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 21 

Abstract: 22 

Climate change increases fire-favorable weather in forests, but fire trends are also affected 23 
by multiple other controlling factors that are difficult to untangle. Here, we use machine learning 24 
to systematically group forest ecoregions into twelve global forest pyromes, with each showing 25 
distinct sensitivities to climatic, human, and vegetation controls. This delineation revealed that 26 
rapidly increasing forest fire emissions in extratropical pyromes, linked to climate change, offset 27 
declining emissions in tropical pyromes during 2001-2023. Annual emissions tripled in one 28 
extratropical pyrome due to increases in fire-favorable weather, compounded by increased forest 29 
cover and productivity. This contributed to a 60% increase in forest fire carbon emissions from 30 
forest ecoregions globally. Our results highlight the increasing vulnerability of forests and their 31 
carbon stocks to fire disturbance under climate change. 32 

 33 

One-Sentence Summary: Extratropical forest fire emissions are increasing as climate change 34 
promotes fire-favorable weather and greening. 35 

 36 
Fire is a natural ecosystem disturbance that has shaped the global distribution of Earth's 37 

forests and controlled carbon (C) storage in vegetation and soils over geological time (1–3). 38 
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Nonetheless, anthropogenic climate change has contributed to an increase in fire-favorable 1 
weather conditions globally (4–7) and these enhanced risks have translated into increased burned 2 
area (BA) and fire C emissions in some forested regions during the past two decades or longer (6–3 
12). Expanding land use or historic fire management policies have variably interacted with the 4 
effects of climate change to amplify forest fire activity and emissions (13, 14). The increases in 5 
forest fire C emissions observed regionally contrasts with declines in the global savannahs (8, 15). 6 

A series of highly anomalous episodes of extreme forest fire C emissions have recently 7 
punctuated longer-term trends (11, 16–19). During the 2019-2020 bushfire season in Australia, the 8 
area burned by fires was over double the previous record since 1930, and fire C emissions were 9 
also greater than in any other year since 2003 (9, 17). In 2021, a new record was set for pan-boreal 10 
fire C emissions amidst a water deficit spanning both Eurasia and North America (16). In the 2023 11 
fire season, fire C emissions from Canadian boreal forests were over nine times the 2001-2022 12 
average (19). 13 

The increased occurrence of fire, and particularly extreme fires, threatens the functioning 14 
and resilience of some forests as well as their ecosystem services, including C storage (13, 20, 21). 15 
The recovery of C stocks in vegetation and organic soils following forest fires can take decades to 16 
centuries, and so increases in annual fire C emissions and extreme emissions events lead to a 17 
lasting deficit of terrestrial C storage (8, 22–24). Increased fire C emissions can thus reduce the 18 
capacity of global forests to absorb C from the atmosphere, posing a challenge for achieving 19 
climate targets. For example, increased fire activity in boreal North America alone is projected to 20 
result in net C losses equivalent to 0.3-3% of the remaining C budget necessary to limit global 21 
warming to 1.5°C (25). 22 

Beyond their effects on C storage, extreme wildfires also cause major disruption or 23 
irreversible loss to society, including deaths, evacuations, reduced air quality, pressures on 24 
healthcare systems, and economic losses (26–30). Further, major declines in biodiversity have also 25 
been recorded in the wake of several extreme fire events and many of Earth’s most threatened 26 
species are afflicted by an altered fire regime (1, 20). Recent extreme wildfire seasons across the 27 
globe have demonstrated the power of the most extreme wildfires to affect both the environment 28 
and society. 29 

One of the drivers of change in forest fire potential is anthropogenic climate change, which 30 
is causing more frequent and extreme periods of drought and fire-favorable weather, often referred 31 
to as fire weather (4, 6, 31). Increased hot and dry conditions create periods of low fuel moisture, 32 
promoting wildfire potential in ecosystems where ample stocks of fuels (vegetation biomass and 33 
organic soils) are available, notably in forests (4, 10, 31). Increased lightning frequency under 34 
climate change has also exacerbated the ignition of forest fires in some locations, particularly in 35 
ignition-limited forests of the high latitudes (32–34). Increased atmospheric instability has been 36 
linked to more erratic and extreme wildfire behavior that enhances fire spread and intensity and 37 
challenges the potential for firefighters to suppress fire (35, 36). Several attribution studies have 38 
shown that climate change raised the likelihood of extreme fire weather conditions during a range 39 
of recent extreme wildfire seasons (5, 37, 38).  40 

Alongside climatic factors, forest fire extent is controlled by various in situ human 41 
activities and by the ecological traits and productivity of vegetation (6, 39–42). People influence 42 
patterns of forest fire in numerous ways, such as by using fire for forest clearing and land use (43), 43 
causing unwanted ignitions (accidental or arson) (44), suppressing wildfires via firefighting (45), 44 
managing stocks of fuel on the landscape (46, 47), increasing forest edge length through 45 
fragmentation (48, 49), or inadvertently amplifying fuel stocks by excluding fire from forests 46 
where it is a central element of a functioning ecosystem (14, 50). The composition of forest 47 
ecosystems with species that have developed fire-adapted evolutionary traits, such as canopy 48 
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structure, self-pruning, and leaf waxiness, also influence fire dynamics (e.g. crowning potential) 1 
and rates of spread (51, 52). In addition, the productivity of vegetation during the growing season 2 
influences fuel availability during subsequent dry seasons (40, 53, 54).  3 

While climatic, human, and vegetation factors all affect patterns of fire in forests, the 4 
prominence of each control varies regionally (6, 40, 55, 56). The relationships between climate 5 
and fire are generally modulated by non-climatic factors, and likewise non-climatic drivers of fire 6 
often depend on the episodes of fire-favorable weather. Hence, it has proven remarkably 7 
challenging to identify the forest regions where fires are most sensitive to climate change or other 8 
facets of environmental change (39, 55, 56). To identify the world regions where responses to 9 
future climate change or other environmental stressors are comparatively strong or weak, further 10 
study of the temporal and spatial relationships between fire and a comprehensive set of fire controls 11 
is required. 12 

Here, we used the k-means clustering algorithm to group 414 forest ecoregions of the 13 
World (57) into twelve forest pyromes (Fig. 1), within which forest burned area (BA) (58) shares 14 
a common set of relationships with climatic, vegetation, and human controls (Fig. 2, Fig. S1-S2; 15 
see Methods). Having isolated the pyromes with a distinctive strong sensitivity to climatic 16 
controls, we analysed trends in annual forest BA (58) and fire C emissions (59) during the period 17 
2001-2023 and evaluated their connection with trends in key climate variables. 18 

We used a comprehensive set of fire controls to distinguish the pyromes. The climatic 19 
controls included fire weather (4, 60, 61), soil moisture (62), atmospheric instability (represented 20 
by the continuous Haines index) (35, 36), and lightning frequency (34, 63). The vegetation controls 21 
included potential fuel stocks related to land cover (52), vegetation productivity during the 22 
growing season (represented by the normalized difference vegetation index) (64, 65), and forest 23 
continuity (represented by forest area density) (49). The human controls included population 24 
density (15, 66), cropland and pasture cover (15, 67, 68), and road density (69). Terrain roughness 25 
(70) is also included for its potential to affect fire behavior (71). These variables have each shown 26 
power to explain spatial or temporal variability in BA in at least some world regions (see 27 
Methods).  28 

The concept of the pyrome was first introduced by Archibald et al. (72) as a 29 
pyrogeographical counterpart to the biogeographical concept of the biome. Biomes are defined not 30 
only by their observable biological characteristics but also by the climatic and other environmental 31 
controls that cause particular biological characteristics to arise. In past work, pyromes have been 32 
characterized only by observable fire characteristics such as size, duration, intensity, and frequency 33 
(72–75). Here, we expand the pyrome concept to include a systematic grouping of ecoregions 34 
based on the strength of climatic and other environmental controls on fire. This novel approach 35 
enriches the pyrome concept with a dimension that mirrors the complexity inherent in the study of 36 
biomes, while also providing critical insights into the varying sensitivity of pyromes to different 37 
facets of global change. Delineating the global forest pyromes revealed a rapid increase in 38 
emissions from extratropical forest pyromes that exceeded declining emissions from tropical forest 39 
pyromes during 2001-2023. This increase demonstrates that climatic controls on forest fire are 40 
overwhelming human controls in global-scale emissions trends.  41 
 42 

https://www.zotero.org/google-docs/?4fppBN
https://www.zotero.org/google-docs/?4fppBN
https://www.zotero.org/google-docs/?4fppBN
https://www.zotero.org/google-docs/?4fppBN
https://www.zotero.org/google-docs/?4fppBN
https://www.zotero.org/google-docs/?wK4zuv
https://www.zotero.org/google-docs/?wK4zuv
https://www.zotero.org/google-docs/?wK4zuv
https://www.zotero.org/google-docs/?wK4zuv
https://www.zotero.org/google-docs/?wK4zuv
https://www.zotero.org/google-docs/?wK4zuv
https://www.zotero.org/google-docs/?wK4zuv
https://www.zotero.org/google-docs/?VLy0VN
https://www.zotero.org/google-docs/?VLy0VN
https://www.zotero.org/google-docs/?VLy0VN
https://www.zotero.org/google-docs/?VLy0VN
https://www.zotero.org/google-docs/?VLy0VN
https://www.zotero.org/google-docs/?VLy0VN
https://www.zotero.org/google-docs/?VLy0VN
https://www.zotero.org/google-docs/?VLy0VN
https://www.zotero.org/google-docs/?VLy0VN
https://www.zotero.org/google-docs/?GMUimi
https://www.zotero.org/google-docs/?GMUimi
https://www.zotero.org/google-docs/?GMUimi
https://www.zotero.org/google-docs/?GMUimi
https://www.zotero.org/google-docs/?GMUimi
https://www.zotero.org/google-docs/?GMUimi
https://www.zotero.org/google-docs/?GMUimi
https://www.zotero.org/google-docs/?mvhX2s
https://www.zotero.org/google-docs/?mvhX2s
https://www.zotero.org/google-docs/?mvhX2s
https://www.zotero.org/google-docs/?VO6HMV
https://www.zotero.org/google-docs/?VO6HMV
https://www.zotero.org/google-docs/?VO6HMV
https://www.zotero.org/google-docs/?loimHo
https://www.zotero.org/google-docs/?loimHo
https://www.zotero.org/google-docs/?loimHo
https://www.zotero.org/google-docs/?kAESgJ
https://www.zotero.org/google-docs/?kAESgJ
https://www.zotero.org/google-docs/?kAESgJ
https://www.zotero.org/google-docs/?OIvyaT
https://www.zotero.org/google-docs/?OIvyaT
https://www.zotero.org/google-docs/?OIvyaT
https://www.zotero.org/google-docs/?OIvyaT
https://www.zotero.org/google-docs/?OIvyaT
https://www.zotero.org/google-docs/?OIvyaT
https://www.zotero.org/google-docs/?OIvyaT
https://www.zotero.org/google-docs/?FWpPy7
https://www.zotero.org/google-docs/?FWpPy7
https://www.zotero.org/google-docs/?FWpPy7
https://www.zotero.org/google-docs/?yObvnY
https://www.zotero.org/google-docs/?yObvnY
https://www.zotero.org/google-docs/?yObvnY
https://www.zotero.org/google-docs/?yObvnY
https://www.zotero.org/google-docs/?yObvnY
https://www.zotero.org/google-docs/?ZejS5d
https://www.zotero.org/google-docs/?ZejS5d
https://www.zotero.org/google-docs/?ZejS5d
https://www.zotero.org/google-docs/?ZejS5d
https://www.zotero.org/google-docs/?ZejS5d
https://www.zotero.org/google-docs/?sbRqEr
https://www.zotero.org/google-docs/?sbRqEr
https://www.zotero.org/google-docs/?sbRqEr
https://www.zotero.org/google-docs/?1NoJpB
https://www.zotero.org/google-docs/?1NoJpB
https://www.zotero.org/google-docs/?1NoJpB
https://www.zotero.org/google-docs/?1NoJpB
https://www.zotero.org/google-docs/?1NoJpB
https://www.zotero.org/google-docs/?ZfCogO
https://www.zotero.org/google-docs/?ZfCogO
https://www.zotero.org/google-docs/?ZfCogO
https://www.zotero.org/google-docs/?MLNZkG
https://www.zotero.org/google-docs/?MLNZkG
https://www.zotero.org/google-docs/?MLNZkG
https://www.zotero.org/google-docs/?MLNZkG
https://www.zotero.org/google-docs/?MLNZkG
https://www.zotero.org/google-docs/?cWogbN
https://www.zotero.org/google-docs/?cWogbN
https://www.zotero.org/google-docs/?cWogbN
https://www.zotero.org/google-docs/?cWogbN
https://www.zotero.org/google-docs/?cWogbN
https://www.zotero.org/google-docs/?cWogbN
https://www.zotero.org/google-docs/?cWogbN
https://www.zotero.org/google-docs/?vwcoHE
https://www.zotero.org/google-docs/?vwcoHE
https://www.zotero.org/google-docs/?vwcoHE
https://www.zotero.org/google-docs/?RmnRM6
https://www.zotero.org/google-docs/?RmnRM6
https://www.zotero.org/google-docs/?RmnRM6
https://www.zotero.org/google-docs/?I0hsV1
https://www.zotero.org/google-docs/?I0hsV1
https://www.zotero.org/google-docs/?I0hsV1
https://www.zotero.org/google-docs/?WUUgAq
https://www.zotero.org/google-docs/?WUUgAq
https://www.zotero.org/google-docs/?WUUgAq
https://www.zotero.org/google-docs/?6mh6bX
https://www.zotero.org/google-docs/?6mh6bX
https://www.zotero.org/google-docs/?6mh6bX
https://www.zotero.org/google-docs/?6mh6bX
https://www.zotero.org/google-docs/?6mh6bX


Submitted Manuscript: Confidential 
Template revised November 2022 

4 
 

 1 
Figure 1:  World map of the twelve forest pyromes and a summary of their tendencies to 2 
associate with biomes and ecoregion types. 414 forest ecoregions are attributed to one pyrome 3 
using k-means clustering, which identifies ecoregions sharing a similar set of correlations between 4 
burned area (BA) and 14 predictor variables (Fig. 2 and Fig. S1-S2). Grey areas are not included 5 
in the analysis, either because they are not within forest biomes (light grey) or because fire is 6 
extremely rare (the mean annual fraction of forest area burned by fire is below 0.01%; dark grey). 7 
Fig. S21 shows an alternative mapping of the pyromes for the ecoregions that were clustered most 8 
ambiguously. The table shows the most common biome associations for each pyrome and the most 9 
common text substrings (n-grams, up to 3 words) that appear in the ecoregion descriptions, based 10 
on the ecoregion descriptions in the Terrestrial Ecoregions of the World dataset (ref. (57)). 11 
 12 
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Results 1 

Twelve global forest pyromes emerged from the clustering analysis (Fig. 1), and this 2 
grouping revealed large increases in forest fire C emissions in extratropical forest pyromes. By 3 
contrast, forest fire C emissions declined in tropical and subtropical forest pyromes. 4 

Geography and Traits of the Pyromes 5 

To characterize the key controls on fire in each pyrome, we examined the correlations 6 
between forest BA and each variable representing the fire controls amongst the constituent 7 
ecoregions of the pyromes (Fig. 2, Fig. S1-S2). We consider the mean correlations within each 8 
pyrome to indicate sensitivity of the forest BA response to each control, and we consider these 9 
relationships to be a trait of a pyrome when at least 75 percent of the constituent ecoregions display 10 
a correlation of the same sign (Fig. 2, Fig. S1-S2). Significant differences in correlation were 11 
observed in 58% of pairwise comparisons, indicating a robust grouping of the ecoregions into 12 
pyromes with distinctive fire controls (see Methods). A more complete description of pyrome 13 
characteristics is provided in Supplementary Text 2. 14 

Pyromes in Extratropical Forests 15 

Pyromes ExTropF1 and ExTropF2 encompass the North American and Eurasian boreal 16 
forests and some temperate and high-altitude tropical forests (Fig. 1). Forest BA in these pyromes 17 
correlates positively with fire weather and atmospheric instability, negatively with seasonal soil 18 
moisture, and shows no correlation with population density, agricultural land cover, and road 19 
density (Fig. 2, Fig. S1-S2). ExTropF1, more common in North America, has BA strongly 20 
correlated with lightning flash density, indicating lightning as a key ignition source (33, 34). In 21 
ExTropF2, more common in Eurasia, BA correlates with NDVI from the prior growing season, 22 
suggesting that previous climatic conditions impacting vegetation growth and the production of 23 
fine fuels bear an influence on subsequent fire extent (76, 77). Forest fire extent in pyromes 24 
ExTropF1 and ExTropF2 is governed by different combinations of climatic factors affecting fuel 25 
moisture, fuel growth, and natural ignition. 26 

Pyromes ExTropF3 and ExTropF4 include forests of Scandinavia, western Russia, and 27 
certain areas of North American, Europe, and China (Fig. 1). While BA in these pyromes correlates 28 
with fire weather, the strength of correlations is lower than in ExTropF1 or ExTropF2 and 29 
especially weak in ExTropF4 (Fig. 2, Fig. S1-S2). Additionally, in ExTropF4, no correlation with 30 
soil moisture further indicates that fires are also relatively insensitive to water deficits (Fig. 2, Fig. 31 
S1-S2). Weak correlations with most variables in ExTropF3 and ExTropF4 likely relate to 32 
infrequent burning in these stable humid climates (Fig. S8, Table S1), which challenges diagnoses 33 
of controls on fire over a two-decade time period. 34 

 35 

Pyromes in Tropical Forests 36 

TropF1 and TropF2 are widespread in the tropical deforestation zones of Amazonia, 37 
Congo, and equatorial southeast Asia (Fig. 1). Forest BA correlates positively with population 38 
density, road density, agricultural land cover, and fire weather, and negatively with forest 39 
continuity and soil moisture (Fig. 2, Fig. S1-S2). These traits characterize a region with widespread  40 
deforestation and degradation fires that, particularly in TropF2, are facilitated by dry conditions 41 
(48, 78, 79). TropF1, primarily in Amazonia and the Congo, shows a strong correlation with 42 
pasture cover (Fig. S1), reflecting cattle ranching-driven deforestation (80, 81). TropF2, found in 43 

https://www.zotero.org/google-docs/?iVbXd1
https://www.zotero.org/google-docs/?iVbXd1
https://www.zotero.org/google-docs/?iVbXd1
https://www.zotero.org/google-docs/?iVbXd1
https://www.zotero.org/google-docs/?iVbXd1
https://www.zotero.org/google-docs/?LEIMZw
https://www.zotero.org/google-docs/?LEIMZw
https://www.zotero.org/google-docs/?LEIMZw
https://www.zotero.org/google-docs/?LEIMZw
https://www.zotero.org/google-docs/?LEIMZw
https://www.zotero.org/google-docs/?a1zSMz
https://www.zotero.org/google-docs/?a1zSMz
https://www.zotero.org/google-docs/?a1zSMz
https://www.zotero.org/google-docs/?a1zSMz
https://www.zotero.org/google-docs/?a1zSMz
https://www.zotero.org/google-docs/?a1zSMz
https://www.zotero.org/google-docs/?a1zSMz
https://www.zotero.org/google-docs/?d6jdlh
https://www.zotero.org/google-docs/?d6jdlh
https://www.zotero.org/google-docs/?d6jdlh
https://www.zotero.org/google-docs/?d6jdlh
https://www.zotero.org/google-docs/?d6jdlh


Submitted Manuscript: Confidential 
Template revised November 2022 

6 
 

Sumatra, Kalimantan, Borneo, Guianas, and southeast Russia, has stronger correlations with soil 1 
moisture and weaker with population, roads, and pasture cover than TropF1, highlighting 2 
particularly prominent role of drought in facilitating peak fire activity (79, 82, 83). Several forest 3 
ecoregions in southeast Russia, a global hotspot of extratropical forest loss through fire linked to 4 
forestry operations (83), are also grouped with TropF2 (Fig. 1). 5 

TropF3 characteristically maps to older, heavily-fragmented deforestation frontiers in 6 
Brazil, Mexico, West Africa, and some southeast Asian islands (Fig. 1) (84, 85). Here, forest BA 7 
correlates positively with fire weather and negatively with soil moisture but not with population 8 
or agriculture density, most likely caused by saturation of ignition sources in these highly 9 
populated regions during fire-favorable weather conditions. 10 

 11 

Pyromes in Subtropical Forests 12 

SubTropF1, SubTropF2, and SubTropF3 span subtropical or dry tropical forest ecoregions 13 
in regions such as northern Colombia, Madagascar, northeast India, southeast Asia, Sri Lanka, 14 
East Africa, and drier parts of the Brazilian atlantic forests  (Fig. 1). BA consistently correlates 15 
with forest continuity and fuel stocks in these pyromes, in addition to fire weather (Fig. 2, Fig. S1-16 
S2). This indicates a tendency for greater fire extent when meteorological conditions allow in 17 
locations where fuel production is greater or flammable natural landscapes are less fragmented 18 
(15, 49). In SubTropF1 and SubTropF2, negative correlations with population density, cropland 19 
cover, and road density, particularly strong in SubTropF2, suggest reduced fire activity in the areas 20 
most fragmented by human activity. Lightning frequency often correlates with BA in SubTropF2, 21 
pointing towards a greater frequency of natural ignitions.  22 

In contrast to SubTropF1 and SubTropF2, BA in SubTropF3 shows no consistent 23 
correlation with population density, cropland cover, or road density, indicating that natural factors 24 
(e.g. topographic and hydrological) are more important controls on fuel loads and continuity than 25 
human factors. SubTropF3 also lacks strong correlations between BA and soil moisture, indicating 26 
sensitivity to short-term fire-prone weather rather than seasonal moisture deficits (15, 49).  27 

 28 

Pyromes in Zones of Fire Suppression 29 

The final two pyromes, SupZoF1 and SupZoF2, span tropical, subtropical, and temperate 30 
forest ecoregions and are common in regions with significant fire management efforts, such as the 31 
southeast US, western US, southeast and western Australia, and parts of Iberia (Fig. 1). In these 32 
pyromes, forest BA negatively correlates with population density, road density, and agriculture, 33 
indicating reduced fire extent in proximity to human activities (46, 86). Positive correlations with 34 
forest continuity and fire spread suggests that continuous forests facilitate fire spread, especially 35 
in topographically complex areas with fewer human activities (46, 87). 36 

Fire suppression, fuel load management, and community programs are in place to reduce 37 
fire extent in these areas (46, 88). Despite these efforts, fires can still occur during fire-prone 38 
weather (37, 89), and stronger positive correlations with fire weather and negative correlations 39 
with soil moisture in SupZoF2 suggest that climatic factors bear stronger influence on forest BA 40 
than in SupZoF1 (Fig. 2). In SupZoF1, forest BA often (but inconsistently) correlates with 41 
lightning frequency, highlighting the role of natural ignitions, an effect that is seen most strongly 42 
in southeast Australia (90) (Fig. S2). Additionally, SupZoF1 shows a correlation between forest 43 
BA and vegetation productivity from the prior growing season, emphasizing the role of fuel 44 
production as a driver of fire extent (9, 42, 91). 45 
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 1 

 2 
Figure 2: Variation in the relationship between forest burned area (BA) and nine predictors 3 
across the global forest pyromes. The violins plot the kernel density distribution of correlations 4 
values (spearman’s ρ) for each predictor amongst the constituent ecoregions of each pyrome. 5 
White dots mark the median correlation value for the ecoregions of a pyrome, black line ranges 6 
mark the interquartile range, and open diamonds mark the mean value. See Methods for a 7 
description of all correlation analyses and the motivation for including each predictor. 8 
Distributions are shown for all predictor variables in Fig. S1. Correlations are mapped for each 9 
forest ecoregion in Fig. S2.  10 
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Increased Fire Emissions in Extratropical Forest Pyromes 1 

Forest fire C emissions increased in several of the pyromes between 2001 and 2023 (Fig. 2 
3), however the most striking trend was a 194% increase in fire C emissions in pyrome ExTropF2 3 
(+116 Tg C year-1; Table S1). This large increase in fire C emissions was driven by a 167% 4 
increase in forest BA (+35 thousand km2 year-1) and a 58% increase in C combustion rate (C 5 
emissions per unit BA; Fig. 3, Table S1). Increased forest BA was a widespread feature of the 6 
ecoregions in pyrome ExTropF2, with over half showing significant increases and fewer than 5% 7 
showing significant decreases (Fig. 4, Fig. S11). Consequently, the increases in forest fire C 8 
emissions were also widespread. For example, forest fire C emissions increased significantly in 9 
parts of Russia (east and northeast Siberian taiga), Europe (e.g. Balkan mixed forests, Pindus and 10 
Dinaric mountains mixed forests), western North America (e.g. Sierra Nevada forests, North-11 
Central Rockies forests, Muskwa-Slave lake forests, Fraser Plateau and Basin complex, and 12 
Northwest Territories taiga), Chile (Valdivian temperate forests), and China (Northeast China 13 
Plain deciduous forests and Hengduan Mountains conifer forests; Fig. 4).  14 

The increases in forest BA and fire C emissions in pyrome ExTropF2 align with changes 15 
in the variables that control temporal variability in forest BA. During 2001-2023, the annual 16 
number of extreme fire weather days increased by 5 days per year on average across the ecoregions 17 
of the pyrome (Fig. 4, Fig. S14, Table S2). The average soil moisture content during the fire 18 
season reduced by around 3% on average, in contrast to other extratropical pyromes where soil 19 
moisture either increased or remained level (Fig. 4, Fig. S15, Table S2). Mean NDVI during the 20 
growing season also increased at a rate comparable to the other extratropical pyromes (Fig. 4, Fig. 21 
S16, Table S2). These trends were also widespread and consistent. For example, over half of the 22 
ecoregions in pyrome ExTropF2 synchronously experienced an increase in extreme fire weather 23 
days, increased NDVI and reduced soil moisture, with over one-quarter of ecoregions showing 24 
significant changes for all three variables. This evidence suggests that the trends in forest BA and 25 
fire C emissions in pyrome ExTropF2 were driven by changes in the climate of the fire season, 26 
which led to reduced fuel moisture, combined with changes in the climate of the growing season, 27 
which led to increased vegetation growth and fuel production. 28 

The increase in forest productivity during the growing season in pyrome ExTropF2 also 29 
corresponds with a 30% increase in forest area in the pyrome (+1 million km2; Fig. S3) during 30 
2001-2023. This striking rate of forest expansion is consistent with reported rates exceeding 1% 31 
per year in some of these regions during 2001-2019 based on MODIS observations (92) and with 32 
the accumulating evidence for increased vegetation greenness and biomass stocks in the high-33 
latitudes (77, 93, 94). On the other hand, such a large increase in forest area has not been seen in 34 
Landsat-based estimates of change in forest cover, likely due to differences in the resolution (see 35 
further discussion in Methods) (95–97). Dual increases in forest area and productivity highlight 36 
how a warming climate and CO2 fertilization have enhanced forest growth at higher latitudes and 37 
contributed to both a greater forest area available to burn and greater rates of fuel production (98, 38 
99). Nonetheless, growth in forest BA has outpaced growth in forest area, as indicated by a 158% 39 
increase in the fraction of forest area that burned annually during 2001-2023 (i.e. the forest BA 40 
fraction; Table S1, Fig. S3).  41 

Pyrome ExTropF1 also showed large and significant increases in forest BA (+30%, or 6 42 
thousand km2 year-1) and fire C emissions (+65%, or 30 Tg C year-1) during 2001-2023, though 43 
these trends were not quite as pronounced as in pyrome ExTropF2 (Fig. 3, Table S1). Trends in 44 
forest BA were also more mixed amongst the ecoregions of pyrome ExTropF1, with around one-45 
third showing a significant increase in forest BA and around 15% showing a significant decrease 46 
(Fig. 4, Fig. S11, Table S1). The varied trends in forest BA can be explained by mixed trends in 47 
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fire weather and soil moisture across the pyrome. The annual number of extreme fire weather days 1 
increased significantly in around 35% of the ecoregions of pyrome ExTropF1 but also decreased 2 
in 15%, while very few ecoregions experienced a significant increase in soil moisture (Fig. 4, Fig. 3 
S14-S15, Table S2). Only around 10% of ecoregions in pyrome ExTropF1 showed synchronous 4 
significant increases in extreme fire weather, soil moisture and lightning density, which are the 5 
three key controls on fire activity that emerged from our clustering analysis in this pyrome (Fig. 6 
2, Fig. S1-S2). 7 

Increased Fire Emissions in Pyromes with Fire Suppression 8 

In pyromes SupZoF1 and SupZoF2, forest fire C emissions increased by 43-44% during 9 
2001-2023(Fig. 3, Table S1). In both pyromes SupZoF1 and SupZoF2, the increased fire C 10 
emissions were driven primarily by significant 37-79% increases in the C combustion rate, 11 
combined with smaller non-significant increases in forest BA of 8-18% (Fig. 3, Table S1). Within 12 
pyromes SupZoF1 and SupZoF2, significant increases in fire C emissions were spatially 13 
concentrated in forest ecoregions of Australia (e.g. Blue Mountains forests, Naracoorte woodlands, 14 
Jarrah-Karri forests), southern Europe (e.g. Southwest Iberian Mediterranean sclerophyllous 15 
forests, Northwest Iberian montane forests, and Aegean and Western Turkey sclerophyllous 16 
forests), the western USA (Klamath-Siskiyou and coastal forests and California interior chaparral 17 
and woodlands), Madagascar (subhumid and lowland forests; Fig. 4). The large upticks in 18 
emissions from forests in the western US and eastern Australia during 2019 and 2020 (17, 18) are 19 
clearly visible in the emission time series for pyromes SupZoF1 and SupZoF2 and influence the 20 
slope of the trends in these pyromes (Fig. 3).  21 

Reduced Fire Emissions in Tropical Forests 22 

Forest fire C emissions showed opposing trends in the pyromes occupying the tropical 23 
deforestation zones, with the 96% decline (-26 Tg C year-1) in forest fire C emissions in pyrome 24 
TropF2 outweighing 56% increases (+24 Tg C year-1) in forest fire C emissions in pyrome 25 
TropF1 (Fig. 3). In pyrome TropF1, the increase in fire C emissions was caused by an increase 26 
in forest fire C combustion rate combined with a 19% increase in forest BA (Fig. 3, Table S1). 27 
Increased forest BA was widespread throughout the pyrome, with around two-thirds of the 28 
constituent ecoregions of pyrome TropF1 showing an increase during 2001-2023 (Fig. 4; Table 29 
S1). In pyrome TropF2, the decline in forest fire C emissions was predominantly driven by a 56% 30 
reduction in forest BA (Fig. 3; Table S1). The reductions in fire C emissions were consistent 31 
across the ecoregions of pyrome TropF2, with around 80% of the constituent ecoregions of the 32 
pyrome showing a decrease during 2001-2023 (Fig. 4, Fig. S11, Table S1). 33 
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 1 
Figure 3: Changes in the burned area (BA) in forests and carbon (C) emissions from forest 2 
fires during 2001-2023. By row, the panels show (a-c) forest BA, (d-f) fire C emissions per unit 3 
burned area of forest, (g-i) C emissions from forest fires, and (j-l) the forest fraction of total (forest 4 
plus non-forest) fire C emissions. By column the panels show (a,d,g,j) show annual data (solid 5 
lines) and trendlines (dashed lines) for each pyrome, (b,e,h,k) absolute changes during the data 6 
period, and (c,f,i,l) relative changes (%) for the same period. Trendlines are fitted using Theil-Sen 7 
regression. Fire C emissions are extrapolated for 2001 and 2023 based on the trend in C 8 
combustion rate during 2002-2020 and the observed annual BA in 2001 and 2023. Absolute 9 
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changes are calculated as the difference between the trendline values at the start and end of the 1 
period, and relative changes are calculated conservatively as the absolute change divided by the 2 
period mean. Figs. S3-S5 present various aspects of forest and total (forest + non-forest) fire 3 
trends, including changes in burned area, C emissions, and combustion rates. Figs. S6-S11 show 4 
mapped trends for individual forest ecoregions and the distribution of these values across the 5 
ecoregions of each pyrome. 6 
 7 
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1 
Figure 4: Changes in bioclimatic variables and fire observations at ecoregion level. The 2 
panels show relative changes in four bioclimatic variables used to distinguish pyromes(a-d), 3 
forest burned area (BA; e), forest burned area fraction (km2 burned km-2 forest; f), forest fire carbon 4 
(C) emissions (g) and the forest fire C combustion rate (g C km-2 burned) during the period 2001-5 
2023 (2010-2021 for lightning flash density), mapped to forest ecoregions. The climate variables 6 
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are (a) days during the fire season with 95th percentile fire weather index (FWI) values relative to 1 
all days in the period 1980-2009, (b) average soil moisture content during the fire season, (c) mean 2 
normalized difference vegetation index (NDVI) during the prior growing season, and (d) lightning 3 
flash density during the fire season. The strength of the relationships between forest BA and fire 4 
weather, soil moisture, vegetation growth and lightning varies across pyromes (Fig. 2) and there 5 
is lesser variability within the constituent ecoregions of each pyrome (Fig. S1-S2). Changes in 6 
forest fire C emissions (g) relate to changes in forest burned area (e) as well and emissions per unit 7 
BA (h). Fig. S6-S17 additionally show the mapped mean values of these variables for individual 8 
ecoregions and the distribution of trends across the ecoregions of each pyrome. 9 

Discussion 10 

Our mapping of pyromes has revealed variation in the controls on forest fire extent across 11 
the world’s forest ecoregions. The pyrome boundaries tend to align with the boundaries of climate 12 
zones or biomes (Fig. 1), though not precisely due to significant variation in the drivers of fire 13 
within those zones. The expected first-order patterns of macro-scale pyrogeography are apparent 14 
in the distinctive traits of fire control that emerge from the clustering analysis (Fig. 2, Fig. S1-S2). 15 
For example, human controls on fire emerge as a stronger trait of the tropical pyromes than of the 16 
extratropical pyromes, consistent with the expectation that the tropical fire regime is dominated by 17 
human activities (2, 100, 101).  18 

In the largest extratropical pyromes (ExTropF1 and ExTropF2), forest fires are 19 
influenced by climatic factors affecting fuel moisture during the fire season and variably by the 20 
production of vegetation fuels in the growing season or by opportunities for lightning ignition. The 21 
near tripling of fire C emissions in pyrome ExTropF2 can be explained by pervasive increases in 22 
fire-favorable weather during the fire season, increased vegetation productivity in the growing 23 
season, and expanding forest cover. Increased forest extent and productivity at higher latitudes 24 
have been linked to climate changes that are favorable for vegetation growth and CO2 fertilization 25 
(98), and our results show that these trends have coupled with reduced fuel moisture to drive an 26 
increase in forest BA and fire C emissions in pyrome ExTropF2. The weaker increases in fire C 27 
emissions in pyrome ExTropF1 can be attributed to less consistent trends in fire-favorable weather 28 
across the pyrome.  29 

During 2001-2023, forest fire C emissions grew by 60% across all forest ecoregions 30 
globally, principally driven by trends in the extratropical pyromes (Fig. 3, Table S1). Forest BA 31 
and fire C emissions were redistributed from tropical and subtropical pyromes to extratropical 32 
pyromes (Fig. 5). Amidst these geographical shifts, the C combustion rate of forest fires also 33 
increased by 47% across all forest ecoregions globally, reflecting greater fuel consumption per 34 
unit of forest BA (Fig. 3, Table S1). Extreme examples of C combustion per unit area have been 35 
recorded during recent extreme wildfire episodes and tied to extremes in fire-favorable weather 36 
(8, 11, 16, 17, 102), whereas our findings support a more general trend towards increases in fuel 37 
consumption in forests. In addition, the contribution of forest fires to total (forest plus non-forest) 38 
BA and fire C emissions has also increased globally and in most forest pyromes, with the exception 39 
of the subtropical forest pyromes (Fig. 3, Table S1), signaling that the increased susceptibility of 40 
forests to fire has generally outpaced that of non-forest environments experiencing similar 41 
environmental changes.  42 

 43 
 Our mapping of the pyromes enabled us to link rising fire C emissions in extratropical 44 

forests to climate change. For example, without distinguishing pyrome ExTropF2 and the climatic 45 
factors that influence its forest BA, the increase in fire emissions that has occurred there could be 46 
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overlooked or masked. The emissions trend in pyrome ExTropF2 potentially signals that a step-1 
change in the fire regime and a destabilization of forest C stocks is underway in some extratropical 2 
ecoregions. Recent studies have identified a rise in forest productivity and fire-favorable weather 3 
as compounding drivers of increased fire C emissions in Siberia (16, 103–105), whereas our results 4 
indicate that similar dynamics are leading to increased fire C emissions more broadly across the 5 
ecoregions of pyrome ExTropF2. 6 

Even in the pyromes where non-climatic factors, particularly in situ human activities, exert 7 
significant control on forest BA, climatic factors remain a key enabler of fire. Increased fire 8 
weather under climate change can be expected to increase the windows of opportunity for fires to 9 
occur even in regions with significant fire suppression (31, 106, 107). For example, the uptick in 10 
the forest BA and fire C emissions in the pyromes SupZoF1 and SupZoF2, which encompass 11 
many zones of aggressive fire suppression and management, are consistent with warnings that the 12 
effectiveness of wildfire suppression is waning in a warming climate (108, 109). These findings 13 
highlight a potential for the relationships between climate and fire to strengthen in future climates.  14 

Forest ecoregions with the most ambiguous cluster assignment (as measured by silhouette 15 
width statistics), are scattered globally with little tendency to concentrate in particular world 16 
regions (Fig. S21), suggesting that the pyromes arising from our clustering procedure were largely 17 
free of regional bias (Supplementary Text 1). One exception is the Iberian Peninsula, where almost 18 
all ecoregions showed low silhouette widths, indicating a relatively low parity with other world 19 
regions. Among pyromes, clustering ambiguity was highest in SubTropF3, SupZoF1, and 20 
SupZoF2, with the most common alternative assignments to pyromes ExTropF1, ExTropF2, 21 
ExTropF3, ExTropF4, and SubTropF3, indicating a higher level of confusion between various 22 
climate-sensitive and extratropical pyromes (Supplementary Text 1). 23 

 24 
Overall, we have contributed a new geographical mapping of forest pyromes based on 25 

distinctive fire drivers and discovered significant increases in forest BA and fire C emissions in 26 
some of the pyromes where they are most expected. Our work complements previous studies that 27 
used machine learning to disentangle the effect of multiple fire controls on global patterns or trends 28 
in BA (7, 40, 55, 56). For example, prior studies also indicated that increased vegetation 29 
productivity and fire-favorable weather both contributed to increased BA in boreal Eurasia during 30 
2001-2014 (7, 40). Our explicit focus on forest BA and fire C emissions has also provided novel 31 
insights. For example, we find strong spatial contrasts in the effect of human activities on forest 32 
BA across different tropical and subtropical pyromes, whereas prior work indicated that human 33 
activities reduce total BA more uniformly across the tropics (7, 40). 34 

Our work complements prior endeavors to define pyromes based on observable fire 35 
characteristics (72–75). While a novel and insightful aspect of our study is its focus on grouping 36 
regions with similar fire drivers, by doing so, we concentrated exclusively on BA as a target 37 
variable, foregoing information about other observable fire traits that vary geographically and are 38 
important aspects of the fire regime. Future work could aim to integrate geographical distinctions 39 
in both fire traits and fire drivers to provide a more holistic definition of the pyrome. This approach 40 
would further enhance the analogy with the term ‘biome’, which encapsulates both the biological 41 
properties and physical presentation of grouped ecosystems, as well as the climatic and other 42 
environmental factors that cause those properties to emerge. 43 

Looking forward, our pyrome classification could play a key role in the development of 44 
global fire models to better represent observed fire dynamics by creating opportunities to tailor 45 
model parameters in regions with distinct fire drivers. For example, parameters that represent the 46 
influence of people on fire processes could be optimized by pyrome in DGVMs to better represent 47 
the distinct relationships between human activities and fire across pyromes, in a manner akin to 48 
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optimizing biological processes across plant functional types. Moreover, the pyromes layer also 1 
serves to highlight priority areas for the study of changes in fire weather, drought or vegetation 2 
productivity, since some pyromes are distinctly more sensitive to changes in these factors than 3 
others. 4 

 5 
A caveat of our approach is that it provides a global zonation of fire controls at the macro-6 

scale – a scale that is particularly suited to questions concerning global environmental change, 7 
including differential responses to climate change. We do not suggest that all areas within an 8 
ecoregion are uniformly sensitive to the same fire controls. For example, differences in land use 9 
and management approaches across landowner types can be expected to produce varying 10 
relationships between fire and human factors within an ecoregion, as seen between protected areas, 11 
Indigenous areas, and private land (110, 111). Hence, our analysis identifies the dominant controls 12 
that emerge at the ecoregion scale but omits the local effects associated with specific actors at sub-13 
ecoregion level. The application of similar techniques to smaller (or larger) world regions would 14 
provide a finer (or coarser) geography of fire controls to which a different set of environmental 15 
questions may apply. In addition, our mapping of pyromes should not be viewed as fixed in time. 16 
For example, regional changes in policy, land use or population dynamics or ongoing shifts in 17 
climate or vegetation types could all lead to the re-allocation of an ecoregion to a different pyrome 18 
in future (75). 19 

Relatedly, although our analysis provides valuable insights into the impacts of climate 20 
change on fire dynamics over a two-decade period, it is important to recognize the limitations 21 
inherent in using relatively short datasets to interpret fire regimes that operate over much longer 22 
intervals. Many forest ecosystems are subject to fire return intervals spanning decades to centuries, 23 
which can obscure the detection of longer-term trends. This is particularly the case in pyromes 24 
ExTropF3 and ExTropF4, where long fire return intervals (~1,000 years; Figure S7; Table S1) 25 
likely contributed to low correlations between BA and all explanatory variables and challenged 26 
the identification of fire drivers by clustering. Therefore, while our findings indicate significant 27 
trends such as the increase in emissions in the extratropics, increased combustion rates, and a shift 28 
from savannas and grasslands to forests as major fire emissions sources, these must be interpreted 29 
with some caution. Future studies extending beyond the 20-year timeframe are essential to fully 30 
understand the long-term fire regimes and validate the persistence of such trends (9, 112).  31 

 32 
Both observations and models suggest that extratropical forests are greening and becoming 33 

more productive due to a combination of climate change and CO2 fertilization (98, 99, 113). 34 
Dynamic global vegetation models (DGVMs) also generally project that C storage will continue 35 
to increase in the future in high latitude forests, although some variability is seen across models 36 
and climate scenarios (114, 115). Nonetheless, DGVMs currently show a limited capacity to 37 
reproduce historical trends and contemporary spatial patterns of fire (6, 116), raising concerns as 38 
to whether future change in fire disturbance is reliably captured in projections of future vegetation 39 
distribution and C storage. Additional uncertainty in future C storage stems from the potential for 40 
post-fire ecosystem shifts to occur due to increased fire severity not captured by models (117, 118). 41 
Our finding of increased forest fire C emissions lends further support to previous warnings that 42 
fire could offset projected gains in C storage in extratropical forests (119–121).  43 

As forest fire C emissions grow, so does their relevance to carbon accounting, including 44 
the greenhouse gas (GHG) inventories submitted to the United Nations (UN). For example, C 45 
emissions from wildfires in Canada during 2023 alone are likely to have overturned a significant 46 
portion of the C sink to Canadian forests that accumulated over the prior decade (19, 122, 123). 47 
Wildfires in Canada are not free of anthropogenic influence and are becoming more likely due to 48 
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anthropogenic climate change (19), yet they are designated as natural disturbances in Canada's 1 
national emissions inventory and thus their influence is largely omitted from UN records (122, 2 
123). Prior work has advocated for more comprehensive reporting of fire emissions on both 3 
managed and unmanaged land, to facilitate routine assessments of how fires impact national and 4 
global inventories of anthropogenic emissions (122). Our work further highlights the importance 5 
of this comprehensive reporting by revealing the growing role that forest fire C emissions play in 6 
the carbon budget of boreal forests. 7 

Relatedly, enhancing C storage in forests using forestry practices is viewed as a promising 8 
strategy for C dioxide removal (CDR) from the atmosphere to offset anthropogenic C emissions 9 
(124, 125). One recent study estimated that an additional 60 Pg C could be stored on extratropical 10 
land that is highly suitable for forestry (126), or 600-3,000 Tg C year-1 when annualized over a 11 
period of 20-100 years representing the time taken for potential C stocks to accumulate (127). The 12 
estimates of potential C storage from ref. (126) derive from relationships fitted to the C stocks held 13 
in current intact forests, yet these forests were established in historical fire regimes inferring that 14 
potential C storage is overestimated in forests where fire regime shifts are underway. For a crude 15 
comparison, we estimate that forest fire C emissions grew by 114 Tg C year-1 across all 16 
extratropical pyromes between 2001 and 2023. We suggest that a continued increase in forest BA 17 
and fire C emissions could reduce the potential for CDR in extratropical forests by a nontrivial 18 
margin, particularly in the absence of effective fuel and fire management. 19 

 20 
While climatic factors show a varying strength of control on the extent of forest fires across 21 

pyromes, their effects are nonetheless pervasive. This result emphasizes the need to address the 22 
primary causes of climate change, by reducing emissions from fossil and land use sources, in order 23 
to mitigate the increased fire-related risks to C sinks (128, 129). Moreover, our findings inform 24 
forest management and Net Zero policies by identifying pyromes where specific human actions 25 
can support forest C sinks by reducing C emissions from fires. In tropical pyromes, where fire 26 
shows a strong dependence on human ignition patterns, reducing ignitions during extreme fire-27 
favorable weather and preventing forest fragmentation should enhance C retention (30, 130). In 28 
pyromes with a history of aggressive wildfire suppression, shifting focus and funds from active 29 
fire suppression to managed, ecologically beneficial fires may prevent C sink-to-source conversion 30 
(7, 30, 131). In extratropical pyromes where climatic factors have the most direct and unmodulated 31 
control on fire extent, monitoring changes in vegetation and productivity can guide the 32 
prioritization of areas for forest management (7, 30, 131). In all pyromes, substantial financing is 33 
required to support strategic programs of forest management, stakeholder engagement, and public 34 
education, all of which represent a meaningful shift of fire management strategy from largely 35 
reactive to increasingly proactive (7, 30, 131). Overall, global forest C sinks could be undermined 36 
by wildfire without action to address the leading causes of climate change, while forest 37 
management strategies for mitigating the problem are likely to be most effective when tailored to 38 
pyromes. Cutting anthropogenic emissions is central to securing resilient forests for the future. 39 
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 1 
Figure 5: Geographical shifts in forest burned area (BA) and fire carbon (C) emissions from 2 
the tropics to the extratropics during 2001-2023. The plot shows contributions of groups of 3 
pyromes in the tropics, subtropics, extratropics and zones of suppression to (a-b) forest BA in all 4 
forest ecoregions globally and (c-d) the fire C emissions in all forest ecoregions globally. By 5 
column the panels show (a,c) annual data (solid lines) and trendlines (dashed lines) for each 6 
pyrome, (b,d) relative changes during 2001-2023. Trendlines are fitted using Theil-Sen regression. 7 
Fire C emissions are extrapolated for 2001 and 2023 based on the trend in C combustion rate 8 
during 2002-2020 and the observed annual BA in 2001 and 2023. Absolute changes are calculated 9 
as the difference between the trendline values at the start and end of the period, and relative 10 
changes are calculated conservatively as the absolute change divided by the period mean. 11 

 12 
 13 
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