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Abstract
We present a family of selfinjective algebras of type D, which arise from the 3-preprojective
algebras of type A by taking a Z3-quotient. We show that a subset of these are themselves 3-
preprojective algebras, and that the associated 2-representation-finite algebras are fractional
Calabi-Yau. In addition, we show our work is connected to modular invariants for SU(3).

Keywords 3-Preprojective · 2-Representation-finite · Fractional Calabi-Yau · Jacobian
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1 Introduction

Overview

Many mathematical objects admit a classification in terms of Dynkin diagrams, perhaps the
most famous example being complex semisimple Lie algebras. A theorem of Gabriel says
that the path algebra of a quiver has finite representation type if and only if its underlying
graph is an ADEDynkin diagram. The groupZ2 acts on the type A diagrams by rotating them
through π . One obtains the type D diagrams through quotienting by this action, duplicating
the fixed vertex whenever one exists (see Table 1).

A related classification appears in [7, 8], where Evans and Pugh study Jacobian algebras
of so-called ADE graphs, introduced by Di Francesco and Zuber in work on SU(3) modular
invariants [4]. The group Z3 acts on the type A graphs by rotating them through 2π/3. The
type D graphs arise from type A by taking Z3-orbifolds, which amounts to quotienting by
the action and triplicating the fixed vertex, whenever one exists. The type A algebras are
well-studied. Indeed, in §4 we show they are isomorphic to the 3-preprojective algebras of
type A. This article can be seen as an exploration of the typeD algebras from the perspective
of higher homological algebra.

In [20], Iyama introduced d-representation-finite algebras: algebras which have global
dimension at most d , and whose module category has a d-cluster tilting subcategory. One can
define higher analogues of the Auslander-Reiten translates which restrict to this subcategory,
and hence gain some understanding of the representation theory of the algebra, even if it has
wild representation type.
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Table 1 Type D Dynkin diagrams (and tadpole diagrams) arising as Z2-quotients of type A diagrams

Type A Dynkin diagram Z2-quotient

A2 : • • T1 : •

A3 : • ◦ • D3 :

◦

•

◦

A4 : • • • • T2 : • •

A5 : • • ◦ • • D4 :

◦

• •

◦
.
.
.

.

.

.

Herschend and Iyama showed that d-representation-finiteness is closely linked to the
fractional Calabi-Yau property [16]. If an algebra� has finite global dimension, the bounded
derived category of its module category has a Serre functor, an autoequivalence satisfying a
certain duality. If a power of the Serre functor is given by a shift, � is said to be fractional
Calabi-Yau. This property was introduced by Kontsevich to generalise properties of Calabi-
Yau manifolds, which are important in theoretical physics.

Given a d-representation-finite algebra �, one can construct its (d + 1)-preprojective
algebra�. Note that� is always selfinjective, and if� is basic then� is Frobenius, meaning
it is isomorphic to its dual as a �-�-bimodule, provided one twists by some automorphism
σ . We call σ the Nakayama automorphism of �. Grant showed that a d-representation-finite
algebra is fractional Calabi-Yau if and only if the Nakayama automorphism of its (d + 1)-
preprojective algebra has finite order [13].

In this article we present a family of selfinjective algebras we call type D, which are
Morita equivalent to skew group algebras of the 3-preprojective algebras of type A. Our
definition is standalone, in the sense that it makes no reference to type A, and we prove the
Morita equivalence by showing that our definition agrees with a construction of Giovannini
and Pasquali [10]. In §4 we construct isomorphisms between our algebras and the type D
algebras of Evans and Pugh.

We show that one in three of the selfinjective algebras of type D are 3-preprojective.
By considering their Nakayama automorphisms, we show that the corresponding 2-
representation-finite algebras are fractional Calabi-Yau. Finally, in §7 we give recipes to
construct 2-Auslander-Reiten quivers for these algebras, on which one can see the fractional
Calabi-Yau property quite explicitly.

Notation 1.1 Following the convention in [7, 8], we denote by Ds the quiver which arises
fromAs (and label the corresponding algebras accordingly). However, only every third quiver
is the quiver of a 3-preprojective algebra. We could have chosen to only label those with a
D. However, it is not obvious how one should index in this case (see Table 2).
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3-Preprojective Algebras...

Table 2 Two options for notation. See Figure 1 for the missing quivers

Quiver Our notation 3-preprojective algebra? Alternative notation

• D2 ✗ T ?

• • D3 ✗ T ?

- D4 ✓ D?

- D5 ✗ T ?

- D6 ✗ T ?

- D7 ✓ D?

.

.

.
.
.
.

.

.

.
.
.
.

Main results

By algebra we mean associative, unital, finite-dimensional algebra over k = C. Modules are
taken to be right modules unless otherwise stated. If p, q are paths in some quiver, pq means
“first p then q". We take N to contain 0.

Denote by � the strict lexicographic order on N
3. Let ω : N

3 → N
3, ω(x0, x1, x2) =

(x1, x2, x0).

Definition 1.2 Let s ∈ Z, s ≥ 2. Define

Q0 = {x ∈ N
3 | x0 + x1 + x2 = s − 1, x � ω(x), x � ω2(x)},

Q1 =
2⋃

i, j=0

{αi, j : x −→ ω j (x) + fi | x, ω j (x) + fi ∈ Q0},

where f0 = (−1, 1, 0), f1 = (0,−1, 1) and f2 = (1, 0,−1).
If s �≡ 1 (mod 3), let Ds be the quiver with vertices Ds

0 = Q0 and arrows Ds
1 = Q1.

If s = 3t + 1 for some t ∈ Z
+, write X = (t, t, t), and let Ds be the quiver with vertices

Ds
0 = Q0 ∪ {X0, X1, X2}

(i.e. take three copies of X indexed by {0, 1, 2}) and arrows

Ds
1 = Q1 ∪ {βk : X − f0 −→ Xk, γk : Xk −→ X + f2 | k = 0, 1, 2}.

Notation 1.3 An arrow αi, j : x −→ ω j (x) + fi in Ds is uniquely determined by its source
and indices, so we often denote it exαi, j . If j = 0 we simplify notation further and just write
exαi . Our convention when drawing Ds is to label the “α" arrows using their indices alone.

Some examples of Ds are presented in Fig. 1.
Let (Q,W ) be a quiver with potential (QP) - a quiver together with a linear combination

of cycles. By formally differentiating W with respect to the arrows of Q, one obtains the
Jacobian algebra J (Q,W ) = kQ/〈∂αW | α ∈ Q1〉. See e.g. [3, §2.1] for a full exposition.
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Fig. 1 Top to bottom: D4,D5,D6,D7

Definition 1.4 For each s ≥ 2, we define a Jacobian algebra �s
D = J (Ds,Ws

D) over C. The
potential is

Ws
D =

∑

c

λD(c)c,

where the sum is taken over all 3-cycles in Ds , and λD is defined as follows.
For x, y ∈ N

3, write x ∼ y if x = y, ω(x) = y or ω2(x) = y. Take expressions involving
indices of arrows mod 3.
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1. Suppose c = exαi0, j0αi1, j1αi2, j2 is a product of three distinct arrows. If j0 + j1 + j2 = 0
then

λD(c) =
{
1 if (i0 + j0, i1 − j2, i2) ∼ (0, 1, 2),

−1 if (i0 + j0, i1 − j2, i2) ∼ (0, 2, 1).

Otherwise, λD(c) = 0.
2. If c = exα3

i, j for a loop exαi, j then

λD(c) =
{

1
3 if (i + j, i − j, i) ∼ (0, 1, 2),

− 1
3 if (i + j, i − j, i) ∼ (0, 2, 1).

3. If s ≡ 1 (mod 3) then for each k ∈ {0, 1, 2},
λD(α1βkγk) = −1, λD(α2,1βkγk) = ζ k,

where ζ = e2π i/3.

Example 1.5 The potential on D4 is

W 4
D = α0α1α2 +�����0α0α2,1α2 +

2∑

k=0

(
ζ kα2,1βkγk − α1βkγk

)
.

Hence �4
D is the algebra CD4 modulo the relations

α1α2, α0α1,

2∑

k=0

ζ kβkγk, α2α0 −
2∑

k=0

βkγk,

{ζ kγkα2,1 − γkα1 | k = 0, 1, 2}, {ζ kα2,1βk − α1βk | k = 0, 1, 2}.
The potential on D5 is given by

W 5
D =e400α0α1α2+e310α0α1α2−e301α0α2α1+e301α0α2,2α2,1−e211α2,1α2,2α1+ 1

3
e211α

3
2,1.

In §2 we recall the 3-preprojective algebras of type A, which we denote �s
A. The group

Z3 acts on these by automorphisms, so we can consider the skew group algebras �s
A#Z3. In

§3 we apply a construction of [10] to prove the following.

Theorem 1 (3.8) For each s ≥ 2, �s
D is Morita equivalent to �s

A#Z3.

In type A, one can always take cuts of �s
A to obtain 2-representation-finite algebras

�s
A/〈C〉, which are fractional Calabi-Yau. In §5 we show that the situation is different in

type D: it is possible to take cuts of �s
D to obtain 2-representation-finite algebras if and only

if s ≡ 1 (mod 3).

Theorem 2 (5.5) If s ≡ 1 (mod 3) and C ⊂ Ds
1 is a cut, then �s

D/〈C〉 is 2-representation-
finite, and its 3-preprojective algebra is �s

D .

In §6we prove that the resulting 2-representation-finite algebras are fractional Calabi-Yau.

Theorem 3 (6.6) Let s = 3t + 1, where t ∈ Z
+. For any cut C ⊂ Ds

1, �
s
D/〈C〉 is fractional

Calabi-Yau of dimension 2t/(t + 1).
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2 3-preprojective algebras of type A

We recall some background on d-representation-finite algebras and their (d+1)-preprojective
algebras, before presenting an important example.

Definition 2.1 [18, Def 2.1-2] Let � be an algebra, d ∈ Z
+. We call M ∈ mod� a d-cluster

tilting object if

add M = {N ∈ mod� | Exti�(M, N ) = 0 ∀i ∈ {1, . . . , d − 1}} and
add M = {N ∈ mod� | Exti�(N , M) = 0 ∀i ∈ {1, . . . , d − 1}}.

We call � d-representation-finite if gl. dim� ≤ d and mod� contains a d-cluster tilting
object.

Let � be a d-representation-finite algebra. The d-Auslander-Reiten translates are [19,
Thm 1.4.1]

τd := τ�d−1 : mod� → mod�,

τ−
d := τ−�1−d : mod� → mod�,

where τ , τ− are the classical Auslander-Reiten translates and �, �− are the syzygy and
cosyzygy functors, respectively (see e.g. [1, §IV.2]). These translates allow us to define a
generalisation of the classical preprojective algebra of a quiver.

Definition 2.2 [16, §2] Let � be a d-representation-finite algebra. The (d + 1)-preprojective
algebra of � is

�(�) =
⊕

i≥0

Hom�(�, τ−i
d �).

If f : � → τ−i
d � and g : � → τ

− j
d �, their product is

g f = τ−i
d (g) ◦ f : � → τ

−(i+ j)
d �.

There is a natural Z-grading on �(�), called the tensor grading, where the degree i part is
Hom�(�, τ−i

d �).

2-representation-finite algebras are particularly well-understood, thanks to a result of
Herschend and Iyama. We need the following notion.

Definition 2.3 [17, Def 3.1] If (Q,W ) is a QP, then to each subset C ⊆ Q1 we associate a
grading gC on kQ, given on arrows by

gC (α) =
{
1 if α ∈ C,

0 else.

A subset C ⊆ Q1 is called a cut if W is homogeneous of degree 1 with respect to gC . If C
is a cut then gC induces a grading on J (Q,W ), and we call the degree 0 part J (Q,W )C a
truncated Jacobian algebra.

Note that J (Q,W )C ∼= J (Q,W )/〈C〉.
As in [17, Def 3.6], we call a QP (Q,W ) selfinjective ifJ (Q,W ) is a selfinjective algebra.

For general background on selfinjective, Frobenius and symmetric algebras see e.g. [9].
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Theorem 2.4 [17, Thm 3.11]

1. If (Q,W ) is a selfinjective QP and C ⊆ Q1 is a cut, thenJ (Q,W )C is 2-representation-
finite, and its 3-preprojective algebra is J (Q,W ).

2. Every basic 2-representation-finite algebra arises this way.

If J (Q,W )C is basic 2-representation-finite, then the grading gC on J (Q,W ) corre-
sponds to the tensor grading.

We now recall the 3-preprojective algebras of type A.

Definition 2.5 [18, Def 5.1] Let s ∈ Z, s ≥ 2. Let As be the quiver with vertices

As
0 = {x ∈ N

3 | x0 + x1 + x2 = s − 1}
and arrows

As
1 =

2⋃

i=0

{αi : x −→ x + fi | x, x + fi ∈ As
0},

where f0 = (−1, 1, 0), f1 = (0,−1, 1) and f2 = (1, 0,−1).

For example, A4 is the following quiver.

Definition 2.6 For each s ≥ 2, we define a Jacobian algebra �s
A = J (As,Ws

A) over C. The
potential is

Ws
A =

∑

c

λA(c)c,

where the sum is taken over all 3-cycles c = exαi0αi1αi2 in As , and

λA(c) =
{
1 if (i0, i1, i2) ∼ (0, 1, 2),

−1 if (i0, i1, i2) ∼ (0, 2, 1).

Informally, this is the sum of all anti-clockwise 3-cycles minus the sum of all clockwise
3-cycles.

Remark 2.7 If αi ex lies on an edge of As then ∂αi ex W
s
A = exαi+1αi−1, while if αi ex is an

internal arrow then ∂αi ex W
s
A = ex (αi+1αi−1 − αi−1αi+1). Hence �s

A is the path algebra of
As modulo the relations
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1. each length two path which starts and ends on the same edge of As and whose midpoint
is not on that edge is zero,

2. each rhombus in As commutes.

Thus �s
A is precisely the algebra called �̂(2,s) in [18, Def 5.1].

Notation 2.8 Let s ≥ 2. Recall ω : N
3 → N

3, ω(x0, x1, x2) = (x1, x2, x0). It is clear that ω
permutes As

0, inducing an automorphism of As such that

(x
i−→ x + fi ) �→ (ω(x)

i−1−→ ω(x) + fi−1).

This is well-defined since ω(x + fi ) = ω(x) + fi−1. We abuse notation and write ω for the
induced automorphism of CAs .

Proposition 2.9 [16, Thm 3.5]. For any s ≥ 2, the algebra �s
A is Frobenius, and its

Nakayama automorphism is ω.

Theorem2.4 then implies that, for any s ≥ 2 and cutC ⊂ As
1,�

s
A/〈C〉 is 2-representation-

finite, and its 3-preprojective algebra is �s
A [18, Prop 5.48].

Closely related to d-representation-finiteness is the fractional Calabi-Yau property. For
an algebra � with gl. dim� < ∞, let D = Db(mod�) be its bounded derived category.
Denote by � : D → D the shift functor, and by

ν = − ⊗L
� D� : D → D

the derived Nakayama functor, where D = HomC(−, C). Note that ν is a Serre functor,
meaning HomD(X , Y ) ∼= DHomD(Y , νX) naturally in X and Y [14, §4.6]. By [2, Prop
3.3], there exists a natural isomorphism n : ν� → �ν making (ν, n) a triangle functor - for
a definition see [21, §2.5].

Definition 2.10 [21, §2.6] Let � be an algebra with gl. dim� < ∞. Then � is fractional
Calabi-Yau of dimension N/m if there exists an isomorphism of triangle functors

(ν, n)m ∼= (�,− id�2)N

in D for some N ,m ∈ Z, m �= 0.

Remark 2.11 One should treat N/m as a pair of integers, not as a rational number.

Example 2.12 [5] For any cut C ⊂ As
1, �s

A/〈C〉 is fractional Calabi-Yau of dimension
2(s − 1)/(s + 2).

3 Morita equivalence of5s
D and5s

A#Z3

Let� be an algebra and G be a finite group acting on�. Recall the skew group algebra�#G
is the algebra with underlying vector space � ⊗k kG, and multiplication defined by

(a ⊗ g)(b ⊗ h) = ag(b) ⊗ gh

for a, b ∈ � and g, h ∈ G.
In [10], the authors consider the case � = J (Q,W ) is a Jacobian algebra and G is a

finite cyclic group. If certain assumptions are satisfied, they construct a QP (Q̃, W̃ ) such
that J (Q̃, W̃ ) is Morita equivalent to �#G. These assumptions are satisfied when (Q,W )

is strongly planar and G acts by rotations [10, Lem 6.5].
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Definition 3.1 [17, Def 8.1] Let (Q,W ) be a QP. Its canvas X(Q,W ) is the 2-dimensional
CW complex defined as follows.

1. X0
(Q,W ) = Q0.

2. The 1-cells are indexed by Q1, and the attaching maps φ1
α : {0, 1} → Q0 satisfy φ1

α(0) =
s(α) and φ1

α(1) = t(α). Let ε1α : [0, 1] → X(Q,W ) be a characteristic map extending φ1
α .

3. The 2-cells are indexed by cycles c = α0 · · · αl−1 appearing in W , and the attaching
maps φ2

c : S1 → X1
(Q,W ) satisfy

φ2
c

(
cos

(
2π

l
(i + t)

)
, sin

(
2π

l
(i + t)

))
= ε1αi (t)

for integers 0 ≤ i < s and real numbers 0 ≤ t < 1.

Informally, the 1-skeleton is the underlying graph of Q, and to obtain the canvas we glue a
2-cell to each cycle appearing in W . For general background on CW complexes see e.g. [15,
§0].

Definition 3.2 [10, Def 6.3] We call a QP (Q,W ) strongly planar if there is an embedding
ε : X(Q,W ) → R

2 such that Im ε is homeomorphic to a disk.

Lemma 3.3 For all s ≥ 2, (As,Ws
A) is strongly planar.

Proof Identify R
2 with the plane P = {x ∈ R

3 | x0 + x1 + x2 = s − 1}. Embed the 0-cells
(vertices of As) in the obvious way, and embed each 1-cell D1

exαi as the line segment in P
joining x and x + fi . The induced embedding ε : X(As ,Ws

A) → P satisfies Im ε = {x ∈ P |
x0, x1, x2 ≥ 0}, which is a closed triangle lying in the plane and therefore homeomorphic to
a disk. ��
Definition 3.4 [10, Def 6.4] Let (Q,W ) be a strongly planar QP, and let G be a finite cyclic
group acting on kQ. Then G is said to act on (Q,W ) by rotations if

1. there is an embedding X(Q,W ) → R
2 such that the action of a generator of G is induced

by a rotation of the plane;
2. the action of G is faithful;
3. every cycle c appearing in W is one of the following types:

(i) c goes through no vertices fixed by G;
(ii) c goes through precisely one vertex fixed by G (counted with multiplicity);
(iii) c goes through precisely one vertex not fixed by G (counted with multiplicity);
(iv) c goes through only vertices fixed by G.

Lemma 3.5 For all s ≥ 2, Z3 acts on (As,Ws
A) by rotations.

Proof Recall the automorphism ω of CAs from Notation 2.8. Clearly ω3 = id, so there is a
group action

Z3 → Aut(CAs),

j �→ ω j .

1. Let ε : X(As ,Ws
A) → P be the embedding of Lemma 3.3. Then ω is induced by rotating

the plane P clockwise through 2π
3 , about the point ( s−1

3 , s−1
3 , s−1

3 ).
2. Since s ≥ 2, (s − 1, 0, 0) is a vertex of As not fixed by ω or ω2, so the action of Z3 is

faithful.
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3. A vertex x = (x0, x1, x2) ∈ As
0 is fixed by Z3 if and only if x0 = x1 = x2. Since

x0+ x1+ x2 = s−1, this occurs if and only if s = 3t+1 for some t ∈ Z
+, in which case

there is a unique fixed vertex (t, t, t). Let c be a cycle appearing in Ws
A. Then c passes

through any given vertex of As at most once. Since there is at most one vertex fixed by
Z3, c is either type (i) or type (ii). ��

Theorem 3.6 [10, Thm 3.20] Let (Q,W ) be a strongly planar QP and G be a finite cyclic
group acting by rotations. Then G acts on J (Q,W ), and there is an explicit construction of
a QP (Q̃, W̃ ) and an idempotent η ∈ J (Q,W )#G such thatJ (Q̃, W̃ ) ∼= η(J (Q,W )#G)η.

In particular, there exists a QP (Ãs, W̃ s
A) such that J (Ãs, W̃ s

A) is Morita equivalent
to �s

A#Z3. We will describe the construction in this case, under the headings ‘Vertices’,

‘Arrows’ and ‘Potential’, and conclude that in fact (Ãs, W̃ s
A) = (Ds,Ws

D).

Vertices

Let V1 = {x ∈ As
0 | x � ω(x), x � ω2(x)}. Writing X = ( s−1

3 , s−1
3 , s−1

3 ), let V2 = {X} if
s ≡ 1 (mod 3), and V2 = ∅ otherwise. Now V1 � V2 is a complete set of representatives of
the Z3-orbits of vertices of As , and V2 contains precisely the vertices fixed by Z3. By [10,
Notation 3.9-11], Ãs

0 = V1 if s �≡ 1 (mod 3), and Ãs
0 = V1 ∪ {Xk | k = 0, 1, 2} if s ≡ 1

(mod 3).

Arrows

For each arrow in As
1, we fix a representative of its Z3-orbit, and define arrows(s) in Ãs

1
corresponding to the representatives [10, Notation 3.13]. There are three cases.

1. Consider an arrow inAs
1 between two vertices not fixed byZ3. There is a unique arrow in

its orbit whose target is in Ãs
0, and it must be of the form αi : ω j (x) −→ ω j (x) + fi for

some x ∈ Ãs
0, i, j ∈ {0, 1, 2}. We define a corresponding arrow αi, j : x −→ ω j (x) + fi

in Ãs
1.

2. Suppose s ≡ 1 (mod 3). There are three arrows in As
1 whose target is X , all in the same

Z3-orbit. Only one of them has its source in Ãs
0, namely α0 : X − f0 −→ X . We define

three corresponding arrows {βk : X − f0 −→ Xk | k = 0, 1, 2} in Ãs
1.

3. Suppose s ≡ 1 (mod 3). There are three arrows inAs
1 whose source is X , all in the same

Z3-orbit. Only one of them has its target in Ãs
0, namely α2 : X −→ X + f2. We define

three corresponding arrows {γk : Xk −→ X + f2 | k = 0, 1, 2} in Ãs
1.

Potential

We fix a complete set C1 �C2 of representatives of the Z3-orbits of 3-cycles inAs , where C1

contains cycles that do not pass through the fixed vertex X , and C2 contains cycles that do.
To each c ∈ C1 we associate a cycle c̃ in Ãs , and to each c ∈ C2 we associate three cycles
c̃0, c̃1, c̃2 in Ãs [10, Notation 3.17].

1. Consider a 3-cycle in As that does not pass through X . Choose a representative c of its
Z3-orbit that passes through at least one vertex in Ãs

0. Then c is of the form

x
l0−→ y′ l1−→ z′ l2−→ x
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where x ∈ Ãs
0, {l0, l1, l2} = {0, 1, 2}, y′ = x + fl0 and z′ = x − fl2 . There exist unique

j0, j2 ∈ {0, 1, 2} such that y := ω j0(y′) ∈ Ãs
0 and z := ω− j2(z′) ∈ Ãs

0.
To simplify notation moving forward, write i0 = l0 − j0, i1 = l1 + j2, i2 = l2 and
j1 = −( j0 + j2). Define c̃ to be the cycle

x
(i0, j0)−→ y

(i1, j1)−→ z
(i2, j2)−→ x

in Ãs . For a proof c̃ that exists as claimed, see Remark 3.7.
2. Suppose s ≡ 1 (mod 3). There are six cycles in Ws

A passing through X , in two disjoint
Z3-orbits. As representatives of these orbits we choose

c− : X + f2
1−→ X − f0

0−→ X
2−→ X + f2,

c+ : X + f2
0−→ X − f1

1−→ X
2−→ X + f2.

For each k ∈ {0, 1, 2}, we define the cycles

c̃−
k : X + f2

1−→ X − f0
βk−→ Xk

γk−→ X + f2,

c̃+
k : X + f2

(2,1)−→ X − f0
βk−→ Xk

γk−→ X + f2

in Ãs . We also define p(c−) = 0, p(c+) = −1. Informally, this will adjust for the fact
X − f1 /∈ Ãs

0 but ω(X − f1) ∈ Ãs
0.

By [10, Notation 3.18], the potential on Ãs is given by

W̃ s
A =

∑

c∈C1

λA(c)
|Z3 · c|

3
c̃ +

∑

c∈C2

λA(c)
2∑

k=0

ζ−p(c)k c̃k .

Remark 3.7 We show the cycle c̃ defined above exists. Recall c is the cycle

x
l0−→ ω− j0(y)

l1−→ ω j2(z)
l2−→ x

in As , where x, y, z ∈ Ãs
0, {l0, l1, l2} = {0, 1, 2} and j0, j2 ∈ {0, 1, 2}.

We find the arrows in Ãs induced by each arrow in c. Note that ω j (exαi ) = eω j (x)αi− j

for all i, j ∈ {0, 1, 2} and x ∈ As
0. Recall we write i0 = l0 − j0, i1 = l1 + j2, i2 = l2 and

j1 = −( j0 + j2).

1. Consider x
l0−→ ω− j0(y). Applying ω j0 , we see that the arrow in its Z3-orbit with target

in Ãs
0 is (ω j0(x)

l0− j0−→ y) = (ω j0(x)
i0−→ y). Hence, there is an arrow x

(i0, j0)−→ y in Ãs .

2. Consider ω− j0(y)
l1−→ ω j2(z). Applying ω− j2 , we see that the arrow in its Z3-orbit

with target in Ãs
0 is (ω−( j0+ j2)(y)

l1+ j2−→ z) = (ω j1(y)
i1−→ z). Hence, there is an arrow

y
(i1, j1)−→ z in Ãs .

3. Note that ω j2(z)
l2−→ x already has target in Ãs

0 so, using i2 = l2, there is an arrow

z
(i2, j2)−→ x in Ãs

0.

Hence the cycle c̃ given by x
(i0, j0)−→ y

(i1, j1)−→ z
(i2, j2)−→ x exists in Ãs as claimed.

We now prove Theorem 1. The reader may wish to recall Definitions 1.2 and 1.4.
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Theorem 3.8 For all s ≥ 2, (Ãs, W̃ s
A) = (Ds,Ws

D). Hence, �s
D ∼= η(�s

A#Z3)η for some
idempotent η ∈ �s

A#Z3.

Proof By inspection, we have that Ãs
0 = Ds

0 and Ãs
1 ⊆ Ds

1. To see that Ds
1 ⊆ Ãs

1, let
exαi, j ∈ Ds

1. Then x, ω j (x) + fi ∈ Ãs
0, so certainly ω j (x) ∈ As

0. Thus eω j (x)αi is an arrow

in As
1 between two vertices not fixed by Z3, whose target is in Ãs

0. Hence exαi, j ∈ Ãs
1 by

construction, and Ãs = Ds .
Note that both W̃ s

A and Ws
D are linear combinations of 3-cycles in Ds . So to show W̃ s

A =
Ws

D it is enough to check, for every 3-cycle c inDs , that its coefficient λ̃A(c) in W̃ s
A is equal

to λD(c).

1. Suppose c = exαi0, j0αi1, j1αi2, j2 is the product of three distinct arrows. If j0+ j1+ j2 �= 0,

then c is not in W̃ s
A by construction, so λ̃A(c) = 0 = λD(c). Otherwise, c = d̃ , where

d is the cycle exαi0+ j0αi1− j2αi2 in As . Hence

λ̃A(c) = λA(d)
|Z3 · d|

3
= λA(d)

=
{
1 if (i0 + j0, i1 − j2, i2) ∼ (0, 1, 2),

−1 if (i0 + j0, i1 − j2, i2) ∼ (0, 2, 1)

= λD(c).

2. Suppose c = exα3
i, j for a loop exαi, j . If 3 j �= 0 then c is not in W̃ s

A by construction,

so λ̃A(c) = 0 = λD(c). Otherwise, c = d̃, where d is the cycle exαi+ jαi− jαi in As .
Hence

λ̃A(c) = λA(d)
|Z3 · d|

3

= λA(d)

3

=
{

1
3 if (i + j, i − j, i) ∼ (0, 1, 2),

− 1
3 if (i + j, i − j, i) ∼ (0, 1, 2)

= λD(c).

3. Suppose s ≡ 1 (mod 3) and let c be a 3-cycle in Ds passing through Xk for some
k ∈ {0, 1, 2}. Then either c = α1βkγk = c̃−

k or c = α2,1βkγk = c̃+
k . Now

λ̃A(α1βkγk) = λA(c−)ζ−p(c−)k = −1 = λD(α1βkγk),

λ̃A(α2,1βkγk) = λA(c+)ζ−p(c+)k = ζ k = λD(α2,1βkγk)

and we are done. ��

4 Connection with operator algebras

In [7, 8], Evans and Pugh study Jacobian algebras of the quivers As and Ds (considered as
the SU(3) ADE graphs of Di Francesco and Zuber [4]) with respect to different potentials.
We show that their algebras are isomorphic to those considered in this article. Note that the
quiver we call As they call A(s+2), and likewise Ds corresponds to D(s+2).
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Type A

In the following we write q = eπ i/(s+2), where s ≥ 2 is the index of the quiverAs . For each
n ∈ Z

+, we define the quantum number [n] = (qn − q−n)/(q − q−1).

Definition 4.1 [7, Thm 5.1] For each s ≥ 2, define a potential on As by

V s
A =

∑

c

μA(c)c,

where the sum runs over all 3-cycles in As and, for x = (x0, x1, x2) ∈ As
0,

μA(exα0α1α2) = √[x1 + 1][x1 + 2][x2 + 1][x2 + 2][x1 + x2 + 2][x1 + x2 + 3]/[2],
μA(exα0α2α1) = √[x1 + 1][x1 + 2][x2][x2 + 1][x1 + x2 + 2][x1 + x2 + 3]/[2].

Remark 4.2 Webelieve there is a small typo in [7, Thm 5.1]. Namely, the formula (14) should
have [k+m+3][k+m+4] in place of [k+m+2][k+m+3]. Translating into our notation
gives the above definition.

The following lemma will be the key tool in proving �s
A ∼= J (As, V s

A).

Lemma 4.3 [6, Prop 3.7] Let (Q,W ) be a QP and let Q′ be a quiver. Any algebra isomor-
phism f : kQ → kQ′ induces an algebra isomorphism J (Q,W ) ∼= J (Q′, f (W )).

We first show that one can replace the commutativity relations in �s
A with anti-

commutativity relations, inspired by work in [11, §3.3].

Lemma 4.4 Let s ≥ 2. Denote by |Ws
A| the potential on As given by the sum of all 3-cycles,

each with coefficient 1. Then �s
A ∼= J (As, |Ws

A|).
Proof Let pari (x) = (−1)s−xi+1 for all x = (x0, x1, x2) ∈ As

0 and i ∈ {0, 1, 2}. Let
ϕ : CAs → CAs be the algebra automorphism induced by exαi �→ pari (x)exαi . Consider a
cycle c in Ws

A. If c = exα0α1α2 then λA(c) = 1 so

ϕ(λA(c)c) = par0(x) par1(x + f0) par2(x − f2)c

= (−1)3s+1−(x0+x1+x2)c

= (−1)2s+2c

= c,

where we used that x0 + x1 + x2 = s − 1. Similarly if c = exα0α2α1 then one can check
ϕ(λA(c)c) = c. Hence ϕ(Ws

A) = |Ws
A|, so �s

A ∼= J (As, |Ws
A|) by Lemma 4.3. ��

We can now make our conclusion.

Proposition 4.5 For all s ≥ 2, �s
A ∼= J (As, V s

A).

Proof We showJ (As, |Ws
A|) ∼= J (As, V s

A), at which point the statement follows byLemma
4.4. Let

coef0(x) = 4
√[x1 + 1][x1 + 2][x1 + x2 + 2][x1 + x2 + 3]/ 3

√[2],
coef1(x) = 4

√[x1][x1 + 1][x2 + 1][x2 + 2]/ 3
√[2],

coef2(x) = 4
√[x2][x2 + 1][x1 + x2 + 1][x1 + x2 + 2]/ 3

√[2]
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for all x = (x0, x1, x2) ∈ As
0. Let ψ : CAs → CAs be the algebra automorphism induced

by exαi �→ coef i (x)exαi . In view of Lemma 4.3, it is enough to show that ψ(|Ws
A|) = V s

A.
Indeed, it is straightforward to calculate

ψ(exα0α1α2)=coef0(x) coef1(x+ f0) coef2(x− f2)exα0α1α2=μA(exα0α1α2)exα0α1α2,

ψ(exα0α2α1)=coef0(x) coef2(x+ f0) coef1(x− f1)exα0α2α1=μA(exα0α2α1)exα0α2α1,

so we are done. ��

Type D

To get from (As,Ws
A) to (As, V s

A), the only change we make is to multiply the coefficient
of each cycle in the potential by a non-zero constant. The canvas does not change, i.e.
X(As ,Ws

A) = X(As ,V s
A). In particular, (As, V s

A) is strongly planar and Z3 acts by rotations.
Thus we can apply the construction of [10, §3.2-3] to (As, V s

A). The specific coefficients
in the potential do not play a role in the construction of the quiver, nor of the idempotent.
Hence we obtain a potential Ṽ s

A such that J (Ds, Ṽ s
A) ∼= η(J (As, V s

A)#Z3)η, where η is as
in Theorem 3.8. Furthermore, a cycle appears in Ws

A if and only if it appears in V s
A, so the

same cycles appear in W̃ s
A and Ṽ s

A. That is to say,

Ṽ s
A =

∑

c∈C1

μA(c)
|Z3 · c|

3
c̃ +

∑

c∈C2

μA(c)
2∑

k=0

ζ−p(c)k c̃k .

Definition 4.6 [7, Thm 6.1, 6.2] For each s ≥ 2, define a potential on Ds by

V s
D =

∑

c

μD(c)c,

where the sum runs over all 3-cycles in Ds , and μD is defined as follows.
If s = 3t + 1 for some t ∈ Z

+, then

μD(α1βkγk) = ζ k [t]√[t + 1]3[t + 2]√
3[2] ,

μD(α2,1βkγk) = ζ−k [t + 2]√[t][t + 1]3√
3[2] .

For all other cycles c, including when s �≡ 1 (mod 3), μD(c) = μ̃A(c).

Remark 4.7 In [7, Thm 6.2], the authors explicitly give the coefficients of six cycles, and say
the rest are given by the “corresponding" cycles in As . Hence, we set μD(c) = μ̃A(c) for
all other cycles c. Once we make this assumption, we already get the correct coefficients for
four of the distinguished cycles, so we omit them in the above definition.

Proposition 4.8 Let s ≥ 2. Then �s
D ∼= J (Ds, V s

D).

Proof First, we show that J (Ds, Ṽ s
A) ∼= J (Ds, V s

D). To this end, let χ : CDs → CDs be

the algebra automorphism such that χ(βk) = ζ k√
3
βk and χ is the identity on all other arrows.

123

2308



3-Preprojective Algebras...

We check that χ(μ̃A(c)c) = μD(c)c for all 3-cycles c in Ds , whence χ(Ṽ s
A) = V s

D and the
claim follows by Lemma 4.3.

If c is not one of the distinguished cycles in Definition 4.6, χ(μ̃A(c)c) = μ̃A(c)c =
μD(c)c by definition.

If c = α1βkγk then c = c̃−
k , where c

− = e(t+1,t−1,t)α0α2α1 (see the construction of the
potential in §3). So

χ(μ̃A(c)c) = ζ k

√
3
μ̃A(c)c

= ζ k

√
3
μA(c−)ζ−p(c−)kc

= ζ k [t + 1]√[t][t + 2][2t + 1][2t + 2]√
3[2] c

= ζ k [t]√[t + 1]3[t + 2]√
3[2] c

= μD(c)c,

where we used that p(c−) = 0 and that [n] = [3t + 3 − n] for all 1 ≤ n ≤ 2t + 2 [7, Lem
4.3].

Similarly, if c = α2,1βkγk then c = c̃+
k , where c+ = e(t+1,t,t−1)α0α1α2. Recall-

ing p(c+) = −1, one calculates as above to show χ(μ̃A(c)c) = μD(c)c. Therefore
J (Ds, Ṽ s

A) ∼= J (Ds, V s
D).

By Proposition 4.5, we have an isomorphism ψ : �s
A → J (As, V s

A), which induces
an isomorphism ψ ⊗ id : �s

A#Z3 → J (As, V s
A)#Z3. Note that η = ∑

di ⊗ e j for some
idempotents di ∈ �s

A (which are length zero) and e j ∈ CZ3 [10, Notation 3.11]. Since ψ

acts trivially on the di , (ψ ⊗ id)(η) = η, and we have a chain of isomorphisms

�s
D ∼= η(�s

A#Z3)η
ψ⊗id−→ η(J (As, V s

A)#Z3)η ∼= J (Ds, Ṽ s
A)

χ−→ J (Ds, V s
D).

��

5 Cuts of5s
D

We would like to emulate type A, and take cuts of �s
D to obtain some 2-representation-finite

algebras of type D. This turns out to be impossible if s �≡ 1 (mod 3).

Lemma 5.1 Let s ≥ 2, s �≡ 1 (mod 3). There are zero cuts of (Ds,Ws
D).

Proof If s = 3t for some t ∈ Z
+, there is a loop α2,2 : x −→ x inDs

1, where x = (t, t, t−1).
By Definition 1.4, the 3-cycle exα3

2,2 appears inW
s
D with non-zero coefficient. For any subset

C ⊆ Ds
1, either gC (exα3

2,2) = 0 or gC (exα3
2,2) = 3, so C is not a cut of (Ds,Ws

D).

If s = 3t +2 for some t ∈ N, there is a loop α2,1 : y −→ y inDs
1, where y = (t +1, t, t).

As before, eyα3
2,1 appears in Ws

D with non-zero coefficient, and the same argument shows
there are no cuts of (Ds,Ws

D). ��
Thus, it is impossible for �s

D to be a 3-preprojective algebra if s �≡ 1 (mod 3). We will
see that if s ≡ 1 (mod 3), then �s

D is indeed a 3-preprojective algebra.
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Definition 5.2 [10, Def 7.5] Let (Q,W ) be a QP , and let G be a group acting on J (Q,W ).
We call a cutC ⊆ Q1 G-invariant if g ·α ∈ C for all α ∈ C . We say a QP (Q,W ) has enough
(G-invariant) cuts if, for every α ∈ Q1, there exists a (G-invariant) cut C with α ∈ C .

Lemma 5.3 Let s = 3t + 1 for some t ∈ Z
+. Then (Ds,Ws

D) has enough cuts.

Proof Consider an arrow δ ∈ Ds
1. There are three possibilities.

1. δ = exαi, j for some x ∈ Ds
0, i, j ∈ {0, 1, 2}. In this case let δ′ = eω j (x)αi ∈ As

1.
2. δ = βk for some k ∈ {0, 1, 2}. In this case let δ′ = α0eX ∈ As

1, where X = (t, t, t).
3. δ = γk for some k ∈ {0, 1, 2}. In this case let δ′ = eXα2 ∈ As

1.

By [10, Prop 8.2], (As,Ws
A) has enough Z3-invariant cuts, so there exists a Z3-invariant cut

C ′ ⊂ As
1 containing δ′. By the recipe in [10, Prop 7.3],

C = {exαi, j | x ∈ Q0, eω j (x)αi ∈ C ′}∪{β0, β1, β2 | α0eX ∈ C ′}∪{γ0, γ1, γ2 | eXα2 ∈ C ′}
(1)

is a cut of (Ds,Ws
D). Since δ′ ∈ C ′, we have δ ∈ C , so (Ds,Ws

D) has enough cuts. ��
Lemma 5.4 [10, Cor 2.6] Let � be a Frobenius algebra, whose Nakayama automorphism σ

generates Im(G) ⊆ Aut(�). Then �#G is symmetric.

We now prove Theorem 2.

Theorem 5.5 For all s ≥ 2, �s
D is symmetric. If s ≡ 1 (mod 3) and C ⊂ Ds

1 is a cut, then
�s

D/〈C〉 is 2-representation-finite, and its 3-preprojective algebra is �s
D .

Proof Proposition 2.9 says that �s
A is Frobenius. Its Nakayama automorphism ω generates

Im(Z3) ⊆ Aut(�s
A), so we can apply Lemma 5.4 to conclude that �s

A#Z3 is symmetric.
Being symmetric is Morita invariant, so �s

D is also symmetric. In particular, (Ds,Ws
D) is a

selfinjective QP, so if s ≡ 1 (mod 3) and C ⊂ Ds
1 is a cut, then �s

D/〈C〉 is 2-representation-
finite by Theorem 2.4.

We can say more.

Proposition 5.6 [10, Thm 7.9] Let (Q,W ) be a strongly planar selfinjective QP, with a group
G acting by rotations and enough G-invariant cuts. Then all truncated Jacobian algebras
J (Q̃, W̃ )C are derived equivalent.

Corollary 5.7 Let s ≡ 1 (mod 3). All truncations �s
D/〈C〉 are derived equivalent.

6 5s
D/〈C〉 is fractional Calabi-Yau

We use a theorem of Grant, which relates the Nakayama automorphism of a (d + 1)-
preprojective algebra to the fractional Calabi-Yau property of the associated d-representation-
finite algebras.

Throughout, let � = J (Q,W )C be a basic 2-representation-finite algebra, and let σ be
the Nakayama automorphism of � = J (Q,W ).

Lemma 6.1 [20, Prop 1.3], [12, Prop 3.2].

(a) There exists a function l : Q0 → Z such that D(�ei ) ∼= τ
−l(i)
2 (σ (ei )�) for all i ∈ Q0.
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(b) For all i ∈ Q0, ei� ∼= D(�σ(ei )){−l(i)} as graded �-modules.

Here {−} denotes a grading shift, i.e. (M{n})r = Mr+n.

Our main tool will be the following theorem.

Theorem 6.2 If there exists k ∈ Z
+ such that σ k = id, then

(a) there exists N ∈ Z such that
∑k

j=1 l(σ
j (i)) = N for all i ∈ Q0;

(b) � is fractional Calabi-Yau of dimension 2N/(k + N ).

Proof In [12, §3.4], it is demonstrated that if f ∈ Hom�(ei�, τ−r
2 (e j�)) then σ( f ) ∈

Hom�(σ(ei )�, τ
l(i)−l( j)−r
2 (σ (e j )�)). In other words, if f ∈ �r (the degree r part of�) and

i, j ∈ Q0, then e j f ei ∈ �r+l(i)−l( j). This means (σ, l) is a degree adjusted automorphism
of �, so [13, Lem 6.15] gives us (a). By Lemma 6.1(b), (σ, l) is a tr-graded Nakayama
automorphism of �, so [13, Thm 6.14] yields (b). For definitions of the italicised terms see
[13]. ��

To apply this to �s
D , we need a technical lemma. In view of Corollary 5.7, we can restrict

our attention to a particular cut.

Definition 6.3 Let s = 3t + 1. Define a Z3-invariant cut K ′ ⊂ As
1 using the following

diagram.

Here, the label i indicates that all arrows αi in that region (including those on the edge)
should be cut. We denote by K the induced cut of (Ds,Ws

D), and by gK the induced grading
on �s

D .

See Figure 2 for K and K ′ in the case t = 2.

Remark 6.4 Note that all arrows in K ′ appear in the leftmost set of (1) - see the proof of
Lemma 5.3. Hence, we have that

exαi, j ∈ K ⇐⇒ eω j (x)αi ∈ K ′.

In the following, Soc(M) denotes the socle (maximal semisimple submodule) of a module
M .
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006

105 015

204 114 024

303 213 123 033

402 312 222 132 042

501 411 321 231 141 051

600 510 420 330 240 150 060

(222)0

402 312 (222)1

(222)2

330

501 411 321

600 510 420

Fig. 2 The Z3-invariant cut K ′ ofA7 and the induced cut K of D7, indicated by the dashed arrows

Lemma 6.5 Let s = 3t + 1, � = �s
D and x = (3t, 0, 0) ∈ Ds

0. Then Soc(ex�) = 〈p〉,
where

p =
⎧
⎨

⎩
exα

3t−1
2

0 α2,1α
3t−1
2

2 if t is odd,

exα
3t
2
0 α2,1α

3t−2
2

2 if t is even.

In particular, gK (p) = t .

Proof Suppose t ≥ 3 is odd (the even case is analogous, and t = 1 can be seen from Example
8.1). The proof proceeds by recursively computing ex�[n], the space of paths starting at x
with length n. Clearly ex�[0] = 〈ex 〉 and ex�[1] = 〈exα0〉. There are two ways to extend
exα0 to a path of length 2:
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We have ∂α2ex W
s
D = exα0α1, so exα0α1 = 0. There is no relation reducing exα2

0 , since
the two arrows lie in 3-cycles which do not share a common edge. So certainly exα2

0 �= 0
and ex�[2] = 〈exα2

0〉.
Now let 2 ≤ N ≤ 3t−3

2 and assume ex�[N ] = 〈exαN
0 〉. There are two ways to extend

exαN
0 to a path of length N + 1:

We have ∂α2eyW
s
D = ey(α0α1 − α1α0). Now ex�[N ] = 〈exαN

0 〉, so exα
N−1
0 α1 = 0.

Hence exαN
0 α1 = exα

N−1
0 α1α0 = 0. As before there is no relation reducing exα

N+1
0 , so this

path generates ex�[N + 1]. Therefore ex�[n] = 〈exαn
0 〉 for all n ≤ 3t−1

2 .

There are two ways to extend exα
3t−1
2

0 to a path of length 3t+1
2 :

We have ∂α2ewW
s
D = ew(α0α1 − α1α0), so exα

3t−1
2

0 α1 = exα
3t−3
2

0 α1α0 = 0. There is no

relation reducing exα
3t−1
2

0 α2,1 so this path generates ex�[ 3t+1
2 ].

There are two ways to extend exα
3t−1
2

0 α2,1 to a path of length 3t+3
2 :

We have ∂α2ezW
s
D = ez(α2,1α1,2−α1α0), so exα

3t−1
2

0 α2,1α1,2 = exα
3t−1
2

0 α1α0 = 0. There

is no relation reducing exα
3t−1
2

0 α2,1α2 so this path generates ex�[ 3t+3
2 ].
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There are two ways to extend exα
3t−1
2

0 α2,1α2 to a path of length 3t+5
2 :

We have ∂α1euW
s
D = eu(α2α0 −α1,2α2,1), so exα

3t−1
2

0 α2,1α2α0 = exα
3t−1
2

0 α2,1α1,2α2,1 =
0. There is no relation reducing exα

3t−1
2

0 α2,1α
2
2 so this path generates ex�[ 3t+5

2 ].
Now let 2 ≤ N ≤ 3t−3

2 and assume ex�[ 3t+1
2 + N ] = 〈exα

3t−1
2

0 α2,1α
N
2 〉. There are two

ways to extend exα
3t−1
2

0 α2,1α
N
2 to a path of length 3t+3

2 + N :

We have ∂α1evW
s
D = ev(α2α0 −α0α2), so exα

3t−1
2

0 α2,1α
N
2 α0 = exα

3t−1
2

0 α2,1α
N−1
2 α0α2 =

0 by assumption. There is no relation reducing exα
3t−1
2

0 α2,1α
N+1
2 so this path generates

ex�[ 3t+3
2 + N ]. Therefore ex�[ 3t+1

2 + n] = 〈exα
3t−1
2

0 α2,1α
n
2 〉 for all n ≤ 3t−1

2 .

Notice that t(exα
3t−1
2

0 α2,1α
3t−1
2

2 ) = x . There is only one arrowwith source x , namely exα0

(see the first figure in the proof). But since ∂α1e(3t−1,0,1)W
s
D = e(3t−1,0,1)(α2α0 − α0α2), we

have exα
3t−1
2

0 α2,1α
3t−1
2

2 α0 = exα
3t−1
2

0 α2,1α
3t−3
2

2 α0α2 = 0, so ex�[n] = 0 for all n > 3t .
Using Remark 6.4,

gK (p) = gK ′
(
exα

3t−1
2

0

)
+ gK ′

(
α

3t+1
2

2 ex

)
.

By definition of K ′,

gK ′
(
exα

3t−1
2

0

)
= t − 1

2
, gK ′

(
α

3t+1
2

2 ex

)
= t + 1

2
,

so gK (p) = t . ��
We now prove Theorem 3.

Theorem 6.6 Let s = 3t + 1. For any cut C ⊂ Ds
1, �s

D/〈C〉 is fractional Calabi-Yau of
dimension 2t/(t + 1).
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Proof We prove the statement for C = K . This is enough, since all truncations of �s
D are

derived equivalent by Corollary 5.7. Theorem 6.2(a) with σ = id and k = 1 implies the
function l : Ds

0 → Z from Lemma 6.1 takes a constant value N . Let x = (3t, 0, 0) ∈ Ds
0. By

Lemma 6.1(b), ex� ∼= D(�ex ){−N } as graded�-modules. In Lemma 6.5 we demonstrated
that Soc(ex�) is generated by a path p of degree t , so ex� exists in degrees 0 through t .
Since we also have p ∈ �ex , we deduce that D(�ex ) exists in degrees −t through 0, and
that N = t . Therefore�s

D/〈C〉 is fractional Calabi-Yau of dimension 2t/(t +1) by Theorem
6.2(b). ��
Definition 6.7 [16, Def 1.2] If the function l : Q0 → Z from Lemma 6.1 takes a constant
value N ∈ Z, we say � is (N + 1)-homogeneous.

The following is immediate from the proof of Theorem 6.6.

Corollary 6.8 Let s = 3t + 1. For any cut C ⊂ Ds
1, �

s
D/〈C〉 is (t + 1)-homogeneous.

7 2-Auslander-Reiten quivers

The general theory in this section is from [20, §1].
Let � be a d-representation-finite algebra with a d-cluster tilting object M ∈ mod�.

Then add M is equal to the subcategory M := add{τ−i
d � | i ≥ 0} ⊂ mod� [20, Thm 1.6].

We call M the d-cluster tilting subcategory of mod�.
The functors τd , τ

−
d play the role of Auslander-Reiten translates on this subcategory: they

induce mutually quasi-inverse equivalences τd : M → M and τ−
d : M → M between the

stable and costable categories.
Thus, it makes sense to consider a d-Auslander-Reiten quiver of mod�, whose vertices

are indecomposable objects of M, and the number of arrows from X to Y is equal to the
dimension of radM(X , Y )/ rad2M(X , Y ), where rad denotes the Jacobson radical [20, Def
6.1].

Example 7.1 Let � = �4
D , C = {α1, α2,1} and � = �/〈C〉. To simplify notation relabel as

follows.

Using the definition τ−
2 = τ−�−, one computes the radical series

e1� = 1
2 , e2� = 2 , e3� = 3

1 40 41 42
2 2

, e4k� = 4k
2 ,

τ−
2 (e1�) = 3

1 , τ−
2 (e2�) = 3 3

1 40 41 42
2

, τ−
2 (e3�) = 3 , τ−

2 (e4k ) = 3
4k .
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The 2-Auslander-Reiten quiver of M ⊂ mod� is as follows. The dashed lines indicate the
action of τ−

2 .

Given a d-representation-finite algebra �, there is also a notion of higher Auslander-Reiten
theory on its bounded derived category D = Db(mod�). Here the role of Auslander-Reiten
translate is played by the autoequivalence νd := ν ◦ �−d : D → D, and the d-cluster tilting
subcategory is U := add{ν−i

d | i ∈ Z} ⊂ D. This definition is justified by the fact that for
any X ∈ M with no injective summands, τ−

d X ∼= ν−
d X .

Example 7.2 The 2-Auslander-Reiten quiver of U ⊂ D is as follows.

On U , the Serre functor ν has orbits

2 �→ 3 3
1 40 41 42

2
�→ 2 [2],

1
2 �→ 3

1 �→ 1
2 [2],

4k
2 �→ 3

4k �→ 4k
2 [2],

3
1 40 41 42

2 2
�→ 3 �→ 3

1 40 41 42
2 2

[2],
aligning with the fact � is 2/2-fractional Calabi-Yau.

By homogeneity (Corollary 6.8), if � = �3t+1
D /〈C〉, the Serre functor on U has disjoint

orbits
ex� �→ τ−

2 (ex�) �→ · · · �→ τ 1−t
2 (ex�) �→ D(�ex ) �→ ex�[2t]
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for each x ∈ D3t+1
0 . The orbits are disjoint since τ−i

2 (ex�) ∼= τ
− j
2 (ey�) implies

τ
j−i
2 (ex�) ∼= ey�. Since ey� is projective, we must have i = j , whence x = y since

� is basic.

We give a recipe to construct the 2-Auslander-Reiten quiver of a 2-representation-finite
algebra of type D.

Proposition 7.3 Let s = 3t + 1, C be a cut of � = �s
D , and � = �/〈C〉. The 2-Auslander-

Reiten quiver of U ⊂ Db(mod�) is isomorphic to the quiver � with vertices

�0 = {(x, i) | x ∈ Ds
0, i ∈ Z},

where there is an arrow (x, i) −→ (y, j) in �1 if and only if

1. i = j and there is an arrow y −→ x in Ds
1\C, or

2. j = i + 1 and there is an arrow y −→ x in C.

The 2-Auslander-Reiten quiver of M ⊂ mod� is isomorphic to the full subquiver �′ of �

on the vertices
�′
0 = {(x, i) | x ∈ Ds

0, 0 ≤ i ≤ t}.
Proof The vertices of the 2AR quiver of U are the isoclasses of its indecomposable objects.
Now

U = add{ν−i
2 � | i ∈ Z}

= add

⎧
⎨

⎩ν−i
2

⎛

⎝
⊕

x∈Ds
0

ex�

⎞

⎠ | i ∈ Z

⎫
⎬

⎭

= add

⎧
⎨

⎩
⊕

x∈Ds
0

ν−i
2 (ex�) | i ∈ Z

⎫
⎬

⎭

= add{ν−i
2 (ex�) | x ∈ Ds

0, i ∈ Z}.
Since � is basic, {ν−i

2 (ex�) | x ∈ Ds
0, i ∈ Z} is the set of isoclasses of indecomposable

objects, which is clearly in bijection with the set �0 defined above.
Note [16, §2] that � ∼= ⊕

r∈Z HomU (�, ν−r
2 �), so for all x, y ∈ Ds

0 and i, j ∈ Z,

HomU (ν−i
2 (ex�), ν

− j
2 (ey�)) ∼= HomU (ex�, ν

i− j
2 (ey�)) ∼= ey� j−i ex

as vector spaces, where � j−i is the degree j − i part of �.
We now show statements 1 and 2 of the proposition.

1. Suppose i = j . Then HomU (ν−i
2 (ex�), ν−i

2 (ey�)) has a basis consisting of paths from
y to x in� (since the degree zero part of� is�). In particular, the irreducible morphisms
from ν−i

2 (ex�) to ν−i
2 (ey�) in U (i.e. arrows (x, i) −→ (y, i) in �1) are in bijection

with arrows y −→ x in Ds
1\C .

2. Suppose j = i + 1. Then HomU (ν−i
2 (ex�), ν

−(i+1)
2 (ey�)) has a basis consisting of

degree one paths from y to x in�. In particular, the irreduciblemorphisms from ν−i
2 (ex�)

to ν
−(i+1)
2 (ey�) in U (i.e. arrows (x, i) −→ (y, i +1) in �1) are in bijection with arrows

y −→ x in C .
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These are all the arrows in �1. Indeed, if j < i then HomU (ν−i
2 (ex�), ν

− j
2 (ey�)) = 0

since � is non-negatively graded. Conversely if j > i + 1, then no morphism in
HomU (ν−i

2 ex�, ν
− j
2 (ey�)) is irreducible, since it corresponds to a path in � from y to

x of degree j − i > 1, which can be factorised into two paths of lower degree since � is
generated in degree 1.

To see �′ is as claimed, note that its set of vertices is {ν−i
2 (ex�) | x ∈ Ds

0, 0 ≤ i ≤ t},
which is clearly in bijection with the set�′

0 above. This is because� is (t+1)-homogeneous,

so τ−i
2 (ex�) ∼= ν−i

2 (ex�) for 0 ≤ i ≤ t , and τ
−(t+1)
2 (ex�) = 0. ��

8 Further questions

We present some possible directions for further research in this area.

1. Basis and dimension: Finding a basis for �s
D can be difficult, even for small s.

Example 8.1 Let � = �4
D (see Figure 1 and Example 1.5). Then

e300� = 〈e300, α0, α0α2,1, α0α2,1α2〉,
e210� = 〈e210, α1, α2,1, α1β0, α1β1, α1β2, α2,1α2, α2,1α2α0〉,
e201� = 〈e201, α2, β0, β1, β2, α2α0, β0γ0, α2α0α2,1〉,

e(111)k� = 〈e(111)k , γk, γkα1, γkα1βk〉 for all k ∈ {0, 1, 2},
so we obtain a basis for �. In particular, dimC � = 32.
One calculates as in Lemma 6.5, recursively computing the space of paths starting at each
vertex with a given length. To make these calculations we had to derive some additional
relations:

(a) α1β0γ0 = ζ 2α1β1γ1 = ζα1β2γ2 and α2,1β0γ0 = α2,1β1γ1 = α2,1β2γ2;
(b) β0γ0α1 = ζ 2β1γ1α1 = ζβ2γ2α1 and β0γ0α2,1 = β1γ1α2,1 = β2γ2α2,1;
(c) if i �= j then γiα1β j = γiα2,1β j = 0.

To see (a), note that

α2,1β2γ2 = −ζα2,1β0γ0 − ζ 2α2,1β1γ1 = −ζα1β0γ0 − ζα1β1γ1, but also

α2,1β2γ2 = ζα1β2γ2 = −ζ 2α1β0γ0 − α1β1γ1,

so ζα1β0γ0 + ζα1β1γ1 = ζ 2α1β0γ0 + α1β1γ1, which rearranges to give α1β0γ0 =
ζ 2α1β1γ1. One similarly shows α1β0γ0 = ζα1β2γ2, and the fact α1βkγk = ζ kα2,1βkγk
for all k ∈ {0, 1, 2} implies the second statement.
Part (b) is demonstrated analogously. To see (c), assume i �= j . Then γiα1β j =
ζ iγiα2,1β

j , but also γiα1β j = ζ jγiα2,1β j . This is a contradiction unless γiα1β j =
γiα2,1β j = 0.

2. d > 2: The (d + 1)-preprojective algebras of type A are defined for all d ∈ Z
+ (d = 1

recovers the classical preprojective algebra of a type A quiver). Furthermore, quotienting
by the ideal generated by a cut gives a d-representation-finite algebra [18, §5]. Let �A
be a (d + 1)-preprojective algebra of type A, for d > 2. Some questions are:

(a) Can we find a group G - maybe Zd+1 - acting on �A by automorphisms?
(b) Can we generalise Definitions 1.2 and 1.4 to give an algebra �D that is Morita

equivalent to �A#G?
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(c) Is �D the (d + 1)-preprojective algebra of some d-representation-finite algebra � -
maybe only when its index is 1 (mod d + 1)?

(d) Is � fractional Calabi-Yau?

The methods used would likely have to be different to those used in this article. Perhaps
most significantly, when d > 2 one no longer has the Herschend-Iyama classification
(Theorem 2.4).

3. Auslander algebras: In [20], Iyama studied iterated Auslander algebras of Dynkin quiv-
ers. If one takes the Auslander algebra of a linearly oriented type A quiver, one obtains
a 2-representation-finite algebra of type A. For s = 3t + 1 and a cut C of �s

D , is there a
type D quiver whose Auslander algebra is � = �s

D/〈C〉?
If C contains one element of {e(t+1,t,t−1)α1, e(t+1,t,t−1)α2,1}, then it also contains the
other. This is because there must be precisely one cut arrow in each of the cycles α1β0γ0
andα2,1β0γ0.Hence, either�orC contains twoparallel arrowsbetween a pair of vertices.
As such, the 2-Auslander-Reiten quiver of M ⊂ mod� contains parallel arrows (see
Proposition 7.3).
In contrast, if Q is a type D quiver and� is its Auslander algebra, the 2-Auslander-Reiten
quiver of M ⊂ mod� contains no parallel arrows - use the recipe of [20, Def 6.11].
This means � and � are not even Morita equivalent, since the module category of a
2-representation-finite algebra has a unique 2-cluster-tilting subcategory [20, Thm 1.6].
We cannot argue similarly with U ⊂ Db(mod�). Indeed, 2-representation-finiteness is
not preserved under derived equivalence (see [16, Rem 1.6] for a nice example). So, the
question becomes: is there a type D quiver whose Auslander algebra is derived equivalent
to �?
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