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Abstract
In market making, a market maker (MM) can concurrently place
many buy and sell limit orders at various prices and volumes, re-
sulting in a vast action space. To handle this large action space,
beta policies were introduced, utilizing a scaled beta distribution
to concisely represent the volume distribution of an MM’s orders
across different price levels. However, in these policies, the param-
eters of the scaled beta distributions are either fixed or adjusted
only according to predefined rules based on the MM’s inventory.
As we show, this approach potentially limits the effectiveness of
market-making policies and overlooks the significance of other
market characteristics in a dynamic market. To address this limita-
tion, we introduce a general adaptive MM based on beta policies by
employing deep reinforcement learning (RL) to dynamically control
the scaled beta distribution parameters and generate orders based
on current market conditions. A sophisticated market simulator
is employed to evaluate a wide range of existing market-making
policies and to train the RL policy in markets with varying levels
of inventory risk, ensuring a comprehensive assessment of their
performance and effectiveness. By carefully designing the reward
function and observation features, we demonstrate that our RL beta
policy outperforms baseline policies across multiple metrics in dif-
ferent market settings. We emphasize the strong adaptability of the
learned RL beta policy, underscoring its pivotal role in achieving
superior performance compared to other market-making policies.
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1 Introduction
In a limit-order driven market, a market maker (MM) operates in
both sides of the market, consistently offering to buy and sell to
facilitate trading. By constantly presenting in the market, MMs
provide continuous liquidity, enabling immediate trading at prices
that fairly represent current market conditions. The primary ob-
jective of an MM is to profitably capture a spread by engaging in
transactions on both sides. A significant challenge for MMs lies
in managing inventory risk associated with trading against better-
informed traders. This situation exposes MMs to adverse selection,
where counterparties exploit informational or technological ad-
vantages during transactions. As a result, MMs may accumulate a
positive or negative inventory position, which could lead to losses
when adverse price movements occur, such as when theMM has net
sold to the market just before a significant price increase. Despite
the risks, profitable MMs exist across many types of markets and
they are generally recognized to be beneficial for stabilizing prices
and aiding in the discovery of accurate market prices.

At any given time, an MMs’ orders typically cover a range of
price levels, with varying volumes at each price level, so a compre-
hensive representation is usually high dimensional. To represent
the MMs’ orders in a succinct manner, Jerome et al. [20] introduced
a general policy representation known as the scaled beta policy. A
scaled beta policy utilizes scaled beta distributions to determine
the volume profiles of bids (buys) and asks (sells) placed by an MM.
The shape of a scaled beta distribution can be controlled precisely
by its parameters, making the scaled beta policy a generalization of
many existing market-making policies, including single price-level
policy, the ladder policy, and “market making at the touch”. Figure 1
demonstrates the application of scaled beta distributions to describe
order volume profiles across various price levels. Given a fixed total
volume 100 and a fixed number of price levels 5, bid volumes in this
example were derived from a scaled beta distribution with 𝛼 = 2
and 𝛽 = 2, and ask volumes from another scaled beta distribution
with 𝛼 = 1 and 𝛽 = 2.
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Figure 1: A sample limit order book, demonstrating the dis-
tribution of orders modeled by scaled beta distributions.

However, in [20] the parameters of the scaled beta distribution
are either fixed or adaptively determined based solely on prede-
fined rules and the MM’s inventory. We show that this potentially
limits the flexibility of market-making policies and overlooks the
significance of other market characteristics in an evolving market.
To address this limitation, we propose a deep reinforcement learn-
ing (RL) market-making policy for an MM using the beta policy
representation. This removes the constraints on the market-making
policy’s functional form and enables the inclusion of various mar-
ket features, which are essential for the adaptability required in
varying market conditions. Specifically, we treat the parameters of
the scaled beta distributions as actions and use deep RL to learn
a policy for determining these actions. At each time step, the RL
market-making policy takes in observations of the current market
conditions and outputs the parameters for the scaled beta distribu-
tions as actions. These parameters then dictate the volumes of bids
and asks that the MM submits at different price levels.

We evaluate the performance of the RL market-making policy
in two market settings: one with informed background traders and
one without, comparing with a comprehensive collection of exist-
ing market-making policies from the literature. We first show that
there is no single static MM policy that performs well across all the
market settings, highlighting the need for adaptive strategies. Then
we find that the presence of informed background traders can lead
to significant profit losses for MMs and incorporating inventory risk
control methods into the policies can mitigate these losses. With the
RL market-making policy, we show that the MM can effectively ad-
just volume distributions in response to current market conditions,
consistently outperforming the baseline policies. Interestingly, we
find that the optimal policy against the adverse selection may not
be minimizing inventory but rather adapting swiftly by broadening
its trading spread when risks arise and narrowing the spread when
market conditions become more certain.

The contributions of this work include:

(1) We develop an RL market-making policy built on the scaled
beta distribution, enabling it to adjust volume distributions
according to current market conditions.

(2) We evaluate the performance of the RLmarket-making policy
by comparing it against a variety of existing market-making
policies across two different market settings: one with in-
formed background traders and one without. Our results

demonstrate that the RL market-making policy consistently
outperforms the baseline policies.

(3) We reveal the impact of adverse selection on different market-
making policies and identify the key factors that contribute
to the success of these policies in various market settings.

2 Related Work
2.1 MM Policies

Single Price-Level Policy. A natural two-dimensional action space
for the MM involves selecting two half-spreads, namely a bid and
ask offset from the midprice. In the literature, this setup typically
assumes that all orders have a constant volume. The MM adjusts
these half-spreads at each time step based on the market condi-
tions and their inventory. This method of choosing half-spreads is
the primary approach in financial stochastic control literature on
market making [3, 6, 8, 10, 13, 17].

While the financial stochastic control literature often utilizes
continuous models with corresponding continuous half-spreads,
many simulators for RL operate in a discrete setting. In these sim-
ulators, the problem involves choosing the number of ticks away
from the touch (the best bid and ask prices) at which to quote the
bid and ask. Note that the action space, being the product space
of bid and ask actions, can become very large unless the MM is
restricted to placing actions very close to the best prices.

The first application of RL to market making, by Chan and Shel-
ton [12], used such a policy. To address the issue of the large action
space, they chose to adjust their quotes by increasing or decreasing
them from a small set of actions. Subsequently, Kim et al. [22] fitted
an input-output hidden Markov model to order data from Nasdaq
and used RL to determine actions within the model. They allowed
their MMs to increase, decrease, or maintain their bid, ask, and both
associated volumes by at most one tick or unit of the asset.

More recently, Spooner et al. [32] utilized a realistic market
simulator incorporating five levels of order book data and trans-
actions. The action space in their study consists of a collection of
pre-specified half-spread pairs, along with an action that clears the
entirety of the MM’s inventory using a market order. Note that
some of these actions are skewed to favor filling on one side. This
approach allows for a basic form of inventory control, while main-
taining a manageable action space size. This paper was the first to
use such a finite pre-specified selection of actions, a method that
has since been adopted by many other works [25, 30, 40].

Marin et al. [26] studied the application of RL to the model by
Avellaneda and Stoikov [3]. Instead of directly determining the
limit order to place, they employed the RL algorithm to adjust
the risk aversion parameter and skew the quotes given by the
Avellaneda-Stoikov algorithm according to recent market activity
trends. Spooner and Savani [33] explored a robust version of the
model by Avellaneda and Stoikov [3], where an adversarial market
agent controls the drift of the financial market. In this model, the
action space consists of four continuous parameters that control
the mean and variance of the agent’s bids and asks. The parameters
are learned by approximating the value function using cubic poly-
nomials and then performing least squares policy iteration [23].
The same model has also been studied by Nyström et al. [28].
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A final form of action space within the single price-level category
involves selecting a continuous half-spread on each side of the
book and then quantizing it to submit orders on the price grid. This
approach was employed by Gasperov and Kostanjcar [15], who
used neuro-evolution to train a policy represented by a deep neural
network.

Ladder Policy. Another relevant strand of the existing literature
was initiated by Chakraborty and Kearns [11], who introduced and
studied ladder policies. These policies place a unit of volume at
all prices within two price intervals, one on each side of the book.
Chakraborty and Kearns [11] theoretically proved the utility of
these policies in mean-reverting markets with Ornstein-Uhlenbeck
price dynamics.

Inspired by this work, Abernethy and Kale [1] considered re-
lated order placement policies where limit orders for one unit of
volume were placed at all price levels outside a window around
the midprice, defining the MM’s spread. They presented an online
learning scheme that adjusts between parameterizations of their
ladder policies, guaranteeing competitive performance with the
best parameter choice in hindsight.

Wah et al. [35] explored how market making influences market
performance, focusing on allocative efficiency and the payoffs from
trades received by background traders. They analyzed a param-
eterized ladder policy for MMs, with its parameters equilibrated
through empirical game-theoretic analysis [38, 39].

Market-Making at the Touch. “Market-making at-the-touch” refers
to submitting limit buy or sell orders at the best bid (i.e., the highest
buy price) or the best ask (i.e., the lowest sell price). In the con-
tinuous setting, it has been studied by Cartea et al. [7, 9], using a
continuous time and space mathematical model of the market. In
the RL literature, this approach was adopted by Zhong et al. [41].
In their model, the MM’s actions involved choosing whether or not
to place an order at both the bid and ask sides of the book at each
time step. By discretizing the observation space similarly to the
work by Spooner et al. [32], RL algorithms such as Q-learning can
be applied.

Beta Policy. Jerome et al. [20] introduced a parametric repre-
sentation of order volume profiles using scaled beta distributions,
developing the scaled beta policy with fixed distribution param-
eters. This representation significantly reduces the dimension of
representing an MM’s orders, creating the opportunity of applying
RL to determine the MM’s orders. Additionally, they extended this
representation to create an inventory-driven approach that dynam-
ically adjusts the parameters of the distributions to minimize the
inventory risk based on the MM’s current inventory. This policy
specifically manages to increases sales as theMM’s inventory grows
and boosts purchases as the inventory diminishes.

2.2 Market Simulation
Since the early 1990s, researchers have used simulation techniques
to explore financial markets. Early studies utilizing the Santa Fe Ar-
tificial Stock Market [29] initiated a branch of agent-based finance
research [24], which generated numerous insights for financial
modeling.

PyMarketSim [27] is a Python reimplementation and enhance-
ment of MarketSim, originally developed in Java by Elaine Wah
for an agent-based examination of latency arbitrage [34].Market-
Sim featured a discrete-event scheduler and a modular structure
designed to flexibly accommodate diverse trading strategies and
market mechanisms, built around an efficient order book architec-
ture. The initial version was applied to studies on topics such as
spoofing [36], welfare impacts of market making [35], and bench-
mark manipulation [31]. The updated version also supports training
of novel trading strategies using deep reinforcement learning and
the integration of trained agents into the simulation.

ABIDES (Agent-Based Interactive Discrete Event Simulation) [5]
is similarly grounded in discrete-event processing and structured to
facilitate the flexible integration of agent trading strategies. ABIDES
additionally uses a uniform message-passing system aligned with
standard market protocols and has gained broad adoption within
the research community, particularly with support from JP Morgan
AI Research. An enhanced version, ABIDES-Gym [2], includes an
interface compatible with the OpenAI Gym environment for dRL.

Alternatively, simulations can focus on interaction with a limit
order book (LOB) governed by an external order process. This ap-
proach enables backtesting of trading strategies with historical data
or the use of a mathematical LOB model [19]. Recently, Frey et al.
[14] introduced JAX-LOB, a simulator that leverages GPU compu-
tation through JAX [4] libraries. Jerome et al. [21] also developed
a LOB simulator with interfaces designed to facilitate dRL agent
training.

3 Preliminaries
3.1 Scaled Beta Distribution
As illustrated in Figure 1, we employ the scaled beta distribution
for describing the volume profiles for bids and asks. The scaled
beta distribution is a rescaling of the beta distribution, where the
scaling is done to hit a desired total volume of orders, distributed
across tick-based price levels. Specifically, the probability density
function of a beta distribution with parameters 𝛼 > 0 and 𝛽 > 0
can be written as

𝑓 (𝑥 ;𝛼, 𝛽) = 𝑥𝛼−1 (1 − 𝑥)𝛽−1

𝐵(𝛼, 𝛽) , (1)

where 𝑥 ∈ [0, 1] and

𝐵(𝛼, 𝛽) =
∫ 1

0
𝑡𝛼−1 (1 − 𝑡)𝛽−1 𝑑𝑡 .

Since the beta distribution is defined over the interval [0, 1],
a variable transformation is required to extend its domain to en-
compass multiple price levels (i.e., the prices at which the market
maker will place orders). Denote the number of price levels on
one side of the limit order book as n_levels. Define a new variable
𝑦 = n_levels · 𝑥 and therefore 𝑦 ∈ [0, n_levels]. By changing the
variable 𝑥 in Equation 1, we have

𝑔(𝑦) =
����𝑑𝑥𝑑𝑦 ���� · 𝑓 ( 𝑦

n_levels

)
=

1
n_levels

· 𝑓
(

𝑦

n_levels

)
(2)

which is the probability density function of the scaled beta dis-
tribution with support [0, n_levels]. We describe how these two
distributions determine the volume profiles later in Section 4.
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3.2 Market Simulator
Our agent-based market simulator [27] employs a Continuous Dou-
ble Auction mechanism over a single security with discrete time
steps and trades occurring over a finite horizon 𝑇 , following the
prior works [35, 37]. Agents in the simulator submit limit orders,
which specify the maximum (or minimum) price at which they are
willing to buy (or sell) along with the number of units to trade.
The fundamental value, denoted as 𝑟 , evolves dynamically over the
course of the simulation, representing the intrinsic economic value
of the security. It follows a mean-reverting stochastic process:

𝑟𝑡 = max(0, 𝜅𝑟 + (1 − 𝜅)𝑟𝑡−1 + 𝑢𝑡 ), 𝑟0 = 𝑟 , (3)

where 𝑟𝑡 is the fundamental value at time 𝑡 ∈ [0,𝑇 ]. The parameter
𝜅 ∈ [0, 1] denotes the mean-reversion strength parameter, which
defines the degree to which the fundamental value reverts back to
the mean 𝑟 . The incremental shock in the fundamental value at time
𝑡 is sampled from a zero-mean Gaussian distribution: 𝑢𝑡 ∼ 𝑁 (0, 𝜎2

𝑠 )
with some variance 𝜎2

𝑠 .

3.3 ZI Agents as Background Traders
3.3.1 Valuation Model. Background agents represent traditional
investors with preferences for holding either long or short positions
in the underlying security. In our simulator, we consider Zero Intel-
ligence (ZI) agents, as described by Gode and Sunder [16], which
enter the market with an equal probability of being assigned to buy
or sell.

The value of a ZI agent’s portfolio at the end of a simulation
𝑇 is a sum of its cash and its holdings’ value. The holdings’ value
is based on the agent’s private values, which are agent-specific
factors that affect a security’s value such as liquidity requirements,
and the liquidation at the final fundamental value 𝑟𝑇 . Specifically,
the private values for ZI agent 𝑖 can be represented by a vector Θ𝑖

denoting differences in private benefits of trading given the trader’s
net position. The vector is of size 2𝑞max , where 𝑞max > 0 is the
maximum number of units the agent can be long or short at any
time, with

Θ𝑖 = (𝜃−𝑞max+1 , . . . , 𝜃0, 𝜃+1, . . . , 𝜃𝑞max ) .

Element 𝜃𝑞
𝑖
is the incremental private benefit obtained from selling

one unit of the security given current position 𝑞, where positive
(negative) 𝑞 indicates a long (short) position. Similarly, 𝜃𝑞+1

𝑖
is the 𝑖

marginal private gain from buying an additional unit given current
net position 𝑞.

We generate 𝜃𝑞
𝑖
from a set of 2𝑞max values drawn independently

from a Gaussian distribution. Let 𝜃 ∼ 𝑁 (0, 𝜎2
PV ) denote one of these

drawn values. To ensure that the valuation reflects diminishing
marginal utility, that is, 𝜃𝑞

′ ≥ 𝜃𝑞 for all 𝑞′ ≤ 𝑞, we sort the 𝜃 and
set the 𝜃𝑞

𝑖
to respective values in the sorted list. With the private

values, we can define the valuation or payoff of a ZI agent as

payoff ZI = positional_value + cash ,

where the positional value includes the holdings’ value liquidated
at 𝑟𝑇 and the sum of its private values on the current position:

positional_value = 𝑟𝑇 · 𝑞𝑖 +


∑𝑘=𝑞𝑖
𝑘=1 𝜃𝑘

𝑖
if 𝑞𝑖 > 0

−∑𝑘=0
𝑘=𝑞+1 𝜃

𝑘
𝑖

if 𝑞𝑖 < 0 .

3.3.2 Trading Policy. ZI agents arrive at the market according to a
Poisson process with rate 𝜆𝑎 . On arrival, they are assigned to buy
or sell (with equal probability), and accordingly submit an order to
buy or sell a single unit. Agents may trade any number of times,
as long as their net positions do not exceed 𝑞max (either long or
short).

At the time of market entry 𝑡 , a ZI agent can assess its payoff
at the end of simulation, using an estimate 𝑟𝑡 of the terminal fun-
damental 𝑟𝑇 . The estimate is based on the current fundamental 𝑟𝑡
with additional Gaussian noise 𝑧𝑡 , adjusted to account for mean
reversion:

𝑟𝑡 = (1 − (1 − 𝜅)𝑇−𝑡 )𝑟 + (1 − 𝜅)𝑇−𝑡 (𝑟𝑡 + 𝑧𝑡 ) . (4)

The ZI agent then submits a bid shaded from this estimate and
the incremental private value by a random offset—the degree of
extra payoff it demands from the trade. The amount of shading is
drawn uniformly from range [𝑅min, 𝑅max ], where 𝑅min and 𝑅max
are predefined parameters such that 0 < 𝑅min < 𝑅max . Specifically,
a ZI trader 𝑖 arriving or re-entering at time 𝑡 with current position
𝑞 submits a limit order for a single unit of the security at price

𝑝𝑖 ∼
{
𝑈

[
𝑟𝑡 + 𝜃𝑞+1

𝑖
− 𝑅max , 𝑟𝑡 + 𝜃𝑞+1

𝑖
− 𝑅min

]
if buying

𝑈
[
𝑟𝑡 + 𝜃𝑞𝑖 + 𝑅min, 𝑟𝑡 + 𝜃𝑞𝑖 + 𝑅max

]
if selling .

To expose MMs to adverse selection, we introduce informed ZI
agents. Such an agent is assumed to know the true final fundamental
value, which can be implemented by sampling all the fundamentals
throughout a simulation a priori. This knowledge allows the agent,
indexed by 𝑗 , to be informed about the true value of the security,
enabling them to submit bids accordingly at price

𝑝 𝑗 ∼

𝑈

[
𝑟𝑇 + 𝜃𝑞+1

𝑗
− 𝑅max , 𝑟𝑇 + 𝜃𝑞+1

𝑗
− 𝑅min

]
if buying

𝑈

[
𝑟𝑇 + 𝜃𝑞

𝑗
+ 𝑅min, 𝑟𝑇 + 𝜃𝑞

𝑗
+ 𝑅max

]
if selling .

4 RL Beta Policy
To construct MM’s orders, an MM should first determine the rele-
vant price levels. For example, in Figure 1, the starting price level
for bids is 5.05 and for asks is 5.07, and n_levels = 5. The MM then
distributes the total volume according to the scaled beta distribution.
In our model, we assume that the number of price levels, n_levels,
the rung size (i.e., the price gap between two price levels in MM’s
orders), and the total volume distributed across these levels are
predefined parameters.

4.1 Selecting the Starting Price Level
We select the starting price levels of MM’s orders based on the
estimated final fundamental 𝑟𝑡 and a pre-specified spread 𝜔 . Specif-
ically, we first compute the initial bid and ask price levels, 𝐵′𝑡 and
𝑆 ′𝑡 , by adding or subtracting half of the spread from the estimated



Market Making with Learned Beta Policies ICAIF ’24, November 14–17, 2024, Brooklyn, NY, USA

final fundamental. That is,

𝐵′𝑡 = 𝑟𝑡 −
1
2
𝜔 𝑆 ′𝑡 = 𝑟𝑡 +

1
2
𝜔 .

The rationale behind this choice is to allow the MM to trade around
its estimate of the security’s true value, 𝑟𝑡 , profiting from a specified
spread, 𝜔 . To prevent the initial price levels from crossing the
current bid-ask spread, we further adjust 𝐵′𝑡 and 𝑆

′
𝑡 by truncating

them to the current best bid 𝐵𝐼𝐷𝑡 (i.e., the highest buy price at
time 𝑡 ) and the best ask 𝐴𝑆𝐾𝑡 (i.e., the lowest sell price at time 𝑡 ) as
follows:

𝐵𝑡 = min(𝐵′𝑡 , 𝐴𝑆𝐾𝑡 ) 𝑆𝑡 = max(𝑆 ′𝑡 , 𝐵𝐼𝐷𝑡 ) .
Starting from 𝐵𝑡 and 𝑆𝑡 , an MM can construct a sequence of

price levels for placing orders, comprised of 𝐾 rungs, each spaced
𝜉 ticks apart:{

[𝐵𝑡 − (𝐾 − 𝑥)𝜉, 𝐵𝑡 − (𝐾 − 𝑥 + 1)𝜉, . . . , 𝐵𝑡 − 𝐾𝜉] for bids
[𝑆𝑡 + (𝐾 − 𝑥)𝜉, 𝑆𝑡 + (𝐾 − 𝑥 + 1)𝜉, . . . , 𝑆𝑡 + 𝐾𝜉] for asks ,

(5)

with 𝑆𝑡 > 𝐵𝑡 and predefined 𝐾, 𝜉 > 0, where 𝑥 > 0 specifies the
rung immediately above 𝐵𝐼𝐷𝑡 (for sell orders) or below 𝐴𝑆𝐾𝑡 (for
buy orders).

4.2 Distributing the Total Volume
To allocate the total volume to the selected price levels with a scaled
beta distribution, an RL beta policy should first determine the pa-
rameters for the corresponding beta distribution. As discussed in
Section 3.1, a beta distribution can be characterized by the param-
eters 𝛼 and 𝛽 , which will be the action outputs of our learned
RL policy. Specifically, at each time step, an action 𝑎 from an RL
policy is defined by a four-tuple, which specifies two scaled beta
distributions for bids and asks, respectively.

𝑎 = (𝛼ask, 𝛽ask, 𝛼bid , 𝛽bid ) .
We further simplify the action space dimension by assuming that
the beta distributions on both sides of the limit order book are
symmetric, meaning that 𝛼ask = 𝛼bid and 𝛽ask = 𝛽bid . As a result,
the action space can be reduced to two dimensions as follows:

𝑎 = (𝛼, 𝛽) .
With the output of the RL policy 𝑎 = (𝛼, 𝛽), we can define the beta
distributions and subsequently the scaled beta distributions for bids
and asks.

Using the scaled beta distributions, we can allocate the total vol-
ume to the selected price levels as described in Equation 5. Concep-
tually, these price levels can be viewed as bins, with the scaled beta
distribution indicating the proportion of total volume assigned to
each bin. Consequently, the volume for each price level is calculated
by multiplying the total volume by its corresponding proportion.
Specifically, if the total number of price levels (viewed as bins) is
denoted as n_levels, we can index the boundaries of these bins using
integers from 0 to n_levels (e.g., 0 and 1 are the boundary indices
for the first bin). Recall that the scaled beta distribution spans these
n_levels bins. Thus, we can evaluate the cumulative distribution
function 𝐺 (𝑦) of the scaled beta distribution (can be derived from
𝑔(𝑦) in Equation 2) at the boundary indices. The difference between
two successive indices represents the proportion corresponding to

the respective bin. For example, assuming 𝑥 = 𝐾 (i.e., no trunca-
tion) in Equation 5, the volume assigned to the first price level with
price 𝐵𝑡 will be [𝐺 (1) −𝐺 (0)] × total_volume. Similarly, the volume
[𝐺 (2) −𝐺 (1)] × total_volume will be allocated to the second price
level. All volumes will be rounded to the nearest integers.

4.3 Interpreting an Action
As components of an action, 𝛼 and 𝛽 are not particularly inter-
pretable, however, they can be mapped to the mode and concen-
tration of the beta distribution, providing a clearer interpretation.
Specifically, the concentration 𝜅 of a beta distribution is defined as
𝜅 = 𝛼 + 𝛽 . When 𝛼 > 1 and 𝛽 > 1, the mode 𝜇 = 𝛼−1

𝛼+𝛽−2 . With 𝜅
and 𝜇 specified,

𝛼 = 𝜇 (𝜅 − 2) + 1, 𝛽 = (1 − 𝜇) (𝜅 − 2) + 1 . (6)

By converting 𝛼 and 𝛽 to the mode and concentration, the distribu-
tion of volumes becomes visually discernible, as shown in Figure 2,
making an action more interpretable.

(a) Beta distribution. (b) Volume distributions.

Figure 2: An illustration of the mode in a beta distribution
with 𝛼 = 2 and 𝛽 = 5. The mode directly corresponds to the
highest volume in the volume distributions, mirrored for
bids and asks.

4.4 Observation Space
The specific action that the RL policy outputs depends on the cur-
rent market conditions, which we refer to as the adaptability of
the policy. We consider the following conditions as features of the
observation space for RL, which are common market summary
statistics. These features are normalized to [0, 1] for RL training.

• The number of time steps left 𝑇 − 𝑡 .
• The current fundamental value 𝑟𝑡 .
• The current best bid price 𝐵𝐼𝐷𝑡 (if any).
• The current best ask price 𝐴𝑆𝐾𝑡 (if any).
• The MM’s inventory 𝐼 .
• Mid-price move from 𝑡 − 1 to 𝑡 .
• Other market statistics including volume imbalance, queue
imbalance, volatility, Relative Strength Index, suggested in
the work [32].

4.5 Valuation and Rewards
Similar to ZI agents, the MM liquidates its inventory at the end of
the trading horizon, with the liquidation price being the final fun-
damental value, 𝑟𝑇 . Unlike ZI agents, the MM does not incorporate
private values in its valuation. Therefore, the MM’s payoff can be
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(a) 𝛼 = 1, 𝛽 = 1 (Ladder) (b) 𝛼 = 1, 𝛽 = 2 (c) 𝛼 = 1, 𝛽 = 5 (d) 𝛼 = 2, 𝛽 = 1

(e) 𝛼 = 2, 𝛽 = 2 (f) 𝛼 = 5, 𝛽 = 1 (g) 𝛼 = 5, 𝛽 = 2 (h) 𝛼 = 5, 𝛽 = 5

Figure 3: Volume Distributions for different 𝛼 and 𝛽 combinations.

computed as the sum of its cash and its holdings’ value at the end
of the simulation 𝑇 :

payoffMM = 𝑟𝑇 · 𝑞𝑖 + cash. (7)

Since the payoff is only realized at the end of a simulationwithout
any intermediate rewards, the training of RL may face the problem
of sparse rewards. To tackle this, we design a “period by period”
reward function

𝑅𝑡+𝑘 = (𝑟𝑇 · 𝑞𝑡+𝑘 + cash𝑡+𝑘 ) − (𝑟𝑇 · 𝑞𝑡 + cash𝑡 ),

which is the valuation difference between two successive orders
of the MM at time step 𝑡 and 𝑡 + 𝑘 . Intuitively, the reward at time
step 𝑡 + 𝑘 is the change in valuation after taking an action at 𝑡 .
Note that this reward function applies reward shaping in hindsight,
which is a common reward shaping approach in RL, since 𝑟𝑇 is only
available at the end of the simulation𝑇 . It can be easily shown that
these intermediate rewards will sum to the final payoff.

5 Experiment Settings
5.1 Simulation Setup
We evaluate the performance of MMs in a market setting with
𝑁 = 25 ZI agents as background traders who enter the market at
a rate of 𝜆𝑎 = 0.075 and submit a single-unit order. In the market
setting with informed background traders, 13 out of 25 regular ZI
agents are replaced by the informed ZI agents. The variance for the
private value vector 𝜎2

𝑃𝑉
and the variance for the noisy estimated

final fundamental 𝜎2
𝑧 for all ZI agents (both the regular and the

informed ones) are set to be 5 × 106 and 1 × 106, respectively. The
maximum number of units that ZI agents can hold, either long or
short, at any time is 𝑞max = 10. The amount of shading is drawn
uniformly from the range [250, 500].

The MM submits orders at a rate of 𝜆MM = 0.005. At each entry,
the MM submits orders with a fixed total volume 100 distributed
across 21 price levels with rung size 50 on each side of the limit

order book. The volume distribution is determined by the MM’s
policy.

Each simulation runs for𝑇 = 1×105 time steps. The fundamental
value follows a mean-reversion process with a mean of 𝑟 = 1 × 105

and a parameter 𝜅 = 0.05. The minimum tick size is fixed at 1. We
interpret the tick size as one-thousandth of a dollar ($0.001), so
the mean fundamental value corresponds to $100. To account for
the stochastic nature of the simulations, including fluctuations in
market fundamentals, variations in agent arrival rates, and diverse
private valuations, we average all the results over 2000 simulations
during testing.

5.2 Baseline MMs
We explore four types of market-making policies as baselines, each
with distinct configurations: MMs at the touch, ladder MMs, fixed-
parameter beta MMs, and inventory-driven beta MMs. MMs at the
touch place orders with the entire volume of 100 at the best bid and
ask prices. Ladder MMs distribute the total volume evenly across
predefined price levels. Beta MMs allocate the volume according
to scaled beta distributions with fixed parameters. For ladder MMs
and beta MMs, we vary the spread 𝜔 ∈ {10, 60}, which affects the
first price level to place orders as well as their payoffs. For beta
MMs, we conduct parameter optimization over a set of Cartesian
product of 𝛼 ∈ {1, 2, 3, 4, 5} and 𝛽 ∈ {1, 2, 3, 4, 5} and selectively
report some combinations that are representative in performance.
Note that when 𝛼 = 1 and 𝛽 = 1 for both bids and asks, beta MMs
reduce to ladder MMs (we distinguish between ladder MMs and
beta MMs for clarity). We illustrate how the volume distributions
look like in Figure 2(b) and Figure 3 with a total volume of 50 and
11 price levels.

The inventory-driven beta-based policy by Jerome et al. [20] ad-
justs the volume distributions based on the MM’s current inventory
to minimize the inventory risk. Instead of directly computing 𝛼 and
𝛽 , it computes the modes, 𝜇𝑏𝑖𝑑 and 𝜇𝑎𝑠𝑘 , of the volume distributions
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Index Policy Type 𝝎 𝜶 𝜷 Averaged Payoff Averaged Spread Market Share

1 MM at the touch - - - 1.41 × 106 386 22.8%
2 Ladder MM 10 - - 4.34 × 106 330 24.9%
3 Beta MM 10 1 2 4.04 × 106 271 29.0%
4 Beta MM 10 1 5 3.25 × 106 196 33.8%
5 Beta MM 10 2 1 4.49 × 106 452 15.7%
6 Beta MM 10 2 2 4.76 × 106 378 21.3%
7 Beta MM 10 2 5 4.41 × 106 284 28.2%
8 Beta MM 10 5 1 3.00 × 106 574 6.4%
9 Beta MM 10 5 2 3.77 × 106 534 9.3%
10 Beta MM 10 5 5 4.82 × 106 455 16.3%
11 Invt MM 10 - - 4.08 × 106 278 28.6%
12 RL MM 10 - - 5.08 × 106 424 17.9%

Table 1: The performance of MMs without informed ZI agents.

Index Policy Type 𝝎 𝜶 𝜷 Averaged Payoff Averaged Spread Market Share

1 MM at the touch - - - 7.95 × 106 422 18.1%
2 Ladder MM 10 - - −9.00 × 107 569 27.2%
3 Beta MM 10 1 2 −9.60 × 107 560 28.9%
4 Beta MM 10 1 5 −1.00 × 108 505 30.9%
5 Beta MM 10 2 1 −6.43 × 107 628 20.9%
6 Beta MM 10 2 2 −8.44 × 107 608 25.3%
7 Beta MM 10 2 5 −9.01 × 107 536 28.8%
8 Beta MM 10 5 1 −5.09 × 107 702 13.3%
9 Beta MM 10 5 2 −5.54 × 107 674 15.8%
10 Beta MM 10 5 5 −7.28 × 107 648 21.8%
11 Invt MM 10 - - −4.18 × 107 699 12.7%
12 RL MM 10 - - −1.47 × 107 542 11.3%

Table 2: The performance of MMs with informed ZI agents.

on both sides of the book and the concentration 𝜅 . Then it converts
them to 𝛼𝑏𝑖𝑑 , 𝛽𝑏𝑖𝑑 , 𝛼𝑎𝑠𝑘 , 𝛽𝑎𝑠𝑘 using Equation 6. The policy takes
the following form

𝑓1 (inv𝑡 ) := 𝜇0

[
1 +

(
1
𝜇0

− 1
)
clamp

(���� inv𝑡
max_inv

����𝑝 )] ,
𝑓2 (inv𝑡 ) := 𝜇0

[
1 − clamp

(���� inv𝑡
max_inv

����𝑝 )] ,
𝜇𝑏𝑖𝑑 (inv𝑡 ) := 1inv𝑡 ≥0 𝑓1 (inv𝑡 ) + 1inv𝑡<0 𝑓2 (inv𝑡 ) ,

𝜇𝑎𝑠𝑘 (inv𝑡 ) := 1inv𝑡<0 𝑓1 (inv𝑡 ) + 1inv𝑡 ≥0 𝑓2 (inv𝑡 ) ,

𝜅 := (𝜅max − 𝜅min)clamp
(���� inv𝑡
max_inv

����𝑝 ) + 𝜅min .

In our experiments, we set the concentration 𝜅min = 5 and 𝜅max =

20, the maximum absolute inventory𝑚𝑎𝑥_𝑖𝑛𝑣 = 20, the exponent
𝑝 = 2, and the mode 𝜇0 = 0.2 for 𝜇𝑎𝑠𝑘 and 𝜇𝑏𝑖𝑑 . The function
clamp(𝑥) = min(1,max(−1, 𝑥)). Intuitively, when the MM’s inven-
tory inv𝑡 accumulates, the policy skews the volume distributions
on both sides of the limit order book (e.g., buy less and sell more
when inv𝑡 becomes large) to reduce the inventory and control the
risk.

6 Experimental Results
6.1 Performance
In Tables 1 and 2, the performance of twelvemarket-making policies
is presented in two market settings: one without informed ZI agents
and one with informed ZI agents. For each market setting, we train

an RL MM policy using Soft Actor-Critic [18] with a total number
of RL steps 5×104. We evaluate four metrics to measure the trading
effect of each market-making policy (including baselines and RL):
the MM’s payoff, the bid-ask spread, and the MM’s market share.

In the market without informed ZI agents (Table 1), the RL MM
policy achieved the highest average payoff among all market maker
policies, while the “MM at the touch” policy performed the worst.
The average payoff of the beta MM policies varied significantly
with different parameters. For instance, the beta policy with 𝛼 = 5
and 𝛽 = 5 achieved the second-highest average payoff, but its per-
formance dropped sharply with 𝛼 = 5 and 𝛽 = 1. The ladder policy,
a special beta policy, showed decent performance, supporting its
widespread use in prior research. Additionally, the inventory-driven
policy earned less payoff in this setting, as deliberately controlling
inventory could limit ones ability to benefits from other agents in
the market. Lastly, the market share of the best-performing policy
(i.e., the RL MM) was moderate, indicating that both excessive and
insufficient trading can lower the overall payoff for market making.

In the second market setting (Table 2), 13 out of 25 regular ZI
agents were replaced with informed ones. After introducing in-
formed traders, compared to Table 1, we observed a substantial de-
cline in the average payoffs of all MM policies, except for the MM at
the touch, underscoring the detrimental effect of adverse selection.
Notice that with the beta policies, adverse selection caused theMM’s
inventory to grow to 100 times the size it would have been without
informed traders. This substantial increase in inventory led to a
significant loss in value, highlighting the danger of inventory risk.

An interesting observation in the results with informed traders is
that the MM at the touch is the only policy to earn a positive payoff.
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This can be attributed to the large number of informed traders who
bid around the true fundamental, which causes the midprice to
become a better estimate of the final fundamental compared to the
one used by the MMs. With this improved estimate, the MM at the
touch policy can exploit the regular ZI agents and generate profits.
Alongside the MM at the touch policy, the RL MM was found to be
the most resilient policy to adverse selection, with the inventory-
driven policy coming in as the second most resilient. However, the
RL MM underperformed compared to the MM at the touch due
to its restricted action space, which was confined to several price
levels around the estimated fundamental. This limitation possibly
excluded the current best bid and best ask prices. Theoretically,
the number of price levels can be set extremely high to encompass
all prices, including any best bid and best ask. Nevertheless, an
extensive number of price levels will significantly flatten the volume
distributions (making them nearly uniform), which would cause
the RL policy to resemble the ladder policy, thereby diminishing
the effectiveness of market making. This flattening effect can be
easily verified by examining Equation 2 and considering a large
n_levels. Despite this restriction, the RL MM demonstrated much
stronger resilience to adverse selection than other market-making
policies. Moreover, the inventory-driven policy, designed to prevent
inventory accumulation, also showed good resilience compared to
beta policies. Interestingly, in many simulations, we observed that
the RL MM consistently held a higher inventory compared to the
inventory-driven policy. This indicates that the optimal strategy
to counter adverse selection may not solely rely on controlling
inventory. Instead, it involves quickly adapting by broadening the
trading spread when risks increase and narrowing it when market
conditions become more stable.

Policy Type 𝝎 𝜶 𝜷 Uninformed Informed

Ladder MM 60 - - 4.48 × 106 −8.67 × 107

Beta MM 60 1 2 4.28 × 106 −8.81 × 107

Beta MM 60 1 5 3.68 × 106 −1.05 × 108

Beta MM 60 2 1 4.46 × 106 −6.86 × 107

Beta MM 60 2 2 4.81 × 106 −7.89 × 107

Beta MM 60 2 5 4.61 × 106 −9.87 × 107

Beta MM 60 5 1 2.89 × 106 −4.98 × 107

Beta MM 60 5 2 3.65 × 106 −5.53 × 107

Beta MM 60 5 5 4.75 × 106 −6.89 × 107

Invt MM 60 - - 4.32 × 106 −4.20 × 107

RL MM 60 - - 4.98 × 106 −2.10 × 107

Table 3: The payoffs of MMs with a wider spread.

Furthermore, we found that the beta policy with 𝛼 = 5 and 𝛽 = 1
outperformed all other beta policies. This can be visually interpreted
by examining the volume distribution shown in Figure 3(f). Due to
the inaccuracy in the estimated final fundamental, placing orders
near this estimate can result in payoff losses. Consequently, the
parameters that led to superior performance tend to distribute
volume away from the estimate, meaning buy orders are submitted
at lower prices and sell orders at higher prices.

Finally, we observed that while the ladder MM achieved good
payoffs in the absence of informed traders, its performance sig-
nificantly declined with their introduction. This suggests that the
effectiveness of a ladder MM is highly dependent on the market

setting, particularly the types of market participants; otherwise, it
could fail to market make effectively. In Table 3, we provide more
results on the performance of market-making policies with a wider
spread 𝜔 = 60. Our findings for 𝜔 = 10 and for 𝜔 = 60 are consis-
tent, with the exception that the optimal parameters for the beta
policy adjust in response to the change in spread.

6.2 Adaptability of RL Policy
The success of the RL market-making policy can be attributed
to three main factors: its adaptability (within its trained market),
the use of a general functional form (such as a neural network),
and features other than inventory. We specifically examine the
adaptability in the two market settings separately. In Figure 4(a),
we plot the changes in the RL policy outputs, 𝛼 and 𝛽 , during
a single simulation in the market with uninformed background
traders. Initially, 𝛼 becomes very large while 𝛽 becomes very small,
resulting in volume being distributed far from the spread (similar to
Figure 3(f)). This occurs because, at the early stage, the MM cannot
accurately estimate the final fundamental value. Consequently, the
RL policy learns to reduce the risk of trading with the inaccurate
estimate, thus distributing volume away from the estimate (i.e.,
placing buy orders at lower prices and sell orders at higher prices).
As the simulation advances, the time step left in the observation
declines and then the estimate becomes increasingly accurate. Since
all agents trade around the same estimate (i.e., there are no informed
traders), the market spread begins to narrow and the RL policy also
narrows its trading spread gradually to get its orders transacted. As
a result, the values of 𝛼 and 𝛽 quickly converge, leading to normal
trading activity and producing volume distributions similar to those
shown in Figure 3(h).

(a) Without informed ZI (b) With informed ZI

Figure 4: The evolution of 𝛼 and 𝛽 in a sample simulation.

However, when informed background traders are introduced,
the estimated fundamental value becomes much less accurate, fur-
ther increasing the risk of trading around it. This heightened risk
can lead to substantial losses for both RL and uninformed traders.
Consequently, the RL policy adjusts by placing buy orders at even
lower prices and sell orders at even higher prices, significantly dis-
tributing volume away from the estimate. This can be achieved by
maintaining a high value for 𝛼 and a low value for 𝛽 until the very
end of the simulation, when the accuracy of the estimate improves,
as shown in Figure 4(b). This example demonstrates the RL’s ability
to adapt to different market conditions, which is crucial for the
success of RL in market making.
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7 Conclusion and Discussion
We combine deep RL with beta distributions to develop a market-
making policy capable of adapting to varying market conditions.
Leveraging deep RL, our approach avoids assuming a specific func-
tional form for the market-making policy and does not depend
on strong assumptions about prior knowledge of the underlying
market. By meticulously designing the reward function and obser-
vation features, we demonstrate that our RL beta policy outperform
the baseline policies in two market settings with differing levels of
inventory risk. Finally, we highlight the strong adaptability of the
learned RL beta policy, underscoring its crucial role in achieving
superior performance compared to other market-making policies.

Based on this work, several future research directions are worth
exploring. Firstly, in the experiments, each RL beta policy is trained
specifically for an individual market, limiting each policy to the spe-
cific market conditions it was designed for. A promising research
avenue would be to investigate whether a single RL beta policy can
be effectively trained across multiple markets with varying charac-
teristics (e.g., different proportions of informed versus uninformed
traders). Secondly, as these experiments are conducted within a
market simulator rather than using real-world trading data, an-
other potential research direction would be to evaluate the RL beta
policy’s performance on actual trading data, such as that provided
by LOBSTER. Thirdly, further investigation into the performance
of the RL beta policy could involve adjusting some of the initial
experimental assumptions. For instance, our experiments assume
that MMs are uninformed and passively provide liquidity, while, in
reality, MMs are often sophisticated, informed agents. Thus, future
research could examine the RL beta policy under conditions where
the MM is modeled as a more informed, competitive agent.
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