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Abstracts 

Colorectal cancer (CRC) remains a significant global health concern, with metastatic CRC 

(mCRC) presenting particularly poor prognoses due to the high failure rate of existing 

treatments, including targeted therapies. The emergence of drug resistance severely 

undermines the efficacy of these therapies, highlighting the urgent need for new approaches to 

overcome or prevent resistance to improve patient outcomes. 

This study aimed to investigate the characteristics of mCRC patient-derived organoids (PDOs) 

in response to two AKT inhibitors (AKTi): MK-2206 and AZD5363/capivasertib. The primary 

focus was on characterising the PDOs after they developed resistance to these inhibitors, with 

the goal of uncovering resistance mechanisms at both transcriptional and genomic levels. To 

achieve this, single-cell genome and transcriptome sequencing (G&T-seq) was applied to 

MK2206-resistant, AZD5363-resistant, and control mCRC organoids. This method allowed for 

extensive profiling of mCRC cells, and provided valuable insights into the relationship between 

genomic alterations and their effects on the transcriptome of resistant cells.  

Using this single-cell multiomics approach, the research identified genes potentially associated 

with resistance to AKT inhibition, implicating various processes such as energy metabolism, 

extracellular matrix remodelling, and immune response regulation. A key finding was the 

expansion of a pre-existing resistant subclone, characterised by specific copy number 

alterations (CNAs) on chromosomes (chr) 2 and 5, in both AKTi-resistant organoids. This 

suggests a potential drug-agnostic resistance mechanism, with the same subclone being 

selected for under different selective pressures. Furthermore, a direct correlation between 

CNAs on chr2 and chr5 and gene expression was evident in MK-2206-resistant cells. However, 

this correlation was not consistently observed for chr5 in AZD5363-resistant cells, suggesting 

that compensatory mechanisms could have modulated gene dosage effects in this organoid. 

By integrating genomic and transcriptomic datasets, researchers can identify altered genes at 

the DNA level and correlate these changes with gene expression patterns that drive malignant 

processes. This approach underscores the importance of considering both molecular layers to 

fully understand cancer evolution and inform the development of new treatments.
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1.1 Molecular characteristics of colorectal cancer 

Colorectal cancer (CRC) is the third most commonly diagnosed cancer type worldwide for both 

men and women, and it is the second leading cause of cancer-related deaths (1). Between 2016 

and 2018, the UK reported approximately 42,900 new cases of CRC annually, with 23,900 cases 

in males and 19,000 in females, which translates to nearly 120 cases diagnosed daily (2). The 

incidence of CRC in the UK is expected to rise to 47,000 new cases per year by 2040 (2), 

highlighting the critical need for a deeper understanding of the molecular characteristics of the 

disease, early detection, and the development of more effective treatment strategies. 

1.1.1 Molecular classification  

Nearly all cases of CRC originate from the malignant transformation of colorectal polyps (3). A 

polyp is a benign mass of glandular epithelial cells that arises from the mucosal layer and 

protrudes into the lumen of the gastrointestinal (GI) tract, predominantly in the descending 

colon and rectum, but can also occur in the genitourinary or respiratory tracts (4). Polyps are 

usually asymptomatic and often detected during colorectal endoscopic (colonoscopy) 

screenings. By the age of 50, approximately 30% of the population will develop these lesions, 

which include non-neoplastic inflammatory polyps, hamartomatous polyps, sessile serrated 

lesions, and adenomatous polyps (also known as adenomas). Although polyps can undergo 

changes that may lead to cancer over time, not all polyps exhibit malignant potential. The 

unpredictable progression of polyps underscores the importance of regular monitoring and, 

when necessary, their removal to prevent the development of CRC (4). 

The molecular classification of CRC reflects the underlying mechanisms of tumorigenesis and 

is instrumental for determining the clinical, pathological, and biological characteristics of the 

disease (5). Currently, CRC can be categorised into distinct molecular subtypes based on 

genetic, epigenetic, and transcriptomic characteristics. 

The Cancer Genome Atlas (TCGA) project initially classified CRC using a combination of array-

based and sequencing technologies (6). This classification employed data from exome 

sequencing, DNA copy number analyses, promoter methylation profiles, as well as messenger 

RNA (mRNA) and microRNA (miRNA) expression studies. In the analysis of 224 CRC and 

matched normal samples, 15% were identified as hypermutated tumours, with 77% of these 

exhibiting a high frequency of microsatellite instability (MSI). Microsatellites, also known as 

Simple Sequence Repeats (SSRs) or Short Tandem Repeats (STRs), are repetitive sequences of 

1-6 nucleotides in length found throughout the genome in both coding and non-coding regions 

(7). Due to their repetitive nature, microsatellites are especially susceptible to replication 
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errors caused by defective DNA mismatch repair (MMR) pathways (6, 7). This characteristic 

makes microsatellite status a critical marker for assessing MMR deficiency in CRCs, particularly 

involving the MMR genes MLH1 and MSH2 (8, 9). The remaining hypermutated tumours were 

identified as harbouring somatic mutations in DNA MMR pathways and DNA Polymerase 

Epsilon (POLE) (6). 

The next group of CRCs identified was characterised by the absence of MSI. Instead, these 

microsatellite stable (MSS) CRCs exhibited extensive chromosomal rearrangements, including 

a high rate of gains and losses of chromosomal segments, known as copy number alterations 

(CNAs), leading to aneuploid genomes (6, 9). Additionally, this group demonstrated a 

significant loss of heterozygosity (LOH) events, resulting in the loss of function (LOF) of critical 

gene products (6, 9). These MSS CRCs, marked by chromosomal instability (CIN) (9), are 

typically recognised by an accumulation of mutations that alter or neutralise the function of 

genes that regulate cell proliferation, differentiation, senescence, and apoptosis, collectively 

known as tumour-suppressor genes (TSG) and proto-oncogenes (10, 11). Examples of affected 

TSGs in CRCs include APC, TP53 and SMAD4, as well proto-oncogenes such as KRAS and PIK3CA 

(12).  

Mutations in driver genes disrupt pathways critical for CRC initiation and progression, 

including Wingless (Wnt) signalling, RAS/MAPK, PI3K/AKT pathways, DNA MMR pathways 

and those involving TGF-β and TP53 (Figure 1.1) (6, 9). Moreover, these mutations confer 

advantageous phenotypes, known as hallmarks, to neoplastic cells. Initially proposed by 

Hanahan and Weinberg in 2000 and later updated in 2011 and 2022, the hallmarks of cancer 

encapsulate essential processes that enable neoplastic cells to achieve malignant potential (13, 

14). These hallmarks include the ability to sustain proliferative signalling, evade growth 

suppressors, reprogram cellular metabolism, avoid immune destruction, exhibit phenotypic 

plasticity, undergo disrupted cell differentiation, thrive in a permissive tumour 

microenvironment, and undergo epigenetic reprogramming. 

Another subset of CRCs showed hypermethylation of CpG islands at promoter regions, leading 

to the transcriptional silencing of critical genes, including tumour suppressors. CRCs with the 

CpG island methylator phenotype (CIMP) often exhibit high microsatellite instability (MSI-

high) as a result of their impact on DNA MMR genes (6, 9). 

A more recent classification system divides CRCs into four consensus molecular subtypes 

(CMS), each characterised by distinct gene expression patterns (15). CMS1 (MSI immune) are 

MSI and CIMP high tumours featuring MLH1 silencing, strong immune infiltration, and 

activation (15). Despite this, CMS1 CRCs are associated with a poor prognosis following tumour 
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relapse. CMS2 (canonical) CRCs are characterised by high expression of epithelial markers and 

exhibit more CIN than other subtypes. Additionally, CMS2 CRCs show widespread activation of 

Wnt and MYC signalling pathways, which are critical for regulating epithelial cell proliferation 

and survival. This subtype typically represents more differentiated tumours with features that 

closely resemble the normal epithelium. Although CMS3 (metabolic) CRCs also exhibit 

epithelial signatures, they are distinguished from CMS2 by the dysregulation of genes involved 

in metabolic processes, the presence of KRAS mutations, and low levels of CIMP. CMS2 and 

CMS3 CRCs have higher survival rates after relapse than the other CMS. Lastly, CMS4 

(mesenchymal) CRCs frequently show activation of the TGF-β signalling and prominent 

expression of genes involved in inflammation, extracellular matrix remodelling, stromal 

invasion, and angiogenesis. Among all the consensus molecular subtypes, CMS4 CRCs are 

associated with the poorest prognosis (15). 

CRC is a multifaceted disease, with a pathogenesis shaped by risk factors extending beyond 

these molecular classifications. CRCs are commonly categorised into sporadic, familial, or 

hereditary types (9). Approximately 70% of CRCs are sporadic, with no familial history or 

apparent genetic predisposition, and are primarily linked to environmental and lifestyle factors 

such as advanced age, sedentary lifestyle, obesity, an unhealthy diet, smoking status, and heavy 

alcohol consumption (15). CIN is a hallmark of 85% of sporadic cases, while the remainder 

predominantly exhibit MSI phenotypes (9). Sporadic MSI CRCs frequently feature loss of DNA 

MMR activity, often due to MLH1 silencing (15). 

Familial CRC involves individuals with a family history of the disease, indicating a potential 

genetic predisposition (15). On the other hand, inherited or genetic cases account for 5-10% of 

all cases and are categorised based on the presence or absence of precursor lesions known as 

colonic polyps, with specific conditions linked to each category. Diseases with polyposis 

following an autosomal dominant pattern of inheritance include Familial Adenomatous 

Polyposis (FAP) and hamartomatous polyposis syndromes (HPS), which encompass Peutz-

Jeghers syndrome, Juvenile polyposis syndrome, and PTEN hamartoma tumour syndrome (15, 

16). Notably, FAP is characterised by germline mutations in APC, with 95% of known mutations 

being frameshift or nonsense mutations, leading to a truncated protein (17). Conversely, 

hereditary polyposis CRC with autosomal recessive inheritance include MUTYH Associated 

Polyposis (MAP) (15, 17). 

On the other hand, hereditary nonpolyposis CRC (HNPCC), also known as Lynch syndrome, is 

characterised by a lack of polyps. About 95% of HNPCC cases show a high frequency of MSI due 

to germline mutations in MMR genes. Specifically, mutations in MLH1 or MSH2 are associated 
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with a CRC risk of 70-80%, while mutations in MSH6 or PMS2 are associated with a 

comparatively lower risk, ranging from 25-60% (15, 18). 

Other non-genetic risk factors associated with CRC include chronic inflammatory bowel 

diseases (IBDs) like Crohn’s disease or ulcerative colitis (15).
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Pathways involved in the development and progression of colorectal cancer: Wnt/β-catenin, TGF-β, MAPK and PI3K/AKT signaling. Figure reproduced 

from (19).

Figure 1.1. Major signalling pathways involved in CRC carcinogenesis. 
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1.1.2 Wnt/β-catenin signalling pathway in the development of CRC 

Among the major signalling pathways implicated in CRC carcinogenesis (Figure 1.1), Wnt 

signalling is one of the most important as it regulates the homeostatic equilibrium between 

stemness, proliferation, and differentiation of normal ISCs at the intestinal crypt base (20). ISCs 

are responsible for the continuous renewal of the intestinal wall (21). The gradient of Wnt 

signalling, which is the highest at the crypt base, is essential for sustaining the undifferentiated 

state of ISCs and promoting their proliferation (22). As the progeny produced by ISCs begin to 

migrate upwards along the crypt-villus axis, they encounter a decreasing gradient of Wnt 

signalling, which promotes the differentiation of these cells into various specialised intestinal 

cell types, such as absorptive enterocytes, goblet cells, Paneth cells, and enteroendocrine cells 

(23). 

The constitutive activation of canonical Wnt signalling pathway―also known as Wnt/β-catenin 

due to the critical role of β-catenin within the pathway―by a mutated APC or through other 

mechanisms is the initiating and rate-limiting step in the pathogenesis of CRC progression 

(Figure 1.2) (24). In the absence of Wnt ligands such as Wnt3a, β-catenin is kept at low levels 

in the cytoplasm through continuous degradation (25). This degradation is mediated by a 

“multi-protein” destruction complex that includes two anchoring proteins, APC and Axin1/2, 

and two kinases, GSK-3β and CK1α (25, 26). Upon binding to the destruction complex, β-

catenin is sequentially phosphorylated, first by CK1α (at Ser45) and then by GSK-3β (at 

Ser33/37/Thr41), then ubiquitinated by the β-TrCP ubiquitin E3 ligase complex, marking it for 

ubiquitination and subsequent proteasomal degradation (25, 27-29). In the absence of Wnt 

signalling, T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription factors, which are 

the nuclear mediators of Wnt signalling, are bound to Groucho/TLE co-repressors (27). This 

interaction keeps target genes repressed. Groucho/TLE proteins do not directly bind to DNA 

but are recruited to target genes through their interaction with DNA-bound TCF/LEF (20, 27, 

29). The Groucho‒TCF/TLE complex recruits other components of the transcriptional 

repression machinery, including histone deacetylases (HDACs), leading to a closed chromatin 

conformation and suppression of Wnt target gene expression (27). Therefore, as Wnt target 

genes are repressed, APC inhibits the transition of stem cells from G0/G1 to the S phase in 

unstimulated stem cells (15, 29). 

Secretion of Wnt ligands by Paneth cells and subepithelial myofibroblasts in the stem cell 

compartment activates canonical Wnt signalling (30). The binding of Wnt ligands to the 

Frizzled (FZD) and LRP5 or LRP6 co-receptors brings these receptors in close proximity. This 

event leads to the phosphorylation of the intracellular domain of LRP5/6 by GSK-3β and CK1 α 

(26). Phosphorylated LRP5/6 then serves as a docking site for the recruitment of other 
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signalling proteins. For one, Axin1/2 translocation to the membrane is mediated by the 

phosphorylated LRP5/6 and by the protein Dishevelled (DVL), which is activated upon FZD 

receptor activation (20, 27, 29). The translocation of Axin to the membrane and its interaction 

with LRP5/6 disrupts the β-catenin destruction complex. As a result, β-catenin is no longer 

efficiently phosphorylated by GSK-3 and CK1α, which prevents its recognition and 

ubiquitination by β-TrCP. With the destruction complex inhibited, newly synthesised β-catenin 

accumulates in the cytoplasm and subsequently translocates to the nucleus. In the nucleus, β-

catenin binds to TCF/LEF transcription factors bound to Wnt-responsive enhancers, displacing 

Groucho/TLE co-repressors from the complex. The β-catenin-TCF/LEF complex then recruits 

co-activators, including histone acetyltransferases (HATs), which modify chromatin to a more 

open configuration conducive to transcription. The displacement of Groucho/TLE by β-catenin 

converts TCF/LEF from transcriptional repressors into activators, leading to the transcription 

of Wnt target genes that drive cell proliferation, differentiation, and survival (20, 27, 29). 

In addition, Wnt signalling is enhanced by R-spondins (RSPOs), which are secreted by cells in 

the intestinal crypt base (28). RSPOs bind to Leucine-rich repeat-containing G-protein coupled 

receptors such as LGR5 or LGR6, expressed in stem cells and tissues where Wnt signalling is 

crucial. The binding of RSPOs to LGR5/6 prevents the internalisation and subsequent 

degradation of the FZD and LRP5/6 co-receptors by the E3 ubiquitin ligases ZNRF3 and RNF43. 

Thus, binding of RSPOs to LGR5/6 inhibits the action of ZNRF3 and RNF43, leading to an 

increase in the number of Wnt receptors (Frizzled and LRP5/6) available on the cell surface, 

which ultimately permits the inhibition of the destruction complex and accumulation of β-

catenin in the cytoplasm (28). 

Contrarily, the canonical Wnt signalling pathway is negatively regulated by the Dickkopf (DKK) 

family of proteins. DKK1/3/4 inhibit canonical Wnt signalling by binding to the extracellular 

domains of LRP5/6, thus preventing it from forming a functional receptor complex with FZD 

(31). Additionally, the binding of DKK1/3/4 to LRP5/6 can lead to the formation of inactive 

tertiary complexes with Kremen 1 and 2 proteins. Kremen proteins function as high-affinity 

receptors for DKK1/2/3, and their interaction facilitates the removal of LRP5/6 from the cell 

surface through endocytosis, further inhibiting Wnt signalling. However, DKKs are 

transcriptional targets of Wnt/β-catenin signalling, suggesting that the increased expression of 

DKK proteins following Wnt pathway activation serves as a negative feedback mechanism (31).
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In the absence of a Wnt ligand, the destruction complex phosphorylates and ubiquitinates β-catenin, leading to its subsequent proteasomal degradation 

(left). The binding of Wnt to the LRP5/6 and FZD co-receptors results in the disassembly of the destruction complex, which leads to the stabilisation and 

cytoplasmic accumulation of β-catenin. This is followed by its translocation into the nucleus, where it promotes the expression of genes that drive cell 

proliferation, differentiation, and survival (right). Figure reproduced from (28).

Figure 1.2. Canonical Wnt/β-catenin signalling. 
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As scaffolding proteins within the destruction complex, APC (and Axin1/2) facilitate the 

proximity of β-catenin to GSK-3β and CK1α (17). Mutations in APC, which often result in 

truncated proteins unable to form a functional destruction complex, lead to a decreased affinity 

for β-catenin (17). This results in an impaired ability of the complex to promote β-catenin’s 

phosphorylation (32). A dysfunctional destruction complex ultimately precludes β-catenin 

degradation, which then accumulates in the cytoplasm and translocates into the nucleus, 

ultimately leading to the ligand-independent constitutive activation of genes regulated by Wnt 

signalling that promote the proliferation, migration, invasion and metastasis of cancerous cells, 

including MYC, the cyclin D1 gene (CCND1), vascular endothelial growth factor (VEGF) genes, 

and the peroxisome proliferator-activated receptor delta (PPAR-δ) gene (32).  

Oncogenic mutations affecting the β-catenin gene (CTNNB1) and AXIN1/2 mutations can also 

activate Wnt signalling, though to a lesser extent, even in the absence of APC mutations (32). 

Similarly, somatic mutations within the Ras/Raf/MEK/ERK and PI3K/AKT pathways can also 

affect Wnt signalling: 

As previously stated, activated KRAS phosphorylates the p110α subunit of PI3K (33). Thus, by 

activating PI3K, KRAS directly activates the PI3K/AKT pathway. Once phosphorylated, PI3K 

converts PIP2 to PIP3. PIP3 serves as a docking site for AKT, its upstream activator, 

phosphoinositide-dependent kinase-1 (PDK1), both of which have pleckstrin homology (PH) 

domains that bind PIP3, localising them to the cell membrane (34). PDK1 phosphorylates AKT 

at the threonine 308 (Thr308) residue. Full activation of AKT also requires phosphorylation at 

serine 473 (Ser473) by the mTORC2 complex or other kinases like DNA-PK. Activated AKT can 

negatively regulate GSK-3β kinase activity through post-translational modifications (26). 

Therefore, through AKT-mediated inhibition of GSK-3β, KRAS can indirectly promote β-catenin 

stability and activity, highlighting the impact of both KRAS and PI3K/AKT pathway mutations 

on tumorigenesis of CRC.  

RAS/RAF/MEK/ERK/p90 signalling can also inactivate GSK-3β at S9 upon pathway activation 

by ligand binding of epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) 

to their respective receptors. Additionally, ERK phosphorylation at GSK-3β T43 induces a 

conformational change that impacts its function (35). Furthermore, recent studies have 

revealed new mechanisms explaining the cross-talk between the Wnt/β-catenin and RAS-ERK 

signalling pathways (36). These findings suggest that the destruction complex can regulate the 

stability of RAS proteins in a manner akin to β-catenin regulation, i.e., through GSK3β-mediated 

phosphorylation of RAS proteins at certain threonine residues. This phosphorylation facilitates 

RAS recognition by the E3 ubiquitin ligase β-TrCP, leading to its degradation. This process keeps 
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RAS levels in check under resting conditions. However, upon Wnt pathway activation, β-catenin 

and RAS proteins accumulate because of the disruption of the destruction complex, leading to 

their accumulation in the cytoplasm. In the case of RAS, the accumulated RAS proteins would 

then activate the RAF/MEK/ERK and PI3K/AKT signalling pathways, promoting cell 

proliferation and transformation (36).  

Understanding the interactions of the Wnt signalling pathway and its interplay with other 

pathways like RAF/MEK/ERK, PI3K/AKT, and TGF-β helps identify how specific signalling 

aberrations contribute to disease progression. Insights into signalling cross-talks can identify 

key nodes within these networks that, when modulated, can correct pathological signalling. 

This is particularly relevant for developing targeted therapies in cancer treatment, where the 

goal is to specifically inhibit oncogenic signals without disrupting normal cellular functions. 
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1.1.3 The adenoma-carcinoma sequence model of CRC progression 

Nearly 96% of CRC cases originate from adenomas (4), which are subclassified based on their 

histological appearance. Tubular adenomas, characterised by a tube-like morphology, are the 

most commonly removed polyps, constituting 60-80% of cases. Villous adenomas feature long, 

finger-like epithelial projections and account for 5-10% of polyps. These adenomas often 

exhibit more severe atypia and dysplasia compared to tubular adenomas. Lastly, tubulo-villous 

adenomas, which exhibit tubular and villous adenomas features, constitute 10-25% of polyps 

(4).  

The likelihood of CRC development escalates with increasing dysplasia (4). Tubular adenomas 

smaller than 1 cm in diameter have a 5% chance of becoming cancerous. In contrast, villous 

adenomas larger than 2 cm have a 50% chance of malignant transformation, while tubule-

villous adenomas present an intermediate risk of 22% (4). This gradual progression provides 

a critical window for early detection and removal, as colonoscopic polypectomies significantly 

reduce the risk of developing CRC (17). However, the transition from an early adenoma to an 

established CRC may take no less than 10 years, while a polyp may take as long as 18 years to 

develop into an invasive cancer (37). 

Initially proposed by Fearon and Vogelstein, the adenoma-carcinoma sequence model outlines 

how CRC progresses from normal colonic epithelium through benign adenoma to malignant 

carcinoma in a stepwise manner (38, 39), suggesting that interventions at earlier stages could 

potentially prevent the progression to cancer. This progression is mediated by the three 

pathways previously described in the text: chromosomal instability (CIN), microsatellite 

instability (MSI), and the CpG island methylator phenotype (CIMP) (38, 39). Thus, each of these 

pathways represents a distinct mechanism by which genetic and epigenetic changes can drive 

the transformation of normal colonic cells into cancerous cells. 

Focusing on the CIN-specific model of CRC progression (Figure 1.3), carcinogenesis begins with 

a mutation that inactivates the adenomatous polyposis coli (APC) TSG located on chromosome 

5q21-q22. In patients with FAP, loss of APC function results from autosomal germline mutations 

followed by a second somatic mutation on APC that completely inactivates the gene (15). In 

contrast, sporadic cases of CRC are typically caused by somatic mutations―often frameshift or 

nonsense mutations―or allelic deletions at 5q, with a few sporadic cases exhibiting APC 

inactivation through promoter hypermethylation (9, 15). Mutations in APC lead to the 

constitutive activation of Wnt signalling, a critical pathway that regulates stemness in epithelial 

cells located at the bottom of the intestinal crypts of Lieberku hn (24). Wnt signalling activity is 

frequently dysregulated in the majority of CRC cases. As a result, mutations in APC disrupt the 
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regulation of normal intestinal stem cell (ISC) growth, ultimately leading to the development of 

polyps (24). 

In this model of colorectal cancer progression, tumour development is regulated by chromosomal 

instability (CIN), microsatellite instability (MSI), and CpG island methylator phenotype (CIMP) 

hypermethylation. Figure reproduced from (15). 

Several studies have highlighted the critical role of APC mutations in the initial stages of 

intestinal tumour formation. In patients with FAP, who are predisposed to developing hundreds 

to thousands of adenomatous polyps, loss of heterozygosity (LOH) of the second APC allele was 

observed in the majority of premalignant adenomas (40). While these findings did not 

conclusively prove that inactivation of the second allele occurred early in tumour formation, 

further research on APC heterozygous multiple intestinal neoplasia (Min) mice showed that 

100% of the tumours had inactivated the remaining normal Apc allele, with this critical 

inactivation event detectable at the earliest recognisable stages of tumour development (40). 

The association between APC silencing and the subsequent development of polyps was also 

demonstrated in murine models of sporadic GI cancers containing a mutant APC allele encoding 

a protein truncated at residue 716 (ApcΔ716). These mice developed microadenomas throughout 

the GI tract three weeks after birth (41). It was later demonstrated that heterocyclic aromatic 

amines like PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine), which are generated 

Figure 1.3. Adeno-carcinoma sequence model. 
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when muscle meat (e.g., beef, pork) is cooked at high temperatures, stimulated the growth of 

intestinal polyps through the formation of PhIP-DNA adducts in ApcΔ716 knockout mice (41). In 

contrast, omega-3 fatty acids such as docosahexaenoic acid (DHA) obtained from fish 

significantly reduced the number of polyps when fed to these mice (42). 

Indeed, the biallelic inactivation of APC marks the initial step in CRC development in 75% of 

cases (24), conferring ISCs with these mutations a selective growth advantage that leads to 

their clonal expansion (43), eventually forming premalignant adenomas. However, APC 

mutations alone are insufficient to trigger malignant transformation. The subsequent step in 

the adeno-carcinoma sequence involves mutations in KRAS, which occur early in the 

adenomatous stage (15). Notably, KRAS mutations significantly increased the number of polyps 

in mice with combined Apc and Kras knockouts (44). 

As a small GTPase, KRAS directly interacts with kinases such as RAF and PI3K (15). 

Consequently, oncogenic KRAS mutations lock the protein in its GTP-bound active state, leading 

to the constitutive activation of the MAPK/ERK (also known as RAS/RAF/MEK/ERK) and 

PI3K/AKT signalling pathways, which in turn stimulates cell proliferation, enhances cell 

survival, and facilitates tumour invasion and metastasis. Activating mutations of KRAS that are 

significant for cancer development predominantly affect codons 12 and 13 of exon 2, with less 

common mutations involving codons 61 and 146 (15, 33). Specifically, missense mutations at 

codons 12 and 13 result in the substitution of glycine with aspartate, referred to as p.G12D and 

p.G13D, respectively. Among these, the p.G13D KRAS mutation is more predominant in CRC 

adenocarcinomas (15, 33). Clinically, p.G12D KRAS mutations are associated with poorer 

overall survival in patients with advanced and recurrent CRCs (45, 46), while the predictive 

value of p.G13D KRAS remains inconclusive (47-49).  

Continuing with the adeno-carcinoma sequence, the transition from the early to the later 

adenomatous stage is marked by the deletion of the long arm of chromosome 18 (18q) (50), 

which is detected in approximately 70% of primary CRCs (51). The high incidence of allelic loss 

at 18q suggests the presence of candidate TSGs in this region whose inactivation might be 

crucial for CRC progression, such as the “deleted in colorectal carcinoma” (DCC), SMAD2 and 

SMAD4 genes (9). While the evidence supporting DCC’s role as a TSG in sporadic CRCs is 

circumstantial (52), SMAD2 and SMAD4 are recognised TSGs that regulate tumour growth 

factor-β (TGF-β) signalling, playing pivotal roles in inhibiting tumour growth and invasion (53). 

However, the relatively low mutation frequency of SMAD2 and SMAD4 in CRCs, coupled with 

observations that smaller regions of loss may exclude these genes, suggests that they might not 
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be the primary targets of inactivation at 18q (9). Instead, other genes within this region could 

also be critical targets for inactivation (9). 

The final genetic alteration in the transition to malignancy involves the inactivation of the TP53 

TSG on 17p (9). Commonly known as the “guardian of the genome”, TP53 encodes a 

transcription factor that regulates hundreds of genes involved in various biological processes, 

such as DNA repair, cell cycle arrest, senescence, apoptosis, and metabolism, in response to a 

wide range of stress signals. For example, in response to DNA damage, activated p53 binds to 

specific sequences in the promoter region of CDKN1A (P21), leading to increased transcription 

of the p21 cyclin-dependent kinase (CDK) inhibitor (54). Once activated, p21 inhibits the 

activity of cyclin-CDK complexes, including those formed by cyclin D/CDK4 and cyclin E/CDK2. 

This inhibition blocks the phosphorylation of proteins essential for initiating the S phase, 

effectively halting cell cycle progression from the G1 to the S phase. Given the pivotal role of 

p21 in cell cycle regulation, the loss of TP53 function allows cells with damaged DNA to survive 

and propagate, thereby contributing to cancer progression (9). 

Most TP53 mutations in CRC are LOF missense mutations that impair normal p53 tumour-

suppressing activities (15). These mutations are more frequently observed in colon carcinomas 

than in premalignant lesions, which highlights the role of TP53 in the transition from an 

adenoma to a carcinoma. Beyond losing its tumour-suppressing function, mutant TP53 can 

actively drive cancer progression through gain-of-function (GOF) mechanisms, as exemplified 

by the p53-R273H mutation (55). In compound mouse models harbouring both an ApcΔ716 and 

a Trp53R270H mutation (the latter corresponding to the human p53-R273H mutation), the GOF 

mutant p53-R270H significantly increased the aggressiveness of intestinal tumours by 

promoting submucosal invasion (24). This demonstrates that the presence of this specific p53 

mutation not only facilitates tumour formation but also leads to a more aggressive tumour 

phenotype. The p53-R273H mutation in tumours is often linked with enhanced resistance to 

anoikis and overall aggressive cancer behaviour in breast and CRC cells (55). 

Apart from the mutations discussed earlier, BRAF and PIK3CA mutations are also frequently 

identified in sporadic CRC. Like KRAS, BRAF is a critical kinase in the MAPK/ERK pathway, 

acting downstream of KRAS (56). The most common BRAF mutation involves a single 

nucleotide substitution that replaces valine with glutamic acid at codon 600 (V600E) (33). 

Present in 10 to 18% of CRC cases, BRAF mutations are predominantly observed in tumours 

with CIMP and MLH1-inactivated MSI, whereas they are less frequent in MSS tumours (33, 56). 

Activating BRAF mutations such as V600E result in the constitutive activation of the kinase 

independent of KRAS, leading to continuous activation of MAPK signalling (17). The co-
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occurrence of BRAF and KRAS mutations in CRC is extremely rare, suggesting that oncogenic 

mutations in either gene can independently confer a selective proliferative advantage (33). 

Conversely, PIK3CA mutations typically emerge late in tumorigenesis, as they are often found 

in very advanced adenomas (57). Missense mutations in PIK3CA, which are present in 14-25% 

of CRC cases irrespective of MSI or MSS status, may coexist with mutations in KRAS and BRAF 

(56). PIK3CA encodes the p110α catalytic subunit of PI3Kα, which is directly activated by KRAS, 

with hotspot mutations predominantly affecting the helical and kinase domains of p110α (33). 

Such mutations enhance the activity of PI3K/AKT/mTOR signalling independently of 

epidermal growth factor receptor (EGFR) activation, leading to the increased production of 

PIP3. This key second messenger recruits and activates downstream signalling proteins, 

including AKT, ultimately triggering events that promote cell survival, growth, proliferation, 

and metabolism (17). 

Furthermore, array-based comparative genomic hybridisation (CGH) studies have identified 

frequent chromosomal alterations linked to CRC progression and metastasis (Figure 1.4) (58), 

impacting a diverse set of genes through these structural variants (Figure 1.5) (59). Early 

developments of primary carcinomas and liver metastases are marked by losses of 17p, 18, and 

22q, alongside gains of 8q, 13q, and 20 (59) (Figure 1.4). Conversely, deletions at 4p and 8p and 

gains at 7p and 17q are associated with later changes in primary carcinomas but appear early 

in liver metastases. Furthermore, established liver metastases are characterised by losses at 
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14q and 17q and gains at 1q, 9p, 11, 12p, 19, and X. The genetic mutations that transform the 

normal colon into a carcinoma align with observed clinicopathological changes (50). 

Sequence of DNA copy number changes in the progression of colorectal cancer, from a normal 

colonic epithelium through primary carcinoma development to liver metastasis. Figure 

reproduced from (59).

Figure 1.4. Model of genetic progression in colorectal cancer. 
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Genes within CNAs that exhibit gains/amplifications are highlighted in red, while losses/deletions 

are highlighted in green. Arrows indicate the involvement of affected genes in signalling 

pathways. The relevance to disease features (R), targeted therapy (T) and oncogenic functions (F) 

labels are shown for each CNA region. Figure reproduced from (58).

Figure 1.5. Genes impacted by somatic CNAs in CRC and pathways in which they operate. 
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1.2 Management and treatment approaches for CRC 

1.2.1 Preventive strategies, screening and treatment 

Preventative measures for CRC aim to reduce the risk of developing the disease through 

lifestyle modifications, regular screening, and in some cases, medical interventions (37). These 

preventive measures can be categorised into primary, secondary, and tertiary strategies, each 

targeting different stages in the prevention and management of the disease.  

Primary prevention aims to avert the onset of CRC by addressing risk factors and promoting 

healthy behaviours in an otherwise healthy population (37). Epidemiological studies have 

identified several modifiable factors. For instance, the risk of CRC can be reduced by limiting 

alcohol intake, avoiding smoking, adopting a healthy diet rich in fruits and vegetables while 

reducing the consumption of red and processed meats, managing weight to prevent obesity, 

and promoting regular exercise. For individuals at high risk, such as those with irritable bowel 

diseases (IBDs), primary prevention may additionally include hormone replacement therapy 

and regular consumption of aspirin or other non-steroidal anti-inflammatory drugs (NSAIDs), 

both of which are associated with reduced CRC risk (37). 

Secondary prevention focuses on the early detection and treatment of precancerous lesions or 

early-stage CRC to delay or halt its progression (37). Although early-stage cancer is usually 

asymptomatic, the progression of the disease can lead to observable clinical symptoms, e.g., 

changes in bowel habits, haematochezia—the passage of blood in stools—, rectal bleeding, 

iron-deficiency anaemia, weight loss, intestinal obstruction, abdominal pain, palpable 

abdominal mass and intestinal perforation (60, 61). These symptoms can prompt further 

diagnostic follow-up. For detailed examination, colonoscopy is considered one of the most 

effective screening tools, as it allows direct visualisation of the entire intestinal lining (mucosa), 

capturing detailed images that reveal the shape, size, and location of any abnormalities (60). 

During the procedure, a biopsy may be taken for subsequent pathological analyses to 

determine the nature of the lesion. In the UK, current colonoscopy screening recommendations 

suggest that average-risk men and women should begin screening at ages 60-74 (62). More 

frequent or earlier screening tests may be offered for monitoring high-risk populations, 

including individuals with IBDs, those with a family history of CRC, or those with known genetic 

predispositions or other risk factors (37).  
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Other examinations include: (i) sigmoidoscopies; (ii) digital rectal examinations for patients 

suspected of rectal cancer; (iii) stool-based tests such as the faecal occult blood test (FOBT) and 

the faecal immunochemical test (FIT) (60). The sensitivity and specificity of these tests are 

somewhat controversial, as haematochezia can be caused by non-cancerous conditions like 

haemorrhoids or may fail to detect cancers that do not bleed; (iv) detection of tumour markers 

in the blood. While there are no specific tumour markers for CRC, CEA (carcinoembryonic 

antigen) and CA19-9 (carbohydrate Antigen 19–9) are commonly used to monitor treatment 

effectiveness and check for CRC recurrence. However, their sensitivity and specificity for 

detecting CRC are moderate (40-70% and 73-90%, respectively), making them unreliable for 

initial screening and diagnosis. Additionally, CEA levels can vary greatly among healthy and 

asymptomatic individuals, which complicates its use as a diagnostic tool (60). 

Treatment for colorectal polyps and CRC varies depending on the stage of the disease at 

detection (Figure 1.6). For Stage 0 and Stage I CRCs, removing the polyp during colonoscopy or 

sigmoidoscopy may be the only treatment required if the pathologist confirms clear margins 

that indicate no apparent risk of residual cancer (63). If cancer cells are found at the margins 

of the polyp, additional surgery is generally required. A partial colectomy, i.e., the removal of 

the section of the colon containing the cancer, may be necessary if the cancer is too large for 

local excision alone. For non-polyposis Stage I cancers, the standard treatment also involves a 

partial colectomy (63). 

The primary treatment for Stage II and Stage III CRCs is typically a partial colectomy (63). 

However, if the tumour has significantly invaded neighbouring organs (T4b) or is initially 

inoperable, neoadjuvant therapy may be employed. This therapy usually includes 

chemotherapy and, in some cases, radiation therapy. Radiation is rarely used for Stage II 

patients unless it involves rectal cancer, but it is more likely recommended for Stage III patients 

to reduce the clinical stage of the tumour (60, 63). After neoadjuvant therapy has reduced the 

tumour size, surgery is performed to remove it. Following surgery, if high-risk features such as 

high-grade tumours or metastasis to nearby blood or lymph vessels are identified in the 

surgical specimen, adjuvant chemotherapy may be recommended for Stage II CRC patients. It 

is standard for all Stage III patients due to the increased risk of recurrence (63). 

Despite the implementation of screening programs and subsequent treatment strategies, CRC 

might still recur. Tertiary prevention focuses on minimising the likelihood of cancer recurrence 

and addressing treatment-related complications in CRC patients (64). The predictive value of 

chemoprevention as a tertiary strategy is an active area of research, with observational studies 
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suggesting that regular, low-dose aspirin consumption after CRC diagnosis may improve 

survival rates by reducing the risk of adenoma recurrence (64). 

Unfortunately, for very advanced cases like Stage IV, treatment typically focuses on managing 

symptoms and prolonging life rather than curing the cancer due to its extensive spread. Surgery 

might be considered if metastases are limited and operable, particularly in the liver or lungs. 

For inoperable liver metastases, techniques such as ablation or embolisation may be employed. 

Nevertheless, both neoadjuvant and adjuvant chemotherapy are central to treatment (63). 
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Stage 0, also known as carcinoma in situ or intramucosal carcinoma (Tis), represents the earliest 

form of cancer where abnormal cells are present in the mucosa, the innermost layer of the colon 

or rectum. Although these cells are considered precancerous, they have not yet invaded deeper 

layers as they are generally contained within polyps (61).  

Stage I: The tumour has spread through the mucosa into the submucosa (T1) and possibly into 

the muscle layer or muscularis propria (T2). There is no spread to lymph nodes or distant sites.  

Stage II: Cancer has spread through the muscularis propria into the subserosa or into the visceral 

peritoneum without perforation (Stage IIA, T3), or through the visceral peritoneum (Stage IIB, 

T4a) or into nearby organs (Stage IIC, T4b) (65).  

Stage III: Cancer might have grown through all the layers of the colon into nearby tissues (T3 or 

T4) and results in more significant lymph node involvement (65).  

Stage IV: The tumour has spread or metastasised beyond the local region to distant organs via 

the lymphatic system or bloodstream, with the liver and the lungs being the most common target 

organs of CRC hematogenous metastasis (61). Figure adapted from (61).

Figure 1.6. Colorectal cancer stages 
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1.2.2 Treatment options and drug resistance mechanisms 

CRC is among the most challenging diseases to treat, with treatment outcomes and survival 

rates closely linked to the point of intervention along the adeno-carcinoma pathway and 

disease stage at diagnosis (37, 66). Patients diagnosed at an early stage have a 5-year survival 

rate of 90%, which indicates that early detection is crucial for a favourable outcome (66). 

However, this rate decreases to 70% for patients with locally advanced tumours and falls to 

15% for those with metastatic CRC (mCRC). The development of CRC is a slow process, often 

taking up to 18 years for pre-cancerous polyps, which are usually asymptomatic, to evolve into 

malignant tumours (37). Moreover, current screening methods can only detect about 40% of 

CRC cases in the early stages. Consequently, the majority of patients are diagnosed at an 

advanced stage, when treatment becomes more challenging, and the likelihood of long-term 

survival diminishes. 

Figure 1.7 displays FDA-approved and candidate antineoplastic drugs for CRC treatment, 

highlighting their cellular targets. The most commonly employed first-line treatments include 

fluorouracil, often referred to as 5-FU; capecitabine (CAP), also known by the brand name 

Xeloda, which is a 5-FU prodrug; oxaliplatin (OX) and irinotecan (IR) (37). Treatment regimens 

typically consist of a combination of two or three of these agents, e.g., FOLFOX (5-FU + OX), 

FOLFIRI (5-FU + IRI + folinic acid), XELOX or CAPOX (CAP + OX), and CAPIRI (CAP + IRI) (37, 

67). These cytotoxic chemotherapy drugs induce cell death by interfering with DNA and RNA 

synthesis. For example, 5-FU is a pyrimidine analogue that inhibits thymidylate synthase (TS), 

an enzyme crucial for synthesising thymidine monophosphate (dTMP), a nucleotide required 

for DNA synthesis. Additionally, 5-FU can be incorporated into RNA in place of uracil, and into 

DNA in place of thymidine, causing faulty RNA processing and DNA synthesis, leading to cell 

death (68). By inhibiting TS and disrupting RNA and DNA, 5-FU disrupts cell division and leads 

to apoptosis in rapidly dividing cancer cells. 
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Anti-cancer drugs currently employed in the clinic or undergoing clinical trials for the treatment of CRC. Figure reproduced from (66).

Figure 1.7. Anti-cancer drugs for the treatment of CRC and their cellular targets. 
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On the other hand, OX is a platinum-based drugs like cisplatin that forms platinum-DNA 

adducts, causing DNA cross-linking and inhibiting DNA replication and transcription (69). The 

DNA damage induced by OX triggers cell death pathways. On the other hand, SN-38, the active 

metabolite of IRI, exerts a cytotoxic effect by inhibiting topoisomerase I (Top1), an enzyme that 

relieves torsional strain in DNA by inducing single-strand breaks, which allows DNA replication 

and transcription to proceed (70). SN-38 stabilises the complex between Top1 and DNA, 

forming the Top1-DNA-SN-38 complex and preventing the re-ligation of these single-strand 

breaks. The accumulation of single-strand breaks leads to replication fork collisions that result 

in double-strand breaks, ultimately causing cell death (70). 

While first-line treatments are standardised for the general patient population, additional 

targeted therapies may be offered to CRC patients with more advanced stages (Stage III and 

Stage IV) or metastases, and those with a strong family history of CRC may also receive other 

forms of treatment Berner, 2022 #535}(63). These targeted treatments employ monoclonal 

antibodies (mAbs) and small molecule inhibitors as antagonists to exploit specific 

vulnerabilities of cancer cells (Figure 1.7) (71). These include mutations in surface receptors 

and other signalling molecules identified through immunohistochemistry or genetic testing. In 

the UK, all patients with CRC are eligible for testing for mismatch repair (MMR) deficiency 

through immunohistochemistry (IHC) to check for the presence or absence of MMR proteins 

(MSH2, MSH6 or PMS2) (72), which may be predictive of underlying genetic aberration (72, 

73). In the case of abnormal IHC results, patients are also eligible for constitutional (germline) 

testing with whole genome sequencing (WGS) to determine the microsatellite instability (MSI) 

status of patients to help inform treatment options (74). 

Targeted therapies aim to increase treatment efficacy and enhance survival rates in patients by 

inhibiting the function of critical proteins and disrupting downstream signalling pathways 

essential for tumour progression (71). For example, blocking EGFR signalling with the mAbs 

cetuximab or panitumumab inhibits EGFR signalling and can increase survival for 10–20% of 

mCRC patients (75). In addition, immunotherapies have improved cancer treatment by 

targeting immune checkpoint proteins such as CTLA-4 and PD-1 on T-cell receptors (TCRs), 

thereby preventing their inhibition and enhancing the immune system’s ability to attack cancer 

cells (Figure 1.7) (76). For instance, MSI CRC patients whose tumours are deficient in DNA 

mismatch repair (dMMR) have mutations that produce a large number of neoantigens that can 

be recognised by the immune system (71). Meta-analysis of early studies revealed that while 

patients with dMMR tumours have a better prognosis, they are generally less responsive to 5-

FU-based treatments (71, 77). This is likely because these tumours may repair the DNA damage 

caused by 5-FU less effectively or tolerate it without undergoing apoptosis due to their high 
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mutation burden and altered cell death pathways. Given that MSI-dMMR CRCs exhibit higher 

levels of lymphocyte infiltration, their enhanced response to cytotoxic T-cell activity is not 

surprising (71, 78). This response can be further amplified using immune checkpoint inhibitors 

(ICI), such as ipilimumab, leveraging the immune system’s ability to target and eliminate cancer 

cells. 

The emergence of primary (never-responders) and secondary (acquired) drug resistance 

significantly challenges CRC treatment (66). In addition, resistance to cancer therapies can 

arise through mechanisms that are intrinsic or extrinsic to tumours (76). Intrinsic resistance 

refers to the pre-existing characteristics of tumour cells that make them naturally resistant to 

a particular therapy even before exposure to the treatment, e.g., genetic mutations in cancer 

cells, molecular pathways that are inherently active or the presence of cancer stem cells which 

are less responsive to conventional treatments owing to their tumorigenic potential (20, 76). 

Extrinsic resistance involves changes that occur in tumour cells or their microenvironment 

after exposure to a therapy, leading to the development of resistance over time. 

Indeed, tumour cells exhibit various mechanisms to protect themselves against anti-cancer 

drugs (Table 1). For example, the metabolic enzyme thymidine phosphorylase (TP) is required 

to transform CAP into an active 5-FU form (79). Preclinical studies have shown that methylation 

of extracellular growth factor-1 (ECGF-1), the gene that encodes TP, can cause resistance to CAP, 

which was reversed using inhibitors of DNA methyltransferases (DNMTs) (79). In addition, 

aberrations in downstream signalling pathways can also lead to drug resistance (66). Assessing 

KRAS mutation status is a requirement for patients with mCRC, as constitutive activation of the 

kinase can impact both the MAPK/ERK and PI3K/AKT signalling pathways, rendering anti-

EGFR therapies ineffective (33). It is also common to observe tumours resistant to bevacizumab 

(Figure 1.7), which aims to inhibit angiogenesis by blocking the vascular endothelial growth 

factor receptor (VEGFR) (80). This resistance occurs because angiogenic signalling can be 

activated by alternative ligands (e.g., Ang-1, EGF, FGF) and their respective receptors, thereby 

bypassing the blockage of VEGF signalling. Additional mechanisms of resistance include the 

upregulation of ATP-binding cassette (ABC) and solute carrier (SLC) membrane transporters, 

which regulate the transport of drugs into and out of cells, alterations in drug targets 

(previously exemplified in the text with the study on MSI-dMMR CRCs and their 

unresponsiveness to 5-FU), aberrations in cell death pathways, and changes within the tumour 

microenvironment (TME) (66). 

Although advancements in chemotherapy, targeted therapy, and immunotherapy have 

improved survival rates, not all patients respond effectively to these treatments. The presence 
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of multiple mechanisms of drug resistance makes it challenging to predict patient responses to 

therapy accurately. Consequently, there is a pressing need to develop new treatment strategies 

that can predict the evolution of CRCs. 
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Table 1. Anti-cancer drugs employed for treating CRC and key molecular mechanisms underlying drug resistance. 

Drug name Type Target/Mechanism of Action Mechanism of drug resistance References 

5-Fluorouracil (5-FU) 
Cytotoxic 

(nucleoside 
analogue) 

Thymidylate synthase inhibitor. Inhibits DNA 
synthesis. 

Increased expression of 
thymidylate synthase; alterations 

in drug uptake or metabolism. 

(66) 

Capecitabine/Xeloda 
(5-FU prodrug) 

Conversion inefficiency due to 
thymine phosphorylase 

deficiency; increased thymidylate 
synthase activity. 

(66) 

Oxaliplatin 
Cytotoxic 

(platinum-based 
drug) 

Cross-links with DNA. Prevents DNA 
replication and transcription. 

Overexpression of efflux pumps; 
increased autophagy. 

(81) 

(82) 

Irinotecan (SN-38) 
Cytotoxic 

(topoisomerase I 
inhibitor) 

Inhibits Top1-DNA complex after DNA 
cleavage. Prevents re-ligation of single 

strand breaks and induces replication arrest. 

Overexpression of efflux pumps; 
alterations in topoisomerase I. 

(70) 

Cetuximab 
Targeted 

(monoclonal 
antibody) 

EGFR inhibitor. Blocks cell proliferation. 
Mutations in EGFR; activation of 

alternative growth factor 
receptors; RAS mutations. 

(66) 

Bevacizumab 
Targeted 

(monoclonal 
antibody) 

VEGF inhibitor. Inhibits angiogenesis. 

Upregulation of alternative 
angiogenic pathways (e.g., FGF); 

hypoxic tumour 
microenvironment adaptations. 

(80) 

Trastuzumab 
Targeted 

(monoclonal 
antibody) 

HER2 receptor inhibitor. Inhibiting HER2-
driven cell proliferation. 

Overexpression of HER2; 
activation of alternative growth 

factor pathways; truncated HER2 
receptor or epitope masking. 

(83) 



1.2. Management and treatment approaches for CRC 

30 

 

Pembrolizumab 
Targeted 

(monoclonal 
antibody) 

PD-1 receptor inhibitor. Enhances the 
immune system's ability to detect and 

destroy cancer cells. Upregulation of alternative 
immune checkpoints; 

immunosuppressive TME; cancer 
cell antigen loss; reduced antigen 

presentation. 

(84) 

Ipilimumab 
Targeted 

(monoclonal 
antibody) 

CTLA-4 receptor inhibitor. Enhances the 
immune system's ability to detect and 

destroy cancer cells. 

(85) 

Regorafenib 
Targeted 

(tyrosine kinase 
inhibitor) 

Multi-kinase inhibitor. Inhibits cell 
proliferation and angiogenesis. 

Activation of compensatory 
signalling pathways; mutations in 

target kinases. 

(86) 

Vemurafenib 
Targeted 

(serine/threonine 
kinase inhibitor) 

Targets BRAF V600E mutations. Inhibits 
MAPK pathway and thus cell proliferation. 

Upregulation of MAPK signalling 
through alternative pathways; 

mutations/copy number gains in 
BRAF. 

(87) 
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1.3 Evolutionary biology shapes cancer research 

Evolutionary adaptation by organisms that grow in ecological landscapes differs from the 

adaptation by somatic cells (88); however, insights from evolutionary biology can be 

extrapolated to cancer biology to understand the evolutionary dynamics in human cancers. 

This is possible because tumours present all the necessary conditions for evolutionary 

adaptation to occur, i.e., variation in fitness, selection, and inheritance (11). 

1.3.1 Models of clonal evolution in cancer 

Cancer evolutionary biology refers to the study of how tumours develop and change over time, 

focusing on understanding the genetic changes and cellular processes that contribute to the 

diversity of cells within a tumour (89). There are several models of clonal evolution in cancer: 

The linear model of cancer evolution, originally proposed by Peter Nowell, was the first theory 

to describe cancer as an evolutionary process (43). According to this model, cancer evolves 

through a process where mutations are acquired linearly in a stepwise manner, with each new 

mutation providing a selective advantage that allows a single clone—a population of cells 

within a tumour that originated from a single ancestral cell—to dominate the tumour by 

outcompeting other clones (43, 90). In this model, tumour progression is characterised by 

sequential “selective sweeps”, where each advantageous mutation leads to the rise of a new 

dominant clone that replaces the previous one (90). Consequently, tumours tend to be 

relatively homogeneous at any given time, with only a few remnants of earlier clones persisting 

(Figure 1.8A).  

Although the linear model of cancer evolution aligns well with the adenoma-carcinoma 

sequence model of colorectal cancer progression, and further explains why tumours become 

increasingly aggressive over time (38, 39), tumours are not exclusively composed of genetically 

identical clones. Nowell further highlighted this complexity by observing that the mutation rate 

in neoplastic populations is higher than in healthy cells, concluding that genomic instability 

inevitably increases with cancer progression (43, 91).  

Over time, variations in fitness within tumour clones lead to clonal diversification, resulting in 

the expansion and coexistence of multiple subclones simultaneously (90, 92). Each subclone 

descends from an earlier clone but acquires additional mutations unique to this subset of cells. 

This model of cancer evolution, known as branching
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evolution (Figure 1.8B), illustrates how tumours evolve through a non-linear accumulation of 

genetic changes (90). Such diversity within the subclones that constitute a tumour is commonly 

known as intratumour heterogeneity (ITH), and is a critical factor in the progression and 

adaptability of many solid cancers, such as melanomas (93, 94), breast cancers (95, 96), lung 

cancers (93, 97), and gastrointestinal cancers (98, 99). 

Neutral evolution is an extreme form of branching evolution, positing that in the absence of 

strong selective pressures, neutral mutations accumulate randomly in the cancer cell 

population (90) (Figure 1.8C). This leads to genetic drift, where allele frequencies change by 

chance rather than due to selective advantages or disadvantages, contributing to ITH. The 

effects of genetic drift are more pronounced in small populations, where random fluctuations 

can significantly shift allele frequencies, whereas in larger populations these impacts are 

diluted. 

The Big Bang model was initially developed to describe the early and rapid expansion of CRCs 

(100), and has since been corroborated in other tumour types (101-103). In this model, CRCs 

grow predominantly through a single large expansion after initial transformation, generating 

numerous intermixed subclones early in their development (100). Most genetic alterations 

arise early and persist throughout the tumour’s growth due to rapid expansion and spatial 

constraints that limit selective sweeps. Consequently, the timing of a mutation is the primary 

determinant of its frequency within the tumour rather than selection, with all major clones 

persisting during growth. Early mutations become widespread as the tumour expands, while 

late mutations are less frequent because they arise after significant tumour expansion, giving 

them less time to propagate. As a result, late mutations are often confined to smaller 

subpopulations and localised within the tumour mass, contributing less to the overall genetic 

diversity. Thus, high ITH is established early and remains uniformly high across the tumour. 

This aligns with effectively neutral evolution, where many mutations do not confer significant 

selective advantages (103). While this does not preclude selection, advantageous subclones 

may be rare or occur too late to expand to detectable frequencies. Nevertheless, the Big Bang 

model contrasts with the neutral evolution model by focusing specifically on the early 

establishment and persistence of genetic diversity and pervasive ITH in CRCs, providing a 

detailed framework within the broader concept of neutral evolution. 
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Contrary to the conventional gradualist view of cancer evolution described above, which posits 

that genetic changes accumulate slowly and steadily over time, the punctuated model suggests 

that tumour evolution can occur in bursts of rapid genetic changes due to cataclysmic genomic 

rearrangements and mutational bursts, followed by periods of relative genetic stability (103) 

(Figure 1.8D). During the earliest stages of tumour progression, this results in very high ITH. 

Over time, however, one or a few dominant clones expand to form the tumour mass. These 

bursts of genomic alterations can create new dominant clones and subclones, fitting into the 

broader framework of branching and parallel evolution (90).  

The figure depicts the key models of tumour evolution, showing how cancer cells develop and 

proliferate over time (left), along with fish plots (right) that illustrate the prevalence of different 

clones over time for each evolutionary pattern: (a) Linear, (b) Branching, (c) Neutral, and (d) 

Punctuated Evolution. Figure reproduced from (104). 

 

Figure 1.8. Models of clonal evolution in cancer. 
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Besides the punctuated model of cancer evolution, the cancer stem cell (CSC) model offers a 

fundamentally different perspective on tumour growth and progression. The CSC model 

suggests that within a tumour, there exists a hierarchical organisation where a small population 

of stem cell-like cancer cells are responsible for initiating and sustaining tumour growth (105). 

These CSCs possess the ability to self-renew and differentiate into various cell types that 

constitute the bulk of the tumour. Unlike other models where genetic diversity and tumour 

progression are driven by mutations in all tumour cells, the CSC model emphasises the role of 

cellular hierarchy and the unique properties of CSCs in tumour dynamics. Compelling data 

support the CSC model in various human cancers, including malignant germ cell cancers, 

leukaemias, breast cancers, brain cancers, and colon cancers (105). In each of these cancers, 

only a small subpopulation of cells can transfer disease upon transplantation into 

immunocompromised mice, and specific markers distinguish these tumorigenic cells from the 

bulk of non-tumorigenic cells. This indicates that the tumorigenic cells are intrinsically 

different from the nontumorigenic cells, often without clear morphological distinctions (105).  

These models of cancer evolution, which represent only a subset of the many models proposed 

in the field of cancer research, provide a comprehensive understanding of the genetic diversity 

within tumours and the dynamics of tumour progression. Traditionally, most studies have 

focused on a single model to explain cancer evolution. However, new evidence indicates that 

tumour evolution is more complex than previously thought, with different models potentially 

acting at different stages of cancer development (106). It is also possible that multiple models 

may coexist, especially for different types of mutations. Niida et al., proposed a mixed model of 

CRC evolution by integrating genomic analysis with mathematical modelling. This model 

highlights a shift from Darwinian selection in early-stage tumours to neutral evolution in late-

stage tumours (106).  

Acknowledging the complexity of tumour evolution and identifying the evolutionary processes 

that lead to drug resistance allows for the development of strategies to delay, prevent, or 

overcome it in the future. 
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1.4 Preclinical models to study intratumour heterogeneity 

1.4.1 2D-3D cultures and animal models 

Two-dimensional (2D) cultures of immortalised cell lines are essential in preclinical research 

as they offer a consistent and reproducible platform that is difficult to achieve with more 

complex preclinical models. A notable example is the NCI-60 panel, a collection of 60 different 

human cancer cell lines from various cancer types that facilitates high-throughput screening of 

thousands of compounds to identify those with potential anti-cancer activity (107). Despite 

their utility, ease of use, and cost-effectiveness, cancer cell line cultures lack the complex 

architecture and microenvironment of tissues from major organs, which limits their predictive 

accuracy for in vivo conditions. In addition, the shift towards personalised and precision 

medicine requires preclinical models that mirror the complexity and heterogeneity observed 

in human tumours more closely.  

This gap has been partially bridged by the use of genetically engineered mouse models 

(GEMMs) and patient-derived xenografts (PDXs). These in vivo models enable the study of 

entire biological systems within a living organism, and are therefore suitable to study cancer 

biology, as they reflect the cellular and genetic diversity observed in human cancers (108). In 

particular, GEMMs and GEM-derived allografts are useful for studying the role of specific genes 

in cancer initiation and progression. However, they fail to encompass the diverse driver 

mutations and extensive genomic alterations observed in human cancers. On the other hand, 

chemical carcinogen-induced mouse models are traditional models for studying cancer 

aetiology and biology but produce unpredictable cancer landscapes that are difficult to 

replicate consistently, especially considering variations in dosing protocols and animal strains 

(108). 

Indeed, variations between mouse species and differences between humans and mice often 

result in discrepancies in protein functions and oncogenic mechanisms (108). This can reduce 

the predictive value of animal models for studying drug efficacy and toxicity, ultimately limiting 

the applicability of results to human conditions. Additionally, the use of mouse models raises 

ethical, economical, and logistical concerns, alongside being more expensive and technically 

challenging than 2D cultures (109). 

To better simulate healthy and diseased human tissues, many of the limitations associated with 

the preclinical models above have been addressed using 3D cultures, such as tissue explants, 

spheroids and more recently, organoids (108). Tissue explants are fragments of a tissue that 

are removed and cultured in vitro for research purposes (110). These ex vivo models retain the 

native architecture and cellular composition of the organ of origin for 
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a short period. Spheroids are 3D aggregates of cells created from various cellular sources (e.g., 

cell lines, multicellular mixtures, primary cells, tumour cells and tissues) that form 

spontaneously when cultured under non-adherent conditions (111). Spheroids are typically 

formed using techniques such as the hanging drop method, low-adhesion plates, or spinning 

bioreactors, which prevent floating cells from attaching to a surface, encouraging them to 

aggregate and form a spherical shape. Although tumour spheroids lack the organisation and 

cellular complexity found in other models, which makes them the simplest form of 3D cell 

culture models, they still exhibit cell-cell and cell-extracellular matrix interactions and are very 

similar to non-vascularised or poorly vascularised tumours. Additionally, the multilayered 

structure of spheroids, which consists of an outer layer of proliferating cells, a middle layer of 

quiescent cells, and an inner layer of hypoxic and necrotic cells, confers chemo- and radio-

resistance similar to that seen in human cancers. For these reasons, spheroids are used to study 

drug efficacy, drug penetration into tumours, and vascularisation (111).  

Lastly, organoids are generated from somatic cells, adult and pluripotent stem cells (112). 

Unlike spheroids, organoids grown into animal-derived extracellular matrices (e.g. Matrigel), 

form through self-organisation of cells into spatial patterns that resemble the morphology and 

functionality of real tissues (113). Organoids have been generated from several organs 

including retina, intestine, thyroid, liver, pituitary, inner ear, kidney, and brain. In particularly, 

patient-derived organoids (PDOs), which are typically established from primary tumours, 

mimic the biological characteristics of the parental specimens (109). PDOs represent a balance 

between physiological relevance and experimental feasibility, making them an ideal platform 

for studying cancer and assessing drug responses. This is especially important in co-clinical 

trials, where understanding a patient’s susceptibility to candidate cancer treatments can not 

only inform and guide decision-making, but also help predict drug responses (109). Advances 

in microfluidics technology have made possible the establishment of multiple PDOs into 

microfluidics culture devices called organ-on-a-chip (OOAC). OOAC devices mimic the 

environment of a physiological organ and allow high-throughput drug screening (114). Similar 

to other 3D models, organoids are not without limitations. With a few exceptions, the vast 

majority of organoid models do not recapitulate the complete cellular diversity and 

interactions present in the tumour microenvironment (111). 
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1.4.2 Predictive value of PDOs in drug response and resistance 

Vlachogiannis and colleagues established a living biobank of PDOs from patients with 

metastatic, heavily pre-treated colorectal (mCRC), gastroesophageal (mGOC), and 

cholangiocarcinoma cancers, who were recruited in phase I or phase II clinical trials (109). 

These gastrointestinal PDOs derived from LGR5+ stem cells, closely resembled the morphology, 

maintained the protein expression patterns, and mimicked the molecular landscape of their 

biopsies of origin across multiple passages. Next, to evaluate the feasibility of using PDOs for 

predicting drug responses based on known molecular targets, the team conducted 3D drug 

screening assays using 55 drugs employed in clinical practice or undergoing phase I to III 

clinical trials, over a two-week period. They discovered that within the PDO cohort, only one 

mCRC PDO, named F-016, which harboured an AKT1 amplification and E17K mutation (E, 

glutamic acid; K, lysine), responded strongly to two AKT inhibitors in the drug library (MK-

2206 and GSK690693). Similarly, the only mGOC PDO carrying an ERBB2 amplification 

exhibited the strongest response to lapatinib, a dual ERBB2/EGFR inhibitor, whereas the same 

drug showed no effect on the viability of another PDO that exclusively carried an EGFR 

amplification (109). 

After drug screening, Vlachogiannis et al. also investigated the predictive value of PDOs by 

comparing clinical responses observed in patients to xenografts created using PDOs from a 

mCRC patient before (BL) and after (PD) treatment with regorafenib, a multi-tyrosine kinase 

inhibitor used in the clinic for the treatment of mCRC, advanced GI cancers and hepatocellular 

carcinomas that blocks oncogenic and angiogenic signalling pathways (109, 115). Their 

findings showed that BL PDO-xenografts showed a 60% reduction in microvasculature after 

regorafenib treatment, mirroring clinical outcomes. However, this effect was not observed in 

PD PDO-xenografts, indicating resistance. 

The research conducted by Vlachogiannis et al. demonstrates the value of PDOs in predicting 

patients’ responses to chemotherapy options. This approach can identify the underlying 

mechanisms for treatment sensitivity or resistance, making PDOs powerful preclinical tools for 

modelling cancer evolution 

.
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1.5 Leveraging single-cell sequencing to explore cancer evolution 

1.5.1 Introduction to single-cell sequencing 

As fundamental biological units, cells within a multicellular organism exhibit remarkable 

diversity in form and function throughout development and disease (116). Single-cell 

sequencing (sc-seq) employs advanced next-generation sequencing technologies to analyse the 

genetic material from individual cells. By studying individual cell genomes and transcriptomes, 

sc-seq not only reveals cellular heterogeneity and temporal expression patterns, but also 

uncovers unique genomic signatures that are crucial for understanding both normal 

development and disease states. 

Single-cell sequencing involves several key steps to isolate and analyse the genetic material 

from individual cells. The process begins with the enzymatic or mechanical dissociation of solid 

tissues into a single-cell suspension (117). This is followed by the isolation or sorting of cells 

using methods such as fluorescence-activated cell sorting (FACS), microfluidic or droplet-based 

approaches, and laser capture microdissection. Once the cells are isolated, they are lysed to 

release their nucleic acids, which are then extracted and purified for further processing. Given 

the low amounts of nucleic acids present in single cells, techniques like whole-transcriptome 

amplification (WTA) after reverse transcription of RNA into cDNA, and whole-genome 

amplification (WGA) are employed to ensure sufficient material for analysis. 

The next stage involves library preparation, where DNA or cDNA is sheared into smaller 

fragments, either enzymatically or mechanically. Indices and adaptor sequences are then 

ligated to the ends of these fragments. This step is crucial as it allows for the sequencing of 

multiple cells and facilitates the sequencing process. The fragments are selected for a desired 

size range and purified to remove excess adaptors and other impurities. The quality and 

quantity of the single-cell libraries are then assessed using methods such as qPCR, Qubit, 

Bioanalyzer, or TapeStation before the libraries are loaded onto a sequencing platform, such as 

Illumina, PacBio, or Oxford Nanopore, at a desired concentration. 

Technological advances in sc-seq are essential in innovative projects such as the Human Cell 

Atlas (HCA) (118). The HCA is an international collaboration aimed at sequencing all cell types 

in the human body to create a comprehensive reference map of healthy cells, which will be 

invaluable references for studies in health and disease.
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1.5.2 Applications of single-cell sequencing in cancer research 

Evolving knowledge of cancer biology has refined treatment strategies and interventions. 

Nevertheless, ITH represents a significant challenge and may be a major limitation for 

successfully treating cancers. Current knowledge of genomic abnormalities in cancer is mainly 

derived from array-based strategies and conventional high-throughput sequencing (HTS) 

analyses conducted on bulk tumour specimens (119). However, because bulk tumour samples 

typically contain a mixture of healthy, malignant, and other cells within the TME, bulk 

sequencing methods are not sensitive enough to detect molecular changes in minority 

subclones. Furthermore, RNA-sequencing from bulk samples generates average gene 

expression profiles, which may not reflect the transcriptional behaviour of all cells that 

comprised the bulk sample (120). Consequently, a significant limitation of bulk sequencing is 

the loss of information regarding individual cell behaviours and genetic diversity within 

tumour samples, which is critical for understanding the complexity of cancer. These challenges 

can be addressed with single-cell sequencing. 

Single-cell sequencing remains one of the most powerful methods for studying the molecular 

substructure of tumours at a resolution high enough to identify the clones dominating the 

tumour mass but also rare subpopulations that may play a crucial role in cancer progression 

under therapy (121-123). In cancer research, sc-seq is employed to understand ITH, trace 

evolutionary dynamics, identify cellular subpopulations within tumours resistant to therapy, 

examine the impact of the TME on cancer progression, and unravel the complexity of T-cell 

diversity and function among other applications (116, 124, 125). 

Particularly interesting is the application of sc-seq to identify resistant subpopulations. 

Primary resistance is inherent to tumours, with clonal populations harbouring resistant 

genetic alterations and phenotypes emerging from normal tumour progression even before the 

start of a treatment (126). On the other hand, cancer relapse in initial responders is often driven 

by cells that have acquired resistant traits following drug exposure. Sc-seq techniques allow 

researchers to understand how cancer treatment influences the evolutionary dynamics of 

cancer cells at an individual cell level. As an example, to investigate clonal evolution in response 

to neoadjuvant chemotherapy (NAC) with epirubicin, docetaxel and bevacizumab in triple-

negative breast cancer (TNBC) patients, Kim et al. analysed longitudinal samples from 20 

patients using bulk DNA sequencing (DNA-seq), single-cell DNA sequencing (scDNA-seq), and 

single-cell RNA sequencing (scRNA-seq) (127).  

Initial bulk whole-exome sequencing (WES) of matched pre-treatment, mid-treatment, and 

post-treatment samples revealed that, in 50% of the patients, no detectable somatic mutations 
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were found in post-treatment samples compared to pre-treatment tumours (127). This 

suggests that NAC successfully eliminated cancer cells in this “clonal extinction” patient group. 

These results were later corroborated by single-nucleus DNA-sequencing (SNDS) and 

fluorescence-activated cell sorting (FACS), which identified multiple cancer cell clones in pre-

treatment tumours but found only diploid cells in post-treatment samples. Genomic analysis of 

pre-treatment clones identified shared chromosome breakpoints and mutations in specific 

cancer-related genes (e.g., MET, MYC, PTEN), suggesting a shared evolutionary origin among 

pre-treatment clones in this group. The study also performed single-nucleus RNA sequencing 

(SNRS) to analyse the transcriptome in cells from pre- and post-treatment samples. SNRS 

revealed that post-treatment cells exhibited gene expression patterns typical of normal cells, 

thus confirming the genomic findings. The absence of cancer cells in post-treatment samples, 

as evidenced by both genomic and transcriptomic analyses, highlights the effectiveness of NAC 

in these patients. 

In contrast, the remaining patients exhibited residual mutations after treatment (“clonal 

persistence” group), albeit at reduced frequencies, suggesting the presence of resistant 

genotypes that survived NAC (127). In this second group, new mutations also emerged in genes 

involved in pathways related to cell proliferation, apoptosis, solute transport, and cytoskeleton 

regulation. Moreover, targeted deep-amplicon sequencing revealed that in half of these 

patients, new mutations were already present at very low frequencies in the pre-treatment 

tumours, suggesting an adaptive resistance mechanism.  

Resistant cells in the clonal persistence group had specific CNAs (mainly chromosomal 

deletions) and gene mutations absent in the clonal extinction group, highlighting the genetic 

basis for chemotherapy resistance (127). Subsequent transcriptomic analysis using SNRS 

identified gene expression signatures in resistant cells that differed from those in the clonal 

extinction group, including pathways related to ECM degradation, PI3K/AKT1/mTOR 

signalling, and hypoxia, all of which are known to contribute to chemotherapy resistance. 

Furthermore, the study investigated the evolution of cancer cell phenotypes in response to NAC 

and found that chemoresistant cells in the clonal persistence group did not express their 

complete transcriptional resistance programs before treatment (127). Instead, they expressed 

a subset of genes indicative of partial resistance, later developing full resistance profiles under 

the selective pressure of chemotherapy. This suggests an adaptive response to NAC, where 

cancer cells dynamically adjust their genomic and transcriptomic profiles to overcome 

challenges imposed by the treatment. 
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This research highlights the application of scDNA-seq and scRNA-seq for unveiling cellular 

heterogeneity, tracking clonal evolution over time, deciphering mechanisms of chemotherapy 

resistance, and revealing transcriptional programs of resistance.  
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1.5.3 Advancing cancer research with single-cell multiomics 

Despite significant advances in sc-seq technologies, analysing only one type of “omics” data 

from each cell, such as DNA, RNA, or protein, offers a limited view of the complex interplay 

between various molecular layers that define cellular states and functions.  

To bridge this gap, the field has turned to single-cell multiomics, which captures and combines 

information from multiple molecular layers within the same cell (116). By integrating data 

from genomic, transcriptomic, and proteomic analyses, single-cell multiomics provides a more 

comprehensive analysis, enabling the correlation of genomic variations with functional 

outcomes at both the transcriptome and proteome levels. This integration is indispensable for 

deciphering the complex mechanisms of cellular biology and unravelling disease mechanisms. 

Several methodologies have been developed to facilitate single-cell multiomics analyses. 

Whether they are low throughput (i.e., plate-based) or high throughput (droplet-based or 

microfluidics), multiomics methods typically target the genome and transcriptome (e.g., G&T-

seq, DR-seq, SIDR, Target-seq), the transcriptome and chromatin accessibility (e.g., scM&T-seq, 

scMT-seq), or the transcriptome and proteome (e.g., CITE-seq, SCITO-seq), with a few 

approaches capturing more than two omics layers (e.g., ScTrio-seq, iscCOOL-seq) (Figure 1.9) 

(116, 128-138). 

The combined characterisation of these molecular layers allows scientists to determine 

whether changes observed in one layer are consistently reflected in the corresponding layer 

within the same cell. This aspect is particularly intriguing for examining somatic single-

nucleotide variants (SNVs) and copy number aberrations (CNAs) affecting coding genes. If 

mutant genes are transcribed and observed at the transcriptional level, they may also be 

translated into functional proteins with abnormal functions. In this context, single-cell Genome 

and Transcriptome sequencing (G&T-seq) stands out as the method to simultaneously capture 

these molecular alterations, ultimately providing invaluable insights into the molecular 

mechanisms driving cancer progression and resistance to therapy (129, 132). 

The key finding in the G&T-seq study was the identification of an additional copy of 

chromosome 11 within a subpopulation of HCC38-BL cells, a diploid B lymphoblastoid cell line 

used as a normal control against HCC38, a breast cancer cell line derived from the same patient 

that lacked this particular copy number gain (129). Furthermore, the integrated genomic and 

transcriptomic datasets from the same cells indicated that the trisomy of chromosome 11 was 

associated with increased gene expression on this chromosome. This discovery highlights the 

sensitivity of G&T-seq for detecting allele-specific gene expression, which is indispensable for 
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unravelling cellular heterogeneity within populations that might otherwise appear 

homogeneous. 

In summary, by leveraging multiomics techniques, researchers can gain valuable insights into 

the mechanisms driving cellular diversity, disease progression, and response to treatments.  
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Figure reproduced from (116).

Figure 1.9. Summary of single-cell multiomics methods. 
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1.5.4 Limitations of single-cell sequencing 

Although single-cell sequencing provides detailed insights into individual cellular functions 

and heterogeneity, the complex nature of these methodologies introduces several technical and 

biological challenges. One initial challenge involves dissociating cells from tissues, which can 

induce stress and alter gene expression profiles (139). Additionally, isolating viable single cells 

without contamination can be difficult, though methods such as fluorescence-activated cell 

sorting (FACS) and droplet-based approaches (e.g., Drop-seq and 10x Genomics) are effective 

for isolating single cells. 

Another significant technical challenge is the low starting input material, which can hinder the 

reverse transcription of RNA and introduce variability in the amplification process (139). This 

issue is exacerbated by preferential amplification of certain genomic loci or transcripts over 

others, leading to allelic dropout events where one or both alleles of a gene fail to be detected. 

Such events also result in dropouts in gene expression, where genes that were actually 

expressed in a cell are not detected in the sequencing data. Moreover, insufficient sequencing 

depth may fail to capture all expressed genes, particularly those with low expression levels, and 

sequencing errors can lead to the incorrect identification of allelic variants. 

In the context of scRNA-seq, these technical challenges can lead to an underestimation of the 

expression levels of certain genes, particularly those expressed at low levels (140). This can 

result in the incorrect characterisation of cell states or types, potentially skewing biological 

interpretations. Similarly, for scWGS, these limitations can lead to incorrect interpretations of 

clonal diversity and evolution within populations of cells. Employing sensitive and accurate 

whole-transcriptome amplification methods that improve the efficiency of reverse 

transcription can help reduce dropouts in gene expression. Additionally, using more uniform 

and less biased whole-genome amplification techniques can help mitigate allelic dropouts 

(140).  

Biological challenges stem from the heterogeneity in biological samples. For instance, 

significant heterogeneity in gene expression among cells complicates cell type identification 

and classification (139). To address this, clustering algorithms are used to identify cell 

subpopulations based on gene expression profiles, while gene set enrichment analysis (GSEA) 

helps identify enriched pathways or functional categories within each subpopulation. 

In addition, although scRNA-seq can detect rare cell populations that bulk RNA-seq may miss, 

identifying these populations is challenging due to low cell numbers typically sequenced (140). 

Using molecular barcodes such as unique molecular identifiers (UMIs) and full-length 
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transcript approaches like smart-seq2, which have higher sensitivity, can detect low-

abundance transcripts, facilitating the identification of rare cell populations. 

While scRNA-seq provides gene expression information at the single-cell level, it lacks spatial 

context. Combining scRNA-seq with spatial transcriptomics techniques, such as the 10x 

Genomics Visium platform or multiplexed fluorescence in situ hybridisation (FISH) methods 

like MERFISH (141) and STARmap, can reveal gene expression patterns within their spatial 

context, addressing spatial heterogeneity (117).  

scRNA-seq captures a snapshot of gene expression at a single time point, but cells undergo 

dynamic changes in response to stimuli or environmental cues (139). Time-resolved scRNA-

seq, pseudo-time analysis, trajectory inference algorithms, and integration with other omics 

data can capture these dynamic changes, enabling the reconstruction of cell state transitions 

over time. Lastly, analysing alternative splicing and gene isoforms is challenging due to data 

complexity. Long-read sequencing, short-read sequencing with paired-end reads, 

computational algorithms, and integration with other omics data can identify different 

isoforms and their functional implications, providing a comprehensive view of gene expression 

(139). 

Overall, single-cell sequencing offers unprecedented insights into cellular heterogeneity and 

gene expression patterns but presents significant challenges that can impact the accuracy, 

efficiency, and reliability of the sequencing results. Addressing these challenges through 

optimised protocols, advanced computational methods, and integrative approaches can 

enhance the accuracy, reproducibility, and interpretability of single-cell sequencing data.
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1.6 PhD aims and objectives 

This PhD project was part of a more extensive collaboration funded by the CRUK/AIRC 

Accelerator Award. This award facilitates partnerships among European scientific teams to 

develop tools and techniques that meet critical medical needs. The collaboration included 

several UK (Institute of Cancer Research and Earlham Institute) and Italian research institutes 

(Ospedale San Raffaele, Politecnico di Milano, and Human Technopole). 

The project, titled “Single-cell cancer evolution in the clinic,” aimed to grow patient-derived 

organoids (PDOs) of metastatic colorectal cancers (mCRCs)—initially established by 

Vlachogiannis et al., in 2018—within microfluidic devices for drug screening purposes (109). 

PDOs are typically established from primary tumours, whereas those derived from metastatic 

sites are less common and less frequently studied (142). Given that metastatic cancer cells 

harbour more genetic and non-genetic changes, are more challenging to treat, and are more 

prone to developing resistance to cancer treatments compared to their primary tumour 

counterparts, PDOs derived from metastatic sites offer a novel perspective on tumour evolution 

and resistance. 

By performing bulk and single-cell multiomics techniques on these mCRC PDOs, the 

collaboration sought to understand how tumours evolve when subjected to targeted drug 

treatments and to create novel computational models to predict tumour progression and drug 

resistance. These models could help personalise treatment plans based on the predicted 

behaviour of individual cancers, leading to more tailored and potentially more successful 

treatment approaches. The specific objectives of this overarching project were executed 

through four mutually inclusive programmes, with this PhD project falling under Programme 2 

(PR2).  

The primary aim of this PhD project was to elucidate the mechanisms of resistance to AKT 

inhibitors in mCRC PDOs using single-cell multiomics. Despite the mCRC PDOs being 

treatment-naï ve to the AKT inhibitors, their derivation from a heavily pre-treated patient hints 

at the presence of resistant cells prior to AKT inhibition. Consequently, the primary hypothesis 

of this study was that alterations contributing to drug resistance would manifest in an 

interconnected manner at both the genomic and transcriptional levels even before AKT 

treatment in mCRC organoids. 

To test this hypothesis, several PDO lines were established from F-016, the only mCRC PDO in 

Vlachogiannis’s biobank with both a somatic mutation and an amplification affecting AKT1, 

which had responded strongly to AKT inhibitors in the drug library (109). Once the untreated, 
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Parental organoid lines were established, they were driven to resistance through prolonged 

exposure to two AKT inhibitors, namely MK-2206 and AZD5363. Given the significant role of 

intratumour heterogeneity (ITH) in contributing to varied therapeutic responses, this PhD 

project leveraged single-cell multiomics techniques to analyse the molecular characteristics of 

individual cells within PDOs. The mCRC PDO cultures were established externally by our 

collaborators at the Institute of Cancer Research. The single cells from these PDOs, sorted into 

96-well plates, were processed, sequenced, and computationally analysed at the Earlham 

Institute. For single-cell multiomics, cells were processed following parallel Genome and 

Transcriptome sequencing (G&T-seq) (129, 132). Following the separation of nucleic acids, 

single-cell transcriptomes were amplified using Smart-seq2 (143), while matched single-cell 

genomes were amplified with the PicoPlex Gold whole genome amplification kit (Takara). Both 

cDNA and matching gDNA libraries were subsequently sequenced using Illumina short-read 

sequencing technology and computationally analysed using several bioinformatics tools. 

Transcription provides insights into the cell’s physiological state, behaviour, and potentially its 

identity and function. To understand how specific cell subpopulations responded to the two 

AKT inhibitors and how these responses evolved with the development of resistance, we 

employed the scRNA-seq data for clustering analysis, annotating colonic cell types, and 

comparing the gene expression patterns between control and resistant mCRC PDOs. 

Additionally, copy number alterations (CNAs) were inferred from the single-cell 

transcriptomes, which provided insights into the genomic changes accompanying resistance 

phenotypes. 

Bioinformatics analyses of the matched single-cell genomes focused on identifying differences 

in CNAs between untreated and resistant mCRC organoids. By comparing the genomic CNAs to 

the transcriptome-based CNAs, we identified and validated changes in the clonal dynamics that 

contributed to the development of drug resistance. 

Lastly, by integrating matched scRNA and scDNA data, we identified differentially expressed 

genes located within regions of CNAs, suggesting their potential role in driving the resistance 

mechanisms that helped bypass AKT blockade. This detailed study of mCRC cells using G&T-

seq revealed new molecular targets for drug development, which could potentially counteract 

resistance to MK-2206 and AZD5363. 

Altogether, the G&T-seq methodology, complemented by a wide array of bioinformatics tools, 

provided a comprehensive picture of the genetic and transcriptional adaptations that mCRC 

cells employed to evolve despite AKT pathway inhibition. These insights were only possible 
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through an integrated, single-cell multiomics approach, rather than by analysing these omics 

independently or by employing bulk sequencing methods. 

Overall, this research underscores the power of single-cell multiomics to uncover detailed 

evolutionary trajectories and adaptive mechanisms in cancer under therapeutic intervention. 

By understanding and targeting these adaptive mechanisms, researchers can develop more 

effective strategies for managing treatment resistance, ultimately improving the efficacy of 

cancer therapies. 
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2.1 Materials and key resources 

Table 2. Biological samples generated 

mCRC PDO Source Generated by 

3994-117 Parental PDO 

Joint collaboration 
The Institute of Cancer Research, 
London, SM2 5NG  

3994-117 MK-2206-
resistant PDO 
3994-117 AZD5363-
resistant PDO 

 

Table 3. G&T-seq reagents 

Reagent  Source Catalogue number 

Buffer RLT Plus QIAGEN 1053393 

10 M NaOH  Merk 72068 

5 M NaCl Invitrogen AM9760G 

Nuclease-free water Invitrogen AM9937 

UltraPure 1 M Tris–HCI 
Buffer, pH 7.5 

Invitrogen 15567027 

0.5 M EDTA Solution Promega V4231 

0.1 M Trizma Pre-set 
crystals, pH 8.3 

Merk T8943 

2 M KCl, RNase-free Invitrogen AM9640G 

1 M MgCl2 Invitrogen AM9530G 

1 M DTT Merk 646563 

50% (vol/vol) Tween 20 
Thermo Fisher 
Scientific 

003005 

Dynabead MyOne 
Streptavidin C1 

Invitrogen 65001 

5X First-strand buffer Invitrogen 18064071 

SUPERase•In RNase 
Inhibitor (20 U/μL) 

Invitrogen AM2696 

10 mM dNTP Mix Invitrogen 18427013 

5 M Betaine solution Merk B0300 

100 mM DTT Invitrogen 18064071 

SuperScript II Reverse 
Transcriptase 

Invitrogen 18064071 

KAPA HiFi HotStart 
ReadyMix 

Roche KK2602 

Ethanol absolute ≥ 99.8% VWR 437435L 

Beckman Coulter 
Agencourt AMPure XP 

Fisher Scientific 10453438 
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Table 4. G&T-seq primers 

Oligonucleotides Source Sequence 

Biotinylated Oligo-
dT30VN Primer  

IDT 
5′-Biotin-TEG-AAGCAGTGGTATCAACG 
CAGAGTACTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN-
3′ 

IS PCR Primer IDT 5′-AAGCAGTGGTATCAACGCAGAGT-3′ 

Template-switching 
oligo 

Qiagen 5′-AAGCAGTGGTATCAACGCAGAGTACA TrGrG+G-3′ 

 

Table 5. G&T-seq buffers 

Dynabead solution A 

Component 
Final molarity 
required (M) 

Volume required for 50 ml (ml) 

Nuclease-free water - 49 

10 M NaOH 0.1 0.5 

5 M NaCl 0.05 0.5 
   

Dynabead solution B 

Component 
Final molarity 
required (M) 

Volume required for 50 ml (ml) 

Nuclease-free water - 49 

5 M NaCl 0.1 1 
   

Dynabead 2X ‘Binding and Wash’ buffer 

Component 
Final molarity 
required (M) 

Volume required for 50 ml (ml) 

Nuclease-free water - 29.4 

1 M Tris-HCl (pH7.5) 0.01 0.5 

0.5 M EDTA Solution 0.001 0.1 

5 M NaCl 2 20.0 
   

G&T-seq wash buffer* 

Component 
Final molarity 
required (M) 

Volume required for 50 ml (ml) 

Nuclease-free water - 21.8 

0.1M Tris-HCl (pH 8.3) 0.05 25 

2 M KCl 0.075 1.875 

1 M MgCl2 0.003 0.3 

1 M DTT 0.01 0.5 

50% (vol/vol) Tween 20 0.50% 0.5 

*Requires supplementation with RNAse Inhibitor immediately before use
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Table 6. Commercial assays 

Reagent kit Source Catalogue number 

Qubit dsDNA Quantitation, 
High Sensitivity kit 

Invitrogen Q32851 

Agilent High Sensitivity 
DNA Kit 

Roche 5067-4626 

Nextera XT DNA Library 
Preparation Kit (96 
samples) 

Illumina FC-131-1096 

Nextera XT Index Kit v2 
Set A (96 indexes, 384 
samples) 

Illumina FC-131-2001 

Nextera XT Index Kit v2 
Set B (96 indexes, 384 
samples) 

Illumina FC-131-2002 

Nextera XT Index Kit v2 
Set C (96 indexes, 384 
samples) 

Illumina FC-131-2003 

KAPA Library 
Quantification Kit 

Roche KK4854 

PicoPLEX Gold Single Cell 
DNA-Seq Kit 

Takara R300670 

DNA HT Dual Index Kit - 
96N Set A 

Takara R400660 
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Table 7. Equipment 

Instrument Source Catalogue number 

Eco UV Cabinet  HCE LAB321 
Legacy UVP Crosslinker 
CL-1000 

UVP Discontinued since 2020 

1.5 ml Eppendorf Safe-
Lock microcentrifuge 
tubes 

Merk T9661 

50 ml Falcon high-clarity 
polypropylene (PP) 
conical centrifuge tubes 

Corning 352070 

DynaMa-2 Magnet Invitrogen 12321D 

Fisherbrand Wizard 
Infrared Vortex Mixer 

Fisher Scientific 11746744 

Microcentrifuge Starlab N2631-0007 

Adhesive PCR Plate Seals 
Thermo Fisher 
Scientific 

AB0558 

FrameStar 96 Well Skirted 
PCR Plate 

Azenta 4ti-0960/C 

Multipette E3x electronic 
multi-dispenser pipette 

Eppendorf 4987000029 

Refrigerated centrifuge 
and adaptors for 96-well 
plates 

Eppendorf 5804000060 

Mini LabRoller Rotator Labnet H5500 

Biomek FX Automated 
Workstation 

Beckman Coulter A31842-5 

Biomek NX Automated 
Workstation 

Beckman Coulter A31841 

Mosquito HV liquid 
handler with 5 plate 
position deck 

SPT Labtech NA 

Low-elution magnet plate Alpaqua A000350 

96S Super Magnet Alpaqua A001322 

ThermoMixer C Eppendorf 5382000031 

ThermoTop Eppendorf 5308000003 
Eppendorf SmartBlock 
PCR 96 

Eppendorf 5306000006 

C1000 Touch Thermal 
Cycler with 96-Well Fast 
Reaction Module 

Bio-Rad 1851196 

Invitrogen Qubit 4 
Fluorometer 

Fisher Scientific 15723679 

Agilent 2100 Bioanalyzer Agilent G2938C 
LightCycler 480 
Instrument II 

Roche 05015278001 

NovaSeq 6000 Sequencing 
System 

Illumina NA 
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2.2 Methods 

2.2.1 Establishment and maintenance of patient-derived tumour organoids from 
human gastrointestinal cancers 

To evaluate the predictive value of organoids in co-clinical trials, Vlachogiannis and colleagues 

established a living biobank of PDOs from metastatic gastroesophageal and colorectal cancer 

biopsies from patients enrolled in phase I or phase II clinical trials (109). This enabled a 

comprehensive comparison of anti-cancer drug responses between patients and their 

corresponding PDO counterparts.  

The PDOs analysed in this thesis were derived from the organoids established by Vlachogiannis 

et al., specifically from a colorectal cancer liver metastasis biopsied via image-guided 

ultrasound from a patient with stage III CRC (sample ID: 3994-117; publication ID: F-016) 

(109). This patient was enrolled in the Feasibility of a Molecular Characterisation Approach to 

Treatment (FOrMAT) trial (144). The liver specimen was obtained from the patient at the time 

of disease progression to FOLFIRI, a second-line chemotherapy combination of irinotecan, 

folinic acid (CF) and fluorouracil (5-FU). FOLFIRI is administered to patients with metastatic 

colorectal cancer who did not respond optimally to first-line treatment involving oxaliplatin 

combined with 5-FU, or 5-FU prodrugs such as capecitabine, (145), which the patient had 

received previously. 

All GI PDOs, including 3994-117/F-016, were developed at the Institute of Cancer Research 

(ICR) in London, UK, using a protocol described by Vlachogiannis et al. (109). Briefly, patient 

samples for organoid derivation were immediately placed in ice-cold PBS after collection and 

transported to the laboratory for processing. Patient specimens were minced in the lab, and the 

tissue fragments were washed with 5 ml of 5X PBS supplemented with EDTA (Thermo Scientific 

Chemicals) for 15 min at room temperature. Subsequently, digestion was performed in 5 ml of 

1X PBS-EDTA supplemented with 2X TrypLE Select Enzyme (Gibco) for 1 hr at 37 °C. The 

digested tissue suspensions were then sheared through several rounds of pipetting to facilitate 

cell release. Isolated cells were collected in Advanced DMEM/F-12 (Gibco), centrifuged at 1,200 

rpm for 5 min at 4 °C, and resuspended in 120 µl of growth factor reduced (GFR) Matrigel 

(Corning). Matrigel-cell suspensions were plated into a single well of a 24-well plate (Corning) 

and incubated at 37 °C with 5% CO2 for 20 min to allow Matrigel polymerisation. Finally, cells 

were overlaid with 500 µl of complete culture medium. The culture medium consisted of 

Advanced DMEM/F-12 supplemented with 1X B-27 (Gibco), 1X N-2 (Gibco), 0.01% BSA 

(Roche), 2 mM L-Glutamine (Gibco) and 100 units/ml penicillin-streptomycin (Gibco). 

Additionally, various growth factors and other additives were included
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in the growth media to promote organoid development. These are described in Table 8. The 

organoid medium was refreshed every other day.  

When PDOs reached confluency (approximately after two weeks, depending on the organoid), 

they were collected with 1X PBS-EDTA containing 1X TrypLE Select Enzyme, incubated for 20 

minutes at 37 °C and mechanically sheared by pipetting. The resulting cell suspensions were 

washed with HBSS (Gibco), pelleted at 1,200 rpm for 5 min at 4 °C and resuspended in GFR 

Matrigel before reseeding at the desired ratio. Alternatively, organoid pellets were resuspended 

in FBS (Gibco) containing 10% DMSO (Merck) and cryopreserved at -80 °C in multiple vials for 

future experiments. 

Table 8. Growth factors and culture media additives for the development of GI PDOs 

Additive Concentration Source Catalogue number 

EGF 50 ng/ml PeproTech AF-100-15 

Noggin 100 ng/ml PeproTech 250-38 

R-Spondin 1 500 ng/ml PeproTech 120-38 

Gastrin 10 nM Merck G9145 

FGF-10 10 ng/ml PeproTech 100-26 

FGF-basic 10 ng/ml PeproTech 100-18B 

Wnt-3A 100 ng/ml Bio-Techne 5036-WN 

Prostaglandin E2 1 µM Bio-Techne 2296 

Y-27632 10 µM Merck Y0503 

Nicotinamide 4 mM Merck N0636 

A83-01 0.5 µM Bio-Techne 2939 

SB202190 5 µM Merck S7067 
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2.2.2 Generation of mCRC PDOs resistant to AKT inhibition 

Bulk whole-genome sequencing of the 3994-117/F-016 mCRC PDO revealed an amplification 

of AKT1, accompanied by an E17K somatic mutation (109) (Figure 2.1A). Notably, this PDO was 

the only one in the organoid biobank established by Vlachogiannis et al., to exhibit a strong 

response to 1 µM of the AKT inhibitor MK-2206 (Figure 2.1B). 

To create mCRC PDOs resistant to AKT inhibition, our collaborators at the ICR cultured 3994-

117 in the presence of AZD5363 (also known as capivasertib, Selleck Chemicals) or MK-2206 

2HCl (Selleck Chemicals) (146), until drug resistance was observed. These pan-AKT inhibitors 

(AKTi) induce autophagy and apoptosis, and have demonstrated their efficacy in clinical trials 

involving various solid tumours, including colon cancer (147-149). Recently, capivasertib was 

approved by the FDA in combination with fulvestrant for the treatment of adults with hormone 

receptor-positive, HER2-negative breast cancer that is either locally advanced or metastatic, 

and has one or more biomarker alterations in PIK3CA, AKT1 or PTEN (150). This approval 

makes capivasertib the first AKT inhibitor available on the market. 

Briefly, to generate the MK-2206 and AZD5363 resistant lines, the established Parental PDO 

was dissociated using the passaging procedure described in the previous section, after which 

the cell suspension was seeded into three wells—serving as technical replicates—of a 12-well 

plate for each treatment condition (Figure 2.2). Three days after seeding, the complete 

organoid media was replaced with fresh media containing DMSO (for the vehicle control) or 1 

µM of either MK-2206 2HCl or AZD5363 (both dissolved in DMSO) for the drug-treated PDO 

lines. The media was refreshed every other day until drug resistance was observed in the 

treated PDOs, indicated by the organoids returning to full confluency after an initial period of 

cell death. This was observed after 35 days for the MK-2206 and 55 days for AZD5363 treated 

PDO. Additionally, the cell viability of organoids was assessed by adding 10% of CellTiter-Blue 

Reagent (Promega) directly to the PDOs, followed by incubation. Viability readings were then 

obtained using the EnVision plate reader  (PerkinElmer). 

To ensure the accurate generation of resistant PDO lines, the entire seeding and treatment 

process was repeated two additional times, resulting in a total of nine wells per condition. Each 

of these iterations started with a fresh sample of Parental cells, allowing for the assessment of 

biological variability in the PDOs. Once established, MK-2206-resistant (MK1-resistant) and 

AZD5363-resistant (AZD1-resistant) organoids were dissociated and collected as described in 

the previous section. The resulting organoid pellets were resuspended in FBS (Gibco) 

containing 10% DMSO (Merck) and cryopreserved at -80 °C for future experiments. 
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In contrast to the extended culturing period of the resistant organoids, the untreated Parental 

PDO was cultured for only two weeks due to the wells becoming very confluent. To ensure that 

clonal dynamics were driven by the drug treatment and not merely by the duration of PDOs in 

culture, continuous passages of the Parental control were analysed using low-pass WGS at the 

end of the experiment. The copy number alterations (CNAs) of the two-week Parental control 

were compared to those from multiple subsequent passages. The CNA profiles remained nearly 

identical before and after, indicating that despite the prolonged culture of the control organoid 

over multiple passages, there was no expansion of specific populations over previous seeds. 

This finding suggests that the observed clonal dynamics in the drug-treated organoids were 

likely a result of the drug treatment rather than the extended culture time. 

It is also important to highlight that the bulk and single-cell experiments described in the 

following sections were carried out over a two-year period. The bulk and high-throughput 

sequencing experiments occurred before the start of this PhD project, while the G&T-seq 

experiment was conducted over a year later. For each of these experiments, the cryopreserved 

PDOs were revived and expanded in complete growth media without the inhibitors, and at 

different ratios for bulk and single-cell sequencing experiments. Consequently, practical 

considerations required using different passages over the two-year period during which these 

sequencing experiments were performed. These passages were kept similar to maintain 

consistency. However, the stability of CNVs previously observed in the parental control 

suggested that this should not have introduced significant differences. 
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(a) Molecular landscape of F-016. (b) Pathway analysis after AKT inhibition (4 hours) with MK-2206 in AKT1 wild type (R-006) and mutant (F-016) 

PDOs. Figure reproduced from (109).

(b)(a)

Figure 2.1. Molecular characterisation of 3994-117/F-016 mCRC PDO. 
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(1) Collection mCRC biopsy and a matched blood sample from donor. (2) Tissue dissociation of 

biopsy into cell suspensions. (3) Establishment of mCRC PDO cultures. (4) Generation of mCRC 

PDOs resistant to AKT inhibition. (5) Dissociation of mCRC PDOs into cell suspensions for 

fluorescence-activated cell sorting (FACS). (6) cDNA/DNA library preparation for (7) single-cell 

genome and transcriptome sequencing (G&T-seq), (8) droplet-based single-cell sequencing, and 

(9) bulk sequencing. Figure created with BioRender.com.

Figure 2.2. Experimental outline.  
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2.2.3 Single-cell sequencing of mCRC PDOs 

A. Sample preparation 

At the ICR, PDOs were dissociated as previously described by Erika Yara (Senior Scientific 

Officer, Dr Andrea Sottoriva’s group). The resulting cell suspensions were washed, resuspended 

in PBS, and filtered through a 40 µm Flowmi cell strainer. Cell stock concentrations were 

adjusted to 700-1,200 cells/μl in preparation for subsequent plate- and droplet-based single-

cell sequencing approaches. Cell viability was determined using the trypan blue dye exclusion 

test and quantified with the Countess Automated Cell Counter (Invitrogen), which confirmed 

that all samples had viability exceeding 90%.  

B. Physical separation of mRNA and genomic DNA from single cells 

For plate-based single-cell genome and transcriptome sequencing (G&T-seq) (129, 132), the 

CellenOne image-based single-cell sorter was used to dispense single cells, 50 cells and empty 

drops (representing positive and negative control wells) into individual wells of 96-well plates 

preloaded with 5 μl of RLT plus lysis buffer. After cell sorting, plates were sealed, briefly 

centrifuged at 1,000 rpm at 4 °C, and stored at -80 °C until they were shipped to the Earlham 

Institute for processing. 

Genomic DNA (gDNA) and mRNA were separated following the G&T-seq protocol (132) (Figure 

2.3). First, MyOne Streptavidin C1 Dynabeads were washed with Dynabead solutions A and B, 

mixed in a 1:1 ratio with 100 μM of biotinylated oligo-dT30VN primers and incubated at room 

temperature with gentle rotation for 30 min. Following incubation, oligo-dT30VN-conjugated 

beads were washed with Dynabead 1X “Binding and Wash” buffer and then resuspended in 1 

ml of bead resuspension buffer (1× Superscript First-strand buffer, 1 U/μl RNase inhibitor, 

nuclease-free water (NF-H2O)). Next, the sample plate was thawed on ice, and 10 μl of the “bead 

mix” was arrayed into each well of the plate. The plate was then incubated on a Thermomixer 

at 1,300 rpm for 30 min at room temperature. The gDNA and mRNA were physically separated 

using the Biomek FX Automated Liquid Handler equipped with a low-elution 96-well plate 

magnet. During this process, the mRNA-oligo-d(T) beads complex is pulled to the side of the 

well by the magnet, while the gDNA remains in the supernatant, which is then aspirated and 

transferred to a new plate. The gDNA fraction was briefly centrifuged and stored at -20 °C for 

future processing. On the other hand, the mRNA plate was immediately processed. 
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Single cells are isolated manually or by fluorescence-activated cell sorting (FACS) into individual 

wells within a microwell plate (e.g., 96-well plate) containing RLT lysis buffer. This process leads 

to the release of polyadenylated (poly(A)+) mRNA and genomic DNA (gDNA) into the media upon 

centrifugation. Physical separation of mRNA from gDNA is achieved using biotinylated oligo-dT 

primers, which selectively bind to and capture poly(A)+ mRNA, leaving behind the gDNA, which is 

subsequently transferred into a new microwell plate for later processing. Nucleic acid 

amplification is a critical step to generate sufficient sequencing material from the low-input 

mRNA and gDNA. While whole-transcriptome amplification (WTA) is performed following the 

Smart-seq2 protocol (151), whole-genome amplification (WGA) can be performed using either 

PicoPLEX amplification, typically for studies focusing on genome-wide copy number alteration 

(CNA) analyses, or multiple-displacement amplification (MDA), which is used for identifying 

single-nucleotide variants (SNVs). Sequencing libraries can then be constructed from the 

amplified cDNA and gDNA. During this step, indices are integrated to enable the pooling of 

multiple cells and samples for subsequent Illumina short-read sequencing. Any of these steps can 

be carried out using dispensing robots to automate the processes and enhance accuracy. Figure 

reproduced from (129).

Figure 2.3. G&T-seq protocol overview. 



2.2. Methods 

65 

 

C. Smart-seq2 whole transcriptome amplification, library preparation 
and RNA-sequencing 

To generate full-length cDNA libraries, a modified version of the Smart-seq2 protocol (151, 

152) was performed. For this purpose, 5 μl of reverse transcription master mix (10 μM dNTP 

mix, 100 μM TSO, 1 M MgCl2, 5 M Betaine, 5× Superscript First-strand buffer, 100 mM DTT, 200 

U/μl SuperScript II Reverse Transcriptase, 20 U/μl RNAse inhibitor, NF-H2O) was added to all 

wells containing mRNA on beads. The plate was then loaded onto a Thermomixer, and the 

reaction took place with the following settings: 42 °C for 2 min at 2,000 rpm, 42 °C for 60 min 

at 1,500 rpm, 50 °C for 30 min at 1,500 rpm and 60 °C for 10 min at 1,500 rpm. After the RT 

step, 7.5 μl of PCR master mix (2× KAPA HiFi HotStart ReadyMix, 10 μM IS PCR primers, NF-

H2O) was added to the samples. PCR amplification was performed in a Thermal cycler using 

the following cycling programme: 98 °C for 3 min; 20 cycles of 98 °C for 20 s, 67 °C for 15 s and 

72 °C for 6 min; 72 °C for 5 min; and holding at 4 °C.  

The amplified cDNA was purified on a Biomek NX with a 96-well plate super magnet. 

Equilibrated AMPure XP beads were added to the samples at a 0.8:1 ratio. After a 5 min 

incubation at room temperature, the supernatant was discarded, and the beads were washed 

twice with 50 μl of 80% ethanol. The beads were then left to air dry for 10 min before 

resuspending in 20 μl of NF-H2O. The purified cDNA was eluted from the beads, and finally, 

cDNA concentration was determined using the Qubit dsDNA High Sensitivity kit, while the size 

distribution was assessed using the Agilent 2100 Bioanalyzer with a High Sensitivity chip. 

To construct Nextera XT libraries, cDNA plates were normalised to 0.2 ng/μl. Libraries were 

prepared using 1/12.5 of the volume recommended in the standard protocol, with Nextera XT 

Index Kit v2 sets A to C. The Mosquito HV liquid handler was employed to facilitate the process. 

After the library prep, the 96 cDNA libraries generated from each PDO plate were pooled into 

1.5 ml microcentrifuge tubes and manually purified using AMPure XP beads at a 0.6:1 cDNA-

to-bead ratio. The quality of PDO-specific library pools was assessed as previously described, 

in combination with the KAPA Library Quantification Kit on the LightCycler 480 system. Before 

sequencing, the individual library pools were diluted at equimolar concentrations and then 

pooled together to achieve a final concentration of 2.5 nM. In this manner, a total of 576 cDNA 

libraries (192 libraries per organoid) were sequenced in two sequencing runs on a single lane 

of an SP v1.5 flow cell with the Illumina NovaSeq 6000 system in paired-end mode, generating 

150 bp reads. This approach aimed to generate approximately 1.3 million read pairs per library 

on average.
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D. 10x Genomics high-throughput scRNA-sequencing 

Single-cell libraries were generated using the Chromium Single Cell 3’ Library kit v3.1 (Single 

Index) protocol (10x Genomics). The final libraries were sequenced on individual lanes of an 

SP v1.5 flow cell with the NovaSeq 6000 system (150 bp, paired-end mode).  

Note: Sample preparation and sequencing were conducted by Javier Fernandez Mateos and 

Erika Yara at the ICR (Dr Andrea Sottoriva’s group).
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E. PicoPlex Gold whole genome amplification, library preparation and 
WGS 

The gDNA, isolated during the DNA-mRNA separation step of the G&T-seq protocol (see 

“Physical separation of mRNA and genomic DNA from single cells”) was purified on the Biomek 

FX platform using AMPure XP beads (0.6x ratio) without eluting the DNA. For PicoPlex Gold 

whole genome amplification (WGA), beads were resuspended in 5 μl of cell extraction master 

mix (4.8 µl Cell Extraction Buffer, 0.2 µl Cell Extraction Enzyme) according to the protocol, along 

with 5 μl of NF-H2O. The plate was then placed in a Thermal cycler with the following 

temperature and time parameters: 75 °C for 10 min, 95 °C for 4 min, followed by holding at 4 

°C. Next, 10 μl of pre-amplification master mix (8.7 µl PreAmp Buffer, 1.3 µl PreAmp Enzyme) 

was added to each well, and the plate underwent a second cycling reaction: 95 °C for 3 min, 16 

cycles of 95 °C for 15 s, 15 °C for 50 s, 25 °C for 40 s, 35 °C for 30 s, 65 °C for 40 s, 75 °C for 40 

s, and then maintained at 4 °C. The resulting DNA was purified and eluted in 20 μl of NF-H2O 

using AMPure XP beads in a 1:1 ratio. For library amplification, each well received 25 μl of 

amplification master mix (20 µl Amplification Buffer, 2.5 µl Amplification Enzyme, 2.5 μl of NF-

H2O), along with 5 μl of indexing primers (DNA HT Dual Index Kit - 96N Set A). The 

amplification reaction was performed using the following cycling programme: 95 °C for 3 min, 

4 cycles of 95 °C for 30 s, 63 °C for 25 s and 68 °C for 1 min; 11 cycles of 95 °C for 30 s and 68 

°C for 1 min; and holding at 4 °C. Indexed libraries were pooled at equal volumes (10 μl), 

purified at a 1:1 ratio and eluted in 20 μl of NF-H2O. The purified libraries were quantified 

using the KAPA Library Quantification Kit on the LightCycler 480 system, and then diluted to 

achieve a final concentration of 2.5 nM.  

A total of 96 DNA libraries, including 30 libraries per PDO (plus 6 control libraries), were 

sequenced on a single lane of an SP v1.5 flow cell with the NovaSeq 6000 system (150 bp, 

paired-end mode). This approach aimed to generate approximately 3 million read pairs per 

library on average. 
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2.2.4 Bulk WGS of mCRC PDOs 

For bulk WGS of the mCRC PDOs and matched blood control, total DNA was extracted using the 

AllPrep DNA/RNA Mini Kit (Qiagen). DNA libraries were prepared from 100 ng inputs 

according to the NEBNext Ultra II FS recommendations from New England Biolabs, which 

included a 20 min enzymatic fragmentation at 37 °C. PCR enrichment of adaptor-ligated DNA 

was carried out using NEBNext Multiplex Oligos for Illumina with 96 Unique Dual Index Primer 

Pairs (New England Biolabs). The following cycling conditions were employed: 98 °C for 30 s, 

5 cycles of 98 °C for 10 s and 65 °C for 75 s; 65 °C for 5 min; and holding at 4 °C. The DNA 

libraries were sequenced on an S4 flow cell using the NovaSeq 6000 system (150 bp, paired-

end mode). 

Note: Sample preparation and sequencing were conducted by Javier Fernandez Mateos and 

Erika Yara at the ICR. 

2.2.5 Bioinformatics and statistical analyses of mCRC PDOs 

All computational steps were performed on the Norwich Bioscience Institute (NBI) High-

Performance Computing (HPC) cluster using the SLURM workload management system 

version 23.02.7, along with R v4.1.2 and Python v3.10.3. The software packages used to process 

and analyse single-cell and bulk data, as well as the specifics of the analyses performed, are 

described in the "Computational methods" sections of the scRNA-seq and scWGS chapters. 

These sections detail the various bioinformatics and statistical methods used in the processing, 

quality control, and analysis of bulk and single-cell RNA-seq and WGS data. 



2.2. Methods 

69 

 

 

 



 

 

 

Chapter 3. scRNA-seq profiling of mCRC PDOs  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3 

scRNA-seq profiling of 
mCRC PDOs  

 



 

71 

 

Chapter disclosures 
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3.1 Introduction 

Despite advances in chemotherapy and targeted treatments, the five-year survival rate for 

colorectal cancer (CRC) remains very low (153). Metastatic CRC (mCRC) is generally considered 

incurable, owing to the complexity associated with treating cancer that has spread to distant 

organs. However, there are notable exceptions, such as in cases of oligometastatic disease, 

where metastases are limited in number and confined to surgically resectable locations, such 

as the liver or lung. 

When curative surgery is not an option to remove CRC metastases, the standard treatment 

regime typically involves a combination of cytotoxic chemotherapy and targeted therapy (153). 

This approach is mainly palliative, aiming to alleviate the symptoms and improve the quality of 

life rather than cure the disease, as approximately 90% of mCRC patients will develop 

resistance to chemotherapy. Resistance to targeted therapies is particularly common, with 

disease progression frequently observed within 3-12 months of initiating treatment with anti-

EGFR monoclonal antibodies (153). 

Drug resistance in CRC, whether intrinsic or acquired, primary or multidrug, not only reduces 

the effectiveness of anti-cancer drugs but also leads to CRC becoming refractory to treatments 

(154). Addressing this urgent issue requires the development of new therapeutic strategies and 

interventions and a thorough understanding of the mechanisms employed by cells to evade 

anti-cancer treatments (154). 

The living biobank of patient-derived organoids (PDOs) established by Vlachogiannis et al. 

from metastatic biopsies of colorectal, gastrointestinal cancer (GOC) and cholangiocarcinoma 

and subsequently submitted to high-throughput screening of FDA-approved or candidate 

drugs, serves as a prime example of how these 3D models can be used to identify effective 

treatments for metastatic cancers (109). Although the mutational profiling of these PDOs 

provided valuable insights, it was somewhat limited, focusing on a panel of 151 cancer-related 

genes. Moreover, this research primarily sought to assess whether the PDOs responded to the 

treatments without investigating why tumours did not respond or only partially responded to 

the therapy.  

Furthermore, the study did not explore the characteristics of resistant metastatic tumours that 

were initially sensitive to drug treatments. This oversight is particularly important in the 

context of mCRC, where a high rate of therapeutic failure is observed. Understanding the 

transition from a sensitive to a resistant state is crucial, as it could help identify new strategies 

to prevent or overcome the resistance seen in many mCRC patients, ultimately improving 

treatment outcomes and patient prognosis.
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3.2 Aims 

The aims of this chapter were to: 

1. Perform genome and transcriptome sequencing (G&T-seq), specifically Smart-seq2 

scRNA-seq, on cells derived from mCRC PDOs resistant to two AKT inhibitors: MK-2206 

and AZD5363. 

2. Analyse single-cell transcriptomes at multiple levels to identify gene expression 

changes characteristic of drug resistant phenotypes. 

3. Validate Smart-seq2 findings using high-throughput 10x scRNA-seq data. 

4. The hypothesis behind this work was that given that these mCRC PDOs were derived 

from a heavily pretreated donor and had prolonged exposure to AKT inhibitors, 

resistance mechanisms—likely involving multiple pathways—would be observable 

within the transcriptomes of resistant cells. Employing Smart-seq2 and supplemented 

by high-throughput 10x scRNA-seq data, this chapter details the transcriptional 

profiling of the two AKTi-resistant mCRC PDOs using a comprehensive suite of 

bioinformatics tools. This dual approach focused on identifying gene expression 

signatures indicative of drug resistance mechanisms.
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3.3 Methods: Computational analysis of scRNA-seq data 

Data processing begins with quality control (QC) of raw sequencing reads using Trim Galore and 

FastQC, followed by the alignment of the processed reads to the hg38 human reference genome 

Figure 3.1. Bioinformatics workflow for the analysis of Smart-seq2 scRNA-seq data 
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with STAR. Gene-level quantification is performed using HTSeq-Counts, generating per-cell count 

matrices that are later merged into a large matrix, serving as the primary dataset for scRNA-seq 

analysis using several R tools. Seurat identifies marker genes, classifies cells, and performs 

differential gene expression analyses at multiple levels, while functional annotation of genes is 

carried out using clusterProfiler and fgsea. 

Table 9. List of software packages employed for the analysis of scRNA-seq data 

 

 

Software Access/citation 

ClusterProfiler v4.8.3 (155) 

Clustree v0.5.0 (156) 

ComplexHeatmap v2.16.0 (157) 

FastQC v0.11.9 (158) 

Fgsea v1.26.0 (159, 160) 

ggplot v2.3.4.4 (161) 

HTSeq-count v0.6.1 (162) 

Msigdbr v7.5.1 (163-165) 

MultiQC v1.7 (166) 

org.Hs.eg.db v3.17.0 (167) 

Python v3.10.3 (168) 

Qualimap v2.2.1 (169, 170) 

R v4.1.2 R Core Team (2022) 

RStudio v2023.6.2.561 R Core Team (2022) 

Scillus v0.5.0 (171) 

Seurat v4.3.0 (172-174) 

STAR v2.6.0a (175) 

STAR v2.7.10a (175) 

tidyverse v2.0.0 (176) 

Trim Galore v0.5.0 (177, 178) 
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3.3.1 Primary analysis of Smart-seq2 scRNA-seq data 

As part of their sequencing service, the Genomics Pipeline (GP) computational team at the 

Earlham Institute performed an initial inspection of the Smart-seq2 scRNA-seq data from the 

Parental, MK1-, and AZD1-resistant mCRC patient-derived organoids (PDOs) using their 

primary analysis pipeline (PAP). This pipeline incorporates several bioinformatics tools to 

evaluate the quality of demultiplexed libraries, including FastQC (158), FastQ Screen (179) and 

Centrifuge (180). The outputs generated by these tools were parsed by MultiQC (166) and 

compiled into a comprehensive report summarising the quality of individual libraries.  

A. Smart-seq2 scRNA-seq data processing: read trimming, alignment, and 
gene-level quantification 

All computational steps described in this section were performed on the Norwich Bioscience 

Institute (NBI) High-Performance Computing (HPC) cluster under the SLURM workload 

management system version 23.02.7, along with R v4.1.2 and Python v3.10.3. The software 

packages and tools used to process and analyse scRNA-seq data are detailed in Table 9. Default 

parameters were employed for all computational tools unless stated otherwise in the text. 

As previously described in the text, for each of the three mCRC organoids—Parental, MK1-

resistant, and AZD1-resistant—two RNA-sequencing runs were performed through the Smart-

seq2 arm of the G&T-seq protocol, with one 96-well plate sequenced per PDO in each run. 

Therefore, a total of 192 scRNA-seq libraries were sequenced for each experimental condition.  

For each sequencing run, data processing of raw paired-end reads began by trimming off 

Nextera adapters and low-quality terminal bases using Trim Galore v0.5.0. The quality of 

trimmed reads was later assessed with FastQC v0.11.9 and MultiQC v1.7. 

Before mapping reads with the STAR v2.6.0a aligner, an indexed reference genome was created 

using the human GRCh38 (hg38) assembly and gene transfer format (GTF) files from Ensembl 

release 104 (181). Trimmed reads were then aligned to the reference genome by running STAR 

in the 2-pass mapping mode (twopassMode = Basic), imposing a restriction that would allow 

only a maximum of one locus, i.e., one alignment per read (outFilterMultimapNmax = 1).  

Next, the number of alignments mapped to genomic features was quantified using the Ensembl 

GRCh38.104 GTF annotation with HTSeq-Counts v0.6.1. The per-library count matrices 

generated by HTSeq-Counts were merged in R to create a large cell-by-gene count matrix 

consisting of 288 cells for each sequencing run (96 cells for each PDO). A custom Perl script, 
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courtesy of Dr Wilfried Haerty (Earlham Institute), was then employed to replace Ensembl gene 

IDs with corresponding gene names.  

STAR log files and HTSeq-Count matrices were parsed using MultiQC v1.7 to assess the 

mapping rate and feature assignment performance of the sequenced libraries. This produced a 

comprehensive report that summarised the performance metrics for each library. The raw data 

used by MultiQC to generate summary plots (named “multiqc_general_stats.txt”) was further 

processed in R for library quality visualisation using ggplot v2.3.4.4.  

Additionally, Qualimap v2.2.1 rnaseq was used to assess the distribution of reads (coverage) 

across different regions of transcripts, employing the Ensembl GRCh38.104 GTF annotation file. 

Default settings were used for the analysis with the exception of the output format, which was 

specifically set to HTML (outformat HTML). The output files generated with this command were 

subsequently parsed using MultiQC v1.7 to produce a combined plot of coverage profiles across 

transcript lengths for all libraries derived from the Parental, MK1-resistant, and AZD1-resistant 

PDOs, respectively. The “multiqc_general_stats.txt” output, which provided the 5’-3’ bias ratio 

for each library, was processed in R for visualisation using ggplot2 v3.4.4. 

After exploring quality control metrics, the following criteria were set to filter out low-quality 

libraries for the resulting cell-by-gene count matrix: 

i) Libraries with fewer than 1,000 reads as they were insufficient for accurate feature 

assignment. 

ii) Libraries where the percentage of uniquely mapped reads was below the set threshold of 

60%. 

iii) Wells identified by the cell-sorting instrument as either empty or containing multiple cells, 

rather than a single cell. 

iv) Positive and negative control libraries. 
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3.3.2 Seurat analysis of Smart-seq2 scRNA-seq data 

A. Quality assessment of single-cell transcriptomes and batch correction  

Seurat v4.3.0 served as the primary tool for analysing scRNA-seq data. The cell-by-gene count 

matrices and corresponding metadata files from the first and second sequencing runs, 

consisting of Parental, MK1-resistant, and AZD1-resistant cells (288 cells per run), were used 

to create two Seurat objects, namely “run1” and “run2”. For “run1”, an initial quality control 

(QC) step was conducted where only cells with more than 200 genes―as recommended in the 

“Seurat’s guided clustering” tutorial (182)―and those with mitochondrial reads constituting 

less than 30% were retained. Additionally, genes were only included if they were expressed in 

at least 3 cells. Similar filtering parameters were applied to “run2”, except the cutoff for 

mitochondrial read content was adjusted to 20%. These adjustments in mitochondrial read 

thresholds were implemented after analysing data trends, which indicated that these cutoffs 

were the most suitable for ensuring data quality and integrity in both Seurat objects.  

The steps outlined in the “Seurat’s introduction to scRNA-seq integration” tutorial (183) were 

followed to integrate the two Seurat objects, i.e., to filter out batch effects while still retaining 

and aligning the core biological signals shared between the two datasets. For this, the two 

objects were first combined into a list. Within this list, the objects were subjected to a series of 

steps required prior to integration, such as normalisation and variable feature detection.  

During normalisation, raw counts were converted to a fraction of the cell’s total expression, 

multiplied by a scale factor of 10,000, and naturally log-transformed (log1p). The top 3,000 

most variable features were then identified by executing the FindVariableFeatures function 

with the variance-stabilising transformation method specified (selection.method = “vst”). These 

features typically comprise genes that capture the majority of biological and technical 

variability within each dataset.  

Next, SelectIntegrationFeatures was employed to select consistently variable genes across the 

datasets, ensuring that subsequent analyses would focus on informative genes across both 

datasets. This step was followed by feature-level scaling and principal component analysis 

(PCA) of each dataset to reduce dimensionality while retaining the most significant 

components of variation within each dataset.  

Reciprocal Principal Component Analysis (RPCA) was employed in the next step of the 

workflow, utilising a reciprocal procedure where each dataset was projected onto the reduced 

PCA space of the other (174, 184). This method was executed by using FindIntegrationAnchors 
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with reduction = "rpca" and k.anchor = 20. In this way, cells from “run2” were projected into the 

PCA space of “run1” to identify the nearest neighbours within this shared PCA space. This 

procedure was reciprocated by projecting cells from “run1” into the PCA space of “run2”, and 

again identifying nearest neighbours. The mutual nearest neighbours identified in these 

reciprocal projections, referred to as “anchors,” facilitated the alignment of similar cells across 

the two datasets based on their principal component scores (184). These 20 nearest 

neighbours formed the integration anchors, effectively identifying pairs of cells from the two 

datasets that likely represented the same biological state, e.g., the same cell type. 

In the final step of the workflow, IntegrateData was applied to these anchors, resulting in a 

single, batch-corrected, integrated object. In the integrated analysis, technical artefacts, 

including differences in mitochondrial read content and total gene counts, were corrected using 

ScaleData with the parameters vars.to.regress = c(“percent.mt”, “nFeature_RNA”). Although cell 

cycle scores were computed on the RNA assay to determine the most likely cell cycle phase of 

cells, these were not regressed out to preserve potential biologically relevant findings.  

Even after integration, scRNA-seq datasets remain highly dimensional, encompassing 

expression data for thousands of genes across numerous cells. Principal Component Analysis 

(PCA) was next employed to reduce the dimensionality of the dataset. PCA is a statistical 

method that captures linear relationships in the data by transforming a set of observations—

genes, in this case—into a new set of correlated variables known as principal components (PCs) 

(185). After conducting PCA, an elbow plot showing variance versus principal components 

(PCs) was created using Seurat’s ElbowPlot function to determine the optimal number of PCs 

to select for further analyses. The number of PCs chosen were selected looking at the “elbow” 

of the plot created, i.e., the point where the plot began to level off. Beyond this point in the plot, 

adding more PCs no longer results in a significant increase in the variance explained by the 

model.  

Consequently, these PCs were selected to find clusters across resolutions ranging from 0 to 1.5 

using the shared nearest neighbour (SNN) method (186) and the Louvain algorithm (186) by 

using the FindNeighbors and FindClusters functions. In this approach, cells are considered 

“neighbours” if they exhibit similar gene expression patterns, as determined by a measure of 

similarity and diversity, such as the Jaccard index (187). The presence of shared neighbours 

between pairs of cells indicates closely related transcriptional activities. Clustree v0.5.0 was 

subsequently employed to examine the impact of clustering at various resolutions using 

clustree(integrated.seurat.object, prefix = “res.").  
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Lastly, after identifying the most appropriate clustering resolution, the Uniform Manifold 

Approximation and Projection (UMAP) dimensionality reduction technique was applied to 

visualise the clusters detected in mCRC organoids. Unlike PCA, which may struggle to capture 

non-linear and intricate relationships in the data (e.g., the transition from a stem cell to a 

mature cell within the haematopoietic system involves multiple branching points that 

culminate in diverse cellular fates (188)), UMAP excels as a non-linear dimensionality 

reduction method. This makes UMAP suitable for visualising groups of cells with similar gene 

expression patterns in the reduced, two-dimensional space while separating globally different 

clusters (189). 
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B. Differential gene expression analysis at multiple levels 

Seurat provides various functions for differential gene expression (DGE) testing, each tailored 

to specific situations or goals. The DGE analyses described in this section were performed using 

the original, normalised RNA counts instead of the integrated data. Normalisation is crucial for 

ensuring that the data used in DGE analysis accurately reflects the biological variability 

between the groups being compared without the confounding influence of technical factors like 

sequencing depth (173, 174). This approach ensures that the true biological differences are 

accurately detected, avoids potential artefacts from data integration, maintains consistency 

with conventional (bulk) RNA-seq analysis, and is suitable for the statistical methods designed 

for count data, such as the Wilcoxon rank-sum test.  

Although the integrated data is intended for dimensionality reduction and clustering, its 

application for DGE could lead to misleading interpretations about gene expression differences. 

This potential for confusion arises because the original data is adjusted (or integrated) to allow 

similar cells from different sequencing runs, sources or technologies to group together (173, 

174). This process effectively brings their expression values to the same scale, which can 

obscure real expression differences. Therefore, using the normalised RNA counts is more 

appropriate for DGE analysis, as it avoids these complications and accurately reflects the 

original gene expression dynamics. 
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I. Cluster-level differential gene expression testing and functional annotation 
analysis 

The FindAllMarkers function was applied to the normalised RNA counts to detect differences in 

gene expression between the previously identified clusters. The Wilcoxon rank-sum test was 

employed for this purpose. Genes with an average log2 fold change greater than 0.25 and 

detected in a minimum of 10% of cells in either cluster being compared were considered. To 

ensure a comprehensive analysis, the min.diff.pct parameter was set to infinity, ensuring the 

inclusion of all genes, irrespective of the magnitude of expression difference between the 

clusters. Moreover, setting only.pos = FALSE, ensured the inclusion of up and downregulated 

genes in the results. p-value adjustment was performed using the Bonferroni correction 

method based on the total number of genes in the dataset. 

After the analysis, several plotting functions were employed to visualise the expression of 

cluster-specific genes. These included Seurat’s DotPlot function and plot_heatmap from Scillus 

v0.5.0, which generated an annotated heatmap for these cluster markers. 

For gene set enrichment analysis (GSEA), the differentially expressed genes (DEGs) within each 

cluster were first filtered based on statistical significance (adjusted p-value < 0.05) and ranked 

based on their average log2 fold change (avg_log2FC). This approach positioned the most 

upregulated genes at the top and the most downregulated at the bottom of the ranked list, 

preserving the magnitude and directionality of the gene expression changes. Subsequently, 

gene symbols were converted to their corresponding Entrez IDs using the mapIds function from 

the genome-wide annotation for the Human database, provided by org.Hs.eg.db v3.17.0, with 

the following parameters: keys = genes, column = "ENTREZID", keytype = "SYMBOL", multiVals = 

"first". 

For GSEA analysis, the fgsea function from Fast Gene Set Enrichment Analysis (fgsea) v1.26.0 

was employed with default parameters. This analysis focused on the Curated (C2), Ontology 

(C5), and Hallmark (H) gene sets from the Molecular Signatures Database (msigdbr) v7.5.1 

package. Once results for each cluster were compiled into a single data frame, a filtering 

criterion was applied to retain pathways with adjusted p-values < 0.05. ComplexHeatmap 

v2.16.0 was then employed to visualise significant pathways for each cluster based on the 

Normalised Enrichment Score (NES), a metric computed by the GSEA algorithm.  
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II. Global differential gene expression testing and over-representation analysis 

To explore gene expression differences between mCRC PDOs rather than between cell clusters, 

the active identity of the Seurat object was first set to the “PDO” column in the metadata. 

Subsequently, FindMarkers was employed to compare the expression of each AKTi-resistant 

PDO with the untreated Parental control, employing the Wilcoxon rank-sum test. The 

remaining parameters were consistent with those used previously for identifying cluster 

markers (see “Cluster-level differential gene expression testing and functional annotation 

analysis”). For visualising differentially expressed genes, ggplot v2.3.4.4 was used to generate 

a volcano plot. 

The functional analysis was extended from a per-cluster approach to a PDO-based comparison 

to include the list of statistically significant differentially expressed genes (adjusted p-value < 

0.05) identified in mCRC PDOs. For this analysis, gene symbols from the list of differentially 

expressed genes were converted into their corresponding Entrez ID equivalents using the 

biological Id Translator (bitr) function of clusterProfiler v4.8.3 with default parameters set. In 

this over-representation analysis (ORA), genes were not ranked based on avg_log2FC; instead, 

the analysis focused on evaluating the enrichment of specific terms and gene sets within the 

list of differentially expressed genes. For this purpose, the enricher function of clusterProfiler 

v4.8.3 was employed, specifically targeting gene sets from the “H”, “C2”, “C5”, and “C6” 

categories as provided by the msigdbr v7.5.1 package. 
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C. Cell-type annotation using the Human Gut Cell Atlas  

The Human Gut Cell Atlas (HGCA) (190) was chosen as a reference for annotating cells derived 

from mCRC PDO. The complete scRNA-seq gut cell atlas, consisting of over 400,000 cells, can 

be accessed from the GCA’s site (191). Before being employed as a reference, the raw HGCA 

dataset was converted into a Seurat object and processed according to Seurat’s quality control 

and integration workflows to create an integrated dataset. Additionally, the object was subset 

to only include epithelial cells in the gut. The raw HGCA data was processed by Salvatore Milite 

(PhD) from the Human Technopole research institute (Milan, Italy).  

Cell type annotation of mCRC cells was performed using Seurat’s FindTransferAnchors with the 

following parameters: query.assay = "integrated", reference.assay = "integrated", 

normalization.method = “LogNormalize”, reference.reduction = “pca”, dims = 1:40. This function 

identified anchors between the reference and queried datasets, which were then used to align 

the datasets. This alignment corrected for technical differences while preserving biological 

variability. For each cell in the queried dataset, a prediction score was computed for each cell 

type in the reference based on shared anchors and cellular expression patterns. These scores 

reflect the degree of similarity between a queried cell and each specific cell type in the 

reference. Lastly, by employing TransferData, queried cells were assigned the label of the 

highest-scoring reference cell type. In this scoring system, a high prediction score (ranging 

between 0 and 1) indicates a strong correlation between the expression profile of the queried 

cell and that of the reference cell type. 

To evaluate the accuracy of the annotations, gene signatures characteristic of intestinal cell 

types were computed for all annotated cells, using a list of well-established gut cell markers 

compiled from various sources (Table 10) (190, 192-195). For each annotated cell, the 

signature corresponding to a specific intestinal cell type was calculated by averaging the 

expression of all expressed genes included in the list, employing an adaptation of the Plot_sign 

function described elsewhere (196). Lastly, FeaturePlot was used to visualise the distribution 

and expression patterns of these signatures by projecting them onto a UMAP plot. 

 



3.3. Methods: Computational analysis of scRNA-seq data 

85 

 

Table 10. Marker genes for various cell types found in the gut  

Cell type Marker genes 

Epithelial Signature EPCAM 

Intestinal Epithelial CDX2, VIL1 

Mesenchymal VIM, THY1 

Immune PTPRC 

Cancer Stem Cells 
CD133, CD24, CD44, ABCG2, ALDH1, ALDH1A1, CD166, LGR5, CD66c, 
DCLK1, NES, BMI1 

CLDN10 Positive DLK1, PDX1, RBPJ, SOX9, CPA1, CLDN10 

Paneth Cells DEFA5, DEFA6, REG3A, REG1A, OLFM4, LYZ 

Proliferating Cells LGR5, BMI1, ASCL2, SMOC2, RGMB, OLFM4, SLC12A2 

TA Cells MKI67, TOP2A, PCNA, SOX9, OLFM4, PROM1, MSI1, EPHB2 

Enterocytes Cells RBP2, ANPEP, FABP2, CD36 

Enterocyte Progenitors 
PPP1R14D, MVP, MAD2L1, MELK, CCNA2, UBE2C, PLK1, GPSM2, 
QSOX1, TUBA1A 

Best4 Enterocytes Cells BEST4, OTOP2, CA7 

Enterochromaffin Cells TPH1, NPW, TAC1, CHGB 

Goblet Cells CLCA1, SPDEF, FCGBP, ZG16, MUC2 

Distal Progenitors CKB, AKAP7, GPC3 

Proximal Progenitors FGG, BEX5 

Tuft Cells 
TMEM45B, CHI3L1, DAPP1, SERPINI1, SLC26A2, CDKN1A, MALAT1, 
KRT23, CHDH, EEF2K, ENC1, EPHA4 
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3.3.3 Computational analysis of 10x Genomics scRNA-seq data  

As previously stated in the “Generation of mCRC PDO lines resistant to AKT Inhibition” section 

in Chapter 2, the Parental, MK1-resistant, and AZD1-resistant PDOs subjected to either G&T-

seq or 10x Genomics scRNA-seq came from different, albeit very close, passages, as these 

experiments were performed over a two-year period. If the experimental protocols for 

expanding the resistant PDO lines for either high-throughput single-cell sequencing or G&T-

seq were followed, then similar subpopulations would have emerged in these organoids. Thus, 

any differences observed between the Smart-seq2 and 10x scRNA-seq datasets are likely due 

technological differences, rather than actual differences in gene expression resulting from the 

expansion of organoids across multiple passages. 

A. 10x scRNA-seq data processing using Cell Ranger 

The 10x Genomics scRNA-seq data processing for the Parental, MK1-, and AZD1-resistant PDOs 

was carried out by Lucrezia Patruno (University of Milano-Bicocca, Milan, Italy) using the Cell 

Ranger analysis pipeline (197). This process involved several steps: (1) demultiplexing 

sequencing reads in Illumina’s raw base call (BCL) format into FASTQ files, (2) read alignment 

to the GRCh38 reference genome, (3) barcode processing and filtering, and (4) gene 

quantification. The main output files generated by Cell Ranger, which served as input for Seurat 

analysis, included a gene-by-cell UMI count matrix for filtered cells, a list of filtered cell 

barcodes and a gene annotation file. These files were organised into separate folders for each 

organoid and uploaded to the Accelerator project’s shared drive. 
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3.3.4 Seurat analysis of mCRC PDOs (10x scRNA-seq) 

A. Quality control and data integration 

The Seurat analysis of 10x Genomics scRNA-seq data was performed following steps similar to 

those employed in the Smart-seq2 data analysis (see “Quality assessment of single-cell 

transcriptomes and batch ”), with a few modifications. 

First, the Read10X function was employed to import the gene-by-cell count matrix generated 

by the Cell Ranger pipeline. This matrix served as the basis for creating Seurat objects, with 

min.cells = 3 applied to filter out genes expressed in fewer than three cells and min.features = 

200―as recommended in the “Seurat’s guided clustering” tutorial (182)―used to exclude cells 

expressing fewer than two hundred genes. This process was performed for each PDO dataset, 

resulting in three Seurat objects. 

Subsequently, the quality of each Seurat object was independently inspected to retain cells 

based on specific criteria. The following cutoffs, determined to be the most appropriate for 

maintaining data quality and integrity in the three Seurat objects, were established after 

visualising the data trends (Supplementary Figure 4 and Supplementary Figure 5). For the 

Parental organoid, filters were applied to retain cells expressing fewer than 7,500 genes, where 

each gene was expressed in at least 3 cells, and ensuring that mitochondrial genes constituted 

less than 20% of the total gene expression. In the MK1-resistant organoid, cells expressing 

fewer than 8,500 genes were retained, with the remaining filtering parameters matching those 

employed to filter the Parental dataset. For the AZD1-resistant organoid, cells with fewer than 

8,500 genes were retained, where each gene should be expressed in at least 3 cells, and 

mitochondrial genes should make up less than 25% of the total gene expression.  

As with the Smart-seq2 data, the steps outlined in the “Seurat scRNA-seq integration” workflow 

(183) were followed to integrate the three 10x scRNA-seq datasets. The primary distinction in 

this analysis was in the dimensionality reduction phase: following PCA, the first 25 PCs were 

identified as capturing the majority of the variation present in the data.  
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B. Projection of Smart-seq2 cluster labels onto the 10x scRNA-seq dataset 

To validate the Smart-seq2 clustering analysis findings with a larger dataset, cell cluster labels 

from the Smart-seq2 data were projected onto the integrated 10x Seurat object. This was 

performed by first using FindTransferAnchors to identify anchors between the reference 

(Smart-seq2) and queried (10x) Seurat objects with the following parameters: query.assay = 

“integrated”, reference.assay = “integrated”, normalization.method = “LogNormalize”, 

reference.reduction = “pca”, dims = 1:9. For each cell in the queried dataset, a prediction score 

was computed for each cell cluster in the reference based on these anchors. These scores, 

ranging from 0 to 1, reflected the similarity in gene expression between a query cell and a 

specific reference cell cluster. TransferData was then used to assign the highest-scoring Smart-

seq2 cluster label to each cell in the 10x Seurat object based on these anchors and prediction 

scores. Finally, AddMetaData incorporated the transferred labels into the “Smart-

seq2_Seurat_clusters” metadata column of the 10x object. This step effectively annotated the 

cells in the 10x dataset with cluster information derived from the Smart-seq2 dataset. 

C. Cluster-level gene expression analysis on Smart-seq2 cluster projections 

Cluster-level gene expression analysis was conducted by setting “Smart-seq2_Seurat_clusters” 

as the active identity in the 10x object using SetIdent. To facilitate a direct comparison and 

identification of shared differentially expressed genes between the 10x and Smart-seq2 

datasets, the Wilcoxon rank-sum test was applied with identical parameters across both 

datasets (see “Cluster-level differential gene expression testing and functional annotation 

analysis”). Shared differentially expressed genes between the 10x and Smart-seq2 datasets,  

meeting the criteria of an adjusted p-value < 0.05, and an avg_log2FC greater than or equal to 

absolute 0.5 (|0.5|), were identified using Venn diagrams (198). 
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D. Cell-type annotation using the Human Gut Cell Atlas (10x scRNA-seq) 

The parameters employed to annotate the cells in the Smart-seq2 dataset using the Human Gut 

Cell Atlas as a reference were also applied to label the 10x dataset (see “Cell-type annotation 

using the Human Gut Cell Atlas”). 

E.  Projection of Smart-seq2 cell type labels onto the 10x scRNA-seq dataset  

To assess the abundance of colonic cell types identified in the Smart-seq2 dataset labelled with 

the HGCA within a larger dataset, cell type labels from the Smart-seq2 data were projected onto 

the 10x Seurat object. This process followed the same parameters as those used for projecting 

Smart-seq2 clusters onto the 10x data (see “Projection of Smart-seq2 cluster labels onto the 

10x scRNA-seq dataset”), with the only difference being the reference metadata column 

selected for annotation. In this case, the metadata column containing the cell type annotations 

was used instead of the one containing the cluster identities. Subsequently, the corresponding 

cell type labels were transferred to the “Smart-seq2_Gut_Cell_Types” metadata column of the 

10x object. 

F. Global differential gene expression testing 

Differential gene expression analysis between AKTi-resistant and Parental mCRC organoids 

was conducted on the 10x dataset using the Wilcoxon rank-sum test with parameters identical 

to those applied to the Smart-seq2 data (see “Global differential gene expression testing and 

over-representation analysis”). Shared differentially expressed genes between the 10x and 

Smart-seq2 datasets,  meeting the criteria of an adjusted p-value < 0.05, and an avg_log2FC 

greater than or equal to |0.5|, were identified using Venn diagrams (198). 
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3.4 Results  

3.4.1 Primary analysis of Smart-seq2 data identifies bacterial contaminants in 
human cDNA libraries 

To ensure scRNA-seq analyses were performed on high-quality data, the raw reads 

corresponding to sequencing libraries underwent extensive processing. The initial inspection 

of libraries focused on identifying the species represented in the sequences. Table 11 presents 

an excerpt from the PAP MultiQC report for the first scRNA-seq run, focusing on the Centrifuge 

module, which shows the top 2 most abundant species in 25 representative libraries: Index 1 

for Parental, Index 2 for MK1-resistant and Index 3 for AZD1-resistant libraries. Notably, for the 

first (and the second) sequencing run, the PAP report revealed the presence of bacterial 

sequences attributed to Variovorax species alongside human cDNA libraries. Although cDNA 

sequences from the intended human target were predominant in most samples, a significant 

number of libraries still showed the bacterial contaminant as their foremost or second most 

abundant species.  
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Table 11. Top 2 most abundant species in mCRC libraries as extracted from the PAP 

report from the first set of plates sequenced by scRNA-seq. 

Sample Name 1st Name 1st % 2nd Name 2nd % 

SOGTseqIndex1H1 Homo sapiens 41.1 synthetic construct 3.0 

SOGTseqIndex1H2 Homo sapiens 43.6 Variovorax paradoxus 6.3 

SOGTseqIndex1H3 Homo sapiens 22.1 Cyprinus carpio  9.8 

SOGTseqIndex1H4 Homo sapiens 87.0 synthetic construct 2.7 

SOGTseqIndex1H5 Homo sapiens 87.4 synthetic construct 2.1 

SOGTseqIndex1H6 Homo sapiens 85.8 synthetic construct 2.3 

SOGTseqIndex1H7 Homo sapiens 83.3 synthetic construct 1.8 

SOGTseqIndex1H8 Homo sapiens 82.2 synthetic construct 1.6 

SOGTseqIndex1H9 Homo sapiens 86.6 synthetic construct 3.1 

SOGTseqIndex2A1 Homo sapiens 83.9 Cyprinus carpio 2.1 

SOGTseqIndex2A2 Homo sapiens 56.9 Variovorax paradoxus 13.2 

SOGTseqIndex2A3 Homo sapiens 36.3 Variovorax paradoxus 19.5 

SOGTseqIndex2A4 
Variovorax 
paradoxus 

34.7 
Variovorax 

boronicumulans 
7.8 

SOGTseqIndex2A5 Homo sapiens 59.4 Variovorax paradoxus 10.0 

SOGTseqIndex2A6 
Variovorax 
paradoxus 

35.5 
Variovorax 

boronicumulans 
7.8 

SOGTseqIndex2A7 Homo sapiens 47.4 Variovorax paradoxus 15.5 

SOGTseqIndex2A8 
Variovorax 
paradoxus 

34.2 
Variovorax 

boronicumulans 
7.8 

SOGTseqIndex2A9 Homo sapiens 68.1 Variovorax paradoxus 8.1 

SOGTseqIndex3B1 Homo sapiens 55.5 Variovorax paradoxus 12.9 

SOGTseqIndex3B3 Homo sapiens 72.8 Cyprinus carpio 3.9 

SOGTseqIndex3B4 Homo sapiens 35.5 Variovorax paradoxus 20.6 

SOGTseqIndex3B5 Homo sapiens 66.6 Variovorax paradoxus 8.1 

SOGTseqIndex3B6 Homo sapiens 54.3 Variovorax paradoxus 14.2 

SOGTseqIndex3B7 Homo sapiens 54.5 Variovorax paradoxus 13.3 

SOGTseqIndex3B8 Homo sapiens 43.4 Variovorax paradoxus 15.7 

SOGTseqIndex3B9 Homo sapiens 47.8 Variovorax paradoxus 14.5 
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3.4.2 scRNA-seq quality control pipeline selects high-quality cells for 
downstream analyses  

Following the initial inspection, single-cell libraries underwent a series of processing steps that 

included mapping reads to the human reference genome and subsequently assigning them to 

genomic features (genes). 

The first sequencing run revealed significant differences in read depth among the PDO libraries 

(Figure 3.2A). The Parental PDO had the lowest average total reads, recording approximately 

1.1 million reads per cell (±755,620 SD). The AZD1-resistant PDO followed it with 1.6 million 

reads per cell (±818,587 SD), and the MK1-resistant PDO had the highest average at 1.8 million 

reads per cell (±1,263,283 SD). In contrast, the disparity in read depth between the Parental, 

MK1-resistant, and AZD1-resistant PDOs was less pronounced in the second sequencing run, 

with averages of 1.8 million (±1,430,615 SD), 1.7 million (±1,174,742 SD), and 1.8 million 

(±1,240,364 SD) reads per cell, respectively. This represents a marginal difference of nearly 

78,000 reads between the highest (AZD1-resistant) and lowest (Parental) averages in the 

second sequencing run, a stark contrast to the 704,267 read difference observed in the first 

run. 

Given the extensive characterisation of the human genome sequence, 70-90% of RNA-seq reads 

are expected to map onto the reference genome (199). However, the bacterial contamination 

adversely affected the mapping rates across all samples in the first sequencing run. The MK1-

resistant libraries were most severely affected, with an average of 39.2% of reads per cell 

(±34.6 SD) mapping to a single genomic location (Figure 3.2B-C, left panel). This starkly 

contrasted with the AZD1-resistant and Parental libraries, which had uniquely mapping read 

averages of 71.1% (±18.4 SD) and 87.7% (±10.0 SD), respectively. While libraries in the second 

sequencing run were also affected, the mapping performance was relatively uniform across all 

samples, with uniquely mapping read averages ranging from 64.3% (±14.6 SD) in MK1-

resistant libraries to 69.3% (±12.1 SD) in Parental libraries (Figure 3.2B-C, right panel).  

The low mapping percentages observed across libraries are likely due to the extensive 

contamination by Variovorax species. This bacterial contamination also impacted the efficiency 

of read assignment to features or genes. In the first sequencing run, the MK1-resistant organoid 

was notably affected, with an average of 30.3% of reads per cell (±26.7 SD) unambiguously 

assigned to features (Figure 3.3A, left panel). The AZD1-resistant and Parental PDOs followed 

with 49.8% (±14.8 SD) and 67.4% (±8.16 SD) of reads per cell assigned to features, respectively. 

In contrast, the second sequencing run showed a more consistent (albeit still low) feature 

assignment across samples, with average percentages of reads per cell assigned to features 
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ranging from 46.1% (±12 SD) in MK1-resistant libraries to 49.6% (±10.6 SD) in Parental 

libraries (Figure 3.3A, right panel). Importantly, when considering only the uniquely mapped 

reads from both runs, a significant fraction was correctly assigned to features in both 

sequencing runs (Figure 3.3B). 

The analysis of read coverage distribution across the length of mapped transcripts revealed a 

consistent trend in scRNA-seq libraries, where the coverage increased from the 5’ end towards 

the middle of the transcript, peaked in the middle region, and then decreased towards the 3’ 

end (Figure 3.4A). This indicates that both the 5’ and 3’ ends had lower coverage compared to 

the rest of the transcript. This type of plot helps assess the uniformity of read coverage along 

the genes, which is particularly important for methods like Smart-seq2 that aim to capture full-

length transcripts (143). Additionally, there was a slight preference for the 5’ end over the 3’ 

end, with mean 5’-3’ bias ratios of 1.22 (±0.09 SD), 1.21 (±0.06 SD), and 1.24 (±0.15 SD) for the 

Parental, MK1-resistant, and AZD1-resistant libraries in the first sequencing run, and 1.27 

(±0.12 SD), 1.28 (±0.21 SD), and 1.30 (±0.27 SD) for the same PDOs in the second run (Figure 

3.4B). The 5’ or 3’ biases in RNA-seq data can occur due to library preparation protocols, primer 

binding efficiency, reverse transcriptase activity favouring either end, sequencing platform 

characteristics, and biological factors like RNA degradation and secondary structures (200, 

201). These findings underscore the importance of considering regional biases in transcript 

coverage when interpreting RNA-seq data to ensure accurate biological conclusions. 

Out of the 576 libraries sequenced (192 for each PDO) across the two sequencing runs, a total 

of 376 libraries (65.3%) met the scRNA-seq quality standards outlined in the Methods section 

(see “Smart-seq2 scRNA-seq data processing: read trimming, alignment, and gene-level 

quantification”). This included 143 cells (74.5%) from the Parental PDO, 93 cells (48.4%) from 

the MK1-resistant PDO and 140 cells (72.9%) from the AZD1-resistant PDO.
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(a) Distribution of total reads in scRNA-seq libraries derived from the Parental, MK1-resistant, 

and AZD1-resistant mCRC PDOs across two sequencing runs. Each box plot displays the median 

value (central line), the interquartile range (25th and 75th percentiles as the box boundaries), 

and 1.5× the interquartile range (whiskers). (b) Average mapping percentages across four distinct 

mapping categories (uniquely mapped reads, multi-mapped reads, short, unmapped reads, and 

other unmapped reads) for each PDO across two sequencing runs. (c) Distribution of uniquely 

mapped reads per PDO over two sequencing runs. The width of the violin plots represents the 

density of data points (i.e., individual libraries) at various levels of uniquely mapped reads.

Figure 3.2. Smart-seq2 scRNA-seq mapping quality metrics of mCRC PDO libraries across 

two sequencing runs. 
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(a) Average feature assignment percentages for mCRC PDOs, categorised into four groups: reads 

correctly assigned to genes, reads ambiguously assigned, reads unassigned to features, and 

unmapped reads not unassigned to genomic features. (b) Distribution of uniquely mapped reads 

unambiguously assigned to genomic features across two sequencing runs. Colour-coding 

distinguishes the sequencing runs, with coral representing the first and sky-blue denoting the 

second batch of sequenced cells.

Figure 3.3. Smart-seq2 scRNA-seq feature assignment metrics of mCRC PDOs across two 

sequencing runs. 
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Figure 3.4. Read coverage profile across mapped transcripts for scRNA-seq libraries 

from mCRC PDOs across two sequencing runs. 
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(a) Each plot represents the distribution of sequencing reads along the length of mapped 

transcripts. The x-axis indicates the position along the transcript (from 5’ to 3’) as a percentage, 

while the y-axis shows the number of reads mapping to each position. The colours in the plot 

represent individual single-cell RNA-seq libraries derived from Parental, MK1-resistant and AZD1-

resistant mCRC PDOs. (b) Box plots represent the distribution of 5'-3' bias ratios across PDO 

libraries and sequencing runs. Each box plot displays the median value (central line), the 

interquartile range (25th and 75th percentiles as the box boundaries), and 1.5× the interquartile 

range (whiskers).
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3.4.3 Seurat analysis of single cells derived from mCRC PDOs 

A. Preliminary exploration of single-cell transcriptomes selects high-
quality cells for subsequent analyses 

After completing the initial Smart-seq2 data processing steps, Seurat was employed as the 

primary tool for analysing single-cell transcriptomes. The initial stages of the Seurat workflow 

incorporated additional quality control measures to filter out “low-quality” cells that might not 

have been removed during the processing steps. Figure 3.5A-F presents Seurat quality control 

metrics for the Parental, MK1-resistant, and AZD1-resistant PDOs for the two sequencing runs 

before removing low-quality cells. The distribution of data points revealed variability within 

and across mCRC PDOs. 

Before filtering low-quality libraries, the average number of genes captured per cell in the first 

plate of Parental cells sequenced was 6,504, which dropped to 5,422 genes per cell in the 

following run (Figure 3.5A). The MK1-resistant PDO recorded an average of 6,738 genes per 

cell in the first run, which decreased to 5,806 genes per cell in the subsequent run. In the case 

of the AZD1-resistant PDO, 7,177 genes per cell were detected in the initial sequencing, 

followed by 5,527 genes per cell in the next run. A similar trend was observed in the total RNA 

counts (Figure 3.5B). A correlation coefficient of 0.74 (Figure 3.5E) revealed a strong positive 

association between these two metrics, suggesting that capturing a higher number of mRNA 

molecules leads to the identification of more genes.  

Other metrics of note include the percentage of mitochondrial- and ribosomal-related genes, 

both of which were the highest for the Parental PDO across the two sequencing runs (Figure 

3.5C-D). Despite this, a correlation coefficient of 0.02 between mitochondrial gene percentage 

and RNA counts (Figure 3.5F) suggests a negligible association between the total RNA counts 

in cells and the proportion of those transcripts attributed to mitochondrial genes. This 

indicates that, in this case, the expression of non-mitochondrial genes was largely independent 

of mitochondrial gene activity—an important observation given that elevated mitochondrial 

gene content can signal cell stress or reduced cell quality. 

Low-quality transcriptomes were subsequently filtered out after inspecting data trends. Figure 

3.6A-F showcases Seurat quality control metrics after implementing the quality filters 

described in the methods section (see “Quality assessment of single-cell transcriptomes and 

batch correction”). From the initial pool of 376 cells loaded into Seurat, 361 satisfied the quality 

criteria. Breaking it down by PDO type, 134 cells (equivalent to 69.8% of the initial 192 cells 

sequenced) originated from the Parental PDO, 87 cells (45.3%) from the MK1-resistant PDO, 

and 140 cells (72.9%) from the AZD1-resistant PDO. 
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(a)-(f) present violin plots illustrating the distribution of single-cell transcriptomes derived from the Parental, MK1-resistant, and AZD1-resistant PDOs 

based on various Seurat quality control metrics before removing low-quality cells. These metrics include (a) number of genes detected (nFeature_RNA), 

(b) number of RNA molecules (nCount_RNA), (c) mitochondrial RNA percentage (percent.mt), and (d) ribosomal RNA percentage (percent.ribo) for each 

cell. All metrics were evaluated across each PDO and over two sequencing runs. Scatter plots depict the relationship between RNA content versus (e) 

number of genes detected or (f) mitochondrial content for each cell. 376 cells in total: 143 Parental, 93 MK1-resistant, and 140 AZD1-resistant cells.  

 

Figure 3.5. Quality metrics of 376 scRNA-seq libraries from three mCRC PDOs before excluding low-quality cells. 
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(a)-(f) present violin plots illustrating the distribution of single-cell transcriptomes derived from the Parental, MK1-resistant, and AZD1-resistant PDOs 

based on various Seurat quality control metrics after removing low-quality cells. These metrics include (a) number of genes detected (nFeature_RNA), 

(b) number of RNA molecules (nCount_RNA), (c) mitochondrial RNA percentage (percent.mt), and (d) ribosomal RNA percentage (percent.ribo) for each 

cell. All metrics were evaluated across each PDO and over two sequencing runs. Scatter plots depict the relationship between RNA content versus (e) 

number of genes detected or (f) mitochondrial content for each cell. 361 cells in total: 134 Parental, 87 MK1-resistant, and 140 AZD1-resistant cells.  

 

Figure 3.6. Quality metrics for 361 scRNA-seq libraries from three mCRC PDOs after excluding low-quality cells. 
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B. Batch correction coupled with dimensionality reduction reveals 
transcriptionally distinct cell clusters in mCRC PDOs 

The quality control analysis described in the previous section evidenced gene detection 

discrepancies across mCRC PDOs and sequencing batches. To address this shortcoming, the 

Seurat integration workflow was employed to integrate the two sequencing batches, leveraging 

its capability to align scRNA-seq datasets from multiple sources and sequencing technologies 

using the Reciprocal Principal Component Analysis (RPCA) based approach. 

Seurat’s RPCA-based integration can discern true biological signals, which should be consistent 

across datasets, from batch-specific noise (174). This is achieved by identifying anchors, i.e., 

pairs of cells conserved across different sources and representing the same cell type or state. 

These anchors act as reference points for alignment. Mutual neighbourhood constraints are 

subsequently applied on the anchors to ensure reference points remain close to similar points 

in other datasets, thus producing an integrated dataset. Figure 3.7A illustrates the top 3,000 

genes exhibiting the highest variability across cells in each dataset. These features, including 

shared ones such as MT4, DKK4, S100A3, C6orf15, EDN3, and RBP1, were selected for 

integrating the two scRNA-seq datasets.  

Continuing with the topic of variability, cell cycle effects can be a significant source. To address 

this, the Seurat’s cell cycle scoring method was adopted, which relies on the expression of 

canonical cell cycle-associated genes to categorise cells into G1, S, or G2/M cell cycle phases 

(202), without regressing out or eliminating this signal. Adopting this approach preserved the 

inherent cellular diversity in the metastatic CRC PDOs, which typically comprise 

undifferentiated stem cells and differentiated cell types (203).  

Principal Component Analysis (PCA) was next employed to reduce the dimensionality of the 

dataset. In PCA visualisations, such as the one depicted in Figure 3.7B, each gene is represented 

with specific loadings in the PC space. These loadings or weight coefficients indicate how much 

each gene contributes to a particular PC. Genes with higher loadings (in magnitude, irrespective 

of its positive or negative sign) on a specific PC contribute more to the variance captured by 

that PC. Moreover, the genes that make up the loadings of a PC can offer insights into underlying 

cellular functions or states that are being highlighted by that PC. In this case, PC1 consists of 

genes associated with extracellular matrix components (e.g., ECM1) (204), lipid metabolism 

(CD36, MGLL) (205, 206), cell adhesion (TACSTD2, FNDC3A) (207, 208) and cell signalling 

(TGFA, EDN3, KIT, WNT5A) (209-212). Conversely, PC2 encompass genes regulating the G2/M 

cell cycle phases (CDK1, UBE2C, BIRC5, TOP2A, MKI67) (202), suggesting this PC might capture 

variation related to the cell cycle phase of cells.  
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PCs aim to capture the maximum variance in the data; however, not all PCs are equally 

informative. The primary PCs often represent genes conveying relevant biological information, 

such as in the examples above. In contrast, later PCs may capture noise, which can hinder 

downstream analysis. The scree plot in Figure 3.7C, commonly called the “elbow plot”, shows 

the variance (presented as standard deviation) captured by the first 20 PCs. This visualisation 

assisted in identifying the optimal number of PCs for further analyses. In this case, the first 9 

PCs captured the most variation, as indicated by the plot’s “elbow”, which represents the point 

where adding more PCs would have a minimal increase in captured variance.  

Finally, cells were clustered at a resolution of 0.5 after examining the effects of various 

resolutions on the number of clusters generated. As depicted in Figure 3.8, this resolution 

provided a balance between achieving clear separation among transcriptionally distinct cell 

clusters and avoiding over-partitioning of the data. As a result, four distinct cell clusters were 

identified in mCRC PDOs. Notably, Cluster 2 remained consistent, not dividing with increasing 

resolution, suggesting a unique expression profile compared to the other clusters. 
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(a) Scatter plots reflect the standard variance of genes against average expression, highlighting 

the top 3,000 genes (red) with the most significant variability in gene expression in the first (left) 

and second (right) sequencing runs. Top 15 genes in each batch are annotated. (b) Representation 

of genes in the first three principal component spaces in the integrated dataset. The y-axis displays 

genes, while the x-axis represents the contribution (or weight) of each gene to the principal 

component. (c) Scree plot shows the variation captured by the first 20 principal components. This 

visualisation aids in selecting the optimal number of principal components for cell clustering, with 

PCs 1-9 chosen based on the plot’s “elbow”, where the line begins to flatten. 

 

(c)(b)

(a)

Figure 3.7. Seurat integration aligns two scRNA-seq datasets using variably expressed 

anchor genes, followed by principal component analysis to identify the main axes of 

variation for further analyses. 
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Clustree depicts how clusters of cells evolve as the resolution parameter is adjusted. Each node 

represents a cluster, with the node colour transitioning from red to pink as the resolution 

parameter increases. Nodes are sized in proportion to the number of cells they contain. Arrows 

represent cluster splits with increasing resolution. The “in_prop” legend measures cluster stability 

across resolutions. A value closer to 1 suggests high stability, where the majority of cells from a 

lower-resolution cluster remain together at a higher resolution. Conversely, lower values indicate 

the fragmentation of a cluster into smaller subsets with increasing resolution, thus making the 

cluster composition less stable.  

Figure 3.8. Clustree visualisation demonstrating the effect of increasing resolution on 

the stability of cell clustering in scRNA-seq data. 
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C. Differential cluster abundance analysis across mCRC cells 

In the UMAP plots presented in Figure 3.9A-D, each data point represents a single cell colour-

coded based on gene expression similarity (Figure 3.9A), PDO of origin  (Figure 3.9B), 

sequencing batch (Figure 3.9C) and predicted cell cycle phase (Figure 3.9D). In addition, Figure 

3.9E indicates the number of cells in each cluster across the three mCRC PDOs, while Figure 

3.9F shows the distribution of cell cycle phases in these samples. Several observations can be 

drawn from these visualisations: 

Looking at the cell cycle distribution of cells, it is apparent that some cell cycle phases were 

more prevalent in certain clusters (Figure 3.9 and Supplementary Figure 1). For example, most 

cells in Cluster 0 and Cluster 2 were found in the G1 phase, with a few cells in the S and G2/M 

phases. On the other hand, Cluster 1 consisted of a mix of cells in S and G2/M phases, while all 

cell cycle phases were equally represented in Cluster 3. Therefore, while there was some cell 

cycle-driven bias in the clustering of mCRC, cells did not exclusively separate by their cell cycle 

phase, meaning that biological differences beyond cell cycle stage also influenced cell 

clustering. Nevertheless, there was a consistent representation of all cell cycle phases across 

the PDOs (Figure 3.8F). 

Secondly, Clusters 0 through 3 were consistently observed across all mCRC PDOs, though their 

frequencies varied. Notably, Clusters 0 and 1 were the most prevalent, with 124 and 121 cells, 

respectively. Although Cluster 3 consisted of 50 cells from all mCRC PDOs, most of these cells 

(92%) originated from the second batch of PDO plates sequenced, suggesting a potential batch 

effect affecting this cluster.  

Comparing cell counts per cluster between the Parental control and AKTi-resistant PDOs 

revealed differential impacts across clusters. In Cluster 0, the number of cells decreased in 

resistant conditions, with 31 cells observed in the MK1-resistant PDO and 41 cells in the AZD1-

resistant, compared to 52 cells in the Parental PDO. A similar reduction was observed for 

Cluster 1, particularly in the MK1-resistant PDO, where cell counts dropped to 23 from the 56 

cells observed in the Parental PDO. In contrast, Cluster 2 was the only cluster that experienced 

a significant increase in the resistant PDOs, with cell counts rising to 35 cells in the AZD1-

resistant PDO and 23 cells in the MK1-resistant, up from only 8 cells in the control PDO. 

Changes in Cluster 3 were minimal, with a slight reduction observed from 18 cells in the control 

to 10 cells in the MK1-resistant PDO. 

It is important to acknowledge the potential uncertainty in these observations. As previously 

mentioned, contamination by Variovorax species significantly compromised the data from the 
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MK1-resistant PDO, resulting in a much-reduced number of cells available for analysis 

compared to the other organoids. In contrast, the Parental and AZD1-resistant PDOs had equal 

starting cell counts, providing a solid foundation for comparative analysis (Figure 3.9E).
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UMAP transforms high-dimensional scRNA-seq data into a two-dimensional space, where each data point denotes a cell. Cells are coloured by (a) gene 

expression similarity, (b) PDO type, (c) sequencing batch and (d) cell cycle phase. (e) Detailed cell counts per Seurat cluster for each mCRC PDO. (f) 

Distribution of cell cycle phases in each PDO. Number of cells = 361: 134 Parental, 87 MK1-resistant and 140 AZD1-resistant cells. 

Figure 3.9. scRNA-seq identifies four transcriptionally distinct cell clusters in mCRC PDOs. 

(a) (b) (c)

(d) (e) (f)
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D. Cross-platform analysis of cluster abundances reveals differential 
effects of AKT Inhibition on mCRC cells 

The cost associated with Smart-seq2 can be prohibitive for large-scale studies. Consequently, 

the subset of cells sequenced—in this case, 192 cells per PDO, sorted based on cell viability—

might not accurately represent the diverse cell types within the original mCRC organoid 

cultures. Therefore, it is challenging to ascertain whether the observed differences in cell 

cluster abundances between the control and AKTi-resistant PDOs reflect an actual biological 

difference or are merely the result of the sampling limitations of Smart-seq2, which could 

introduce random variability. This is where the single-cell RNA-seq techniques developed by 

10x Genomics come into play (213).  

To address the limitations of Smart-seq2 and validate its results, the Smart-seq2 cluster 

annotations were mapped or projected onto the 10x Genomics scRNA-seq datasets generated 

from the Parental (2,245 cells in total after filtering low-quality cells), MK1-resistant (2,708 

cells) and AZD1-resistant (2,289 cells) organoids. This method involved comparing each cell in 

the queried dataset (i.e., 10x genomics scRNA-seq data) with cells in the reference dataset (i.e., 

Smart-seq2 scRNA-seq data) and assigning cluster labels based on prediction scores that 

indicated the most likely cluster identity for each queried cell. 

The Smart-seq2 clusters projected onto the 10x scRNA-seq data (Figure 3.10A) exhibited high 

spatial coherence, as evidenced by the proximity of cells from the same clusters in the UMAP 

plot without significant overlaps (Figure 3.10B). The high prediction scores observed for all 

clusters, ranging between 0.5-1 (Figure 3.10C), confirmed a close resemblance between the 

gene expression profiles of the 10x Genomics and Smart-seq2 scRNA-seq datasets. Such 

precision in label transfer underscores the robustness of the approach in preserving the 

distinct molecular signatures of each cluster during the annotation process and provides a solid 

basis for reliably investigating cluster abundances across the PDOs using the 10x dataset. 

However, similar to the Smart-seq2 dataset, variations due to cell cycle phases were not 

adjusted for in the Seurat analysis of the 10x data. This might explain the clear separation of 

clusters based on cell cycle phase, a distinction that was less pronounced in the Smart-seq2 

data (Figure 3.9A). 
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UMAP plots display (a) integrated 10x scRNA-seq dataset for three mCRC PDOs, (b) Smart-seq2 clusters projected onto the 10x scRNA-seq data with (c) 

corresponding prediction scores indicating gene expression similarities between the datasets. Number of cells = 7,242: 2,245 Parental, 2,708 MK1-

resistant and 2,289 AZD1-resistant cells. 

Figure 3.10. Smart-seq2 cluster projection onto 10x scRNA-seq data allows large-scale evaluation of cluster abundances in mCRC PDOs. 

(a)

(b)

(b)
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Similar observations to those made with Smart-seq2 were noted when examining the cell cycle 

distribution across the clusters projected onto the 10x data. For example, Cluster 0 and Cluster 

2 predominantly consisted of cells in the G1 phase, while Cluster 1 displayed an equal 

distribution of cells in the S and G2/M phases (Figure 3.11A).  

When examining the global distribution of cell cycle phases across PDOs, the Smart-seq2 data 

showed a uniform distribution (Figure 3.9F). In contrast, the 10x dataset revealed a distinct 

pattern: the MK1-resistant organoid exhibited the highest number of cells in the S and G2/M 

phases among all PDOs, with the G1 phase being less prevalent (Figure 3.11B). This 

significantly differs from the AZD1-resistant and Parental PDOs, where the G1 phase was the 

most common, followed by the S and G2/M phases. It is important to highlight that the cell cycle 

distributions observed in the 10x dataset are intrinsic to this dataset and not influenced by the 

Smart-seq2 cluster projections. 

Figure 3.11C illustrates the variation in cluster abundances across the mCRC PDOs. The 

Parental and AZD1-resistant PDOs had comparable cell counts, with 2,245 and 2,289 cells each. 

In contrast, the MK1-resistant PDO had approximately 500 more cells than the other two (2,708 

cells). Except for Cluster 3, which was unique to the MK1-resistant PDO, all clusters were 

represented in the three organoids, albeit at varying frequencies. In both the Parental and 

AZD1-resistant PDOs, Cluster 0 and Cluster 1 were the two most predominant clusters. For the 

MK1-resistant organoid, Cluster 1 was the most abundant, followed by Cluster 0.  

Upon examination of the cluster abundance across PDOs, Cluster 0 showed a slight decrease in 

the AKTi-resistant PDOs compared to the Parental control. This trend aligns with the Smart-

seq2 observations, which also showed a minimal decrease in Cluster 0 in AKTi-resistant PDOs 

(Figure 3.9E). In contrast, Cluster 1 saw a more than a twofold increase in the MK1-resistant 

PDO relative to the control, whereas the same cluster showed a minor decrease in the AZD1-

resistant PDO. Despite the MK1-resistant PDO having the highest cell count, which might 

explain the rise in Cluster 1, one would typically anticipate such an increase to be spread across 

all clusters. Conversely, Cluster 2 was over five times more abundant in the AZD1-resistant 

sample compared to the control, while it remained stable in the MK1-resistant PDO. These 

findings are in agreement with the Smart-seq2 data, which also noted a significant increase in 

Cluster 2 within the AZD1-resistant sample (Figure 3.9E). 

In summary, employing a larger and potentially more representative dataset like the 10x 

scRNA-seq enabled a more accurate assessment of cell cluster abundances across mCRCs  

PDOs and a more reliable understanding of the cellular composition within the organoids. 
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(a) Cell cycle phase distribution across projected clusters. (b) Distribution of cell cycle phases in each organoid. (c) Cell counts in each Smart-seq2-

projected cluster on the 10x scRNA-seq data derived from three mCRC PDOs. Number of cells = 7,242: 2,245 Parental, 2,708 MK1-resistant and 2,289 

AZD1-resistant cells.  

Figure 3.11. Distribution of Smart-seq2 cluster abundances and cell cycle phases in mCRC PDOs as derived from 10x scRNA-seq data. 
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E. Cluster-level differential gene expression analysis in mCRC PDO cells  

Differential gene expression (DGE) analysis was first conducted on the Smart-seq2 dataset to 

investigate the transcriptional characteristics of the four cell clusters identified. This analysis 

produced gene expression profiles depicted in Figure 3.12A, with the top markers for each 

cluster illustrated in Figure 3.12B. Cluster-level DGE was also performed on the 10x dataset 

containing the Smart-seq2 cluster projections to validate the Smart-seq2 findings. This 

approach identified shared differentially expressed genes (DEGs) across both datasets that 

were statistically significant (having adjusted p-values < 0.05) and exceeded the average log2 

fold change (log2FC) threshold of |0.5| (Figure 3.13A-C). 

Following the DGE analysis, gene set enrichment analysis (GSEA) was performed to investigate 

the biological implications of the transcriptional profiles identified, focusing on the Curated 

(C2), Ontology (C5), and Hallmark (H) categories from the Molecular Signatures Database 

(MSigDB) (163). Gene sets with significant enrichment (adjusted p-value < 0.05) are depicted 

in Figure 3.14 based on their Normalised Enrichment Score (NES). The NES, which is adjusted 

to account for the size of gene sets, facilitates comparisons across gene sets of different sizes, 

and its magnitude represents the degree of enrichment. A positive NES indicates that the gene 

set is predominantly upregulated, whereas a negative NES suggests downregulation.  

Given the central role of AKT in cellular proliferation and survival pathways (214), and 

considering this study’s focus on the cellular response to AKT inhibitors, the expression of 

AKT1, AKT2, and AKT3 was also examined (Figure 3.15). These genes encode the AKT isoforms 

targeted by the MK-2206 and AZD5363 inhibitors. This analysis aimed to provide insights into 

the expression patterns of AKT genes across the identified clusters. 

Cluster 0 featured an increased expression of genes from both the large (RPL10A, RPL18A, 

RPL31, RPL36, RPL37, RPL37A) and small (RPS14, RPS18, RPS19, RPS24, RPS27) ribosomal 

subunits (215). These ribosomal protein (RP) family genes are components of ribosomes, 

which are essential for mRNA translation into proteins (216). The surge in ribosomal-

associated gene activity in Cluster 0 suggests an increase in ribosomal biogenesis and protein 

synthesis. Furthermore, enrichment analysis revealed an involvement in RNA metabolic 

processes, indicated by gene sets “C2: REACTOME_METABOLISM_OF_RNA”, “C5: 

GOMF_RNA_BINDING”, and “C5: GOBP_RNA_PROCESSING” gene sets (Figure 3.14).  

As previously shown in Figure 3.9D, the majority of cells in Cluster 0 were in the G1 phase. 

Consistent with this observation, Cluster 0 showed the lowest expression of all AKT isoforms 

in the Smart-seq2 dataset (Figure 3.15). Furthermore, there was a downregulation of genes 
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associated with cell cycle progression (CDCA4, CDK1, MKI67) (217, 218), spindle-microtubule 

organisation (ASPM, TPX2) (219, 220), DNA topology (TOP2A) (221), DNA synthesis and repair 

(RRM2) (222), and chromatin modulation (ASF1B) (223) (Figure 3.12A-B). Downregulation of 

these genes was also observed in the 10x dataset (Figure 3.13A).  

In addition, a significant downregulation was observed in genes associated with cell signalling 

(TGFA) (209), and in genes related to cell adhesion and interactions with the extracellular 

matrix, such as CD36, ECM1, FNDC3A and ITGA1 (204, 205, 207, 224), with TACSTD2 identified 

as the most downregulated gene in Cluster 0 (average log2FC = -1.898592483, adjusted p-value 

= 8.95 x 10-8).  

On the other hand, Cluster 1 exhibited elevated levels of S phase genes (ATAD2, GMNN, MCM4, 

MCM7, PCNA, RRM1, RRM2) and G2/M phase genes (BIRC5, CCNB2, CDK1, CENPF, CKS2, MKI67, 

TMPO, TOP2A, UBE2C) (202). The majority of these genes were also found in the 10x DGE 

analysis (Figure 3.13B). GSEA linked these genes to cell cycle regulatory pathways, including 

“C2: FISCHER_G2_M_CELL_CYCLE”, “C5: GOBP_MITOTIC_CELL_CYCLE”, “H: 

HALLMARK_G2M_CHECKPOINT”, and “H: HALLMARK_E2F_TARGETS”. The leading-edge subset 

of genes within the “H: HALLMARK_E2F_TARGETS” gene set, which contributes to the NES, 

revealed an upregulation of E2F transcription factor targets. These genes are involved in a 

range of cellular functions such as DNA replication (DUT, MCM3, RFC3, TK1), DNA repair 

(BARD1, CHEK1, PRKDC, RAD51AP1), G2/M checkpoints (CENPE, CHEK1, MAD2L1), chromatin 

remodelling (CBX5), and mitotic regulation (PLK1) (225). Aligned with these findings, Cluster 

1 exhibited the highest expression levels of all AKT isoforms in the Smart-seq2 and 10x 

datasets. (Figure 3.15). 

Cluster 1 also showed enrichment for several cancer-related gene sets such as “C2: 

GRADE_COLON_AND_RECTAL_CANCER_UP”, “C2: VECCHI_GASTRIC_CANCER_EARLY_UP” and 

“C2: SHED-DEN_LUNG_CANCER_POOR_SURVIVAL_A6”. The leading-edge subset for these gene 

sets featured genes such as CDK1, CENPF, RRM2, and TOP2A, which relate directly to cell cycle 

regulation. Other upregulated genes include EIF4EBP1, a negative regulator of mRNA 

translation (226), EZH2, which is involved in chromatin modification and gene silencing (227), 

and MELK, playing roles in post-translational modifications, signal transduction, the cell cycle, 

and proliferation (228). 

In terms of downregulated genes, Cluster 1 exhibited downregulation in genes associated with 

extracellular matrix remodelling, such as ECM1 (204), and genes involved in cell adhesion, 

including TACSTD2 and FNDC3A (207, 208). This finding aligns with gene sets related to cell-

cell interaction, displaying negative NES scores, including “C5: GOBP_BIOLOGICAL_ADHESION” 
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and “C5: GOBP_CELL_CELL_ADHESION”. Additionally, the gene set “C5: 

GOBP_EPITHELIAL_CELL_DIFFERENTIATION” was observed to be downregulated in this 

cluster, suggesting that Cluster 1 likely consists of rapidly proliferating but undifferentiated 

cells. 

Turning to Cluster 2, as noted earlier, it was the only cluster that remained unsplit with 

increasing resolution (Figure 3.8). This observation indicates that Cluster 2 has a unique 

expression profile that sets it apart from the other clusters. Although Cluster 2 and Cluster 0 

primarily consisted of cells in the G1 phase, Cluster 2 exhibited a pronounced downregulation 

in translation processes (Figure 3.14), setting it apart from Cluster 0. Additionally, G1-phase 

cells in Cluster 2 showed low expression levels of proliferation markers (e.g., CDK1, CENPF, 

RRM2)(202), a trend accompanied by the downregulation of cell cycle-related gene sets 

including “H: HALLMARK_G2M_CHECKPOINT” and “H: HALLMARK_E2F_TARGETS”. 

Additionally, the transcriptional profile of Cluster 2 was marked by the upregulation of genes 

involved in cell-cell communication (GJA1), cell signalling (JAG2, NRP2, SEMA3C, SORBS1), cell 

survival and metabolism (FABP5, KCNMA1, PDK3, RCAN2, SHH), detoxification (MT4, PON2, 

PON3, QSOX1), migration and tissue remodelling (CEMIP, ECM1, LGALS1), and pathways of 

energy and nutrient metabolism (CD36, GLCE, SLC7A8) (229). GSEA identified these DEGs in 

gene sets related to epithelial cell migration, such as “C2: WU_CELL_MIGRATION” and various 

“C5” gene sets, including “GOBP_CELL_CELL_ADHESION” and 

“GOBP_BIOLOGICAL_ADHESION”.  

Lastly, Cluster 3 mirrored the expression patterns observed in Cluster 1 and Cluster 2 (Figure 

3.12A). The clustree plot illustrated in Figure 3.8 shows that Cluster 1 and Cluster 3 diverged 

from a common “ancestral” cluster at the 0.3 resolution, likely explaining their resemblance in 

gene expression profiles. The DGE analysis for Cluster 3 identified 24 statistically significant 

DEGs for this cluster (adjusted p-value < 0.05). Of these, only TACSTD2 and CFTR demonstrated 

deregulation exceeding the average log2FC threshold of |0.5|, with values of 0.525 and -0.540, 

respectively. The limited number of genes might explain why the GSEA for this cluster yielded 

no results. Furthermore, there were no shared DEGs between the Smart-seq2 and 10x datasets 

for this cluster (Figure 3.13C).  

The cluster-level differential gene expression analysis revealed diverse cellular activities across 

the four clusters identified in mCRC PDOs. By identifying unique expression patterns in critical 

areas such as cell cycle regulation, cell signalling, and cell adhesion, this analysis hints at 

potential mechanisms through which cells respond to AKT inhibition. 
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(a) Heatmap of differentially expressed genes characterising clusters identified in mCRC PDOs, with gene expression levels transitioning from blue (low 

expression) to red (high expression). Annotations above the heatmap indicate the cell cycle stage and PDO type. (b) Dot plot of top 10 cluster markers.

(a) (b)

Figure 3.12. Cluster-level differential gene expression analysis in mCRC PDOs. 
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Venn diagrams illustrate the number of differentially expressed genes in Clusters 0 to 3 (a-d), identified in both the Smart-seq2 dataset and 10x data 

containing Smart-seq2 cluster projections. Intersections in the Venn diagram indicate the DEGs shared by both datasets, with a selection of upregulated 

and downregulated genes listed adjacent to the diagrams.  

Figure 3.13. Cluster-level differentially expressed genes shared between Smart-seq2 and 10x scRNA-seq datasets 
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Heatmap rows show the top 3 pathways with significant enrichment (adjusted p-value < 0.05) in MSigDB categories for Clusters 0 to 3, ranked by 

Normalized Enrichment Score (NES). The colour scale ranges from blue (negative NES, indicating gene downregulation) to red (positive NES, indicating 

upregulation), with intensity denoting enrichment strength. White spaces show no category representation in a cluster. The analysis focused on the 

Curated (C2), Ontology (C5), and Hallmark (H) gene sets. Pathways are clustered by Euclidean distance. Note: Cluster 3 showed no significant pathways.   

Figure 3.14. Gene set enrichment analysis of cluster markers in mCRC PDOs. 
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Figure 3.15. Gene expression of AKT isoforms across clusters identified in mCRC PDOs. 

Violin plots illustrate the gene expression levels of genes encoding AKT isoforms across the four 

clusters identified in mCRC PDOs. The top panel displays gene expression data from the Smart-

seq2 dataset, while the bottom panel presents the expression of the same clusters projected onto 

the 10x scRNA-seq dataset, providing a comparative analysis of AKT gene expression in different 

scRNA-seq technologies. 
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F. Reference-based cell type annotation uncovers the cellular diversity in 
mCRC PDOs  

The cluster-based DGE analysis identified several genes that are known markers of various 

intestinal epithelial cell types. In Cluster 1, MKI67, TOP2A and UBE2C are markers of the highly 

proliferative transit-amplifying cells (190, 195). Among the DEGs identified in Cluster 2, CD36 

is expressed on the apical surface of enterocytes in the proximal colon (230); the protein 

encoded by TPH1 is a key enzyme used by enterochromaffin cells for serotonin production 

(190, 231); and ALDH1A has been identified as a biomarker of normal and cancer stem cells, 

particularly in tissues where this gene is not typically expressed at high levels (e.g., breast, lung, 

oesophagus, colon and stomach) (232, 233). Building on these findings, the subsequent step 

involved annotating mCRC cells using the Human Gut Cell Atlas (HGCA) as a reference for cell 

type classification (234).  

Cell type labels were assigned to individual cells, and not clusters, in the mCRC PDOs (Figure 

3.16A). In this way, the mCRC PDO cells were annotated as various cell types, with Claudin-10-

positive (CLDN10+) cells being the most prevalent (255 cells), followed by transit-amplifying 

(TA) cells (87), enterocytes (11), Paneth cells (6), and single instances of goblet and 

enterochromaffin cells expressing tachykinin (EC TAC1+) (Figure 3.16C-E). 

In light of the observed variability in prediction scores (Supplementary Figure 2), further 

validation was conducted by examining the expression of marker genes characteristic of 

colonic cell types (Table 10). Some gene signatures displayed specificity to particular cell types. 

For example, DEFA5 and DEFA6 expression identified Paneth cells, reinforcing the accuracy of 

their annotation (Figure 3.16). In contrast, proliferative genes such as MKI67, PCNA and TOP2A, 

were observed across multiple cell types. These markers were not limited to TA cells but were 

also expressed in CLDN10+ cells within Cluster 1 and Cluster 3.  

Besides CLDN10+ cells, TA cells showed a dispersed distribution across various clusters. 

Cluster 0 was previously characterised by enhanced protein synthesis and a general 

downregulation of genes involved in cell cycle progression. Cell type analysis indicated that this 

cluster primarily consisted of a mixture of CLDN10+ and TA cells, with a small presence of 

Paneth cells (Figure 3.16C). However, two key points need closer examination. Firstly, the 

prediction scores for the cell types identified in Cluster 0 were not exceptionally high (except 

for Paneth cells), which suggests a certain level of uncertainty in these annotations 

(Supplementary Figure 2). Secondly, the markers specific to CLDN10+ cells, and to a lesser 

extent, TA cells, exhibited only moderate expression levels (Figure 3.16B). This could imply 
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either an inherently low expression of these markers in mCRC organoids or potential 

limitations in their detection by the Smart-seq2 protocol. 

Similar to Cluster 0, Cluster 1 was primarily composed of CLDN10+ cells and TA cells. 

Additionally, the clustering analysis revealed that Cluster exhibited a high proliferation rate and 

was mainly composed of undifferentiated cells, aligning with the recognized attributes of TA 

cells (235). While TA cells are more differentiated than stem cells, they retain the capacity to 

proliferate into more specialised colonic cell types.  

Apart from CLDN10+ cells, enterocytes and a small proportion of Paneth cells were identified 

as the primary cell types in Cluster 2. This cluster was previously characterised by cells in the 

G1 phase with an elevated expression of genes associated with epithelial cell migration and 

adhesion. Furthermore, the strong expression of genes linked to enterocyte progenitor markers 

in mice, including MAD2L1, MELK, PLK1 and UBE2C (236) (Supplementary Figure 

3)―particularly in CLDN10+ cells within this cluster―further supports the hypothesis that 

CLDN10+ cells may indeed be colonic progenitors in mCRC organoids. 

Cluster 3 was characterised by a diverse mixture of cell types, including TA, CLDN10+ cells, and 

a few Paneth cells. As previously stated in the text, Cluster 1 and Cluster 3 originated from the 

same cluster at the 0.3 resolution. This shared transcriptional background likely explains why 

both TA and CLDN10+ cells were present in Cluster 1 and Cluster 3. 

The annotated Smart-seq2 dataset also enabled a detailed comparison of cell type abundances 

across mCRC PDOs. This analysis showed that AKTi-resistant PDOs contained twice the number 

of enterocytes compared to the Parental control (Figure 3.16E). In contrast, the proportions of 

CLDN10+ and TA cells remained similar between the AZD1-resistant and control PDOs but 

were reduced in the MK1-resistant organoid. Nevertheless, as with the clustering analysis, the 

validity of these comparisons must be considered carefully due to initial discrepancies in cell 

numbers between the organoids. To facilitate a more robust analysis of cell type abundances, 

the study was extended to include the 10x Genomics scRNA-seq dataset, providing a larger 

dataset for analysis.  

During the annotation of the 10x Genomics scRNA-seq dataset with the HGCA, a notable 

discrepancy was observed: a significant number of cells were predicted as Paneth cells 

(Supplementary Figure 9A). This was unexpected, given the large number of Paneth cells 

identified in mCRC PDOs when these cells predominantly reside in the small intestine rather 

than the colon (237). The high prediction scores, ranging between 0.60 to 0.75, initially 

suggested a strong presence of Paneth-like cells in the 10x scRNA-seq dataset. However, upon 
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a closer examination of DEFA5 and DEFA6 expression, these markers were confined to a small 

subset of cells, isolated in a distinct region of the dataset (Supplementary Figure 9B). This 

observation indicated that while the prediction scores were high, the actual expression of 

Paneth cell-defining markers was limited, casting doubt on the accuracy of the initial 

annotations. To address this, the HGCA-annotated Smart-seq2 dataset was employed to label 

the 10x Genomics scRNA-seq dataset (Figure 3.17A). This approach yielded a more consistent 

distribution of prediction scores and a more reliable representation of cell types 

(Supplementary Figure 9C).  

The refined analysis identified CLDN10+ cells, TA cells and enterocytes in the 10x dataset 

(Figure 3.17A). Notably, cells expressing DEFA5 and DEFA6 were not classified as Paneth cells 

in the 10x dataset, likely due to only six such cells being present in the Smart-seq2 reference, 

which is insufficient for a robust comparative expression analysis (no goblet cells or EC TAC1+ 

cells were identified in the 10x data for the same reason). The expression of these genes was 

instead associated with CLDN10+ cells (Figure 3.17B), supporting the notion that CLDN10+ 

cells may embody a differentiation spectrum ranging from the undifferentiated state of TA cells 

to, potentially, terminally differentiated such as Paneth cells. 

The comparative analysis of cell type abundances between control and AKTi-resistant PDOs in 

the 10x dataset revealed findings consistent with those obtained from the Smart-seq2 data 

(Figure 3.17C-E). Specifically, the highest number of enterocytes were identified in AKTi-

resistant PDOs (8 in each), while none were present in the control sample (Figure 3.17E). 

Notably, the MK1-resistant PDO exhibited a marked increase in immature cell populations, with 

almost 250 more CLDN10+ cells and over twice the number of TA cells compared to the AZD1-

resistant and control organoids. However, it is essential to remember that the MK1-resistant 

dataset started with a higher cell count, which could influence the observed increase of these 

cell types. Despite this, the clustering analysis further corroborated these findings by showing 

that Cluster 1 of the MK1-resistant PDO presented the highest number of proliferative and 

undifferentiated cells across the three PDOs.  

The general trend of an increased presence of undifferentiated intestinal cell types, such as TA 

and CLDN10+ progenitor cells, in both datasets compared to terminally differentiated cells may 

be attributed to the fact that over 94% of colorectal cancers exhibit mutations in genes involved 

in the Wnt/β-catenin signalling pathway, including APC, CTNNB1 and AXIN (203). These 

mutations lead to the constitutive activation of the signalling pathway in mCRC, which creates 

an environment that promotes the proliferation and self-renewal of stem-like cells while 

minimising the presence of terminally differentiated cell types. Although the organoid culture 
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medium was also optimised for stem cell proliferation with additives such as Wnt-3a, a mitogen 

that activates the Wnt/β-catenin signalling, this supplementation is redundant for the 

establishment of colon organoids harbouring such mutations (although it is necessary to grow 

normal colon organoids) (203). However, Wnt-3a is necessary to increase the establishment 

rate of organoids (203, 237). Nevertheless, even with culture conditions favouring stemness, 

the presence of a Wnt gradient within the organoid culture still facilitated the differentiation of 

some stem cells into specialised cell types such as enterocytes, Paneth cells, goblet cells, and 

EC TAC1+ cells in the mCRC PDOs, albeit in limited numbers. 

In summary, the cell-based annotation approach was invaluable for identifying subtle 

variations in gene expression among individual cells, revealing heterogeneity that might have 

been missed by assigning cell type labels to seemingly uniform clusters.  
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(a) UMAP plots illustrate colonic cell types identified in mCRC PDOs, annotated with the HGCA (top), and the same cells grouped based on clustering 

identity (bottom). (b) UMAP plots illustrate the expression patterns of marker genes characterising colonic cell types. (c) Heatmap displays the frequency 

of colonic cell types across clusters identified in mCRC PDOs. (d) Proportion of cell types per PDO. (e) Cell type counts in each PDO.  

Figure 3.16. Cell-type classification of Smart-seq2 data using the Human Gut Cell Atlas. 

(a)

(c) (d) (e)

(b)
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(a)

(c) (d) (e)

(b)

Figure 3.17. 10x scRNA-seq data visualisation of colonic cell types annotated using Smart-seq2 data labelled with the HGCA. 
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(a) UMAP plots illustrate colonic cell types identified in 10x scRNA-seq data annotated with a Smart-seq2 dataset previously annotated with the HGCA 

(top), and the same cells grouped based on clustering identity (bottom). (b) Gene expression patterns of marker genes characterising colonic cell types. 

(c) Heatmap displays the frequency of colonic cell types across clusters identified in mCRC PDOs. (d) Proportion of cell types per PDO. (e) Cell type counts 

in each PDO.
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G. Differential gene expression analysis reveals transcriptional profiles 
associated with drug resistance mechanisms in mCRC organoids 

Differential gene expression (DGE) analysis was performed on AKTi-resistant and untreated 

mCRC PDOs to identify gene expression patterns contributing to the development of drug 

resistance to AKT inhibition. To achieve this, two independent DGE analyses were performed, 

one on the Smart-seq2 dataset and a second analysis on the 10x Genomics scRNA-seq dataset. 

While the Smart-seq2 findings remained the primary focus, the 10x Genomics analysis 

provided an independent layer for validation. This dual approach ensured that any shared 

differentially expressed genes (DEGs) identified between the datasets could be attributed 

solely to intrinsic gene expression patterns within the organoids without being influenced by 

the introduction of labels or cluster information from one dataset to another, thereby 

enhancing the reliability of the findings. 

After the DGE analysis, an over-representation analysis (ORA) was conducted on the significant 

DEGs identified in the Smart-seq2 dataset to assess the enrichment of predefined gene sets 

from the Molecular Signatures Database (MSigDB) (163). The analysis focused mainly on the 

Curated (C2), Gene Ontology (C5), Oncogenic signature (C6) and Hallmark (H) gene set 

categories. 

Under predefined expression and statistical significance thresholds (average log2 fold change 

> |0.5|, and adjusted p-value < 0.05), a total of 131 DEGs were identified in the Smart-seq2 

dataset when comparing the MK1-resistant PDO to the untreated Parental PDO, with 57 genes 

upregulated and 74 genes downregulated (Table 12 and Supplementary Table 1). In 

comparison, 176 DEGs were identified in the 10x Genomics dataset (Figure 3.18A). Of the 131 

DEGs identified in the Smart-seq2 dataset, 44 (33.6%) were also present in the 10x Genomics 

dataset, including 21 upregulated and 23 downregulated genes (Figure 3.18B). Table 13 

presents a selection of dysregulated genes, ordered by decreasing avg_log2FC. For the complete 

results of the DGE analysis from the 10x dataset, refer to Appendix 4 “Pairwise DGE analysis 

between MK1-resistant and Parental PDOs”. 

MUC21, which was exclusively dysregulated in the Smart-seq2 dataset, showed the highest 

upregulation (Table 13). The protein encoded by MUC21 is a highly glycosylated 

transmembrane mucin (229). Functionally, Muc21, like other mucins, protects the underlying 

epithelia from physical, chemical, and biological insults (238). Beyond this protective role, 

Muc21 is also involved in cell-cell adhesion, signal transduction, and modulating cell surface 

proteins (239). Previously, MUC21 emerged as a marker gene in Cluster 2 (Figure 3.12A), a 

cluster characterised by genes associated with epithelial cell adhesion, mobility, and processes 
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like the epithelial-to-mesenchymal transition (EMT), all of which are known to promote cellular 

invasion (Figure 3.14).  

Also upregulated in the MK1-resistant PDO were genes related to cytoskeletal reorganisation, 

motility, cellular shape, and extracellular-matrix (ECM) alterations. These include ACTB, which 

provides the structural framework for cell division, migration and cell signalling (229); CFL1, a 

regulator of actin filament dynamics; TMSB4X, involved in actin polymerisation; KRT18, a 

keratin of the intermediate-filament family of cytoskeletal proteins; and S100A4, which 

interacts with cytoskeletal and ECM proteins (229). As expected, given the expression of these 

genes, the ORA analysis for this AKT-resistant mCRC organoid revealed enrichment in gene sets 

associated with cell substrate junctions (e.g., C5: GOCC_CELL_SUBSTRATE_JUNCTION) (Figure 

3.19), highlighting a potential upregulation of cellular adhesion, signalling, and interaction with 

the extracellular matrix. The DGE analysis further revealed elevated expression of genes 

encoding cell surface proteins, including the tumour-associated calcium signal transducer 2 

(TACSTD2) (240) and basigin (BSG, also known as EMMPRIN or CD147) (241).  

Shifting focus from genes associated with structural alterations, MK1-resistant cells 

demonstrated a significant upregulation of genes encoding detoxification enzymes. These 

include glutathione peroxidase 1 (GPX1), glutathione S-transferase pi 1 (GSTP1), and 

Parkinson’s disease protein 7 (PARK7, also known as DJ-1) (229), as observed in both the 

Smart-seq2 and 10x datasets. Additionally, genes directly involved in glycolysis and related 

biosynthetic pathways were notably upregulated, including ENO1, PGD, SLC2A1 and SLC6A14. 

Among these, the solute carrier (SLC) membrane transporter SLC2A1, also known as GLUT1, 

facilitates glucose uptake in malignant neoplasms (242).  

Continuing with the theme of metabolic alterations, the DGE analysis also revealed the 

upregulation of PDK3. PDK3 encodes a kinase that inhibits the pyruvate dehydrogenase (PDH) 

complex, which catalyses the oxidative decarboxylation of pyruvate to acetyl coenzyme A 

(acetyl-CoA), an entry molecule for the tricarboxylic (or Krebs) cycle (229, 243). Also 

upregulated were fatty acid transporters (FABP5) (244), protein-folding genes or chaperones 

(PDIA3 and PDIA6, HSP90AB1) (245, 246) and Ribophorin II (RPN2), an integral glycoprotein 

of the rough endoplasmic reticulum (ER), crucial for protein processing (247).  

Furthermore, the MK1-resistant PDO displayed moderate overexpression of mitochondrial 

complex subunits. Notably, this included MT-ND1 and MT-ND4, which were also overexpressed 

in the 10x dataset, along with MT-ND2, MT-ND3, MT-ND5, and MT-ND6, all of which encode 

subunits of NADH dehydrogenase (Complex I)—a key component of the electron transport 
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chain. Also co-expressed with these genes was MT-CYB, a component of ubiquinol–cytochrome 

c reductase (Complex III) (248).  

Regarding downregulated genes in the MK1-resistant PDO, there was a notable decrease in the 

expression of ribosomal-related genes compared to the Parental control (Figure 3.18A-B). This 

observation aligns with the Seurat Smart-seq2 quality control analysis findings, which 

indicated that the Parental line exhibited the highest ribosomal content among all organoids 

(Figure 3.6D). A similar trend was observed in the 10x analysis, confirming that this reduction 

in ribosomal gene expression is a biological effect rather than a technical artefact.  

Among other notable downregulated genes identified in the Smart-seq2 and 10x datasets was 

IGFBP2, which primarily binds to insulin-like growth factors (IGFs). This binding regulates the 

bioavailability of IGFs and modulates the interactions with their respective receptors (249). On 

the other hand, DEFA5 was identified as the most significantly downregulated gene in MK1-

resistant cells, exclusively in the Smart-seq2 dataset. Human defensin 5, known for its role in 

host defence, is a highly conserved antimicrobial peptide predominantly secreted by Paneth 

cells (250).  

Following the pattern of downregulated genes associated with intestinal cells signatures, LGR5, 

a stem cell marker, was also slightly downregulated in the MK1-resistant. This observation is 

especially significant considering the role of the LGR5 receptor in enhancing Wnt signalling in 

CRC (28).
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Table 12. Top 10 statistically significant upregulated and downregulated genes by avg_log2FC in the MK1-resistant PDO 

Gene p_val avg_log2FC pct.1 pct.2 p_val_adj pct_diff Gene_id Expression 

MUC21 2.02E-08 2.384874 0.747 0.47 0.000487 0.277 ENSG00000204544 Upregulated 

CXCL14 2.05E-07 2.240981 0.954 0.978 0.004935 -0.024 ENSG00000145824 Upregulated 

TACSTD2 3.43E-08 2.199259 0.897 0.858 0.000826 0.039 ENSG00000184292 Upregulated 

LGALS1 1.63E-09 1.95564 0.92 0.873 3.93E-05 0.047 ENSG00000100097 Upregulated 

CEACAM6 1.15E-06 1.953189 0.828 0.784 0.027699 0.044 ENSG00000086548 Upregulated 

LRATD1 4.27E-08 1.4727 0.793 0.582 0.001028 0.211 ENSG00000162981 Upregulated 

FABP5 6.71E-09 1.315372 0.931 0.97 0.000162 -0.039 ENSG00000164687 Upregulated 

SDR16C5 2.35E-08 1.22146 0.678 0.433 0.000566 0.245 ENSG00000170786 Upregulated 

EPAS1 2.13E-10 1.173951 0.874 0.903 5.12E-06 -0.029 ENSG00000116016 Upregulated 

SLC2A1 2.14E-07 1.155772 0.851 0.731 0.005162 0.12 ENSG00000117394 Upregulated 

RDH10 2.25E-10 -0.88481 0.747 0.91 5.42E-06 -0.163 ENSG00000121039 Downregulated 

RPL9 1.57E-20 -0.89717 0.943 1 3.78E-16 -0.057 ENSG00000163682 Downregulated 

RPL13A 3.48E-19 -0.91091 0.977 1 8.39E-15 -0.023 ENSG00000142541 Downregulated 

RPL22L1 5.88E-13 -0.93615 0.759 0.94 1.42E-08 -0.181 ENSG00000163584 Downregulated 

RPL23 1.57E-18 -0.98915 0.908 1 3.78E-14 -0.092 ENSG00000125691 Downregulated 

IGFBP2 3.22E-18 -1.00172 0.345 0.851 7.76E-14 -0.506 ENSG00000115457 Downregulated 

RPS3A 8.11E-23 -1.02767 0.943 1 1.95E-18 -0.057 ENSG00000145425 Downregulated 

RPL7 5.61E-17 -1.13727 1 1 1.35E-12 0 ENSG00000147604 Downregulated 

RPS6 4.39E-25 -1.1452 0.977 1 1.06E-20 -0.023 ENSG00000137154 Downregulated 

DEFA5 1.23E-07 -2.63208 0.276 0.627 0.002952 -0.351 ENSG00000164816 Downregulated 

Note: pct.1 and pct.2 indicate the percentage of cells in the first and second group that express the gene, respectively, while pct_diff represents the 

difference in the percentage of cells expressing the gene between the two groups. 
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(a) Volcano plot illustrates differentially expressed genes in the MK-2206-resistant PDO relative 

to the untreated Parental control. The x-axis represents the average log2 fold change, and the y-

axis depicts the significance -log(adjusted p-value). Vertical lines at x=-0.5 and x=0.5 delineate 

fold change limits, while a horizontal line at y=-log10(0.05)~1.3 indicates the significance 

threshold. Genes are colour-coded: blue for down-regulation, red for up-regulation, and black for 

non-significant genes. Upregulated and downregulated genes are annotated on the plot. (b) Venn 

diagram illustrates the number of DEGs detected in the Smart-seq2 and 10x Genomics scRNA-seq 

datasets. This includes genes with average log2 fold change > |0.5| and adjusted p-value < 0.05 in 

both datasets. The intersection represents DEGs shared by both datasets. All upregulated and 

downregulated genes are listed adjacent to the Venn diagram.

Figure 3.18. Differential expression analysis between MK1-resistant and Parental PDOs. 
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 Table 13. Dysregulated genes in the MK1-resistant PDO observed in Smart-seq2 and 10x datasets 

Genes Locus avg_log2FC p_val_adj Protein function 

MUC21 6p21.33 2.385 4.87E-04 mucin 21, cell surface associated [Source:HGNC Symbol;Acc:HGNC:21661] 

CXCL14* 5q31.1 2.241 4.94E-03 C-X-C motif chemokine ligand 14 [Source:HGNC Symbol;Acc:HGNC:10640] 

TACSTD2* 1p32.1 2.199 8.26E-04 tumor associated calcium signal transducer 2 [Source:HGNC Symbol;Acc:HGNC:11530] 

CEACAM6 19q13.2 1.953 2.77E-02 
carcinoembryonic antigen related cell adhesion molecule 6 [Source:HGNC 

Symbol;Acc:HGNC:1818] 
FABP5* 8q21.13 1.315 1.62E-04 fatty acid binding protein 5 [Source:HGNC Symbol;Acc:HGNC:3560] 

SLC2A1 1p34.2 1.156 5.16E-03 solute carrier family 2 member 1 [Source:HGNC Symbol;Acc:HGNC:11005] 

PDK3 Xp22.11 1.066 1.03E-02 pyruvate dehydrogenase kinase 3 [Source:HGNC Symbol;Acc:HGNC:8811] 

ENO1* 1p36.23 1.004 1.12E-09 enolase 1 [Source:HGNC Symbol;Acc:HGNC:3350] 

PGD* 1p36.22 0.795 1.41E-02 phosphogluconate dehydrogenase [Source:HGNC Symbol;Acc:HGNC:8891] 

PDIA6* 1p36.23 0.764 4.76E-07 protein disulfide isomerase family A member 6 [Source:HGNC Symbol;Acc:HGNC:30168] 

TMSB4X* Xp22.2 0.641 4.80E-06 thymosin beta 4 X-linked [Source:HGNC Symbol;Acc:HGNC:11881] 

PDIA3* 15q15.3 0.641 4.30E-03 protein disulfide isomerase family A member 3 [Source:HGNC Symbol;Acc:HGNC:4606] 

CFL1* 11q13.1 0.635 1.08E-04 cofilin 1 [Source:HGNC Symbol;Acc:HGNC:1874] 

PARK7* 1p36.23 0.596 5.59E-03 Parkinsonism associated deglycase [Source:HGNC Symbol;Acc:HGNC:16369] 

KRT18* 12q13.13 0.573 2.24E-02 keratin 18 [Source:HGNC Symbol;Acc:HGNC:6430] 

GSTP1* 11q13.2 0.551 1.90E-06 glutathione S-transferase pi 1 [Source:HGNC Symbol;Acc:HGNC:4638] 

BSG* 19p13.3 0.505 3.02E-03 basigin (Ok blood group) [Source:HGNC Symbol;Acc:HGNC:1116] 

EEF1A1 6q13 -0.542 5.57E-07 eukaryotic translation elongation factor 1 alpha 1 [Source:HGNC Symbol;Acc:HGNC:3189] 

RACK1* 5q35.3 -0.622 4.23E-06 receptor for activated C kinase 1 [Source:HGNC Symbol;Acc:HGNC:4399] 

NPM1 5q35.1 -0.699 8.29E-08 nucleophosmin 1 [Source:HGNC Symbol;Acc:HGNC:7910] 

GAS5* 1q25.1 -0.779 2.33E-09 growth arrest specific 5 [Source:HGNC Symbol;Acc:HGNC:16355] 

LGR5 12q21.1 -0.806 4.26E-06 
leucine rich repeat containing G protein-coupled receptor 5 [Source:HGNC 

Symbol;Acc:HGNC:4504] 
RPS14* 5q33.1 -0.809 2.59E-11 ribosomal protein S14 [Source:HGNC Symbol;Acc:HGNC:10387] 

IGFBP2* 2q35 -1.002 7.76E-14 insulin like growth factor binding protein 2 [Source:HGNC Symbol;Acc:HGNC:5471] 

DEFA5 8p23.1 -2.632 2.95E-03 defensin alpha 5 [Source:HGNC Symbol;Acc:HGNC:2764] 

*Genes differentially expressed in the Smart-seq2 and 10x Genomics scRNA-seq datasets. 
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Top 40 gene sets over-represented in MK1-resistant mCRC organoid. Bar length indicates the count of DEGs overlapping each gene set. Colour gradient 

represents the level of statistical significance, with a threshold set at an adjusted p-value < 0.05.

Figure 3.19. Over-representation analysis of differentially expressed genes in the MK1-resistant organoid. 
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In the DGE analysis of the AZD1-resistant PDO, a total of 109 DEGs were identified in the Smart-

seq2 dataset (avg_log2FC > |0.5|, p-value < 0.05), with 73 genes upregulated and 36 genes 

downregulated (Table 14 and Supplementary Table 2). In comparison, 193 DEGs were 

identified in the 10x Genomics dataset (Figure 3.20A). Of the 109 DEGs identified in the Smart-

seq2 dataset, 40 DEGs (36.7%) were also present in the 10x Genomics dataset, including 32 

upregulated genes and 8 downregulated genes (Figure 3.20B). Table 15 presents a selection of 

dysregulated genes, ordered by decreasing avg_log2FC. For the complete results of the DGE 

analysis from the 10x scRNA-seq dataset, refer to Appendix 4 “Pairwise DGE analysis between 

AZD1-resistant and Parental PDOs”. 

In the AZD1-resistant PDO, C6orf15 exhibited the highest upregulation in the Smart-seq2 

dataset (Table 15). C6orf15 plays a role in several processes related to the organisation and 

function of the extracellular matrix (ECM), including collagen, fibronectin, and 

glycosaminoglycan binding (229). Besides C6orf15, the AZD1-resistant organoid also 

overexpressed other structural and ECM-remodelling genes, such as FNDC3A, ECM1, TACSTD2, 

and TMSB4X. Interestingly, the latter three were similarly upregulated in the MK1-resistant 

organoid (Figure 3.18A). 

Multiple genes from the S100 Ca2+-binding protein family were found to be upregulated in the 

AZD1-resistant PDO. Notably, S100A4, which exhibited upregulation in both the Smart-seq2 

and 10x datasets, was similarly upregulated in the MK1-resistant organoid. The S100A4 

proteins are known to play a role in cellular motility and extracellular matrix (ECM) 

remodelling (229). Although S100A3 is not as well studied as S100A4, it is proposed to regulate 

cell cycle progression and differentiation (229). Similarly, S100A6 can regulate cell survival in 

a RAGE-dependent manner and contributes to maintaining cellular stability by enhancing the 

functions of Hsp90 and Hsp70 chaperones under conditions of cellular stress (e.g., heat shock, 

oxidative stress, or the presence of exogenous cytotoxic substances) (251). Calreticulin 

(CALR9), another chaperone, was also upregulated in the AZD1-resistant organoid.  

Also upregulated was ENTPD1/CD39, a cell-surface ectonucleotidase that hydrolyses the 

sequential conversion of extracellular adenosine triphosphate (ATP) into adenosine 

monophosphate (AMP) and has a known role in regulating immune responses (229, 252). 

Another key regulator of immune responses identified in the AZD1-resistant PDO was the 

chemokine CXCL14, which is important in establishing immune surveillance in normal epithelia 

(253).  
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Other upregulated genes in the AZD1-resistant organoid can be broadly categorised based on 

their functions. These include genes encoding cell surface proteins and receptors (EPCAM, BSG, 

CD44) (229); genes involved in fatty acid (CD36, FABP5) or carbohydrate (PDP1) metabolism; 

genes linked to detoxification processes (MGST3); genes related to protein folding, degradation 

or cleavage (CALR9, PCYOX1, PRSS23); genes involved in signal transduction (TGFA, SEMA3A, 

PPP1CB); and regulators of gene expression, including several long non-coding RNAs (lncRNAs) 

such as XIST, LINC00867, NEAT1) (229). 

Regarding downregulated genes in the AZD1-resistant organoid, a significant shift was 

observed in the expression of ribosomal protein genes. Similar to the MK1-resistant PDO, the 

AZD1-resistant PDO also exhibited significant downregulation of genes belonging to the 

ribosomal protein family, including RPL13A, RPL14, RPL22L1, RPL7, RPL8, RPS14, and RPS9. 

This pattern aligns with the results from the ORA, which indicated enrichment for gene sets 

associated with many ribosomal-related processes, such as eukaryotic translation (Figure 

3.21). Furthermore, there was a slight decrease in the expression of the heterogeneous nuclear 

ribonucleoprotein A1 (HNRNPA1), an RNA-binding protein essential for the regulation of 

alternative splicing (254), nucleophosmin 1 (NPM1), a multifunctional protein with 

chaperoning functions (255), and the eukaryotic translation elongation factor 1 alpha 

(EEF1A1), which is also important in the translation machinery (256).  

Multiple genes integral to cell signalling were downregulated in the AZD1-resistant organoid. 

This included IGFBP2, which was also observed to be downregulated in the MK1-resistant 

organoid. IGFBP2 plays a critical role in IGF signalling by regulating the availability and activity 

of insulin-like growth factors, key mediators in cell growth and metabolism (249). 

Consequently, IGFBP2 influences several oncogenic processes, including proliferation, 

migration, EMT, angiogenesis, apoptosis, and immunoregulation (249, 257). Also 

downregulated was RACK1, which encodes a scaffold protein known for its interactions with 

the cytoplasmic domain of various receptors, including IGF-1R (258). Other notable genes with 

decreased expression were HES6, a transcription factor involved in NOTCH signalling (259), 

and the interleukin-2 receptor (IL-2R), essential for regulating immune responses in T and B 

cells (260). This pattern suggests a broad downregulation of multiple signalling pathways in 

the AZD1-resistant organoid. 

In summary, the DGE analyses of MK-2206 and AZD5363-resistant mCRC PDOs revealed unique 

and shared gene expression patterns that may contribute to drug resistance mechanisms. 

Upregulation of genes linked to cytoskeletal reorganisation, cellular motility, and extracellular 

matrix changes suggests enhanced cell division, migration, and signalling capabilities. 
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Conversely, upregulation of genes related to the regulation of immune responses could indicate 

mechanisms by which cancer cells evade the immune system. Additionally, increased gene 

expression of enzymes involved in detoxification processes, glycolysis, and the pentose 

phosphate pathway signals a metabolic adaptation, while changes in genes related to 

mitochondrial function suggest modifications in energy metabolism. In contrast, the 

downregulation of genes related to ribosomal function and insulin-like growth factor binding 

indicates shifts in protein synthesis and growth factor signalling. These findings highlight the 

diversity of cellular strategies employed in response to different AKT inhibition strategies.
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Table 14. Top 10 statistically significant upregulated and downregulated genes by avg_log2FC in the AZD1-resistant PDO 

Gene p_val avg_log2FC pct.1 pct.2 p_val_adj pct_diff Gene_id Expression 

C6orf15 7.57E-12 2.225761 0.793 0.552 1.82E-07 0.241 ENSG00000204542 Upregulated 

CXCL14 4.46E-12 2.02619 0.986 0.978 1.07E-07 0.008 ENSG00000145824 Upregulated 

S100A3 5.14E-11 1.860376 0.957 0.955 1.24E-06 0.002 ENSG00000188015 Upregulated 

LINC00867 2.27E-12 1.485194 0.736 0.433 5.47E-08 0.303 ENSG00000232139 Upregulated 

CD36 4.88E-12 1.464117 0.836 0.612 1.17E-07 0.224 ENSG00000135218 Upregulated 

FNDC3A 1.93E-09 1.417007 0.929 0.903 4.64E-05 0.026 ENSG00000102531 Upregulated 

AP1S2 3.46E-16 1.385132 0.871 0.776 8.33E-12 0.095 ENSG00000182287 Upregulated 

NEAT1 1.13E-11 1.338621 0.95 1 2.72E-07 -0.05 ENSG00000245532 Upregulated 

SEMA3C 1.20E-10 1.280454 0.907 0.843 2.89E-06 0.064 ENSG00000075223 Upregulated 

ECM1 5.72E-09 1.230542 0.836 0.724 0.000138 0.112 ENSG00000143369 Upregulated 

CALCA 3.20E-07 -0.66291 0.129 0.396 0.00771 -0.267 ENSG00000110680 Downregulated 

TESC 6.09E-08 -0.67436 0.821 0.925 0.001468 -0.104 ENSG00000088992 Downregulated 

RPL13 2.09E-14 -0.6865 0.964 1 5.04E-10 -0.036 ENSG00000167526 Downregulated 

PLEKHB1 3.03E-09 -0.73659 0.614 0.799 7.31E-05 -0.185 ENSG00000021300 Downregulated 

EEF1A1 1.35E-22 -0.7544 1 1 3.26E-18 0 ENSG00000156508 Downregulated 

SLC25A6 7.54E-15 -0.79627 0.921 0.97 1.82E-10 -0.049 ENSG00000169100 Downregulated 

HES6 5.65E-09 -0.83116 0.814 0.91 0.000136 -0.096 ENSG00000144485 Downregulated 

RACK1 4.22E-22 -0.8878 0.986 1 1.02E-17 -0.014 ENSG00000204628 Downregulated 

RPL3 1.17E-23 -1.09246 0.979 0.993 2.82E-19 -0.014 ENSG00000100316 Downregulated 

MT-RNR2 1.61E-14 -1.25719 1 1 3.88E-10 0 ENSG00000210082 Downregulated 

Note: pct.1 and pct.2 indicate the percentage of cells in the first and second group that express the gene, respectively, while pct_diff represents the 

difference in the percentage of cells expressing the gene between the two groups. 
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(a) Differentially expressed genes in the AZD5363-resistant PDO relative to the untreated 

Parental control. The x-axis represents the average log2 fold change, and the y-axis depicts the 

significance -log(adjusted p-value). Vertical lines at x=-0.5 and x=0.5 delineate fold change limits, 

while a horizontal line at y=-log10(0.05)~1.3 indicates the significance threshold. Genes are 

colour-coded: blue for down-regulation, red for up-regulation, and black for non-significant 

genes. Upregulated and downregulated genes are annotated on the plot. (b) Venn diagram 

illustrates the number of DEGs detected in the Smart-seq2 and 10x Genomics scRNA-seq datasets. 

This includes genes with average log2 fold change > |0.5| and adjusted p-value < 0.05 in both 

datasets. The intersection represents DEGs shared by both datasets. All upregulated and 

downregulated genes are listed adjacent to the Venn diagram.

Figure 3.20. Differential expression analysis between AZD1-resistant and Parental 

PDOs. 
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Table 15. Dysregulated genes in the AZD1-resistant PDO observed in Smart-seq2 and 10x datasets 

Genes Locus avg_log2FC p_val_adj Protein function 

C6orf15* 6p21.33 2.226 1.82E-07 chromosome 6 open reading frame 15 [Source:HGNC Symbol;Acc:HGNC:13927] 

CXCL14* 5q31.1 2.026 1.07E-07 C-X-C motif chemokine ligand 14 [Source:HGNC Symbol;Acc:HGNC:10640] 

S100A3* 1q21.3 1.860 1.24E-06 S100 calcium binding protein A3 [Source:HGNC Symbol;Acc:HGNC:10493] 

CD36* 7q21.11 1.464 1.17E-07 CD36 molecule [Source:HGNC Symbol;Acc:HGNC:1663] 

NEAT1* 11q13.1 1.339 2.72E-07 nuclear paraspeckle assembly transcript 1 [Source:HGNC Symbol;Acc:HGNC:30815] 

ECM1* 1q21.2 1.231 1.38E-04 extracellular matrix protein 1 [Source:HGNC Symbol;Acc:HGNC:3153] 

TACSTD2* 1p32.1 1.147 3.61E-03 tumor associated calcium signal transducer 2 [Source:HGNC Symbol;Acc:HGNC:11530] 

TGFA* 2p13.3 0.900 2.62E-03 transforming growth factor alpha [Source:HGNC Symbol;Acc:HGNC:11765] 

PDK3* Xp22.11 0.900 1.37E-03 pyruvate dehydrogenase kinase 3 [Source:HGNC Symbol;Acc:HGNC:8811] 

S100A4* 1q21.3 0.885 2.56E-05 S100 calcium binding protein A4 [Source:HGNC Symbol;Acc:HGNC:10494] 

FABP5* 8q21.13 0.872 9.01E-03 fatty acid binding protein 5 [Source:HGNC Symbol;Acc:HGNC:3560] 

TMSB4X* Xp22.2 0.803 2.69E-08 thymosin beta 4 X-linked [Source:HGNC Symbol;Acc:HGNC:11881] 

ENTPD1* 10q24.1 0.730 2.97E-03 ectonucleoside triphosphate diphosphohydrolase 1 [Source:HGNC Symbol;Acc:HGNC:3363] 

BSG* 19p13.3 0.708 1.25E-07 basigin (Ok blood group) [Source:HGNC Symbol;Acc:HGNC:1116] 

EPCAM* 2p21 0.607 5.04E-06 epithelial cell adhesion molecule [Source:HGNC Symbol;Acc:HGNC:11529] 

PCYOX1* 2p13.3 0.600 6.85E-04 prenylcysteine oxidase 1 [Source:HGNC Symbol;Acc:HGNC:20588] 

S100A6* 1q21.3 0.530 1.30E-02 S100 calcium binding protein A6 [Source:HGNC Symbol;Acc:HGNC:10496] 

RPL14* 3p22.1 -0.506 3.09E-06 ribosomal protein L14 [Source:HGNC Symbol;Acc:HGNC:10305] 

IGFBP2 2q35 -0.546 1.01E-05 insulin like growth factor binding protein 2 [Source:HGNC Symbol;Acc:HGNC:5471] 

PTMA 2q37.1 -0.579 3.02E-07 prothymosin alpha [Source:HGNC Symbol;Acc:HGNC:9623] 

EIF3F 11p15.4 -0.584 3.70E-04 eukaryotic translation initiation factor 3 subunit F [Source:HGNC Symbol;Acc:HGNC:3275] 

IL1R2 2q11.2 -0.589 1.61E-02 interleukin 1 receptor type 2 [Source:HGNC Symbol;Acc:HGNC:5994] 

RPS14* 5q33.1 -0.661 2.63E-12 ribosomal protein S14 [Source:HGNC Symbol;Acc:HGNC:10387] 

TESC* 12q24.22 -0.674 1.47E-03 tescalcin [Source:HGNC Symbol;Acc:HGNC:26065] 

RACK1* 5q35.3 -0.888 1.02E-17 receptor for activated C kinase 1 [Source:HGNC Symbol;Acc:HGNC:4399] 

*Genes differentially expressed in the Smart-seq2 and 10x Genomics scRNA-seq datasets.
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Top 40 gene sets over-represented in MK1-resistant mCRC organoid. Bar length indicates the count of DEGs overlapping each gene set. Colour gradient 

represents the level of statistical significance, with a threshold set at an adjusted p-value < 0.05. 

Figure 3.21. Over-representation analysis of differentially expressed genes in the AZD1-resistant organoid. 
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3.5 Discussion  

In this chapter, scRNA-seq was employed to explore various aspects of mCRC patient-derived 

organoids (PDOs) resistant to the AKT inhibitors MK-2206 and AZD5363. By employing a 

multifaceted approach, detailed information about the cellular and molecular landscape of 

these organoids was uncovered, providing insights into the cellular mechanisms and 

adaptations contributing to drug resistance. 

3.5.1 Differential cluster abundance 

The chapter begins with an evaluation of the quality of raw scRNA-seq data obtained via the 

Smart-seq2 arm of the G&T-seq protocol (129, 132). This initial quality control step identified 

a bacterial contaminant that affected most libraries. While some libraries were lost, the Smart-

seq2 processing pipeline ensured that only high-quality libraries were selected for 

downstream analyses. Post-processing, Seurat (172-174) served as the primary bioinformatics 

tool employed for the analysis of single-cell transcriptomes. Within this analysis, further quality 

control of single-cell was performed, leaving a total of 361 cells: 87 from the untreated Parental 

PDO, 87 from the MK1-resistant, and 140 from the AZD1-resistant PDO. 

A typical step in scRNA-seq analysis involves regressing out biological covariates, the most 

common being cell cycle effects (261). This process adjusts for the variability introduced by the 

cell cycle to minimise its influence on the analysis (261). Although this adjustment can help 

distinguish gene expression differences unrelated to the cell cycle, it poses challenges for result 

interpretation and carries the risk of overcorrection, potentially eliminating relevant biological 

signals (261). To preserve the biological signals from proliferating cells and maintain the 

cellular diversity characteristic of cultured organoids (237), this study computed cell cycle 

scores of mCRC cells without removing this information. 

Four distinct clusters were identified in mCRC PDOs at a resolution of 0.5 (Figure 3.9A). 

Clusters 0 through 3 generally showed an equal distribution of cells from both the first and 

second batches of PDO plates sequenced. However, a significant proportion of cells in Cluster 3 

were from the second batch, suggesting a potential batch effect in this cluster despite efforts to 

mitigate technical variability through integrated analysis. Additionally, while cells from all cell 

cycle phases were equally represented across the three PDOs, the clustering was influenced by 

cell cycle variation, with certain phases predominating in specific clusters (e.g., G1 phase in 

Clusters 0 and 2, S and G2/M phases in Cluster 1). 
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Changes in cluster cell abundances were observed when comparing cell counts between the 

Parental and AKTi-resistant PDOs. For instance, Cluster 0 and Cluster 1 showed a slight 

reduction in cell counts across both resistant lines, while Cluster 2 experienced an increase, 

particularly in the AZD1-resistant organoid. However, bacterial contamination, which 

predominantly affected the MK1-resistant PDO, introduced uncertainty regarding the 

significance of the observed differences in cell abundances. 

The strength of Smart-seq2 lies in its ability to generate full-length cDNA (151), which provides 

several advantages, including the detection of low-expressed genes. However, the inherent 

nature of the protocol presents certain challenges. Primarily, it requires cells to be sorted into 

wells before processing. Although this allows the selection of specific cell populations based on 

surface markers, it limits throughput compared to droplet-based scRNA-seq approaches such 

as those provided by 10x Genomics (10x Genomics, Pleasanton, CA, USA) (213).  

The single-cell RNA-seq techniques developed by 10x Genomics can address the sampling 

limitations associated with Smart-seq2. Unlike Smart-seq2, these methods do not necessitate 

prior cell sorting, maintaining an unbiased representation of the cell population from the 

original sample. Additionally, 10x Genomics single-cell protocols offer the flexibility to adjust 

the input cell number for the Chromium instrument, targeting the recovery of a specific cell 

count. This feature enables the sequencing of multiple samples with a consistent number of 

cells, facilitating the comparison of cluster abundances across various experimental conditions. 

To validate the findings from the Smart-seq2 clustering analysis, the 10x scRNA-seq datasets 

from the three PDOs were utilised, with Smart-seq2 cluster labels projected onto the 10x 

scRNA-seq dataset. The label transfer method, as implemented in Seurat (172-174), assigns cell 

labels—those representing cluster identities in this context—to queried cells in the 10x dataset 

by comparing their gene expression profiles with reference data from Smart-seq2, rather than 

assigning labels to predefined clusters. This cell-by-cell analysis approach allows for a more 

precise and tailored assignment of labels based on the unique features of each cell. 

Analysis of cell abundances from the 10x perspective showed similarities with Smart-seq2 

findings, particularly for Cluster 0 and Cluster 2. The slight decrease observed in Cluster 0 

among AKTi-resistant cells indicates a potentially stable cell population that exhibited minimal 

reduction during treatment. Conversely, the significant increase in Cluster 1 and Cluster 2 in 

MK1- and AZD1-resistant PDOs, respectively, indicates that these inhibitors may have different 

transcriptional effects, likely due to their distinct mechanism of action and affinity for 

AKT1/2/3. 
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The exclusive detection of Cluster 3 cells in MK1-resistant PDOs within the 10x dataset raises 

questions about whether its presence in Smart-seq2 data was due to technical variability or a 

limitation of the 10x methodology in identifying rare cell populations. Further statistical 

analysis is necessary to confirm these changes in cell abundance and understand the biological 

implications. 
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3.5.2 Cluster-level DGE 

A dual approach to differential gene expression (DGE) analysis at the cluster level was 

employed to characterise the clusters identified in mCRC PDOs. This involved using Smart-seq2 

data, and 10x data onto which Smart-seq2 cluster projections had been applied to identify 

shared differentially expressed genes (DEGs). 

Cluster 0 was characterised by elevated expression of ribosomal genes and related processes, 

such as protein synthesis and ribosomal biosynthesis, alongside a significant reduction in cell-

cycle-related genes. Coupled with the predominance of cells in the G1 phase and the lowest 

expression of AKT1/2/3 in this cluster (Figure 3.15), these findings suggest a limited growth 

potential in Cluster 0 within mCRC PDOs and a reduced dependence on the PI3K/AKT/mTOR 

pathway. 

Furthermore, Cluster 0 exhibited substantial downregulation of genes associated with cell 

adhesion and those encoding proteins interacting with the extracellular matrix (ECM), 

including CD36, ECM1, FNDC3A, and ITGA1 (204, 205, 207, 224). Alterations in these genes are 

known to enhance epithelial cell motility, a precursor to metastasis through mechanisms such 

as epithelial to mesenchymal transition (224, 262-265). TACSTD2, also known as TROP-2 (208), 

showed the most significant downregulation in this cluster. Overexpression of this cell surface 

glycoprotein is common in various epithelial tumours, including CRC, and it has been identified 

as a potential target for cancer therapy (266-268). Despite the downregulation of genes 

typically associated with cancer aggressiveness, the invasive characteristics of Cluster 0 in 

mCRC PDO cells seem inherent, considering the origin of these cells and the consistent 

presence of Cluster 0 across both control and resistant mCRC PDOs. This observation suggests 

a sustained invasive potential despite the reduced expression of genes linked to aggressiveness. 

Cluster 1 was characterised by the exclusive presence of S and G2/M phase-related genes, along 

with an upregulation of E2F transcription factor targets. The upregulation of these targets 

implicates various processes critical to the aggressive phenotype of cancer stem cells (CSCs), 

which are influenced by E2F transcription factors. These processes include the growth and 

division of CSCs, maintenance and acquisition of self-renewal capabilities, invasion and 

metastatic progression, and resistance to chemotherapy and radiotherapy (269). Additionally, 

the downregulation of genes related to epithelial cell differentiation suggests the presence of 

mechanisms that support stemness, aligning with the notion that resistant cells possess 

inherent stem-like qualities enabling them to withstand conventional cancer treatments (270). 

These characteristics, combined with the role of CSCs in initiating and driving disease 

progression, recurrence, and metastasis in CRCs (270), imply that Cluster 1 consists of highly 
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proliferative and undifferentiated resistant cells. This is underscored by the significant increase 

in Cluster 1 cells in MK1-resistant PDOs compared to control and AZD1-resistant organoids, as 

observed in the 10x scRNA-seq data. 

The aggressive nature of Cluster 1 is further evidenced by the upregulation of genes such as 

CCNA2, CCNB1, EIF4EBP1, EZH2, MELK, PBK, RACGAP1, and ZWINT, which are associated with 

tumour progression, resistance to chemotherapy or radiation, and poor prognosis in mCRCs 

(271-277). Notably, MELK overexpression has been implicated in several cancer-related 

mechanisms, including the maintenance of CSCs, promotion of anchorage-independent cell 

growth, and modulation of reactive oxygen species (ROS) signalling (275, 278, 279).  

Similar to Cluster 0, Cluster 2 predominantly comprised cells in the G1 phase, as indicated by 

the downregulation of S and G2/M phase-related genes and gene sets related to cell cycle 

progression. This, along with the significant downregulation of ribosomal biogenesis and 

protein synthesis processes, suggests a decrease in cell proliferation within this cluster. 

Interestingly, when determining the most appropriate resolution for clustering, Cluster 2 was 

the only cluster that remained undivided with increasing resolution, indicating a very distinct 

gene expression profile. This may be attributed to the upregulation of genes and gene sets 

involved in cell-to-cell communication (GJA1), migration and tissue remodelling (CEMIP, ECM1, 

LGALS1) (229). These findings highlight the migratory nature of this specific cluster. 

Epithelial migration is a complex, energy-demanding process characterised by substantial 

changes in cell shape, cytoskeletal reorganisation, and the formation and disassembly of cell-

cell and cell-matrix adhesions (280, 281). Correspondingly, genes associated with energy and 

nutrient metabolism, such as CD36, GLCE, and SLC7A8 (229), were upregulated in Cluster 2 

likely to fulfil the high energy demands of these processes.  

Given their aggressive gene expression profiles and their increased presence observed in the 

Smart-seq2 data mapped onto the 10x dataset (Figure 3.11), Cluster 1 and Cluster 2 likely 

represent cells with drug resistant phenotypes that expanded in the MK1-resistant and AZD1-

resistant organoids, respectively. On the other hand, the ambiguity associated with Cluster 3, 

especially the absence of shared DEGs between the Smart-seq2 and 10x datasets, hindered a 

conclusive DGE analysis. Only TACSTD2 and CFTR were upregulated above the set thresholds in 

this cluster. CFTR is particularly interesting because a biallelic mutation in this gene is a well-

established cause of cystic fibrosis (CF) (282). However, a lesser-known aspect of this gene is 

the increased risk of CRC in CF patients, which has been attributed to the role of CFTR as a 

tumour suppressor (282).  
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Several other publications have recognised the power of scRNA-seq to identify clusters 

exhibiting drug-resistant phenotypes within heterogeneous cell populations in CRC PDOs. Chen 

et al. explored the mechanisms underlying oxaliplatin resistance in CRC, aiming to identify 

potential therapeutic targets to overcome it (283). They established two PDO models from CRC 

biopsies: one from a patient who had received neoadjuvant chemoradiotherapy (NACR) with 

oxaliplatin prior to sample collection and another from a treatment-naï ve patient. The 

researchers characterised these PDOs by examining their morphology, histology, and drug 

sensitivity to oxaliplatin and 5-fluorouracil (5-FU). Additionally, they performed 10x Genomics 

scRNA-seq to analyse the gene expression profiles of individual cells within the PDO models, 

enabling the identification of differentially expressed genes, signalling pathways, and cell 

clusters associated with oxaliplatin resistance. 

Although the two CRC PDO models retained the characteristics of their original tumours—in 

terms of morphology, histology, and drug sensitivity—, clear differences were observed 

between the control and NACR-treated organoids (283). Firstly, no effect of oxaliplatin was 

observed in the NACR-treated PDOs. While these oxaliplatin-resistant PDOs responded to 5-FU, 

the IC50 for this drug was approximately 116.00 µM, compared to the much lower IC50 of 7.6 µM 

and 12.38 µM for oxaliplatin and 5-FU, respectively, in the treatment-naï ve CRC organoids.  

Significant cellular heterogeneity within the PDOs was revealed using scRNA-Seq, particularly 

in the oxaliplatin-resistant models. Cells from the oxaliplatin-resistant organoids were grouped 

into five clusters (clusters 0, 4, 5, 6, and 7), while the treatment-naï ve sample showed three 

clusters (clusters 1, 2, and 3) (283). Cluster 4 in the oxaliplatin-resistant organoids was 

particularly notable for several reasons. Firstly, this cluster exhibited a high proliferation rate, 

as indicated by cell cycle analysis, which showed the majority of cells in the G2/M phase. This 

was surprising as the organoids were derived from a tumour resistant to oxaliplatin, which 

typically induces cell death or dormancy (37). The presence of proliferating cells in a resistant 

tumour suggests a potential mechanism of treatment evasion. Secondly, Cluster 4 exhibited a 

distinct gene expression profile compared to other clusters (Cluster 0, 5, 6, and 7) in the 

resistant organoids, hinting at heterogeneity between cells. Indeed, Cluster 0, 4, and 6 were 

associated with nuclear division, while the remaining clusters in the oxaliplatin-resistant PDO 

were mainly related to DNA replication. Conversely, Clusters 1, 2, and 3 in the treatment-naï ve 

organoids exhibited more homogenous gene expression patterns, mainly related to RNA 

catabolic processes and translational initiation, suggesting a less diverse cell population 

compared to the resistant organoids. 
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Moreover, KEGG pathway analysis revealed that Cluster 4 was enriched in pathways related to 

platinum drug resistance, aligning with the patient’s treatment history (283). Cluster 4’s 

enrichment in platinum drug resistance pathways further reinforces the hypothesis that these 

cells may have developed specific adaptations to evade the cytotoxic effects of oxaliplatin, and 

several potential drug resistance-related genes (STMN1, VEGFA, NDRG1) and transcription 

factors (E2F1, BRCA1, MYBL2, CDX2, CDX1) were identified in the resistant PDOs.  

In another study, Chen et al. derived CRC PDOs from early-stage tumours from treatment-naï ve 

patients (284). These organoids were later treated with oxaliplatin, and their transcriptomes 

were profiled by Drop-seq scRNA-seq to investigate the effect of oxaliplatin on the cellular 

diversity of the CRC PDOs. Researchers identified approximately 30 clusters with distinct 

heterogeneity in gene expression patterns and pathway signatures (284). Common pathways 

included those related to ribosomes, protein targeting to membranes, and mRNA catabolic 

processes. Unique pathways included glycolysis/gluconeogenesis, fructose and mannose 

metabolism, and non-homologous end-joining. 

Analysis of cell percentage changes before and after oxaliplatin treatment showed altered 

diversity of clusters (284). Eight subtypes were completely depleted after treatment, while four 

new clusters emerged. Moreover, two major clusters in the control PDOs were significantly 

reduced, while another became dominant after treatment. These clusters were categorised into 

four groups based on their response to oxaliplatin: drug-induced, drug-insensitive, drug-

sensitive, and drug-ultrasensitive. 

In conclusion, the identification of distinct cell clusters with different gene expression profiles 

in CRC PDOs observed in this PhD project, supported by the studies mentioned above, suggests 

that not all tumour cells are equally sensitive to chemotherapy. Indeed, these studies show that 

understanding the specific resistance mechanisms in each cluster can guide the development 

of combination therapies that target multiple cluster-related pathways or molecules 

simultaneously to effectively eradicate tumours. 

Clustering analysis is undeniably powerful for dissecting the cellular and molecular landscape 

of tumours, providing insights into their heterogeneity and potential therapeutic targets. 

However, it is important to acknowledge that clustering results can be influenced by various 

factors, including the choice of clustering algorithm, batch effects in the data, the inherent 

assumption that cells within a cluster share biological similarity, and the specific data 

preprocessing steps taken. 
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In the scRNA-seq analysis, the quality of the clusters was evaluated based on several criteria. 

The clusters displayed clear separation and distinctiveness in the UMAP plots (Figure 3.9A), 

with minimal "leakage" between clusters in both the Smart-seq2 data and the same data 

projected onto the 10x dataset (Figure 3.10B). This suggests good resolution of different cell 

populations. All clusters were identified in both control and AKTi-resistant PDOs (Figure 3.9B) 

and were consistent across the two sequencing batches (Figure 3.9C), except for Cluster 3, 

indicating reproducibility and robustness. Aside from Cluster 3, all clusters exhibited distinct 

expression patterns, and cells within each cluster were highly similar in terms of gene 

expression (Figure 3.12A). This high intracluster homogeneity further validated the 

effectiveness of the clustering algorithm in grouping similar cells together. 

Nevertheless, it is clear that the clustering of mCRC organoids was heavily influenced by 

differences in cell cycle phases. This likely occurred because cell cycle effects were not 

regressed out, and suggests that the differences between clusters may have been driven more 

by variations in cell proliferation rather than true resistance mechanisms. Regressing out cell 

cycle effects could have helped isolate the molecular changes directly associated with drug 

resistance, potentially providing a clearer separation of clusters based on resistance-related 

changes rather than differences driven by proliferation status. However, the decision not to 

regress out this covariate was based on the hypothesis that mechanisms of resistance do not 

solely relate to direct genetic changes but also involve broader cellular processes such as 

altered cell cycle dynamics and differentiation states. 

Knowing that in preparation for bulk and single-cell sequencing experiments AKTi-resistant 

organoids were cultured in growth media without the AKT inhibitors provides important 

insights into how the results might be interpreted. Since the resistant organoids were cultured 

in regular growth media, the cells likely resumed normal proliferation patterns. This could have 

increased the impact of cell cycle phases on clustering, as cells were no longer under the 

selective pressure of the AKT inhibitors and could cycle normally. 

In the context of this PhD project, where differentiation and proliferation were likely 

intertwined in AKTi-resistant organoids, considering the biological relevance of cell cycle 

effects was crucial. If non-cell cycle genes show changes in expression correlated with cell cycle 

phases, it may indicate that these changes are due to a different biological process that is linked 

to the cell cycle rather than the cell cycle itself (285). Thus, regressing out cell cycle effects in 

our analysis without considering this might have mistakenly attribute these changes solely to 

the cell cycle, missing the underlying response mechanism. 
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For instance, drug resistance often emerges due to the inactivation of genes regulating cell 

proliferation, such as TP53 and CDKN2A (286). There is also evidence that cancer stem cells 

(CSCs), which may become enriched after chemotherapy (287-290), can arise from either adult 

stem cells, adult progenitor cells that have undergone mutation, or from differentiated 

cells/cancer cells that have acquired stem-like properties through dedifferentiation (290-292). 

CSCs are also able to induce cell cycle arrest (quiescent state), supporting their ability to 

become resistant to chemo- and radiotherapy (290, 293-295). This finding is particularly 

intriguing as Cluster 1 cells, which increased in the MK1-resistant organoid, exhibited a stem-

like gene expression profile, along with the expression of EMT-related genes in both organoids. 

EMT has been associated with the generation of cells with stem-like properties (295-297). 

Therefore, the presence of these genes suggests that the observed resistance mechanisms may 

involve changes in both proliferation and differentiation states, including the possible 

enrichment of CSCs. 

The results of the cluster-level differential gene expression analysis indicated that while cell 

cycle phase influenced clustering, it did not solely dictate cluster formation. Critical insights 

into several resistance mechanisms—such as the upregulation of genes related to chromatin 

modification and gene silencing, detoxification, DNA repair, cell survival and metabolism, and 

pathways of energy and nutrient metabolism—were still obtainable when comparing gene 

expression between the clusters without regressing out these effects. Therefore, by not 

regressing out cell cycle effects, the full spectrum of changes associated with resistance, 

including those related to cell cycle regulation and differentiation, was captured, providing 

insights into the mechanisms driving resistance to AKT inhibition in PDOs. 

Regardless of the approach used for this particular research project, project-specific aims as 

well as data-driven evidence should guide the decision on whether regression is necessary. 

Future analyses could refine this approach by: 

1. Performing a comparative analysis with and without regressing out cell cycle effects to 

evaluate the impact on clustering and the identification of resistance-related genes. This 

approach can help determine if cell cycle regression clarifies or obscures the biological 

signals of interest. If certain cell cycle regulators are consistently upregulated even after 

regression, this might indicate that altered cell cycle control is part of the resistance 

mechanism. 

2. Integrating cell cycle information into the current approach by subclustering the dataset 

based on the identified cell cycle-driven clusters. Following this, differential expression 

analysis could be performed between AKTi-resistant and parental PDO cells within each 
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cluster. This method would control for cell cycle effects and focus on the underlying 

biological differences contributing to resistance. 

3. Excluding cell cycle genes after identifying variable features, as recommended in 

bioinformatics forums (285), which ensures that these genes do not influence downstream 

analysis such as clustering, highlighting other important biological signals. 

By considering these approaches, future analyses can better control for cell cycle effects and 

more accurately identify the mechanisms underlying cancer evolutionary processes.  
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3.5.3 Cell type classification 

In the next phase of the scRNA-seq analysis, the Human Gut Cell Atlas (HGCA) was employed to 

classify or label mCRC PDO cells from the Smart-seq2 dataset. The HGCA, a subset of the Human 

Cell Atlas (HCA), focuses on defining the cellular composition of the human gut. It includes cells 

from diverse intestinal regions and sample types—including fresh, frozen, and formalin-fixed 

tissues (118, 190, 234). The HGCA also encompasses cells from various physiological 

conditions and developmental stages (e.g., foetal and paediatric), making it the most extensive 

collection of annotated intestinal cell types essential for gut function. 

To examine cell type abundances across different platforms, the Smart-seq2 dataset, labelled 

with HGCA annotations, was subsequently employed to label the 10x scRNA-seq dataset. The 

primary cells identified in mCRC PDOs across both datasets were CLDN10+ cells, followed by 

transient amplifying (TA) and Paneth cells, with a minority of cells being enterocytes. The non-

specific nature of proliferative markers typically associated with TA cells prompted further 

investigation into CLDN10+ cells, which are less well-documented in the literature compared 

to the other intestinal cell types identified. 

Claudins, including claudin-10, are critical components of tight junctions in epithelial cells, 

playing a key role in maintaining permeability barriers and establishing cell polarity (298). 

Claudin-10 is localised throughout the entire crypt in murine models (299). According to the 

HGCA, CLDN10+ cells, which were formally identified in foetal samples, may represent 

pancreatic progenitors, as evidenced by their expression of CPA1, DLK1, PDX1, RBPJ, and 

SOX9―genes associated with pancreatic development (190). However, this similarity in gene 

expression does not definitively classify CLDN10+ cells as pancreatic in nature but rather 

indicates a potential similarity in developmental or functional state. In addition, the elevated 

expression of stem and progenitor cell markers in CLDN10+ cells across all clusters and cell 

cycle phases in mCRC PDOs (Figure 3.17B) suggests that these cells span a range of 

differentiation stages. Within this spectrum, CLDN10+ may be more differentiated than TA cells 

but less mature than specialised cells like Paneth cells or enterocytes. 

While the abundance of CLDN10+ and TA cells remained somewhat stable between Parental 

and AZD1-resistant PDOs, an increase was observed in the MK1-resistant PDO. This increase in 

undifferentiated cells in the MK1-resistant organoid suggests a cellular adaptation to AKT 

inhibition, leading to a shift towards a more aggressive cancer phenotype characterised by 

enhanced cell proliferation despite AKT signalling inhibition. On the other hand, the culture 

medium for the three mCRC PDOs was enriched for LGR5+ stem cell proliferation with additives 

such as Wnt-3a, a mitogen that activates the Wnt/β-catenin signalling (203). Even with culture 



3.5. Discussion 

151 

 

conditions favouring stemness, the presence of a Wnt gradient within the organoid cultures 

still facilitated the differentiation of some undifferentiated cells into specialised cell types such 

as enterocytes, Paneth cells, goblet cells, and EC TAC1+ cells in the mCRC PDOs, albeit in limited 

numbers. 
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3.5.4 DGE analysis of AKTi-resistant mCRC PDOs 

In the concluding phase of the transcriptome analysis, differential gene expression analysis was 

conducted to compare each AKTi-resistant organoid with the untreated Parental control. To 

further validate the Smart-seq2 findings, the 10x dataset was employed; however, the insights 

derived from the 10x dataset did not rely on any projections from the Smart-seq2 data, hence 

reflecting the intrinsic expression characteristics of the mCRC PDOs. 

Exclusively found in the Smart-seq2 dataset, MUC21 appeared as the highest upregulated gene. 

A high expression of MUC21 correlated with a decreased cell-cell and cell-matrix adhesion in a 

particular variant of lung adenocarcinoma characterised by a scattered arrangement of cells in 

alveolar spaces (239). Mucins have become important serum biomarkers for monitoring cancer 

progression, with MUC16 (CA125), for example, being prevalent in over 80% of ovarian cancers 

but rare in normal tissues (300). Alongside their utility in diagnostics, mucins are emerging as 

targets for cancer immunotherapy, with ongoing research into vaccines and antibodies aimed 

at their unique glycoprotein structures for more precise treatment strategies (301). 

Also upregulated in the MK1-resistant PDO were genes encoding cell surface proteins 

frequently overexpressed in various cancers, including CRC, and associated with clinically 

aggressive tumours with poor prognosis. Among these, TACSTD2 (240) and BSG (241) were 

noted for their upregulation in both AKTi-resistant PDOs. Basigin (BSG) in particular, is a 

transmembrane glycoprotein implicated in promoting the secretion of extracellular matrix 

(ECM)-degrading matrix metalloproteinases (MMPs), cytokines, and angiogenic factors, 

making it a significant prognostic marker in cancer (241). Previous studies have highlighted 

the effectiveness of cancer treatments targeting basigin with monoclonal antibodies (302). 

The collective upregulation of MUC21, TACSTD2, and BSG, each known to increase metastatic 

potential in colorectal adenocarcinomas (303-305), suggests a synergistic effect that not only 

enhances cell motility and drives morphological changes, but also reshapes the tumour 

microenvironment. This synergistic action could lead to more efficient metastases by altering 

interactions with other cells and their response to external stimuli, ultimately enhancing the 

tumour’s ability to evade or resist therapeutic interventions, such as the MK-2206 AKT 

inhibitor in this case.  

The most interesting discovery within the MK1-resistant PDO was the upregulation of genes 

involved in glycolysis, the pentose phosphate pathway (PPP) and related biosynthetic 

pathways, including SLC2A1/GLUT1, SLC6A14, ENO1 and PGD (the last two were common to 

both scRNA-seq datasets). GLUT1 encodes a major glucose transporter dysregulated in various 
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cancers (306). In ovarian cancer cell lines, the constitutive activation of a mutant PI3KC1-AKT 

pathway triggered the translocation of GLUT1 from the Golgi area to the plasma membrane, 

where it became permanently expressed, thereby enhancing glucose uptake (306). On the other 

hand, SLC6A14 is an amino acid transporter scarcely detected in normal colonic tissue but 

significantly overexpressed in poorly differentiated CRCs, where its upregulation promoted 

tumour progression by activating the AKT/mTOR signalling pathway (307).  

On the other hand, ENO1 catalyses the conversion of 2-phosphoglycerate (2PG) to 

phosphoenolpyruvate (PEP) in the glycolytic pathway, ultimately leading to the production of 

pyruvate, the primary end product of glycolysis (308). The upregulation of two SLC membrane 

transporters and ENO1 in the 3994-117/F16 mCRC PDOs, which had a missense mutation in 

ABCB1 (also known as multidrug resistance protein 1, MDR1), which is known to mediate drug 

efflux, suggests a role of membrane transporters in mediating drug resistance. 

Also upregulated was PDK3, which inhibits the pyruvate dehydrogenase (PDH) complex 

responsible for converting pyruvate to acetyl-CoA before it enters the Krebs cycle (243). By 

inhibiting PDH, PDK3 effectively blocks the conversion of pyruvate to acetyl-CoA, decreasing 

the flow of carbon from glycolysis into the Krebs cycle and leading to an increased conversion 

of pyruvate into lactate (243). While glycolysis generates less ATP per molecule of glucose than 

oxidative phosphorylation, it offers several advantages: ATP is produced more quickly, and 

unlike oxidative phosphorylation, glycolysis can occur under hypoxic conditions (243). 

Additionally, glycolysis provides intermediates for the PPP, which are essential for the synthesis 

of nucleotides, amino acids, and lipids, all crucial for tumour metabolism. 

Conversely, PGD encodes 6-phosphogluconate dehydrogenase (6PGD), a key enzyme essential 

in the PPP (229). 6PGD specifically acts on 6-phosphogluconate, derived from glucose-6-

phosphate (G6P), the first intermediate product of glycolysis (309). The function of 6PGD in the 

PPP is crucial for producing ribulose-5-phosphate, which is then converted into ribose-5-

phosphate (R5P), essential for nucleotide synthesis in nucleic acids (309). Additionally, the 

activity of 6PGD in the PPP contributes to the production of NADPH, a critical cofactor in 

reductive biosynthetic reactions such as fatty acid synthesis (309). NADPH also plays a crucial 

role in detoxification, scavenging reactive oxygen and nitrogen species (ROS and RNS, 

respectively) and free radicals, thereby reducing intracellular oxidative stress and inhibiting 

the activation of apoptotic and necrotic signalling pathways (309-311). The upregulation of 

detoxification enzymes like GPX1, GSTP1 and PARK7 (229) further indicates a mechanism for 

protection against oxidative damage. 
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Although the genes predominantly upregulated in the MK1-resistant PDO are related to 

glycolysis, there was also moderate upregulation of enzymes encoding components of the 

electron transport chain, such as Complex I and Complex III (e.g., MT-ND1, MT-ND4, MT-ND2, 

MT-ND3, MT-ND5, and MT-ND6) (229). This expression pattern suggests active electron 

transport chain activity, indicative of ongoing ATP synthesis through oxidative phosphorylation 

alongside glycolysis. The simultaneous expression of these metabolic pathways in MK1-

resistant cells underscores their metabolic flexibility. 

DEFA5, a marker for Paneth cells, was the most downregulated gene in MK1-resistant PDOs 

(250). An aberrant expression of DEFA5 has been documented in CRC. For instance, Qiao et al. 

found a decreased expression of DEFA5 at the protein level in colon adenocarcinomas 

compared to adjacent tissues (250). This trend was consistent across different colon cancer 

subtypes, with DEFA5 showing greater downregulation in primary tumours than in normal 

mucosa. Experiments where CRC cell lines overexpressing DEFA5 were subcutaneously 

injected into nude mice resulted in smaller tumour sizes, indicating a possible tumour 

suppressor function for DEFA5 in CRC (250). Mechanistically, DEFA5 was proposed to interact 

with the p85 protein subunit of the PI3K complex, attenuating downstream signalling leading 

to delayed cell growth and metastasis. This hypothesis is supported by observations that DEFA5 

overexpression leads to hypophosphorylation and inactivation of AKT, whereas silencing 

DEFA5 increases AKT phosphorylation. Furthermore, activating AKT in colon cancer cells 

transfected with exogenous DEFA5 reversed the growth-suppressive effects of DEFA5 

overexpression and enhanced their migratory potential (250). These findings strongly suggest 

that DEFA5 interacts with the PI3K complex, inhibiting signal transduction pathways involved 

in cell proliferation and migration, reinforcing its role as a potential tumour suppressor in CRC. 

While the MK1-resistant organoid exhibited dysregulation of several genes potentially 

contributing to acquired resistance to the MK-2206 inhibitor, the most interesting finding was 

the upregulation of genes involved in glycolysis and other biosynthetic pathways. This indicates 

a significant metabolic shift from oxidative phosphorylation to aerobic glycolysis―a hallmark 

of cancer cell metabolism known as the Warburg effect that is observed even in precancerous 

colorectal lesions (312, 313). 

Incidentally, among the upregulated metabolic enzymes, ENO1, PGD, and PARK7 are in close 

proximity on chromosome 1p36. A similar pattern of gene upregulation was observed with 

CFL1 and GSTP1, both situated around 11q13, as well as with TACSTD2 at 1p32.1 and 

SLC2A1/GLUT1 at 1p34.2. The co-expression and physical proximity of these genes, which are 

implicated in metabolic processes and cellular morphological changes, suggest a coordinated 
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regulation. This coordination could result from chromosomal structural changes or shared 

regulatory elements, indicating a complex level of genetic regulation underlying these 

metabolic adaptations. 

Based on the dysregulation of metabolic genes and the upregulation of ECM-remodelling 

components observed at the gene expression level in both AKTi-resistant PDOs derived from 

3994-117/F-016, these organoids exhibit characteristics of both CMS3 (metabolic) and CMS4 

(mesenchymal) CRC subtypes (15). This highlights the heterogeneity of these organoids as 

detected at single-cell resolution. Complementing these transcriptomic findings, Vlachogiannis 

et al., reported that the molecular landscape of the Parental mCRC organoid was characterised 

by a high number and diversity of somatic mutations, including amplifications and deletions in 

TP53, KRAS, NRAS, SMAD4, AKT1, and MYC (109) (Figure 2.1A). This profile, along with the 

absence of mutations in DNA mismatch repair (MMR) genes, suggests that this tumour likely 

belongs to the chromosomal instability-high (CIN-high) CRC subtype (9). Additional mutations 

in genes such as ABCB1 (multidrug resistance) and CDKN2A (tumour suppressor), which have 

been linked to poor prognosis in CRCs (314, 315), may have also contributed to the tumour’s 

behaviour and resistance mechanisms developed to counteract AKT inhibition hereby reported 

in this chapter.  

The next chapter will explore the copy number profiles of MK1- and AZD1-resistant single-cell 

genomes to characterise the clonal composition of AKTi-resistant PDOs, aiming to further 

elucidate the genetic alterations associated with resistance mechanisms.
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Diagram depicts glycolysis in purple, the pentose phosphate pathway in red, and one-carbon 

metabolism (which includes the Krebs cycle) in blue. Green arrows highlight genes that were 

upregulated in the MK1-resistant PDO. PDK3 was included to indicate the step inhibited by this 

protein, i.e., the conversion of pyruvate to acetyl-CoA. Figure adapted from (316) 

.

Figure 3.22. Glycolysis and related biosynthetic pathways. 

PDK3
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In the AZD1-resistant PDO, C6orf15 emerged as the most significantly upregulated gene, 

identified in both the Smart-seq2 and 10x datasets. The role of C6orf15 in solid tumours is not 

yet fully understood. However, it is thought to play a role in various functions, such as 

extracellular matrix organisation and collagen V and fibronectin binding activities (229). A 

bioinformatics study by Xiong et al., utilising The Cancer Genome Atlas (TCGA) database—

which included data from colorectal adenocarcinoma patients and paired tumour-normal 

samples—found that elevated mRNA expression of C6orf15 in colon cancers was associated 

with shorter overall survival (OS) and progression-free intervals (PFI) compared to patients 

with lower gene expression (317). Immunohistochemistry staining of clinical samples further 

demonstrated a correlation between C6orf15 protein expression and the depth of tumour 

invasion in colon cancer tissues. 

In their research, Xiong et al. proposed that C6orf15 may play a role in CRC progression by 

activating key pathways involved in extracellular matrix remodelling, including ECM-receptor 

interactions, as well as Hedgehog and Wnt signalling pathways (317). Furthermore, C6orf15 

appeared to suppress several immune-related pathways, such as those involved in antigen 

processing and presentation, natural killer cell-mediated cytotoxicity, and Immunoglobulin A 

(IgA) production, indicating a potential role in promoting immune evasion. 

While the MK1-resistant PDO displayed an increased expression of metabolic enzymes, the 

AZD1-resistant PDO showed upregulation of genes implicated in CRC progression, 

chemoresistance and ECM-remodelling, e.g., FNDC3A, NEAT1, ECM1, TACSTD2, TMSB4X and 

PPP1CB (229), and genes involved in immune regulation, e.g., ENTPD1/CD39 and CXCL14 (the 

latter of which was also upregulated in the MK1-resistant PDO): 

Fibronectin Type III Domain-Containing (FNDC) proteins, including Fndc3a, are involved in cell 

adhesion, migration, and proliferation (263). Although the impact of increased FNDC3A 

expression has not been defined, its significance has been highlighted. Shivakumar et al. 

analysed the expression of genes frequently mutated in CRC, such as TP53, CCND1, EGFR, C-

MYC, and FNDC3A (318). They found that FNDC3A, located within the 13q chromosomal copy 

number variation (CNV) gain―a region associated with CRC (319)―was highly overexpressed 

in tissue samples from sporadic CRC (318). 

Notably, an increased expression of NEAT1 enhanced resistance to 5-FU in CRC cells by 

activating autophagy-related pathways by suppressing miR-34a, a small noncoding regulatory 

RNA with a tumour-suppressing role (320). On the other hand, the extracellular matrix protein 

1 (ECM1) has been linked to drug resistance in CRC. Studies have shown that CRC patients 
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resistant to 5-fluorouracil (5-FU)-based chemotherapy, such as capecitabine, exhibited 

elevated ECM1 expression, which was associated with shorter overall and disease-free survival 

rates compared to patients responsive to these treatments (265). Furthermore, knocking down 

ECM1 in colonic cells resistant to 5-FU reduced their resistance to the drug, indicating a 

potential role of this gene in chemoresistance (265). Knockdown of ECM1 also led to decreased 

phosphorylation of PI3K, AKT, and GSK3β kinases, whereas overexpression of ECM1 had the 

opposite effect. These results indicate that ECM1 influences the PI3K/AKT/GSK3β pathway, 

making ECM1 a viable target for improving the efficacy of 5-FU in CRC treatment (265). This 

study is particularly interesting considering that the patient from whom the mCRC PDOs were 

derived had previously been treated with capecitabine, as well as the role of GSK3β in 

destabilising β-catenin in the Wnt/β-catenin signalling pathway. 

PPP1CB is another gene involved in the Wnt/β-catenin signalling pathway, that was also 

upregulated in the AZD1-resistant PDO. The protein encoded by this gene is part of the PP1 

subunit, a protein that inactivates AXIN in the destruction complex resulting in the 

dephosphorylation of β-catenin, and subsequent activation of Wnt-target genes (321). Thus, 

the upregulation of ECM1 and PPP1CB may be indicative of overactive Wnt-signalling in this 

organoid.  

Another upregulated gene involved in signalling pathways is TGFA, a ligand of the epidermal 

growth factor receptor (EGFR). Its overexpression has been shown to play a significant role in 

resistance to the anti-EGFR drug cetuximab by inducing interactions between EGFR and MET 

(322). This suggests overactive EGFR signalling, which may have contributed to the resistant 

phenotype in the AZD1-resistant organoid. 

Conversely, ENTPD1/CD39 is recognised for its role in creating an immunosuppressive tumour 

microenvironment (252). CD39 hydrolyses the sequential conversion of ATP to AMP, a process 

particularly relevant under cellular stress conditions like hypoxia or exposure to anticancer 

therapies, which cause cells to release ATP into the surrounding environment. Elevated ATP 

levels in the tumour microenvironment (TME) act as a danger-associated molecular pattern 

(DAMP), triggering innate and adaptive immune responses against tumour cells. However, the 

enzymatic activity of CD39, along with CD73—which further metabolises AMP into 

adenosine—transforms the TME from a pro-inflammatory state to an immunosuppressive one, 

thereby aiding in tumour evasion of immune detection and response. Indeed, adenosine exerts 

regulatory effects on various immune cells. It suppresses effector immune cells like T cells, B 

cells, and NK cells, which are crucial for anti-tumour immunity while promoting regulatory 
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immune cells like regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), 

known for their immunosuppressive functions (252).  

In addition, CXCL14, which was upregulated in both organoids, plays a significant role in 

upregulating the expression of major histocompatibility complex class I (MHC-I) on tumour 

cells (253). The loss of CXCL14 has been linked to impaired anti-tumour immune regulation 

and is associated with poor patient prognosis. A recent phase I clinical trial identified a set of 

genes known as the “Adenosine Gene Signature” (AdenoSig), which includes CXCL1, CXCL2, 

CXCL3, CXCL5, CXCL6, and CXCL8 as biomarkers for monitoring the response to A2AR inhibitors 

like ciforadenant in patients with renal cell cancer (323). These genes, which correlated with 

adenosine expression levels in tumours, predicted patient responses to A2AR antagonist 

treatments. Although CXCL14 is not included in the AdenoSig, this study highlights the 

importance of chemokines as potential markers for monitoring adenosine-regulated gene 

expression signatures in cancer. 

Also observed in both mCRC PDOs was a decreased expression of RACK1 and IGFBP2. The 

downregulation of these genes, both of which are involved in IGF-signalling suggests that the 

resistance to AKT inhibition likely did not arise from compensatory activation through IGFR-

mediated signalling, a pathway known to trigger oncogenic processes akin to those driven by 

AKT/PI3K signalling (324-326).  

Finally, the downregulation of ribosomal genes essential for RNA processing and translation 

was observed in both AKTi-resistant PDOs. Specifically, in the MK1-resistant PDO, this stands 

in stark contrast due to the concurrent overexpression of genes associated with glycolysis, the 

PPP, and protein-folding genes. Intuitively, one might expect an upregulation of ribosomal 

genes to accompany the enhanced activity of these metabolic pathways. 

Although upregulation of components involved in ribosome biosynthesis and protein 

translation in colorectal cancers has been documented, linked to changes in Wnt, RAS/MAPK, 

and PI3K/AKT signalling pathways (327), the downregulation of these genes is not very well 

recorded in the literature. This decrease in protein synthesis efficiency might underlie the 

increased reliance on glycolysis and the PPP, as cells sought alternative or supplementary 

means to fulfil their energetic and biosynthetic needs. Additionally, given that the Parental PDO 

started the analysis with an unusually high ribosomal content (observed in the Smartseq2 and 

10x scRNA-seq datasets), the observed downregulation in ribosomal-related genes could 

simply reflect a relative decrease compared to this initial state. 
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Undoubtedly, single-cell RNA-seq offers unparalleled resolution for analysing cellular 

heterogeneity, enabling the identification of distinct cell types and states within complex 

tissues. Despite its significant advantages, scRNA-seq also presents many challenges. This 

chapter has illustrated the impact of cell cycle effects on clustering analysis. While regressing 

these effects can help clarify other biological signals, it requires careful consideration of the 

biological context to avoid obscuring relevant signals. Biological processes within an organism 

are interdependent, and thus, adjustments for one process might inadvertently conceal signals 

of another (261). This approach is particularly critical in organoid models, where the interplay 

of various cellular processes is essential to understanding the underlying biology.  

To validate the Smart-seq2 findings, high-throughput scRNA-seq 10x data from matched mCRC 

PDO samples was employed. By mapping Smart-seq2 information onto the 10x dataset, the 

analysis benefitted from the higher sensitivity of Smart-seq2 and the high cell numbers 

provided by the 10x technology. However, this projection approach meant that unique insights 

from the 10x dataset might have been overlooked. An alternative strategy could have involved 

integrating both datasets. However, given the thesis’s aim to evaluate the efficacy of the G&T-

seq methodology in understanding colorectal cancer resistance, this projection strategy was 

chosen to avoid potential data overcorrection due to the sensitivity and resolution differences 

between the methods (Supplementary Figure 12A-D), which would have decreased the power 

of Smart-seq2.  

In summary, the scRNA-seq analysis uncovered potential strategies that mCRC PDOs might 

employ to overcome AKT inhibition. The MK1-resistant PDO adapted by enhancing its 

metabolic requirements, whereas the resistance mechanisms of the AZD1-resistant PDO 

primarily focused on altering cell-cell and cell-matrix interactions and creating an 

immunosuppressive tumour microenvironment. The next chapter evaluates the matched DNA 

from these transcriptomes to determine if there are genetic causes behind these resistance 

mechanisms. 
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4.1 Introduction 

Copy number alterations (CNA) are somatic changes that involve the gain or loss of DNA 

segments larger than 1 kb (58). CNAs play a significant role in genetic diversity and are critically 

involved in the development and progression of various diseases, including CRC. In CRC 

carcinogenesis, both early and advanced adenomas exhibit CNAs levels comparable to those 

found in carcinomas, indicating that CNAs play a role from the initiation to the progression of 

CRC. The early development of CRC is associated with the loss of chromosomes 17p, 18, and 

22q and the gain of chromosomes 8q, 13q, and 20. Later stages of CNAs in primary CRCs include 

deletions at chromosomes 4p and 8p and gains at 7p and 17q (59). In contrast, metastatic CRCs 

exhibit an increase in CNAs compared to invasive CRCs, suggesting that CNAs contribute to the 

dissemination of malignant cells to distant sites (58, 59). Notably, established liver metastases 

are characterised by losses at 14q and 17q and gains at 1q, 9p, 11, 12p, 19, and X (59). 

Oncogenes are often located within regions of DNA amplification, whereas tumour suppressor 

genes reside in areas of deletion (58). High-level amplifications or deletions are often required 

to cause oncogene activation or tumour suppressor inactivation. Consequently, CNAs can 

disrupt gene function, affect gene expression, and alter cellular pathways contributing to 

disease phenotypes. Thus, the study of CNAs can reveal patterns such as co-occurrence, where 

genes are amplified together, suggesting synergistic roles in cancer, or mutual exclusivity, i.e., 

situations where certain genes are rarely altered together (e.g., KRAS and BRAF), indicating that 

these genes function within the same pathway (33, 58). This is particularly important in the 

context of acquired drug resistance, where DNA copy number analysis can shed light on the 

evolutionary dynamics driving the transition from drug sensitivity to drug tolerance and 

highlight potential vulnerabilities within these evolved tumour populations that could be 

targeted therapeutically. 

Building on the foundation laid in the previous chapter, which focused on gene expression 

profiling of single-cell transcriptomes, this chapter investigates genome-wide CNAs in AKTi-

resistant mCRC PDOs using the matched single-cell genomes of these cells. By tracking changes 

in CNAs over time, i.e., from AKTi-sensitive to AKTi-resistant mCRCs PDOs, this chapter aims to 

understand the adaptive changes in tumour populations that contributed to the development 

of drug resistance. 
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For this purpose, the genomic DNA (gDNA) of mCRC PDOs was amplified using the PicoPlex 

Gold whole-genome amplification (WGA) kit (Takara). Aside from PicoPlex Gold WGA, several 

other WGA methods are available for detecting CNAs and SNVs in single-cell genomes, including 

DOP-PCR (328-332), MDA (333), MALBAC (334) and PTA (335). Each protocol presents unique 

limitations, including artefact formation, preferential amplification of specific genomic regions, 

allelic dropouts, and variable depth of coverage across the genome (336). These factors 

critically impact their suitability for CNA detection using read depth-based approaches, which 

rely on the principle that the number of reads covering a genomic region is proportional to the 

copy number of that region in the genome (337). Consequently, assessing the quality of single-

cell libraries was a critical preliminary step in the CNA analysis to ensure that the depth of 

coverage was sufficient for identifying CNAs. 
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4.2 Aims 

The general aims of this chapter are summarised as follows: 

1. Amplify matched single-cell genomes with PicoPlex Gold whole genome amplification 

and assess the quality of libraries for DNA copy number analysis. 

2. Characterise the clonal composition of mCRC PDOs based on genome-wide CNA 

changes.  

3. Identify CNAs that are specific to AKTi-resistant mCRC PDOs. 

4. Compare the frequency of identified subclones before and after acquiring drug 

resistance. 

5. Compare the copy number changes observed at the single-cell level with those 

observed in bulk genomes. 

The hypothesis behind these aims was that AKT inhibition in mCRC PDOs would lead to distinct 

genomic adaptations characterised by specific CNAs and changes in clonal composition. These 

adaptations would be easier to identify by single-cell sequencing than bulk sequencing. By 

comparing single-cell to bulk genome analyses, this research aimed to uncover the finer details 

of tumour evolution and resistance development. 

 



 

 

 

4.3 Methods: Computational analysis of WGS data 

Data processing includes quality control (QC) of raw sequencing reads (Trim Galore and FastQC), 

followed by a series of intermediate steps to generate clean and indexed BAM alignment files 

(Picard and BWA), ready for base quality recalibration (GATK), before copy number alteration 

analysis (Ginkgo).

Figure 4.1. Bioinformatics workflow for the analysis of single-cell and bulk WGS data 
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Table 16. List of software packages employed for the analysis of scWGS data 

Software Access/citation 

BEDTools v2.29.2 (338) 

BWA v0.7.17 (339) 

ComplexHeatmap v2.16.0 (157) 

FastQC v0.11.9 (158) 

GATK v4.2.0.0 (340) 

GenomicRanges v1.52.1 (341) 

ggplot v2.3.4.4 (161) 

Ginkgo v3.0.0 (342) 

Picard v2.25.7 (343) 

Qualimap v2.2.1 (169, 170) 

R v4.1.2 R Core Team (2022) 

RStudio v2023.6.2.561 R Core Team (2022) 

Samtools v1.15 (344) 

tidyverse v2.0.0 (176) 

Trim Galore v0.5.0 (177, 178) 

ucsc_utils v333 (345) 
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4.3.1 Primary analysis of PicoPlex Gold-amplified single-cell WGS libraries 

For each of the three mCRC PDOs—Parental, MK1-resistant, and AZD1-resistant—a total of 32 

single-cell genomes (including positive and negative controls) were amplified using PicoPlex 

Gold Whole Genome Amplification (WGA), and subsequently submitted for WGS, yielding a 

total of 96 scWGS libraries. 

Similar to the scRNA-seq data, the Genomics Pipelines (GP) team at the Earlham Institute 

applied their primary analysis pipeline (PAP) on the scWGS libraries. The results from the PAP 

were compiled into a comprehensive MultiQC report, summarising the quality of each library. 

 

4.3.2 PicoPlex Gold scWGS-seq data processing and filtering of low-quality 
libraries 

All computational steps described in this section were performed on the Norwich Bioscience 

Institute (NBI) High-Performance Computing (HPC) cluster under the SLURM workload 

management system version 23.02.7, along with R v4.1.2 and Python v3.10.3. The software 

packages and tools used to process and analyse scWGS data are detailed in Table 16. Default 

parameters were employed for all computational tools unless stated otherwise in the text. 

Raw FASTQ files were initially trimmed to remove adapters and low-quality bases using Trim 

Galore v0.5.0. Quality of the trimmed reads was then assessed with FastQC v0.11.9. Further 

preprocessing was necessary to transform trimmed reads into a high-quality dataset of aligned 

reads. This involved removing duplicate reads from PCR amplification, which could skew copy 

number estimates, and ensuring accurate base quality scores for reliable copy number 

alteration calling. This required the use of Picard v2.25.7 and the Genome Analysis Toolkit 

(GATK) v4.2.0.0 packages from the Broad Institute. These tools, integral for variant discovery, 

supported two key workflows. The first involved the GATK workflow for efficient mapping and 

cleanup of short read sequence data (346). This was followed by the GATK data preprocessing 

workflow for variant discovery (347, 348) (Figure 4.2).  
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The input for this workflow can be files in FASTQ, aligned BAM or BCL formats (left panel). 

Starting with FASTQ or aligned BAM files, several Picard tools are initially employed to convert 

these files to unaligned BAM files (uBAM). In the subsequent step, adapter sequences are marked 

in the uBAM files. These files are then converted to interleaved FASTQ files before being mapped 

to the reference genome using BWA. In the final step, the uBAM and aligned BAM files from the 

previous steps are merged to generate clean and indexed BAM files, which are then ready for 

variant analysis with GATK tools (right panel). Figure adapted from (346). 

In the workflow for efficient mapping and cleanup of short-read sequence data, FASTQ files 

were initially converted into unaligned BAM (uBAM) files using Picard’s FastqToSam. This 

conversion was done to retain essential sample metadata and sequencing run information by 

inputting the following parameters: --READ_GROUP_NAME, --SAMPLE_NAME, --LIBRARY_NAME, 

--PLATFORM_UNIT, --PLATFORM, --SEQUENCING_CENTER, --RUN_DATE. Although adapter 

sequences had already been removed in previous steps by Trim Galore, the next step in the 

workflow involved using Picard’s MarkIlluminaAdapters. This tool identifies and adds XT tags 

to adapter sequences that might not have been perfectly trimmed, thereby ensuring that any 

residual adapter sequences are accounted for in subsequent analyses. The third step in the 

workflow entailed converting the uBAM files back to FASTQ format using SamToFastq. With the 

parameters of SamToFastq set to --CLIPPING_ATTRIBUTE XT, --CLIPPING_ACTION 2, and --

INTERLEAVE true, the tool produced interleaved FASTQ files without adapter sequences.  

Figure 4.2. GATK workflow to efficiently map and clean up short read sequence data 

before variant analysis. 
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Before aligning reads with the Burrows-Wheeler Aligner (BWA) v0.7.17, the human GRCh38 

assembly, its index and dictionary files were downloaded from the GATK resource bundle 

(349). 

FASTQ reads were next aligned to the reference genome using BWA with the Maximal Exact 

Matches (MEM) algorithm. The -p flag indicated that the input files were interleaved FASTQ 

files, while the -M flag was used to mark shorter split hits as secondary (non-primary) 

alignments in the SAM file, a recommendation by GATK for generating data comparable to that 

produced by the Broad Genomics Platform. The output from this step was piped into Samtools 

(v1.15) view, with the -h flag to include the header in the output and -b to write the output in 

BAM format.  

The final step in this first workflow involved merging the uBAM and aligned BAM files using 

Picard’s MergeBamAlignment. This process ensured the preservation of metadata from the 

original files in the aligned files. It is important to note that “if the alignment file was missing 

reads present in the unaligned file, then these were retained as unmapped records” (348). 

MergeBamAlignment was employed with selected parameters: 

i) --PRIMARY_ALIGNMENT_STRATEGY MostDistant to designate primary alignments as 

those giving the largest insert size relative to their mate pair. This selection prioritises 

alignments where the read and its mate are farthest apart, assuming that such 

alignments are more likely to occur in less repetitive and more unique regions of the 

genome. 

ii)  --MAX_INSERTIONS_OR_DELETIONS -1 allows any number of insertions or deletions in 

the final alignment. 

iii) --ATTRIBUTES_TO_RETAIN XS to retain secondary alignments marked with the XS 

attribute due to having suboptimal alignment scores. 

iv) --CLIP_ADAPTERS false to avoid clipping adapter sequences from the reads. 

The results of this first workflow were clean and indexed BAM alignment files. 

In the data preprocessing workflow for variant discovery, duplicate reads in the BAM 

alignments were marked, but not removed, by setting Picard’s MarkDuplicates --

REMOVE_DUPLICATES option to false. The duplication percentage was then inspected using 

Qualimap (v2.2.1) bamqc. To reduce biases in variant calling due to the overrepresentation of 

duplicated sequences, PCR and optical duplicates were subsequently removed by setting --

REMOVE_DUPLICATES to true. Afterwards, Qualimap bamqc was rerun to inspect the 

deduplicated BAM files.  
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The final step in this second workflow involved running GATK’s Base Quality Score 

Recalibration (BQSR) tool, which recalibrates base quality scores to correct for systematic 

errors in the sequencing data. This enhancement of the base quality scores significantly 

improves the reliability of variant detection. The base recalibration process involves two main 

steps. Firstly, BaseRecalibrator creates a recalibration table using various covariates known to 

influence the accuracy of the base calls made by the sequencing machine. Examples of these 

covariates include the position of a base within the read and the machine cycle during 

sequencing. To create the recalibration table, BaseRecalibrator requires three types of input: 

the clean and deduplicated BAM alignment file, the reference genome used for alignment, and 

a set of known sites of variation in VCF format. These known sites are essential for masking 

genomic regions where true variation is expected. The files containing known sites were 

sourced from the GATK resource bundle (349), and comprised the following:  

i) Homo_sapiens_assembly38.dbsnp138.vcf.gz,  

ii) Homo_sapiens_assembly38.known_indels.vcf.gz,  

iii) Mills_and_1000G_gold_standard.indels.hg38.vcf.gz.  

Subsequently, ApplyBQSR utilised the recalibration table generated in the previous step to 

adjust the base quality scores in the original BAM file. This final step created deduplicated, 

recalibrated, and indexed BAM files ready for variant calling. For each of the 96 recalibrated 

BAM files, key metrics, including the total number of reads, duplication percentage, overall 

mapping rate, mean depth of coverage, and the percentage of the reference genome covered at 

different depths of coverage (i.e., breadth of coverage), were extracted from the 

“genome_results.txt” file generated by Qualimap bamqc. Additionally, the number of uniquely 

mapping reads was counted using Samtools view -c (v1.15), with the mapping quality (-q) 

parameter set only to count reads with a mapping quality score of 20 or higher. This Phred-

scaled score implies that there is a 1% chance (𝑃 = 10
−𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒

10
) that the mapping position 

is incorrect. These metrics were compiled into a table and used as input to create box plots 

illustrating the quality of libraries with ggplot v2.3.4.4. Low-quality PicoPlex Gold-amplified 

libraries were then filtered out based on the following criteria: 

i) Libraries where the percentage of uniquely mapped reads fell below the set threshold 

of 60% mapping. 

ii) Genomic libraries with matching scRNA-seq data that did not meet Seurat’s initial 

quality control standards. 

iii) Positive and negative control libraries. 
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4.3.3 Ginkgo genome-wide copy number analysis of single cells 

Ginkgo was used for single-cell copy number alteration (CNA) analysis (342). For this purpose, 

BAM files were first converted to BED format using BEDTools (v2.29.2) bamtobed with default 

options. While the PicoPlex Gold libraries were aligned to the hg38 (GRCh38) reference 

genome, the web version of Ginkgo is only compatible with the hg19 (GRCh37) genome build. 

Therefore, before performing the CNA analysis, it was essential to first convert genomic 

coordinates from hg38 to hg19. This conversion was achieved using the UCSC liftOver (v333) 

utility. The chain file required for translating genomic coordinates from hg38 to hg19 

(hg38ToHg19.over.chain.gz) was downloaded from the UCSC Golden Path liftOver site (350).  

Subsequently, the following Ginkgo parameters were employed for the CNA analysis of mCRC 

single-cell genomes: 

i) In line with the recommendations in the Ginkgo publication, the hg19 reference 

genome was divided into variable-length bins averaging 500 kb (342).  

ii) The binning simulation option was configured for 150 bp reads mapped with BWA to 

establish the variable-length bin boundaries. 

iii) The binned data was segmented using independent (normalised) read counts. 

iv) “Bad bins”, such as those around the centromeres of certain chromosomes, were 

masked due to their tendency to attain very high read counts compared to other 

genomic locations (342). Similarly, pseudoautosomal regions of the Y-chromosome 

were also masked. 

v) Both sex chromosomes were included in the analysis, although only the X chromosome 

will be reported in the results. 

To identify noisy DNA libraries after CNA analysis, the “SegNorm.txt” output, containing 

normalised bin counts for each cell at every bin position, was used to compute the median 

absolute deviation (MAD) for each cell. To calculate the MAD, the pairwise differences in read 

counts between neighbouring bins were first determined for each cell. This step quantified the 

change in read counts from one bin to the next. Subsequently, the MAD was computed by taking 

the median of the absolute values of these pairwise differences (342). Additionally, the 

“SegStats.txt” file was employed to plot other quality control metrics, such as the index of 

dispersion (IOD) (342). A cut-off for MAD scores was established following the "1.5 IQR rule" 

for outlier detection (351), after which the Ginkgo analysis was rerun without the “bad” 

libraries.  
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Ginkgo provides several visualisations for scCNA analysis; however, the “SegCopy.txt” output 

file was utilised for further analysis in R. This file, containing integer copy numbers for each 

cell at every bin position, enabled the generation of a heatmap of copy number profiles for cells 

that passed quality control. This heatmap was created using ComplexHeatmap v2.16.0 and 

enhanced with PDO-specific row annotations. Additionally, the hierarchical clustering of cells, 

calculated by Ginkgo using Euclidean distance and Ward’s linkage and provided in Newick 

format, was directly adopted without modifications. 

The “SegCopy.txt” file was also employed to calculate the average ploidy for each sample type 

(Parental and AKTi-resistant organoids), as Gingko did not provide this. This process involved 

initially subsetting the copy number matrix by PDO. Subsequently, the average copy number 

for each cell was calculated across all bins, with this column-wise average representing the 

ploidy of each individual cell. To determine the mean ploidy for each PDO, the mean of these 

ploidy values across all cells within a PDO was computed. Other scCNA visualisations presented 

in this chapter were directly generated by Ginkgo. 

Finally, GenomicRanges v1.52.1 was employed to annotate CNAs with chromosome cytoband 

information. This process involved using GRanges to create GRanges objects, and findOverlaps 

on the resulting objects, to identify overlapping regions between the CNA data stored in the 

“CNV1.txt” output and the cytoband data for the hg19 assembly. The cytoband data file 

(“cytoBand.txt.gz”) was downloaded from the UCSC genome annotation database (352).
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4.3.4 Data processing and downsampling of bulk genomes for Gingko copy 
number analysis 

The computational approach used to process single-cell genomes was used for processing the 

blood, Parental, MK1-resistant, and AZD1-resistant bulk WGS data generated by the ICR (Figure 

4.1). However, the filtering steps were omitted in this process.  

To validate the results obtained from the scCNA analysis, the cleaned and deduplicated bulk 

BAM files were downsampled to the single-cell average number of reads, just over 3.5 million, 

using Picard’s DowsampleSam. The probability (P) parameter that a given read will be retained 

in the downsampled BAM file must be first calculated to downsample a BAM file to an 

approximate number of reads. This probability was calculated based on the total number of 

reads in each input BAM file, using the following formula (353):  

𝑃 =
𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑎𝑑𝑠

Total number of reads in the input BAM
 

DowsampleSam was next run with the calculated probabilities, employing a chained 

downsampling strategy.  

Finally, Ginkgo was used for copy number analysis of the downsampled BED-converted files, 

applying the same parameters as those employed with the PicoPlex Gold-amplified single-cell 

libraries.
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4.3.5 Sequenza genome-wide copy number analysis of bulk genomes  

The ICR processed the bulk data using a Nextflow workflow (354) specifically tailored for 

variant detection in whole genome and targeted sequencing data, integrates multiple steps. 

These include read trimming with Trim Galore, alignment to the GRCh38 reference genome via 

BWA MEM, duplication marking using Picard tools, and base quality score recalibration with 

GATK. 

CNA calling was next performed using Sequenza, a comprehensive package designed for 

inferring tumour cellularity, ploidy, and allele-specific copy number profiles from WGS data 

utilising matched normal and tumour samples (355). This analysis was also implemented using 

Nextflow (356). The Sequenza analysis was performed using 100 kb bins. Other parameters are 

specified in the “analyse_cn_sequenza.R” script (357). Consequently, the Sequenza figures 

included in this chapter were sourced from the Accelerator project’s shared drive, showcasing 

the results obtained from this analytical approach.
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4.4 Results  

4.4.1 Primary analysis of single-cell genomes reveals DNA libraries free from 
bacterial contamination 

To ensure scWGS analyses were performed on high-quality data, the raw reads corresponding 

to sequencing libraries underwent extensive processing. The initial inspection of libraries 

focused on identifying the species represented in the sequences. Table 17 presents an extract 

from the PAP MultiQC report of the PicoPlex Gold-amplified DNA libraries, focusing on the 

Centrifuge module. This extract reveals the top two most abundant species in 26 representative 

libraries. Unlike the scRNA-seq libraries, which showed contamination by Variovorax species, 

the matched genomic libraries primarily consisted of human DNA. This suggests that the 

contamination observed in the scRNA-seq data occurred after separating the genomic DNA and 

the polyadenylated mRNA, i.e., during the Smart-seq2 arm of the G&T-seq protocol.
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Table 17. PAP report extract showing the top 2 most abundant species in representative 

single-cell DNA libraries derived from mCRC organoids 

Sample Name 1st Name 1st % 2nd Name 2nd % 

SOGTseqPPGoldA10 Homo sapiens  97.9 eukaryotic synthetic construct  0.7 

SOGTseqPPGoldA11 Homo sapiens  71.5 Pinus taeda 17.3 

SOGTseqPPGoldA12 Homo sapiens  94.3 eukaryotic synthetic construct  0.9 

SOGTseqPPGoldA1 Homo sapiens  97.9 eukaryotic synthetic construct  0.7 

SOGTseqPPGoldA2 Homo sapiens  97.8 eukaryotic synthetic construct  0.8 

SOGTseqPPGoldA3 Homo sapiens  97.6 eukaryotic synthetic construct  0.7 

SOGTseqPPGoldA4 Homo sapiens  97.7 eukaryotic synthetic construct  0.8 

SOGTseqPPGoldA5 Homo sapiens  97.8 eukaryotic synthetic construct  0.7 

SOGTseqPPGoldA6 Homo sapiens  97.8 eukaryotic synthetic construct  0.8 

SOGTseqPPGoldA7 Homo sapiens  97.6 eukaryotic synthetic construct  0.8 

SOGTseqPPGoldA8 Homo sapiens  97.8 eukaryotic synthetic construct  0.7 

SOGTseqPPGoldA9 Homo sapiens  97.7 eukaryotic synthetic construct  0.7 

SOGTseqPPGoldB10 Homo sapiens  97.7 eukaryotic synthetic construct  0.8 

SOGTseqPPGoldB11 Homo sapiens  97.8 eukaryotic synthetic construct  0.8 

SOGTseqPPGoldB12 Homo sapiens  97.3 eukaryotic synthetic construct  0.9 

SOGTseqPPGoldB1 Homo sapiens  96.4 Pan troglodytes 0.7 

SOGTseqPPGoldB2 Homo sapiens  97.7 eukaryotic synthetic construct  0.7 

SOGTseqPPGoldB3 Homo sapiens  97.5 eukaryotic synthetic construct  0.8 

SOGTseqPPGoldB4 Homo sapiens  97.7 eukaryotic synthetic construct  0.7 

SOGTseqPPGoldB5 Homo sapiens  97.6 Pan troglodytes 0.7 

SOGTseqPPGoldB6 Homo sapiens  97.7 eukaryotic synthetic construct  0.7 

SOGTseqPPGoldB7 Homo sapiens  97.7 eukaryotic synthetic construct  0.7 

SOGTseqPPGoldB8 Homo sapiens  97.9 eukaryotic synthetic construct  0.7 

SOGTseqPPGoldB9 Homo sapiens  97.8 eukaryotic synthetic construct  0.7 

SOGTseqPPGoldC10 Homo sapiens  97 eukaryotic synthetic construct  0.8 

SOGTseqPPGoldC11 Homo sapiens  97.7 eukaryotic synthetic construct  0.8 
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4.4.2 Quality control and filtering of single-cell genomes 

Figure 4.3A-F displays a series of box plots illustrating the distribution of 96 scWGS libraries 

across various sequencing metrics before excluding low-quality libraries and controls. The read 

count distribution in the scWGS libraries exhibited a right-skewed pattern, as evidenced by a 

longer upper whisker representing libraries with an unusually high number of reads, and a 

mean of 3.9 million reads (standard deviation=±3.3 million) that exceeded the median of 2.8 

million reads (Figure 4.3A). The high standard deviation suggests significant inconsistency and 

a wide dispersion of read counts across the libraries.  

Despite the variability in read counts, the duplication percentage remained generally low 

across the DNA libraries, averaging 13.4% (±3.8%) (Figure 4.3B). Furthermore, the overall 

mapping percentage was also satisfactory, with an average of 97.7% (±5.5%) (Figure 4.3C) and 

uniquely mapping read percentages averaging 79.3% (±6.7%) (Figure 4.3D).  

Additional metrics for assessing sequencing quality included the mean depth of coverage 

across libraries (Figure 4.3E), which averaged 0.29× (±0.24×). The large standard deviation 

again suggests considerable variation in the sequencing coverage across libraries. Lastly, the 

relationship between depth and breadth of coverage was examined (Figure 4.3F), which 

revealed that the average percentage of the genome covered by the libraries at the lowest depth 

of coverage (1×) was 13.6% (±7.8%), while at the highest depth of coverage (10×) it was 0.25% 

(±0.46%).   



4.4. Results 

180 

 

Pre-filtering quality control metrics of single-cell genomes derived from Parental, MK1- and 

AZD1-resistant mCRC PDOs, amplified using PicoPlex Gold, and subsequently subjected to Whole 

Genome Sequencing. Metrics include: (a) total number of reads, (b) percentage of duplicated 

reads, (c) overall mapping rate, (d) percentage of uniquely mapping reads, (e) mean depth of 

coverage, and (f) breadth of coverage, defined as the fraction of the reference genome covered at 

various depths of coverage. Each box plot displays the median value (central line), the 

interquartile range (25th and 75th percentiles as the box boundaries), and 1.5× the interquartile 

range (whiskers). 96 libraries in total, encompassing genomes from multi-cell and negative 

controls and single cells.  

Figure 4.3. Distribution of PicoPlex Gold-amplified WGS libraries derived from mCRC 

organoid across various quality control metrics prior to filtering low-quality libraries. 

(a) (b) (c) (d)

(e) (f)
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Filtering was next performed based on these metrics. Out of the 96 gDNA samples chosen for 

PicoPlex Gold WGA and subsequent WGS—which included 30 libraries for each PDO, along with 

3 positive (matched genomes from 50 cells obtained after the physical separation of gDNA and 

mRNA) and 3 negative (lysis buffer) control libraries—a total of 85 libraries were retained. The 

reduction was due to the exclusion of both positive and negative control libraries and those 

with matched scRNA-seq libraries that failed to pass Seurat’s quality control because of high 

mitochondrial read content. The remaining DNA libraries comprised 30 Parental, 27 MK1-

resistant, and 28 AZD1-resistant libraries. Examining the same sequencing metrics post-

filtering revealed that both the average read counts (3.4 million reads) and standard deviation 

values (±2.3 million reads) were closer in the filtered dataset (Figure 4.4A) than in the 

unfiltered dataset. This suggests that the filtered samples, especially the positive controls, were 

outliers that affected the overall statistics. Despite removing “bad” libraries, there was still a 

right-skewness in the data, as the mean remained higher than the median (2.6 million reads), 

although the difference between them was reduced. 

Other metrics, such as the duplication rate (Figure 4.4B) and mapping percentages (Figure 

4.4C-D), remained favourable. On the other hand, the average depth of coverage was slightly 

reduced after filtering (0.26×, ±0.17×) (Figure 4.4E). The decrease in the standard deviation 

indicates that the libraries remaining after filtering had less variability in their coverage depth, 

which is desirable for further analysis. Nevertheless, the average depth of coverage for these 

libraries exceeded the 0.036× (±0.022×) depth reported for the 96 gDNA libraries amplified 

with the standard PicoPlex scWGA Kit (Takara) in the original G&T-seq publication (129). 

Consequently, the coverage level of the mCRC single-cell genomes was sufficient for low-pass 

CNA analysis using Ginkgo (342). 

Regarding the breadth of coverage, the filtered dataset maintained the same trend of 

decreasing genome coverage with increasing coverage depth (Figure 4.4F). This last plot is 

useful for understanding how the depth of sequencing affects the proportion of the genome 

that can be analysed. It exemplifies that at higher depths of coverage, sequencing is not 

uniformly distributed across the entire genome. Instead, these higher depths are concentrated 

in specific, limited regions, while lower depths cover the majority of the genome. This is 

particularly relevant for CNA analysis at low depths, where a more significant portion of the 

genome is typically covered, providing a broader genomic context for variant detection. 

However, for accurate CNA detection, it is essential to achieve not only adequate depth but also 

uniform coverage across the genome. 
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Metrics include: (a) total number of reads, (b) percentage of duplicated reads, (c) overall 

mapping rate, (d) percentage of uniquely mapping reads, (e) mean depth of coverage, and (f) 

breadth of coverage at various coverage depths. Each box plot displays the median value (central 

line), the interquartile range (25th and 75th percentiles as the box boundaries), and 1.5× the 

interquartile range (whiskers). Outliers are shown as individual points beyond the whiskers. 85 

libraries in total, including 30 Parental, 27 MK1-resistant and 28 AZD1-resistant single-cell 

genomes passing quality control filters, and with available matching scRNA-seq data.

Figure 4.4. Distribution of PicoPlex Gold-amplified WGS libraries derived from mCRC 

tumoroids across various quality control metrics after filtering low-quality libraries. 

(a) (b) (c) (d)

(e) (f)
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4.4.3 PicoPlex Gold WGA provides reliable data for accurate copy number 
analysis in single-cell genomes 

Following a preliminary scCNA analysis with Ginkgo (342), the variability in read depth across 

segmented genomic bins was evaluated. For CNA detection in sequencing data analysis, it is 

generally assumed that read counts across the genome follow a Poisson distribution in regions 

without CNAs (358, 359). This assumption implies a uniform coverage model, where each 

genomic region is equally likely to be sequenced, although perfect uniformity is not expected 

due to inherent random variations. Deviations from this Poisson distribution model indicate 

CNAs, as they lead to unexpected alterations in read count distribution.  

The index of dispersion (IOD), also known as the Poisson or Fisher dispersion index, is defined 

as the variance-to-mean ratio of read counts (360). Ginkgo utilises this metric to assess how 

read counts across bins deviate from their average, serving as an indicator of coverage 

dispersion (342) (Figure 4.5A). The higher the dispersion index, the greater the variability 

between the read counts in each bin, which can indicate more “noise” or unevenness in the 

coverage distribution across the genome. 

Under a Poisson model, an IOD of 1 is expected when the variance of read counts equals the 

mean (359, 361), indicating that any observed variability is attributable to the inherent 

randomness of the Poisson process (362). However, the average IOD of 0.53 (±0.08) observed 

in PicoPlex Gold libraries points to underdispersion relative to the Poisson expectation, a 

scenario where the variance is less than the mean (363). This underdispersion suggests a more 

even distribution of read counts across the genome than what would be expected by chance 

alone. Nevertheless, due to its reliance on the mean, the IOD is sensitive to outliers, meaning 

regions with exceptionally high or low read depths can significantly skew the metric. 

In contrast, the median absolute deviation (MAD) of all pairwise differences in read counts 

between neighbouring bins is a robust measure of variability, particularly suited for datasets 

where a normal distribution cannot be assumed (364). Unlike the IOD, MAD focuses on 

variability around the median of a dataset, making it less susceptible to the influence of outliers 

(364). Given the positive skewness identified in the PicoPlex Gold dataset, employing MAD 

provided a more accurate reflection of sequencing depth variability.  

The average MAD score for PicoPlex Gold libraries was 0.27 (±0.08) (Figure 4.5B), which was 

lower than the MAD scores reported for MALBAC and MDA amplified single-cell genomes in the 

Ginkgo publication (342). This reflects minimal coverage dispersion attributable to technical 

noise in PicoPlex libraries. Nevertheless, there were a few outliers in the dataset. For this 
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reason, a maximum threshold for MAD was established to filter out mCRC genomes with 

elevated noise levels, which carry an increased risk of generating false-positive results. This 

cut-off was set at 1.5 times the IQR above the third quartile, following the "1.5 IQR Rule" for 

outlier detection (351), a practice previously employed to filter scWGS libraries based on a 

similar metric, the median absolute pairwise difference (MAPD) (365). Consequently, genomes 

with a MAD score greater than 0.42 were excluded, resulting in the removal of 5 MK1-resistant 

genomes. Indeed, libraries with higher MAD scores exhibited a significant deviation from the 

line denoting perfect coverage uniformity in the Lorenz curves (Figure 4.5C-D) and displayed 

noisier CNA profiles compared to libraries with lower MAD scores (Figure 4.6A-D). While more 

stringent cut-offs for MAD, such as exclusions above 0.3-0.35, have been reported (333, 366), 

higher MAD and even MAPD thresholds have also been considered for CNA analyses or flagged 

for review (129, 367).   
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Plots display coverage uniformity metrics for 85 single-cell genomes derived from mCRC PDOs, as 

generated by Ginkgo following CNA analysis using variable-length 500 kb genomic bins. These 

metrics include: (a) index of dispersion (IOD) and (b) median absolute deviation (MAD) of read 

counts between neighbouring bins. Each box plot displays the median value (central line), the 

interquartile range (25th and 75th percentiles as the box boundaries), and 1.5× the interquartile 

range (whiskers). Outliers are shown as individual points beyond the whiskers. Additionally, 

Lorenz curves for two single-cell genomes, each with low (c) and high (d) IOD scores, illustrate 

the deviation from a perfectly uniform genome. Collectively, these visualisations underline the 

variability in scWGS data for accurate CNA detection. 

Figure 4.5. Assessment of coverage uniformity in PicoPlex Gold-amplified libraries for 

accurate CNA detection. 

(b)(a)

(c)

IOD = 0.48
MAD = 0.26

IOD = 0.35
MAD = 0.14

(d)

IOD = 0.75
MAD = 0.53

IOD = 0.83
MAD = 0.55
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Visual representation of genome-wide CNA profiles of selected single-cell genomes from mCRC 

PDOs with low (a-b) and high (c-d) MAD scores. Grey dots represent the inferred copy number at 

specific genomic loci. Coloured lines indicate the smoothed median copy number state across 

genomic segments: black lines denote diploid segments, red lines are segments with 

amplifications, and blue lines represent segments with deletions. The dispersion of these dots 

provides insights into the confidence level at which integer copy number states can be accurately 

determined.  

Figure 4.6. Coverage distribution in good and noisy single-cell genomes shows 

significant differences in the quality and reliability of CNAs detected.  

(a)

(c)

(d)

(b)
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After excluding libraries with high MAD scores and subsequently rerunning the Ginkgo 

analysis, a moderate decrease in the average values of both IOD (0.52 ± 0.06) and MAD (0.26 ± 

0.06) was observed (Figure 4.7). This decrease in the average scores, along with a reduction in 

their standard deviation, indicates reduced variability among the remaining scWGS libraries. 

Following this filtering process, the refined set of PicoPlex Gold libraries consisted of 30 

Parental, 22 MK1-resistant, and 28 AZD1-resistant libraries, representing a total of 80 scWGS 

libraries. 

Box plots display the distribution of coverage uniformity metrics for 80 single-cell genomes from 

mCRC PDOs after excluding noisy libraries. Metrics presented include: (a) index of dispersion 

(IOD) and (b) median absolute deviation (MAD) of read counts between neighbouring bins. Each 

box plot displays the median value (central line), the interquartile range (25th and 75th percentiles 

as the box boundaries), and 1.5× the interquartile range (whiskers). Outliers are shown as 

individual points beyond the whiskers.

(a) (b)

Figure 4.7. Distribution of PicoPlex Gold-amplified libraries after filtering noisy 

libraries 
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4.4.4 Comparative ploidy analysis of mCRC organoids at single-cell and bulk 
resolutions  

The CNA analysis of single-cell genomes derived from mCRC PDOs performed using 500 kb 

genomic bins revealed consistent aneuploidy across the cells (Figure 4.8). This was evidenced 

by the average ploidy values of PDOs: 3.11 (±1.06) for Parental, 3.38 (±1.17) for MK1-resistant, 

and 3.21 (±1.12) for AZD1-resistant cells.  

To assess the reliability of the single-cell findings, bulk WGS data, including Parental and both 

AKTi-resistant lines, along with a blood control, were downsampled to match the average 

number of reads observed in the single-cell genomes (approximately 3.5 million reads). Ginkgo 

analysis of the downsampled bulk data using 500 kb windows revealed a consistent ploidy of 

3.2 for all three organoids (Figure 4.9). Additionally, genome-wide copy number estimates from 

the downsampled data displayed decreased variability compared to those observed in single 

cells (Figure 4.8). This is evidenced by the clustering of the “grey dots” in Figure 4.9, which 

represent CNA calls, around the smoothed median copy number state across genomic segments 

(coloured horizontal lines). This alignment indicates more reliable CNA predictions and is 

likely due to the lack of genomic amplification during sample processing of bulk genomes, an 

advantage that remained even when the data was downsampled to single-cell read depths. (See 

Supplementary Figure 13 and Supplementary Figure 14 for detailed quality control metrics of 

the bulk sequencing data.) 

The primary challenge when using a read-depth-based approach for calling CNAs lies in 

selecting the optimal window size for dividing the genome (358, 368). This is crucial for 

accurately identifying CNAs, particularly in low coverage scWGS data, as in PicoPlex Gold-

amplified libraries. In this project, the genomic window size used in the Ginkgo publication 

(500 kb) was employed for copy number analysis (342). Therefore, the effects of using a smaller 

window size to detect CNAs were not evaluated. Nevertheless, the Sequenza (355) CNA analysis 

of the complete bulk dataset using 100 kb bins revealed slightly higher ploidy estimates 

compared to the previous single-cell and downsampled analyses, with ploidy values of 3.45 for 

the Parental, 3.35 for the MK1-resistant, and 3.35 for the AZD1-resistant PDO (Supplementary 

Figure 15). Despite this, the CNA profiles were broadly similar across the single-cell, 

downsampled bulk, and complete bulk datasets (Figure 4.10, Figure 4.11, Figure 4.12). 
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Ginkgo-generated CNA profiles of single-cell genomes derived from the Parental (top), MK1-

resistant (middle), and AZD1-resistant (bottom) organoids. The analysis was performed using 

variable-length bins averaging 500 kb. In these figures, grey dots represent the inferred copy 

number at specific genomic loci. Coloured lines indicate the smoothed median copy number state 

across genomic segments: black lines denote diploid segments, red lines are segments with 

amplifications, and blue lines represent segments with deletions.  

Figure 4.8. Example single-cell CNA profiles from the Parental, MK1- and AZD1-resistant 

mCRC PDOs 
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Ginkgo-generated CNA profiles of bulk WGS data downsampled to match the read depth observed 

at the single-cell level. Samples include a matched blood control (top figure), the Parental (second 

figure), MK1-resistant (third figure), and AZD1-resistant (bottom figure) PDOs. The analysis was 

performed using 500 kb bins. Grey dots represent the inferred copy number at specific genomic 

loci. Coloured lines indicate the smoothed median copy number state across genomic segments: 

black lines denote diploid segments, red lines indicate segments with amplifications, and blue lines 

represent segments with deletions. 

Figure 4.9. Downsampled bulk WGS CNA profiles for mCRC PDOs and matched blood 

control. 
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The panel figure comprises three distinct CNA profiles. The top and middle figures, derived from 

Ginkgo analyses, represent the genome-wide CNA states of a single cell and a downsampled bulk 

dataset, respectively, from the Parental organoid. Binning of the genome for these analyses was 

performed at 500 kb intervals. Grey dots in these figures depict the inferred copy number at 

specific loci across the genome. Coloured lines indicate the smoothed median copy number state 

across genomic segments: black lines denote diploid segments, red lines indicate segments with 

amplifications, and blue lines mark segments with deletions. The bottom figure, generated by 

Sequenza, illustrates the CNA profile for the complete bulk WGS data from the Parental organoid 

with binning performed at 100 kb intervals. In this figure, red segments indicate diploid or 

aneuploidy copy number regions. 

  

Single cell

Downsampled
bulk

Full bulk

Figure 4.10. Comparative CNA analysis of the Parental PDO via single-cell, downsampled 

bulk, and full bulk WGS. 
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The top and middle figures, derived from Ginkgo analyses, represent the genome-wide CNA states 

of a single cell and a downsampled bulk dataset, respectively, from the MK1-resistant organoid. 

Binning of the genome for these analyses was performed at 500 kb intervals. Grey dots in these 

figures depict the inferred copy number at specific loci across the genome. Coloured lines indicate 

the smoothed median copy number state across genomic segments: black lines denote diploid 

segments, red lines indicate segments with amplifications, and blue lines mark segments with 

deletions. The bottom figure, generated by Sequenza, illustrates the CNA profile for the complete 

bulk WGS data from the Parental organoid with binning performed at 100 kb intervals. In this 

figure, red segments indicate diploid or aneuploidy copy number regions. 

  

Single cell

Downsampled
bulk

Full bulk

Figure 4.11. Comparative CNA analysis of the MK1-resistant PDO via single-cell, 

downsampled bulk, and full bulk WGS. 
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The top and middle figures, derived from Ginkgo analyses, represent the genome-wide CNA states 

of a single cell and a downsampled bulk dataset, respectively, from the AZD1-resistant organoid. 

Binning of the genome for these analyses was performed at 500 kb intervals. Grey dots in these 

figures depict the inferred copy number at specific loci across the genome. Coloured lines indicate 

the smoothed median copy number state across genomic segments: black lines denote diploid 

segments, red lines indicate segments with amplifications, and blue lines mark segments with 

deletions. The bottom figure, generated by Sequenza, illustrates the CNA profile for the complete 

bulk WGS data from the Parental organoid with binning performed at 100 kb intervals. In this 

figure, red segments indicate diploid, or aneuploidy copy number regions.  

Single cell

Downsampled
bulk

Full bulk

Figure 4.12. Comparative CNA analysis of the AZD1-resistant PDO via single-cell, 

downsampled bulk, and full bulk WGS. 
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4.4.5 Exploring the subclonal diversity of mCRC organoids through single-cell 
CNA analysis 

A. Unravelling the subclonal architecture of the Parental mCRC PDO 

To explore the subclonal diversity in mCRC PDOs that developed resistance to AKT inhibitors, 

an initial hierarchical clustering analysis was conducted on the CNA profiles of the Parental 

organoid at single-cell resolution. This analysis aimed to characterise the clonal composition of 

this PDO, which served as an untreated control prior to exposure to the MK2206 and AZD5363 

AKT inhibitors. Figure 4.13 shows a CNA heatmap for the Parental organoid. The analysis 

identified CNAs across all chromosomes (chr). The smallest altered region involved a gain of 

five copies at Xq28 (spanning approximately 1.03 Mb), and the largest was an additional copy 

of chr6 (~171 Mb). Conversely, the smallest and largest losses included a one-copy deletion at 

6q24.3 (~1.13 Mb) and a deletion spanning 15p13-q14 (~37.35 Mb), respectively. 

Interestingly, the CNA region at 14q32.33, where AKT1 is located and which was previously 

reported by (109) to be amplified in the biopsy from which the organoids were derived, 

exhibited between six and thirteen copies of the gene (Supplementary Figure 16).  

The clustered heatmap not only illustrates genomic alterations but also highlights groups of 

cells based on CNA similarity patterns. Among the Parental cells, there was generally a high 

degree of similarity in their CNA profiles, with only minor deviations observed. This similarity 

indicates a close genetic relationship, potentially underscoring their shared lineage origin. At 

the top level, the root of the dendrogram splits into two branches, each representing a distinct 

cell population or clone. The predominant clone encompasses 29 cells, while the second, much 

smaller group consists of just one cell (G3) (Figure 4.13).  

Although G3 met the QC standards for mappability and coverage distribution, it exhibited a 

unique CNA profile compared to other cells (Figure 4.14). With a ploidy of 1.7, lower than the 

average ploidy previously reported for Parental cells (3.11, ±1.06), G3 was characterised by 

allelic deletions spanning 4p16.3-q35.2, 7p11.2-q11.21, 16p11.1-q24.3, 17p13.3-q25.3, 

18p11.32-q23 and 19p13.3-q13.43. Among the genes impacted by these deletions include 

EIF4E (located at 4q23), a key component in the eukaryotic translation initiation complex 

(327), genes encoding enzymes involved in drug metabolism such as UGT2B28 (4q13.2) (369), 

the EGFR (7p11.2) tyrosine kinase receptor, several tumour suppressors such as WWOX 

(16q23.1-q23.2), AXIN1 (16p13.3), TP53, (17p13.1), the Deleted in Colorectal Cancer gene 

(DCC, 18q21.2) and SMAD4 (18q21), as well as the pro-apoptotic gene BAX (19q13.33) (58). On 

the other hand, while G3 did not exhibit many chromosomal gains, certain noteworthy gains 

were identified. These included triploid regions at 5q11.2-q23.2 and 10q25.3-q26.2, which 
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encompass APC (5q22.2) and the apoptotic executioner gene CASP7 (10q25.3), respectively 

(58). A hexaploid region was also identified at 14q32.33-q32.33, containing AKT1 (14q32.33). 

Focusing on the major clone, further stratification revealed two distinct subpopulations. The 

smallest subclone, comprising 8 cells (D4 to E3 on the heatmap), accounted for 26.7% of the 

total Parental genomes sequenced. In contrast, the largest and consequently dominant 

subclone in the Parental organoid, which includes 21 cells (F1-H1), accounted for 70%. The 

two subclones contrasted most notably at chromosomes (chr) 5 and X (Figure 4.15). At 

5p15.33-q11.2, the minor subclone mostly had five copies, while the major subclone had six. At 

chrX, the smaller subclone primarily showed tetraploidy at Xq11.2-q27.2, while the larger 

subclone exhibited pentaploidy or hexaploidy in the same region.  

Given the inherent sampling limitations of plate-based single-cell sequencing, there is a 

possibility that the observed percentages for these subclones might not accurately represent 

the actual cell populations in the original sample, which consisted of millions of cells. However, 

bulk WGS analysis, which reflects the genomic profiles of mixed cell populations, allows for the 

emergence of predominant features. The similarity of the copy number profiles at 5p15.33-

q11.2 and Xq11.2-q27.2 in the complete bulk (and downsampled) datasets with those observed 

in single-cell genomes of the dominant subclone (e.g., C3) confirms its prevalence in the 

Parental PDO (Figure 4.10). 

Upon further inspection of the dominant subclone, it became apparent that a subpopulation 

within it, consisting of three cells (F1, A3, C2, accounting for 14.3% of the dominant subclone), 

had a distinct copy number profile not observed in other cells of the same group. These 

“secondary” subclones, while retaining the six copies characteristic of the dominant group at 

5p15.33-q11.2, had four copies of 5q11.2-q23.2 and three copies of 5q23.2-q35.3 (Figure 4.16). 

In contrast, the “primary” subclone, representing 85.7% of the dominant group, displayed an 

extra copy in these regions. Additional intra-subclonal heterogeneity among these three cells 

was also noted, with pentaploid regions identified at 7p22.3-p11.2 (F1), 8q24.22-q24.3 (A3), 

and 2p25.3-p12 (C2). These cell-specific events highlight the evolving nature of the genomic 

landscape in the Parental organoid, even before the introduction of AKT inhibitors. 
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The heatmap provides a clustered, genome-wide representation of copy number profiles from 30 single-cell genomes from the Parental mCRC organoid. 

Columns represent chromosomes divided into 500 kb bins, and rows correspond to single-cell genomes. Hierarchical clustering of single-cell genomes 

was performed using Euclidean distance and Ward’s linkage method. The colour scale on the heatmap denotes integer copy number states, with 

additional annotations indicating the cell cycle phase of cells.

Figure 4.13. Genome-wide CNA heatmap of the genomic profile of Parental mCRC PDO cells 
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Genome-wide copy number profile of the minor clone (G3) identified in the Parental mCRC 

organoid. Coloured horizontal lines represent median copy number states: black for diploid 

segments, red for amplifications, and blue for deletions.  

Figure 4.14. Copy number profile of the minor clone identified in the Parental tumoroid. 



4.4. Results 

198 

 

Plots display genome-wide copy number profiles of representatives single-cell genomes from the 

minor (D3, top) and dominant (C3, bottom) subclones identified in the Parental mCRC organoid. 

Coloured arrows indicate regions of CNA gains where the subclones differ at chr5 (p15.33-q11.2) 

and chrX (q11.2-q27.2), along with the number of copies at each region. Coloured horizontal lines 

represent median copy number states: black for diploid segments, red for amplifications, and blue 

for deletions.

Figure 4.15. Copy number profiles of two representative single-cell genomes from the 

minor and dominant subclones in the Parental tumoroid. 

5p15.33-q11.2 Xq11.2-q27.2

Minor subclone

Dominant subclone
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Plots display copy number profiles of representative single-cell genomes from the dominant 

subclone in the Parental mCRC organoid. Within this dominant subclone, two distinct subclones 

are identified: the more prevalent “primary” subclone (C3, first plot) and the less prevalent 

“secondary” subclone (F1, A3, and C2, remaining plots). Coloured annotations on chr5 highlight 

regions where the primary and secondary subclones within the dominant group converge (black) 

or diverge (blue and purple). Circled segments indicate CNAs unique to each cell in the secondary 

subclone. Coloured horizontal lines represent median copy number states: black for diploid 

segments, red for amplifications, and blue for deletions.  
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Figure 4.16. Copy number profiles of representative single-cell genomes from the 

primary and secondary subclones within the dominant group in the Parental tumoroid. 
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B. Copy number evolution and subclonal expansion in mCRC organoids 
resistant to AKT inhibitors 

Figure 4.17 presents a genome-wide clustered heatmap showing the copy number states of all 

MK1- and AZD1-resistant cells alongside the Parental control. In the heatmap, the dendrogram 

originates from a single root, indicating the collective genomic similarity of the entire dataset. 

This root splits into two primary branches, representing the first major division in the data. 

The smaller branch is comprised of three MK1-resistant cells in the G2M phase (B7, B8, and 

F6), each with noisy copy number profiles that diverge significantly from the main clonal group, 

as highlighted by the large distance between the clusters in the dendrogram. As a result, these 

outlier cells were excluded from subsequent analysis. 

The predominant clonal group, comprising 77 cells (30 Parental, 19 MK1-resistant, and 28 

AZD1-resistant), further subdivides into two branches: a smaller one with one Parental cell 

(G3) and two MK1-resistant cells (B6, A5) and a larger branch of 74 cells. The wide bifurcation 

between these subpopulations reflects their distinct copy number profiles. Notably, the smaller 

subclonal group had the lowest ploidy values in the dataset. In the Parental organoid, G3 was 

previously characterised as a “nearly diploid” cell with a ploidy of 1.7. B6 and A5 exhibited 

similar trends with ploidies of 2.2 and 1.85, respectively (Supplementary Figure 17). While 

these MK1-resistant cells share several similarities with G3, such as one-copy losses at 

1p36.13-12, chr4, chr14, and chr22, as well as various diploid chromosomes (e.g., chr6), they 

also displayed multiple amplifications compared to the Parental cell. These include three copies 

at 2p25.3-q13 (compared to the two copies in G3), four copies at 5p14.1-q11.2 (two copies in 

G3), three copies of chr7 (two copies in G3), and three copies at 16p13.3-p11.2 (two copies in 

G3).  

Regarding the larger clonal group, it is further split into two branches. The smaller branch, 

consisting of three cells with noisy copy number profiles (F10, B12, G5), was excluded from 

further analyses. The larger branch then bifurcates into two subclusters: the top cluster above 

the midline on the heatmap consists of 27 cells, while the bottom cluster comprises 44 cells. 

The similarities in copy number profiles observed across most chromosomes highlight the 

resemblance between these two subclones. However, a significant proportion of the Parental 

cells (25 cells, or 83.3% of the total Parental cells sequenced) are grouped in the top cluster. 

The Parental cells in this top cluster encompass the minor and dominant subclones previously 

identified in the Parental organoid, which diverged primarily at 5p15.33-q11.2 and Xq11.2-

q27.2 (Figure 4.15). This close clustering within the collective heatmap suggests that despite 

their internal differences, the Parental cells share more similarities with each other than with 

the majority of AKTi-resistant cells. The latter cells predominantly comprise the bottom cluster, 
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with the exception of two MK1-resistant cells also exhibiting the characteristic CNAs at 

5p15.33-q11.2 and/or Xq11.2-q27.2. These two MK1-resistant cells likely originated from the 

Parental cells within this top cluster. 

Although the two subclusters share many similarities, their genetic differences become 

apparent at chr5 and chr2. Previously, within the dominant subclone of the Parental PDO, a 

secondary subclonal population consisting of cells F1, A3, and C2 was distinguishable from the 

primary, dominant subclone due to their unique genomic characteristics: four copies of 5q11.2-

q23.2 and three copies of 5q23.2-q35.3, instead of the extra copy that the primary subclone 

had in both regions (Figure 4.16). These three cells are clustered at the bottom of the heatmap, 

interspersed among the MK1- and AZD1-resistant cells (63.6% and 92.9% of cells sequenced, 

respectively), which also exhibit these CNAs. Furthermore, each of these three cells has specific 

CNAs unique to them. Notably, C2 is the only cell with five copies at 2p25.3-p12, a CNA shared 

by all resistant cells in the bottom subcluster (Figure 4.18). The specific genomic signature of 

C2 mirrored in the resistant lines suggests that the subclone represented by C2 may be a 

resistant population that expanded to become the predominant subclone in the resistant 

organoids.  

Furthermore, both AKTi-resistant lines exhibit PDO-specific CNAs. These CNAs are highlighted 

within black boxes in the clustered heatmap (Figure 4.17). For instance, only 2 Parental cells 

(6.7%, corresponding to cells G1, G4) in the entire dataset have three copies at 1p36.33-p36.13. 

However, this specific CNA was predominantly observed in 8 MK1-resistant cells (36.4%, 

corresponding to cells A7, H5, F7, G6, G8, D8, B8, C5) and 1 AZD1-resistant cell (3.6%, A10). 

This CNA is absent in C2. Instead, it is exclusively present in cells from the primary subclone 

within the Parental organoid. Similarly, the bottom subcluster further splits into two branches. 

The most notable one consisted of a subset of 10 AZD1-resistant cells (35.7%, C11, D11, E10, 

G11, G12, H8, C10, E11, H10, B10) with four copies at 18p11.32-q12.1. In contrast, the 

remaining cells in the bottom and top clusters exhibit three copies in this region. These CNAs 

not only reflect the genomic differences that result from different types of AKT inhibition but 

also hint at the emergence of distinct subclonal populations in the resistant organoids. This is 

likely a response to the selective pressures exerted by the AKT inhibitors, highlighting the 

dynamic adaptation and evolution of tumours under these anti-cancer treatments. 
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Clustered heatmap depicts genome-wide copy number states of 80 single-cell genomes. Columns represent chromosomes segmented into 500 kb bins, 

rows correspond to single-cell genomes from Parental (n=30), MK1-resistant (n=22), and AZD1-resistant (n=28) organoids. Black boxes represent CNAs 

predominant in AKTi-resistant organoids. Hierarchical clustering of the genomes was performed using Euclidean distance and Ward’s linkage method. 

The colour scale indicates integer copy number states. 

Figure 4.17. Genome-wide CNA heatmaps of mCRC PDOs 
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Plots display genome-wide CNAs for cell C2 from the Parental organoid (top) and two 

representative cells from the MK1- and AZD1-resistant PDOs (plots inside black box). The shared 

CNAs highlighted in the profiles indicate a potential lineage relationship, suggesting that these 

resistant cells may have evolved from C2 or a similar subclone. Coloured horizontal lines represent 

median copy number states: black for diploid segments, red for amplifications, and blue for 

deletions. 
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Figure 4.18. Genome-wide copy number profiles of Parental cell C2 and representative 

AKTi-resistant Cells. 
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4.5 Discussion 

Single-cell whole-genome sequencing (scWGS) provides a more detailed view of the genomic 

landscape within tumours at the individual cell level, revealing subtleties and variations that 

traditional bulk sequencing approaches often miss. However, the limited amount of starting 

DNA material in a single cell (approximately 6 pg) makes whole genome amplification (WGA) 

a necessary step during sample processing (370), a step that can introduce biochemical biases. 

For instance, preferential amplification of certain genomic regions may lead to an uneven 

distribution of sequencing reads (370). This non-uniform read distribution can significantly 

impact the accuracy of copy number alteration (CNA) detection and ploidy estimation, as these 

analyses largely depend on measuring read depth of coverage to identify genomic alterations 

(358, 370). Therefore, selecting the most appropriate WGA method is crucial when the goal is 

to conduct CNA analysis in single-cell genomes. 

The initial sections of this chapter were dedicated to evaluating the suitability of 96 PicoPlex 

Gold-amplified single-cell genomic libraries derived from the Parental, MK1-, and AZD1-

resistant mCRC organoids for CNA analysis. Single-cell genomic libraries exhibited 

considerable variability in total read counts, which affected the depth of read coverage and 

inevitably introduced sample-to-sample variability. The observed variability in the data might 

be due to differences in gDNA extraction efficiency, variations in gDNA content among cells, or, 

more likely, the lack of a molarity (concentration) normalisation step in the PicoPlex Gold 

protocol. In this protocol, newly synthesised DNA libraries are pooled by volume before 

purification instead of individually purified and then pooled based on molarity. 

Despite the considerations stated above, the PicoPlex Gold libraries demonstrated high 

mapping rates and low levels of duplicate reads. These metrics reflect an efficient use of the 

sequencing data, as most of the reads were retained for downstream analyses. Additionally, 

while the average depth of coverage was low (<0.3×)―as is typical in scWGS (342)―, it 

remained adequate for CNA detection using Ginkgo (342). In fact, Ginkgo has demonstrated its 

ability to detect CNAs in gDNA libraries preamplified with MALBAC (334) and DOP-PCR (328-

332), even at shallow depths of coverage (<0.15×). Theoretically, Ginkgo could also infer CNAs 

with data downsampled to as low as 0.01× coverage (342). This highlights the robustness of 

Ginkgo in handling low-coverage single-cell genomic data for CNA analysis. 
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For assessing read distribution across genomic segments or bins, the index of dispersion (IOD) 

and median absolute deviation (MAD) proved to be very useful metrics. PicoPlex Gold-

amplified libraries were found to be underdispersed relative to the Poisson expectation (363). 

On the other hand, the low average MAD score observed aligns with several studies that have 

shown standard PicoPlex to outperform other WGA methods, including MALBAC (334), PTA 

(335), and droplet MDA (333), in terms of amplification evenness. These findings indicate a 

higher degree of coverage uniformity across bins, which is beneficial for CNA analysis as it 

implies reduced technical variability, thereby enhancing the reliability of detecting true 

biological signals.  

The scCNA analysis using 500 kb windows revealed genome-wide aneuploidies in the Parental, 

MK1-, and AZD1-resistant organoids, with average ploidy values ranging from 3.11 to 3.38. 

Validation of these ploidies was performed in two ways: First, the WGS data from the bulk 

organoids (including a matched blood control from the donor) were downsampled to single-

cell read depths, employing the same binning approach used for scCNA analysis. The second 

form of validation involved CNA analysis of the complete bulk dataset using 100 kb windows. 

In particular, the ploidy estimates reported by the full bulk dataset were slightly higher than 

those derived from the single-cell average ploidies (3.35-3.45). This discrepancy might stem 

from the inherent characteristics of bulk sequencing, which averages the signal across 

thousands to millions of cells, thereby masking individual cellular variations (371). 

Nevertheless, the copy number profiles across bulk datasets closely matched those observed in 

the single-cell genomes. Moreover, they were generally less noisy, owing to the absence of DNA 

preamplification. The consistent triploidy in all organoids, evident at both single-cell and bulk 

levels, suggests a potential whole-genome doubling event (WGD). This phenomenon is 

frequently observed in human cancers and is often associated with poor prognosis in CRC 

(372). 

The 500 kb window size used in the scCNA analysis of mCRC organoids, compared to the 

smaller window (100 kb) used in the analysis of the complete bulk data, leads to some 

implications: On one hand, employing a narrow window when the coverage is low results in 

many genomic windows having no sequencing reads at all (368), which increases the noise 

level in the data analysis. Consequently, it becomes difficult to distinguish between real CNAs 

and random fluctuations in the sequencing data, leading to decreased accuracy and reliability 

in copy number calls. On the other hand, using a wider window size, which effectively 

encompasses more reads, helps mitigate the noise and inter-bin variability typical of low-

coverage data. However, this approach might lead to missing smaller or focal CNAs, as these get 

smoothed out in larger windows (368). This “smoothing” effect occurs because smaller 
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alterations get lost within the average read depth of the larger window, thus potentially 

lowering the sensitivity needed to detect small but significant CNAs. Although these small-scale 

variations might occur in only a subset of cells, they could offer critical insights into the cellular 

heterogeneity within a tumour, which could be important for understanding the underlying 

mechanisms of disease progression and resistance. In essence, the smoothing effect from larger 

window sizes could lead to an underestimation of the genomic complexity in tumours, 

undermining one of the key benefits of single-cell sequencing, i.e., the ability to reveal detailed 

genomic variations at the individual cell level.  

This situation highlights the existing trade-off between selecting the most optimum window 

size and the capacity to detect smaller CNAs in single-cell sequencing. It underscores the need 

for scWGA methods to improve coverage uniformity while maintaining the ability to detect 

smaller-scale genomic alterations. Nevertheless, despite these differences in window size, the 

fact that similar CNA patterns were observed in both single-cell and bulk WGS analyses 

suggests that although window size impacts the resolution and sensitivity of CNA detection, 

the broader patterns of genomic alterations can still be discerned across different sequencing 

methodologies. This finding underscores the potential for scWGS, even with its current 

limitations in resolution, to match the findings obtained from the more traditional bulk WGS 

approach. 

A preliminary characterisation of the clonal architecture in the Parental organoid, conducted 

before deconvoluting the clonal composition of the AKTi-resistant lines, uncovered the 

presence of two distinct clones. The major clone, comprising 29 out of 30 cells in the Parental 

PDO, presented genome-wide copy number gains of chromosome arms or large portions of 

chromosomes. This finding aligns with the chromosomal instability (CIN) characterising 

colorectal cancers (373). This clone was further stratified into two subclones, diverging due to 

copy number gains at 5p15.33-q11.2 and Xq11.2-q27.2. The more prevalent or dominant of 

these subclones, comprising 21/30 cells, included a primary subclone (19 out of 21 dominant 

cells) characterised by the presence of five copies at 5q11.2-q23.2 and four copies at 5q23.2-

q35.3. This contrasted with the secondary subclone (3/21 cells), which exhibited four and 

three copies in these respective regions, suggesting a trend toward more extensive genomic 

amplification within this dominant group. Furthermore, the presence of cells such as C2 in the 

secondary subclone, which was the only cell that exhibited five copies at 2p25.3-p12, not only 

indicates ongoing genomic diversification within the dominant subclone itself but also 

highlights the inherent heterogeneity in the genetic makeup of mCRC cells even before 

treatment.  
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The scarcity of the subclone represented by C2 made the 2p25.3-p12 event undetectable at the 

bulk level in the Parental organoid (Supplementary Figure 18). However, C2 emerged as the 

primary subclone in the MK1- (14/22 cells) and AZD1-resistant (26/28 cells) lines. This 

observation suggests that prolonged exposure of mCRC organoids to the MK-2206 and 

AZD5363 inhibitors led to the near extinction of cells sensitive to the treatments, which were 

predominant before introducing the AKT inhibitors. Concurrently, this environment facilitated 

the expansion of pre-existing, albeit initially minor, treatment-tolerant cells like C2. In this 

model of intrinsic (primary) drug resistance (374), the CNA at 2p25.3-p12 was pre-existing in 

the Parental organoid; thus, it is likely that this chromosomal alteration conferred a selective 

advantage under drug pressure, contributing to the expansion of C2 in both resistant lines 

despite the use of different AKT inhibitors. Moreover, while the exact clone expanded in both 

AKTi-resistant organoids, it also developed treatment-specific CNAs. Notably, there were three 

copies at 1p36.33-p36.13 in 11 out of 22 MK1-resistant cells and four copies at 18p11.32-q12 

in 10/28 cells in the AZD1-resistant line. These specific CNAs further underscore the subclone’s 

adaptability to different treatment environments. 

Resistance in AKTi-resistant PDOs likely originated from a pre-existing Parental cell carrying 

specific CNAs at chromosomes 2 and 5 that expanded under MK-2206 and AZD5363 

treatments. Additional CNAs, such as those on chromosomes 1 and 18, likely provided further 

adaptive advantages under the different AKT inhibitors. This is supported by the observation 

that the CNAs on chromosomes 1 and 18 do not appear together in either of the AKTi-resistant 

organoids, suggesting that these CNAs likely arose to adapt to the specific treatments. 

Furthermore, the presence of the chromosome 1 CNA in the majority of MK1-resistant cells 

suggests that this alteration, although observed in only a small minority of Parental cells, was 

crucial for resistance to MK-2206. This indicates that this CNA on chromosome 1 was very 

important, even if insufficient alone, for resistance. In contrast, the presence of the 

chromosome 18 CNA in a smaller number of AZD1-resistant cells suggests that it was not as 

necessary for resistance to AZD5363, and might be more of a passenger CNA rather than a 

functional one. 

The expansion of inherently resistant, pre-existing clonal populations with specific CNAs in 

resistant cancers, as observed in the current research, has been documented before in the 

literature. To investigate whether resistance to radiation therapy in rectal cancer was driven by 

pre-existing genetic factors or acquired during treatment, Andel et al., established PDOs from 

rectal cancer samples and exposed them to radiation (375). Using scWGS and targeted 

genotyping before and after radiation, they tracked subclonal evolution in response to 

radiation. The authors observed three distinct patterns: subclonal persistence, extinction, or 
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expansion, but rarely the emergence of new, shared genomic aberrations. Interestingly, 

radiosensitive subclones exhibited copy-number patterns indicative of mitotic segregation 

errors, suggesting that chromosomal instability may be a marker of sensitivity. Furthermore, 

they found that specific copy-number alterations, such as amplifications of certain oncogenes 

(JAK2, FANCG, FANCF, DDB2, AR) and deletions of tumour suppressors (PTPN13, AFF1), were 

associated with radioresistance. These findings suggest that resistance to radiation therapy is 

largely determined by pre-existing radioresistant subclones that persist or expand rather than 

being newly created. The authors propose that this inherent resistance could potentially be 

predicted by analysing pre-treatment biopsies.  

The presence of inherent resistance has also been observed in blood cancers such as acute 

myeloid leukaemia (AML). Ding et al., used bulk WGS and deep sequencing to comprehensively 

analyse the mutational landscape of AML relapse in eight patients (376). Two main patterns of 

clonal evolution were observed at relapse in these patients: either the founding clone present 

at diagnosis acquired additional mutations, or a minor subclone survived initial therapy and 

expanded. In one patient, they observed the founding clone harbouring mutations commonly 

found in AML, e.g., DNMT3A (a gene involved in DNA methylation) and NPM1 (a protein 

involved in various cellular processes) (377), giving rise to a subclone that gained further 

mutations in other genes that affect the progression of AML, such as ETV6 (a transcription 

factor involved in haematopoiesis) (378), ultimately leading to relapse. A key observation in 

this study was the increase in specific types of mutations, particularly transversions, in 

relapsed AML compared to the primary tumours. This suggests that chemotherapy, while 

crucial for initial remission, might contribute to relapse by inducing DNA damage and 

generating new mutations that drive clonal evolution (376). 

These studies emphasise the critical role of clonal evolution and pre-existing genetic 

heterogeneity in driving resistance to therapy. The presence of specific genetic alterations, 

whether CNAs in CRC or mutations in AML, can confer a survival advantage to certain 

subclones, allowing them to persist or expand in the face of treatment. This shared principle 

underscores the importance of developing therapeutic approaches that can effectively target 

these resistant subpopulations to improve patient outcomes. 

Focusing on the current research, the uniform response to the MK-2206 and AZD5363 

inhibitors—despite their distinct mechanisms of action but shared target in the AKT 

pathway—suggests a resistance linked to the subclone’s ability to adapt to or tolerate the 

effects of any treatment interfering with the AKT pathway, not just a specific drug. The role of 

the AKT pathway in mediating multidrug resistance (MDR) has been extensively studied and 
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documented in previous research (379). However, this pathway alone is not solely responsible 

for MDR. It is often accompanied by the transduction of upstream and downstream targets, 

which involve the modulation of apoptosis, cell growth, and cellular metabolism, all of which 

are associated with the mechanisms of MDR (379). 

A high frequency of chromosomal gains suggests the presence of oncogenes favouring cell 

growth and survival (9). Although several gains involving many proto-oncogenes were 

identified in resistant mCRC cells (e.g., APC, EGFR, KRAS, WNT2), the anaplastic lymphoma 

kinase (ALK) gene, located at 2p23.2-p23.1, is an important proto-oncogene that lies within the 

2p25.3-p12 amplicon. As a tyrosine kinase receptor, ALK activates several signalling pathways, 

including PI3K/AKT/mTOR, RAS/ERK and JAK/STAT (380). When dysregulated, these 

pathways can affect cell proliferation, migration, inhibition of apoptosis, and angiogenesis. In 

human cancers, constitutive activation of ALK has been identified through various mechanisms, 

including genomic amplification, chromosome translocations, or point mutations, with the 

most well-known being chromosomal translocations leading to the ALK-EML4 fusion in non-

small cell lung cancer (NSCLC) (381). In a 2013 screening of 756 CRC samples from Saudi 

Arabia, an increase in ALK copy number gain or amplification was discovered in 3.4% of the 

samples (381). This genetic alteration was associated with poorly differentiated neoplasms, 

indicative of more aggressive cancers, and was linked to a worse prognosis, regardless of CRC 

stage or microsatellite instability. With their findings, Bavi et al., suggested that alterations in 

ALK alone were correlated with a poorer prognosis in this subtype of CRC, even when 

considering other variables. Besides ALK, ENO1 at 1p36.23 and PGD at 1p36.22 in the MK1-

resistant organoid are also noteworthy. These genes are both located within the 1p36.33-

p36.13 CNA specific to the MK1-resistant organoid and were upregulated in this resistant line 

compared to the untreated control (Figure 3.18). This observation hints at a potential link 

between genes located within CNA regions and the impact of these variations on their 

expression levels. 

With respect to the minor clone identified in the entire dataset, represented by G3 in the 

Parental dataset, it was characterised by a “nearly diploid” genome (ploidy = 1.7). Interestingly, 

this clone was also represented in 2 out of 22 MK1-resistant cells, which displayed similar 

ploidies and CNAs. Of particular interest was a shared deletion of chr4, encompassing multiple 

tumour suppressors, including the gene encoding the F-box protein FBXW7 (4q31), a crucial 

component of the SCF (SKP1-CUL1-F-box protein) complex. This complex is a part of the really 

interesting new gene (RING) family of E3 ubiquitin ligases (382). Within the E3 complex, F-box 

proteins are crucial for recognising protein targets for ubiquitin-mediated proteasomal 

degradation. In this way, F-box proteins act as tumour suppressors by targeting the degradation 
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of approximately 20% of proteins involved in cell-cycle regulation, transcription, and 

apoptosis, including key proteins such as cyclin E, c-Jun, c-MYC, Notch, MCL-1, p53 and mTOR 

(382). Consequently, the inactivation of F-box proteins through genomic deletions, mutations, 

or promoter hypermethylation leads to the accumulation of these oncoproteins, disrupting 

multiple downstream signalling pathways and leading to uncontrolled cell proliferation (382). 

Indeed, loss-of-function mutations in FBXW7 are commonly observed in various cancers. These 

include approximately 30% of cholangiocarcinomas and T-cell acute lymphoblastic leukaemias 

(T-ALL), as well as 4-15% of cases in pancreatic, gastric, and colon carcinomas, in addition to 

prostate and endometrial cancers (383). Moreover, in CRC, lower expression of FBXW7 has 

been associated with a lower 5-year survival rate compared to cases with higher expression 

levels (384).  

While the copy number profile of the “nearly diploid” MK1-resistant cells derived from G3 

matched that of their progenitor, these cells exhibited additional amplifications in regions 

where G3 maintained a diploid state or had fewer copies. For example, the three copies gained 

at 2p25.3-q13 affect the ALK gene at 2p23.2-p23.1. Besides ALK, various other gains identified 

in the MK1-resistant cells were observed affecting chromosomes that harbour proto-

oncogenes (EGFR and MET on chr7), signalling molecules (WNT2 on chr7), genes involved in 

cell adhesion and migration (PODXL on chr7), and transcription factors (MYC on chr8). All these 

genes are known to play roles in CRC’s development and progression (58).  

The distinct copy number profile observed in these “nearly diploid” genomes, as opposed to 

the average triploidy reported for all PDOs, raises several possibilities. One hypothesis is that 

these cells might represent contamination from less-transformed cancer cells within the 

Parental and MK1-resistant mCRC organoid cultures. This theory is supported by the presence 

of chromosomal changes typically reported in the early stages of primary colorectal 

carcinomas, such as deletions at 1p and 18p and gains at 8q and 13q, as well as alterations 

characteristic of later stages, such as the loss of 4p (59) (Figure 1.4). Additionally, CNAs 

contributing to the progression from primary colorectal carcinomas to liver metastases further 

support this theory, particularly with early-stage changes such as loss of 8p and gain of 7p, and 

late-stage modifications like loss of 14q and gain of 1q (59). Furthermore, the persistence of 

these cells (although scarce) in the untreated Parental and MK1-resistant lines suggests they 

represent a minor yet inherently treatment-resistant cell population. The plate-based G&T-seq 

approach may not have sufficiently detected this population, which was also indiscernible in 

the bulk data analysis, highlighting the potential limitations of these methods in identifying 

minor clonal populations. 
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Despite the organoids being treatment naï ve to AKT inhibitors, the observation of intrinsic drug 

resistance within the mCRC organoids is not surprising. This is because the donor had received 

FOLFIRI at the time of sample donation and, prior to that, had been treated with oxaliplatin and 

capecitabine. Indeed, every instance of treatment failure acts as a selective event, resulting in 

tumours progressively becoming more aggressive and accumulating complex genomic 

aberrations within their resistant phenotype (385).  

The primary drug resistance observed in mCRC organoids fits well with Darwin’s “survival of 

the fittest” theory of evolution, as it explains why tumours become more aggressive with 

continuous drug exposure (386). However, a significant limitation of this study is the challenge 

in discerning the tumour’s inherent suitability to withstand AKT inhibition before organoid 

development. Without directly comparing the mCRC liver specimen to the patient-derived 

organoids, it is difficult to ascertain which CNAs were pre-existing in the tumour and which 

may have developed during the organoid culture process. Undoubtedly, some CNAs may be the 

result of the patient’s previous treatments, while others could have emerged during the culture 

process. A potential solution to this limitation would be to analyse the bulk sequencing data 

from the original liver specimen. While this approach might not reveal as much heterogeneity 

as single-cell sequencing, it would at least provide a comprehensive overview of the tumour’s 

genomic landscape prior to the development of the organoids, which would enhance the 

interpretation of the changes observed in all three organoids. Despite these challenges, the 

study does shed light on the changes that emerged due to prolonged drug exposure, likely 

reflecting the tumour’s adaptive evolutionary process under therapeutic pressure.  

In addition, while hierarchical clustering was used in the heatmap of copy number profiles to 

group cells based on their CNA similarities, this method alone is insufficient to determine the 

lineage relationships between cells. Lineage tracing would be more appropriate to truly 

understand the evolutionary relationship among subclones. This analysis could offer insights 

into how the subclones diverged over time, enhancing our understanding of the tumour’s 

adaptive mechanisms under drug treatment from an evolutionary perspective.  

Other limitations of this study, particularly regarding the sampling constraints of plate-based 

single-cell WGS, must be acknowledged. It is unclear if the differences in the proportion of 

resistant subclones are due to the limited number of cells analysed or if they accurately 

represent the initial tumour condition. The restricted cell numbers sequenced may not provide 

a comprehensive view of the tumour’s heterogeneity, potentially leading to an incomplete 

understanding of the subclonal landscape and the extent of drug resistance. These limitations 

highlight the need for a careful approach to interpreting the data. Nevertheless, the 
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deconvolution of Parental genomes from a single-cell sequencing perspective revealed crucial 

insights that were not apparent in the bulk data analysis. Indeed, the identification of the 2p12-

p25.3 amplicon, obscured in bulk data due to the rarity of the minor subclone in the Parental 

organoid, underscores the value of single-cell analysis in understanding subclonal 

heterogeneity. Understanding subclonal diversity in human cancers can provide critical 

guidance for developing treatment strategies to prevent the emergence of drug-resistant 

genotypes. 

In summary, the copy number analysis of single-cell genomes discussed in this chapter revealed 

the subclonal heterogeneity in mCRC organoids, characterised by a diverse landscape of 

genomic alterations, some of which were not detectable using bulk sequencing approaches. 

Despite overall similarities among Parental cells, distinct subpopulations with unique genomic 

signatures were identified. This included a predominant clone, which showed further 

stratification, and a particular subgroup within that expanded in the MK1- and AZD1-resistant 

organoids. The presence of subclonal heterogeneity and drug resistance even before the start 

of treatment highlights the challenges of targeting cancer at the genetic level. Understanding 

these dynamics is crucial for developing effective cancer treatments, specifically those to 

predict treatment responses. Such an approach could enable the evolutionary steering of the 

disease towards more clinically treatable phenotypes. 

The next chapter will explore the transcriptional impact exerted by the CNAs identified in this 

chapter. To achieve this, the study will integrate G&T-seq datasets, aiming to provide a more 

comprehensive understanding of the genomic landscape and its implications on gene 

expression. 
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5.1 Introduction 

Thus far, this thesis has explored the impact of acquired drug resistance to AKT inhibition in 

mCRC PDOs through distinct analyses performed initially at the transcriptomic level and 

subsequently at the genomic level. At the gene expression level, the MK1-resistant PDO 

demonstrated metabolic reprogramming, mainly characterised by the upregulation of 

glycolysis and related biosynthetic pathways and genes involved in extracellular matrix (ECM) 

remodelling. In contrast, the AZD1-resistant PDO, while also exhibiting upregulation of ECM-

related genes and metabolic genes, was marked by the upregulation of genes involved in several 

processes, such as the regulation of immune responses, cell surface receptor signalling, cell 

detoxification and protein folding, degradation, or cleavage. 

At the genomic level, the clonal composition of both control and resistant mCRC PDOs was 

characterised by inspecting genome-wide CNA changes, which helped identify shifts in clonal 

composition driven by drug resistance. Single-cell CNA analysis revealed a minor 

subpopulation within the untreated Parental PDO that expanded in the MK1- and AZD1-

resistant PDOs. Notably, chromosomal alterations on chromosomes 2 and 5 were prevalent in 

these subpopulations, with resistance-specific CNAs observed on chromosome 1 

predominantly in the MK1-resistant PDO and on chromosome 18 in the AZD1-resistant PDO. 

These findings prompted an investigation into the relationship between CNAs and gene 

expression changes in MK1- and AZD1-resistant PDOs to determine whether these structural 

variants were directly responsible for the transcriptional adaptations leading to drug 

resistance. By identifying differentially expressed genes within regions affected by CNAs, this 

chapter aims to elucidate the chromosomal adaptations that allowed mCRC cells to survive AKT 

inhibition. 

Aneuploidy occurs in up to 90% of solid tumours and 75% of blood cancers (387). Aneuploidy 

can be observed even in benign polyps, highlighting its role in the early stages of CRC 

development. Indeed, aneuploidy often acts as a catalyst for genetic instability, driving the 

transformation of tumour cells. This leads to patterns of genomic instability that may result in 

cell death when the level of genomic chaos becomes unsustainable. For example, conditions 

like monosomy create significant instability, usually lethal due to the loss of essential genes 

required for cell survival and proper functioning (387). However, in some cases, aneuploidy 

enables cells to surpass critical error thresholds, resulting in malignant cells with stable 

karyotype configurations that facilitate drug resistance and metastasis. The balance between 
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the destabilising effects of aneuploidy and the stabilising selection pressures favouring 

oncogenic functions illustrates the adaptive nature of cancer evolution (387). 

The gain or loss of chromosomes alters the dosage of numerous genes, i.e., the amount of gene 

product, affecting the expression levels of various proteins, including those that regulate other 

genes across different genomic loci (387). This widespread dosage imbalance plays a 

significant role in furthering cancer progression. Consequently, regulating gene expression 

through dosage compensation mechanisms is crucial for restoring and maintaining cellular 

homeostasis in conditions of genomic instability like aneuploidy (387). Given its importance, 

this chapter also delves into the potential dosage-compensatory mechanisms operating in the 

context of differentially expressed genes residing within regions of CNA, exploring how these 

mechanisms might mitigate the disruptive effects of aneuploidy on cellular function and, at the 

same time, promote drug resistance. 
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5.2 Aims 

The general aims of this chapter are summarised as follows: 

1. Perform copy number analysis using expression data to confirm correlations between 

CNAs identified through genomic analysis and those detected using transcriptomic 

data. 

2. Integrate single-cell genomic and transcriptomic data from mCRC PDOs to determine if 

CNAs contributed to gene expression profiles associated with drug resistance in AKTi-

resistant mCRC PDOs. 

The hypothesis behind these aims was that genes differentially expressed and contributing to 

resistance would be found within CNA regions, particularly on chromosomes 2 and 5. This 

would suggest a direct link between structural genomic alterations and the transcriptional 

reprogramming observed in AKTi-resistant mCRC PDOs. 
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5.3 Methods: Bioinformatics integration of scRNA and scWGS datasets 

A list of the software packages and R-based tools employed for the integration of the scRNA-

seq and scWGS datasets is provided in Table 16. Default parameters were employed for all 

computational tools unless stated otherwise in the text. 

Table 18. Software packages used for G&T-seq data integration 

Software Access/citation 

ComplexHeatmap v2.16.0 (157) 

Ensembl BioMart web-based tool (388) 

GenomicRanges v1.52.1 (341) 

ggplot v2.3.4.4 (161) 

InferCNV v1.16.0 (389) 

R v4.1.2 R Core Team (2022) 

RStudio v2023.6.2.561 R Core Team (2022) 

tidyverse v2.0.0 (176) 

UCSC liftOver web-based tool (345) 
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5.3.1 Transcriptome-based DNA copy number inference 

InferCNV v1.16.0 was used to infer DNA copy number states instead of integer copy numbers 

in mCRC organoids, leveraging the single-cell gene expression data presented in Chapter 3. 

InferCNV was developed by the Trinity Cancer Transcriptome Analysis Toolkit (CTAT) (390), a 

project that aims to provide bioinformatics tools to address various challenges in cancer 

transcriptomics. 

To perform the copy number variation (CNV) analysis, inferCNV requires three files to create 

an inferCNV object. These include a raw expression matrix, an annotation file containing 

sample information, and a gene ordering file. The raw expression matrix was exported from 

the Seurat object created during the scRNA-seq analysis. This matrix included cells that passed 

the quality control standards of the scRNA-seq processing pipeline and met Seurat’s filtering 

criteria. The Parental organoid was selected as the “normal” reference in the annotation file to 

infer the copy number states of AKTi-resistant PDOs. Lastly, the gene ordering file from 

GENCODE hg38 (version 27) was sourced from the Trinity’s CNV repository (391). Importantly, 

the Y and mitochondrial chromosomes were excluded from the inferCNV object generation 

step.  

The actual copy number analysis was conducted by invoking infercnv::run in the “subclustering” 

mode, with the “denoise” parameter set to “TRUE”, and by enabling a Hidden Markov Model 

(HMM) alongside the default Bayesian latent mixture modelling approach to predict CNV states. 

Genes with a mean count below 1 were also filtered out by specifying “cutoff=1” (set to 0.1 for 

10x scRNA-seq data). Finally, “cluster_by_groups” was set to “FALSE” to cluster subclones based 

on their CNV similarities at specific chromosomal regions rather than predefined classifications 

such as PDO of origin. 

While inferCNV generates a variety of plots, ComplexHeatmap v2.16.0 and ggplot v2.3.4.4 were 

employed for visualising its output files for detailed analysis: 

- “HMM_predHMMi6.rand_trees.hmm_mode-subclusters.observations.txt”: 

For the AKTi-resistant organoids, a heatmap of genome-wide CNV states was generated 

using this output. InferCNV does not generate a corresponding file for the reference 

sample. Consequently, only CNV states pertaining to the resistant organoids are 

documented in the “Results” section of this chapter. 

- The “infercnv.references.txt” and “infercnv.observations.txt” files contain normalised 

and adjusted gene expression matrices. These files were used to assess the impact of CNV 
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states on gene expression in Parental and AKTi-resistant PDOs, respectively. Additionally, 

the “infercnv.observations_dendrogram.txt” output was used to group resistant cells 

using hierarchical clustering based on Euclidean distance and average linkage. 

- “HMM_CNV_predictions.HMMi6.rand_trees.hmm_mode-

subclusters.Pnorm_0.5.pred_cnv_regions.dat”: This output specifies genomic 

coordinates containing CNV states. These regions were subsequently mapped to 

chromosome arms using the UCSC hg38 cytoband data (392). For this purpose, an adapted 

version of the “inferCNV-postprocess.r.txt” script was employed (393, 394).  

- The “HMM_predHMMi6.rand_trees.hmm_mode-subclusters.cell_groupings” file was 

used to calculate the frequency of scRNA-seq CNV subclones in AKTi-resistant PDOs. Along 

with the previous file, it was used to represent the CNV events characterising the subclones 

identified. 

- The “infercnv.invert_log_FC.observations.txt” file contains data obtained by subtracting 

the average fold change of normal cells from that in tumour cells. Thus, this file provided a 

relative measure of gene expression changes in AKTi-resistant cells. This file and “the 

infercnv.invert_log_FC.references.txt” were used to compare gene expression levels 

across chromosomes between the Parental and AKTi-resistant cells. 

- The “infercnv.observations_dendrogram.txt” output was used to group AKT-resistant cells 

using hierarchical clustering based on Euclidean distance and average linkage.
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5.3.2 Mapping differentially expressed genes to CNA regions 

To determine if copy number alterations (CNAs) in specific genomic regions drove changes in 

gene expression in AKTi-resistant organoids, the genomic coordinates of differentially 

expressed genes (DEGs) identified in single-cell transcriptomes were compared to the genomic 

coordinates of CNAs presented in the scWGS chapter. For this purpose, the Ensembl BioMart 

web-based tool (395) was employed to find the hg38 genomic coordinates of DEGs. The 

attributes retrieved included the gene stable ID, gene name, chromosome/scaffold name, gene 

start, and gene end. The output was then formatted in R to create a file compatible with the 

UCSC LiftOver web-based platform (396). Using LiftOver, the hg38 genomic coordinates of the 

DEGs were converted to hg19 coordinates, ensuring they aligned with the hg19 coordinates of 

genomic CNAs.  

Next, GenomicRanges v1.52.1 was used to find overlapping regions between the genomic 

coordinates of CNAs documented in the “CNV1.txt” created during the Ginkgo CNA of scWGS 

libraries and the genomic coordinates of DEGs. The intersections were then matched with hg19 

cytoband information to provide a chromosomal context for these CNAs. With the cytoband 

information integrated, further information was extracted from the intersections, such as the 

CNAs coordinates, the genes located within the CNA region, the sample names presenting these 

structural variants and the copy number at the specific CNA.  

The following step in this integrated analysis involved using tidyverse v2.0.0 and custom 

functions to summarise the cytoband range of CNAs affecting DEGs. This was achieved by 

identifying all cytoband regions overlapped by the gene’s CNA in AKTi-resistant genomes and 

determining the broadest contiguous cytoband range encompassing the affected gene. This 

analysis yielded information about the broadest span of CNA cytobands in which DEGs were 

found, offering insights into the genomic landscape of the CNAs that could contribute to gene 

expression changes. 
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5.4 Results  

5.4.1 Transcriptome-based DNA copy number inference can detect large-scale 
copy number alterations but has limited accuracy  

The previous chapter focused on detecting CNAs using single-cell whole genome sequencing 

data. To maximise the utility of the G&T-seq approach and assess whether the same structural 

variants were detectable in the matched single-cell RNA sequencing data, DNA copy numbers 

were further inferred from the Smart-seq2 (and 10x scRNA-seq) expression data using 

inferCNV (389, 397). 

InferCNV identifies copy number variations (CNVs) in tumour cells by applying a moving-

average approach to scRNA-seq data (397). Specifically, inferCNV averages the relative 

expression of genomically adjacent genes (typically across a window of 100 genes), thereby 

reducing gene-specific expression variability while preserving signals indicative of 

chromosomal aberrations. This process is further refined by comparing the resulting profiles 

with a “normal” sample, which serves as a reference to normalise the CNV profiles in test 

samples. This is performed by subtracting the mean expression signal of the normal cells from 

that of the treatment cells. The resulting residual expressions highlight regions in the sample 

that might be over-expressed (potential amplifications) or under-expressed (potential 

deletions). A Hidden Markov Model (HMM) then translates these residual intensities into CNV 

predictions by making a probabilistic decision about the most likely CNV state for a genomic 

window based on the observed residual expression of the window in question and the 

predicted states of neighbouring windows (389). As a result, inferCNV does not provide exact 

copy numbers but classifies genomic windows into broader categories such as “normal”, “gain”, 

or “loss”, which are then mapped to a numerical 6-state CNV model. Under this model, State 1 

refers to the loss of two copies; State 2 represents the loss of one copy; State 3 is neutral; State 

4 represents the addition of one copy; State 5 represents the addition of two copies; and State 

6 represents the addition of more than two copies. 

The heatmap presented in Figure 5.1A illustrates genome-wide CNV regions inferred from 

MK1- and AZD1-resistant single-cell transcriptomes as depicted under the HMM-based 

approach. InferCNV identified four subclonal populations primarily diverging at chromosomes 

2 and 5. The most abundant clusters, 1.1.1 and 1.1.2, exhibit one-copy gains (CNV state = 4) at 

2p and one-copy losses at 5q, with these structural variants sometimes co-occurring within the 

same subclone. Meanwhile, the minor subclusters, 1.2.1 and 1.2.2, exclusively exhibit one-copy 

losses at 5q (CNV state = 2), alongside one-copy gains at 12p, 15q, and 19q. 
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In the MK1-resistant PDO, the most predominant subclones include 1.1.1.1 (comprising 

approximately 46% or 40 out of 87 cells), 1.1.1.2 (~30%), 1.2.2.1 (10.3%), and 1.1.2.1 (5.8%), 

as illustrated in Figure 5.1B. These subclones exhibit chromosomal aberrations consistent with 

those previously observed in single-cell genomes. These include a one-copy gain at 1p, almost 

exclusive to the MK1-resistant PDO (1.1.1.2), a one-copy gain at 2p (found in 1.1.1.1, 1.1.1.2, 

and 1.1.2.1), and a one-copy loss at 5q (observed in 1.1.1.2 and 1.2.2.1). Conversely, the AZD1-

resistant PDO predominantly comprises the 1.1.2.1 subclone (75.7% or 106/140 cells) and the 

1.2.1.2 subclone (10.7%), characterised by a one-copy loss at 5q (Figure 5.1B).  

On the other hand, all subclones identified through copy number analysis of the 10x scRNA-seq 

data consistently exhibit a gain in 2p (Supplementary Figure 19A-B). Similar to the Smart-seq2 

findings, the loss of the 5q region does not consistently co-occur with the 2p gain across 

subclones within both AKTi-resistant organoids. For instance, within the MK1-resistant PDO, 

the two most prevalent subclones, originating from the 1.1.1 branch, constitute 63.8% 

(1,727/2,708) of the total cell population. These subclones exhibit a gain at chromosome 2p 

yet do not show the loss at 5q. Conversely, the second most predominant subclones within this 

resistant organoid, belonging to the 1.1.2 branch, are characterised by gains at 1p and 2p, along 

with the 5q loss. This pattern aligns with the genomic profile of the second most abundant 

subclone identified through Smart-seq2 analysis in the MK1-resistant PDO.  

In the case of the AZD1-resistant PDO, the dominant subclones were also part of the 1.1.1 

branch, accounting for 60.8% (1,382 out of 2,289) of the total cell population1 (Supplementary 

Figure 19B). The remaining, less abundant subclones, specifically the 1.2.1 and 1.2.2 subclones, 

exhibit gains at 2p and losses at 5q. Meanwhile, the least predominant subclones within the 

1.1.2 cluster show gains at 1p.  

Unfortunately, due to the nature of inferCNV analysis, which excludes CNVs of the reference 

sample from the final output, it was not possible to determine the copy number state of the 

Parental genome using its expression data through inferCNV. This limitation prevented a direct 

comparison of the CNV landscape between the Parental genome and derived cell populations 

in the AKTi-resistant from a scRNA-seq perspective.

 
1 Please note, although the subclones across the Smart-seq2 and 10x scRNA-seq datasets share identical 
naming conventions, this does not imply that they correspond to the same subclonal populations. 
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Figure 5.1. Genome-wide copy number states of AKTi-resistant cells inferred from scRNA-seq data. 

(b)

(a)
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(a) Heatmap displays predicted CNV regions as identified by inferCNV using a six-state Hidden Markov Model (HMM). Heatmap colours correspond to 

one of the six HMM states, indicating varying degrees of copy number alterations: State 1 represents the loss of two copies; State 2 indicates the loss of 

one copy; State 3 denotes a neutral state with no change; State 4 represents the addition of one copy; State 5 represents the addition of two copies; and 

State 6 denotes the addition of more than two copies. Columns correspond to genomic windows covering 100 adjacent genes, providing an averaged 

view of CNV states. Rows represent 227 single-cell transcriptomes derived from MK1- (n=87) and AZD1-resistant (n=140) mCRC organoids. Row 

annotations include information about the cells, such as organoid of origin, cell cycle phase, Seurat cluster identity, and inferCNV subclone identity. (b) 

Large-scale structural variants (SV) characterising inferCNV subclones, with adjacent bar plots denoting their frequency (%) in AKTi-resistant PDOs. 

CNVs highlighted in red represent CNVs observed in both Smart-seq2 and 10x scRNA-seq datasets.
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The subsequent part of the inferCNV analysis aimed to evaluate the impact of CNVs identified 

in resistant organoids on the expression of genes within the affected chromosomal regions.  

Figure 5.2 illustrates the average residual expression in AKTi-resistant cells (bottom heatmap), 

derived by subtracting the expression levels in the Parental reference (top heatmap), which 

served as a baseline for comparison. Notably, although not all RNA-seq CNV subclones exhibited 

a loss at 5q, genes located within chromosome 5 were generally downregulated in both 

resistant PDOs and across all RNA-seq subclones, compared to the Parental organoid. Similarly, 

AKTi-resistant organoids showed upregulation of genes located within 2p, while MK1-resistant 

cells (and, to a lesser extent, AZD1-resistant cells) also exhibited upregulation of genes within 

1p.  

Furthermore, examining the global expression of genes in all chromosomes revealed that in 

AKTi-resistant organoids, the overall expression of genes located on chromosome 5 was 

significantly lower than in the Parental control (Figure 5.3 and Supplementary Figure 21). 

Although the differences were less pronounced, AKTi-resistant PDOs also demonstrated 

increased overall expression of genes on chromosomes 1 and 2 compared to the control. 

Notably, the chromosomal aneuploidies hereby reported did not arise de novo in AKTi-resistant 

lines; instead, these variations were pre-existing, albeit at lower frequencies, in the Parental 

PDO. This observation was particularly noticeable in the 10x scRNA-seq data, likely due to the 

analysis of a larger number of cells (Supplementary Figure 20). 

Several conclusions can be drawn from the CNV analysis using single-cell expression data. First, 

the main (sub)chromosomal copy number changes previously identified in single-cell genomes 

at 1p36.33-p36.13, 2p25.3-p12, and 5q11.2-q35.3 were also detected at the transcriptional 

level, regardless of the scRNA-seq platform employed. Although the 1p gain was present in both 

AKT-resistant lines, it was more frequently observed in the PDO line treated with the MK2206 

inhibitor, a finding that was also observed in single-cell genomes. Furthermore, transcriptome-

based CNV analysis not only established the existence of subclones carrying these 

chromosomal alterations in the Parental PDO before treatment, but also confirmed their 

expansion in AKTi-resistant organoids. Lastly, while the 2p gain and 5q loss were 

simultaneously observed in single-cell genomes, the 5q loss was not consistently identified in 

RNA-inferred CNV subclones, especially in AZD1-resistant cells. In fact, in AKTi-resistant PDOs, 

the most abundant subclones primarily exhibited the 2p gain without the 5q loss across both 

scRNA-seq platforms, even though the majority of subclones, including those not explicitly 

exhibiting a 5q loss, showed a decreased expression of genes within the 5q region.  
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 Figure 5.2.Heatmap of relative expression values of all genes across mCRC single-cell transcriptomes. 
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In this figure, the top heatmap displays the expression values of Parental cells (n=134), which were used as a “normal” reference. Columns represent 

genes ordered by their absolute genomic position across chromosomes. This heatmap defines the baseline expression levels for genes in reference cells. 

The bottom heatmap shows the residual expression values for MK1- and AZD1-resistant cells (n=87, n=140 cells, respectively). These values were 

calculated by subtracting the baseline expression data of Parental cells from each AKTi-resistant sample. Colour intensities indicate chromosomal 

regions with significantly higher or lower expression. Specifically, red indicates regions likely containing large, amplified segments, while blue denotes 

regions with potential deletions. Rows (cells) are organised using hierarchical clustering based on Euclidean distance and average linkage. Row 

annotations include information about cells, such as organoid of origin, cell cycle phase, Seurat cluster identity, and inferCNV subclone identity.
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Box plots represent the median expression values across each chromosome for the Parental (n = 134), MK1-resistant (n=87), and AZD1-resistant (n=140) 

mCRC PDOs. Expression data was obtained by subtracting the average log2 fold change values in Parental cells from those in AKTi-resistant cells. The 

plot offers a detailed overview of how treatment-induced gene expression variations are distributed across chromosomes, shedding light on the genomic 

response to therapy.

Figure 5.3. Genome-wide gene expression binned per chromosome in mCRC single-cell transcriptomes. 
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5.4.2 Unveiling the intricate relationship between copy number alterations and 
gene expression in AKTi-resistant organoids 

The single-cell genome and transcriptome analyses reviewed so far point towards a potential 

impact of copy number alterations (CNAs) on gene expression in mCRC PDOs. This prompted a 

re-evaluation of the global differential gene expression (DGE) analyses previously conducted 

on AKTi-resistant PDOs,  aiming to uncover gene expression patterns indicative of CNA 

influence. This initial investigation, which examined the distribution of differentially expressed 

genes (DEGs) across chromosomes―specifically on chromosomes 1, 2, and 5, as they harbour 

the most significant CNAs in resistant organoids―revealed intriguing findings.  

In the MK1-resistant PDO, chromosome 5 emerged as the chromosome with the highest 

concentration of downregulated genes (Figure 5.4A). In contrast, chromosome 1 exhibited the 

highest number of upregulated genes, with chromosome 2 also showing a modest number of 

upregulated genes.  

On the other hand, the AZD1-resistant PDO presented a distinct expression profile, with 

chromosome 5 showing fewer downregulated genes than the previous PDO (Figure 5.4B). 

Instead, the highest number of upregulated genes came from chromosomes 1 and 2, with the 

latter chromosome standing out for contributing 14 upregulated genes to the pool of DEGs 

within this organoid.  
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Stacked bar plots illustrate the distribution of DEGs across chromosomes, derived from the Smart-

seq2 global differential gene expression analysis detailed in Chapter 3. Plots are divided into two 

panels: (a) MK1-resistant PDOs, featuring 131 DEGs, and (b) AZD1-resistant PDOs, with 109 

DEGs. Within each bar, DEGs are categorised as either upregulated or downregulated, with the 

specific count of DEGs displayed inside the corresponding segment. The height of each segment 

represents the percentage of upregulated or downregulated DEGs on a specific chromosome, 

calculated relative to the total count of upregulated or downregulated DEGs identified across all 

chromosomes.

Figure 5.4. Distribution of differentially expressed genes by chromosome in AKTi-

resistant PDOs. 

(a)

(b)
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Given the marked downregulation of genes on chromosome 5, particularly in the MK1-resistant 

PDO, alongside the significant upregulation observed on chromosomes 1 and 2 in resistant 

organoids, the analysis proceeded to explore overlaps between the loci of differentially 

expressed genes and regions affected by copy number alterations. This exploration aimed to 

investigate the potential link between CNAs and DEGs on affected chromosomes and to 

understand their contribution to the observed resistance phenotype. The investigation mainly 

focused on genomic regions exhibiting one-copy losses, e.g., 5q11.2-q23.2 and 5q23.2-q35.3, 

and one-copy gains at 1p36.33-p36.13 and 2p25.3-p12. According to single-cell genome-based 

CNA analysis (and later supported by transcriptome-based CNV findings), these specific 

chromosomal alterations characterise a minor cell population in the untreated Parental 

organoid, which later proliferated to become the dominant subclone in the MK1- and AZD1-

resistant PDOs. 

From the initial 131 and 109 DEGs identified in MK1- and AZD1-resistant PDOs, respectively, 7 

and 1 mitochondrial-related genes were lost during the lift-over conversion step, necessary for 

aligning the hg38 coordinates of DEGs to the hg19 coordinates of CNAs. Nonetheless, the entire 

set of DEGs for each of the resistant PDOs was found to overlap with CNA-affected regions. 

Figure 5.5 illustrates the broadest cytoband ranges within which CNAs identified in single-cell 

genomes, intersect with genes that were differentially expressed in MK1-resistant 

transcriptomes compared to the Parental control. Among the eight genes upregulated in 

chromosome 1 of this resistant PDO, three genes—ENO1, PARK7, and PGD—were located 

within the one-copy gain spanning 1p36.33-p36.13. This particular CNA was observed more 

frequently in the MK1-resistant line than in either the Parental or AZD1-resistant PDOs.  

On the other hand, YWHAQ, PDIA6, LRATD1, PREB, EPAS1, and PCYOX1 are located within the 

one-copy gain at 2p25.3-p12, which encompassed all the upregulated genes on this 

chromosome, while genes immediately downstream this CNA were all downregulated.  

Furthermore, the two CNAs with one-copy losses at 5q11.2-q23.2 and 5q23.2-q35.3 

predominantly contained nine of the ten downregulated genes on this chromosome, namely 

TBCA, RPS23, TMED7, SLC12A2, RPS14, MRPL22, NPM1, HNRNPH1, and RACK1. The remaining 

downregulated gene, RPL37, was situated upstream of the 5q11.2-q23.2 region. Notably, 

CXCL14, located at 5q31.1, stood out as the only gene upregulated within in this chromosome, 

also lying within the one-copy loss at 5q23.2-q35.3.
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Figure 5.5. Genomic landscape of copy number alterations affecting differentially expressed genes in MK1-resistant cells. 
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For chromosomes 1, 2 and 5, dot plots (left panel) illustrate the broadest contiguous cytoband ranges impacted by CNAs that encompass 

DEGs, providing a summary of key genomic regions affected by these structural variants. Dot sizes indicate the average copy number of 

single-cell genomes exhibiting the CNAs that make up the range, while the colours represent the direction of gene expression: red for 

upregulated and blue for downregulated DEGs. The right panel displays chromosome figures annotated with cytoband regions affected by 

one-copy losses (5q11.2-q23.2 and 5q23.2-q35.3) and gains (1p36.33-p36.13 and 2p25.3-p12) relative to the Parental control, including 

DEGs in these areas to illustrate the possible influence of CNAs on gene expression. 
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Figure 5.6 also illustrates the relationship between CNAs and DEGs in the AZD1-resistant PDO. 

Unlike the resistant organoid previously described, the AZD1-resistant PDO exhibited no 

upregulated genes within the one-copy gain spanning 1p36.33-p36.13. However, within this 

region, MTCO1P12, located at the start of the CNA at 1p36.33, was notably downregulated.  

A similar pattern was observed in chromosome 5, where regions with one-copy losses did not 

consistently correlate with gene downregulation. Specifically, the 5q11.2-q23.2 region 

exclusively harboured upregulated genes, whereas 5q23.2-q35.3 featured a mix of upregulated 

(e.g., CXCL14, also upregulated in the MK1-resistant PDO) and downregulated genes, including 

RPS14, NPM1, and RACK1, all of which were also downregulated in the MK1-resistant PDO. 

Lastly, nine of the fourteen genes upregulated in chromosome 2 were located within the gain 

at 2p25.3-p12. These included MRPL33, PPP1CB, BIRC6, EPCAM, XPO1, B3GNT2, PCYOX1 (also 

upregulated in the MK1-resistant PDO), SNRPG, and TGFA.  

The overlap analysis of CNAs and DEGs in MK2206- and AZD5363-resistant mCRC PDOs 

revealed that similar genetic alterations did not uniformly result in the anticipated patterns of 

gene expression changes. Specifically, gains in chromosomes 1 and 2 did not invariably lead to 

upregulation, nor did losses within chromosome 5 always result in downregulation, though in 

some instances, these expected relationships were observed. This variability points to a 

multifaceted basis of resistance to AKT inhibition in these two organoids.
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Figure 5.6. Genomic landscape of copy number alterations affecting differentially expressed genes in AZD1-resistant cells. 
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For chromosomes 1, 2 and 5, dot plots (left panel) illustrate the broadest contiguous cytoband ranges impacted by CNAs that encompass DEGs, providing 

a summary of key genomic regions affected by these structural variants. Dot sizes indicate the average copy number of single-cell genomes exhibiting 

the CNAs that make up the range, while the colours represent the direction of gene expression: red for upregulated and blue for downregulated DEGs. 

The right panel displays chromosome figures annotated with cytoband regions affected by one-copy losses (5q11.2-q23.2 and 5q23.2-q35.3) and gains 

(1p36.33-p36.13 and 2p25.3-p12) relative to the Parental control, including DEGs in these areas to illustrate the possible influence of CNAs on gene 

expression.
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5.5 Discussion 

In this chapter, the single-cell genome and transcriptome datasets independently analysed in 

previous chapters were integrated to identify the impact of chromosomal instability on gene 

expression and consequently, on the development of resistance to AKT inhibition in mCRC 

PDOs. 

The analysis began by employing inferCNV to detect DNA copy number variations (CNVs) from 

gene expression data, aiming to verify if the copy number alterations (CNAs) previously 

identified in single-cell genomes were also detectable at the transcriptional level. This 

investigation focused primarily on CNAs that characterised a minor subpopulation of cells 

within the Parental PDO that later expanded to dominate AKTi-resistant organoids. These CNAs 

included a one-copy gain spanning 2p25.3-p12 in single-cell genomes, resulting in a copy 

number of 5 relative to the Parental PDO, which showed 4 copies at this locus. Another key 

structural variant observed in resistant PDOs was a one-copy deletion at 5q11.2-q23.2 and 

5q23.2-q35.3, with copy numbers of 4 and 3, respectively. Additionally, the one-copy gain at 

1p36.33-p36.13 (copy number = 3) was also of interest as it was scarcely observed in Parental 

genomes but became more frequent in MK1-resistant than in the AZD1-resistant genomes, 

albeit still at low frequencies, suggesting its role as a passenger CNA (398). 

Indeed, inferCNV identified the main CNAs located at 1p, 2p, and 5q across Smart-seq2 and 10x 

scRNA-seq datasets. Moreover, inferCNV detected the 2p and 5q alterations within the Parental 

organoid, thereby confirming that these structural variants did not arise de novo, as they were 

present in a subset of cells within the control PDO prior to treatment with AKT inhibitors. 

Nevertheless, some ambiguity remained with respect to the CNAs detected. Although the 

2p25.3-p12 and 5q11.2-q35.3 CNAs were concurrently identified in the genomic analyses of 

resistant PDOs, analysis based on RNA expression data for CNA detection revealed a different 

pattern. The majority of RNA-inferred CNA subclones exhibited the 2p gain without the 

accompanying 5q loss across both scRNA-seq platforms, with the co-occurrence being more 

frequently detected in MK1- than in AZD1-resistant transcriptomes. However, when examining 

genome-wide expression levels in resistant cells, an overall downregulation of genes within 

chromosome 5 was observed. This suggests that, although the 5q loss may not have been 

directly identified as a CNA through RNA-inferred methods, the expression data subtly 

indicated its functional impact.  
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The underlying reason for these observations was further explored in the second part of the 

analysis, which assessed the distribution of previously identified differentially expressed genes 

(DEGs) across all chromosomes in resistant organoids. The genomic coordinates of DEGs were 

then compared with CNA-affected regions, with results showing that all DEGs─124 for the 

MK1-resistant and 108 for the AZD1-resistant PDO─fell within areas of chromosomal 

instability. This observation aligns with expectations considering that all PDOs, including the 

Parental control, were triploid and exhibited genome-wide aneuploidies. 

While some concordance was observed between CNAs and gene dosage changes, with “gains” 

often associated with upregulation and “losses” with downregulation, this observation did not 

consistently apply across the main CNAs explored. For instance, a special situation was 

observed within the CNA spanning 1p36.33-p36.13. On one side, the MK1-resistant PDO 

exhibited upregulation of ENO1, PARK7, and PGD within the region. In contrast, the AZD1-

resistant PDO did not show any upregulated genes. In fact, only MTCO1P12 was found 

downregulated within this CNA.  

The observation that the metabolic enzymes ENO1, PARK7, and PGD, located within the 1p CNA 

region were upregulated in the MK1-resistant PDO—despite more cells lacking this specific 

CNA than having it—raises questions about how genes are found to be differentially expressed 

between conditions at the single-cell level. This situation prompts an investigation into 

whether such upregulation is attributable to the relative frequency of CNAs across the 

conditions being compared, the cumulative effect of an increased gene product resulting from 

the CNA, or a combination of both factors. 

The MK1-resistant PDO also exhibited numerous downregulated genes within the 5q11.2-

q35.3 CNA, where 9 of the 10 DEGs on the chromosome were located. These included TBCA, 

RPS23, TMED7, SLC12A2, RPS14, MRPL22, NPM1, HNRNPH1, and RACK1. In contrast, the AZD1-

resistant organoid did not show significant downregulation of genes in the same region, with 

the exception of RPS14, NPM1, and RACK1. These genes, located within 5q23.2-q35.3, were the 

only ones downregulated in chromosome 5. Interestingly, CXCL14, also located within 5q23.2-

q35.3, was upregulated in both organoids. This pattern suggests that inferCNV, which detects 

CNAs based on expression data, may not have identified the 5q regions as potential CNAs in the 

AZD1-resistant PDO due to the less pronounced downregulation of genes in this region, 

especially when compared to the MK1-resistant PDO. The difficulty in detecting the 5q loss 

among RNA-inferred CNA subclones underscores that certain CNA events, particularly losses, 

pose challenges for identification through RNA-based methods.  
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The differential gene expression patterns observed in chromosome 5, with regions of CNAs 

leading to the upregulation of CXCL14, alongside the downregulation of RPS14, NPM1, and 

RACK1 in both resistant organoids present an intriguing situation. In the case of CXCL14, the 

upregulation of this gene could be regulated by factors independent of copy number such as 

epigenetic modifications or cis/trans-acting elements located beyond the sites of CNA (399, 

400). Alternatively, CXCL14 might be involved in compensatory pathways aimed at 

counteracting the effects of AKT inhibition, an adaptive strategy often associated with the 

development of resistance to certain treatments (401). This mechanism could account for the 

consistent upregulation of CXCL14 across organoids. 

The role of CXCL14 as a chemokine seems to be context-dependent, with studies suggesting 

both tumour-suppressive and tumour-promoting activities. When secreted by cancer-

associated fibroblasts (CAFs), CXCL14 promotes tumour growth by inhibiting apoptosis and 

encouraging glycolysis and metastasis (402). In contrast, its secretion by epithelial cells 

establishes immune surveillance (253), and inhibits tumour invasion by recruiting B-cells, 

monocytes, and dendritic cells into tumour tissues (403). The contribution of CXCL14 to cancer 

cell metabolic reprogramming through the Warburg effect (312) is particularly interesting as 

several other glycolytic enzymes like ENO1 and PGD were previously found to be upregulated 

in the MK1-resistant PDO. 

Regarding RPS14 and NPM1, they are interconnected through their roles in protein synthesis 

and ribosome biogenesis (255). While RACK1 (receptor for activated C kinase 1) is typically 

identified as a scaffolding protein involved in various cellular processes, ribosomal RACK1, 

situated on the 40S subunit near the mRNA exit channel, contributes to translation control by 

recruiting eukaryotic initiation factor 4E (404). The overall downregulation of genes associated 

with protein synthesis in both AKTi-resistant PDOs was noted in previous chapters (Figure 

3.18A And Figure 3.20A). The dysregulation of the translational machinery in CRC often stems 

from alterations in key signalling pathways, including WNT, RAS/MAPK, and PI3K/AKT/mTOR. 

These alterations not only deregulate proteins essential for protein synthesis but also impact 

ribosome biogenesis (327). The consistent expression of these four genes in both samples, 

despite the CNA differences relative to the Parental control, suggests they may provide a 

survival advantage under different forms of AKT inhibition. 

Regarding chromosome 2, the two AKTi-resistant PDOs demonstrated a considerable number 

of genes upregulated within the 2p25.3-p12 CNA. In the MK1-resistant PDO, all upregulated 

genes on this chromosome (i.e., 6 genes) fell within this region, while the AZD1-resistant PDO 

exhibited 9 out of 14 upregulated genes in the same region, including PCYOX1, which was also 



5.5. Discussion 

242 

 

upregulated in the MK1-resistant PDO. The significant upregulation of genes in this region 

supports the hypothesis that only elevated gene expression levels facilitate the detection of 

large-scale CNAs using transcriptome-based CNA detection methods like inferCNV. 

Furthermore, the notable upregulation within the 2p region, coupled with the observation that 

the majority of RNA-inferred CNA subclones in AKTi-resistant PDOs predominantly exhibited 

the 2p gain without the 5q loss, suggests that this specific genomic alteration may play a pivotal 

role in providing a survival advantage, and could have promoted the proliferation of cells 

harbouring this feature under the selective pressure imposed by the AKT inhibitors. 

The observation that certain CNAs lead to an increase in the total amount of gene product, 

whereas others lead to a decrease, supports the fundamental concept that changes in gene 

dosage resulting from CNAs, can directly influence gene expression levels (405). However, as 

previously exemplified, the relationship between CNAs and DEGs extends beyond simple gene 

dosage effects. Multiple levels of gene dosage compensation exist to counteract the imbalances 

in gene expression resulting from aneuploidy to maintain tumour fitness despite the presence 

of genomic abnormalities (387). For instance, copy number gains in 6p are commonly observed 

in melanomas and breast carcinomas (BRCA) (406). Given that changes in copy number 

frequently affect large chromosomal segments, this often leads to collateral or “passenger” copy 

number alterations in nearby genes that do not necessarily provide a growth advantage (407). 

In melanoma and BRCA, the gain in 6p includes passenger genes involved in MHC class I-

mediated antigen presentation including TAP1, TAP2, TAPBP and XPO5 (407, 408). Notably, 

overexpression of TAP1 is associated with immune infiltration. The expression of these genes 

is often disconnected from the 6p gain, partially due to promoter hypermethylation, which 

results in their silencing and contributes to immune evasion (408). 

Mohanty and collaborators investigated the complex regulatory mechanisms that contribute to 

the uncoupling of gene expression from copy number alterations (UECN) across six different 

cancers, aiming to identify therapeutic targets within these regulatory factors (407). Their 

analysis revealed that genes with uncoupled expression from CNAs (nCpD) were less sensitive 

to changes in copy number compared to genes with coupled expression (CpD). Specifically, they 

found that amplified nCpD genes were more strongly suppressed by promoter methylation, 

indicating a complex interplay between genetic alterations and epigenetic regulation of gene 

expression in cancer. This study highlighted the pivotal role of transcription factors (TFs) in 

mediating this uncoupling, demonstrating that TFs associated with nCpD genes significantly 

influence their expression irrespective of copy number changes. This suggests that the 
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regulatory effect of TFs can override the expected gene dosage effects that would normally 

result from CNAs. 

Building on their findings, Mohanty et al., proposed a novel strategy for cancer treatment 

focused on targeting specific TFs to reverse UECN (407). By identifying TFs that could 

reestablish expression coupling of “tumour-toxic” gene copy number changes, they suggested 

that manipulating these TFs could compromise tumour fitness, exploiting gene dosage 

sensitivity to combat cancer more effectively. The application of this strategy across six cancer 

types in The Cancer Genome Atlas (TCGA) led to the identification of 21 TFs as potential targets. 

For example, in lung adenocarcinoma (LUAD), they discovered clusters of amplified nCpD genes 

associated with anti-tumour phenotypes and identified TFs capable of regulating these clusters 

in a way that could potentially enhance anti-cancer responses.  

The study above highlights the complex interplay between genetic and epigenetic factors in 

cancer, serving as a prime example of how tumours can fine-tune the effects of aneuploidy to 

their advantage. Additionally, the relocation of dosage-sensitive genes to different parts of the 

genome can help maintain the right balance of gene expression (387). These insights can be 

extrapolated to the current research thesis, offering a plausible explanation for the observed 

discrepancies between gene copy number and gene expression in chromosomes 1 and 5 within 

the AZD1-resistant PDO. It suggests that these discrepancies may represent adaptive 

mechanisms through which cancer cells leverage genetic imbalances, not just for survival, but 

to actively resist targeted therapies. This adaptive capacity of cancer cells presents both a 

challenge and an opportunity for therapeutic intervention, where disrupting these 

compensation mechanisms could offer a novel strategy for cancer treatment (387). 

Based on the findings from the integration analysis, several genes emerge as promising targets 

for follow-up studies to further elucidate their roles in driving resistance to AKT inhibition in 

mCRC PDOs. The genes of interest include PARK7, PGD, and ENO1, particularly in the MK1-

resistant PDO, as they are likely involved in metabolic processes. Additionally, PPP1CB and 

TGFA (both located within the 2p25.3-p12 CNA) seem to be interesting genes to explore in the 

AZD1-resistant PDO, given their roles in inactivating AXIN, a component of the destruction 

complex in the Wnt-signalling pathway (321), and in driving resistance to cetuximab (322), 

respectively. Finally, PCYOX1, CXCL14, RPS14, NPM1, and RACK1 should also be studied due to 

their expression in both resistant organoids. 

In the first instance, validation of target genes should start by performing quantitative PCR 

(qPCR) assays to ascertain their expression levels in resistant versus control organoids before 
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any functional experiments are conducted. This would confirm whether the observed 

differences in expression are statistically significant and biologically relevant. 

To assess whether resistance to AKT inhibition can be reversed, a combination of genome 

editing experiments and functional assays could be performed. These experiments would 

involve overexpressing target genes (RPS14, NPM1, RACK1) using CRISPR-mediated 

transcriptional activation (CRISPRa) (409). Conversely, to determine the functional role of 

upregulated genes (PARK7, PGD, ENO1, PCYOX1, CXCL14), gene knockout experiments using 

CRISPR-Cas9 or transcription activator-like effector nucleases (TALENs) (410), or gene 

knockdown experiments using small interfering RNA (siRNA) or short hairpin RNA (shRNA) 

should be performed (411). These methods target mRNA transcripts for degradation or inhibit 

their translation. Combined gene manipulation experiments could also be performed to 

investigate the synergistic effects of these genes on resistance by, for example, reactivating the 

expression of genes in chromosome 5 (e.g., RPS14, NPM1, RACK1) and silencing the expression 

of genes in chromosome 2 (e.g., PCYOX1). Following these genetic modifications, the modified 

MK1- and AZD1-resistant PDOs would be treated with the original MK-2206 and AZD5363 

inhibitors, and a cell viability assay would assess changes in drug tolerance in these mCRC 

PDOs. These approaches would provide insights into the underlying mechanisms of resistance 

and help determine whether the manipulation of these genes could restore sensitivity to AKT 

inhibition in advanced CRC cases. 

In addition, for CXCL14, since it was the only gene upregulated in an area of copy number loss, 

epigenetic studies could be used to investigate the modifications regulating this gene. 

Techniques such as bisulfite sequencing (412, 413), chromatin immunoprecipitation followed 

by sequencing (ChIP-seq) (414), and assay for transposase-accessible chromatin using 

sequencing (ATAC-seq) (415, 416) could be employed. Bisulfite sequencing can analyse DNA 

methylation patterns, ChIP-seq can identify histone modifications and protein-DNA 

interactions, and ATAC-seq can assess chromatin accessibility. Alternatively, methods such as 

single-cell genome and epigenome by transposases sequencing (scGET-seq) can probe both 

open and closed chromatin (416). These studies at both bulk and single-cell levels could 

provide comprehensive insights into the epigenetic mechanisms regulating CXCL14 and 

contribute to understanding its role in resistance to AKT inhibition in mCRC PDOs. 

While single-cell genome and transcriptome data were integrated in this chapter, it is important 

to establish the strengths and limitations of the chosen approach. Firstly, this integration does 

not strictly qualify as a pairwise analysis because the transcriptomic data from each cell was 

not directly correlated with its corresponding genomic data. Instead, the analysis compared 
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overall patterns of CNAs identified in a subset of 80 genomes with differential gene expression 

patterns observed in a larger set of 361 transcriptomes. This approach provided broad 

population-level insights into genetic and transcriptional changes across the entire cell 

population in MK1- and AZD1-resistant organoids, allowing the identification of common 

patterns and trends associated with drug resistance that may have been missed in a strictly 

pairwise analysis. Additionally, this approach reduced costs by focusing on a subset of genomes, 

which still allowed for the identification of key chromosomal regions where CNAs correlated 

with differential gene expression, rather than sequencing all 361 genomes. This approach 

helped identify key chromosomal regions where CNAs correlated with differential gene 

expression, highlighting important areas for further study. Moreover, by utilising the 361 

single-cell transcriptomes for gene expression analysis, this approach increased the statistical 

power of differentially expressed genes, leading to more robust results. 

However, there are notable disadvantages to this approach as well. The lack of single-cell 

pairwise correlations may limit the full potential of G&T-seq by restricting the ability to 

understand the direct relationship between genomic changes and transcriptomic responses at 

the individual cell level. Additionally, population-level analysis might overgeneralise findings, 

potentially missing unique or rare cell-specific interactions that could be critical for 

understanding specific resistance mechanisms. Lastly, any observed correlations between 

CNAs and gene expression changes are indirect and require further validation to confirm 

causality. 

Undoubtedly, establishing the relationship between CNAs and gene expression can be complex, 

as CNAs can influence gene expression through several mechanisms beyond dosage 

compensation. A strategy that could be applied to determine if changes in gene expression 

correlate with their copy number would involve comparing copy number amplification and 

expression level upregulation ratio against copy number deletion and expression level 

downregulation, as well as copy number deletion and expression level downregulation ratio 

against copy number amplification and expression level upregulation (417). Additionally, 

expression quantitative trait loci (eQTL) analysis can be a valuable method for evaluating the 

impact of CNAs on mRNA expression, identifying associations with changes in nearby (cis-

eQTLs) or distant (trans-eQTLs) genes, indicating potential regulatory interactions (418). 

The first part of this chapter also aimed to maximise the potential of the G&T-seq technique, by 

assessing the suitability of transcriptome-based DNA copy number detection to validate 

chromosomal changes previously observed in single-cell genomes. Unlike WGS, RNA-seq is 

primarily designed to measure gene expression levels and therefore faces challenges in 
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distinguishing whether changes in gene expression are due to differential expression or due to 

actual changes in the number of DNA copies (419). This difficulty arises because RNA-seq data 

is inherently biased towards exonic regions—where genes are expressed—and does not 

uniformly cover the entire genome. This bias means that while RNA-seq can indicate the copy 

number states of genes, it may not accurately represent the copy number of intergenic regions, 

which are not captured.  

Another issue specific to inferCNV is its inability to detect small structural changes. This 

limitation arises because CNA calls by inferCNV are based on genomic windows encompassing 

at least 100 genes. Given that the median length of a human protein-coding gene is 

approximately 26 kb (420), and recognising that genomic regions vary widely in gene density, 

a 500 kb stretch—which was the chosen window size for detecting CNAs in single-cell 

genomes—would typically accommodate far fewer genes than the 100 genes inferCNV uses to 

predict copy number changes. This makes inferCNV unsuitable for detecting focal or localised 

genomic changes. Despite these challenges leveraging the transcriptome for DNA copy number 

analysis remains a cost-effective alternative to genome-based approaches. 

While not investigated in this thesis, a foreseeable limitation of using plate-based G&T-seq with 

PicoPlex Gold WGA to identify single-nucleotide variants (SNVs) would be the potential 

inaccuracy in detecting the frequency of alternative alleles. This arises because some mutations 

might be underrepresented or entirely missed depending on the variant allele frequency and 

the sequencing depth. Indeed, allelic dropout (ADO) events and allelic imbalances, which are 

very commonly observed in single-cell genome sequencing, stem from the challenges in 

capturing and amplifying DNA from single cells (421). These factors pose a significant 

challenge for accurate genotyping.  

Nevertheless, single-cell sequencing still offers unparalleled resolution for studying tumour 

heterogeneity. A significant advantage of the G&T-seq technique is the flexibility it offers after 

the separation of mRNA and DNA, allowing for alternative amplification methods. Although 

multiple displacement amplification (MDA) (422, 423) has shown limitations for copy number 

analysis in the past due to over-amplification of certain regions (333), it has demonstrated 

greater success in calling SNVs (424). Furthermore, MDA-amplified fragments are compatible 

with long-read technologies such as PacBio high-fidelity (HiFi) sequencing (425), potentially 

overcoming some of the limitations associated with low sequencing depth. 

In conclusion, the interplay between the genome and the transcriptome is inherently complex. 

G&T-seq facilitated the identification of differentially expressed genes on chromosome 2 (and 
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chromosome 1 for the MK1-resistant PDO) affected by CNAs across AKTi-resistant PDOs. 

However, the absence of direct CNA effects on chromosome 5 in the AZD1-resistant PDO 

suggests a multifaceted impact of CNAs on gene expression, implicating mechanisms beyond 

gene dosage changes. Despite numerous challenges, the integrated analysis of G&T-seq datasets 

revealed multiple similarities and differences that would have remained obscured by 

examining only one of these “omics” layers separately. Furthermore, the differential 

representation of CNAs and their effects on resistant organoids underscores the complexity of 

genomic responses to targeted therapies and highlights the importance of dissecting these 

patterns in detail to understand the molecular basis of resistance. 
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6.1 General discussion 

Initial analyses of single-cell transcriptomes from MK1- and AZD1-resistant mCRC organoids 

focused on identifying clusters exhibiting drug-resistant phenotypes and characterising 

colonic cell types. Subsequent analyses evaluated gene expression differences between AKTi-

resistant PDOs and the untreated Parental to determine the impact of AKT inhibition. 

Furthermore, single-cell genomic and transcriptomic analyses of Parental and AKTi-resistant 

cells identified DNA copy number alterations (CNAs). These analyses facilitated the exploration 

of clonal dynamics from untreated to AKTi-resistant organoids. 

To further elucidate the impact of CNAs on gene expression, the genomic locations of 

differentially expressed genes between untreated and AKTi-resistant PDOs were compared to 

the coordinates of CNAs. This approach strengthened the findings by directly linking genomic 

alterations to changes in gene expression, underscoring the biological significance of CNAs in 

driving the drug-resistance phenotype. These insights contributed to a deeper understanding 

of the mechanisms by which mCRC PDOs developed resistance to AKT inhibition. 

Four transcriptionally distinct cell clusters were observed in all mCRC PDOs, though one of the 

clusters (Cluster 3) likely emerged due to technical factors. Cluster 0 consisted of cells with low 

proliferative activity and an elevated gene expression in protein synthesis and ribosomal 

biogenesis. This cluster exhibited a slight decrease in the MK1- and AZD1-resistant PDOs 

compared to the untreated control, indicating a transcriptionally stable population before and 

after treatment. Contrarily, Cluster 1 was characterised by highly proliferative cells with 

transcriptional profiles indicative of stem-like or undifferentiated cells. This observation, 

coupled with the upregulation of genes involved in various oncogenic processes such as 

anchorage-independent growth and cancer stem cell maintenance, suggests that this cluster 

represented an aggressive phenotype. Notably, the cell abundance of this cluster significantly 

increased in the MK1-resistant PDO compared to the Parental PDO.  

Regarding the MK1-resistant PDO, differential gene expression across conditions revealed the 

upregulation of genes involved in several processes, including extracellular matrix remodelling 

and cell motility (ACTB, CFL1, KRT18, S100A4) and cell-cell adhesion (MUC21) in this organoid. 

However, the most striking finding was the upregulation of genes encoding metabolic enzymes 

(e.g. ENO1, PGD, PDK3) and genes encoding plasma membrane transporters (e.g., GLUT1, 

SLC6A14, CD36). These genes play roles in pathways of energy metabolism, such as glycolysis 

or the pentose phosphate pathway. In particular, the upregulation of glycolytic genes aligns 

with the Warburg effect, suggesting a shift towards aerobic glycolysis to meet the increased 

metabolic demands associated with cancer progression and resistance.
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Cluster 2 comprised non-proliferative cells expressing genes that regulate cell-cell 

communication (GJA1) and genes associated with epithelial cell migration and tissue 

remodelling (CEMIP, ECM1, LGALS1). This cluster increased in the AZD1-resistant organoid, 

which also showed upregulation of genes involved in fatty acid (CD36, FABP5) and 

carbohydrate (PDP1) metabolism, extracellular matrix-remodelling genes (S100A4, FNDC3A, 

ECM1 and TACSTD2), and genes regulating cellular stability and survival under cellular stress 

(S100A6, MGST3). Additionally, there was a notable increase in the expression of genes that 

regulate immune responses (ENTPD1/CD39, CXCL14). These adaptations could have enabled 

the AZD1-resistant PDO to maintain cellular integrity under AKT inhibition. 

The observed differences in cluster abundance and gene expression profiles in the MK1- and 

AZD1-resistant organoids highlight the distinct transcriptional consequences of using different 

AKT inhibitors. The different responses to MK-2206 and AZD5363 might be attributed to their 

distinct mechanisms of AKT inhibition: MK-2206 is an allosteric inhibitor of AKT, while 

AZD5363 is an ATP-competitive inhibitor (146). Furthermore, while MK-2206 is a highly 

selective inhibitor of AKT, it has less affinity for the AKT1/2/3 isoforms than AZD5363 (426), 

which has higher affinity but may also interact with off-target proteins like P70S6K, PKA and 

ROCK1/2 (427). Consequently, these distinctions suggest that the choice of inhibitor can 

significantly influence the transcriptional and phenotypic landscape of cancer cells, affecting 

not only their response to treatment but also the characteristics of cells after acquiring drug 

resistance. This variability in drug response could also be attributed to the inherent cellular 

heterogeneity observed in solid tumours like CRC. 

The matched genomic data indicated that the development of drug resistance in both AKTi-

resistant organoids involved the expansion of one particular subclone (C2) with specific CNAs 

at chromosomes 2 and 5. This subclone was already present in the Parental control, albeit at a 

much lower frequency. The combination of CNAs at chromosomes 5 and 2 in AKTi-resistant 

PDOs might have worked synergistically to provide a more robust resistance mechanism. This 

synergy could have given these cells a competitive edge over other cells, enabling them to 

dominate under both treatment conditions. However, stochastic events could have also played 

a role.  

The observation that the same subclone became dominant in both MK2206- and AZD5363-

resistant PDOs despite their different mechanisms of action and cross-reactivities, suggests 

that the genetic alterations at chromosomes 2 and 5 in this subclone (and epigenetic 

modifications) equipped it with versatile resistance mechanisms effective against different 
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AKT inhibitors. In other words, although the inhibitors have distinct mechanisms of action, 

both ultimately prevent AKT activation. Therefore, if the resistance mechanisms either target 

downstream components within the PI3K/AKT pathway or activate alternative signalling 

pathways―e.g. GSK-3β is downstream AKT, and can also be inactivated by Wnt signalling (26)― 

leading to the transcription of genes typically regulated by AKT, it would confer resistance to 

both types of inhibitors. The activation of alternative oncogenic pathways that effectively 

bypass therapeutic blockade is a well-documented mechanism of resistance in cancer cells 

(66). This scenario suggests a combination of convergent evolution and phenotypic plasticity. 

While the same clonal population exhibited a resistant phenotype under different AKT 

inhibitors (convergent evolution) (428), the lack of genetic divergence points toward 

phenotypic plasticity, where the same genetic makeup produces different phenotypes in 

response to varying environmental pressures (429). This phenotypic convergence due to 

plasticity implies that this clonal population possessed an inherent adaptability to overcome 

diverse AKT inhibition strategies. However, further studies are needed to definitively confirm 

whether this phenotypic convergence is solely due to plasticity or if subtle (epi)genetic changes 

undetected by current methods might also have contributed. 

Another reason for this phenomenon could be that using AKT inhibitors imposed selective 

pressure on the tumour cell population. This pressure could have favoured the survival and 

expansion of cells with the CNAs in a process akin to natural selection, where environmental 

pressures lead to the survival of the fittest (88). In addition to the CNAs at chromosomes 2 and 

5, the MK1- and AZD1-resistant cells displayed PDO-specific CNAs, with a distinct CNA on 

chromosome 1 in the MK1-resistant organoid and a CNA on chromosome 18 in the AZD1-

resistant organoid. These and other passenger CNAs likely provided further adaptive 

advantages under the different AKT inhibitors, and may be responsible for the distinct 

transcriptional responses observed to the two inhibitors. 

In the MK1-resistant organoid, a direct correlation was observed between CNAs and the 

upregulation or downregulation of differentially expressed genes located within CNA regions 

across chromosomes 1, 2, and 5. Specifically, “gains” in CNAs were associated with gene 

upregulation, while “losses” were linked to downregulation, except for CXCL14 on chromosome 

5, which was upregulated despite being in a region with fewer copies compared to the Parental 

PDO. Conversely, in the AZD1-resistant organoid, the CNA-gene expression relationship was 

consistent only for chromosome 2, which indicates that CNAs might not directly influence gene 

expression across all scenarios or that other compensatory mechanisms could modulate gene 

dosage effects. Furthermore, this highlights the significance of the CNA on chromosome 2 in 
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conferring resistance to AKT inhibition. Notably, PCYOX1 was the only gene upregulated in both 

organoids within this region, pointing to its possible role in resistance. However, it is also 

plausible that CNAs in these areas could influence the expression of genes beyond those 

directly encompassed by the CNA, though such effects were beyond the scope of this study. 

This study has yielded insightful findings, yet it is crucial to acknowledge that the experimental 

design of this study did not represent the clinical scenario of drug resistance development in 

patients. In this experiment, PDOs were unintermittedly exposed to the inhibitors in the media, 

leading to the fast development of resistance. In reality, patients often undergo treatment cycles 

with breaks, a strategy intended to prevent or delay the emergence of drug resistance. This 

difference in treatment approach could influence the development and characteristics of drug 

resistance observed in clinical settings versus this experimental model. Moreover, 

chemotherapy in clinical practice is commonly administered with other therapeutic agents 

rather than as a monotherapy, as in this study. This combination therapy is typically designed 

to target multiple pathways within cancer cells, such as DNA replication and other cellular 

processes. By attacking cancer cells from different angles, this approach increases the 

likelihood of destroying both sensitive and resistant cells, potentially delaying the onset of 

resistance. The exclusive use of monotherapy in this project’s experimental setup may not 

capture the complexities and potential benefits of combination treatments in effectively 

managing cancer progression and resistance. 

In addition, mRNA expression levels serve as an indirect indicator of protein abundance. The 

correlation between mRNA and protein levels is complex and influenced by post-

transcriptional, translational, and post-translational modifications. These layers of regulation 

could significantly alter protein abundance and, therefore, the phenotype of cells. 
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6.2 Possible mechanisms of drug resistance to AKT inhibitors 

6.2.1 Resistance mechanisms to MK-2206 reported in the literature 

Several studies have explored the mechanisms by which cancer cells develop resistance to AKT 

inhibitors like MK-2206, uncovering various strategies that enable cancer cells to evade 

treatment. 

Qi et al., investigated the mechanisms of acquired resistance to MK-2206 in neuroblastoma 

(NB) cell lines, and found that resistance was primarily associated with the activation of 

alternative signalling pathways, specifically the PDK1-mTOR-S6K pathway, and in some cases, 

the MAPK pathway (430). Inhibiting these pathways with PDK1 (GSK2334470) or mTOR 

(AZD8055) inhibitors effectively suppressed cell growth by arresting MK-2206-resistant cells 

in the G0-G1 phase. These findings suggest that combination therapy may be necessary to 

address the complex resistance mechanisms to MK-2206 in NB. 

The development of MK-2206-resistant breast cancer cell lines with a PIK3CA mutation 

highlighted a notable upregulation of AKT3, while AKT1 and AKT2 levels remained unchanged 

at both the mRNA and protein levels (431). Functional assays confirmed that this AKT3 

upregulation was the key driver of resistance, as its depletion restored the sensitivity of cells 

to MK-2206. The upregulation of AKT3 was found to be mediated through epigenetic 

mechanisms involving bromodomain and extra-terminal domain (BET) proteins, which are 

known to regulate various components of the PI3K pathway, including IGF1R (430, 432). 

Resistant cells also exhibited an epithelial-to-mesenchymal transition (EMT) phenotype, 

characterised by increased invasiveness and reduced E-cadherin expression. Notably, depleting 

AKT3 not only reversed the EMT phenotype but also reduced the aggressive and resistant 

nature of the cells. These findings present AKT3 upregulation as a novel mechanism of acquired 

resistance to MK-2206 in breast cancer, pointing to the potential of targeting this kinase or its 

epigenetic regulators to overcome resistance. Additionally, this research highlights the need for 

developing AKT3-selective inhibitors to mitigate the potential side effects associated with pan-

AKT inhibitors like MK-2206. 

In Tsang’s research, MK-2206-resitant breast cancer cells exhibited cross-resistance to the ATP-

competitive AKT inhibitor GDC0068 (433). In these resistant cells, there was a notable 

upregulation of AKT3 and IGF1R expression—matching the results of Stottrup’s research 

(431)—and an upregulation of phosphorylated EGFR (pEGFR). Treating resistant cells with a 

combination of MK-2206 and the EGFR inhibitor gefitinib significantly reduced cell viability 
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and AKT phosphorylation, confirming that EGFR activation played a key role in resistance. 

Resistant cells also displayed enhanced cancer stem cell properties, including increased 

mammosphere formation—mammary epithelial stem cell aggregates—and upregulation of the 

transcription factors Slug and ID4, a key regulator of mammary stem cells that is associated 

with a CSC-like phenotype and poor prognosis in triple-negative breast cancer (TNBC) (434). 

The upregulation of ID4 was accompanied by the downregulation of key downstream targets 

that are typically suppressed by ID4, such as Brca1 and components of the Notch signalling 

pathway (e.g., Hey1, Notch1). Interestingly, knocking down ID4 in resistant cells led to a 

decrease in the expression of several stemness-related genes (including Twist1, Twist2, Snail, 

Slug), suggesting that ID4 is crucial for maintaining the enhanced CSC properties observed in 

resistant cells (433).
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A. Potential resistance mechanisms in MK1-resistant mCRC PDOs and 
therapeutic strategies to overcome it 

While the studies above identified critical pathways and molecular changes contributing to MK-

2206 resistance, the transcriptional changes observed in MK1-resistant mCRC PDOs revealed 

distinct, yet complementary, mechanisms of resistance. In the MK1-resistant PDO, our research 

identified a resistance mechanism primarily contributing to metabolic reprogramming through 

the Warburg effect. Additionally, the increased frequency of Cluster 1 cells in this organoid, 

which was linked to a stem-like gene expression, suggests that stemness played a role in driving 

resistance in this organoid. 

The Warburg effect provides cancer cells with metabolic flexibility, allowing them to produce 

ATP via aerobic glycolysis even in oxygen-rich conditions, instead of relying on the more 

energy-efficient oxidative phosphorylation. This metabolic adaptation facilitates the uptake 

and incorporation of essential biosynthetic intermediates into the biomass—the total mass of 

organic material that makes up a cell—such as ribose for nucleotide synthesis and glycerol and 

citrate for lipid synthesis, thereby providing the necessary materials to support rapidly 

proliferating cells (435, 436). However, this leads to an increased uptake of glucose—facilitated 

in MK1-resistant PDO by the overexpression of the glucose transported GLUT1—and increased 

production of lactate. The upregulation of PDK3 in the MK1-resistant organoid further 

promoted lactate production by inhibiting the activity of the pyruvate dehydrogenase (PDH) 

complex, which normally converts pyruvate into acetyl-CoA before it enters the mitochondria 

for oxidative phosphorylation (243).  

The Warburg effect significantly contributes to various mechanisms of drug resistance. In the 

first instance, the release of high volumes of lactate leads to a decrease in the pH of the tumour 

microenvironment (TME), resulting in acidosis (437). An acidic TME acts as a chemical barrier, 

leading to the accumulation of weakly basic chemotherapeutic drugs outside the cells (e.g., 

doxorubicin), which in turn reduces their effectiveness (438). This accumulation is due to an 

ion trapping effect, where the drug becomes ionised and is less able to pass through the cell 

membrane effectively. 

The acidification of the TME also promotes several cancer-related processes, such as 

metastasis, angiogenesis and immunosuppression. Indeed, there is a strong correlation 

between elevated lactate levels and metastasis in several human cancers, including colorectal 

adenocarcinoma (439). Lactate produced primarily by tumour cells, with a minor contribution 

from stromal cells, weakens the immune system by preventing the maturation of dendritic cells, 
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thereby hindering their ability to activate CD4+ and CD8+ T cells (438). Additionally, lactate 

induces the apoptosis of immune cells, particularly natural killer (NK) and natural killer T 

(NKT) cells, and promotes the development of myeloid-derived suppressor cells (MDSCs), 

which in turn support the growth of regulatory T cells (Tregs). Consequently, lactate is 

considered an important oncometabolite in certain cancers (440). 

The upregulation of PGD in the MK1-resistant organoid suggested an increased activation of 

the pentose phosphate pathway (PPP), which is closely linked to glycolysis. Consequently, 

elevated levels of aerobic glycolysis in tumours not only generate precursors for nucleotide and 

amino acid production via the PPP but also help manage oxidative stress by producing ample 

NADPH (441). This NADPH provides the reducing power necessary for various cellular 

processes, including the repair of damaged DNA, enabling tumour cells to survive treatments 

that induce DNA damage, such as radiation therapy and certain chemotherapeutic agents.  

In CRC, the Warburg effect is intricately linked to the maintenance of cancer stem cells (CSCs). 

CSCs often possess characteristics similar to those of normal stem cells, including a higher 

number of drug transporters, enhanced DNA damage repair capacity, and protective niches, 

which make them more likely to survive conventional treatments (442). Therefore, 

understanding the basis of this differential sensitivity is critical for developing more effective 

cancer therapies that can potentially prevent tumour relapse and metastasis.  

Emmink et al., compared the proteins secreted by CSCs with those secreted by their 

differentiated counterparts and found that the proteins enriched in CSCs included various 

glycolysis-related enzymes, such as GPI, PGM1, and PGM2, suggesting that these cells rely on 

aerobic glycolysis for their cancer-promoting functions (443). Furthermore, studies have 

shown that increasing glucose concentration can elevate the percentage of colon CSCs, 

indicating a strong link between glucose availability and CSC proliferation (444, 445). Notably, 

treatment of several human cancer cell lines, including CRC, with the glycolysis inhibitor 3-

BrOP significantly reduced the percentage of CSCs and inhibited tumour development (444). 

Overall, the Warburg effect plays a pivotal role in various drug resistance mechanisms within 

CRC. Therefore, targeting glycolysis in resistant cells with elevated glycolytic activity, such as in 

the MK1-resistant mCRC organoid, presents a potent strategy for overcoming drug resistance.
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6.2.2 Resistance mechanisms to AZD5363/capivasertib reported in the 
literature 

Gris-Oliver et al., investigated potential biomarkers and mechanisms of response and 

resistance to AZD5363/capivasertib in HER2-negative breast cancer using patient-derived 

xenograft (PDX) models (446). The study revealed that PIK3CA/AKT1 mutations, in the absence 

of mTORC1-activating alterations, predicted sensitivity to the drug, while low phosphorylated 

AKT or the presence of mTORC1-activating mutations indicated resistance. Capivasertib’s 

mechanism of action was primarily through cyclin D1 downregulation and cell cycle arrest. 

Acquired resistance to capivasertib could arise from cyclin D1 amplification or loss of the AKT1 

E17K mutation. Additionally, the combination of capivasertib and paclitaxel showed promise in 

TP53 wild-type tumours, with p53 activation potentially contributing to its efficacy. 

Similarly, Dunn et al., investigated capivasertib resistance in PTEN-deficient breast cancer cell 

lines (447). They discovered that resistance to capivasertib specifically was associated with the 

loss of TSC1/2 or STK11, leading to persistent mTORC1 signalling activation. Importantly, the 

study demonstrated that the dual inhibition of AKT with capivasertib and the anti-apoptotic 

protein Mcl-1 with AZD5991 could restore sensitivity to PI3K/AKT targeted therapy, ultimately 

inducing apoptosis in resistant cells. 

Jakubowski investigated mechanisms of acquired resistance to capivasertib in ovarian cancer 

cell lines with hyperactivated PI3K/AKT/mTOR (PAM) signalling, and found that resistance 

was associated with increased cap-dependent protein synthesis (CDPS), a critical process for 

translating mRNA into proteins (448). This increase in CDPS was driven by reduced activity of 

4EBP1, a protein that normally suppresses translation initiation. Restoring 4EBP1 function 

partially reversed resistance. This connection between protein synthesis and drug resistance 

is particularly intriguing given the downregulation of ribosomal-related proteins observed in 

both AKTi-resistant mCRC PDOs compared to the untreated Parental organoid. 

The mutational landscape of the AZD1-resistant mCRC PDO, characterised by mutations in 

TP53 and AKT1 (Figure 2.1), but lacking known mTORC1-activating alterations, suggests that 

the resistance mechanisms seen in breast and ovarian cancers may not fully explain the 

resistance in our model. 
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A. Potential resistance mechanisms in AZD1-resistant mCRC PDOs and 
therapeutic strategies to overcome it 

The AZD1-resistant PDO exhibited a complex molecular profile, indicating multiple resistance 

mechanisms. Notably, this organoid showed increased activity in pathways related to tumour 

progression, including cell adhesion, migration, and extracellular matrix remodelling. There 

was also upregulation of genes linked to immune evasion, suggesting mechanisms that 

suppress immune cell function and create an immunosuppressive microenvironment. 

Additionally, overactive Wnt/β-catenin and EGFR signalling pathways were observed, along 

with a metabolic shift characterised by downregulation of the protein synthesis machinery, 

potentially reflecting compensatory mechanisms to meet increased energy demands.  

In the AZD1-resistant PDO, immune suppression particularly emerged as a critical factor in the 

development of drug resistance. The tumour microenvironment (TME) in CRC is often 

immunosuppressive, shaped by a complex network of factors, including manipulation of 

immune cell populations, alteration of cell surface proteins and dysregulation of cytokines and 

chemokines (449). For example, tumour cells exploit immune checkpoints like the PD-1/PD-

L1 axis to evade immune surveillance (449). By upregulating PD-L1, tumours can engage PD-1 

on T cells, inhibiting their anti-tumour activity. This mechanism is more prevalent in metastatic 

CRC compared to primary CRC, resulting in decreased responsiveness to PD-1/PD-L1-targeting 

immunotherapies (449, 450).  

Additionally, the tumour actively recruits immunosuppressive cells, such as T regulatory cells 

(Tregs), tumour-associated macrophages (TAMs), and myeloid-derived suppressor cells 

(MDSCs), into the TME to establish a protective niche (449). Chemokines and cytokines 

secreted by the tumour, such as CCL20 from TAMs, facilitate the recruitment of Tregs, further 

amplifying immunosuppression in CRC (449, 451). 

Metabolic reprogramming within the TME also contributes to drug resistance. For example, the 

enzyme IDO1 plays a significant role in creating an immunosuppressive environment in CRC 

(449). IDO1, induced by the cytokine IFN-γ in various immune and non-immune cells (such as 

dendritic cells, macrophages, and fibroblasts), breaks down tryptophan into kynurenine, a 

metabolite that inhibits T cell function and promotes Treg development. TAMs can exacerbate 

this by causing T cell starvation through products generated via the IDO1/2 pathway, further 

suppressing T cell activity (449, 452). IDO1 is often overexpressed in CRC and is associated with 

poorer patient outcomes (449, 453). Recent research showed that reducing IDO1 expression 

using short hairpin RNAs (shRNAs) led to a higher presence of neutrophils in tumours and 
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slowed their growth in murine models of CRC, highlighting its role as a systemic 

immunosuppressor (449, 453, 454). 

Hypoxia is a common feature of the TME that exacerbates immunosuppression by promoting 

the recruitment and function of inhibitory immune cells such as Tregs, TAMs, and MDSCs, while 

also enhancing the suppressive activity of dendritic cells (449). Other factors within the TME, 

particularly the accumulation of extracellular adenosine, significantly contribute to immune 

evasion (252, 449). Adenosine, produced by cell surface enzymes like CD39 (ENTPD1)—which 

was overexpressed in the AZD1-resistant PDO (Table 15)—acts as a potent 

immunosuppressive signal. Hypoxia itself can trigger increased adenosine production, further 

amplifying its inhibitory effects (449). 

To counteract the immunosuppressive TME in CRC, several therapeutic strategies are being 

actively pursued. While immune checkpoint blockade with anti-PD-1/PD-L1 antibodies has 

proven effective in microsatellite instability-high (MSI-H) CRCs, patients with advanced 

microsatellite stable (MSS) CRCs often exhibit resistance when it is used as a monotherapy 

(449, 455). To improve treatment outcomes, researchers have explored combining anti-PD-1 

or anti-PD-L1 therapies (e.g., durvalumab, atezolizumab) with anti-CTLA-4 therapy (e.g., 

tremelimumab). Although this combination demonstrated a modest increase in overall survival 

for MSS CRC patients who had previously undergone chemotherapy, the results were not 

statistically significant (449, 456). 

Another promising approach involves directly targeting immunosuppressive cytokines and 

cells. For instance, blocking VEGF with bevacizumab has shown efficacy in reducing Tregs in 

both mouse models and CRC patients (449). However, for patients with MSS CRC, combining 

atezolizumab (an anti-PD-L1 treatment) with fluorouracil and bevacizumab as a first-line 

treatment did not yield improved effectiveness. 

Researchers are also investigating ways to actively recruit T cells into the immunosuppressive 

TME using T cell bispecific (TCB) antibodies (449). For example, carcinoembryonic antigen 

(CEA) TCB antibodies (e.g., RG7802, RO6958688) are designed to bind both CEA on tumour 

cells and CD3 on T cells, facilitating the activation of effector T cells to target and kill CEA-

expressing cancer cells (449, 457). In a phase 1 clinical trial, CEA-TCB was tested alone and in 

combination with the PD-L1 inhibitor atezolizumab in patients with MSS CRC (457). The results 

showed that CEA-TCB monotherapy led to increased CD3+ T cell infiltration and antitumor 

activity, while its combination with atezolizumab demonstrated enhanced efficacy and 

maintained a manageable safety profile. This study is particularly relevant given the 
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upregulation of CEACAM6, a member of the CEA family, in the MK1-resistant organoid (Table 

13), further supporting the role of dysregulated immune regulation in both AKTi-resistant 

mCRC organoids. 

Finally, adoptive cell transfer (ACT)—which involves the transfer of ex-vivo expanded or 

engineered T cells or natural killer (NK) cells—and chimeric antigen receptor (CAR)-T cell 

therapy, represent approaches aimed at enhancing anti-tumour immunity within the TME by 

increasing T cell trafficking and persistence in solid tumours (449). In a Phase I/II clinical study, 

T lymphocytes from sentinel lymph nodes (SLNs) were expanded outside the body and then 

infused into CRC patients who had undergone either radical or palliative surgery (458). The 

results showed that the 24-month survival rate for patients receiving SLN-T lymphocytes was 

significantly higher (55.6%) compared to the control group (17.5%), indicating that SLN-T 

lymphocyte immunotherapy is safe and may enhance overall survival in patients with 

metastatic CRC. 

Although enhanced immune-suppression could be one possible mechanism of resistance in 

AZD1-resistant cells, another potential mechanism could involve off-target effects of AZD5363. 

Whelan investigated the mechanisms of acquired resistance to AZD5363 in breast cancer cell 

lines with PI3K/AKT pathway mutations and found no cross-resistance to other AKT inhibitors, 

such as MK-2206 (459). Furthermore, there were no significant changes in PI3K/AKT 

signalling, indicating that the resistance was not directly linked to AKT inhibition. This finding 

aligns with the current thesis, where no genes directly downstream of the AKT protein were 

found to be differentially expressed in either MK1- or AZD1-resistant mCRC PDOs. Whelan’s 

study suggested that the resistance could be due to the inhibition of cAMP-dependent protein 

kinase (PKA), another target of AZD5363, with the potential upregulation of PKA-proximal 

signalling pathways circumventing AKT inhibition. Notably, AZD5363 inhibits PKA with similar 

potency to its inhibition of AKT2/3, but not AKT1 (427). This observation is particularly 

relevant to the current research, where the development of AZD5363-resistant mCRC PDOs 

with an AKT1 mutation and amplification suggests that the drug’s multi-target activity may 

have contributed to resistance. 

Overall, the diverse mechanisms of resistance to the MK-2206 and AZD5363 AKT inhibitors, as 

demonstrated by both preclinical studies and the findings of this thesis, highlight the 

complexity of targeting the PI3K/AKT/mTOR pathway in CRC. In particular, the metabolic 

reprogramming observed in the MK1-resistant organoid, alongside the dysregulation of 

immune responses in the AZD1-resistant organoid, underscores the multifaceted nature of 

drug resistance to the same drug target. These findings emphasise the need for personalised 
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treatment strategies that account not only for the genetic alterations driving tumour growth 

but also for the dynamic interplay between cancer cells and their microenvironment. 
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6.3 Novel findings and their potential clinical and research implications 

This study provides valuable insights into the complex mechanisms of resistance to AKT 

inhibition in mCRCs, with potential implications for both clinical practice and the development 

of future AKT-targeted therapies.  

Notably, the presence of a pre-existing resistant clone harbouring unique CNAs at chr2 and chr5  

in the Parental organoid derived from a heavily pre-treated patient reinforces the clinical 

relevance of pre-existing resistance and its role in treatment failure. This finding underscores 

the need for early detection and characterisation of such clones to guide personalised 

treatment decisions, potentially incorporating combination therapies or alternative treatment 

modalities from the outset. In this case, the specific CNA at chr2 emerges as a potential multi-

drug resistance marker. The consistent upregulation of PCYOX1 in the chr2 CNA gain region in 

both AKTi-resistant organoids highlights it as a potential novel player in the resistance to AKT 

inhibiton. Further investigation into its function and potential as a therapeutic target may 

reveal novel strategies to overcome resistance, either by directly targeting PCYOX1 or 

developing predictive biomarkers.  

The identification of an inherently resistant clone, expanding under the selective pressure of 

both allosteric (MK-2206) and ATP-competitive (AZD5363) AKT inhibitors, suggests a novel 

resistance mechanism independent of specific drug-target interactions. Distinct gene 

expression profiles and enriched pathways in the MK1- and AZ1-resistant organoids further 

underscore the importance of personalised treatment selection, demonstrating that the choice 

of AKT inhibitor can significantly influence the transcriptional landscape and phenotype of 

resistant cells.  

While CNAs are known to influence gene expression, this study showed variations in the 

relationship between CNAs and gene expression depending on the specific AKT inhibitor used. 

The discordance observed between CNAs and gene expression patterns in the AZD1-resistant 

organoid, particularly the upregulation of genes on chr5 despite a CNA gain, underscores the 

complexity of gene regulation in the context of drug resistance. This suggests that the impact 

of CNAs on gene expression may be context-dependent, and highlights the importance of 

considering epigenetic modifications and other regulatory factors that may influence gene 

expression beyond simple gene dosage effects. Understanding these intricacies could lead to 

the identification of novel therapeutic targets or the development of epigenetic therapies to 

overcome resistance. The identification of potential resistance mechanisms to AZD5363 in 
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mCRC PDOs is particularly timely and clinically relevant, as this drug has recently been 

approved by the FDA for the treatment of certain metastatic breast cancers (150). To our 

knowledge, this is the first study to characterise resistance mechanisms to AZD5363 in 

colorectal cancers harbouring a mutation and an amplification in AKT1. This research’s findings 

on the potential role of clonal evolution, epigenetic modifications, and compensatory pathways 

in driving resistance to AKT inhibition could inform strategies to improve the efficacy of 

AZD5363, and potentially expand its use to other cancer types, including mCRC. 

The development of resistant PDO models provides a unique and powerful platform to address 

the challenges posed by drug resistance. By generating mCRC models of acquired resistance to 

the AKT inhibitors MK-2206 and AZD5363, this research recapitulated not only the cellular 

heterogeneity typically observed in human tumours, but also the adaptive responses that lead 

to treatment evasion. These models also offer a valuable platform for directly testing potential 

therapies, assessing their efficacy in resensitising resistant tumours or circumventing the 

resistance mechanisms entirely.  Furthermore, creating resistant organoids from individual 

patients opens doors to explore personalised medicine and drug screening approaches, aiding 

in the selection of the most effective treatment options for each patient.  Investigating cross-

resistance between different drugs in these models can also inform the development of more 

potent drug combinations.  Finally, the use of resistant organoids has the potential to reduce 

reliance on animal models in preclinical research, thus accelerating drug discovery and 

addressing ethical concerns. 

In conclusion, this research advances our understanding of AKT inhibitor resistance in mCRC, 

and offers potential avenues for improving clinical outcomes. By elucidating the complex 

interplay between genetic and epigenetic factors, identifying novel resistance mechanisms, and 

highlighting potential therapeutic targets like PCYOX1, this work may pave the way for the 

development of more personalised and effective treatment strategies for patients with 

metastatic colorectal cancers. 
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6.4 Future perspectives 

Future research directions would include a comprehensive analysis of single nucleotide 

variants (SNVs), which this study did not investigate. SNVs could offer valuable insights into the 

genetic foundations of drug resistance and enable tracking of the evolution of cancer subclones. 

A significant advancement would be extending G&T-seq analyses to primary tumours, distant 

metastases, and normal mucosa from the same patient. This strategy would permit the study 

of subclonal evolution from cancer initiation to metastasis, potentially identifying early 

markers of resistance. Moreover, integrating G&T-seq with laser capture microdissection, as 

previously demonstrated in a multiregional breast cancer study (460), would allow an analysis 

of the role of the tumour microenvironment on the development of drug resistance. This aspect 

is particularly intriguing given that numerous genes involved in extracellular matrix 

remodelling and the regulation of immune responses were dysregulated in the present study, 

pointing to the role of the tumour microenvironment in the emergence of drug resistance. 

Additionally, employing targeted genetic manipulation techniques such as CRISPR-mediated 

transcriptional activation (CRISPRa) or CRISPR-Cas9-mediated gene knockout, alongside RNA 

interference (RNAi) strategies like siRNA or shRNA (as previously suggested in Chapter 5), 

could be used to overexpress or inhibit potential driver genes of AKTi resistance identified on 

chromosomes 2 (PCYOX1) and 5 (CXCL14, NPM1, RACK1, RPS14). This could involve targeting 

genes on each chromosome separately, as well as simultaneously, to elucidate their individual 

contributions and potential synergistic effects on resistance. This functional validation 

approach could confirm the role of these genes in resistance and potentially uncover new 

therapeutic targets. 

In conclusion, this thesis demonstrates the potential of G&T-seq and multiomics data 

integration to unravel the complex mechanisms of resistance in metastatic colorectal cancer. 

While challenges remain in data interpretation, this powerful approach allows researchers to 

identify genetic alterations and their impact on gene expression, paving the way for the 

discovery of novel therapeutic targets. The insights gained from this research underscore the 

importance of considering both genomic and transcriptomic landscapes when developing new 

treatment strategies and highlight the potential of personalised medicine for overcoming drug 

resistance in metastatic colorectal cancer. Future research building upon these findings will 

further refine our understanding of resistance mechanisms and ultimately contribute to 

improved patient outcomes.
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Appendix A. Supplementary material for Chapter 3 

A.1 Distribution of cell cycle phases in Smart-seq2 data  

Stacked bar plot represents the distribution of cell cycle phases across clusters identified in Smart-seq2 data (left panel) and the general distribution of 

cell cycle phases across the three mCRC PDOs (right panel). 

 

 

 

Supplementary Figure 1. Distribution of cell cycle phases across Seurat clusters and mCRC PDOs in Smart-seq2 data. 
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A.2 Cell-type annotation of Smart-seq2 data using the Human Gut Cell Atlas 

UMAP plots display the distribution of colonic cell types in mCRC PDOs identified in the Smart-seq2 dataset (left) and the corresponding prediction scores 

(right). These scores reflect the confidence in cell type classification and the gene expression similarity between cells in the Smart-seq2 queried dataset 

and the reference cell types in the Human Gut Cell Atlas. 

Supplementary Figure 2. Prediction scores for colonic cell types identified in mCRC PDOs using the Human Gut Cell Atlas. 
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Supplementary Figure 3. UMAP plots showing the expression patterns of selected marker genes used to identify different cell types 
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A.3 Smart-seq2 differential gene expression analysis of AKTi-resistant mCRC PDOs 

Supplementary Table 1. Full list of statistically significant dysregulated genes in the MK1-resistant PDO 

Gene p_val avg_log2FC pct.1 pct.2 p_val_adj pct_diff Gene_id Expression 

MUC21 2.02E-08 2.384874 0.747 0.47 0.000487 0.277 ENSG00000204544 Upregulated 

CXCL14 2.05E-07 2.240981 0.954 0.978 0.004935 -0.024 ENSG00000145824 Upregulated 

TACSTD2 3.43E-08 2.199259 0.897 0.858 0.000826 0.039 ENSG00000184292 Upregulated 

LGALS1 1.63E-09 1.95564 0.92 0.873 3.93E-05 0.047 ENSG00000100097 Upregulated 

CEACAM6 1.15E-06 1.953189 0.828 0.784 0.027699 0.044 ENSG00000086548 Upregulated 

LRATD1 4.27E-08 1.4727 0.793 0.582 0.001028 0.211 ENSG00000162981 Upregulated 

FABP5 6.71E-09 1.315372 0.931 0.97 0.000162 -0.039 ENSG00000164687 Upregulated 

SDR16C5 2.35E-08 1.22146 0.678 0.433 0.000566 0.245 ENSG00000170786 Upregulated 

EPAS1 2.13E-10 1.173951 0.874 0.903 5.12E-06 -0.029 ENSG00000116016 Upregulated 

SLC2A1 2.14E-07 1.155772 0.851 0.731 0.005162 0.12 ENSG00000117394 Upregulated 

PDK3 4.26E-07 1.065709 0.943 1 0.01026 -0.057 ENSG00000067992 Upregulated 

LGALS3 8.50E-09 1.045865 0.92 0.978 0.000205 -0.058 ENSG00000131981 Upregulated 

ENO1 4.63E-14 1.004288 0.966 0.985 1.12E-09 -0.019 ENSG00000074800 Upregulated 

S100A4 3.09E-09 0.982926 0.977 0.985 7.44E-05 -0.008 ENSG00000196154 Upregulated 

PRSS8 3.46E-08 0.971759 0.851 0.784 0.000834 0.067 ENSG00000052344 Upregulated 

CD320 4.47E-10 0.883349 0.874 0.843 1.08E-05 0.031 ENSG00000167775 Upregulated 

MT-ND1 4.92E-18 0.846994 1 0.993 1.19E-13 0.007 ENSG00000198888 Upregulated 

MT-ND2 2.18E-19 0.846213 0.989 1 5.24E-15 -0.011 ENSG00000198763 Upregulated 

YWHAZ 3.91E-11 0.840387 0.977 1 9.43E-07 -0.023 ENSG00000164924 Upregulated 

MT-ND6 1.67E-12 0.835848 0.874 0.94 4.02E-08 -0.066 ENSG00000198695 Upregulated 

DOCK11 1.34E-09 0.82746 0.667 0.358 3.23E-05 0.309 ENSG00000147251 Upregulated 

ATP6AP1 1.36E-06 0.824049 0.874 0.94 0.032849 -0.066 ENSG00000071553 Upregulated 

KLK10 2.45E-10 0.816882 0.425 0.082 5.90E-06 0.343 ENSG00000129451 Upregulated 

PGD 5.84E-07 0.794954 0.874 0.873 0.014073 0.001 ENSG00000142657 Upregulated 

MT-CYB 1.82E-16 0.782423 1 1 4.40E-12 0 ENSG00000198727 Upregulated 

TSPAN1 6.82E-07 0.780536 0.54 0.246 0.016427 0.294 ENSG00000117472 Upregulated 

PREB 1.45E-07 0.779376 0.851 0.888 0.003483 -0.037 ENSG00000138073 Upregulated 
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ACTB 3.64E-13 0.771538 1 1 8.76E-09 0 ENSG00000075624 Upregulated 

PDIA6 1.97E-11 0.763966 0.908 0.933 4.76E-07 -0.025 ENSG00000143870 Upregulated 

GPRC5A 9.25E-08 0.755597 0.667 0.328 0.002229 0.339 ENSG00000013588 Upregulated 

MT-ND3 4.68E-13 0.751087 0.931 0.97 1.13E-08 -0.039 ENSG00000198840 Upregulated 

ELP1 1.95E-06 0.738345 0.816 0.672 0.047071 0.144 ENSG00000070061 Upregulated 

PCYOX1 1.28E-07 0.7335 0.885 0.903 0.003083 -0.018 ENSG00000116005 Upregulated 

CSTB 1.62E-06 0.707238 0.851 0.858 0.038961 -0.007 ENSG00000160213 Upregulated 

SYVN1 1.19E-06 0.681213 0.747 0.627 0.028645 0.12 ENSG00000162298 Upregulated 

S100A16 1.21E-06 0.644071 0.897 0.91 0.029076 -0.013 ENSG00000188643 Upregulated 

MT-ND5 1.24E-14 0.642089 0.989 1 2.98E-10 -0.011 ENSG00000198786 Upregulated 

TMSB4X 1.99E-10 0.640867 1 1 4.80E-06 0 ENSG00000205542 Upregulated 

PDIA3 1.78E-07 0.640724 0.966 0.985 0.004295 -0.019 ENSG00000167004 Upregulated 

SPINT2 1.90E-06 0.640339 0.874 0.925 0.045719 -0.051 ENSG00000167642 Upregulated 

CFL1 4.49E-09 0.635387 0.897 0.933 0.000108 -0.036 ENSG00000172757 Upregulated 

RPN2 6.53E-09 0.629856 0.897 0.97 0.000157 -0.073 ENSG00000118705 Upregulated 

CLDN1 1.49E-06 0.623463 0.506 0.246 0.035846 0.26 ENSG00000163347 Upregulated 

SYNGR2 1.00E-07 0.613673 0.908 0.97 0.002411 -0.062 ENSG00000108639 Upregulated 

MLEC 3.39E-07 0.611429 0.874 0.925 0.008179 -0.051 ENSG00000110917 Upregulated 

POLR2L 2.22E-07 0.603688 0.885 0.918 0.005352 -0.033 ENSG00000177700 Upregulated 

BCAP31 4.47E-07 0.599635 0.885 0.94 0.01078 -0.055 ENSG00000185825 Upregulated 

PARK7 2.32E-07 0.595866 0.908 0.955 0.005587 -0.047 ENSG00000116288 Upregulated 

SULF2 5.06E-07 0.584913 0.483 0.209 0.012184 0.274 ENSG00000196562 Upregulated 

YWHAQ 6.93E-08 0.578208 0.943 1 0.00167 -0.057 ENSG00000134308 Upregulated 

KRT18 9.28E-07 0.573409 1 1 0.022365 0 ENSG00000111057 Upregulated 

GSTP1 7.88E-11 0.550828 0.966 0.993 1.90E-06 -0.027 ENSG00000084207 Upregulated 

MT-ND4 1.19E-12 0.547273 1 1 2.86E-08 0 ENSG00000198886 Upregulated 

GPX1 1.61E-07 0.540385 0.897 0.948 0.00387 -0.051 ENSG00000233276 Upregulated 

TM7SF2 9.61E-08 0.534202 0.667 0.433 0.002316 0.234 ENSG00000149809 Upregulated 

SLC6A14 1.10E-10 0.527858 0.655 0.246 2.64E-06 0.409 ENSG00000268104 Upregulated 

BSG 1.26E-07 0.505266 0.954 0.985 0.003024 -0.031 ENSG00000172270 Upregulated 

RPS16 1.77E-09 -0.50063 1 1 4.27E-05 0 ENSG00000105193 Downregulated 
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RPL13 3.10E-07 -0.50106 0.943 1 0.007467 -0.057 ENSG00000167526 Downregulated 

RPL11 4.28E-09 -0.50337 0.977 1 0.000103 -0.023 ENSG00000142676 Downregulated 

RPL4 7.44E-08 -0.51417 0.931 0.985 0.001793 -0.054 ENSG00000174444 Downregulated 

RPL35A 1.41E-12 -0.51548 0.966 1 3.39E-08 -0.034 ENSG00000182899 Downregulated 

SNHG6 9.59E-09 -0.52521 0.851 0.888 0.000231 -0.037 ENSG00000245910 Downregulated 

TMED7 2.11E-08 -0.53765 0.77 0.881 0.000507 -0.111 ENSG00000134970 Downregulated 

EEF1A1 2.31E-11 -0.54214 1 1 5.57E-07 0 ENSG00000156508 Downregulated 

RPLP0 2.45E-17 -0.54366 1 1 5.91E-13 0 ENSG00000089157 Downregulated 

PTPRG 5.54E-09 -0.55266 0.471 0.746 0.000134 -0.275 ENSG00000144724 Downregulated 

RPS15A 1.91E-14 -0.55476 0.874 0.94 4.61E-10 -0.066 ENSG00000134419 Downregulated 

TMPRSS11E 2.61E-08 -0.55906 0.506 0.821 0.000629 -0.315 ENSG00000087128 Downregulated 

RPS11 7.34E-14 -0.56733 0.966 1 1.77E-09 -0.034 ENSG00000142534 Downregulated 

RPS9 1.89E-09 -0.57374 0.954 0.978 4.56E-05 -0.024 ENSG00000170889 Downregulated 

RPS13 9.24E-13 -0.57705 0.989 1 2.23E-08 -0.011 ENSG00000110700 Downregulated 

RPS4X 2.02E-11 -0.58727 1 1 4.88E-07 0 ENSG00000198034 Downregulated 

EIF3E 3.62E-09 -0.59133 0.897 0.978 8.73E-05 -0.081 ENSG00000104408 Downregulated 

HNRNPH1 4.88E-09 -0.59396 0.874 0.978 0.000118 -0.104 ENSG00000169045 Downregulated 

RPL10 1.53E-10 -0.59423 0.966 1 3.68E-06 -0.034 ENSG00000147403 Downregulated 

RPL15 8.54E-17 -0.59504 0.989 1 2.06E-12 -0.011 ENSG00000174748 Downregulated 

SETD5 1.79E-06 -0.59507 0.736 0.851 0.043232 -0.115 ENSG00000168137 Downregulated 

RPL27A 1.43E-12 -0.59616 0.954 1 3.45E-08 -0.046 ENSG00000166441 Downregulated 

MRPL22 1.27E-07 -0.60432 0.828 0.955 0.003059 -0.127 ENSG00000082515 Downregulated 

SLC25A6 1.58E-08 -0.60879 0.862 0.97 0.000381 -0.108 ENSG00000169100 Downregulated 

EEF1A1P5 1.05E-12 -0.60988 0.828 0.903 2.53E-08 -0.075 ENSG00000196205 Downregulated 

RPL3 6.34E-09 -0.61117 0.966 0.993 0.000153 -0.027 ENSG00000100316 Downregulated 

SSB 1.05E-06 -0.62007 0.839 0.955 0.025272 -0.116 ENSG00000138385 Downregulated 

RACK1 1.76E-10 -0.62172 0.989 1 4.23E-06 -0.011 ENSG00000204628 Downregulated 

RPL37 1.34E-11 -0.62558 0.977 1 3.22E-07 -0.023 ENSG00000145592 Downregulated 

RPL30 3.68E-13 -0.62675 0.885 0.993 8.87E-09 -0.108 ENSG00000156482 Downregulated 

RPL7A 9.83E-13 -0.62787 0.943 1 2.37E-08 -0.057 ENSG00000148303 Downregulated 

KRR1 3.41E-07 -0.64454 0.793 0.896 0.008218 -0.103 ENSG00000111615 Downregulated 
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RPL24 1.31E-14 -0.65311 0.943 0.993 3.16E-10 -0.05 ENSG00000114391 Downregulated 

SNHG29 5.82E-12 -0.65359 0.805 0.896 1.40E-07 -0.091 ENSG00000175061 Downregulated 

TBCA 5.82E-08 -0.67622 0.897 0.993 0.001401 -0.096 ENSG00000171530 Downregulated 

RPL5 5.29E-14 -0.68163 0.966 1 1.27E-09 -0.034 ENSG00000122406 Downregulated 

GDI2 8.57E-08 -0.68785 0.828 0.91 0.002064 -0.082 ENSG00000057608 Downregulated 

SH3BP4 1.23E-06 -0.68826 0.655 0.821 0.029546 -0.166 ENSG00000130147 Downregulated 

RPL32 2.04E-12 -0.69811 0.943 1 4.92E-08 -0.057 ENSG00000144713 Downregulated 

NPM1 3.44E-12 -0.69942 0.977 1 8.29E-08 -0.023 ENSG00000181163 Downregulated 

RPS18 1.20E-16 -0.70107 0.989 1 2.90E-12 -0.011 ENSG00000231500 Downregulated 

RPS23 1.39E-14 -0.7071 0.874 0.94 3.35E-10 -0.066 ENSG00000186468 Downregulated 

NAP1L1 6.26E-11 -0.70967 0.874 0.97 1.51E-06 -0.096 ENSG00000187109 Downregulated 

SLC12A2 4.77E-10 -0.71599 0.897 1 1.15E-05 -0.103 ENSG00000064651 Downregulated 

RPL6 3.33E-14 -0.71739 0.966 1 8.01E-10 -0.034 ENSG00000089009 Downregulated 

RPL12 2.15E-11 -0.72887 0.954 0.985 5.17E-07 -0.031 ENSG00000197958 Downregulated 

RPS20 1.80E-18 -0.73203 0.966 1 4.33E-14 -0.034 ENSG00000008988 Downregulated 

RPS3 2.64E-13 -0.73325 0.931 0.993 6.36E-09 -0.062 ENSG00000149273 Downregulated 

RPL27 1.11E-13 -0.73412 0.943 0.993 2.68E-09 -0.05 ENSG00000131469 Downregulated 

RPS27 6.54E-13 -0.73518 1 1 1.58E-08 0 ENSG00000177954 Downregulated 

RPS24 8.18E-18 -0.74385 0.989 1 1.97E-13 -0.011 ENSG00000138326 Downregulated 

RPL10A 1.05E-13 -0.74422 0.931 1 2.53E-09 -0.069 ENSG00000198755 Downregulated 

EEF1B2 2.96E-14 -0.7582 0.931 1 7.13E-10 -0.069 ENSG00000114942 Downregulated 

RPS25 3.11E-15 -0.75868 0.931 1 7.49E-11 -0.069 ENSG00000118181 Downregulated 

RPS12 8.80E-12 -0.77391 0.954 1 2.12E-07 -0.046 ENSG00000112306 Downregulated 

GAS5 9.68E-14 -0.77893 0.897 1 2.33E-09 -0.103 ENSG00000234741 Downregulated 

LGR5 1.77E-10 -0.80647 0.529 0.836 4.26E-06 -0.307 ENSG00000139292 Downregulated 

RPS14 1.08E-15 -0.80903 1 1 2.59E-11 0 ENSG00000164587 Downregulated 

RPL31 4.84E-20 -0.82388 1 1 1.17E-15 0 ENSG00000071082 Downregulated 

RPL21 2.60E-19 -0.82715 0.989 1 6.26E-15 -0.011 ENSG00000122026 Downregulated 

RPS8 3.69E-19 -0.82849 0.92 1 8.88E-15 -0.08 ENSG00000142937 Downregulated 

TPT1 1.11E-15 -0.83226 0.897 0.985 2.68E-11 -0.088 ENSG00000133112 Downregulated 

RPL34 3.85E-18 -0.8358 0.954 1 9.27E-14 -0.046 ENSG00000109475 Downregulated 
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FOXP1 2.35E-14 -0.84289 0.575 0.896 5.66E-10 -0.321 ENSG00000114861 Downregulated 

RDH10 2.25E-10 -0.88481 0.747 0.91 5.42E-06 -0.163 ENSG00000121039 Downregulated 

RPL9 1.57E-20 -0.89717 0.943 1 3.78E-16 -0.057 ENSG00000163682 Downregulated 

RPL13A 3.48E-19 -0.91091 0.977 1 8.39E-15 -0.023 ENSG00000142541 Downregulated 

RPL22L1 5.88E-13 -0.93615 0.759 0.94 1.42E-08 -0.181 ENSG00000163584 Downregulated 

RPL23 1.57E-18 -0.98915 0.908 1 3.78E-14 -0.092 ENSG00000125691 Downregulated 

IGFBP2 3.22E-18 -1.00172 0.345 0.851 7.76E-14 -0.506 ENSG00000115457 Downregulated 

RPS3A 8.11E-23 -1.02767 0.943 1 1.95E-18 -0.057 ENSG00000145425 Downregulated 

RPL7 5.61E-17 -1.13727 1 1 1.35E-12 0 ENSG00000147604 Downregulated 

RPS6 4.39E-25 -1.1452 0.977 1 1.06E-20 -0.023 ENSG00000137154 Downregulated 

DEFA5 1.23E-07 -2.63208 0.276 0.627 0.002952 -0.351 ENSG00000164816 Downregulated 
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Supplementary Table 2. Full list of statistically significant dysregulated genes in the AZD1-resistant PDO 

Gene p_val avg_log2FC pct.1 pct.2 p_val_adj pct_diff Gene_id Expression 

C6orf15 7.57E-12 2.225761 0.793 0.552 1.82E-07 0.241 ENSG00000204542 Upregulated 

CXCL14 4.46E-12 2.02619 0.986 0.978 1.07E-07 0.008 ENSG00000145824 Upregulated 

S100A3 5.14E-11 1.860376 0.957 0.955 1.24E-06 0.002 ENSG00000188015 Upregulated 

LINC00867 2.27E-12 1.485194 0.736 0.433 5.47E-08 0.303 ENSG00000232139 Upregulated 

CD36 4.88E-12 1.464117 0.836 0.612 1.17E-07 0.224 ENSG00000135218 Upregulated 

FNDC3A 1.93E-09 1.417007 0.929 0.903 4.64E-05 0.026 ENSG00000102531 Upregulated 

AP1S2 3.46E-16 1.385132 0.871 0.776 8.33E-12 0.095 ENSG00000182287 Upregulated 

NEAT1 1.13E-11 1.338621 0.95 1 2.72E-07 -0.05 ENSG00000245532 Upregulated 

SEMA3C 1.20E-10 1.280454 0.907 0.843 2.89E-06 0.064 ENSG00000075223 Upregulated 

ECM1 5.72E-09 1.230542 0.836 0.724 0.000138 0.112 ENSG00000143369 Upregulated 

RBP1 2.19E-07 1.200961 0.507 0.269 0.005286 0.238 ENSG00000114115 Upregulated 

SDR16C5 1.63E-12 1.191399 0.693 0.433 3.92E-08 0.26 ENSG00000170786 Upregulated 

PRSS23 2.95E-08 1.190268 0.907 0.963 0.00071 -0.056 ENSG00000150687 Upregulated 

TACSTD2 1.50E-07 1.146665 0.843 0.858 0.003606 -0.015 ENSG00000184292 Upregulated 

CHPF 4.44E-09 1.013184 0.836 0.791 0.000107 0.045 ENSG00000123989 Upregulated 

XIST 4.14E-12 0.998503 0.921 0.978 9.98E-08 -0.057 ENSG00000229807 Upregulated 

ADAM19 1.58E-08 0.996656 0.707 0.537 0.000381 0.17 ENSG00000135074 Upregulated 

PTHLH 7.05E-11 0.960781 0.707 0.403 1.70E-06 0.304 ENSG00000087494 Upregulated 

PDP1 5.72E-10 0.917062 0.843 0.716 1.38E-05 0.127 ENSG00000164951 Upregulated 

CAMK4 1.51E-06 0.902235 0.507 0.313 0.036458 0.194 ENSG00000152495 Upregulated 

TGFA 1.09E-07 0.900429 0.814 0.716 0.002617 0.098 ENSG00000163235 Upregulated 

PDK3 5.67E-08 0.900373 0.95 1 0.001367 -0.05 ENSG00000067992 Upregulated 

YWHAZ 2.98E-16 0.892769 1 1 7.19E-12 0 ENSG00000164924 Upregulated 

S100A4 1.06E-09 0.88518 0.986 0.985 2.56E-05 0.001 ENSG00000196154 Upregulated 

FABP5 3.74E-07 0.8718 0.9 0.97 0.009012 -0.07 ENSG00000164687 Upregulated 

B3GNT2 1.16E-10 0.868774 0.871 0.799 2.78E-06 0.072 ENSG00000170340 Upregulated 

NELL2 4.93E-07 0.86629 0.793 0.657 0.011873 0.136 ENSG00000184613 Upregulated 

TPD52L1 8.96E-10 0.856973 0.807 0.604 2.16E-05 0.203 ENSG00000111907 Upregulated 
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ATP6AP1 1.91E-09 0.847683 0.907 0.94 4.61E-05 -0.033 ENSG00000071553 Upregulated 

OSBPL6 3.01E-09 0.825911 0.614 0.291 7.25E-05 0.323 ENSG00000079156 Upregulated 

TMSB4X 1.11E-12 0.802858 1 1 2.69E-08 0 ENSG00000205542 Upregulated 

CRABP2 1.40E-08 0.766386 0.7 0.478 0.000338 0.222 ENSG00000143320 Upregulated 

RCAN2 8.70E-09 0.765857 0.543 0.269 0.00021 0.274 ENSG00000172348 Upregulated 

MGST3 1.04E-10 0.744736 0.971 1 2.50E-06 -0.029 ENSG00000143198 Upregulated 

DOCK11 3.69E-08 0.735501 0.579 0.358 0.000888 0.221 ENSG00000147251 Upregulated 

PPP1CB 9.53E-13 0.733123 0.929 0.985 2.30E-08 -0.056 ENSG00000213639 Upregulated 

ENTPD1 1.23E-07 0.730499 0.714 0.522 0.00297 0.192 ENSG00000138185 Upregulated 

DEGS1 2.84E-09 0.727505 0.814 0.56 6.85E-05 0.254 ENSG00000143753 Upregulated 

BSG 5.18E-12 0.708225 0.979 0.985 1.25E-07 -0.006 ENSG00000172270 Upregulated 

ETNK1 6.25E-08 0.707039 0.907 0.94 0.001505 -0.033 ENSG00000139163 Upregulated 

DLG1 1.00E-06 0.701573 0.836 0.754 0.024212 0.082 ENSG00000075711 Upregulated 

MRPL33 1.47E-08 0.699351 0.914 0.933 0.000355 -0.019 ENSG00000243147 Upregulated 

SLC7A8 1.80E-06 0.687463 0.5 0.276 0.043384 0.224 ENSG00000092068 Upregulated 

KLHL42 5.11E-08 0.68138 0.814 0.627 0.001231 0.187 ENSG00000087448 Upregulated 

TMEM9 4.12E-07 0.670195 0.929 0.948 0.009929 -0.019 ENSG00000116857 Upregulated 

EIF1AX 3.13E-08 0.667052 0.921 0.933 0.000753 -0.012 ENSG00000173674 Upregulated 

ROBO2 6.16E-09 0.666023 0.807 0.627 0.000148 0.18 ENSG00000185008 Upregulated 

PRCP 1.22E-06 0.662187 0.857 0.813 0.029404 0.044 ENSG00000137509 Upregulated 

SELENOT 1.06E-09 0.653764 0.907 0.881 2.55E-05 0.026 ENSG00000198843 Upregulated 

PTGFRN 1.41E-07 0.644416 0.829 0.731 0.003391 0.098 ENSG00000134247 Upregulated 

ATP5F1E 2.28E-09 0.634915 0.986 1 5.50E-05 -0.014 ENSG00000124172 Upregulated 

HSPH1 1.55E-07 0.631229 0.893 0.91 0.003731 -0.017 ENSG00000120694 Upregulated 

SNRPG 5.86E-09 0.624809 0.986 1 0.000141 -0.014 ENSG00000143977 Upregulated 

NRP2 3.97E-10 0.624054 0.529 0.194 9.56E-06 0.335 ENSG00000118257 Upregulated 

EPCAM 2.09E-10 0.607049 0.986 1 5.04E-06 -0.014 ENSG00000119888 Upregulated 

PCYOX1 2.84E-08 0.600497 0.907 0.903 0.000685 0.004 ENSG00000116005 Upregulated 

SERINC1 2.15E-07 0.600056 0.821 0.754 0.005185 0.067 ENSG00000111897 Upregulated 

PDE4D 2.07E-06 0.594876 0.864 0.851 0.049939 0.013 ENSG00000113448 Upregulated 

CALR 8.90E-07 0.59105 0.921 0.963 0.021449 -0.042 ENSG00000179218 Upregulated 
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BIRC6 2.75E-09 0.581963 0.9 0.866 6.62E-05 0.034 ENSG00000115760 Upregulated 

XPO1 1.58E-06 0.570453 0.857 0.866 0.038102 -0.009 ENSG00000082898 Upregulated 

CSTB 7.27E-07 0.564414 0.864 0.858 0.017504 0.006 ENSG00000160213 Upregulated 

SLC35F5 9.82E-07 0.561794 0.85 0.799 0.02367 0.051 ENSG00000115084 Upregulated 

HDDC2 1.39E-06 0.553189 0.864 0.754 0.033429 0.11 ENSG00000111906 Upregulated 

FYTTD1 3.29E-07 0.550304 0.871 0.851 0.007924 0.02 ENSG00000122068 Upregulated 

CD44 4.98E-07 0.544319 0.943 0.918 0.012009 0.025 ENSG00000026508 Upregulated 

DNAJB1 1.80E-07 0.544009 0.893 0.888 0.004325 0.005 ENSG00000132002 Upregulated 

HDAC9 3.86E-08 0.531605 0.686 0.41 0.00093 0.276 ENSG00000048052 Upregulated 

RAB6A 1.24E-07 0.531235 0.886 0.925 0.002986 -0.039 ENSG00000175582 Upregulated 

S100A6 5.38E-07 0.529534 1 1 0.012955 0 ENSG00000197956 Upregulated 

PRSS56 1.94E-09 0.527679 0.421 0.097 4.67E-05 0.324 ENSG00000237412 Upregulated 

LMNTD1 2.08E-07 0.519623 0.4 0.149 0.005001 0.251 ENSG00000152936 Upregulated 

EXOC6 6.26E-07 0.505075 0.814 0.634 0.015094 0.18 ENSG00000138190 Upregulated 

RPL14 1.28E-10 -0.50557 0.979 1 3.09E-06 -0.021 ENSG00000188846 Downregulated 

GPR108 1.47E-06 -0.51105 0.6 0.754 0.035475 -0.154 ENSG00000125734 Downregulated 

NPM1 2.38E-12 -0.51975 0.993 1 5.73E-08 -0.007 ENSG00000181163 Downregulated 

GAPDH 4.87E-10 -0.52108 0.964 1 1.17E-05 -0.036 ENSG00000111640 Downregulated 

SLC25A3 5.33E-08 -0.52365 0.9 0.978 0.001283 -0.078 ENSG00000075415 Downregulated 

ACSL3 3.40E-08 -0.52845 0.843 0.933 0.000818 -0.09 ENSG00000123983 Downregulated 

RPL7A 3.20E-14 -0.53934 0.993 1 7.72E-10 -0.007 ENSG00000148303 Downregulated 

IGFBP2 4.20E-10 -0.54624 0.564 0.851 1.01E-05 -0.287 ENSG00000115457 Downregulated 

HNRNPA1 1.43E-11 -0.55375 0.936 0.978 3.44E-07 -0.042 ENSG00000135486 Downregulated 

PTMA 1.25E-11 -0.57921 0.993 1 3.02E-07 -0.007 ENSG00000187514 Downregulated 

MGST1 3.31E-10 -0.581 0.736 0.918 7.97E-06 -0.182 ENSG00000008394 Downregulated 

RPL18A 1.00E-11 -0.58221 0.964 1 2.42E-07 -0.036 ENSG00000105640 Downregulated 

EIF3F 1.53E-08 -0.58357 0.771 0.918 0.00037 -0.147 ENSG00000175390 Downregulated 

IL1R2 6.68E-07 -0.58896 0.271 0.537 0.016103 -0.266 ENSG00000115590 Downregulated 

RPL7 2.63E-08 -0.59932 1 1 0.000634 0 ENSG00000147604 Downregulated 

RPS3 5.60E-16 -0.61928 1 0.993 1.35E-11 0.007 ENSG00000149273 Downregulated 

MTCO1P12 2.61E-08 -0.62391 0.807 0.821 0.000629 -0.014 ENSG00000237973 Downregulated 
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RPL22L1 1.60E-09 -0.62627 0.871 0.94 3.86E-05 -0.069 ENSG00000163584 Downregulated 

RPS3A 1.31E-16 -0.62855 0.986 1 3.14E-12 -0.014 ENSG00000145425 Downregulated 

CD46 9.60E-09 -0.63549 0.964 0.993 0.000231 -0.029 ENSG00000117335 Downregulated 

SH3BP4 4.23E-07 -0.63616 0.707 0.821 0.010185 -0.114 ENSG00000130147 Downregulated 

RPL13A 5.96E-15 -0.63889 0.993 1 1.44E-10 -0.007 ENSG00000142541 Downregulated 

RPS9 2.02E-13 -0.6443 0.971 0.978 4.87E-09 -0.007 ENSG00000170889 Downregulated 

RPL8 4.70E-16 -0.64614 0.993 1 1.13E-11 -0.007 ENSG00000161016 Downregulated 

RPS6 1.27E-18 -0.65793 1 1 3.06E-14 0 ENSG00000137154 Downregulated 

RPS14 1.09E-16 -0.66142 1 1 2.63E-12 0 ENSG00000164587 Downregulated 

CALCA 3.20E-07 -0.66291 0.129 0.396 0.00771 -0.267 ENSG00000110680 Downregulated 

TESC 6.09E-08 -0.67436 0.821 0.925 0.001468 -0.104 ENSG00000088992 Downregulated 

RPL13 2.09E-14 -0.6865 0.964 1 5.04E-10 -0.036 ENSG00000167526 Downregulated 

PLEKHB1 3.03E-09 -0.73659 0.614 0.799 7.31E-05 -0.185 ENSG00000021300 Downregulated 

EEF1A1 1.35E-22 -0.7544 1 1 3.26E-18 0 ENSG00000156508 Downregulated 

SLC25A6 7.54E-15 -0.79627 0.921 0.97 1.82E-10 -0.049 ENSG00000169100 Downregulated 

HES6 5.65E-09 -0.83116 0.814 0.91 0.000136 -0.096 ENSG00000144485 Downregulated 

RACK1 4.22E-22 -0.8878 0.986 1 1.02E-17 -0.014 ENSG00000204628 Downregulated 

RPL3 1.17E-23 -1.09246 0.979 0.993 2.82E-19 -0.014 ENSG00000100316 Downregulated 

MT-RNR2 1.61E-14 -1.25719 1 1 3.88E-10 0 ENSG00000210082 Downregulated 
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A.4 10x Genomics scRNA-seq analysis of colorectal cancer patient-derived organoids 

A.4.1 10x scRNA-seq data quality control, batch correction and clustering analysis 

Violin plots illustrating the distribution of single cells derived from the Parental, MK1-resistant and AZD1-resistant PDOs based on various Seurat quality 

control metrics before filtering. These metrics include: (a) number of genes detected (nFeature_RNA), (b) number of RNA molecules (nCount_RNA), (c) 

mitochondrial RNA percentage (percent.mt), and (d) ribosomal RNA percentage (percent.ribo) for each cell. All metrics were evaluated across each PDO 

and over two sequencing runs. Scatter plots depict the relationship between RNA content and (e) number of genes detected or (f) mitochondrial content 

for each cell. 8,577 cells in total: 2,726 Parental, 3,220 MK1-resistant, and 2,631 AZD1-resistant cells. In this multi-panel figure, colour-coding 

distinguishes the sequencing runs, with coral representing the first and sky-blue denoting the second batch of sequenced cells.  

Supplementary Figure 4. Quality assessment of 8,577 10x Genomics scRNA-seq libraries from three mCRC PDOs before excluding low-

quality cells. 
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Violin showing: (a) number of genes detected (nFeature_RNA), (b) number of RNA molecules (nCount_RNA), (c) mitochondrial read percentage 

(percent.mt), and (d) ribosomal read percentage (percent.ribo) per single cell after the removal of low-quality cells. All metrics were evaluated across 

each PDO and over two sequencing runs. Scatter plots depict the correlation between RNA content and (e) number of genes detected or (f) mitochondrial 

content for each cell. 7,242 cells in total: 2,245 Parental, 2,708 MK1-resistant, and 2,289 AZD1-resistant cells. In this multi-panel figure, colour-coding 

distinguishes the sequencing runs, with coral representing the first and sky-blue denoting the second batch of sequenced cell.  

 

 

Supplementary Figure 5. Quality metrics for 7,242 scRNA-seq libraries from three mCRC PDOs after Seurat filtering. 
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(a) Scatter plots reflect the standard variance of genes against average expression, highlighting the top 3,000 genes (red) with the most significant 

variability in gene expression in the first (left) and second (right) sequencing runs. Top 15 genes in each batch are annotated. (b) Representation of 

genes in the first three principal component space in the integrated dataset. (c) Scree plot shows the variation captured by the first 30 principal 

components. This visualisation aids in selecting the optimal number of principal components for cell clustering, with PCs 1-25 chosen based on the plot’s 

“elbow”, where the line begins to flatten. 

(a)

(c)(b)

Supplementary Figure 6. Seurat integration aligns three scRNA-seq datasets using variably expressed anchor genes, followed by principal 

component analysis to identify the main axes of variation for further analyses. 
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(a) In the UMAP plot cells are grouped by gene expression similarity resulting in 12 clusters at a resolution of 0.5. (b) Distribution of clusters across 

mCRC organoids. (c) Percentage of cells in various cell cycle phases across identified clusters. 

Supplementary Figure 7. Non-linear dimensionality reduction identifies 12 transcriptionally distinct cell clusters in mCRC PDOs at a 

resolution of 0.5. 

(b)(a)

(c)
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 A.4.2 Projection of Smart-seq2 clusters onto the 10x scRNA-seq dataset 

(a) UMAP plots displays clusters identified when Smart-seq2 clusters are projected onto the 10x scRNA-seq dataset. (b) Heatmap of key differentially 

expressed genes for each cluster, with gene expression levels transitioning from blue (low expression) to red (high expression). Annotations above the 

heatmap indicate cell cycle stage and PDO source.  

Supplementary Figure 8. Gene expression analysis of clusters identified in mCRC PDOs. 

(a)

(b)
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 A.4.3 Projection of Smart-seq2 cell type labels onto the 10x scRNA-seq dataset 

(a) UMAP plot of mCRC PDOs from 10x scRNA-seq data, labelled with the Human Gut Cell Atlas (left), and distribution of prediction scores across 

annotated cell types (right). (b) Expression patterns of selected marker genes used to identify Paneth cells. (b) UMAP plot of mCRC PDOs from 10x scRNA-

seq data, labelled with cell types identified in a reference Smart-seq2 dataset previously annotated using the Human Gut Cell Atlas (left), and distribution 

of prediction scores across annotated cell types (right).  

(a)

(c)

(b)

Supplementary Figure 9. Prediction scores for colonic cell types identified in mCRC PDOs using two annotation references   
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A.4.4 10x scRNA-seq differential gene expression analysis across mCRC PDOs 

I. Pairwise DGE analysis between MK1-resistant and Parental PDOs 

Supplementary Figure 10. Differential expression analysis between MK1-resistant and Parental PDOs. 
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II. Pairwise DGE analysis between AZD1-resistant and Parental PDOs  

 

Supplementary Figure 11. Differential expression analysis between AZD1-resistant and Parental PDOs. 
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A.5 Comparison between Smart-seq2 and 10x scRNA-seq datasets 

In each plot, data points represent cells derived from mCRC PDOs: n= 361 cells for Smart-seq2; n = 7,242 cells for 10x Genomics. 

Supplementary Figure 12. Technical comparison between Smart-seq2 and 10x scRNA-seq datasets from mCRC PDOs. 

(a) (b)

(c) (d)
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Appendix B. Supplementary material for Chapter 4 

B.1 Processing of bulk WGS data from mCRC organoids and blood control 

Quality control metrics of bulk WGS data derived from Parental, MK1-resistant, AZD1-resistant 

mCRC organoids, along with a matched blood sample from the patient from whom the organoids 

were derived. Metrics evaluated include: (a) total number of reads, (b) percentage of duplicated 

reads, (c) overall mapping rate, (d) percentage of uniquely mapping reads, (e) mean depth of 

coverage, and (f) breadth of coverage at various coverage depths. Each box plot displays the 

median value (central line), the 25th and 75th percentiles (box boundaries), and the 1.5× 

interquartile range (whiskers). Outliers are shown as individual points beyond the whiskers.  

(a) (b) (c) (d)

(e) (f)

Supplementary Figure 13. Distribution of bulk whole-genome sequencing data derived 

from mCRC tumoroids and matching blood control, across various quality control 

metrics. 
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B.1.1 Quality control metrics for the downsampled bulk WGS dataset  

Quality control metrics for downsampled bulk WGS data derived from Parental, MK1-resistant, 

AZD1-resistant mCRC organoids, along with a matched blood sample from the patient from whom 

the organoids were derived. Metrics evaluated include: (a) total number of reads, (b) percentage 

of duplicated reads, (c) overall mapping rate, (d) percentage of uniquely mapping reads, (e) mean 

depth of coverage, and (f) breadth of coverage at various coverage depths. Each box plot displays 

the median value (central line), the 25th and 75th percentiles (box boundaries), and the 1.5× 

interquartile range (whiskers). 

(d) (e)

(a) (b) (c)

Supplementary Figure 14. Distribution of downsampled bulk whole-genome sequencing 

data derived from mCRC tumoroids and matching blood control, across various quality 

control metrics. 
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B.2 Sequenza CNA analysis of bulk WGS data 

The x-axis shows the B allele frequency (BAF), which is the proportion of sequencing reads that 

contain the variant (non-reference) allele at heterozygous loci within the genomic segments 

analysed (black circles and dots). The y-axis represents the observed to expected read count ratio. 

This depth ratio helps infer the copy number (right-side scale) at each genome segment. The 

colour gradient illustrates the log posterior probability density of observing specific depth ratio, 

B allele frequency and ploidy combinations across genomic segments.

Parental MK1-resistant AZD1-resistant

Supplementary Figure 15. Sequenza cellularity and ploidy estimates for bulk Parental, 

MK1- and AZD1-resistant PDOs. 
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B.3 Subclonal characterisation of mCRC PDOs 

(a) Heatmap shows copy number profiles of mCRC cells across chromosome 14. The cytoband 

region displayed above the heatmap, extracted from genecards.org, highlights the AKT1 locus at 

14q32.33. Rows correspond to 80 single-cell genomes from Parental (n=30), MK1- (n=22), and 

AZD1-resistant (n=28) organoids. (b) IGV snapshot focusing (bulk data) on the AKT1 locus, 

comparing read depth between the matched blood control (top track) and Parental organoid 

(bottom track). The amplification of AKT1 in the Parental sample is evident as an increased 

number of reads compared to the blood control

(a)

(b)

Supplementary Figure 16. Copy number profile of mCRC tumoroids at chromosome 14 

highlighting the AKT1 locus 
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Plots display genome-wide copy number profiles of a single-cell genome derived from (a) the 

Parental organoid, along with (b) two MK1-resistant cells. These resistant cells likely originated 

and subsequently diverged from the Parental line based on shared similarities in their copy 

number profiles. Arrows indicate regions of CNA gains or loses where the MK1-reistant cells 

diverge with respect to the Parental cell. Coloured horizontal lines represent median copy number 

states: black for diploid segments, red for amplifications, and blue for deletions. 

 

(a)

+2

+2 +2

+1

+1

(b)

+4

+2

+3
+3

+2

+1

+3
+4

+3

+1

Supplementary Figure 17. Copy number profiles of single-cell genomes derived from a 

common ancestor. 
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B.4 Comparison between bulk and single-cell WGS 

Heatmaps depicting (top) genome-wide copy number profiles for downsampled bulk WGS data and (bottom) 80 single-cell genomes from Parental 

(n=30), MK1-resistant (n=22), and AZD1-resistant (n=28) organoids (both analyses performed using 500 kb genomic bins). Hierarchical clustering of 

the genomes was performed using Euclidean distance and Ward’s linkage method. The colour scale indicates integer copy number state.

Supplementary Figure 18. Comparison of copy number profiles of mCRC PDOs by bulk and single-cell WGS. 
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Appendix C. Supplementary material for Chapter 5 

C.1 Transcriptome-based DNA copy number inference from 10x scRNA-seq data 

Supplementary Figure 19. Genome-wide copy number states of AKTi-resistant cells inferred from 10x scRNA-seq data. 

(b)

(a)
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(a) Heatmap displays predicted CNV regions as identified by inferCNV using a six-state Hidden Markov Model (HMM). Heatmap colours correspond to 

one of the six HMM states, indicating varying degrees of copy number alterations: State 1 represents the loss of two copies; State 2 indicates the loss of 

one copy; State 3 denotes a neutral state with no change; State 4 represents the addition of one copy; State 5 represents the addition of two copies; and 

State 6 denotes the addition of more than two copies. Columns correspond to genomic windows covering 100 adjacent genes, providing an averaged 

view of CNV states. Rows represent 4,997 single-cell transcriptomes derived from MK1-resistant (n=2,708) and AZD1-resistant (n=2,289) mCRC 

organoids. (b) CNV events characterising inferCNV subclones, with adjacent bar plots denoting their frequency (%) in AKTi-resistant PDOs. (c) 

Frequency of inferCNV subclones in the Parental organoid.
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Top heatmap displays the expression values of Parental cells (n=2,245) along the rows, clustered based on Euclidean distance and Ward’s linkage. 

Supplementary Figure 20. Heatmap of relative expression values of genes across mCRC single-cell transcriptomes from 10x scRNA-seq.  
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Columns represent genes ordered by their genomic position across chromosomes. Bottom heatmap shows the residual expression values for MK1- and 

AZD1-resistant cells (n=2,708, n=2,289 cells, respectively). Colour intensities indicate chromosomal regions with significantly higher or lower expression. 

Red indicates regions likely containing large, amplified segments, while blue denotes regions with potential deletions. Rows (cells) are organised using 

hierarchical clustering based on Euclidean distance and average linkage. The black box on the top heatmap highlights Parental cells with amplifications  

at chromosomes 1 and 2, and a deletion at chromosome 5. This suggests that these cells were already present in the untreated control and subsequently 

expanded in the AKTi-resistant organoids.
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Box plots represent the median expression values across each chromosome for the Parental (n=2,245), MK1-resistant (n=2,708), and AZD1-resistant 

(2,289) mCRC PDOs. Expression data was obtained by subtracting the average log2 fold change values in Parental cells from those in AKTi-resistant cells. 

Supplementary Figure 21. Genome-wide gene expression binned per chromosome in mCRC single-cell transcriptomes derived from 10x 

high-throughput scRNA-seq. 
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C.2. Relationship between copy number alterations and differentially expressed genes in AKTi-resistant organoids 

Supplementary Figure 22. Genome-wide landscape of copy number alterations affecting differentially expressed genes in MK1-resistant 

cells. 
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Supplementary Figure 23 Genome-wide landscape of copy number alterations affecting differentially expressed genes in AZD1-resistant 

cells. 



 

305 

 



 

306 

 

Bibliography 

1. Siegel RL, Wagle NS, Cercek A, Smith RA, Jemal A. Colorectal cancer statistics, 2023. CA 
Cancer J Clin. 2023;73(3):233-54. 

2. Cancer Research UK. Bowel cancer statistics: Cancer Research UK; 2023 [Available 
from: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-
cancer-type/bowel-cancer#heading-Zero. 

3. Aarons CB, Shanmugan S, Bleier JI. Management of malignant colon polyps: current 
status and controversies. World J Gastroenterol. 2014;20(43):16178-83. 

4. Shussman N, Wexner SD. Colorectal polyps and polyposis syndromes. Gastroenterol 
Rep (Oxf). 2014;2(1):1-15. 

5. Ogino S, Goel A. Molecular classification and correlates in colorectal cancer. J Mol Diagn. 
2008;10(1):13-27. 

6. Muzny DM, Bainbridge MN, Chang K, Dinh HH, Drummond JA, Fowler G, et al. 
Comprehensive molecular characterization of human colon and rectal cancer. Nature. 
2012;487(7407):330-7. 

7. Li K, Luo H, Huang L, Luo H, Zhu X. Microsatellite instability: a review of what the 
oncologist should know. Cancer Cell International. 2020;20(1):16. 

8. Kawakami H, Zaanan A, Sinicrope FA. Microsatellite instability testing and its role in the 
management of colorectal cancer. Curr Treat Options Oncol. 2015;16(7):30. 

9. Nguyen HT, Duong HQ. The molecular characteristics of colorectal cancer: Implications 
for diagnosis and therapy. Oncol Lett. 2018;16(1):9-18. 

10. Cao Y. Tumorigenesis as a process of gradual loss of original cell identity and gain of 
properties of neural precursor/progenitor cells. Cell Biosci. 2017;7:61. 

11. Williams MJ, Sottoriva A, Graham TA. Measuring Clonal Evolution in Cancer with 
Genomics. Annu Rev Genomics Hum Genet. 2019;20:309-29. 

12. Menter DG, Davis JS, Broom BM, Overman MJ, Morris J, Kopetz S. Back to the Colorectal 
Cancer Consensus Molecular Subtype Future. Current Gastroenterology Reports. 2019;21(2):5. 

13. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57-70. 

14. Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022;12(1):31-46. 

15. Malki A, ElRuz RA, Gupta I, Allouch A, Vranic S, Al Moustafa AE. Molecular Mechanisms 
of Colon Cancer Progression and Metastasis: Recent Insights and Advancements. Int J Mol Sci. 
2020;22(1). 

16. Jelsig AM, Qvist N, Brusgaard K, Nielsen CB, Hansen TP, Ousager LB. Hamartomatous 
polyposis syndromes: a review. Orphanet J Rare Dis. 2014;9:101. 

17. Fearon ER. Molecular genetics of colorectal cancer. Annu Rev Pathol. 2011;6:479-507. 

https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/bowel-cancer#heading-Zero
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/bowel-cancer#heading-Zero


 

307 

 

18. Meyer LA, Broaddus RR, Lu KH. Endometrial Cancer and Lynch Syndrome: Clinical and 
Pathologic Considerations. Cancer Control. 2009;16(1):14-22. 

19. Bennedsen ALB, Furbo S, Bjarnsholt T, Raskov H, Gogenur I, Kvich L. The gut microbiota 
can orchestrate the signaling pathways in colorectal cancer. APMIS. 2022;130(3):121-39. 

20. Basu S, Haase G, Ben-Ze'ev A. Wnt signaling in cancer stem cells and colon cancer 
metastasis. F1000Res. 2016;5. 

21. Marshman E, Booth C, Potten CS. The intestinal epithelial stem cell. Bioessays. 
2002;24(1):91-8. 

22. Mah AT, Yan KS, Kuo CJ. Wnt pathway regulation of intestinal stem cells. J Physiol. 
2016;594(17):4837-47. 

23. Du H, Nie Q, Holmes WR. The Interplay between Wnt Mediated Expansion and Negative 
Regulation of Growth Promotes Robust Intestinal Crypt Structure and Homeostasis. PLoS 
Comput Biol. 2015;11(8):e1004285. 

24. Kok SY, Nakayama M, Morita A, Oshima H, Oshima M. Genetic and nongenetic 
mechanisms for colorectal cancer evolution. Cancer Sci. 2023;114(9):3478-86. 

25. Teeuwssen M, Fodde R. Cell Heterogeneity and Phenotypic Plasticity in Metastasis 
Formation: The Case of Colon Cancer. Cancers [Internet]. 2019; 11(9). 

26. Wu D, Pan W. GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem Sci. 
2010;35(3):161-8. 

27. Flack JE, Mieszczanek J, Novcic N, Bienz M. Wnt-Dependent Inactivation of the 
Groucho/TLE Co-repressor by the HECT E3 Ubiquitin Ligase Hyd/UBR5. Mol Cell. 
2017;67(2):181-93 e5. 

28. Morgan RG, Mortensson E, Williams AC. Targeting LGR5 in Colorectal Cancer: 
therapeutic gold or too plastic? Br J Cancer. 2018;118(11):1410-8. 

29. Mukherjee A, Dhar N, Stathos M, Schaffer DV, Kane RS. Understanding How Wnt 
Influences Destruction Complex Activity and β-Catenin Dynamics. iScience. 2018;6:13-21. 

30. San Roman AK, Jayewickreme CD, Murtaugh LC, Shivdasani RA. Wnt secretion from 
epithelial cells and subepithelial myofibroblasts is not required in the mouse intestinal stem 
cell niche in vivo. Stem Cell Reports. 2014;2(2):127-34. 

31. Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, et al. Wnt/beta-catenin signalling: function, 
biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 
2022;7(1):3. 

32. Nguyen LH, Goel A, Chung DC. Pathways of Colorectal Carcinogenesis. Gastroenterology. 
2020;158(2):291-302. 

33. Kosmidou V, Oikonomou E, Vlassi M, Avlonitis S, Katseli A, Tsipras I, et al. Tumor 
heterogeneity revealed by KRAS, BRAF, and PIK3CA pyrosequencing: KRAS and PIK3CA 
intratumor mutation profile differences and their therapeutic implications. Hum Mutat. 
2014;35(3):329-40. 



 

308 

 

34. Nitulescu GM, Van De Venter M, Nitulescu G, Ungurianu A, Juzenas P, Peng Q, et al. The 
Akt pathway in oncology therapy and beyond (Review). Int J Oncol. 2018;53(6):2319-31. 

35. McCubrey JA, Steelman LS, Bertrand FE, Davis NM, Abrams SL, Montalto G, et al. 
Multifaceted roles of GSK-3 and Wnt/beta-catenin in hematopoiesis and leukemogenesis: 
opportunities for therapeutic intervention. Leukemia. 2014;28(1):15-33. 

36. Jeong WJ, Ro EJ, Choi KY. Interaction between Wnt/beta-catenin and RAS-ERK pathways 
and an anti-cancer strategy via degradations of beta-catenin and RAS by targeting the 
Wnt/beta-catenin pathway. NPJ Precis Oncol. 2018;2(1):5. 

37. Hossain MS, Karuniawati H, Jairoun AA, Urbi Z, Ooi J, John A, et al. Colorectal Cancer: A 
Review of Carcinogenesis, Global Epidemiology, Current Challenges, Risk Factors, Preventive 
and Treatment Strategies. Cancers (Basel). 2022;14(7). 

38. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, et al. Genetic 
alterations during colorectal-tumor development. N Engl J Med. 1988;319(9):525-32. 

39. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 
1990;61(5):759-67. 

40. Levy DB, Smith KJ, Beazer-Barclay Y, Hamilton SR, Vogelstein B, Kinzler KW. Inactivation 
of both APC alleles in human and mouse tumors. Cancer Res. 1994;54(22):5953-8. 

41. Oshima M, Oshima H, Kitagawa K, Kobayashi M, Itakura C, Taketo M. Loss of Apc 
heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a 
truncated Apc gene. Proc Natl Acad Sci U S A. 1995;92(10):4482-6. 

42. Oshima M, Takahashi M, Oshima H, Tsutsumi M, Yazawa K, Sugimura T, et al. Effects of 
docosahexaenoic acid (DHA) on intestinal polyp development in ApcΔ716 knockout mice. 
Carcinogenesis. 1995;16(11):2605-7. 

43. Nowell PC. The clonal evolution of tumor cell populations. Science. 
1976;194(4260):23-8. 

44. Sakai E, Nakayama M, Oshima H, Kouyama Y, Niida A, Fujii S, et al. Combined Mutation 
of Apc, Kras, and Tgfbr2 Effectively Drives Metastasis of Intestinal Cancer. Cancer Res. 
2018;78(5):1334-46. 

45. Margonis GA, Kim Y, Spolverato G, Ejaz A, Gupta R, Cosgrove D, et al. Association 
Between Specific Mutations in KRAS Codon 12 and Colorectal Liver Metastasis. JAMA Surg. 
2015;150(8):722-9. 

46. Jones RP, Sutton PA, Evans JP, Clifford R, McAvoy A, Lewis J, et al. Specific mutations in 
KRAS codon 12 are associated with worse overall survival in patients with advanced and 
recurrent colorectal cancer. Br J Cancer. 2017;116(7):923-9. 

47. Chen J, Guo F, Shi X, Zhang L, Zhang A, Jin H, et al. BRAF V600E mutation and KRAS 
codon 13 mutations predict poor survival in Chinese colorectal cancer patients. BMC Cancer. 
2014;14:802. 



 

309 

 

48. Kwak MS, Cha JM, Yoon JY, Jeon JW, Shin HP, Chang HJ, et al. Prognostic value of KRAS 
codon 13 gene mutation for overall survival in colorectal cancer: Direct and indirect 
comparison meta-analysis. Medicine (Baltimore). 2017;96(35):e7882. 

49. Renaud S, Guerrera F, Seitlinger J, Costardi L, Schaeffer M, Romain B, et al. KRAS exon 2 
codon 13 mutation is associated with a better prognosis than codon 12 mutation following lung 
metastasectomy in colorectal cancer. Oncotarget. 2017;8(2):2514-24. 

50. Walther A, Johnstone E, Swanton C, Midgley R, Tomlinson I, Kerr D. Genetic prognostic 
and predictive markers in colorectal cancer. Nat Rev Cancer. 2009;9(7):489-99. 

51. Gonzalez-Gonzalez M, Fontanillo C, Abad MM, Gutierrez ML, Mota I, Bengoechea O, et 
al. Identification of a characteristic copy number alteration profile by high-resolution single 
nucleotide polymorphism arrays associated with metastatic sporadic colorectal cancer. Cancer. 
2014;120(13):1948-59. 

52. Mehlen P, Fearon ER. Role of the dependence receptor DCC in colorectal cancer 
pathogenesis. J Clin Oncol. 2004;22(16):3420-8. 

53. Fleming NI, Jorissen RN, Mouradov D, Christie M, Sakthianandeswaren A, Palmieri M, et 
al. SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer. Cancer Res. 2013;73(2):725-35. 

54. Feroz W, Sheikh AMA. Exploring the multiple roles of guardian of the genome: P53. 
Egyptian Journal of Medical Human Genetics. 2020;21(1):49. 

55. Tan BS, Tiong KH, Choo HL, Chung FF, Hii LW, Tan SH, et al. Mutant p53-R273H mediates 
cancer cell survival and anoikis resistance through AKT-dependent suppression of BCL2-
modifying factor (BMF). Cell Death Dis. 2015;6(7):e1826. 

56. Velho S, Moutinho C, Cirnes L, Albuquerque C, Hamelin R, Schmitt F, et al. BRAF, KRAS 
and PIK3CA mutations in colorectal serrated polyps and cancer: primary or secondary genetic 
events in colorectal carcinogenesis? BMC Cancer. 2008;8:255. 

57. Gabelli SB, Huang CH, Mandelker D, Schmidt-Kittler O, Vogelstein B, Amzel LM. 
Structural effects of oncogenic PI3Kalpha mutations. Curr Top Microbiol Immunol. 
2010;347:43-53. 

58. Wang H, Liang L, Fang JY, Xu J. Somatic gene copy number alterations in colorectal 
cancer: new quest for cancer drivers and biomarkers. Oncogene. 2016;35(16):2011-9. 

59. Diep CB, Kleivi K, Ribeiro FR, Teixeira MR, Lindgjaerde OC, Lothe RA. The order of 
genetic events associated with colorectal cancer progression inferred from meta-analysis of 
copy number changes. Genes Chromosomes Cancer. 2006;45(1):31-41. 

60. Duan B, Zhao Y, Bai J, Wang J, Duan X, Luo X, et al. Colorectal Cancer: An Overview. In: 
Morgado-Diaz JA, editor. Gastrointestinal Cancers. Brisbane (AU)2022. 

61. Tian J, Afebu KO, Bickerdike A, Liu Y, Prasad S, Nelson BJ. Fundamentals of Bowel Cancer 
for Biomedical Engineers. Ann Biomed Eng. 2023;51(4):679-701. 

62. GOV.UK. Bowel cancer screening: programme overview: GOV.UK; 2021 [updated 17 
March 2021. Available from: https://www.gov.uk/guidance/bowel-cancer-screening-

https://www.gov.uk/guidance/bowel-cancer-screening-programme-overview#:~:text=population%20screening%20programmes.-,Target%20population,invited%20for%20bowel%20scope%20screening


 

310 

 

programme-overview#:~:text=population%20screening%20programmes.-
,Target%20population,invited%20for%20bowel%20scope%20screening. 

63. The American Cancer Society. Treatment of Colon Cancer, by Stage: The American 
Cancer Society; 2024 [updated 06 February 2024. Available from: 
https://www.cancer.org/cancer/types/colon-rectal-cancer/treating/by-stage-colon.html. 

64. Serrano D, Bonanni B, Brown K. Therapeutic cancer prevention: achievements and 
ongoing challenges - a focus on breast and colorectal cancer. Mol Oncol. 2019;13(3):579-90. 

65. The American Cancer Society. Colorectal Cancer Stages: The American Cancer Society; 
2024 [updated 29 Januray 2024. Available from: https://www.cancer.org/cancer/types/colon-
rectal-cancer/detection-diagnosis-staging/staged.html. 

66. Wang Q, Shen X, Chen G, Du J. Drug Resistance in Colorectal Cancer: From Mechanism 
to Clinic. Cancers (Basel). 2022;14(12). 

67. Cancer Research UK. Chemotherapy for colon cancer: Cancer Research UK; 2022 
[updated 04 February 2022. Available from: https://www.cancerresearchuk.org/about-
cancer/bowel-cancer/treatment/treatment-colon/colon-chemotherapy. 

68. Zhang N, Yin Y, Xu SJ, Chen WS. 5-Fluorouracil: mechanisms of resistance and reversal 
strategies. Molecules. 2008;13(8):1551-69. 

69. Raymond E, Faivre S, Chaney S, Woynarowski J, Cvitkovic E. Cellular and Molecular 
Pharmacology of Oxaliplatin1. Molecular Cancer Therapeutics. 2002;1(3):227-35. 

70. Ozawa S, Miura T, Terashima J, Habano W. Cellular irinotecan resistance in colorectal 
cancer and overcoming irinotecan refractoriness through various combination trials including 
DNA methyltransferase inhibitors: a review. Cancer Drug Resist. 2021;4(4):946-64. 

71. Howe JR. The impact of DNA testing on management of patients with colorectal cancer. 
Ann Gastroenterol Surg. 2022;6(1):17-28. 

72. Berner A. Presentation: Patient with localised colorectal cancer: NHS Genomics 
Education Programme; 2023 [updated 28 March 2023. Available from: 
https://www.genomicseducation.hee.nhs.uk/genotes/in-the-clinic/presentation-patient-
with-localised-colorectal-cancer/. 

73. Berner A. Mismatch repair deficiency and microsatellite instability: NHS Genomics 
Education Programme; 2022 [updated 25 March 2022. Available from: 
https://www.genomicseducation.hee.nhs.uk/genotes/knowledge-hub/mismatch-repair-
deficiency-and-microsatellite-instability/#genomic-testing. 

74. Berner A. Presentation: Patient with metastatic colorectal cancer: NHS Genomics 
Education Programme; 2023 [updated 28 March 2023. Available from: 
https://www.genomicseducation.hee.nhs.uk/genotes/in-the-clinic/presentation-patient-
with-metastatic-colorectal-cancer/. 

75. Modest DP, Stintzing S, Weikersthal LFv, Decker T, Kiani A, Vehling-Kaiser U, et al. Impact 
of Subsequent Therapies on Outcome of the FIRE-3/AIO KRK0306 Trial: First-Line Therapy 
With FOLFIRI Plus Cetuximab or Bevacizumab in Patients With KRAS Wild-Type Tumors in 
Metastatic Colorectal Cancer. Journal of Clinical Oncology. 2015;33(32):3718-26. 

https://www.gov.uk/guidance/bowel-cancer-screening-programme-overview#:~:text=population%20screening%20programmes.-,Target%20population,invited%20for%20bowel%20scope%20screening
https://www.gov.uk/guidance/bowel-cancer-screening-programme-overview#:~:text=population%20screening%20programmes.-,Target%20population,invited%20for%20bowel%20scope%20screening
https://www.cancer.org/cancer/types/colon-rectal-cancer/treating/by-stage-colon.html
https://www.cancer.org/cancer/types/colon-rectal-cancer/detection-diagnosis-staging/staged.html
https://www.cancer.org/cancer/types/colon-rectal-cancer/detection-diagnosis-staging/staged.html
https://www.cancerresearchuk.org/about-cancer/bowel-cancer/treatment/treatment-colon/colon-chemotherapy
https://www.cancerresearchuk.org/about-cancer/bowel-cancer/treatment/treatment-colon/colon-chemotherapy
https://www.genomicseducation.hee.nhs.uk/genotes/in-the-clinic/presentation-patient-with-localised-colorectal-cancer/
https://www.genomicseducation.hee.nhs.uk/genotes/in-the-clinic/presentation-patient-with-localised-colorectal-cancer/
https://www.genomicseducation.hee.nhs.uk/genotes/knowledge-hub/mismatch-repair-deficiency-and-microsatellite-instability/#genomic-testing
https://www.genomicseducation.hee.nhs.uk/genotes/knowledge-hub/mismatch-repair-deficiency-and-microsatellite-instability/#genomic-testing
https://www.genomicseducation.hee.nhs.uk/genotes/in-the-clinic/presentation-patient-with-metastatic-colorectal-cancer/
https://www.genomicseducation.hee.nhs.uk/genotes/in-the-clinic/presentation-patient-with-metastatic-colorectal-cancer/


 

311 

 

76. Fares CM, Allen EMV, Drake CG, Allison JP, Hu-Lieskovan S. Mechanisms of Resistance to 
Immune Checkpoint Blockade: Why Does Checkpoint Inhibitor Immunotherapy Not Work for 
All Patients? American Society of Clinical Oncology Educational Book. 2019(39):147-64. 

77. Popat S, Hubner R, Houlston RS. Systematic review of microsatellite instability and 
colorectal cancer prognosis. J Clin Oncol. 2005;23(3):609-18. 

78. Linnebacher M, Gebert J, Rudy W, Woerner S, Yuan YP, Bork P, et al. Frameshift peptide-
derived T-cell epitopes: a source of novel tumor-specific antigens. Int J Cancer. 2001;93(1):6-
11. 

79. Kosuri KV, Wu X, Wang L, Villalona-Calero MA, Otterson GA. An epigenetic mechanism 
for capecitabine resistance in mesothelioma. Biochem Biophys Res Commun. 
2010;391(3):1465-70. 

80. Haibe Y, Kreidieh M, El Hajj H, Khalifeh I, Mukherji D, Temraz S, et al. Resistance 
Mechanisms to Anti-angiogenic Therapies in Cancer. Front Oncol. 2020;10:221. 

81. Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, et al. Autophagy-
Dependent Anticancer Immune Responses Induced by Chemotherapeutic Agents in Mice. 
Science. 2011;334(6062):1573-7. 

82. Hsu HH, Chen MC, Baskaran R, Lin YM, Day CH, Lin YJ, et al. Oxaliplatin resistance in 
colorectal cancer cells is mediated via activation of ABCG2 to alleviate ER stress induced 
apoptosis. J Cell Physiol. 2018;233(7):5458-67. 

83. Fiszman GL, Jasnis MA. Molecular Mechanisms of Trastuzumab Resistance in HER2 
Overexpressing Breast Cancer. Int J Breast Cancer. 2011;2011:352182. 

84. Chen X, Zhang W, Yang W, Zhou M, Liu F. Acquired resistance for immune checkpoint 
inhibitors in cancer immunotherapy: challenges and prospects. Aging (Albany NY). 
2022;14(2):1048-64. 

85. Nagasaki J, Ishino T, Togashi Y. Mechanisms of resistance to immune checkpoint 
inhibitors. Cancer Sci. 2022;113(10):3303-12. 

86. Jiang L, Li L, Liu Y, Lu L, Zhan M, Yuan S, et al. Drug resistance mechanism of kinase 
inhibitors in the treatment of hepatocellular carcinoma. Front Pharmacol. 2023;14:1097277. 

87. Luebker SA, Koepsell SA. Diverse Mechanisms of BRAF Inhibitor Resistance in 
Melanoma Identified in Clinical and Preclinical Studies. Front Oncol. 2019;9:268. 

88. Fortunato A, Boddy A, Mallo D, Aktipis A, Maley CC, Pepper JW. Natural Selection in 
Cancer Biology: From Molecular Snowflakes to Trait Hallmarks. Cold Spring Harb Perspect Med. 
2017;7(2). 

89. Shlush LI, Hershkovitz D. Clonal evolution models of tumor heterogeneity. Am Soc Clin 
Oncol Educ Book. 2015:e662-5. 

90. Davis A, Gao R, Navin N. Tumor evolution: Linear, branching, neutral or punctuated? 
Biochim Biophys Acta Rev Cancer. 2017;1867(2):151-61. 



 

312 

 

91. Heppner GH, Miller BE. Tumor heterogeneity: biological implications and therapeutic 
consequences. Cancer Metastasis Rev. 1983;2(1):5-23. 

92. Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481(7381):306-13. 

93. Andor N, Graham TA, Jansen M, Xia LC, Aktipis CA, Petritsch C, et al. Pan-cancer analysis 
of the extent and consequences of intratumor heterogeneity. Nat Med. 2016;22(1):105-13. 

94. Grzywa TM, Paskal W, Wlodarski PK. Intratumor and Intertumor Heterogeneity in 
Melanoma. Transl Oncol. 2017;10(6):956-75. 

95. Klein CA. Parallel progression of primary tumours and metastases. Nat Rev Cancer. 
2009;9(4):302-12. 

96. Geyer FC, Weigelt B, Natrajan R, Lambros MB, de Biase D, Vatcheva R, et al. Molecular 
analysis reveals a genetic basis for the phenotypic diversity of metaplastic breast carcinomas. J 
Pathol. 2010;220(5):562-73. 

97. Zito Marino F, Liguori G, Aquino G, La Mantia E, Bosari S, Ferrero S, et al. Correction: 
Intratumor Heterogeneity of ALK-Rearrangements and Homogeneity of EGFR-Mutations in 
Mixed Lung Adenocarcinoma. PLoS One. 2015;10(10):e0141521. 

98. Giaretti W, Monaco R, Pujic N, Rapallo A, Nigro S, Geido E. Intratumor heterogeneity of 
K-ras2 mutations in colorectal adenocarcinomas: association with degree of DNA aneuploidy. 
Am J Pathol. 1996;149(1):237-45. 

99. Friemel J, Rechsteiner M, Frick L, Bohm F, Struckmann K, Egger M, et al. Intratumor 
heterogeneity in hepatocellular carcinoma. Clin Cancer Res. 2015;21(8):1951-61. 

100. Sottoriva A, Kang H, Ma Z, Graham TA, Salomon MP, Zhao J, et al. A Big Bang model of 
human colorectal tumor growth. Nat Genet. 2015;47(3):209-16. 

101. Ling S, Hu Z, Yang Z, Yang F, Li Y, Lin P, et al. Extremely high genetic diversity in a single 
tumor points to prevalence of non-Darwinian cell evolution. Proc Natl Acad Sci U S A. 
2015;112(47):E6496-505. 

102. Williams MJ, Werner B, Barnes CP, Graham TA, Sottoriva A. Identification of neutral 
tumor evolution across cancer types. Nat Genet. 2016;48(3):238-44. 

103. Sun R, Hu Z, Curtis C. Big Bang Tumor Growth and Clonal Evolution. Cold Spring Harb 
Perspect Med. 2018;8(5). 

104. Ashouri A, Zhang C, Gaiti F. Decoding Cancer Evolution: Integrating Genetic and Non-
Genetic Insights. Genes (Basel). 2023;14(10). 

105. Shackleton M, Quintana E, Fearon ER, Morrison SJ. Heterogeneity in cancer: cancer stem 
cells versus clonal evolution. Cell. 2009;138(5):822-9. 

106. Niida A, Mimori K, Shibata T, Miyano S. Modeling colorectal cancer evolution. J Hum 
Genet. 2021;66(9):869-78. 

107. Raghavan S. How inclusive are cell lines in preclinical engineered cancer models? Dis 
Model Mech. 2022;15(5). 



 

313 

 

108. Liu Y, Wu W, Cai C, Zhang H, Shen H, Han Y. Patient-derived xenograft models in cancer 
therapy: technologies and applications. Signal Transduct Target Ther. 2023;8(1):160. 

109. Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernandez-Mateos J, Khan K, et al. 
Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. 
Science. 2018;359(6378):920-6. 

110. Grivel JC, Margolis L. Use of human tissue explants to study human infectious agents. 
Nat Protoc. 2009;4(2):256-69. 

111. Gunti S, Hoke ATK, Vu KP, London NR, Jr. Organoid and Spheroid Tumor Models: 
Techniques and Applications. Cancers (Basel). 2021;13(4). 

112. Li M, Izpisua Belmonte JC. Organoids - Preclinical Models of Human Disease. N Engl J 
Med. 2019;380(6):569-79. 

113. Lancaster MA, Knoblich JA. Generation of cerebral organoids from human pluripotent 
stem cells. Nat Protoc. 2014;9(10):2329-40. 

114. Wu Q, Liu J, Wang X, Feng L, Wu J, Zhu X, et al. Organ-on-a-chip: recent breakthroughs 
and future prospects. Biomed Eng Online. 2020;19(1):9. 

115. DrugBank. Regorafenib: DrugBank; 2013 [updated 22 February 2024. Available from: 
https://go.drugbank.com/drugs/DB08896. 

116. Ogbeide S, Giannese F, Mincarelli L, Macaulay IC. Into the multiverse: advances in single-
cell multiomic profiling. Trends Genet. 2022;38(8):831-43. 

117. Wang X, Allen WE, Wright MA, Sylwestrak EL, Samusik N, Vesuna S, et al. Three-
dimensional intact-tissue sequencing of single-cell transcriptional states. Science. 
2018;361(6400). 

118. Regev A, Teichmann SA, Lander ES, Amit I, Benoist C, Birney E, et al. The Human Cell 
Atlas. eLife. 2017;6:e27041. 

119. Zhang J, Spath SS, Marjani SL, Zhang W, Pan X. Characterization of cancer genomic 
heterogeneity by next-generation sequencing advances precision medicine in cancer 
treatment. Precis Clin Med. 2018;1(1):29-48. 

120. Mincarelli L, Lister A, Lipscombe J, Macaulay IC. Defining Cell Identity with Single-Cell 
Omics. Proteomics. 2018;18(18):e1700312. 

121. Maley CC, Galipeau PC, Finley JC, Wongsurawat VJ, Li X, Sanchez CA, et al. Genetic clonal 
diversity predicts progression to esophageal adenocarcinoma. Nature Genetics. 
2006;38(4):468-73. 

122. Bozic I, Nowak MA. Timing and heterogeneity of mutations associated with drug 
resistance in metastatic cancers. Proc Natl Acad Sci U S A. 2014;111(45):15964-8. 

123. Schmitt MW, Loeb LA, Salk JJ. The influence of subclonal resistance mutations on 
targeted cancer therapy. Nat Rev Clin Oncol. 2016;13(6):335-47. 

https://go.drugbank.com/drugs/DB08896


 

314 

 

124. Lim B, Lin Y, Navin N. Advancing Cancer Research and Medicine with Single-Cell 
Genomics. Cancer Cell. 2020;37(4):456-70. 

125. Lei Y, Tang R, Xu J, Wang W, Zhang B, Liu J, et al. Applications of single-cell sequencing 
in cancer research: progress and perspectives. J Hematol Oncol. 2021;14(1):91. 

126. Venkatesan S, Swanton C, Taylor BS, Costello JF. Treatment-Induced Mutagenesis and 
Selective Pressures Sculpt Cancer Evolution. Cold Spring Harb Perspect Med. 2017;7(8). 

127. Kim C, Gao R, Sei E, Brandt R, Hartman J, Hatschek T, et al. Chemoresistance Evolution 
in Triple-Negative Breast Cancer Delineated by Single-Cell Sequencing. Cell. 2018;173(4):879-
93 e13. 

128. Dey SS, Kester L, Spanjaard B, Bienko M, van Oudenaarden A. Integrated genome and 
transcriptome sequencing of the same cell. Nat Biotechnol. 2015;33(3):285-9. 

129. Macaulay IC, Haerty W, Kumar P, Li YI, Hu TX, Teng MJ, et al. G&T-seq: parallel 
sequencing of single-cell genomes and transcriptomes. Nat Methods. 2015;12(6):519-22. 

130. Angermueller C, Clark SJ, Lee HJ, Macaulay IC, Teng MJ, Hu TX, et al. Parallel single-cell 
sequencing links transcriptional and epigenetic heterogeneity. Nat Methods. 2016;13(3):229-
32. 

131. Hou Y, Guo H, Cao C, Li X, Hu B, Zhu P, et al. Single-cell triple omics sequencing reveals 
genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res. 
2016;26(3):304-19. 

132. Macaulay IC, Teng MJ, Haerty W, Kumar P, Ponting CP, Voet T. Separation and parallel 
sequencing of the genomes and transcriptomes of single cells using G&T-seq. Nat Protoc. 
2016;11(11):2081-103. 

133. Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK, 
Swerdlow H, et al. Simultaneous epitope and transcriptome measurement in single cells. Nat 
Methods. 2017;14(9):865-8. 

134. Han KY, Kim KT, Joung JG, Son DS, Kim YJ, Jo A, et al. SIDR: simultaneous isolation and 
parallel sequencing of genomic DNA and total RNA from single cells. Genome Res. 
2018;28(1):75-87. 

135. Gu C, Liu S, Wu Q, Zhang L, Guo F. Integrative single-cell analysis of transcriptome, DNA 
methylome and chromatin accessibility in mouse oocytes. Cell Res. 2019;29(2):110-23. 

136. Hu Y, An Q, Guo Y, Zhong J, Fan S, Rao P, et al. Simultaneous Profiling of mRNA 
Transcriptome and DNA Methylome from a Single Cell. Methods Mol Biol. 2019;1979:363-77. 

137. Rodriguez-Meira A, Buck G, Clark SA, Povinelli BJ, Alcolea V, Louka E, et al. Unravelling 
Intratumoral Heterogeneity through High-Sensitivity Single-Cell Mutational Analysis and 
Parallel RNA Sequencing. Mol Cell. 2019;73(6):1292-305 e8. 

138. Hwang B, Lee DS, Tamaki W, Sun Y, Ogorodnikov A, Hartoularos GC, et al. SCITO-seq: 
single-cell combinatorial indexed cytometry sequencing. Nat Methods. 2021;18(8):903-11. 



 

315 

 

139. Prathamesh Dhamale SJ. Challenges and Solutions in Single Cell RNA-seq Data Analysis: 
Elucidata; 2024 [updated 10 February 2023. Available from: 
https://www.elucidata.io/blog/challenges-and-solutions-in-single-cell-rna-seq-data-analysis. 

140. Lahnemann D, Koster J, Szczurek E, McCarthy DJ, Hicks SC, Robinson MD, et al. Eleven 
grand challenges in single-cell data science. Genome Biol. 2020;21(1):31. 

141. Moffitt JR, Zhuang X. RNA Imaging with Multiplexed Error-Robust Fluorescence In Situ 
Hybridization (MERFISH). Methods Enzymol. 2016;572:1-49. 

142. Okamoto T, duVerle D, Yaginuma K, Natsume Y, Yamanaka H, Kusama D, et al. 
Comparative Analysis of Patient-Matched PDOs Revealed a Reduction in OLFM4-Associated 
Clusters in Metastatic Lesions in Colorectal Cancer. Stem Cell Reports. 2021;16(4):954-67. 

143. Picelli S, Bjorklund AK, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-seq2 for 
sensitive full-length transcriptome profiling in single cells. Nat Methods. 2013;10(11):1096-8. 

144. Moorcraft SY, Gonzalez de Castro D, Cunningham D, Jones T, Walker BA, Peckitt C, et al. 
Investigating the feasibility of tumour molecular profiling in gastrointestinal malignancies in 
routine clinical practice. Ann Oncol. 2018;29(1):230-6. 

145. Zhang X, Duan R, Wang Y, Liu X, Zhang W, Zhu X, et al. FOLFIRI (folinic acid, fluorouracil, 
and irinotecan) increases not efficacy but toxicity compared with single-agent irinotecan as a 
second-line treatment in metastatic colorectal cancer patients: a randomized clinical trial. 
Therapeutic Advances in Medical Oncology. 2022;14:17588359211068737. 

146. Sommer EM, Dry H, Cross D, Guichard S, Davies BR, Alessi DR. Elevated SGK1 predicts 
resistance of breast cancer cells to Akt inhibitors. Biochem J. 2013;452(3):499-508. 

147. Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K, et al. MK-2206, an 
allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or 
molecular targeted drugs in vitro and in vivo. Mol Cancer Ther. 2010;9(7):1956-67. 

148. Hyman DM, Smyth LM, Donoghue MTA, Westin SN, Bedard PL, Dean EJ, et al. AKT 
Inhibition in Solid Tumors With AKT1 Mutations. J Clin Oncol. 2017;35(20):2251-9. 

149. Xing Y, Lin NU, Maurer MA, Chen H, Mahvash A, Sahin A, et al. Phase II trial of AKT 
inhibitor MK-2206 in patients with advanced breast cancer who have tumors with PIK3CA or 
AKT mutations, and/or PTEN loss/PTEN mutation. Breast Cancer Res. 2019;21(1):78. 

150. Mullard A. FDA approves first-in-class AKT inhibitor. Nat Rev Drug Discov. 
2024;23(1):9. 

151. Picelli S, Bjo rklund A K, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-seq2 for 
sensitive full-length transcriptome profiling in single cells. Nature Methods. 
2013;10(11):1096-8. 

152. Hahaut V, Picelli S. Full-Length Single-Cell RNA-Sequencing with FLASH-seq. Methods 
Mol Biol. 2023;2584:123-64. 

153. Hammond WA, Swaika A, Mody K. Pharmacologic resistance in colorectal cancer: a 
review. Ther Adv Med Oncol. 2016;8(1):57-84. 

https://www.elucidata.io/blog/challenges-and-solutions-in-single-cell-rna-seq-data-analysis


 

316 

 

154. Ma SC, Zhang JQ, Yan TH, Miao MX, Cao YM, Cao YB, et al. Novel strategies to reverse 
chemoresistance in colorectal cancer. Cancer Med. 2023;12(10):11073-96. 

155. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal enrichment 
tool for interpreting omics data. The Innovation. 2021;2(3):100141. 

156. Zappia L, Oshlack A. Clustering trees: a visualization for evaluating clusterings at 
multiple resolutions. GigaScience. 2018;7(7). 

157. Gu Z. Complex heatmap visualization. iMeta. 2022;1(3):e43. 

158. Andrews S. FastQC:  A Quality Control Tool for High Throughput Sequence Data. Github. 
Available online at https://github.com/s-andrews/FastQC 2010 [ 

159. Sergushichev AA. An algorithm for fast preranked gene set enrichment analysis using 
cumulative statistic calculation. bioRxiv. 2016:060012. 

160. Gennady K, Vladimir S, Nikolay B, Boris S, Maxim NA, Alexey S. Fast gene set enrichment 
analysis. bioRxiv. 2021:060012. 

161. Wickham H, Sievert C, SpringerLink. ggplot2: Elegant Graphics for Data Analysis. Use R! 
2nd 2016. ed. Cham: Springer 

Springer International Publishing : Imprint: Springer; 2016. 

162. Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput 
sequencing data. Bioinformatics. 2015;31(2):166-9. 

163. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular 
Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1(6):417-25. 

164. Dolgalev I. msigdbr: MSigDB Gene Sets for Multiple Organisms in a Tidy Data Format 
2022 [Available from: https://CRAN.R-project.org/package=msigdbr. 

165. Dharmesh D. Bhuva GKS, Alexandra Garnham. MSigDB: An ExperimentHub Package for 
the Molecular Signatures Database. CRAN. Available online at https://cran.r-
project.org/web/packages/msigdbr/index.html 2023 [ 

166. Ewels P, Magnusson M, Lundin S, Ka ller M. MultiQC: summarize analysis results for 
multiple tools and samples in a single report. Bioinformatics. 2016;32(19):3047-8. 

167. Carlson M. org.Hs.eg.db: Genome wide annotation for Human 2023 [Available from: 
https://bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.db.html. 

168. Rossum V, Guido , Drake L, Fred. Python 3 Reference Manual Scotts Valley, CA: 
CreateSpace; 2009 [Available from: https://www.python.org/. 

169. Garcia-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Gotz S, Tarazona S, et al. 
Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics. 
2012;28(20):2678-9. 

170. Okonechnikov K, Conesa A, Garcia-Alcalde F. Qualimap 2: advanced multi-sample 
quality control for high-throughput sequencing data. Bioinformatics. 2016;32(2):292-4. 

https://github.com/s-andrews/FastQC
https://cran.r-project.org/package=msigdbr
https://cran.r-project.org/web/packages/msigdbr/index.html
https://cran.r-project.org/web/packages/msigdbr/index.html
https://bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.db.html
https://www.python.org/


 

317 

 

171. Mingchu X, Zhongqi G. Scillus: Seurat wrapper package enhancing the processing and 
visualization of single cell data 2021 [Available from: https://github.com/xmc811/Scillus. 

172. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell 
transcriptomic data across different conditions, technologies, and species. Nature 
Biotechnology. 2018;36(5):411-20. 

173. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al. 
Comprehensive Integration of Single-Cell Data. Cell. 2019;177(7):1888-902.e21. 

174. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, et al. Integrated analysis 
of multimodal single-cell data. Cell. 2021;184(13):3573-87.e29. 

175. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast 
universal RNA-seq aligner. Bioinformatics. 2013;29(1):15-21. 

176. Wickham H AM, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes A, 
Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Mu ller K, Ooms J, Robinson D, Seidel 
DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H. Welcome to the tidyverse. 
Journal of Open Source Software. 2019;4(43):1686. 

177. Krueger F. Trim Galore 2021 [Available from: 
https://github.com/FelixKrueger/TrimGalore. 

178. Krueger F, James F, Ewels P, Afyounian E, Weinstein M, Schuster-Boeckler B, et al. A 
wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming 
to FastQ files, with some extra functionality for MspI-digested RRBS-type (Reduced 
Representation Bisufite-Seq) libraries. Github. Available online at 
https://github.com/FelixKrueger/TrimGalore 2023 [ 

179. Wingett SW, Andrews S. FastQ Screen: A tool for multi-genome mapping and quality 
control. F1000Res. 2018;7:1338. 

180. Kim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: rapid and sensitive classification 
of metagenomic sequences. Genome Res. 2016;26(12):1721-9. 

181. Ensembl. Ensembl FTP site: Github; 2023 [Available from: 
https://ftp.ensembl.org/pub/. 

182. Satija Lab. Seurat - Guided Clustering Tutorial: Satija Lab; 2023 [Available from: 
https://satijalab.org/seurat/articles/pbmc3k_tutorial.html. 

183. Satija Lab. Introduction to scRNA-seq integration: Satija Lab; 2023 [Available from: 
https://satijalab.org/seurat/articles/integration_introduction.html. 

184. Andreatta M, Carmona SJ. STACAS: Sub-Type Anchor Correction for Alignment in Seurat 
to integrate single-cell RNA-seq data. Bioinformatics. 2021;37(6):882-4. 

185. Jolliffe IT, Cadima J. Principal component analysis: a review and recent developments. 
Philos Trans A Math Phys Eng Sci. 2016;374(2065):20150202. 

186. Zhu X, Zhang J, Xu Y, Wang J, Peng X, Li HD. Single-Cell Clustering Based on Shared 
Nearest Neighbor and Graph Partitioning. Interdiscip Sci. 2020;12(2):117-30. 

https://github.com/xmc811/Scillus
https://github.com/FelixKrueger/TrimGalore
https://github.com/FelixKrueger/TrimGalore
https://ftp.ensembl.org/pub/
https://satijalab.org/seurat/articles/pbmc3k_tutorial.html
https://satijalab.org/seurat/articles/integration_introduction.html


 

318 

 

187. Tang M, Kaymaz Y, Logeman BL, Eichhorn S, Liang ZS, Dulac C, et al. Evaluating single-
cell cluster stability using the Jaccard similarity index. Bioinformatics. 2020;37(15):2212-4. 

188. Metcalf D. On hematopoietic stem cell fate. Immunity. 2007;26(6):669-73. 

189. Yang Y, Sun H, Zhang Y, Zhang T, Gong J, Wei Y, et al. Dimensionality reduction by UMAP 
reinforces sample heterogeneity analysis in bulk transcriptomic data. Cell Reports. 
2021;36(4):109442. 

190. Elmentaite R, Kumasaka N, Roberts K, Fleming A, Dann E, King HW, et al. Cells of the 
human intestinal tract mapped across space and time. Nature. 2021;597(7875):250-5. 

191. Wellcome Sanger Institute. Gut Cell Survey: Gut Cell Atlas; 2021 [Available from: 
https://www.gutcellatlas.org/#publications. 

192. Dalerba P, Kalisky T, Sahoo D, Rajendran PS, Rothenberg ME, Leyrat AA, et al. Single-cell 
dissection of transcriptional heterogeneity in human colon tumors. Nature Biotechnology. 
2011;29(12):1120-7. 

193. Gehart H, van Es JH, Hamer K, Beumer J, Kretzschmar K, Dekkers JF, et al. Identification 
of Enteroendocrine Regulators by Real-Time Single-Cell Differentiation Mapping. Cell. 
2019;176(5):1158-73.e16. 

194. Parikh K, Antanaviciute A, Fawkner-Corbett D, Jagielowicz M, Aulicino A, Lagerholm C, 
et al. Colonic epithelial cell diversity in health and inflammatory bowel disease. Nature. 
2019;567(7746):49-55. 

195. Fawkner-Corbett D, Antanaviciute A, Parikh K, Jagielowicz M, Gero s AS, Gupta T, et al. 
Spatiotemporal analysis of human intestinal development at single-cell resolution. Cell. 
2021;184(3):810-26.e23. 

196. Tascini AS. iGCA_scRNAseq_analysis - Azoospermia Data Integration Script: Github; 
2021 [Available from: 
https://github.com/volpesofi/iGCA_scRNAseq_analysis/blob/master/Seurat/azoospermia.in
tegration.seurat.ipynb. 

197. 10x Genomics. Cell Ranger analysis pipelines: Github; 2024 [Available from: 
https://github.com/10XGenomics/cellranger. 

198. Bioinformatics & Evolutionary Genomics. Calculate and draw custom Venn diagrams 
2024 [Available from: https://bioinformatics.psb.ugent.be/webtools/Venn/. 

199. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, et al. A 
survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17:13. 

200. Chao HP, Chen Y, Takata Y, Tomida MW, Lin K, Kirk JS, et al. Systematic evaluation of 
RNA-Seq preparation protocol performance. BMC Genomics. 2019;20(1):571. 

201. Shi H, Zhou Y, Jia E, Pan M, Bai Y, Ge Q. Bias in RNA-seq Library Preparation: Current 
Challenges and Solutions. Biomed Res Int. 2021;2021:6647597. 

https://www.gutcellatlas.org/#publications
https://github.com/volpesofi/iGCA_scRNAseq_analysis/blob/master/Seurat/azoospermia.integration.seurat.ipynb
https://github.com/volpesofi/iGCA_scRNAseq_analysis/blob/master/Seurat/azoospermia.integration.seurat.ipynb
https://github.com/10XGenomics/cellranger
https://bioinformatics.psb.ugent.be/webtools/Venn/


 

319 

 

202. Tirosh I, Izar B, Prakadan SM, Wadsworth MH, Treacy D, Trombetta JJ, et al. Dissecting 
the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science. 
2016;352(6282):189-96. 

203. Barbachano A, Fernandez-Barral A, Bustamante-Madrid P, Prieto I, Rodriguez-Salas N, 
Larriba MJ, et al. Organoids and Colorectal Cancer. Cancers (Basel). 2021;13(11). 

204. Yin H, Wang J, Li H, Yu Y, Wang X, Lu L, et al. Extracellular matrix protein-1 secretory 
isoform promotes ovarian cancer through increasing alternative mRNA splicing and stemness. 
Nature Communications. 2021;12(1):4230. 

205. Glatz JC, Luiken JFP. Dynamic role of the transmembrane glycoprotein CD36 (SR-B2) in 
cellular fatty acid uptake and utilization. Journal of Lipid Research. 2018;59(7):1084-93. 

206. Zhang H, Guo W, Zhang F, Li R, Zhou Y, Shao F, et al. Monoacylglycerol Lipase Knockdown 
Inhibits Cell Proliferation and Metastasis in Lung Adenocarcinoma. Front Oncol. 
2020;10:559568. 

207. Liedtke D, Orth M, Meissler M, Geuer S, Knaup S, Ko blitz I, et al. ECM alterations in 
Fndc3a (Fibronectin Domain Containing Protein 3A) deficient zebrafish cause temporal fin 
development and regeneration defects. Scientific Reports. 2019;9(1):13383. 

208. Vidula N, Yau C, Rugo H. Trophoblast Cell Surface Antigen 2 gene (TACSTD2) expression 
in primary breast cancer. Breast Cancer Res Treat. 2022;194(3):569-75. 

209. Yu C-Y, Chang W-C, Zheng J-H, Hung W-H, Cho E-C. Transforming growth factor alpha 
promotes tumorigenesis and regulates epithelial-mesenchymal transition modulation in colon 
cancer. Biochemical and Biophysical Research Communications. 2018;506(4):901-6. 

210. Mahdi MR, Georges RB, Ali DM, Bedeer RF, Eltahry HM, Gabr AHZ, et al. Modulation of 
the Endothelin System in Colorectal Cancer Liver Metastasis: Influence of Epigenetic 
Mechanisms? Front Pharmacol. 2020;11:180. 

211. Sun G, Wu L, Sun G, Shi X, Cao H, Tang W. WNT5a in Colorectal Cancer: Research 
Progress and Challenges. Cancer Manag Res. 2021;13:2483-98. 

212. Ku çu kko se E, Peters NA, Ubink I, van Keulen VAM, Daghighian R, Verheem A, et al. KIT 
promotes tumor stroma formation and counteracts tumor-suppressive TGFβ signaling in 
colorectal cancer. Cell Death & Disease. 2022;13(7):617. 

213. Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively parallel 
digital transcriptional profiling of single cells. Nature Communications. 2017;8(1):14049. 

214. Narayanankutty A. PI3K/ Akt/ mTOR Pathway as a Therapeutic Target for Colorectal 
Cancer: A Review of Preclinical and Clinical Evidence. Curr Drug Targets. 2019;20(12):1217-
26. 

215. HUGO Gene Nomenclature Committee. Gene group: Ribosomal proteins: HGNC; 2023 
[Available from: https://www.genenames.org/data/genegroup/#!/group/1054. 

216. Pelletier J, Sonenberg N. The Organizing Principles of Eukaryotic Ribosome 
Recruitment. Annual Review of Biochemistry. 2019;88(1):307-35. 

https://www.genenames.org/data/genegroup/#!/group/1054


 

320 

 

217. Zeng Q, Lei F, Chang Y, Gao Z, Wang Y, Gao Q, et al. An oncogenic gene, SNRPA1, regulates 
PIK3R1, VEGFC, MKI67, CDK1 and other genes in colorectal cancer. Biomed Pharmacother. 
2019;117:109076. 

218. Fang H, Sheng S, Chen B, Wang J, Mao D, Han Y, et al. A Pan-Cancer Analysis of the 
Oncogenic Role of Cell Division Cycle-Associated Protein 4 (CDCA4) in Human Tumors. Front 
Immunol. 2022;13:826337. 

219. Wang L, Hu XD, Li SY, Liang XY, Ren L, Lv SX. ASPM facilitates colorectal cancer cells 
migration and invasion by enhancing beta-catenin expression and nuclear translocation. 
Kaohsiung J Med Sci. 2022;38(2):129-38. 

220. Shaath H, Vishnubalaji R, Elango R, Velayutham D, Jithesh PV, Alajez NM. Therapeutic 
targeting of the TPX2/TTK network in colorectal cancer. Cell Commun Signal. 2023;21(1):265. 

221. Zhu C, Zhang L, Zhao S, Dai W, Xu Y, Zhang Y, et al. UPF1 promotes chemoresistance to 
oxaliplatin through regulation of TOP2A activity and maintenance of stemness in colorectal 
cancer. Cell Death & Disease. 2021;12(6):519. 

222. Liu X, Zhang H, Lai L, Wang X, Loera S, Xue L, et al. Ribonucleotide reductase small 
subunit M2 serves as a prognostic biomarker and predicts poor survival of colorectal cancers. 
Clin Sci (Lond). 2013;124(9):567-78. 

223. Yu GH, Gong XF, Peng YY, Qian J. Anti-silencing function 1B knockdown suppresses the 
malignant phenotype of colorectal cancer by inactivating the phosphatidylinositol 3-
kinase/AKT pathway. World J Gastrointest Oncol. 2022;14(12):2353-66. 

224. Li H, Wang Y, Rong SK, Li L, Chen T, Fan YY, et al. Integrin alpha1 promotes 
tumorigenicity and progressive capacity of colorectal cancer. Int J Biol Sci. 2020;16(5):815-26. 

225. Ren B, Cam H, Takahashi Y, Volkert T, Terragni J, Young RA, et al. E2F integrates cell cycle 
progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev. 2002;16(2):245-
56. 

226. Hauffe L, Picard D, Musa J, Remke M, Grunewald TGP, Rotblat B, et al. Eukaryotic 
translation initiation factor 4E binding protein 1 (EIF4EBP1) expression in glioblastoma is 
driven by ETS1- and MYBL2-dependent transcriptional activation. Cell Death Discov. 
2022;8(1):91. 

227. Duan R, Du W, Guo W. EZH2: a novel target for cancer treatment. J Hematol Oncol. 
2020;13(1):104. 

228. Liu G, Zhan W, Guo W, Hu F, Qin J, Li R, et al. MELK Accelerates the Progression of 
Colorectal Cancer via Activating the FAK/Src Pathway. Biochem Genet. 2020;58(5):771-82. 

229. National Center for Biotechnology Information USNLoM. National Institutes of Health; 
2023 [Available from: https://www.ncbi.nlm.nih.gov/gene/. 

230. Nassir F, Wilson B, Han X, Gross RW, Abumrad NA. CD36 Is Important for Fatty Acid and 
Cholesterol Uptake by the Proximal but Not Distal Intestine*. Journal of Biological Chemistry. 
2007;282(27):19493-501. 

https://www.ncbi.nlm.nih.gov/gene/


 

321 

 

231. Lund ML, Egerod KL, Engelstoft MS, Dmytriyeva O, Theodorsson E, Patel BA, et al. 
Enterochromaffin 5-HT cells – A major target for GLP-1 and gut microbial metabolites. 
Molecular Metabolism. 2018;11:70-83. 

232. Tomita H, Tanaka K, Tanaka T, Hara A. Aldehyde dehydrogenase 1A1 in stem cells and 
cancer. Oncotarget. 2016;7(10):11018-32. 

233. Wang Y, Chen Y, Garcia-Milian R, Golla JP, Charkoftaki G, Lam TT, et al. Proteomic 
profiling reveals an association between ALDH and oxidative phosphorylation and DNA 
damage repair pathways in human colon adenocarcinoma stem cells. Chemico-Biological 
Interactions. 2022;368:110175. 

234. Zilbauer M, James KR, Kaur M, Pott S, Li Z, Burger A, et al. A Roadmap for the Human 
Gut Cell Atlas. Nature Reviews Gastroenterology & Hepatology. 2023;20(9):597-614. 

235. Cancedda R, Mastrogiacomo M. Transit Amplifying Cells (TACs): a still not fully 
understood cell population. Frontiers in Bioengineering and Biotechnology. 2023;11. 

236. Haber AL, Biton M, Rogel N, Herbst RH, Shekhar K, Smillie C, et al. A single-cell survey 
of the small intestinal epithelium. Nature. 2017;551(7680):333-9. 

237. Fujii M, Matano M, Toshimitsu K, Takano A, Mikami Y, Nishikori S, et al. Human Intestinal 
Organoids Maintain Self-Renewal Capacity and Cellular Diversity in Niche-Inspired Culture 
Condition. Cell Stem Cell. 2018;23(6):787-93.e6. 

238. Tian Y, Denda-Nagai K, Tsukui T, Ishii-Schrade KB, Okada K, Nishizono Y, et al. Mucin 21 
confers resistance to apoptosis in an O-glycosylation-dependent manner. Cell Death Discovery. 
2022;8(1):194. 

239. Yoshimoto T, Matsubara D, Soda M, Ueno T, Amano Y, Kihara A, et al. Mucin 21 is a key 
molecule involved in the incohesive growth pattern in lung adenocarcinoma. Cancer Sci. 
2019;110(9):3006-11. 

240. Shvartsur A, Bonavida B. Trop2 and its overexpression in cancers: regulation and 
clinical/therapeutic implications. Genes Cancer. 2015;6(3-4):84-105. 

241. Kumar D, Vetrivel U, Parameswaran S, Subramanian KK. Structural insights on 
druggable hotspots in CD147: A bull's eye view. Life Sci. 2019;224:76-87. 

242. Feng W, Cui G, Tang CW, Zhang XL, Dai C, Xu YQ, et al. Role of glucose metabolism related 
gene GLUT1 in the occurrence and prognosis of colorectal cancer. Oncotarget. 
2017;8(34):56850-7. 

243. Wang X, Shen X, Yan Y, Li H. Pyruvate dehydrogenase kinases (PDKs): an overview 
toward clinical applications. Biosci Rep. 2021;41(4). 

244. Xu B, Chen L, Zhan Y, Marquez KNS, Zhuo L, Qi S, et al. The Biological Functions and 
Regulatory Mechanisms of Fatty Acid Binding Protein 5 in Various Diseases. Front Cell Dev Biol. 
2022;10:857919. 

245. Ramos FS, Serino LT, Carvalho CM, Lima RS, Urban CA, Cavalli IJ, et al. PDIA3 and PDIA6 
gene expression as an aggressiveness marker in primary ductal breast cancer. Genet Mol Res. 
2015;14(2):6960-7. 



 

322 

 

246. Yang Z, Liu J, Shi Q, Chao Y, Di Y, Sun J, et al. Expression of protein disulfide isomerase 
A3 precursor in colorectal cancer. Onco Targets Ther. 2018;11:4159-66. 

247. Han Z, Wang Y, Han L, Yang C. RPN2 in cancer: An overview. Gene. 2023;857:147168. 

248. Wallace L, Mehrabi S, Bacanamwo M, Yao X, Aikhionbare FO. Expression of 
mitochondrial genes MT-ND1, MT-ND6, MT-CYB, MT-COI, MT-ATP6, and 12S/MT-RNR1 in 
colorectal adenopolyps. Tumour Biol. 2016;37(9):12465-75. 

249. Li T, Forbes ME, Fuller GN, Li J, Yang X, Zhang W. IGFBP2: integrative hub of 
developmental and oncogenic signaling network. Oncogene. 2020;39(11):2243-57. 

250. Qiao Q, Bai R, Song W, Gao H, Zhang M, Lu J, et al. Human α-defensin 5 suppressed colon 
cancer growth by targeting PI3K pathway. Experimental Cell Research. 2021;407(2):112809. 

251. Wang Y, Kang X, Kang X, Yang F. S100A6: molecular function and biomarker role. 
Biomarker Research. 2023;11(1):78. 

252. Xia C, Yin S, To KKW, Fu L. CD39/CD73/A2AR pathway and cancer immunotherapy. 
Molecular Cancer. 2023;22(1):44. 

253. Westrich JA, Vermeer DW, Colbert PL, Spanos WC, Pyeon D. The multifarious roles of the 
chemokine CXCL14 in cancer progression and immune responses. Mol Carcinog. 
2020;59(7):794-806. 

254. Carabet LA, Leblanc E, Lallous N, Morin H, Ghaidi F, Lee J, et al. Computer-Aided 
Discovery of Small Molecules Targeting the RNA Splicing Activity of hnRNP A1 in Castration-
Resistant Prostate Cancer. Molecules. 2019;24(4):763. 

255. Hong Z, Xu C, Zheng S, Wang X, Tao Y, Tan Y, et al. Nucleophosmin 1 cooperates with 
BRD4 to facilitate c-Myc transcription to promote prostate cancer progression. Cell Death 
Discovery. 2023;9(1):392. 

256. Abbas W, Kumar A, Herbein G. The eEF1A Proteins: At the Crossroads of Oncogenesis, 
Apoptosis, and Viral Infections. Frontiers in Oncology. 2015;5. 

257. Wei LF, Weng XF, Huang XC, Peng YH, Guo HP, Xu YW. IGFBP2 in cancer: Pathological 
role and clinical significance (Review). Oncol Rep. 2021;45(2):427-38. 

258. Li JJ, Xie D. RACK1, a versatile hub in cancer. Oncogene. 2015;34(15):1890-8. 

259. Krossa I, Strub T, Martel A, Nahon-Esteve S, Lassalle S, Hofman P, et al. Recent advances 
in understanding the role of HES6 in cancers. Theranostics. 2022;12(9):4374-85. 

260. Muhammad S, Fan T, Hai Y, Gao Y, He J. Reigniting hope in cancer treatment: the promise 
and pitfalls of IL-2 and IL-2R targeting strategies. Molecular Cancer. 2023;22(1):121. 

261. Luecken MD, Theis FJ. Current best practices in single-cell RNA-seq analysis: a tutorial. 
Mol Syst Biol. 2019;15(6):e8746. 

262. Pascual G, Avgustinova A, Mejetta S, Martï n M, Castellanos A, Attolini CS-O, et al. 
Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature. 
2017;541(7635):41-5. 



 

323 

 

263. Wuensch T, Wizenty J, Quint J, Spitz W, Bosma M, Becker O, et al. Expression Analysis of 
Fibronectin Type III Domain-Containing (FNDC) Genes in Inflammatory Bowel Disease and 
Colorectal Cancer. Gastroenterol Res Pract. 2019;2019:3784172. 

264. Drury J, Rychahou PG, Kelson CO, Geisen ME, Wu Y, He D, et al. Upregulation of CD36, a 
Fatty Acid Translocase, Promotes Colorectal Cancer Metastasis by Increasing MMP28 and 
Decreasing E-Cadherin Expression. Cancers (Basel). 2022;14(1). 

265. Long S, Wang J, Weng F, Pei Z, Zhou S, Sun G, et al. ECM1 regulates the resistance of 
colorectal cancer to 5-FU treatment by modulating apoptotic cell death and epithelial-
mesenchymal transition induction. Front Pharmacol. 2022;13:1005915. 

266. Wang J, Day R, Dong Y, Weintraub SJ, Michel L. Identification of Trop-2 as an oncogene 
and an attractive therapeutic target in colon cancers. Molecular Cancer Therapeutics. 
2008;7(2):280-5. 

267. Fang YJ, Lu ZH, Wang GQ, Pan ZZ, Zhou ZW, Yun JP, et al. Elevated expressions of MMP7, 
TROP2, and survivin are associated with survival, disease recurrence, and liver metastasis of 
colon cancer. International Journal of Colorectal Disease. 2009;24(8):875-84. 

268. Wen Y, Ouyang D, Zou Q, Chen Q, Luo N, He H, et al. A literature review of the promising 
future of TROP2: a potential drug therapy target. Ann Transl Med. 2022;10(24):1403. 

269. Xie D, Pei Q, Li J, Wan X, Ye T. Emerging Role of E2F Family in Cancer Stem Cells. Front 
Oncol. 2021;11:723137. 

270. Ebrahimi N, Afshinpour M, Fakhr SS, Kalkhoran PG, Shadman-Manesh V, Adelian S, et al. 
Cancer stem cells in colorectal cancer: Signaling pathways involved in stemness and therapy 
resistance. Critical Reviews in Oncology/Hematology. 2023;182:103920. 

271. Fang Y, Yu H, Liang X, Xu J, Cai X. Chk1-induced CCNB1 overexpression promotes cell 
proliferation and tumor growth in human colorectal cancer. Cancer Biol Ther. 
2014;15(9):1268-79. 

272. Imaoka H, Toiyama Y, Saigusa S, Kawamura M, Kawamoto A, Okugawa Y, et al. RacGAP1 
expression, increasing tumor malignant potential, as a predictive biomarker for lymph node 
metastasis and poor prognosis in colorectal cancer. Carcinogenesis. 2015;36(3):346-54. 

273. Chen JF, Luo X, Xiang LS, Li HT, Zha L, Li N, et al. EZH2 promotes colorectal cancer stem-
like cell expansion by activating p21cip1-Wnt/beta-catenin signaling. Oncotarget. 
2016;7(27):41540-58. 

274. Chen Y, Wang J, Fan H, Xie J, Xu L, Zhou B. Phosphorylated 4E-BP1 is associated with 
tumor progression and adverse prognosis in colorectal cancer. Neoplasma. 2017;64(5):787-94. 

275. Giuliano CJ, Lin A, Smith JC, Palladino AC, Sheltzer JM. MELK expression correlates with 
tumor mitotic activity but is not required for cancer growth. eLife. 2018;7:e32838. 

276. Gan Y, Li Y, Li T, Shu G, Yin G. CCNA2 acts as a novel biomarker in regulating the growth 
and apoptosis of colorectal cancer. Cancer Manag Res. 2018;10:5113-24. 



 

324 

 

277. Akabane S, Oue N, Sekino Y, Asai R, Thang PQ, Taniyama D, et al. KIFC1 regulates ZWINT 
to promote tumor progression and spheroid formation in colorectal cancer. Pathol Int. 
2021;71(7):441-52. 

278. Choi S, Ku J-L. Resistance of colorectal cancer cells to radiation and 5-FU is associated 
with MELK expression. Biochemical and Biophysical Research Communications. 
2011;412(2):207-13. 

279. Wang Y, Lee Y-M, Baitsch L, Huang A, Xiang Y, Tong H, et al. MELK is an oncogenic kinase 
essential for mitotic progression in basal-like breast cancer cells. eLife. 2014;3:e01763. 

280. Lai X, Li Q, Wu F, Lin J, Chen J, Zheng H, et al. Epithelial-Mesenchymal Transition and 
Metabolic Switching in Cancer: Lessons From Somatic Cell Reprogramming. Front Cell Dev Biol. 
2020;8:760. 

281. Parlani M, Jorgez C, Friedl P. Plasticity of cancer invasion and energy metabolism. 
Trends Cell Biol. 2023;33(5):388-402. 

282. Bhattacharya R, Blankenheim Z, Scott PM, Cormier RT. CFTR and Gastrointestinal 
Cancers: An Update. J Pers Med. 2022;12(6). 

283. Chen G, Gong T, Wang Z, Wang Z, Lin X, Chen S, et al. Colorectal cancer organoid models 
uncover oxaliplatin-resistant mechanisms at single cell resolution. Cell Oncol (Dordr). 
2022;45(6):1155-67. 

284. Chen KY, Srinivasan T, Lin C, Tung KL, Gao Z, Hsu DS, et al. Single-Cell Transcriptomics 
Reveals Heterogeneity and Drug Response of Human Colorectal Cancer Organoids. Annu Int 
Conf IEEE Eng Med Biol Soc. 2018;2018:2378-81. 

285. Biostars. What's the disadvantage of removing cell-cylcle gene compared with 
regressing out: Biostars; 2022 [Available from: https://www.biostars.org/p/9533437/. 

286. Enane FO, Saunthararajah Y, Korc M. Differentiation therapy and the mechanisms that 
terminate cancer cell proliferation without harming normal cells. Cell Death Dis. 
2018;9(9):912. 

287. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 
2005;5(4):275-84. 

288. Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence 
and unresolved questions. Nat Rev Cancer. 2008;8(10):755-68. 

289. Alison MR, Lim SM, Nicholson LJ. Cancer stem cells: problems for therapy? J Pathol. 
2011;223(2):147-61. 

290. Phi LTH, Sari IN, Yang YG, Lee SH, Jun N, Kim KS, et al. Cancer Stem Cells (CSCs) in Drug 
Resistance and their Therapeutic Implications in Cancer Treatment. Stem Cells Int. 
2018;2018:5416923. 

291. Lopez-Lazaro M. The migration ability of stem cells can explain the existence of cancer 
of unknown primary site. Rethinking metastasis. Oncoscience. 2015;2(5):467-75. 

https://www.biostars.org/p/9533437/


 

325 

 

292. Nouri M, Caradec J, Lubik AA, Li N, Hollier BG, Takhar M, et al. Therapy-induced 
developmental reprogramming of prostate cancer cells and acquired therapy resistance. 
Oncotarget. 2017;8(12):18949-67. 

293. Cojoc M, Mabert K, Muders MH, Dubrovska A. A role for cancer stem cells in therapy 
resistance: cellular and molecular mechanisms. Semin Cancer Biol. 2015;31:16-27. 

294. Kiyohara MH, Dillard C, Tsui J, Kim SR, Lu J, Sachdev D, et al. EMP2 is a novel therapeutic 
target for endometrial cancer stem cells. Oncogene. 2017;36(42):5793-807. 

295. Fang D, Kitamura H. Cancer stem cells and epithelial-mesenchymal transition in 
urothelial carcinoma: Possible pathways and potential therapeutic approaches. Int J Urol. 
2018;25(1):7-17. 

296. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-
mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704-
15. 

297. Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of 
evil in the war on cancer. Oncogene. 2010;29(34):4741-51. 

298. Garcia-Hernandez V, Quiros M, Nusrat A. Intestinal epithelial claudins: expression and 
regulation in homeostasis and inflammation. Ann N Y Acad Sci. 2017;1397(1):66-79. 

299. Holmes JL, Van Itallie CM, Rasmussen JE, Anderson JM. Claudin profiling in the mouse 
during postnatal intestinal development and along the gastrointestinal tract reveals complex 
expression patterns. Gene Expression Patterns. 2006;6(6):581-8. 

300. Zhai Y, Lu Q, Lou T, Cao G, Wang S, Zhang Z. MUC16 affects the biological functions of 
ovarian cancer cells and induces an antitumor immune response by activating dendritic cells. 
Ann Transl Med. 2020;8(22):1494. 

301. Sun L, Zhang Y, Li W, Zhang J, Zhang Y. Mucin Glycans: A Target for Cancer Therapy. 
Molecules [Internet]. 2023; 28(20). 

302. Xiong L, Edwards CK, 3rd, Zhou L. The biological function and clinical utilization of 
CD147 in human diseases: a review of the current scientific literature. Int J Mol Sci. 
2014;15(10):17411-41. 

303. Guo C, Liu S, Wang J, Sun M-Z, Greenaway FT. ACTB in cancer. Clinica Chimica Acta. 
2013;417:39-44. 

304. Gemoll T, Strohkamp S, Schillo K, Thorns C, Habermann JK. MALDI-imaging reveals 
thymosin beta-4 as an independent prognostic marker for colorectal cancer. Oncotarget; Vol 6, 
No 41. 2015. 

305. Sousa-Squiavinato ACM, Rocha MR, Barcellos-de-Souza P, de Souza WF, Morgado-Diaz 
JA. Cofilin-1 signaling mediates epithelial-mesenchymal transition by promoting actin 
cytoskeleton reorganization and cell-cell adhesion regulation in colorectal cancer cells. 
Biochim Biophys Acta Mol Cell Res. 2019;1866(3):418-29. 



 

326 

 

306. Phadngam S, Castiglioni A, Ferraresi A, Morani F, Follo C, Isidoro C. PTEN 
dephosphorylates AKT to prevent the expression of GLUT1 on plasmamembrane and to limit 
glucose consumption in cancer cells. Oncotarget. 2016;7(51):84999-5020. 

307. Lu Y, Jiang Z, Wang K, Yu S, Hao C, Ma Z, et al. Blockade of the amino acid transporter 
SLC6A14 suppresses tumor growth in colorectal Cancer. BMC Cancer. 2022;22(1):833. 

308. Qian X, Xu W, Xu J, Shi Q, Li J, Weng Y, et al. Enolase 1 stimulates glycolysis to promote 
chemoresistance in gastric cancer. Oncotarget. 2017;8(29):47691-708. 

309. Ghanem N, El-Baba C, Araji K, El-Khoury R, Usta J, Darwiche N. The Pentose Phosphate 
Pathway in Cancer: Regulation and Therapeutic Opportunities. Chemotherapy. 2021;66(5-
6):179-91. 

310. Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by 
reactive oxygen species. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 
2016;1863(12):2977-92. 

311. Alfarouk KO, Ahmed SBM, Elliott RL, Benoit A, Alqahtani SS, Ibrahim ME, et al. The 
Pentose Phosphate Pathway Dynamics in Cancer and Its Dependency on Intracellular pH. 
Metabolites. 2020;10(7). 

312. Riganti C, Gazzano E, Polimeni M, Aldieri E, Ghigo D. The pentose phosphate pathway: 
An antioxidant defense and a crossroad in tumor cell fate. Free Radical Biology and Medicine. 
2012;53(3):421-36. 

313. Nenkov M, Ma Y, Gassler N, Chen Y. Metabolic Reprogramming of Colorectal Cancer Cells 
and the Microenvironment: Implication for Therapy. Int J Mol Sci. 2021;22(12). 

314. Dong Y, Zheng M, Wang X, Yu C, Qin T, Shen X. High expression of CDKN2A is associated 
with poor prognosis in colorectal cancer and may guide PD-1-mediated immunotherapy. BMC 
Cancer. 2023;23(1):1097. 

315. Dahlmann M, Werner R, Kortum B, Kobelt D, Walther W, Stein U. Restoring Treatment 
Response in Colorectal Cancer Cells by Targeting MACC1-Dependent ABCB1 Expression in 
Combination Therapy. Front Oncol. 2020;10:599. 

316. Vanhove K, Graulus GJ, Mesotten L, Thomeer M, Derveaux E, Noben JP, et al. The 
Metabolic Landscape of Lung Cancer: New Insights in a Disturbed Glucose Metabolism. Front 
Oncol. 2019;9:1215. 

317. Xiong X, Wang S, Gao Z, Ye Y. C6orf15 acts as a potential novel marker of adverse 
pathological features and prognosis for colon cancer. Pathology - Research and Practice. 
2023;245:154426. 

318. Shivakumar BM, Chakrabarty S, Rotti H, Seenappa V, Rao L, Geetha V, et al. Comparative 
analysis of copy number variations in ulcerative colitis associated and sporadic colorectal 
neoplasia. BMC Cancer. 2016;16:271. 

319. Ried T, Meijer GA, Harrison DJ, Grech G, Franch-Expo sito S, Briffa R, et al. The landscape 
of genomic copy number alterations in colorectal cancer and their consequences on gene 
expression levels and disease outcome. Molecular Aspects of Medicine. 2019;69:48-61. 



 

327 

 

320. Liu F, Ai FY, Zhang DC, Tian L, Yang ZY, Liu SJ. LncRNA NEAT1 knockdown attenuates 
autophagy to elevate 5-FU sensitivity in colorectal cancer via targeting miR-34a. Cancer Med. 
2020;9(3):1079-91. 

321. Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, et al. Wnt/β-catenin signalling: function, 
biological mechanisms, and therapeutic opportunities. Signal Transduction and Targeted 
Therapy. 2022;7(1):3. 

322. Grassilli E, Cerrito MG. Emerging actionable targets to treat therapy-resistant colorectal 
cancers. Cancer Drug Resist. 2022;5(1):36-63. 

323. Fong L, Hotson A, Powderly JD, Sznol M, Heist RS, Choueiri TK, et al. Adenosine 2A 
Receptor Blockade as an Immunotherapy for Treatment-Refractory Renal Cell Cancer. Cancer 
Discovery. 2020;10(1):40-53. 

324. Baxter RC. Signaling Pathways of the Insulin-like Growth Factor Binding Proteins. 
Endocr Rev. 2023;44(5):753-78. 

325. Hermanto U, Zong CS, Li W, Wang LH. RACK1, an insulin-like growth factor I (IGF-I) 
receptor-interacting protein, modulates IGF-I-dependent integrin signaling and promotes cell 
spreading and contact with extracellular matrix. Mol Cell Biol. 2002;22(7):2345-65. 

326. Liu Y, Nelson MV, Bailey C, Zhang P, Zheng P, Dome JS, et al. Targeting the HIF-1alpha-
IGFBP2 axis therapeutically reduces IGF1-AKT signaling and blocks the growth and metastasis 
of relapsed anaplastic Wilms tumor. Oncogene. 2021;40(29):4809-19. 

327. Schmidt S, Denk S, Wiegering A. Targeting Protein Synthesis in Colorectal Cancer. 
Cancers (Basel). 2020;12(5). 

328. Telenius H, Carter NP, Bebb CE, Nordenskjold M, Ponder BA, Tunnacliffe A. Degenerate 
oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate 
primer. Genomics. 1992;13(3):718-25. 

329. Barbaux S, Poirier O, Cambien F. Use of degenerate oligonucleotide primed PCR (DOP-
PCR) for the genotyping of low-concentration DNA samples. J Mol Med (Berl). 2001;79(5-
6):329-32. 

330. Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, et al. Comprehensive human 
genome amplification using multiple displacement amplification. Proc Natl Acad Sci U S A. 
2002;99(8):5261-6. 

331. Arneson N, Hughes S, Houlston R, Done S. Whole-Genome Amplification by Degenerate 
Oligonucleotide Primed PCR (DOP-PCR). CSH Protoc. 2008;2008:pdb prot4919. 

332. Hou Y, Wu K, Shi X, Li F, Song L, Wu H, et al. Comparison of variations detection between 
whole-genome amplification methods used in single-cell resequencing. Gigascience. 2015;4:37. 

333. Kalef-Ezra E, Turan ZG, Perez-Rodriguez D, Bomann I, Behera S, Morley C, et al. Single-
cell somatic copy number variants in brain using different amplification methods and reference 
genomes. bioRxiv. 2023. 

334. Burbulis IE, Wierman MB, Wolpert M, Haakenson M, Lopes MB, Schiff D, et al. Improved 
molecular karyotyping in glioblastoma. Mutat Res. 2018;811:16-26. 



 

328 

 

335. Gonzalez-Pena V, Natarajan S, Xia Y, Klein D, Carter R, Pang Y, et al. Accurate genomic 
variant detection in single cells with primary template-directed amplification. Proc Natl Acad 
Sci U S A. 2021;118(24). 

336. Borgstrom E, Paterlini M, Mold JE, Frisen J, Lundeberg J. Comparison of whole genome 
amplification techniques for human single cell exome sequencing. PLoS One. 
2017;12(2):e0171566. 

337. Mallory XF, Edrisi M, Navin N, Nakhleh L. Methods for copy number aberration 
detection from single-cell DNA-sequencing data. Genome Biol. 2020;21(1):208. 

338. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic 
features. Bioinformatics. 2010;26(6):841-2. 

339. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler 
transform. Bioinformatics. 2009;25(14):1754-60. 

340. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The 
Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA 
sequencing data. Genome Research. 2010;20(9):1297-303. 

341. Lawrence M, Huber W, Pages H, Aboyoun P, Carlson M, Gentleman R, et al. Software for 
computing and annotating genomic ranges. PLoS Comput Biol. 2013;9(8):e1003118. 

342. Garvin T, Aboukhalil R, Kendall J, Baslan T, Atwal GS, Hicks J, et al. Interactive analysis 
and assessment of single-cell copy-number variations. Nature Methods. 2015;12(11):1058-60. 

343. Broad Institute. Broad Institute. Picard: Broad Institute; 2023 [Available from: 
https://broadinstitute.github.io/picard/. 

344. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence 
Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078-9. 

345. Kuhn RM, Haussler D, Kent WJ. The UCSC genome browser and associated tools. Brief 
Bioinform. 2013;14(2):144-61. 

346. Caetano-Anolles D. (How to) Map and clean up short read sequence data efficiently: 
Broad Institute; 2023 [Available from: https://gatk.broadinstitute.org/hc/en-
us/articles/360039568932#step1. 

347. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et 
al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices 
pipeline. Curr Protoc Bioinformatics. 2013;43(1110):11 0 1- 0 33. 

348. Caetano-Anolles D. Data pre-processing for variant discovery: Broad Institute; 2023 
[Available from: https://gatk.broadinstitute.org/hc/en-us/articles/360035535912-Data-pre-
processing-for-variant-discovery. 

349. Broad Institute. GATK resource bundle: Broad Institute; 2023 [Available from: 
https://console.cloud.google.com/storage/browser/genomics-public-
data/resources/broad/hg38/v0;tab=objects?pli=1&prefix=&forceOnObjectsSortingFiltering=
false. 

https://broadinstitute.github.io/picard/
https://gatk.broadinstitute.org/hc/en-us/articles/360039568932#step1
https://gatk.broadinstitute.org/hc/en-us/articles/360039568932#step1
https://gatk.broadinstitute.org/hc/en-us/articles/360035535912-Data-pre-processing-for-variant-discovery
https://gatk.broadinstitute.org/hc/en-us/articles/360035535912-Data-pre-processing-for-variant-discovery
https://console.cloud.google.com/storage/browser/genomics-public-data/resources/broad/hg38/v0;tab=objects?pli=1&prefix=&forceOnObjectsSortingFiltering=false
https://console.cloud.google.com/storage/browser/genomics-public-data/resources/broad/hg38/v0;tab=objects?pli=1&prefix=&forceOnObjectsSortingFiltering=false
https://console.cloud.google.com/storage/browser/genomics-public-data/resources/broad/hg38/v0;tab=objects?pli=1&prefix=&forceOnObjectsSortingFiltering=false


 

329 

 

350. UCSC. UCSC Golden Path liftOver site: UCSC; 2023 [Available from: 
https://hgdownload.soe.ucsc.edu/goldenPath/hg38/liftOver/. 

351. Chaudhary S. Why “1.5” in IQR Method of Outlier Detection? : Towards Data Science; 
2019 [Available from: https://towardsdatascience.com/why-1-5-in-iqr-method-of-outlier-
detection-5d07fdc82097. 

352. UCSC. UCSC hg19 genome annotation database UCSC; 2023 [Available from: 
https://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/. 

353. Broad Institute. GATK - Genome Analysis Toolkit DownsampleSam (Picard): Broad 
Institute; 2023 [Available from: https://gatk.broadinstitute.org/hc/en-
us/articles/360037226232-DownsampleSam-Picard-. 

354. nf-core. Analysis pipeline to detect germline or somatic variants: Github; 2023 
[Available from: https://github.com/nf-core/sarek. 

355. Favero F, Joshi T, Marquard AM, Birkbak NJ, Krzystanek M, Li Q, et al. Sequenza: allele-
specific copy number and mutation profiles from tumor sequencing data. Ann Oncol. 
2015;26(1):64-70. 

356. Chela J. Mutectplatypus analysis pipeline: Github; 2023 [Available from: 
https://github.com/chelauk/nf-core-mutectplatypus. 

357. Chela J. Mutectplatypus analysis pipeline, analyse_cn_sequenza.R.: Github; 2023 
[Available from: https://github.com/chelauk/nf-core-
mutectplatypus/blob/master/bin/analyse_cn_sequenza.R. 

358. Yoon S, Xuan Z, Makarov V, Ye K, Sebat J. Sensitive and accurate detection of copy 
number variants using read depth of coverage. Genome Res. 2009;19(9):1586-92. 

359. Sepulveda N, Campino SG, Assefa SA, Sutherland CJ, Pain A, Clark TG. A Poisson 
hierarchical modelling approach to detecting copy number variation in sequence coverage 
data. BMC Genomics. 2013;14:128. 

360. Toure AY, Dossou-Gbete S, Kokonendji CC. Asymptotic normality of the test statistics for 
the unified relative dispersion and relative variation indexes. J Appl Stat. 2020;47(13-
15):2479-91. 

361. National Institute of Standards and Technology. Index of dispersion: National Institute 
of Standards and Technology; 2023 [updated 30 June 2017. Available from: 
https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/ind_disp.htm#:~:text
=The%20index%20of%20dispersion%20is%20sometimes%20used%20for%20count%20d
ata,should%20be%20greater%20than%201. 

362. Zrelak PA. Use of the Poisson Distribution Is a Helpful Tool That Is Underused in Nursing 
Practice. J Nurs Care Qual. 2022;37(3):E54-E7. 

363. Harris T, Yang Z, Hardin JW. Modeling Underdispersed Count Data with Generalized 
Poisson Regression. The Stata Journal. 2012;12(4):736-47. 

364. Shimizu Y. Multiple Desirable Methods in Outlier Detection of Univariate Data With R 
Source Codes. Front Psychol. 2021;12:819854. 

https://hgdownload.soe.ucsc.edu/goldenPath/hg38/liftOver/
https://towardsdatascience.com/why-1-5-in-iqr-method-of-outlier-detection-5d07fdc82097
https://towardsdatascience.com/why-1-5-in-iqr-method-of-outlier-detection-5d07fdc82097
https://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/
https://gatk.broadinstitute.org/hc/en-us/articles/360037226232-DownsampleSam-Picard-
https://gatk.broadinstitute.org/hc/en-us/articles/360037226232-DownsampleSam-Picard-
https://github.com/nf-core/sarek
https://github.com/chelauk/nf-core-mutectplatypus
https://github.com/chelauk/nf-core-mutectplatypus/blob/master/bin/analyse_cn_sequenza.R
https://github.com/chelauk/nf-core-mutectplatypus/blob/master/bin/analyse_cn_sequenza.R
https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/ind_disp.htm#:~:text=The%20index%20of%20dispersion%20is%20sometimes%20used%20for%20count%20data,should%20be%20greater%20than%201
https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/ind_disp.htm#:~:text=The%20index%20of%20dispersion%20is%20sometimes%20used%20for%20count%20data,should%20be%20greater%20than%201
https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/ind_disp.htm#:~:text=The%20index%20of%20dispersion%20is%20sometimes%20used%20for%20count%20data,should%20be%20greater%20than%201


 

330 

 

365. Koen T, Sebastiaan V, Florian R, Daniel B, Michiel Van Der H, Oskar M-B, et al. Single-cell 
Genome-and-Transcriptome sequencing without upfront whole-genome amplification reveals 
cell state plasticity of melanoma subclones. bioRxiv. 2023:2023.01.13.521174. 

366. Chandramohan R, Reuther J, Gandhi I, Voicu H, Alvarez KR, Plon SE, et al. A Validation 
Framework for Somatic Copy Number Detection in Targeted Sequencing Panels. J Mol Diagn. 
2022;24(7):760-74. 

367. Rohrback S, April C, Kaper F, Rivera RR, Liu CS, Siddoway B, et al. Submegabase copy 
number variations arise during cerebral cortical neurogenesis as revealed by single-cell whole-
genome sequencing. Proc Natl Acad Sci U S A. 2018;115(42):10804-9. 

368. Gusnanto A, Taylor CC, Nafisah I, Wood HM, Rabbitts P, Berri S. Estimating optimal 
window size for analysis of low-coverage next-generation sequence data. Bioinformatics. 
2014;30(13):1823-9. 

369. Ravindran A, Krieger KL, Kaushik AK, Hovington H, Mehdi S, Piyarathna DWB, et al. 
Uridine Diphosphate Glucuronosyl Transferase 2B28 (UGT2B28) Promotes Tumor Progression 
and Is Elevated in African American Prostate Cancer Patients. Cells. 2022;11(15). 

370. Biezuner T, Raz O, Amir S, Milo L, Adar R, Fried Y, et al. Comparison of seven single cell 
whole genome amplification commercial kits using targeted sequencing. Sci Rep. 
2021;11(1):17171. 

371. Erfanian N, Heydari AA, Feriz AM, Ianez P, Derakhshani A, Ghasemigol M, et al. Deep 
learning applications in single-cell genomics and transcriptomics data analysis. Biomed 
Pharmacother. 2023;165:115077. 

372. Kabel J, Henriksen TV, Demuth C, Frydendahl A, Rasmussen MH, Nors J, et al. Impact of 
Whole Genome Doubling on Detection of Circulating Tumor DNA in Colorectal Cancer. Cancers 
(Basel). 2023;15(4). 

373. Pino MS, Chung DC. The chromosomal instability pathway in colon cancer. 
Gastroenterology. 2010;138(6):2059-72. 

374. Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. 
Cancer Drug Resist. 2019;2(2):141-60. 

375. Andel D, Viergever BJ, Peters NA, Elisabeth Raats DA, Schenning-van Schelven SJ, Willem 
Intven MP, et al. Pre-existing subclones determine radioresistance in rectal cancer organoids. 
Cell Rep. 2024;43(2):113735. 

376. Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, et al. Clonal evolution in 
relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 
2012;481(7382):506-10. 

377. Park DJ, Kwon A, Cho BS, Kim HJ, Hwang KA, Kim M, et al. Characteristics of DNMT3A 
mutations in acute myeloid leukemia. Blood Res. 2020;55(1):17-26. 

378. Zhou F, Chen B. Acute myeloid leukemia carrying ETV6 mutations: biologic and clinical 
features. Hematology. 2018;23(9):608-12. 



 

331 

 

379. Liu R, Chen Y, Liu G, Li C, Song Y, Cao Z, et al. PI3K/AKT pathway as a key link modulates 
the multidrug resistance of cancers. Cell Death Dis. 2020;11(9):797. 

380. Della Corte CM, Viscardi G, Di Liello R, Fasano M, Martinelli E, Troiani T, et al. Role and 
targeting of anaplastic lymphoma kinase in cancer. Molecular Cancer. 2018;17(1):30. 

381. Bavi P, Jehan Z, Bu R, Prabhakaran S, Al-Sanea N, Al-Dayel F, et al. ALK gene amplification 
is associated with poor prognosis in colorectal carcinoma. Br J Cancer. 2013;109(10):2735-43. 

382. Shen W, Zhou Q, Peng C, Li J, Yuan Q, Zhu H, et al. FBXW7 and the Hallmarks of Cancer: 
Underlying Mechanisms and Prospective Strategies. Front Oncol. 2022;12:880077. 

383. Lan H, Sun Y. FBXW7 E3 ubiquitin ligase: degrading, not degrading, or being degraded. 
Protein Cell. 2019;10(12):861-3. 

384. Iwatsuki M, Mimori K, Ishii H, Yokobori T, Takatsuno Y, Sato T, et al. Loss of FBXW7, a 
cell cycle regulating gene, in colorectal cancer: clinical significance. Int J Cancer. 
2010;126(8):1828-37. 

385. Mikubo M, Inoue Y, Liu G, Tsao MS. Mechanism of Drug Tolerant Persister Cancer Cells: 
The Landscape and Clinical Implication for Therapy. J Thorac Oncol. 2021;16(11):1798-809. 

386. Zhu X, Li S, Xu B, Luo H. Cancer evolution: A means by which tumors evade treatment. 
Biomed Pharmacother. 2021;133:111016. 

387. Bravo-Estupinan DM, Aguilar-Guerrero K, Quiros S, Acon MS, Marin-Muller C, Ibanez-
Hernandez M, et al. Gene dosage compensation: Origins, criteria to identify compensated genes, 
and mechanisms including sensor loops as an emerging systems-level property in cancer. 
Cancer Med. 2023;12(24):22130-55. 

388. Martin FJ, Amode MR, Aneja A, Austine-Orimoloye O, Azov AG, Barnes I, et al. Ensembl 
2023. Nucleic Acids Res. 2023;51(D1):D933-D41. 

389. Tickle T, Tirosh I, Georgescu C, Brown M, Haas B. inferCNV of the Trinity CTAT Project. 
2019 [Available from: https://github.com/broadinstitute/inferCNV. 

390. Broad Institute. InferCNV: Inferring copy number alterations from tumor single cell 
RNA-Seq data: Github; 2023 [Available from: 
https://github.com/broadinstitute/inferCNV/wiki. 

391. Broad Institute. Trinity CNV repository Github; 2022 [Available from: 
https://data.broadinstitute.org/Trinity/CTAT/cnv/. 

392. UCSC. UCSC hg38 genome annotation database: UCSC; 2022 [Available from: 
https://hgdownload.cse.ucsc.edu/goldenpath/hg38/database/. 

393. Dehner C, Moon CI, Zhang X, Zhou Z, Miller C, Xu H, et al. Chromosome 8 gain is 
associated with high-grade transformation in MPNST. JCI Insight. 2021;6(6). 

394. Zhang X, Hirbe A. Inference of copy number variations and clonality analysis: Bio-
protocol 2022 [Available from: https://bio-
protocol.org/exchange/preprintdetail?id=1885&type=3. 

https://github.com/broadinstitute/inferCNV
https://github.com/broadinstitute/inferCNV/wiki
https://data.broadinstitute.org/Trinity/CTAT/cnv/
https://hgdownload.cse.ucsc.edu/goldenpath/hg38/database/
https://bio-protocol.org/exchange/preprintdetail?id=1885&type=3
https://bio-protocol.org/exchange/preprintdetail?id=1885&type=3


 

332 

 

395. Ensembl. Ensembl BioMart: Ensembl; 2024 [Available from: 
https://www.ensembl.org/biomart/martview/d11be1c7082d29d2a9de1d498a881ded. 

396. UCSC. Lift Genome Annotations: UCSC; 2023 [Available from: 
https://genome.ucsc.edu/cgi-bin/hgLiftOver. 

397. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell 
RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 
2014;344(6190):1396-401. 

398. Merid SK, Goranskaya D, Alexeyenko A. Distinguishing between driver and passenger 
mutations in individual cancer genomes by network enrichment analysis. BMC Bioinformatics. 
2014;15(1):308. 

399. Casadesu s J, Noyer-Weidner M. Epigenetics. In: Maloy S, Hughes K, editors. Brenner's 
Encyclopedia of Genetics (Second Edition). San Diego: Academic Press; 2013. p. 500-3. 

400. Mattioli K, Oliveros W, Gerhardinger C, Andergassen D, Maass PG, Rinn JL, et al. Cis and 
trans effects differentially contribute to the evolution of promoters and enhancers. Genome 
Biol. 2020;21(1):210. 

401. Bian C, Liu Z, Li D, Zhen L. PI3K/AKT inhibition induces compensatory activation of the 
MET/STAT3 pathway in non-small cell lung cancer. Oncol Lett. 2018;15(6):9655-62. 

402. Gowhari Shabgah A, Haleem Al-Qaim Z, Markov A, Valerievich Yumashev A, Ezzatifar F, 
Ahmadi M, et al. Chemokine CXCL14; a double-edged sword in cancer development. Int 
Immunopharmacol. 2021;97:107681. 

403. Ozawa S, Kato Y, Ito S, Komori R, Shiiki N, Tsukinoki K, et al. Restoration of BRAK / 
CXCL14 gene expression by gefitinib is associated with antitumor efficacy of the drug in head 
and neck squamous cell carcinoma. Cancer Sci. 2009;100(11):2202-9. 

404. Gallo S, Ricciardi S, Manfrini N, Pesce E, Oliveto S, Calamita P, et al. RACK1 Specifically 
Regulates Translation through Its Binding to Ribosomes. Mol Cell Biol. 2018;38(23). 

405. Huang T. Copy Number Variations in Tumors. In: Boffetta P, Hainaut P, editors. 
Encyclopedia of Cancer (Third Edition). Oxford: Academic Press; 2019. p. 444-51. 

406. Santos GC, Zielenska M, Prasad M, Squire JA. Chromosome 6p amplification and cancer 
progression. J Clin Pathol. 2007;60(1):1-7. 

407. Mohanty V, Wang F, Mills GB, Network CTDR, Chen K. Uncoupling of gene expression 
from copy number presents therapeutic opportunities in aneuploid cancers. Cell Rep Med. 
2021;2(7):100349. 

408. Mohanty V, Akmamedova O, Komurov K. Selective DNA methylation in cancers controls 
collateral damage induced by large structural variations. Oncotarget. 2017;8(42):71385-92. 

409. Casas-Mollano JA, Zinselmeier MH, Erickson SE, Smanski MJ. CRISPR-Cas Activators for 
Engineering Gene Expression in Higher Eukaryotes. CRISPR J. 2020;3(5):350-64. 

410. Nemudryi AA, Valetdinova KR, Medvedev SP, Zakian SM. TALEN and CRISPR/Cas 
Genome Editing Systems: Tools of Discovery. Acta Naturae. 2014;6(3):19-40. 

https://www.ensembl.org/biomart/martview/d11be1c7082d29d2a9de1d498a881ded
https://genome.ucsc.edu/cgi-bin/hgLiftOver


 

333 

 

411. Rao DD, Vorhies JS, Senzer N, Nemunaitis J. siRNA vs. shRNA: similarities and 
differences. Adv Drug Deliv Rev. 2009;61(9):746-59. 

412. Guo H, Zhu P, Wu X, Li X, Wen L, Tang F. Single-cell methylome landscapes of mouse 
embryonic stem cells and early embryos analyzed using reduced representation bisulfite 
sequencing. Genome Res. 2013;23(12):2126-35. 

413. Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peat J, et al. Single-cell 
genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods. 
2014;11(8):817-20. 

414. Park PJ. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet. 
2009;10(10):669-80. 

415. Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. ATAC-seq: A Method for Assaying 
Chromatin Accessibility Genome-Wide. Curr Protoc Mol Biol. 2015;109:21 9 1- 9 9. 

416. Xu W, Wen Y, Liang Y, Xu Q, Wang X, Jin W, et al. A plate-based single-cell ATAC-seq 
workflow for fast and robust profiling of chromatin accessibility. Nat Protoc. 2021;16(8):4084-
107. 

417. Shao X, Lv N, Liao J, Long J, Xue R, Ai N, et al. Copy number variation is highly correlated 
with differential gene expression: a pan-cancer study. BMC Med Genet. 2019;20(1):175. 

418. Bhattacharya A, Bense RD, Urzu a-Traslavin a CG, de Vries EGE, van Vugt MATM, 
Fehrmann RSN. Transcriptional effects of copy number alterations in a large set of human 
cancers. Nature Communications. 2020;11(1):715. 

419. Harmanci AS, Harmanci AO, X Z. Inference of Clonal Copy Number Alterations from 
RNASequencing Data. J Cancer Immunol. 2020;2(3):66-8. 

420. Piovesan A, Caracausi M, Antonaros F, Pelleri MC, Vitale L. GeneBase 1.1: a tool to 
summarize data from NCBI gene datasets and its application to an update of human gene 
statistics. Database (Oxford). 2016;2016. 

421. Gawad C, Koh W, Quake SR. Single-cell genome sequencing: current state of the science. 
Nat Rev Genet. 2016;17(3):175-88. 

422. Blanco L, Bernad A, Lazaro JM, Martin G, Garmendia C, Salas M. Highly efficient DNA 
synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication. J Biol 
Chem. 1989;264(15):8935-40. 

423. Paez JG, Lin M, Beroukhim R, Lee JC, Zhao X, Richter DJ, et al. Genome coverage and 
sequence fidelity of phi29 polymerase-based multiple strand displacement whole genome 
amplification. Nucleic Acids Res. 2004;32(9):e71. 

424. de Bourcy CF, De Vlaminck I, Kanbar JN, Wang J, Gawad C, Quake SR. A quantitative 
comparison of single-cell whole genome amplification methods. PLoS One. 2014;9(8):e105585. 

425. Ha rd J, Mold JE, Eisfeldt J, Tellgren-Roth C, Ha ggqvist S, Bunikis I, et al. Long-read whole-
genome analysis of human single cells. Nature Communications. 2023;14(1):5164. 



 

334 

 

426. Selleckchem. MK-2206 2HCl: Selleckchem; 2024 [Available from: 
https://www.selleckchem.com/products/MK-2206.html. 

427. Selleckchem. Capivasertib (AZD5363): Selleckchem; 2024 [Available from: 
https://www.selleckchem.com/products/azd5363.html. 

428. McGranahan N, Swanton C. Clonal Heterogeneity and Tumor Evolution: Past, Present, 
and the Future. Cell. 2017;168(4):613-28. 

429. Gupta PB, Pastushenko I, Skibinski A, Blanpain C, Kuperwasser C. Phenotypic Plasticity: 
Driver of Cancer Initiation, Progression, and Therapy Resistance. Cell Stem Cell. 2019;24(1):65-
78. 

430. Qi L, Toyoda H, Xu DQ, Zhou Y, Sakurai N, Amano K, et al. PDK1-mTOR signaling pathway 
inhibitors reduce cell proliferation in MK2206 resistant neuroblastoma cells. Cancer Cell Int. 
2015;15:91. 

431. Stottrup C, Tsang T, Chin YR. Upregulation of AKT3 Confers Resistance to the AKT 
Inhibitor MK2206 in Breast Cancer. Mol Cancer Ther. 2016;15(8):1964-74. 

432. Stratikopoulos EE, Dendy M, Szabolcs M, Khaykin AJ, Lefebvre C, Zhou MM, et al. Kinase 
and BET Inhibitors Together Clamp Inhibition of PI3K Signaling and Overcome Resistance to 
Therapy. Cancer Cell. 2015;27(6):837-51. 

433. Tsang T, He Q, Cohen EB, Stottrup C, Lien EC, Zhang H, et al. Upregulation of Receptor 
Tyrosine Kinase Activity and Stemness as Resistance Mechanisms to Akt Inhibitors in Breast 
Cancer. Cancers (Basel). 2022;14(20). 

434. Junankar S, Baker LA, Roden DL, Nair R, Elsworth B, Gallego-Ortega D, et al. ID4 controls 
mammary stem cells and marks breast cancers with a stem cell-like phenotype. Nat Commun. 
2015;6:6548. 

435. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the 
metabolic requirements of cell proliferation. Science. 2009;324(5930):1029-33. 

436. Barba I, Carrillo-Bosch L, Seoane J. Targeting the Warburg Effect in Cancer: Where Do 
We Stand? Int J Mol Sci. 2024;25(6). 

437. de la Cruz-Lopez KG, Castro-Munoz LJ, Reyes-Hernandez DO, Garcia-Carranca A, Manzo-
Merino J. Lactate in the Regulation of Tumor Microenvironment and Therapeutic Approaches. 
Front Oncol. 2019;9:1143. 

438. Perez-Tomas R, Perez-Guillen I. Lactate in the Tumor Microenvironment: An Essential 
Molecule in Cancer Progression and Treatment. Cancers (Basel). 2020;12(11). 

439. Walenta S, Chau TV, Schroeder T, Lehr HA, Kunz-Schughart LA, Fuerst A, et al. Metabolic 
classification of human rectal adenocarcinomas: a novel guideline for clinical oncologists? J 
Cancer Res Clin Oncol. 2003;129(6):321-6. 

440. San-Millan I, Julian CG, Matarazzo C, Martinez J, Brooks GA. Is Lactate an 
Oncometabolite? Evidence Supporting a Role for Lactate in the Regulation of Transcriptional 
Activity of Cancer-Related Genes in MCF7 Breast Cancer Cells. Front Oncol. 2019;9:1536. 

https://www.selleckchem.com/products/MK-2206.html
https://www.selleckchem.com/products/azd5363.html


 

335 

 

441. Liao M, Yao D, Wu L, Luo C, Wang Z, Zhang J, et al. Targeting the Warburg effect: A 
revisited perspective from molecular mechanisms to traditional and innovative therapeutic 
strategies in cancer. Acta Pharm Sin B. 2024;14(3):953-1008. 

442. Lytle NK, Barber AG, Reya T. Stem cell fate in cancer growth, progression and therapy 
resistance. Nat Rev Cancer. 2018;18(11):669-80. 

443. Emmink BL, Verheem A, Van Houdt WJ, Steller EJ, Govaert KM, Pham TV, et al. The 
secretome of colon cancer stem cells contains drug-metabolizing enzymes. J Proteomics. 
2013;91:84-96. 

444. Liu PP, Liao J, Tang ZJ, Wu WJ, Yang J, Zeng ZL, et al. Metabolic regulation of cancer cell 
side population by glucose through activation of the Akt pathway. Cell Death Differ. 
2014;21(1):124-35. 

445. Zhong X, He X, Wang Y, Hu Z, Huang H, Zhao S, et al. Warburg effect in colorectal cancer: 
the emerging roles in tumor microenvironment and therapeutic implications. J Hematol Oncol. 
2022;15(1):160. 

446. Gris-Oliver A, Palafox M, Monserrat L, Braso-Maristany F, Odena A, Sanchez-Guixe M, et 
al. Genetic Alterations in the PI3K/AKT Pathway and Baseline AKT Activity Define AKT 
Inhibitor Sensitivity in Breast Cancer Patient-derived Xenografts. Clin Cancer Res. 
2020;26(14):3720-31. 

447. Dunn S, Eberlein C, Yu J, Gris-Oliver A, Ong SH, Yelland U, et al. AKT-mTORC1 
reactivation is the dominant resistance driver for PI3Kβ/AKT inhibitors in PTEN-null breast 
cancer and can be overcome by combining with Mcl-1 inhibitors. Oncogene. 
2022;41(46):5046-60. 

448. Jakubowski JM. Investigating Mechanisms of Acquired Resistance to the AKT Inhibitor 
Capivasertib (AZD5363): University of Kent; 2019. 

449. Zhang Y, Rajput A, Jin N, Wang J. Mechanisms of Immunosuppression in Colorectal 
Cancer. Cancers (Basel). 2020;12(12). 

450. Wang HB, Yao H, Li CS, Liang LX, Zhang Y, Chen YX, et al. Rise of PD-L1 expression during 
metastasis of colorectal cancer: Implications for immunotherapy. J Dig Dis. 2017;18(10):574-
81. 

451. Liu J, Zhang N, Li Q, Zhang W, Ke F, Leng Q, et al. Tumor-associated macrophages recruit 
CCR6+ regulatory T cells and promote the development of colorectal cancer via enhancing 
CCL20 production in mice. PLoS One. 2011;6(4):e19495. 

452. Rodriguez PC, Quiceno DG, Zabaleta J, Ortiz B, Zea AH, Piazuelo MB, et al. Arginase I 
production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor 
expression and antigen-specific T-cell responses. Cancer Res. 2004;64(16):5839-49. 

453. Brandacher G, Perathoner A, Ladurner R, Schneeberger S, Obrist P, Winkler C, et al. 
Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer: effect on 
tumor-infiltrating T cells. Clin Cancer Res. 2006;12(4):1144-51. 



 

336 

 

454. Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, et al. Evidence for 
a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 
2,3-dioxygenase. Nat Med. 2003;9(10):1269-74. 

455. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 Blockade in 
Tumors with Mismatch-Repair Deficiency. N Engl J Med. 2015;372(26):2509-20. 

456. Chen EX, Jonker DJ, Kennecke HF, Berry SR, Couture F, Ahmad CE, et al. CCTG CO.26 trial: 
A phase II randomized study of durvalumab (D) plus tremelimumab (T) and best supportive 
care (BSC) versus BSC alone in patients (pts) with advanced refractory colorectal carcinoma 
(rCRC). Journal of Clinical Oncology. 2019;37(4_suppl):481-. 

457. Argile s G, Saro J, Segal NH, Melero I, Ros W, Marabelle A, et al. Novel carcinoembryonic 
antigen T-cell bispecific (CEA-TCB) antibody: Preliminary clinical data as a single agent and in 
combination with atezolizumab in patients with metastatic colorectal cancer (mCRC). Annals 
of Oncology. 2017;28:iii151. 

458. Zhen YH, Liu XH, Yang Y, Li B, Tang JL, Zeng QX, et al. Phase I/II study of adjuvant 
immunotherapy with sentinel lymph node T lymphocytes in patients with colorectal cancer. 
Cancer Immunol Immunother. 2015;64(9):1083-93. 

459. Whelan SA. Generation and investigation of resistance mechanisms to AZD5363 in 
breast cancer: University of Kent; 2017. 

460. Zhu Z, Wang W, Lin F, Jordan T, Li G, Silverman S, et al. Genome profiles of pathologist-
defined cell clusters by multiregional LCM and G&T-seq in one triple-negative breast cancer 
patient. Cell Rep Med. 2021;2(10):100404. 



 

337 

 



 

338 

 

Publications 

 



Trends in

Genetics OPEN ACCESS
Review
Into the multiverse: advances in single-cell
multiomic profiling
Silvia Ogbeide,1,3 Francesca Giannese,2,3 Laura Mincarelli,1 and Iain C. Macaulay1,*
Highlights
To understand intercellular heterogeneity
within an organism, it is essential tomake
coordinated measurements linking the
genome and its epigenetic regulation to
gene and protein expression at the
single-cell level.

Rapid advances in single-cell multiomics
approaches have enabled analysis of
multiple molecular modalities from the
same single cell.
Single-cell transcriptomic approaches have revolutionised the study of complex
biological systems, with the routine measurement of gene expression in thou-
sands of cells enabling construction of whole-organism cell atlases. However,
the transcriptome is just one layer amongst many that coordinate to define cell
type and state and, ultimately, function. In parallel with the widespread uptake
of single-cell RNA-seq (scRNA-seq), there has been a rapid emergence of
methods that enable multiomic profiling of individual cells, enabling parallel
measurement of intercellular heterogeneity in the genome, epigenome, tran-
scriptome, and proteomes. Linking measurements from each of these layers
has the potential to reveal regulatory and functional mechanisms underlying
cell behaviour in healthy development and disease.
Methods incorporating several modali-
ties now exist, although several chal-
lenges remain with regard to resolution,
data integration, and scale.

Further developments in multiomics ap-
proaches will provide unique insights
into the regulatory processes governing
how individual cells function collectively
to produce whole-organism phenotypes
in development, health, and disease.
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The many sources of cellular heterogeneity
As fundamental biological units, cells within a multicellular organism are capable of remarkable
diversity in form and function throughout development and disease. Individual cells have typically
been classified to particular ‘types’ or ‘states' by phenotypic measurement, such as marker gene
expression, morphology, or function. scRNA-seq has been instrumental in revealing a broader
scheme for cell type classification through simultaneous measurement of the expression of
thousands of genes in thousands – even millions – of cells, and therefore more detailed classifi-
cation of cell types, subtypes, and states in dynamic and complex developmental systems
[1–7]. These rapid advances in scRNA-seq technologies have made whole-organism single-cell
profiling a reality, underpinning the efforts of major consortia aiming to produce a comprehensive
map of cell types in the human body [8].

However, a cell’s transcriptome is just one aspect of its phenotype – an incomplete representation of
cellular identity, reflecting both the regulatory status of the genome and implied protein production.
Cell-type-specific mRNA expression is governed by epigenetic mechanisms and, in general,
only has functional potential when translated into protein. Thus, molecular cellular identity
(see Glossary) is a product of the interplay between many different modalities within the cell
(Figure 1, Key figure), all of which can vary as a result of intrinsic and extrinsic factors. To
truly understand how individual cells within a multicellular organism can demonstrate such
remarkable heterogeneity, it is essential to be able to make coordinated measurements linking
the genome and its epigenetic regulation to gene products (transcripts and proteins).

In parallel with the rapid and widespread adoption of scRNA-seq, there has been an adaptive
radiation of single-cell multiomics approaches for the simultaneous analysis of multiple molecular
modalities from the same single cell (Figure 2). These powerful approaches enable associations to
be made between genome sequence, structure, and regulatory state and the transcriptional and
proteomic phenotype of the cell. While a cell can be classified on the basis of any one of these
measurements, a cell’s identity can only be understood through the integration of these different
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Glossary
ATAC-seq: an 'assay for transposase-
accessible chromatin with high-
throughput sequencing' in which DNA
from accessible chromatin is selectively
sequenced. This gives an overview of
the 'openness' of the chromatin across
the genome, probed by hyperactive Tn5
transposase.
Chromatin velocity: a trajectory of cell
lineage commitment based on the
measurement of changes in
euchromatin and heterochromatin in
thousands of cells, as measured by the
GET-seq assay.
Combinatorial indexing: methods
which use serial barcoding of pools of
nuclei or cells to generate highly complex
combinations of barcodes attached to
individual molecules (DNA or RNA), and
thus increasing throughput without the
need for dedicated microfluidics
platforms. These methods are often
appropriate for experiments where large
number of cells (>1000s) undergo
parallel analysis and classification.
Copy-number variant (CNV): an
increase or decrease in the number of
copies of a region of the genome,
ranging from increased numbers of short
tandem repeats through to whole
chromosome gains and losses.
CUT&Tag: 'cleavage under targets and
tagmentation', a method which uses
antibody-tethered transposases to
target specific DNA–protein interactions
for sequencing, including histone
modifications and transcription factors.
DNA methylation: in mammals, this is
an epigenetic mechanism involving the
transfer of a methyl group onto cytosine
bases in the genome which can have a
regulatory impact on gene expression.
This is typically measured using bisulfite
sequencing, in which unmethylated
cytosines are converted to uracil –which
will appear as a thymine base in
sequencing data – while methylated
cytosines remain unchanged.
Epigenetic plasticity: variability in
epigenetic regulation that permits cells to
undergo cell fate transitions due to
stochastic activation of gene
expression.
Euchromatin: loosely packed or 'open'
chromatin, which is often the site of
active gene expression.
FACS: fluorescence-activated cell
sorting, amethod for the sorting of single
cells based on phenotypic measure-
ments, including size, granularity, and
protein/antigen expression.
layers. This kind of analysis can not only enhance our ability to classify cell identity but brings us
closer to being able to perform mechanistic, functional genomic studies of individual cells within
a population. This has a particular impact on the study of development, ageing, and disease,
where heterogeneity at multiple levels can contribute to cellular phenotypes which have profound
impact on the organismal phenotype.

Linking somatic variation and gene expression
Within the lifetime of an organism, genomic diversification between cells – known as somatic
variation – can occur as a result of programmed and spontaneous mechanisms. Thus, the
genomes of individual cells within a multicellular organism can have substantial and significant
deviations from the 'prime' genome – that of the fertilised zygote. For example, programmed
somatic variation occurs in B and T lymphocytes to produce diversity in specificity of antibody
and T cell receptors. Spontaneous somatic variation, where individual cells acquire genomic
diversity – from single-nucleotide variants (SNVs) to whole-chromosome copy-number
variants (CNVs) – is common in normal mammalian development and ageing [9,10]. This
phenomenon can become pathogenic when a particular variant (or set of variants) acquired in
a single cell confers a competitive advantage to the cell and its subsequent progeny. This cellular
evolutionary process, where genotypic changes create competitive phenotypic heterogeneity,
can lead to clonal expansion and the formation of malignant or cancerous clones through the
acquisition of further mutations and genomic rearrangements [11].

Changes in the genome itself have limited impact unless they modify the sequence of genes or
their regulatory elements, thereby modifying gene expression and the overall phenotype of the
cell. Therefore, linking somatic variation to gene expression in the same cell is critical to under-
stand the functional consequences of acquired mutations and how these can introduce
functional cellular heterogeneity. Early single-cell multiomics methods, such as DR-seq (gDNA
and mRNA-sequencing) [12] and G&T-seq (genome and transcriptome-sequencing) [13], per-
formed parallel analysis of genomes and transcriptomes of individual cells, typically isolated man-
ually or by FACS. In DR-seq, combined amplification of a single cell’s genome and transcriptome
is performed in a single reaction, while in G&T-seq, mRNA is physically separated from genomic
DNA before parallel amplification of both (Figure 3A). Both plate-basedmethods enabled links to
be made between genomic variation – from chromosomal copy number down to single-
nucleotide resolution – and gene expression. They also demonstrated, for the first time, the direct
impact of chromosomal copy number on gene expression in the same cell, with a clear correlation
between copy number and gene expression. In the case of G&T-seq it was possible to demon-
strate this correlation immediately after the cell cycle in which reciprocal chromosomal gains or
losses occurred. Additionally, the combination of full-length RNA-seq and whole-genome se-
quencing in G&T-seq enabled parallel detection of a fusion transcript and the causative genomic
rearrangement in the same cell of a breast cancer cell line. Both of these early methods demon-
strated potential for single-cell multiomic studies in cancer (Box 1) in which the transcriptional
phenotype of the cell can be associated with evolutionary events recorded in the genome.

These approaches were not without limitations, suffering from sequence errors introduced in the
whole-genome amplification processes, as well as allelic and locus dropout that is inherent in
single-cell genome amplification. Gaining high coverage data from the entire genomes of single
cells, in parallel with rich transcriptomic data, is also expensive, which limits reasonable through-
put to 100s or 1000s of cells.

More recently, Target-seq [14] was developed to enable parallel mRNA-seq and targeted
genotyping, rather than whole-genome sequencing, of the same single cell. The plate-based
832 Trends in Genetics, August 2022, Vol. 38, No. 8

CellPress logo


Trends in Genetics
OPEN ACCESS

Heterochromatin: tightly packed or
'closed' chromatin, which is less
accessible for transcription.
Hi-C: a chromosome conformation
capture assay which enables the
genome-wide measurement of long-
range interactions between genomic
loci.
Microfluidic assays: in this case
referring to assays which isolate
individual cells in microfluidic droplets in
the presence of barcoded
oligonucleotide-coated beads to enable
the capture and barcoding of molecules
of multiple classes (DNA, RNA, and
protein) from single cells. These
methods are often appropriate for
experiments in which a large number of
cells (>1000s) undergo parallel analysis
and classification.
Molecular cellular identity: the
amalgamation of molecular events that
make a cell belong to a particular type or
state.
Plate-based assay: in this case refers
to a single-cell multiomic approach for
which cells are isolated into 96- or 384-
well plates for processing (typically) using
liquid handling robotics. These methods
are often appropriate for experiments
where small numbers (100s–1000s) of
cells undergo a detailed analysis.
Single-nucleotide variant (SNV): a
single base change in the genome.
Somatic variation: genetic diversity
occurring between cells within the same
organism, arising from mutations
occurring after conception.
Whole-genome amplification:
describes several possible methods for
genome-wide amplification of cellular
DNA, in this case to enable single-cell
genome sequencing.
protocol features an optimised version of the Smart-seq2 mRNA amplification, after which the
sample is split and primers targeting regions of interest within the transcriptome and/or genome
are used to generate targeted amplicon sequencing libraries. By focussing on known mutations,
this approach significantly increases the sensitivity and reduces the cost of mutation detection. A
related, microfluidic targeted genome sequencing approach has been commercialised by
Mission Bio, enabling high-throughput genotyping of single cells, but linking with protein expres-
sion information rather than transcriptomic data. These targeted methods are highly relevant for
studies where a known repertoire of mutations is prevalent, such as studies of intratumoural
heterogeneity and cancer evolution, where recurrent mutations are common. However, in
complex mutational backgrounds, or where mutation discovery is important, bulk or single-cell
whole-genome sequencing may still be more applicable.

Methods involving physical separation of the nucleus and cytoplasm of a cell have also been
demonstrated (Figure 3B). 'Simultaneous isolation of genomic DNA and total RNA' (SIDR) [15]
was the first such method. This approach has seen massive increases in throughput in direct nu-
clear tagmentation and RNA sequencing (DNTR-seq) [16], which relies on nuclear/cytoplasmic
separation, followed by full-length mRNA amplification from the cytoplasmic fraction, and direct
tagmentation-based genomic library preparation from the nuclear DNA, obviating the need for
a traditional whole-genome amplification step. This represents a significant cost reduction and
contributes to the increased scale at which themethod can operate. However, like othermethods
which require physical separation of nucleus and cytoplasm, it is unclear how they are affected by
disassembly of the nuclear envelope during the mitotic cell cycle.

Linking the epigenome and gene expression
Although intercellular diversity in genome sequence and structure is common, the phenotypic
heterogeneity of cells is a hallmark of multicellular organisms and emerges from the regulation
of gene expression through epigenetic modification of the genome. Starting from the same
genetic background, cells can acquire highly specialised functions during development and are
able to dynamically modify their phenotype in response to environmental stimuli. Many
epigenomic approaches have been adapted to make measurements in single cells, but only as-
says for DNA methylation and chromatin accessibility have been incorporated into multiomic
assays. These assays, by linking genome regulation and gene expression in the same cell, can
shed light on lineage determination, developmental dynamics (Box 2), and mechanisms of
disease development.

The first methods that attempted to link epigenetic diversity with transcriptional heterogeneity
in single cells focussed on the association between DNA methylation at CpG sites and gene
expression. To achieve this, single-cell bisulfite sequencing methods – either post-bisulfite
adaptor tagging (PBAT) [17], which measures DNA methylation across the genome, or reduced
representation bisulfite sequencing (RRBS) [18], which enriches for regions with high CpG
content – have been combined with transcriptomic analysis of individual cells. scM&T-seq
(single-cell methylome and transcriptome sequencing) built upon the G&T-seq method
(Figure 3A), but instead uses the purified genomic DNA for a modified PBAT protocol, generating
genome-wide methylation data, while the transcriptome is again sequenced using a modified
Smart-seq2 protocol [19]. The method was first applied to mouse embryonic stem cells to
discover novel correlations between heterogeneity at DNA methylation of distal regulatory
elements and expression of hundreds of genes, including key pluripotency genes. The G&T-
seq approach was also adapted for Smart-RRBS, which enables joint profiling of DNA
methylation (by RRBS) and transcriptome analysis [20]. Other approaches involving physical
separation of the nucleus and the cytoplasm have been used to obtain gene expression and
Trends in Genetics, August 2022, Vol. 38, No. 8 833
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Figure 1. (A) Molecular cell identity comprises the interaction of many different molecular layers within the cell. Genomic and epigenomic variation influence the sequence
and abundance of transcripts and proteins, which in turn can influence eachmolecular layer within the cell. Areas in which single-cell multiomic analysis hasmade significant
advances are highlighted in (B–D).
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DNA methylation data from the same single cell, including MT-seq [21] and scTRIO-seq [22]
(Figure 3B).

There are still major limitations to the detection of DNA methylation in single cells – bisulfite
treatment is destructive to the DNA, resulting in a high level of allelic and locus dropout. Similarly,
the sequencing libraries generated using these approaches are typically rich in PCR duplicates,
which, combined with dropouts and the expense of pursuing high genomic coverage from single
cells, make themeasurement of DNAmethylation at single-base resolution challenging. Furthermore,
the C > T substitution inherent in the approachmakes the calling of genomic variants difficult, making
existing approaches unsuitable for parallel methylation and SNV calling. Recently, the epi-gSCAR
approach (epigenomics and genomics of single cells analysed by restriction) demonstrated the
feasibility of bisulfite-free single-cell library preparation – using the methylation-sensitive restriction
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Figure 2. An overview of current single-cell multiomic approaches. See [12,13,15,16,19,21,22,24–26,28,29,36,41,45–50,53–56,58,59,61,63–65,102].
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enzyme HhaI and quasilinear amplification – to study genome-wide methylation and genomic
variation at single-nucleotide resolution in cancer cell lines [23].

The accessibility of sequences within the genome is considered to be a mark of genomic activity,
representing the expression of particular genes or the openness of particular sequences, includ-
ing enhancers or transcription factor binding sites. Chromatin accessibility in single cells is now
routinely measured by the 'assay for transposase-accessible chromatin' using sequencing
(ATAC-seq), in which the Tn5 transposase is used to fragment and insert sequencing adaptors
into open regions of the genome (euchromatin). Due to the nature of the ATAC-seqmethod, it is
compatible with considerably higher throughput than the analysis of DNAmethylation. In general,
these high-throughput methods rely on the tagmentation of accessible chromatin in a bulk
preparation of nuclei before paired barcoding of the tagmented DNA and RNA from the same
cell, either through combinatorial indexing or in droplet-based approaches (Figure 3C,D).
For example, sciCAR-seq [24], used combinatorial indexing to process over 11 000 nuclei per
experiment. Medium-throughput methods, working with intact cells rather than nuclei, have
also been described (scCAT-seq, [25] and ASTAR-seq [26]) and may potentially be more
applicable to experiments in which rare cells are to be profiled.

Throughput was dramatically increased in Paired-seq [27] by implementation of a ligation-based
combinatorial indexing strategy which enabled processing of one million nuclei per experiment.
Building on Paired-seq and a similar approach, SPLiT-seq [28] and SHARE-seq [29], further
increased the sensitivity of the combinatorial indexing approach to measure the 'chromatin
Trends in Genetics, August 2022, Vol. 38, No. 8 835
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Figure 3. Capturing multiple layers of information from the same single cell. Various approaches have emerged to extract distinct layers of omic information
from the same single cell. (A) G&T-seq, and those methods based on it, perform physical separation of genomic DNA and mRNA following capture on magnetic
beads. (B) An alternative approach involves physical separation of the nucleus and cytoplasm of the cell. These methods allow both genome sequencing and
methylation sequencing to be performed on the isolated DNA. High-throughput combinatorial indexing has been applied in (C) sci-CAR and (D) SHARE-seq to obtain
linked transcriptome and chromatin accessibility from the same cell, while droplet-based microfluidic approaches (E) have enabled parallel capture of these modalities
using SNARE-seq and the 10X Genomics Chromium platform. (F) Droplet microfluidics has also been used to sequence DNA from accessible and compacted
chromatin using GET-seq. (G) CITE-seq and REAP-seq take advantage of polyadenylated oligonucleotide tags attached to antigen-specific antibodies to capture
protein expression information in parallel with mRNA expression. Abbreviations: ATAC-seq, 'assay for transposase-accessible chromatin with high-throughput
sequencing'; CITE-seq, cellular indexing of transcriptomes and epitopes by sequencing; FACS, fluorescence-activated cell sorting; G&T-seq, genome and
transcriptomesequencing; GET-seq, genome and epigenome by transposases sequencing; sci-CAR, single-cell combinatorial indexing-chromatin accessibility and
RNA sequencing; SNARE-seq, single-nucleus chromatin accessibility and mRNA expression sequencing.
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Box 1. Single-cell multiomics in cancer evolution

Cancer development within an individual is an evolutionary process in which cells evolve by mutation and subsequent
selection for clones with increased proliferative capability, fitness, and resistance to therapeutic intervention. While
mutational profiling is informative in understanding tumour evolution, it is critical to link these mutations or genotypes with
cellular phenotype or functional data. Single-cell multiomic approaches enable the integration of genotypic information –

from single nucleotide to whole chromosome resolution – with epigenomic, transcriptomic, and increasingly, proteomic
information, and several landmark studies have demonstrated the application of these approaches in cancer.

The scTrio-seq approach [22] was optimised to profile human colorectal cancer cells from paired primary tumours and
lymphatic or liver metastases [72]. In one patient, this permitted the identification of 12 sublineages that originated from
two different progenitors, one of which was maintained throughout tumour progression and was still present in both the
final neoplasm and distant metastases. Overlaying DNA methylation data along these lineages revealed that methylation
levels were homogeneous among cells within the same genetic lineage but varied among different lineages.

Based on the physical separation of genomic DNA and transcriptomes, Smart-RRBS has been applied in the study of
epigenetic evolution in chronic lymphocytic leukaemia (CLL) [73]. Here, the parallel measurement of epigenetic and tran-
scriptional changes enabled the linkage of epimutations in SF3B1-mutant CLL cells to a 3′ splicing phenotype and
subclones of cells with epigenetic and transcriptional phenotypes that expanded following chemotherapeutic treatment.
Subsequently, the same approach demonstrated that a decrease in epigenetic–transcriptional coordination in CLL could
partially be explained by intercellular epigenetic diversification [74]. The Smart-RRBS approachwas also recently applied in
the study of primary diffuse glioma, where it enabled joint capture of transcriptional, genetic, and epigenetic data from the
same single cell [75]. The scRRBS enabled CNV analysis at 20 Mb resolution for genome-wide analysis, but also 0.1 Mb
resolution to reveal CNVs at the EGFR locus. Furthermore, it could be used to generate lineage trees from individual
glioblastoma samples, with individual branches annotated with transcriptomic cell types and states.

Recently G&T-seq [13] was coupled with laser capture microdissection (LCM) to generate spatially resolved genomic and
transcriptional profiles of cancer cells with the potential for lymphovascular invasion in a patient with triple-negative
breast cancer [76].

While these studies are still relatively small in scale, continued development of these methods, including increases in
throughput and resolution, reductions in cost, and incorporation of additional layers of data, will undoubtedly transform
single-cell multiomic profiling into a mainstream tool in the study of cancer evolution.

Box 2. Single-cell multiomics analysis in developmental systems

In multicellular organisms, cells can adapt an immense array of phenotypes and states, despite having the same or highly
similar genomes. During development and a healthy lifespan, as cells commit first to specific germ layers then cell types,
the regulation of genome function through epigenetic modification is fundamental to the emergence of this complexity. Cell
fate decisions are made by individual cells responding to intrinsic and extrinsic factors resulting in changes to epigenomic,
transcriptomic, and proteomic aspects of cell identity. The integration of different omic layers of the same single cell
through multiomic analysis can provide a unique perspective on the dynamics of these processes.

During early embryogenesis, global demethylation erases the epigenetic signatures of the highly specialised gametes to
enable the embryonic cells to become totipotent. scCOOL-seq, which measures DNA methylation, chromatin accessibility,
and copy number variation has been applied to study this epigenetic reprogramming inmouse [57] and human embryos [77],
revealing the dynamics of parental genome activity in the first cell divisions after fertilisation. The iscCOOL-seq method was
subsequently applied to the study of mouse oocytes, identifying dynamic associations between chromatin accessibility,
methylation, and expression during oocyte maturation. Similarly, scM&T-seq was also used to explore the heterogeneity in
DNAmethylation of oocytes from young and agedmice, with those from agedmice showing increased molecular heteroge-
neity indicative of epigenetic dysregulation [78].

Combined gene expression and whole-genomemethylation profiling was used to characterise the post-implantation DNA
methylation landscapes inmouse embryos (from eight-cell stage to E6.5 epiblast and extraembryonic ectoderm), revealing
divergent methylation patterns in the extraembryonic tissue, with methylation in these lineages mirroring the aberrant
methylation of the promoters of developmental genes observed in tumorigenesis [79].

The emergence of high-throughput approaches, combining ATAC-seq and RNA-seq from the same cell, with the potential
to integrate protein expression and cell-lineage tracing (e.g., DOGMA-seq), has enormous potential in unravelling the
dynamic interactions underpinningmolecular cell identity during early development and organogenesis as well as in cellular
systems undergoing constant replenishment (e.g., blood).
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potential' of individual cells, which explores the predictive power of chromatin accessibility on
future gene expression changes and lineage commitment within the cell. Single-nucleus chroma-
tin accessibility and mRNA expression sequencing (SNARE-seq) leverages the microfluidic
Drop-seq [30] method to perform parallel chromatin accessibility and gene expression measure-
ments on the same nuclei [31]. This approach has been adapted for the 10X Genomics
Chromium platform using hydrogel beads carrying separate capture oligonucleotides which
capture both the tagmented genome and mRNA. A recent alternative method for single-nu-
cleus multiomic profiling, ISSAAC-seq [32], based on the Sequencing HEteRo RNA-DNA-
hYbrid (SHERRY) approach [33], exploits a first tagmentation reaction on accessible
chromatin followed by reverse transcription and then a second tagmentation round on DNA–RNA
hybrids. Nuclei are loaded on microfluidic or FACS apparatus for single-cell analysis, and separate
DNA and RNA libraries are produced, exploiting the different adaptor configuration for the two
tagmentation steps.

Linking different aspects of the epigenome
ATAC-seq will only provide sequence information from accessible chromatin and does not
capture genetic alterations and chromatin remodelling events associated with heterochromatin.
Compacted chromatin is crucial for lineage specification [34] and genome stability [35]. Recently,
chromatin accessibility profiling has been combined with heterochromatin sampling in the single-
cell genome and epigenome by transposases sequencing (scGET-seq) assay [36]. This assay builds
on scATAC-seqwith dropletmicrofluidic exploiting engineered transposases to simultaneously probe
H3K9me3-enriched compacted chromatin alongside accessible chromatin. This combined
epigenomic and genetic characterization allowed for increased resolution in CNV calling and it was
used to compute a new metric called chromatin velocity – based on the differential enrichment
between closed and open chromatin – to reveal patterns of epigenetic plasticity during stem cell
reprogramming and key transcription factors correlated to developmental commitment. The introduc-
tion of engineered transposases in single-cell genomics unlocks immense potential for targeted anal-
ysis of other domains within the epigenome. A similar method named scCUT&Tag2for1, a
modification of standard CUT&Tag [37], uses antibody-guided tagmentation to simultaneously
characterise accessible and silenced regulome by targeting the initiation form of RNA polymerase II
(Pol2 Serine-5 phosphate) and repressive Polycomb domains (H3K27me3) [38]. A further CUT&Tag
development, scCUT&Tag-pro, allows simultaneous profiling of histone modifications with protein
abundances on whole cells [39].

Chromatin conformation assays, such as Hi-C, have revealed the extent to which three-
dimensional conformation of the genome regulates gene expression in health, disease, and se-
nescence. Two multiomic approaches, single-nucleus methyl-3C [40] and scMethyl-HiC [41],
have described methods to obtain linked chromatin conformation and methylation data from
the same single cell, using bisulfite conversion of crosslinked genomic DNA. These approaches
reveal that chromatin conformation alone can identify cell typeswithin heterogeneous populations
and differential methylation signatures associated with cell-type-specific chromatin interactions in
human brain cells.

Linking transcript and protein expression
Much of cell behaviour is determined by the functions of proteins, and it is generally accepted that
mRNA expression levels offer only a weak proxy for direct measurement of protein expression
[42]. The obvious biochemical differences between nucleic acids and protein constitute a
challenge for developing single-cell approaches – there is no method for protein sequence ampli-
fication and so measurements are dependent on antibody-based protein detection or mass
spectrometry for peptide identification.
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Proximity extension assays (PEAs) have been exploited to detect protein expression using anti-
bodies recognising different epitopes on the same protein. PEA is based on proximity ligation
assay (PLA) [43] in which antibodies conjugated with single-stranded DNA oligonucleotides
colocalise on the target protein, enabling ligation and generation of a sequence that is detectable,
in parallel with mRNA molecules, by qPCR [44,45]. Proximity ligation assay for RNA (PLAYR)
expanded the throughput of the PLA approach by detecting transcripts and proteins using mass
cytometry, enabling parallel measurement of over 40 different transcripts and protein epitopes in
thousands of cells [46]. More recently, the 'single-cell protein and RNA coprofiling' (SPARC)
method, in which mRNA and protein lysate are physically separated, enables parallel whole tran-
scriptome mRNA-seq and detection of extracellular and intracellular proteins using PEA [47].

Increases in throughput have been enabled by the combination of oligonucleotide-conjugated
antibodies with droplet-based microfluidic (e.g., 10X Genomics) and micro-well platforms (e.g., BD
Rhapsody). This approach was pioneered in RNA expression and protein sequencing (REAP-seq)
[48], Cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) [49]. In these
methods, cells are labelled with panels of antibodies, each tagged with a specific polyadenylated
barcode which can be captured in parallel with the mRNA from the same cell following lysis
(Figure 3G). SCITO-seq demonstrated a combinatorial indexing approach for antibody barcoding,
enabling extreme multiplexing of cells as well as multimodal profiling of more than 150 surface pro-
teins in parallel with mRNA expression from the same cells [50].

Antibody-based methods are severely limited by the availability of antigen-specific reagents –

detection requires a reliable epitope-specific antibody (or pair of antibodies for PEA-based assays)
which dramatically reduces the number of proteins or epitopes that can be surveyed. To obtain a
more complete overview of the cellular proteome, antibody-independent methods are essential.
Single-cell mass spectrometry-based approaches, such as single cell proteomics by mass spec-
trometry (SCoPE-MS) [51] and SCoPE2 [52], can analyse thousands of proteins and post-
translational modifications in individual cells; however, they have yet to be directly incorporated into
a combined multiomics approach. Recently, the PHAGE-ATAC assay [53] demonstrated an alterna-
tive approach where antibodies are replaced with nanobody phage-display libraries. This may offer a
potential route towards protein detection without the need for antibodies.

Triple and higher-order single-cell multiomics
To fully explore the causes and consequences of intercellular heterogeneity, it is important to
simultaneously capture data from as many aspects of the cell as possible. As an early example,
scTRIO-seq could simultaneously measure genomic copy number changes at ~10 Mb resolution,
DNA methylation, and gene expression from the same cell [22]. The single-cell nucleosome, methyl-
ation and transcription sequencing (scNMT-seq) approach [54] combines 'single-cell nucleosome
occupancy' and methylome sequencing (scNOMe-Seq [55]) with a modification of G&T-seq [13] in
a plate-based assay. In this approach, the genomic DNA is methylated, using a GpCmethyltransfer-
ase, at GpC sites that are not bound by nucleosomes. Following physical separation of DNA and
mRNA, the DNA undergoes bisulfite conversion which allows parallel measurement of nucleosome
positioning, DNA methylation, and the cell’s transcriptome [54]. A similar approach, scChaRM-seq,
was also recently described [56]. NOMe-seq approaches were further adapted for scCOOL-seq
[57], which canmeasure various genomic aspects of the cell in parallel, including chromatin state, nu-
cleosome positioning, DNA methylation, CNV, and ploidy. This method has been modified to incor-
porate transcriptomic measurements in iscCOOL-seq [58].

Building on microfluidic workflows for parallel ATAC- and CITE-seq from single cells, ASAP-seq
[59] demonstrated parallel chromatin accessibility, cell-surface and intracellular protein
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Outstanding questions
What is the optimal trade-off between
resolution (number of measurements
per cell) and throughput (number of
cells analysed)?

What are the upper and lower limits of
detection required to make meaningful,
comprehensive investigations of cell
type and state?

By operating at ultra-high-throughput,
do we risk missing key details of
cellular phenotypes – for example,
lowly expressed genes, base-level
(epi)genomic variation?

How can key measurements, such as
histone modifications, DNA protein
interactions, and isoform level gene
expression, be integrated into multiomic
approaches?

How can the nonmacromolecular
components of the cell be integrated
into multiomic studies – for example,
the metabolome and lipidome?

What are the optimal computational
approaches for data integration in
multiomics approaches which take
into account the various errors and
sources of noise in parallel but distinct
types of measurement made from the
same single cell?

What level of detail is required to build
accurate predictive models linking
(epi)genomic variation and the function
of protein–protein interaction networks?

How can antibody-independent pro-
teomics be integrated with existing
multiomic workflows?

Can single-cell multiomics methods be
combined with spatial measurements,
perhaps even in real time?

Can single-cell whole-genome se-
quencing – to base level resolution –

be enabled at high throughput in a
multiomic approach?

What are the applications for wider
scientific questions – for example, can
single-cell multiomics be applied to as-
semble and annotate genomes of
nonmodel single-cell organisms?
measurements. Furthermore, the method enabled mutational profiling of the mitochondrial ge-
nome, allowing simultaneous lineage inference frommitochondria mutations, as previously demon-
stratedwith mtscATAC-seq [60]. This was further expanded in the samemanuscript to incorporate
RNA-seq measurements – thus reading four layers of information from the same cell – in a method
referred to as DOGMA-seq [59]. A similar approach, TEA-seq, was also recently described [61]. In
these studies, whole cells were analysed instead of nuclei, which has the advantage of allowing
more comprehensive phenotypic characterization, surface-marker enrichment prior to analysis,
and retention of cytoplasmic RNA in multimodal assays.

By capturing these multiple layers, the epigenetic determinants of differentiation, and their
dynamics, can be dissected with unprecedented detail – variations in accessibility and methyla-
tion can be directly correlated with variation in gene and protein expression levels. This will enable
the construction of genome-wide regulatory models which incorporate the cell as the unit in
which genomes are regulated and genes are expressed.

Concluding remarks
The emergence of methods enabling multiomic profiling of single cells continues at a staggering
pace. It is now possible to profile multiple molecular layers of thousands of individual cells,
with newer methods approaching 'Omni-seq' – where multiple omic measurements can be
combined with spatial and lineage-based information to determine a cell’s molecular state,
microenvironment, and life-history in a single readout [62]. This has significant implications for
current and future studies of developmental and cancer biology, where changes in individual
cells are fundamental to the progression of healthy development or disease. These methods,
especially when coupled with perturbations using the CRISPR/Cas system [63–65], will have
immense potential to unravel cellular (epi)genotype/phenotype associations and the mechanisms
that govern the emergence of cellular heterogeneity.

However, several challenges remain. At present, the analysis of eachmolecular level is imperfect –
single-cell measurements of any kind are prone to noise and, in particular, drop-out, where critical
signals of mutation, modification, or expression may be lost. As methods scale to incorporate
thousands, even millions, of cells, there is a concomitant loss of detail per cell (see Outstanding
questions). While the future development of methods will undoubtedly see the incorporation of
further omics measurements – including expanded proteomic and metabolomic profiling [66] –
there is still a need to refine many of the existing methods to obtain high resolution, accurate
measurements of base-level events in the genome, and sensitive, quantitative, measurements
of both gene and isoform expression from individual cells.

Aside from themacromolecular components of the cell, there are also manymetabolites that can be
instrumental in the regulation of cell function, and new approaches for their measurement are emerg-
ing [67]. No cell lives in isolation – beyond molecular profiling, the life history of the cell and its spatial
relationship to other cells are critical determinants of cell identity. Undoubtedly, the considerable
advances in cell lineage tracing [68] and spatial transcriptomics [69] will converge with multiomic
profiling to enable comprehensive analysis of cellular identity in the context of where it is (Box 3),
and where it has come from, but this will come with additional – and complex – computational
and data science challenges. While each layer of information added to a multiomic analysis can
bring new opportunities to classify cells and their biological context, it will also bring opportunities
to study the mechanistic relationships between these different modalities in individual cells. While
this an extremely exciting prospect, it requires the development of robustmethods for the integration
of diverse data types, eachwith their own idiosyncrasies. Packages such as Seurat [70] andMOFA+
[71] enable data integration from single-cell multiomic experiments, with the latter designed to
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Box 3. Spatial multiomics

The organisation of cellular structures and corresponding cell–cell interactions are fundamental to the operation of any
multicellular system. Understanding the spatial organisation of cells within tissues is therefore essential to linkmolecular cell
identities with organ- or organism-level functional biology. However, single-cell methods are not able to capture the spatial
context of cells as the analysed tissue must be dissociated in order to be analysed. To address this need, there have been
considerable advances in spatial transcriptomics, with transcriptome-wide or targeted approaches revealing gene
expression patterns with regional, cellular, and even subcellular resolution [80].

Conventional in situ hybridisation [81] allows transcript detection at subcellular resolution, and recent developments of this
approach have increased the multiplexing capacity for this approach from tens [82–85] to hundreds and even thousands
of transcripts [85–88]. Untargeted methods have also expanded imaging-based in situ methodology to genome-wide
profiling of gene expression [89,90]. Substrate-based approaches use positionally barcoded oligo-dT microarray features
to locally capture mRNA molecules from tissue sections [91], with resolutions ranging from 50 μm (e.g., the 10X Visium
platform), spanning multiple cells, through to methods approaching single-cell [92–94] and subcellular (<1 μm) resolution
[95]. Spatial epigenomics approaches are also emerging, firstly with sciMAP-ATAC [96], where chromatin accessibility
profiles obtained from tissue micropunches were matched with tissue spatial coordinates using combinatorial indexed
transposition and sci-ATAC-seq workflow.

Spatial multiomic approaches are emerging – fluorophore- and oligonucleotide-conjugated antibodies can be
incorporated into both in situ and array-based methods to enable parallel mRNA and protein detection, which has been
demonstrated for several of the spatial transcriptomics methods mentioned previously [87,97], using the Nanostring
GeoMX DSP instrument [98] and also very recently demonstrated in SPOTS [99], which combines the 10X Genomics
Visium Platform with CITE-seq antibody-based protein detection. Novel approaches, such as the recently described
DBiT-seq, can perform spatial profiling of mRNA and protein with 10 μm resolution [100]. DBiT-seq is based on two-step
microfluidic-delivery of DNA barcodes directly to the surface of a tissue slide, and this approach has also enabled the spa-
tially resolved profiling of accessible chromatin at approximately 20 μM resolution using in situ Tn5 transposition combined
with microfluidic spatial barcoding [101].

Although only now emerging, these methods are likely to evolve rapidly, and far beyond transcriptomic and proteomic
integration. Bringing multiomic methods with single-cell resolution together with imaging approaches will eventually enable
comprehensive, three-dimensional molecular profiling of the dynamics of multicellular systems in development and disease.

Trends in Genetics
OPEN ACCESS
identify cell classification factors and regulatory dependencies in scNMT-seq data. The continued
development of computational tools that go beyond cell type classification, and can infer regulatory
networks across multiple layers, is essential for future single-cell multiomic studies.

The ongoing convergence of methods enabling multiomic profiling of cellular molecular identity,
localisation, and life history will dramatically change how we study multicellular living systems,
offering unique insights into the regulatory processes governing how individual cells function
collectively to produce whole-organism phenotypes in development, health, and disease.
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