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Abstract

Oxidative stress occurs when the body’s antioxidant system is unable to prevent
reactive oxygen species from causing cellular damage, and over the last two dec-
ades, oxidative stress has received extensive attention from behavioural ecologists
investigating its links with life-history traits including reproduction, growth, and
immunity. Despite the breadth of studies examining oxidative stress in relation to
animal behaviour, life-history, and health, the role of oxidative stress in shaping
variation in the cognitive abilities of wild animals has been almost entirely
neglected. Here, I discuss how oxidative damage in the brain may affect cognitive
performance in the wild, both directly and by mediating links to other life-history
traits. First, I outline evidence that the brain is particularly susceptible to oxidative
stress and highlight medical studies demonstrating that oxidative damage impairs
cognitive ability in humans and other animals. I then explore how oxidative stress
may similarly affect cognition and behaviour in an ecological context, and the far-
reaching consequences this could have on wild animals’ lives, including their fit-
ness. Finally, I suggest methodological tools that could clarify the role of oxidative
stress in cognitive ecology and approaches that combine existing ecological assays
of behaviour and cognitive performance with bio-medical experimental designs.
While challenging to investigate, oxidative stress in the brains of wild animals may
have profound consequences for their cognition and health, which currently remain
almost entirely unexplored.

Introduction

Oxidative stress occurs when excessive cellular generation of
reactive oxygen species (ROS) damages the body’s cells and tis-
sues (Finkel & Holbrook, 2000), which can lead to tissue dys-
function and other diverse pathological effects at the organismal
level (Halliwell & Gutteridge, 2007). As such, an individual’s
capacity to prevent, minimize, and recover from oxidative stress
may be a key determinant of its fitness, and following a seminal
paper by von Schantz et al. (1999), there was a surge of interest
amongst behavioural ecologists in understanding the extent to
which oxidative stress underpins key life-history trade-offs.
While the field has made substantial progress elucidating the
role of oxidative stress in shaping variation in survival, ageing
rates, reproduction, growth, and immunity (Alonso-Alvarez
et al., 2007; Bize et al., 2008; Costantini, 2014; Costantini &
Møller, 2009; Cram, Blount, York, et al., 2015; Cram, Blount &
Young 2015; Dowling & Simmons, 2009; Metcalfe & Mon-
aghan, 2013; Monaghan et al., 2009; Speakman et al., 2015),
links between oxidative status and cognitive performance remain
virtually unexplored by ecologists.
The paucity of ecological studies investigating whether oxida-

tive stress can affect variation in cognition is surprising, because

bio-medical studies frequently invoke a role for oxidative stress
in both mild and severe cognitive impairment disorders. ROS
are known to mediate neuronal death in Alzheimer’s disease,
Parkinson’s disease, Huntington’s disease, amyotrophic lateral
sclerosis, and many other behavioural or cognitive disorders in
humans (Homo sapiens) (reviewed in Rego & Oliveira, 2003).
Clearly, in humans, elevated oxidative stress in the central ner-
vous system (CNS) can have life-altering consequences for
behaviour and diverse aspects of cognition, yet the extent to
which this occurs in animals, and whether levels of oxidative
stress seen in wild animals can alter animal behaviour and cog-
nition sub-lethally, are unknown.
In this article, I will summarize the key components in

oxidative stress physiology, and outline why the CNS is more
likely to suffer from oxidative damage than many other tissues
investigated in ecological studies of oxidative stress, as a result
of four aspects of the brain and neurons’ structure and func-
tion. I then suggest how oxidative stress in the brain may
affect animal behaviour and cognitive performance, based on
medical studies of how it does so in humans and laboratory
animal model species, and how altered cognition may impact
behaviour and fitness in the wild. Finally, I provide advice for
researchers aiming to develop studies to investigate links
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between oxidative stress in the CNS and animal behaviour and
cognition, by combining cognitive performance assays from
behavioural ecology with physiological measures and interven-
tions from medical studies.

Reactive oxygen species,
antioxidants, and oxidative stress

The extent to which an animal suffers from oxidative stress
depends on two factors. First, elevated generation of ROS is
associated with greater oxidative damage (Finkel & Hol-
brook, 2000). ROS are primarily generated as a by-product of
oxidative phosphorylation in the mitochondrion (Balaban
et al., 2005; Chance et al., 1979), but are also actively pro-
duced by a number of enzymes to serve crucial functions in
cell-signalling and immune defence (Finkel, 2003; Klebanoff
& Clark, 1978). ROS are highly reactive and unstable, and
unless neutralized, they rapidly trigger chain reactions resulting
in harmful alterations to DNA, proteins, and lipids (Ames
et al., 1991; Dr€oge, 2002).
The second factor that determines the extent of oxidative

stress is the body’s protection against ROS, and a complex
antioxidant system has evolved to prevent, delay, or repair
oxidative damage (Surai, 2002). Intracellular antioxidant
enzymes such as superoxide dismutase, glutathione peroxidase,
and catalase form the first line of defence, while a complex
group of non-enzymatic compounds further neutralize ROS.
Non-enzymatic antioxidants can be dietary (e.g., vitamin E) or
endogenous (e.g., glutathione). Overall, these components form
an integrated biochemical antioxidant network (Kurutas, 2016).
Under normal circumstances, the balance between ROS pro-

duction and antioxidant protection (“oxidative balance”) is
maintained such that oxidative damage is minimized. However,
when the production of ROS is elevated, or antioxidant
defences are reduced, ROS can overwhelm antioxidant protec-
tion and cause oxidative stress. Prolonged exposure to oxida-
tive stress can cause significant disruption to normal cell
function and has been implicated in impaired reproduction and
growth (in ecophysiological studies, Costantini et al., 2016,
Smith et al., 2016) and in the pathogenesis of a number of dis-
eases (in medical studies, Guzik Tomasz & Touyz
Rhian, 2017, Halliwell, 2006, Rego & Oliveira, 2003).

Susceptibility of the CNS to oxidative
stress

Bio-medical studies indicate that four aspects of the CNS’s
function and anatomy make it unusually vulnerable to oxida-
tive stress. First, the high oxygen consumption of the brain
increases the risk of ROS generation. In humans, the brain
constitutes only 2% of total body weight yet it is responsible
for over 25% of the total oxygen consumption (Mag-
istretti, 1999). While the human brain is disproportionately
large relative to those of other animals, oxygen consumption
per unit mass is similarly disproportionate in the brains of
other vertebrates (e.g., Kummitha et al., 2014). As such, mito-
chondrial activity (the primary source of ROS generation) is

likely to be exceptionally high in brain tissue of both humans
and other animals.
Second, CNS tissue contains an abundance of compounds

that are both vulnerable to, and can perpetuate, oxidative dam-
age. Lipids are particularly susceptible to peroxidation, and
lipid concentrations in the brain are second only to those in
adipose tissue, constituting up to 50% of brain dry weight
(Hamilton et al., 2007). Polyunsaturated fatty acids (PUFA) are
abundant in membrane phospholipids in the brain and nerve
cells, and they contain double bonds which give up hydrogen
ions during peroxidation. PUFA are particularly liable to lead
to oxidative stress because peroxidation creates unstable inter-
mediates, triggering a chain reaction that can subsequently
damage structures or cause cell death (Su et al., 2019). Termi-
nation of the lipid peroxidation chain reaction can only be
achieved when multiple ROS combine to form oxygen and a
non-radical, or by chain-breaking antioxidants such as vitamin
E (Reed, 2011). In addition to vulnerable PUFAs, the brain
contains high concentrations of redox-transition metals such as
copper and iron, which are crucial for neurotransmitter synthe-
sis and oxygen transport, respectively (Desai & Kaler, 2008;
Sheftel et al., 2012). These metals can catalyse the formation
of highly volatile hydroxyl ROS (Lovell et al., 1998), and
imbalances in copper and iron ions have been implicated in a
number of neurological disorders in humans, including Alzhei-
mer’s disease (Lovell et al., 1998).
Third, in addition to high oxygen consumption and an abun-

dance of compounds vulnerable to peroxidation, some compo-
nents of the antioxidant protection in brain tissue are
surprisingly weak. Glutathione is a primary antioxidant in other
tissues, and catalase is a ubiquitous antioxidant enzyme found
in all known organisms, yet the actions of both these antioxi-
dants are remarkably low in the brain (Zhao, 2005). Levels of
other antioxidants (e.g., vitamin C) appear to be increased in
some neurons in the brain (Rice & Russo-Menna, 1997), illus-
trating the complexity of the antioxidant system. Nonetheless,
unusually reduced levels of catalase are associated with
schizophrenia (Li et al., 2006), suggesting that where the
brain’s antioxidant capacity is not increased in-line with its
vulnerability to peroxidation and high ROS generation, cogni-
tive disorders can arise.
Finally, the ability of the CNS to recover from cell damage is

typically limited. In humans, the poor regenerative capacity of
central axons compared to other cells types (including peripheral
nerves) has been studied for over 100 years (Iismaa
et al., 2018). While there is substantial taxonomic variation in
the responses of damaged CNS cells, only amphibians exhibit
substantial neurogenic activity. By contrast, rats (Rattus norvegi-
cus domestica) with CNS injury show slower functional recov-
ery than primates, including humans (Friedli et al., 2015).
Across mammals and birds, limited neurogenesis, the absence of
axonal regeneration and a non-permissive repair environment in
the adult CNS mean that the ill-effects of cell injury or cell
death, whether from trauma, apoptosis, or oxidative damage, are
likely to accumulate rather than subside (Barker et al., 2018).
In summary, characteristics of the CNS anatomy and func-

tion make it disproportionately likely to face ROS challenge,
unusually vulnerable to peroxidation by ROS, and poorly
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equipped to minimize and recover from the resulting oxidative
damage (Fig. 1). While most of the studies are of human phys-
iology, the limited evidence from animals suggests these traits
are generalisable across taxa.

Bio-medical evidence linking
oxidative stress with cognitive
performance

Cognition comprises the mental mechanisms by which individ-
uals acquire and store information through learning and mem-
ory, appropriately process this information, and use it to
change behaviour (Shettleworth, 2009). As outlined above,
extensive reviews implicate oxidative stress in the pathologies
of neurodegenerative and cognitive disorders in human patients
(Rego & Oliveira, 2003). However, links between oxidative
status and cognition are also evident in patients with mild cog-
nitive impairments and mood disorders (Hassan et al., 2014;
Savage et al., 2021; Schiavone et al., 2015), and in healthy
individuals at the end of their lifespan (Glade, 2010; Hajjar
et al., 2018). The role of oxidative stress in shaping cognitive
abilities is therefore not limited to patients with rare, severe
disorders, and may similarly affect wild animals in an

ecologically-relevant way. In this section, I will outline the evi-
dence linking oxidative stress with cognition and behaviour,
principally from studies of rodent animal models.

Learning and memory

There is strong evidence from animal models that performance
in learning and memory tests is impaired by oxidative stress,
and improved by antioxidants. An early study in mice (Mus
musculus) found that age-related declines in learning and mem-
ory were associated with a substantial increase in two markers
of oxidative stress in the amygdala and hippocampus, regions
of the brain thought to be associated with memory and learn-
ing (Liu et al., 2003). This correlative evidence was strength-
ened by experimental increases in two antioxidant enzymes,
SOD and catalase, which almost entirely mitigated both the
oxidative damage and cognitive impairments in a dose-
dependent manner. Notably, the dose that most effectively
reduced oxidative damage also produced the best cognitive
performance (Liu et al., 2003). The finding that SOD over-
expression causes cognitive improvement has since been repli-
cated across contexts: at advanced ages, mice over-expressing
SOD exhibit improved spatial and working memory compared

Figure 1 Schematic illustrating the putative causes and consequences of oxidative stress in the CNS of a racoon (Procyon lotor) and other

vertebrate and invertebrate species. The high oxygen turnover, weak antioxidant protection, vulnerable lipids, and limited repair capacity of the

CNS (in particular the brain itself) make these tissues disproportionately likely to suffer oxidative stress. Bio-medical data invokes a role for oxida-

tive stress in the brain in a number of mild and severe cognitive impairments. In the wild, this could affect a range of behaviours. Those listed

on the right are amongst the behaviours most likely to impact fitness. Impaired foraging and altered social interactions have the capacity to fur-

ther increase CNS in the brain, by reducing antioxidant intake and elevating endocrine stress, respectively. Figure created with BioRender.com.
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to wild-type mice (Hu et al., 2006; Kamsler et al., 2006). A
similar study found that SOD over-expression allowed aged
mice to recall maze-training more than a year later, by which
time the performance of trained wild-type mice had regressed
to that of na€ıve individuals (Levin et al., 2005).
The positive effects of SOD on learning and memory appear

to generalize to several other antioxidants, and other species.
In rats, vitamin E deficiency leads to poor performance in a
maze test in early life, and supplementation can mitigate senes-
cent memory declines later in life (Fukui et al., 2001; Kolo-
sova et al., 2006). In some cases, combinations of antioxidants
can prevent cognitive impairment where individual treatments
do not. Aged mice given coenzyme Q and vitamin E per-
formed better than control mice and mice on either single sup-
plement, when faced with a suite of memory tests including
maze navigation and avoidance of a familiar unpleasant stimu-
lus (McDonald et al., 2005). Overall, the evidence indicates
that oxidative stress in the CNS reduces an individual’s ability
to uptake and retain information about its environment in an
adaptive manner. However, studies to-date are focused on
rodent models and are limited to artificial captive contexts, and
whether oxidative stress similarly affects learning and memory
in other taxa in the wild remains unknown.

Processing information in an unpredictable
or adverse environment

Animals that can successfully learn and recall information
about their physical environment must also be able to process,
integrate, and act on that information in an appropriate way,
regardless of whether their environment is stable or changing.
SOD-knockout mice showed wild-type performance in a learn-
ing trial, but were unable to complete a reverse-learning trial
(Logan et al., 2019), suggesting that oxidative stress may affect
behavioural flexibility in the face of a changing environment,
thought to be a key component of general intelligence
(Mikhalevich et al., 2017; Reader et al., 2011). Similarly, mice
with elevated oxidative stress explored a novel environment
less readily and with more errors, and also showed impaired
motor coordination and balance (Evola et al., 2010; Forster
et al., 1996; Navarro et al., 2002). Aged mice showing lipid
and DNA oxidation in the hippocampus and cerebral cortex
exhibited poor object recognition. In the same study, vitamin E
treatment reduced lipid peroxidation, inhibited cell death, and
led to recovery of cognitive abilities (Nagai et al., 2003).
Together, the results of these studies suggest that oxidative
stress in the CNS may impair a suite of cognitive processes,
including motor skills, behavioural flexibility, and inhibitory
control, culminating in an inability to respond appropriately to
the physical environment.
Evidence suggests that oxidative damage in the CNS is

equally as central in dysfunctional responses to the social envi-
ronment as it is the physical environment. Studies involving
experimental induction of stressful social environments in
mice, rats, and zebrafish (Danio rerio) have indicated that the
resulting anxiety-like behaviours and cognitive impairment are
likely mediated by neuronal damage and cell death caused by

oxidative stress (de Carvalho et al., 2019; Lehmann
et al., 2019; Patki et al., 2013; Solanki et al., 2017). Both
physiological deficits and behavioural symptoms can be ame-
liorated by antioxidant treatment (Lehmann et al., 2019;
Solanki et al., 2017). Given the varied ways in which anxiety-
like behaviours can manifest (Belzung & Griebel, 2001),
oxidative stress has the potential to mediate dysfunction across
a broad suite of behaviours in individuals facing adverse social
environments. Oxidative stress may also cause individuals to
respond inappropriately even in the absence of adverse social
conditions: selected lines of mice with weak antioxidant pro-
tection display enhanced aggression to conspecifics (Costantini
et al., 2008). In short, oxidative stress may both generate
social adversity and exacerbate its ill-effects.

Ecological evidence linking oxidative
stress with cognitive performance

Our understanding of links between oxidative stress and cog-
nition in non-model species under ecological conditions is
severely hampered by a shortage of studies. In many cases,
it is difficult to infer whether oxidative stress is the cause or
result of a given behaviour, because experimental manipula-
tions and transgenic lines are not feasible. Nonetheless, there
is growing evidence that links between oxidative stress
and behavioural and cognitive variation evident in bio-
medical studies are generalisable beyond humans and rodent
models.
Oxidative stress appears to similarly impair learning and

memory in non-rodent species. In zebrafish, oxidative damage
to proteins and lipids in the brain is associated with age-
related declines in problem-solving performance (Ruhl
et al., 2016). In the same species, exposure to pro-oxidant pol-
lution caused an upregulation in the expression of antioxidant
genes, but this was not sufficient to prevent substantial
increases in lipid peroxidation in the brain, which were associ-
ated with marked declines in the ability to socially learn a
predator escape response (Attaran et al., 2020). A comparative
analysis revealed that bird species with larger brains showed
lower circulating markers of oxidative damage, consistent the
hypothesis that larger brains must coevolve with an improved
resistance to oxidative stress (V�ag�asi et al., 2016).
Bio-medical evidence that increased oxidative stress can

cause changes in impulsivity, flexibility, and exploration in
rodent models is also supported by ecological studies of animal
personality. In alpine marmots (Marmota marmota), blue tits
(Cyanistes caeruleus), and greenfinches (Carduelis chloris),
greater antioxidant protection was associated with suites of
behavioural traits including exploration, boldness, reduced neo-
phobia, and higher activity levels (Arnold et al., 2015; Costan-
tini et al., 2012; Herborn et al., 2011). Together, these results
suggest that enhanced antioxidant protection may allow indi-
viduals to more rapidly explore novel environments and effec-
tively process and respond to the associated information.
Importantly, causation has not been in established in these
findings, and it remains unclear whether variation in oxidative
status leads to, or results from, variation in personality.
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How oxidative stress-impaired
cognition could affect behaviour and
fitness in the wild

In its broadest sense, cognition comprises animals’ abilities to
gather and retain information from their environment and use it
to decide what to do, and any significant impact of oxidative
stress on these abilities in the wild is likely to have widespread
consequences for their behaviour, life-history, and fitness.
Although no studies have directly investigated how cognitive
differences associated with oxidative stress affect performance in
the wild, extensive evidence suggests that variation in cognition
affects outcomes in profound ways, and even mild forms of the
cognitive impairments driven by oxidative stress outlined above
in bio-medical studies are likely to have wide-ranging conse-
quences for animals in the wild. In insects, studies demonstrate
that those that learn more effectively show enhanced foraging
efficiency (Raine & Chittka, 2008), resulting in more rapid
growth and better investment in offspring (Dukas & Ber-
nays, 2000; Papaj & Rausher, 1987). Learning capabilities simi-
larly enhance insects’ ability to locate other resources in the
environment including mates, shelter, and suitable locations for
egg-laying, as well as helping them avoid harmful substances
and predators (reviewed in Nieberding et al., 2018). Captive
whitetail damselfish (Pomacentrus chrysurus) that had learned
to fear predators showed greater survival after release than those
that had not learnt (Ferrari et al., 2015), and grey mouse lemurs
(Microcebus murinus) that demonstrated greater problem-solving
performance subsequently gained more weight during the harsh
dry season (Huebner et al., 2018). Finally, cognitive ability may
also be relevant to contests, by affecting participants’ abilities to
assess the contested resource, relate their competitive abilities to
those of their opponent, and develop fighting strategies (Reichert
& Quinn, 2017).
Cognitive abilities are likely to be particularly important in

the face of human-induced rapid environmental change, and an
animal’s ability to maintain a healthy CNS oxidative status
may govern, to some degree, their ability to learn to avoid
harmful human cues and profit from new opportunities.
Anthropogenic environmental change brings about an enor-
mous wave of novel cues, which animals must learn, remem-
ber, and respond to in an appropriate manner. The fitness
stakes of doing so are high, and animals must either adapt or
perish in the face of man-made structures in their natural habi-
tats, changing climates, and urbanization (Greggor et al., 2014;
Lee & Thornton, 2021). Links between oxidative stress and
cognition may be relevant to conservation strategies, if, for
example, pro-oxidant pollution impairs cognition and limits
animals’ abilities to learn to avoid harmful man-made environ-
ments (Greggor et al., 2014).

Oxidative stress as a mediator of life-
history trade-offs with cognition

While enhanced cognition can confer survival and fitness bene-
fits (Ashton et al., 2018; Hollis et al., 2011; Maille &
Schradin, 2016), the development and maintenance of the CNS

is costly and cognition appears to be traded-off with other life-
history traits. For example, selection-line experiments for brain
size or cognitive ability led to reduced longevity and fitness
(Burger et al., 2008; Kotrschal et al., 2013), and in humans,
cognitive performance is traded off with reproduction and
physical activity (Longman et al., 2017; Ziomkiewicz
et al., 2019). The role of oxidative stress in mediating life-
history trade-offs between growth, immunity, and reproduction
has been a major focus in eco-physiology for over a decade
(Monaghan et al., 2009; Speakman et al., 2015), yet oxidative
stress has not been invoked as a mediator of trade-offs involv-
ing cognition. Given the costs of maintaining the CNS, its sen-
sitivity to oxidative damage, and extensive evidence that CNS
oxidative stress impairs cognition, it is plausible that the costs
of enhanced cognition may arise (at least partially) because of
the damaging effects of elevated ROS production and the re-
allocation of limited antioxidants to the CNS. If oxidative
stress does mediate the costs of cognitive performance, the
trade-off could be partially alleviated by dietary antioxidants.
Individuals with greater cognitive abilities frequently have
enhanced foraging success (Hollis et al., 2011; Katsnelson
et al., 2011), raising the interesting possibility that costly
investment in cognition may, to some degree, pay for itself
(Catoni et al., 2008).

How to study oxidative stress and
cognition in ecology

How to measure oxidative status in the CNS

Oxidative status is a complex and multi-faceted physiological
state, and a comprehensive assessment of it is challenging to
achieve even before considering the difficulties presented by
studying the CNS of wild animals. As detailed elsewhere, mea-
surement of both oxidative damage products and antioxidant
protection provides a more comprehensive picture of an ani-
mal’s oxidative status (Costantini & Verhulst, 2009; H~orak &
Cohen, 2010). Given that destructive sampling is likely impos-
sible for studies of wild vertebrates, most studies will likely
rely on circulating markers of oxidative status. Next-generation
brain-imaging technology could offer the ability to non-
destructively estimate oxidative stress in a captive context
(Bela€ıch et al., 2017), but this technology may not yet be
applicable to ecological studies.
A key first step in the non-destructive estimation of CNS

oxidative stress in wild animals will be to test the extent to
which circulating markers of oxidative status are correlated
with those in the brain. Studies of both humans and animals
suggest some markers of oxidative status in blood are corre-
lated with those of multiple other tissue types, suggesting
that these markers may represent measures of systemic oxida-
tive status (Margaritelis et al., 2015; Veskoukis et al., 2009).
However, other markers vary across tissues, and while corre-
lations have been found between blood and skeletal muscle,
kidney, liver, and heart tissue, the CNS has thus far been
neglected in these studies and there is a clear need for fur-
ther work. Encouragingly, endocrinologists have identified
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correlations between hormone measures in the blood and the
brain, which have yielded important insights including, for
example, that blood drawn from the jugular vein is more
indicative of the brain physiology than blood from peripheral
veins (Newman et al., 2008). Furthermore, by comparing ster-
oid levels in blood entering the brain (in the carotid artery,
or other peripheral blood) with those in blood leaving the
brain (in the jugular vein), researchers were able to estimate
steroid hormone production in the brain (Newman &
Soma, 2011; Saldanha & Schlinger, 1997). Similar analysis of
jugular blood, either in isolation or contrasted with peripheral
blood, could provide valuable estimates of the generation of
oxidative damage products and the consumption of antioxi-
dants in the brain.
Urine samples provide a promising non-invasive method of

measuring oxidative status, which may permit studies that
would otherwise be impossible due to the difficulties of captur-
ing and blood-sampling some species. Urine sampling may be
the only option for such species, but it should also be consid-
ered even where blood-sampling is feasible, for welfare reasons
and because the stress of capture and restraint can lead to con-
founding changes in physiology. Indeed, laboratory studies
have measured oxidative status in urine for decades (Cathcart
et al., 1984), and some relevant markers can be more stable in
urine than in blood (Il’yasova et al., 2012). Two recent studies
successfully measured markers of oxidative status in urine
samples from wild primates, demonstrating the feasibility of
this approach in ecological studies under difficult conditions at
remote field sites (Melvin et al., 2022; Thompson et al., 2019).
Careful consideration is needed to measure (and, where neces-
sary, control for) environmental sample contamination, varia-
tion in urine concentration, diurnal fluctuations in markers, and
sample stability both before and after freezing (Melvin
et al., 2022). Furthermore, the degree to which urinary markers
reflect CNS physiology, or systemic oxidative status, requires
assessment. Such validation may not be possible in the focal
species, but could more easily be carried out on captive or lab-
oratory animals.
Invertebrates offer the opportunity to study links between

oxidative stress and cognition in greater detail, because animals
can be sacrificed. Furthermore, associations identified in inver-
tebrates may be generalisable in taxa where destructive sam-
pling is not possible, because aspects of cognition and
neurophysiology are evolutionarily conserved across inverte-
brates and vertebrates (Grillner & Robertson, 2016; Morand-
Ferron, 2017). Oxidative stress-mediated effects on cognition
could impact a variety of traits and behaviours in insects and
other invertebrates, including foraging, social interactions,
inter-species interactions, predator avoidance, and mate choice.
A number of species are emerging as model systems for study-
ing invertebrate cognition, including butterflies, bees, ants,
crickets, and flies (Gorostiza, 2018; Menzel, 2014; Toure
et al., 2020). Many of these same species have been used in
ecological studies of oxidative stress (Archer et al., 2013;
Beaulieu et al., 2015; Simone-Finstrom et al., 2016), yet to my
knowledge no study has investigated links between oxidative
stress and cognition in insects.

How to manipulate oxidative status

Experimental manipulation will be a key tool in clarifying any
causal links between variation in oxidative status and cognitive
performance. An animal’s oxidative status can be manipulated in
three ways. First, the administration of pro-oxidant compounds
can increase the oxidative burden and promote oxidative stress,
which would be predicted to reduce cognitive performance. I
advise against this approach, because the use of these compounds
in wild vertebrates is ethically problematic, and it is challenging
to evaluate the true cognitive ability of animals exhibiting gener-
alized sickness behaviours and low motivation.

Second, the administration of supplemental antioxidants can
reduce the natural occurrence of oxidative damage, potentially
enhancing CNS health and cognitive performance. The antioxi-
dant system is complex and inter-connected, and pharmacolog-
ical administration of a single antioxidant can, in some cases,
disrupt the system causing increased oxidative damage (Bowry
et al., 1992), so caution is advised when developing treat-
ments. Supplemental antioxidant treatments can either be gen-
eral or targeted to brain tissue. General treatments aim to
reduce the systemic oxidative burden on a study animal, with-
out necessarily directly altering CNS physiology. If such treat-
ment enhances cognitive abilities or otherwise affects
behaviour, further work would be needed to understand the
precise mechanism by which the treatment’s consequences
arise. Feasibly, improving overall oxidative status may permit
greater allocation of endogenous antioxidants to the CNS, by
relaxing life-history trade-offs mediated by oxidative status. A
number of general antioxidant treatments have been developed
and used in ecological studies, with results indicating a reduc-
tion in systemic oxidative stress, and these could readily be
applied to research questions investigating links between
oxidative balance and cognition or behaviour (Giraudeau
et al., 2013; Orledge et al., 2012; Sebastiano et al., 2018).
Alternatively, treatments could be developed that attempt to
improve oxidative status in the CNS directly. Initial bio-
medical studies found that the efficacy of antioxidant therapies
in treating severe neurodegenerative diseases in human patients
is limited (Neves Carvalho et al., 2017), but this may be
because the patients’ cognitive abilities were already severely
impaired. A critical consideration of antioxidant treatment is
the ability of the compound to cross the blood–brain barrier,
which some antioxidants can (reviewed in Pinto et al., 2020)
while others cannot (Gilgun-Sherki et al., 2001).

Third, and currently most promisingly, experimental treat-
ments can promote the expression of endogenous antioxidant
defences, rather than providing supplementary antioxidants. For
example, resveratrol, curcumin, and fumarates have been
shown to activate the transcription factor Nrf2 which regulates
a suite of endogenous antioxidant enzymes (Neves Carvalho
et al., 2017), resulting in enhanced antioxidant protection and
robust positive effects on patients with neurodegenerative dis-
orders (Bomprezzi, 2015; Calabrese et al., 2012). Similar treat-
ments effectively deployed in ecological studies would provide
an ideal way to test whether oxidative stress affects cognition
and behaviour.
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How to measure variation in cognitive
performance in the wild

Comprehensive guidance for assaying animals’ cognitive per-
formance has been provided elsewhere (Boogert et al., 2018),
but briefly, there are three pitfalls that studies should avoid.
First, single trials of cognitive performance offer relatively
unreliable information. Repeated measures provide a better rep-
resentation of the consistency of individual differences in cog-
nitive performance, which both strengthens estimates of
cognitive abilities, and can provide information about how
variable individuals are. Second, measures (even if repeated) of
performance at a single task are vulnerable to noise and the
risk that the task may in fact not measure meaningful variation
in cognitive performance. In addition to assaying an animal’s
ability to spontaneously solve a task (one of the most com-
monly used cognitive tests), studies should measure other
aspects of its cognition and behaviour including, for example,
learning, memory, impulsivity, and boldness. Finally, standard-
izing or statistically accounting for potential confounding influ-
ences of hunger, breeding status, and age will limit the effects
of non-cognitive factors.

How to design studies to test links between
oxidative status and cognition in ecology

I suggest three general approaches for tackling key unanswered
questions regarding the role of oxidative stress in shaping vari-
ation in cognition and behaviour (Box 1). First, longitudinal
studies of both cognitive performance and oxidative balance
reduce the effects of noise and thus represent a more accurate
picture of individuals’ health and cognition, and provide oppor-
tunities to relate within-individual changes in oxidative status
to changes in behaviour. However, I urge caution as correlative
studies may mask costs and trade-offs, because higher quality
individuals might be expected to show both stronger oxidative
status and enhanced cognitive performance. Second, experi-
mental manipulation of oxidative status, as discussed above,
will allow researchers to identify any causal links between
oxidative stress and performance at cognitive tasks both in
captivity and in the wild (Cauchoix et al., 2017), as well as

with social network position, reproductive success and survival.
Finally, studies of animals in their early-life (including the pre-
natal phase) provide an opportunity to test whether oxidative
stress in the developing CNS has organizational effects on
behaviour and cognition that continue later in life. Evidence
suggests that variation in conditions and physiology during the
early life can have disproportionate effects on later-life repro-
duction, survival, and oxidative physiology (Blount
et al., 2003; Lindstr€om, 1999), but the degree to which early-
life exposure to CNS oxidative stress affects subsequent cogni-
tive ability and later-life fates remains unknown.

Conclusion

Oxidative stress has received extensive attention from eco-
physiologists, but work linking it with life-history traits has thus
far all but neglected cognition. The brain is uniquely susceptible
to oxidative damage, which can be associated with both mild
and severe declines in cognitive abilities in humans and labora-
tory model species. Avoiding oxidative stress in the CNS may
also affect antioxidant budgets and thus mediate trade-offs with
other life-history traits. In the wild, such effects would have far-
reaching consequences for behaviour and fitness. Oxidative
stress could therefore provide a mechanistic basis for beha-
vioural and cognitive variation in the wild that can be studied
without complex genetic and neurological techniques.
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