 or higher. Input images with strong sunlight and deep shadows often lack
detail when the images are rendered due to the limited dynamic range of the display. When
we filter the images to remove shading (illumination gradients), we can see detail in the
shadow and highlight regions. Intuitively, the standard deviation of the luma in the output
images will be less than in the input. Indeed, the standard deviation of the luma channel,
which is also known as the root mean square (rms) contrast [47], is an appropriate way to
quantify dynamic range compression as it is a statistical measure that is not affected by
outliers. Mathematically, it is defined as follows:
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Crms =

√√√√ 1
N

N

∑
k

(
Y′

k − Ȳ′)2, (45)

where k = 1, · · · N denotes the kth pixel for image pixels arranged as a vector, Y′
k denotes

the luma of the kth pixel normalised to the range [0, 1], and Ȳ′ is the average luma for
all pixels in the image. Figure 16 shows a bar chart for the rms contrast calculated for
each image in the dataset, both with and without application of the convolution filter, f2d.
The input images have been sorted in order of increasing rms contrast. It can be seen that
the application of the filter does indeed reduce the rms contrast in all cases. The average
rms contrast (i.e., the standard deviation of the luma channel averaged over all 222 images
in the dataset) is reduced from 0.2759 to 0.1691.
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Figure 15. Diagonal cross-section of the fit between the numerically estimated albedo autocorrelation
matrix (blue curve) and the Mondrian model with α = 0.99 (red curve).

Qualitative example results of applying the filter to images from the dataset are shown
in Figure 17. It can be seen that the filter has subtly removed shading from the images
without introducing obvious artefacts. Indeed, as stressed in the introduction, the original
aim of retinex (as opposed to subjective image enhancement methods) was simply to
mitigate gradients in the illumination.
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Figure 16. (blue bars) rms contrast of TM-DIED dataset images, arranged in order from low to high.
(red bars) rms contrast of the corresponding filtered images.
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Figure 17. (left) Example images from the TM-DIED dataset [32]. (right) Same images processed
using the filter of Figure 1.
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5. Conclusions

In 1988, Hurlbert and Poggio [30] proposed a simple numerical method for finding
an optimal linear filter that removes shading from images for a set of training examples.
In this paper, we reformulated and further developed their approach by finding solutions
in closed form, which has the dual advantages of effectively accounting for unseen data
and in deriving smooth, as opposed to jagged, filters.

As one application, we designed a filter optimised for removing shading from text
documents and used this to carry out an error analysis. We also designed a filter optimised
for an image dataset produced in challenging lighting conditions and found that it could
subtly remove shading. As future work, we intend to carry out further investigations into
the lightness rendition afforded by the method.

Finally, we point out that although any variant of convolutional retinex is unlikely
to deliver shading-free images or, indeed, preferred images, we point out that spatially
varying tone-mapping algorithms, including edge-sensitive variants such as those that use
bilateral filtering [48], make an assumption about how spatial information is integrated.
Thus, our method could also be applied as a processing stage of more advanced algorithms.
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Appendix A. Analytic Decomposition

In order to derive Equation (21), it is useful to begin by explicitly writing out the matrix
elements of the (m × n)× p colour signal matrix C defined by Equations (13) and (14):

C =




E11 + R11 E12 + R12 · · · E1p + R1p
E11 + R21 E12 + R22 · · · E1p + R2p

...
E11 + Rn1 E12 + Rn2 · · · E1p + Rnp




E21 + R11 E22 + R12 · · · E2p + R1p
E21 + R21 E22 + R22 · · · E2p + R2p

...
E21 + Rn1 E22 + Rn2 · · · E2p + Rnp


...

Em1+R11 Em2+R12 · · · Emp+R1p
Em1+R21 Em2+R22 · · · Emp+R2p

...
Em1+Rn1 Em2+Rn2 · · · Emp+Rnp





. (A1)
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Here, submatrix brackets have been included for clarity. The second index in the
subscripts denotes the positional coordinate, 1 ≤ i ≤ p, where p is the length of the training
vectors in pixels.

Since C⊤C is a p × p matrix, it follows that a general matrix element is given by
multiplying the ith row of C⊤ (where ⊤ denotes the transpose) by the jth column of C,

nm
[
C⊤C

]
ij
= (E1i + R1i)

(
E1j + R1j

)
+ (E1i + R2i)

(
E1j + R2j

)
+ · · ·

+ (E1i + Rni)
(
E1j + Rnj

)
+ (E2i + R1i)

(
E2j + R1j

)
+ (E2i + R2i)

(
E2j + R2j

)
+ · · ·

+ (E2i + Rni)
(
E2j + Rnj

)
...

+ (Emi+ R1i)
(
Emj+ R1j

)
+ (Emi+ R2i)

(
Emj+ R2j

)
+ · · ·

+ (Emi+ Rni)
(
Emj+ Rnj

)
.

(A2)

Here, autocorrelation has been defined to include a normalisation by the number of
sample points, n × m. Collecting terms yields

[
C⊤C

]
ij
=

1
m

m

∑
k=1

EkiEkj +
1

nm

n

∑
k=1

Rki

m

∑
k=1

Ekj +
1
n

n

∑
k=1

RkiRkj +
1

nm

m

∑
k=1

Eki

n

∑
k=1

Rkj. (A3)

This can be expressed in matrix form as follows:

C⊤C = E⊤E + ⟨R⟩⊤⟨E⟩+ R⊤R + ⟨E⟩⊤⟨R⟩. (A4)

Here, the angled brackets denote the mean value of each column of the matrix, and so
⟨E⟩ and ⟨R⟩ are row vectors of length p pixels.

A similar analysis as above shows that the first two terms of Equation (A4) can be
identified as the colour signal and albedo cross-correlation term C⊤Rc of Equation (20),
while the third and final term can be identified as the colour signal and shading cross-
correlation term C⊤Ec. This yields the decomposition given in Equation (21).

Appendix B. Linear Ramps

Consider training vectors of length p pixels defined by the following function:

e′i = mx + c, (A5)

where x is a positional coordinate that can be expressed in terms of pixels {i} along a
1d scan line (in any direction) according to Equation (26). Here, m is the line gradient
(which can be positive or negative), c is the offset, and only function values in the range
[log u, log v] are permitted.

The probability density function p(e′) depends upon those for m and c. Substituting
Equation (A5) into (24) leads to the following surface integral:
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[
E⊤E

]
ij
=

log v−log u∫
0

log v−m∫
log u

p(m) p1(c) (mx + c)(my + c)dm dc

+

0∫
log u−log v

log v∫
log u−m

p(m) p2(c) (mx + c)(my + c)dm dc,

(A6)

where x is related to pixel i via Equation (26), and, similarly, y = (j − 1)/(p − 1) with j = 1,
2, · · · p. Here, the first term is for positive and the second is for negative gradients (in the
range [u, v] before converting to log units). For uniform probability distributions, we have

p1(c) = ((log v − m)− log u)−1,

p2(c) = (log v − (log u − m))−1,

p(m) = (2(log v − log u))−1.

(A7)

By first integrating over the offset c and then over the gradient m, we arrive at

[
E⊤E

]
ij
=

log u2 + log u log v + log v2

3
+

1
3

(
xy − (x + y)

2
+

1
12

)
(log v − log u)2. (A8)

The mean shading vector required by Equation (22) is found by setting my + c = 1 in
Equation (A6) and integrating, which yields the following constant for all {i}:

⟨E⟩ = log u + log v
2

. (A9)
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