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 More stochastic processes were found in active bacteria compared to total bacteria, 2 

 Soil nutrients influenced active bacterial community in aggregates. 3 

 Soil nutrients determined the assembly processes of active bacteria in aggregates. 4 

 Potential functions of active bacteria increased obviously in small macroaggregates. 5 
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Abstract:  23 

Numerous studies have found that soil microbiomes differ at the aggregate level 24 

providing a spatially heterogeneous habitat for microorganisms to develop. However, 25 

assembly processes and the functional profile of microbes at the aggregate level remain 26 

largely rudimentary, particularly for those active members in soil aggregates. In this 27 

study, we investigated the diversity, co-occurrence network, assembly process and 28 

predictive functional profile of active bacteria at the aggregate level using H2
18O-based 29 

DNA stable isotope probing (SIP) and 16S rRNA gene sequencing. The active 30 

microbial community belonged mostly of Proteobacteria and Actinobacteria, with a 31 

relative abundance of 55.32% and 28.12%, respectively. Assembly processes of 32 

community in the total and active bacteria were dominated by deterministic processes 33 

because of neutral pH and low soil organic matter. Furthermore, metabolism was the 34 

most important function in both Proteobacteria and Actinobacteria. After incubation, 35 

the diversity and relative abundance of active bacteria of certain phyla increased, such 36 

as Proteobacteria (50.70% to 59.95%), Gemmatimonadetes (2.63% to 4.11%), and 37 

Bacteroidetes (1.50% to 2.84%). In small macroaggregates (SMA: 0.25-2mm), the 38 

bacterial community and its assembly processes differed from that of other soil 39 

aggregates (MA: microaggregates, <0.25mm; LMA: large macroaggregates, 2-4mm) 40 

due to different aggregate characteristics. For functional profiles, the relative 41 

abundance of important functions, such as amino acid metabolism, signal transduction 42 

and cell motility, increased with incubation days and/or in SMA compared to other 43 

aggregates. This study provides robust evidence that nutrients of soil are not a 44 



negligible factor in terms of community of active bacteria and its assembly processes 45 

in soil aggregates, and suggests that dominant active bacteria (such as Proteobacteria) 46 

show important functional profiles in soil ecosystem. 47 

Key Words: active bacteria, aggregates, bacterial composition, assembly processes, 48 

functional profiles, stable isotope probing 49 

 50 

1.Introduction 51 

Microorganisms are fundamental components of soil ecosystems and contribute 52 

significantly to ecosystem processes (Bahram et al., 2018). Although thousands of taxa 53 

exist in soil ecosystems, a large proportion of this diversity is composed of dormant or 54 

inactive individuals (Del Giorgio and Gasol, 2008; Jones and Lennon, 2010; Luna et 55 

al., 2002; Roesch et al., 2007). In order to identify the active microbiome in soil, stable 56 

isotope probing (SIP) using 13CH4, 
13CO2, 

15NO2 and H2
18O has been successfully used 57 

(Aanderud and Lennon, 2011, Dumont and Hernández, 2019). Recently, studies have 58 

further revealed that most taxa in soils are metabolically active when incubated with 59 

H2
18O (Papp et al., 2018a, 2018b). Compared to 13C- and/or 15N-, H2

18O-based SIP has 60 

three advantages in linking microbial community with their function. Firstly, the 61 

addition of a single 18O atom increases the degree of physical separation between 62 

labelled and unlabelled fractions during isopycnic centrifugation, compared to a single 63 

13C or 15N atom (Aanderud and Lennon, 2011). Secondly, pervasive requirement of 64 

water for cellular maintenance and biosynthesis enables H2
18O-SIP to identify all active 65 

growing microorganisms (Schwartz, 2007). Finally, H2
18O can identify active microbes 66 



in soils without additional material that more closely maintains the situ conditions.  67 

Rice paddy ecosystems constitute the largest wetlands on Earth, and host diverse 68 

microbial communities responsible for many important ecosystem functions and 69 

services (Leff et al., 2004; Bardgett and Van Der Putten, 2014). Paddy soils are 70 

developed by long-term flooding, taking advantage of the inherent feature of H2
18O. 71 

The driving factors of assembly processes to microbial community in paddy soil have 72 

been discussed (Hou et al., 2020; Liu et al., 2020a), and both deterministic and 73 

stochastic processes have been found contributing to the assembly of species (Chase, 74 

2010; Ofiteru et al., 2010, Huber et al., 2020). The relative contributions of 75 

deterministic and stochastic processes in microbial community can be calculated by 76 

null and neutral models (Stegen et al., 2012, 2015; Vellend et al., 2014; Zhou and Ning, 77 

2017). The basis for neutral theory is stochastic processes, such as ecological drift, and 78 

dispersal (Hubbell, 2005). Under frequent flooding that facilitates dispersal, 79 

Stochasticity is an enduring strength in paddy soil microbial communities (Liu et al., 80 

2020a; Liu et al., 2021). Besides, environmental factors are found to mediate the 81 

deterministic processes based on niche-based theory (Tripathi et al., 2018). 82 

Determinism increased with agriculture development and corresponded with an 83 

increase in soil nutrients in paddy soil, especially for abundant bacterial 84 

subcommunities (Liu et al., 2020a; Hou et al., 2020). Liu et al. (2022a) find the 85 

assembly processes of active methane-oxidizing bacteria are governed by stochastic 86 

processes, while the assembly processes of paddy soil bacteria are found more 87 

determined compared to other soils (Li et al., 2021). Some researchers suggest that pH 88 



and organic matter content are the main regulators of bacterial community composition 89 

in soils (Kuramae et al., 2012; Fierer, 2017). Nutrient availability and physicochemical 90 

conditions change with aggregate size, further affecting bacterial communities (Briar et 91 

al., 2011; Jiang et al., 2017; Trivedi et al., 2017; Vos et al., 2013). Nevertheless, the 92 

understanding of assembly processes at different aggregates are unclear yet. 93 

The living environment of soil microorganisms is controlled by soil aggregates in 94 

different size and shape, and possess different characteristics (Lavelle et al., 2006). Soil 95 

characteristics are important factors affecting microbial diversity (Pacchioni et al., 96 

2014). Some studies showed that the higher contents of organic carbon and nutrients 97 

are associated to microaggregates (< 0.25 mm) (Yan et al., 2018), while others have 98 

found that as aggregates became larger, content of soil organic matter increased (Guo 99 

et al., 2008; Lin et al, 2019). The biomass and activity of microorganisms in 100 

microaggregates may be higher (<0.25mm) (Jiang et al, 2013; Zhang et al., 2013a), but 101 

they were also found to be higher in macroaggregates (>0.25mm) (Helgason et al., 2010; 102 

Li et al., 2015; Zhang et al., 2015). Liu et al. (2014) found that microbial biomass in 103 

the 1- to 2- mm aggregate fractions was the most active and contained the most nutrients 104 

in farmland. For functional profiles, many functional genes, such as carbon degradation, 105 

organic remediation and other categories have been detected in paddy soils. Metabolism 106 

genes, such as amino acid metabolism and carbohydrate metabolism were predicted 107 

more compared to other functional genes (Barq et al., 2021). Revealing patterns of these 108 

genes will facilitate understanding and prediction of relative functional processes 109 

performed by them (Bai et al., 2013; Zhang et al., 2013b). Since soil microorganisms 110 



are deeply engaged in biogeochemical processes of nutrients and soil fertility, the 111 

functions of different community structures are different (Bai et al., 2017; Philippot et 112 

al., 2013; Ofek-Lalzar et al., 2014). Although many studies have found that the diversity 113 

of bacteria among soil aggregates are different, the active bacterial community and the 114 

functional profiles are still unknown. 115 

In this study, we explore the active bacterial community, assembly processes and 116 

functional profiles at the soil aggregate level by using H2
18O SIP 16S ribosomal RNA 117 

(rRNA) gene sequencing. Based on previous studies, we hypothesize that (1) the 118 

assembly processes of active bacteria are more stochastic compared to total bacteria; 119 

and (2) the diversity of active bacteria is higher and contains higher relative abundance 120 

of important functional profiles in SMA compared to other soil aggregates. 121 

 122 

2. Materials and methods 123 

2.1. Soil sampling and physicochemical properties 124 

Soil samples were taken from a paddy field at Changxing, Zhejiang province 125 

(31°00′ N, 119°55′ E). The climate of this region is subtropical, with an annual 126 

precipitation of 1309 mm and an annual temperature of 15.6 °C. Soil samples from 0 127 

to 20 cm depth were taken on 14 December 2014 at five random locations with three 128 

plots (2×2m) using a soil core sampling. The five soil cores from plots were mixed to 129 

form a single composite sample, and stored at 4 °C through a 4-mm sieve until use. 130 

Some soils were air-dried and their physicochemical properties were analyzed. The 131 

physicochemical properties of soil were estimated according to methods described 132 



previously and were provided in Table S1 (Supplemental materials, Table. S1) (Li et 133 

al., 2019; Liu et al., 2019a).  134 

2.2. H2
18O-labelled incubation and aggregate fractionation 135 

H2
18O labelled microcosms were setup as described previously (Schwartz, 2007; 136 

Papp et al., 2018a) with minor modifications. Briefly, H2
18O (99 atom%, Sigma Aldrich, 137 

St. Louis, MO) labelled water (18O) and natural-abundance water (unlabelled control, 138 

16O) were constructed for microcosm incubation. Soils were incubated with H2
16O was 139 

as control at 25 °C in the dark with 100% maximum water-holding capacity of H2
18O 140 

for 4 days in triplicate. Microcosm uses 120-ml serum bottles containing wet soil (~ 6 141 

g dry soil), and then sealed with rubber stoppers and aluminum caps.  142 

Sampling took place in triplicate microcosms at day-2 and day-4, while day-0 was 143 

used as control. Soils were prepared under sterile conditions for soil aggregate 144 

separation using the previously described "optimal moisture" method to standardize soil 145 

water content and minimize disturbance to microbial communities (Bach et al., 2018). 146 

Soils were dried for eight hours to reach a stable moisture content (∼10%), and the 147 

fllowing aggregate fractions were separated by shaking through two sieves (2000 μm 148 

and 250 μm): large macroaggregates (> 2000 μm, LMA), small macroaggregates (250-149 

2000 μm, SMA) and microaggregates (< 250 μm, MA), avoiding submersion in water 150 

(Jiang et al., 2014). Soils were vibrated up and down 60 times every 2 min to go through 151 

2000 μm sieve. The soils passed through the 2000 μm sieve was transferred to the next 152 

smaller sized sieve (250 μm) for further screening, resulting in three aggregate fractions. 153 

The aggregate fractions were stored at -80 °C for DNA extraction (Fig. S1). 154 



2.3. Nucleic acid extraction and SIP fractionation 155 

FastDNA SPIN kit for soil (MP Biomedicals; Solon, OH, USA) was used to extract 156 

DNA from 0.5g soil. Nanodrop® ND-2000 UV-vis spectrophotometer (NanoDrop 157 

Technologies, Wilmington, DE, USA) were used to estimate the concentrations and 158 

quality of DNA. 159 

Bulk DNA extracted from soil aggregates under H2
18O and H2

16O treatments as 160 

described by Liu et al. (2019b) was centrifuged by density gradients and modified on a 161 

small scale. DNA was blended with gradient buffer CsCl solution in Beckman ultra-162 

centrifuge tubes. After centrifugation at 177,000 gav for 44 h at 20 °C in a Vti65.2 163 

vertical rotor (Beckman Coulter, Palo Alto, CA, USA), the DNA was divided into 14 164 

equal fractions (Zhang et al., 2019a). The isolated DNA was purified and dissolved in 165 

TE buffer. 166 

2.4. Quantitative PCR and sequencing processes 167 

To measure the growth and efficiency of 18O incorporation into the bacterial 168 

community genomic DNA, quantitative PCR (qPCR) was performed on a 169 

LightCycler® 480II (Roche, Germany) for each buoyant density of DNA gradient 170 

fraction based on 16S rRNA genes. According to the 16S rRNA genes, the primer pair 171 

515F and 806R was used for the qPCR of bacteria (Walters et al., 2016). The 172 

amplification efficiencies of all genes ranged from 89 to 105%, and R values ranged 173 

from 0.992 to 0.999. 174 

Bacterial 16S rRNA genes were amplified in bulk DNA and in DNA gradient 175 

fractions foe each buoyant density from soil aggregates with H2
18O treatments using 176 



primer pair 515F and 806R with 12bp barcode (Walters et al., 2016). Sequence libraries 177 

were generated using NEBNext® Ultra™ DNA Library Prep Kit for Illumina® (New 178 

England Biolabs, MA, USA) according to the manufacturer recommendations. The 179 

libraries were sequenced on an IlluminaHiseq2500 Platform (Illumina, San Diego, CA, 180 

USA) by Guangdong Magigene Biotechnology Co. Ltd. (Guangzhou, China). 181 

Raw fastq files were quality-filtered using Trimmomatic (REF) and merged using 182 

FLASH (REF) according to the Liu et al. (2020b) described previously. Operational 183 

taxonomic units (OTUs) were clustered using UPARSE (REF, version 10 184 

http://drive5.com/uparse/) with a similarity cutoff of 97%. The most frequently 185 

occurring sequences were extracted as representative sequences for each OTU and the 186 

Silva (https://www.arb-silva.de/) database was used to filter taxonomic annotations. 187 

The sequencing reads of the 16S rRNA genes were stored in the Genome Sequence 188 

Archive (GSA, China) database with the accession number CRA005780. 189 

2.5. Statistical analysis 190 

All data analysis was performed in the R environment (v3.6.3; http://www.r-191 

project.org) (Hamilton and Ferry, 2018). 192 

To identify OTUs associated with 18O assimilation, the R package DESeq2 was 193 

used to analyze. The abundance of differential genes with negative binomial 194 

distributions in high-density gradient fractions based on H2
18O labelled treatments 195 

relative to corresponding gradient fractions of non-labelled control [16O] (Love et al., 196 

2014; Kong et al., 2019). Log2-fold changes above zero with padj value (FDR-adjusted 197 

P-value) of less than 10% were selected as 18O labelled OTUs. Scatter plots were198 

http://drive5.com/uparse/
http://www.r-project.org/
http://www.r-project.org/


performed to visualize differentially labelled OTUs in heavy DNA fractions using the 199 

plotMA function. 200 

Diversity indexes include Shannon, Simpson, Richness were estimated using 201 

vegan package (Dixon, 2003). The differences of beta diversity were calculated by 202 

Principal coordinate analysis (PCoA) with the Bray-Curtis distance of bacterial 203 

community profiles with vegan and ggplot2 packages (Lozupone et al., 2011), and two-204 

way permutational multivariate analysis of variance (PERMANOVA) was used to 205 

quantitatively measure the effects of the incubation time and aggregate treatment. 206 

OTUs were also used to evaluate the main species phylum among aggregates and 207 

time of incubation, and to calculate the relative abundance of the top ten abundant 208 

phylum by using amplicon and reshape2 packages. To ascertain the changes of 209 

interactions between bacterial groups as the incubation days and soil aggregates 210 

changed, co-occurrence networks among bacteria were described using the igraph 211 

package and the Gephi 0.9.2 platform (Bastian et al., 2009; Chen et al., 2020). Setting 212 

the filtering threshold of spearman correlation coefficients >0.6 and p-values <0.05, the 213 

significance of edges between nodes were determined. Prior to network analysis, excess 214 

OTUs were removed when they were present in less than ~90% of samples or when 215 

their relative abundance was less than 0.01% (Liu et al., 2022b). The network was 216 

further used to calculate topology property parameters. According to the nodes and 217 

links in the network, the main phylum species in the network are determined. 218 

To assess the assembly processes of bacteria in days with different aggregates and 219 

to assess responses to environmental factors, we used the normalized stochastic ratio 220 



(NST) to evaluate the underlying mechanisms of bacterial community assembly (Ning 221 

et al., 2019).  NST was assessed based on different distance metrics and different null 222 

model algorithms [with 50% as the boundary, more stochastic (>50%) or more 223 

deterministic (<50%)]. NST indexes, such as cao, mGower, gower and binomial were 224 

calculated based on Jaccard matrix, which is suggested to estimate the stochastic effects 225 

in community assembly (Ning et al., 2019). Statistically significant differences in alpha 226 

diversity indices, NST indices among incubation days and soil aggregates were 227 

determined by two-way analysis of variance (ANOVA), accompanied with least 228 

significant difference (LSD) test for multiple comparisons. Moreover, if the observed 229 

variances were heterogeneous, the group variance was calculated by nonparametric 230 

Kruskal-Wallis test. 231 

To compare different functional profiles in different incubation days and soil 232 

aggregates, we used Tax4Fun to predict functional profiles of bacterial community 233 

from 16S rRNA gene sequences (Wemheuer et al, 2020; Ahauer et al, 2015). Data were 234 

then compared with KEGG (Kyoto Encyclopedia of Genes and Genomes) functional 235 

database at level 2, and the biological metabolic pathways could be significantly 236 

identified. After calculating the relative abundance of each functional profile, we used 237 

ANOVA as well as by LSD test for multiple comparisons among soil aggregates and 238 

days for functional profiles, printing those which were significantly different among 239 

incubation days and soil aggregates (p<0.05). By using Z scores, we printed functional 240 

profiles in the Tidyverse and reshape2 packages. Correlation analysis among main 241 

species phylum in network and functional profiles of 18O labelled soil were performed 242 



by using Z scores based on Pearson correlations. 243 

 244 

3．Results 245 

3.1. Labelling of active bacteria with H2
18O 246 

On day 2 and 4, DNA obtained from H2
16O and H2

18O microcosms was separated 247 

by isopycnic ultra-centrifugation to isolate 18O-labelled DNA from unlabelled DNA. 248 

Compared to that of H2
16O control microcosms, 16S rRNA gene copy numbers buoyant 249 

density gradient throughout DNA from H2
18O treatment showed shift to relative higher 250 

buoyant density, with detection of 18O-DNA at buoyant density of 1.723-1.744 g ml-1 251 

(the 6th – 8th fractions), irrespective of the incubation time (Fig. 1). Thus, 6th, 7th and 252 

8th fractions were selected as representatives of heavy DNA fractions (18O-DNA) for 253 

16S rRNA gene sequencing individually. 254 

3.2. Diversity and taxonomic composition of active bacteria in soil aggregates 255 

For alpha diversity, Shannon and Simpson indexes of total bacteria showed 256 

significant differences across aggregate fractions (p < 0.001, p<0.001) or incubation 257 

time (p = 0.029, p = 0.003), while not for integrated effects of aggregates and incubation 258 

time (p = 0.473, p = 0.144) (Fig. 2a, c). Shannon and Simpson diversity of active 259 

bacteria also differed among aggregate fractions (p = 0.016, p = 0.008) (Fig. 2b, d). For 260 

example, Shannon and Simpson indexes of SMA are shown to be separated from other 261 

aggregates in active bacteria, especially for day 2. Compared to total bacteria, aggregate 262 

fractions and incubation days showed clear synergies on Shannon and Simpson indexes 263 

of active bacteria (p = 0.038, p = 0.014). Richness index of total bacteria also differed 264 



in incubation days (p = 0.001) (Fig. S2). The Simpson index of active bacteria showed 265 

significant differences (p = 0.001) between incubation time while no significant 266 

difference (p = 0.139) was observed for Shannon indices (Fig. 2). 267 

In terms of beta diversity, 49.56% of the variation in total bacterial community and 268 

80.62% of variation in the active bacteria were explained by the first two axes of the 269 

PCoA (Fig. 2e, f). In total bacterial community, two-way PERMANOVA showed that 270 

incubation time explained 44.15% of variation in bacterial community while aggregates 271 

only explained ~9.04% of that (Fig. 2e). Interestingly, aggregates explained 19.56% 272 

variation of active bacterial community, close to the extent of incubation time (26.42%) 273 

(Fig. 2f).  274 

Taxonomic composition of total and labelled bacteria is calculated based on the 275 

OTUs. The bacterial community of total bacteria were dominated (OTUs>50000) by 276 

Proteobacteria (38.41%), Chloroflexi (14.99%), and Acidobacteria (9.45%), while the 277 

labelled bacterial community were dominated (OTUs>50000) by Proteobacteria 278 

(54.80%) and Actinobacteria (28.57%) (Fig. 3, Fig. S3). The relative abundance of 279 

Proteobacteria (54.80%) and Actinobacteria (28.57%) increased in active bacterial 280 

communities compared to those in the total communities (38.41% and 5.81%, 281 

respectively) (Fig. 3, Fig. S3). Additionally, the distribution of bacterial diversity 282 

indicated changes under aggregates and incubation time in labelled community than 283 

that of total community (Fig. 3, Fig. S3). In active bacteria, the relative abundance of 284 

Proteobacteria increases with incubation time (49.70% at day 2 to 60.03% at day 4), 285 

while that of Actinobacteria decreases (33.05% at day 2 to 22.21% at day 4). The 286 



relative abundance of other taxa (except Proteobacteria and Actinobacteria) in SMA 287 

(26.48%) are much higher than that of MA (8.65%) and LMA (11.07%) isolated from 288 

2-day incubation soil in active bacteria, while similar result is also found in 4-day 289 

incubation soil (Fig. 3b, S3b). 290 

3.3. The network and assembly processes of active bacteria in soil aggregates 291 

The network of bacteria at OTU level between total and active bacterial 292 

community were different (Fig. 4). Among pairs of bacterial phylum, more of them 293 

were clustered in the active than in the total bacterial community (Fig. 4). The total 294 

number of nodes, the number of links, the average degree and the modularity of the 295 

active bacterial community were higher than the total bacterial community (Table S2). 296 

In active bacterial community, there were more negative correlations compared to that 297 

of total bacterial community (Table S2). Together, networks of the labelled community 298 

showed more correlations and a compact network structure than in the total community. 299 

The NST explained the changes in ecological community assembly processes at 300 

incubation time and aggregate scales (Fig. 5). In total bacterial community, the value is 301 

less than 50%, suggesting that deterministic processes dominate bacterial community 302 

assembly. Incubation days significantly influence ecological community assembly 303 

processes in total bacterial community (p < 0.05) (Fig. 5a, c; Fig. S4c). However, 304 

aggregates show more significant effects on ecological community assembly processes 305 

of active bacterial community (p < 0.05) than incubation time (Fig. 5b, d; Fig. S3d). 306 

For instance, NST of SMA is different from NST of MA and LMA in active bacterial 307 

community. Especially at day 2, the ecological community assembly processes of SMA 308 



in active bacterial community is dominated by stochastic processes. Synergies of days 309 

and aggregates influenced the ecological community assembly processes in active 310 

bacterial community (p < 0.05) (Fig. 5b, d). 311 

3.4. Predictive functional profiles of active bacteria 312 

The prediction map showed the results with significant differences among 313 

aggregates (p < 0.05). Predicted KEGG pathways at level 1 for both total (73.22%) and 314 

active bacteria (61.87%) among aggregates are dominated by metabolism. However, 315 

compared to total bacteria, functional profiles in active bacteria are significantly 316 

different among aggregates (Fig. 6). 317 

Among active bacteria, the functional profiles of the labelled soil bacterial 318 

community on day 4 changed significantly compared to day 2 (p < 0.05) (Fig. S5). 319 

Functional genes related to metabolism decreased (62.22% to 61.52%), except for 320 

amino acid metabolism. However, the relative abundance of other important functional 321 

profiles increased, such as for cell motility and signal transduction (Fig. S5). For 322 

aggregates, the function of SMA differed from MA and LMA, in which amino acid 323 

metabolism, cell motility, cell growth and death, and bacterial infectious disease were 324 

the key functions (Fig. 6b). Correlations between major taxa and function genes also 325 

differed in SMA and other aggregates (Fig. S6). 326 

 327 

4. Discussion 328 

4.1. Identification of active bacteria with H2
18O  329 

In this study, compared to total bacterial community, the composition, network 330 



interactions, assembly processes and functional profiles in the active bacterial 331 

community was different (Fig. 3, Fig. 4, Fig. 5, Fig. 6). The results of this study are 332 

similar to that of previous study in which 18O labelled bacteria community showed 333 

different patterns and more significant random phylogenetic distribution compared to 334 

total bacteria (Coskun et al., 2019). Proportion of active bacterial community increased 335 

when compared to total bacteria, especially in Proteobacteria (38.58% in total bacteria 336 

to 55.32% in active bacteria) and Actinobacteria (5.81% in total bacteria to 28.12% in 337 

active bacteria) (Fig. 3, Fig. S3). Dominance of Proteobacteria and Actinobacteria in 338 

paddy soil bacteria has been reported previously (Wu et al., 2011; Itoh et al., 2013). The 339 

obvious habitat preference of soil bacterial families is closely related to their respiratory 340 

characteristics, and these results are attributed to respiratory characteristics of different 341 

bacteria (Shen et al., 2021). Compared to aerobic bacteria belonging of Acidobacteria 342 

and Bacteroidetes, Proteobacteria and Actinobacteria grow quickly under flooded 343 

condition due to their anaerobic characteristic (Wang et al., 2012). In addition, the 344 

results showed in this study also indicate that H2
18O based DNA-SIP is an ideal 345 

approach to identify active microbes in soils without requirement of addition substrate 346 

other than water (Fig. 1). 347 

Network analysis showed that there were more nodes, OTUs links, average degree, 348 

and modularity in active bacterial community compared to that in total bacteria (Fig. 4, 349 

Table S2), indicating more intensive interactions in active bacteria community. Positive 350 

links were dominated in all networks, indicating that microbial synergy plays an 351 

important role in bacterial community (Zhou et al, 2020). However, the proportion of 352 



negative correlations of active bacteria is nearly twice (28.02%) than that of total 353 

bacterial community (14.83%). As the negative links among nodes could be attributed 354 

to competition and amensalism, these results suggest stronger competitive interaction 355 

among active microbes (Faust and Raes, 2012). This might be due to heterotrophic 356 

lifestyle and strong competition of Proteobacteria and Actinobacteria with other 357 

bacteria (Dai et al., 2021). Additionally, assembly processes of bacterial community in 358 

paddy fields are dominated by deterministic processes (Fig. 5). Deterministic processes 359 

of abundant taxa have also been found in paddy soils (Hou et al., 2020). It is suggested 360 

that soil pH and organic matter are deterministic factors driving assembly processes of 361 

bacterial community (Tripathi et al., 2018; Dini Andreote et al., 2015). Higher soil pH 362 

(>6.7) also leads to deterministic assembly of abundant community (Jiao and Lu, 2020). 363 

In this study, deterministic processes may be attributed to the neutral pH (6.9 ± 0.08) 364 

and low soil organic matter (13.5 ± 0.01 g kg-1). Interestingly, stochasticity is more 365 

important in governing soil active microbes than the total bacteria (Fig. 5). Flooding 366 

conditions promoted by hydrologic mixing presumably enhanced the ability of active 367 

microorganisms to migrate across geographical areas, which might explain why the 368 

stochastic processes in active bacteria were more important than in total bacteria (Liu 369 

et al., 2020a; Liu et al., 2022a). Besides, Jiao et al. (2021) have recently showed that 370 

the richness of microbiome is closely linked to the community. In this study, the 371 

stochastic processes increased with decreasing bacterial richness from total bacteria to 372 

labelled bacteria (Fig. S2). This result may be attributed by stochastic assembly 373 

processes induce synergy of microorganisms (Jiao et al., 2020), which may lead to more 374 



species competition with species richness reduction (Grime, 1973; Rajaniemi, 2002). 375 

For functional profiles, predicted KEGG pathways at level 1 for both total (73.22%) 376 

and active bacteria (61.87%) are dominated by metabolism, and the relative abundance 377 

of other functional genes, such as environmental information processing, in active 378 

bacteria (19.39%) increased compared to that of total bacteria (11.22%) (Fig. 6). Similar 379 

results have also confirmed that metabolic genes are dominant in anaerobic 380 

environment (Lesniewski et al., 2012), and other studies have revealed that members 381 

of the phylum Proteobacteria are key drivers of the important metabolic activities in 382 

soil ecosystem (Salam and Obayori, 2019). The active community is more closely 383 

related to functional profiles than total community (Bastida et al., 2016). Therefore, the 384 

higher proportion of Proteobacteria and Actinobacteria, the more competitive 385 

interactions, more stochasticity in assembly processes and more different functional 386 

profiles are observed in 18O labelled bacteria compared to total bacteria. 387 

4.2. Succession of active microbes and functional profiles along incubation time 388 

Previous studies have shown succession of bacterial community in paddy field, 389 

for instance, Ding et al. (2017) showed succession of diversity and functional profiles 390 

of active bacteria along incubation time. Furthermore, Yang et al. (2019) found bacterial 391 

diversity was higher in flooded areas than in control areas, whereas other studies found 392 

that soil bacterial diversity was lower in saturated water(Zhou et al., 2002; Kozdrój and 393 

van Elsas, 2000). In our study, the diversity increases from day 2 to day 4 in active 394 

bacteria (Fig. 2). It is found that some bacteria, which can survive periods of hypoxia, 395 

would wake up from inactive states and thrive under flooded conditions (Berney et al., 396 



2014; Furtak et al., 2020; Fredrickson et al., 2008). Furthermore, flooded environments 397 

promote active bacterial colonization in soil, and bacteria actively use alternative 398 

electron acceptors for respiration to manage hypoxic to improve survival (Eggleston et 399 

al., 2015; Engelhardt et al., 2018; Yan et al., 2015). Similar to species diversity, the 400 

composition of active bacteria also differed with incubation time (Fig. 3b, Fig. S3b). It 401 

is known that flooded conditions can increase abundance of some communities, such 402 

as Proteobacteria, and Bacteroidetes (Afzal et al., 2019; de León-Lorenzana et al., 2017; 403 

Zhang et al., 2019b). In our study, the relative abundance of Actinobacteria decreased 404 

from day 2 (33.9%) to day 4 (22.34%), while Proteobacteria increases from day 2 405 

(50.7%) to day 4 (59.95%) (Fig. 3). The variation of Actinobacteria and Proteobacteria 406 

in active bacteria may be due to different reproductive strategies. Actinobacteria are 407 

ubiquitous and usually predominant in arid habitats. Their drought tolerance may stem 408 

from their unique life-cycle characteristics (Lebre et al., 2017), including mycelium 409 

growth (Jones and Elliot, 2017) and arthrospore formation (Kämpfer et al., 2014). In 410 

contrast, Proteobacteria are more adapted to flooding condition and more competitive 411 

under such circumstances, and a similar trend has been observed in wet soil compared 412 

to dry soil (Na et al., 2019). Additionally, the relative abundance of Gemmatimonadetes 413 

increases from 2.63% in day 2 to 4.11% in day 4 (Fig. 3b, Fig. S3b). Growth of 414 

Gemmatimonadetes could be attributed to its ability to low-oxygen conditions 415 

(Debruyn et al., 2011). 416 

As for functional genes of active microbes, after 4 days of incubation, the 417 

functional profiles changed significantly compared to that in day 2 (Fig. S5). Functional 418 



genes related to metabolism still dominated even though it decreased from 62.22% in 419 

day 2 to 61.52% in day 4. For metabolism, amino acid metabolism increases, while 420 

others, such as carbohydrate metabolism decreases (Fig. S5). Studies from Salam (2019) 421 

have found that amino acid metabolism is mainly predicted by Proteobacteria. More 422 

amino acid metabolism functional genes are found with incubation, which is paralleled 423 

by the increase in relative abundance of Proteobacteria (Fig. S3b; Fig.S5). For 424 

carbohydrate metabolism, these results can be attributed to the submergence condition, 425 

which decreases carbohydrate metabolism of bacteria in soil (Moreno-Espindola et al., 426 

2018; Ding et al., 2019). Less metabolism function is predicted in day 4 compared to 427 

that in day 2, which could be due to the decrease of Actinobacteria, as Actinobacteria 428 

are reported to contribute to the production of secondary metabolites (Yan et al., 2021) 429 

(Fig. S3b). Furthermore, some studies showed that flooding increases nutrient 430 

availability in soil (Oorschot et al., 2000; Shekiffu and Semoka, 2007). Qiu et al. (2020) 431 

found that the addition of organic matter activates connections and closes relationships 432 

among microorganisms with incubation progressed. We assume that flooded soils have 433 

similar influence on active bacterial community, making more nutrients available, 434 

hence the relative abundance of many KEGG pathways increases, including 435 

environmental information processing, cellular processes, organismal systems and 436 

human diseases. For example, the relative abundance of cell motility and signal 437 

transduction of day 4 in active bacteria shows a significant increase compared to day 2 438 

(Fig. S5). The relative abundance of active Bacteroidetes increases twice from 1.49% 439 

in day 2 to 2.84% in day 4 (Fig. 3b, Fig. S3b). Bacteroidetes is highly effective at 440 



secreting carbohydrate-active enzymes and immobilizing them to cell surface, and it is 441 

closely related to quickly slide across solid surfaces to increase cell motility (Larsbrink 442 

and Mckee, 2020). Signal transduction of soil microbiomes is promoted by 443 

environmental stresses (Sun et al., 2020), thus incubations in day 4 showed a higher 444 

relative abundance of signal transduction compared to day 2. In brief, as diversity of 445 

active bacteria increases, composition become complexed from day 2 to day 4, and the 446 

relative abundance of many functional profiles also increase. A large proportion of 447 

functional gene species are significantly altered due to changes in biodiversity and 448 

composition (Jung et al, 2016). 449 

4.3. Diversity, assembly processes and functional profiles of active bacteria at 450 

aggregate level 451 

Some researchers found the bacterial among different aggregates were different 452 

(Bailey et al., 2013; Trivedi et al.,2017). Especially for active bacteria, it can be showed 453 

that there were more differences among aggregates compared to total bacteria (Fig. 2; 454 

4). Diversity of bacteria tends to increase with increasing aggregate size (Lupwayi et 455 

al., 2001), while bacterial biomass and diversity are higher in small aggregates with 456 

more stable structure (Hemandez and López-Hernández, 2002; Ling et al., 2014). In 457 

our study, the diversity of active bacteria in SMA are higher than MA and LMA, and 458 

nearly all active bacteria were more enriched in SMA compared to MA and LMA (Fig. 459 

2, Fig. 3). These results can be attributed due to SMA provides more nutrients compared 460 

to MA and LMA (Wang et al., 2014; Ling et al., 2014). It is found that soil organic 461 

matter and total nitrogen increase as aggregates become larger (from MA to SMA) (Lin 462 



et al., 2019; Zheng et al., 2021). LMA is poor in nutrient, while SMA shows the opposite 463 

(Tang et al., 2022; Zhang et al., 2021). While nutrient contents of aggregates lead to 464 

differences in bacteria diversity, it has also crucial effects on assembly processes. Liao 465 

et al. (2022) found that bacterial assembly processes in macro- and micro-aggregates 466 

are mainly affected by total carbon and soil organic carbon. Better nutrient situation in 467 

SMA compared to MA and LMA may make stochastic processes dominate the assembly 468 

(Fig. 4) (Lin et al., 2019; Tang et al., 2022; Zheng et al., 2021). In our study, we found 469 

that active bacteria in SMA are dominated by stochasticity, while active bacteria in 470 

other aggregates showed more deterministic processes (Fig. 4). Our study is consistent 471 

with previous reports showing that environment of restrictive nutrient is dominated by 472 

deterministic processes, while the stochastic processes are more likely to be dominant 473 

in the environment with nutrient redundancy (Chase, 2010; Wang et al., 2015). It is also 474 

worth noting that nutrients and structure of aggregates were not measured in this study 475 

as the amount of soil samples obtained were insufficient after aggregate fractionation. 476 

Differentiated communities among aggregates in active bacteria suggest different 477 

community functions. The functional prediction map shows that function of SMA 478 

differed from MA and LMA. Amino acid metabolism, cell motility, cell growth and 479 

death, and bacterial infectious disease are key functions found in 18O labelled SMA (Fig. 480 

6b). Functional genes of amino acid metabolism in SMA showed a relatively high 481 

abundance compared to those in MA and LMA, in which Proteobacteria dominates 482 

(Salam and Obayori, 2019). The results from our study, also showed a significant 483 

positive correlation of Proteobacteria in SMA to amino acid metabolism than that in 484 



MA and LMA (Fig. S6). As the most important phylum (Fig. 3; Fig. S3), Proteobacteria 485 

determined cell motility genes by means of flagella movement in active bacteria 486 

(Anderson et al., 2010; Beeby, 2015). Compared to that in MA (58.99%) and LMA 487 

(59.61%), the relative abundance of Proteobacteria in SMA (61.25%) was higher at day 488 

4 (Fig. 3, Fig. S3). Hence the relative abundance of cell motility genes is higher in SMA 489 

compared to MA and LMA. For cell growth and death, SMA provides more nutrients 490 

compared to MA and LMA (Lin et al., 2019; Tang et al., 2022; Zhang et al., 2021). 491 

Therefore, the relative abundance of cell growth and death genes are higher in SMA 492 

compared to MA and LMA. Proteobacteria also contributes to bacterial infectious 493 

diseases, for example, Salmonella and Vibrio of Proteobacteria will lead to infectious 494 

diseases. Besides, symbiotic relationship between Gemma-proteobacteria and 495 

invertebrates like nematode as found in previous research (Williams et al., 2010), 496 

suggesting its interaction with parasitic, thus the relative high abundance of bacterial 497 

infectious disease is found in SMA other than in MA and/or SMA. Together, the 498 

diversity and composition of active bacteria in SMA is more complex, assembly 499 

processes in SMA are more deterministic, and higher relative abundance of key 500 

functional profiles are predicted. 501 

 502 

5. Conclusion 503 

We applied H2
18O based DNA-SIP to identify active bacterial community in paddy 504 

soil aggregates. The results showed that higher microbial diversity, different 505 

composition, more complexed network and more stochastic processes were shown in 506 



active bacteria compared to those in total bacteria. Active bacterial community and 507 

functional profiles altered significantly along the incubation days and soil aggregates. 508 

Compared to other soil aggregates with poorer nutrient, the assembly processes of 509 

active bacteria in SMA were more stochastic with richer nutrient. In summary, this 510 

research improves our understanding of 18O labelled active bacteria community and 511 

their assembly processes among soil aggregates in paddy field. 512 
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Figure Legends  934 

Fig. 1. Distribution of the relative abundance of 16S rRNA genes in aggregates (MA, 935 

SMA, LMA) retrieved from the 100% maximum water-holding capacity of H2
18O 936 

and 100% maximum water-holding capacity of H2
16O treatments in the 2-day and 937 

4-day DNA-SIP microcosms. 938 

Fig. 2. Diversity measurements of Shannon (a, b), Simpson (c, d) index of total and 18O 939 

labelled bacteria in the different aggregates and incubation days treatments. 940 

Different letters and asterisks indicate significant differences (P < 0.05) based on 941 

two-way of variance (ANOVA) as well as by LSD test for multiple comparisons. 942 

Composition measurements of principal coordinate analysis (PCoA) based on 943 

Bray-Curtis distances. Each point of total bacteria (e) and labelled bacteria (f) 944 

corresponds to a different sample shaped by days and colored by aggregates. The 945 

percentage of variation indicated in each axis corresponds to the fraction of the 946 

total variance explained by the projection. Two-way permutational multivariate 947 

analysis of variance (PERMANOVA) was employed to quantitatively assess the 948 

effects of the day and aggregate treatment. Single, double and three asterisks 949 

represent significance at P < 0.05, P < 0.01, and P < 0.001 respectively. 950 

Fig. 3. Relative abundance of the soil bacterial community composition in both (a) total 951 

bacteria and (b) active bacteria among days and aggregates. 952 

Fig. 4. Network analysis revealing the associations among 16S rRNA OTUs in (a) Total 953 

MA, (b) Total SMA, (c) Total LMA, (d) Labelled MA, (e) Labelled SMA, (f) 954 

Labelled LMA. Colored nodes signify corresponding OTUs assigned to major 955 



phylum. The size of nodes represents the number of links between the OTUs and 956 

others. Red and blue lines represent the positive and negative links between OTUs.  957 

Fig. 5. Boxplot of (a) NSTcao and (c) NSTmGower values of total bacteria in nine 958 

treatments and boxplot of (b) NSTcao and (d) NSTmGower values of labelled bacteria 959 

in six treatments. Different letters and asterisks indicate significant differences (P 960 

< 0.05) based on two-way analysis of variance (ANOVA) as well as by LSD test 961 

for multiple comparisons. 962 

Fig. 6. The functional profiles are divided into day 2 and day 4 with significant 963 

differences showed by letters among aggregates (ANOVA). The result of 964 

functional profiles that Z scores is showed in the heatmap. The relative abundance 965 

of function profiles and the significant differences are printed on the histogram. 966 

(a) The main functional differences in total bacteria are metabolism, cellular 967 

processes, organismal systems, human diseases and genetic information 968 

processing, (b) while in labelled bacteria are metabolism, environmental 969 

information processing, cellular processes, organismal systems and human 970 

diseases. 971 
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