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Abstract— Online unsupervised video object segmentation
(UVOS) uses the previous frames as its input to automatically
separate the primary object(s) from a streaming video without
using any further manual annotation. A major challenge is that
the model has no access to the future and must rely solely on
the history, i.e., the segmentation mask is predicted from the
current frame as soon as it is captured. In this work, a novel
contrastive motion clustering algorithm with an optical flow as its
input is proposed for the online UVOS by exploiting the common
fate principle that visual elements tend to be perceived as a
group if they possess the same motion pattern. We build a simple
and effective auto-encoder to iteratively summarize non-learnable
prototypical bases for the motion pattern, while the bases in
turn help learn the representation of the embedding network.
Further, a contrastive learning strategy based on a boundary
prior is developed to improve foreground and background
feature discrimination in the representation learning stage. The
proposed algorithm can be optimized on arbitrarily-scale data
(i.e., frame, clip, dataset) and performed in an online fashion.
Experiments on DAVIS16, FBMS, and SegTrackV2 datasets show
that the accuracy of our method surpasses the previous state-
of-the-art (SoTA) online UVOS method by a margin of 0.8%,
2.9%, and 1.1%, respectively. Furthermore, by using an online
deep subspace clustering to tackle the motion grouping, our
method is able to achieve higher accuracy at 3× faster inference
time compared to SoTA online UVOS method, and making a
good trade-off between effectiveness and efficiency. Our code is
available at https://github.com/xilin1991/CluterNet.

Index Terms— Object segmentation, image motion analysis,
unsupervised learning, self-supervised learning, optical flow,
clustering methods.

I. INTRODUCTION

WHEN looking around in a dynamic scene, visual ele-
ments moving at the same speed and/or direction tend
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Fig. 1. Motion grouping. (a) The RGB image with ground truth; (b) the
optical flow visualized by the inset color wheel; (c) the motion segmentation
using our proposed prototypical subspace clustering framework (clusters k=5).
According to the prototypical subspace bases, we clustered different motion
patterns (i.e., A-red, B-green, C-grey, D-cyan, and E-dark red). sim(·) is
the similarity of different motion patterns and is normalized to [0, 1].

to attract human attention as part of a single stimulus. This
principle is called common fate and is theorized by Gestalt
psychology [1]. A common example is a BMX rider going
through dirt jumps. If the rider and the BMX bike have the
same trajectory, they are perceived as the same motion group.
The background, which has a different trajectory than the
BMX rider, does not appear to be part of the same group,
as shown in Fig. 1.

According to the Gestalt principle of common fate, objects
should share a common destination, moving together consis-
tently throughout the scene. Therefore, the motion of objects
can serve as an important cue for video object segmentation
(VOS). In computer vision, the pixel-wise motion in the
scene can be obtained from an optical flow estimation and
used to determine, segment, and learn the objects. In the
recent literature of VOS, many learning-based models [2], [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17] have been proposed to learn more discriminative
objectness by leveraging motion information. While such
models through supervised learning require massive pixel-
wise annotations, they are limited to a small range of object
categories predefined in the datasets. To reduce the cost of
data labeling, numerous unsupervised approaches [18], [19],
[20], [21], [22], [23], [24] have been proposed that use
the motion cues. However, traditional physics-optimization-
based approaches incur significant computational costs due to
the optimization process over the entire video. Unsupervised
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methods [25], [26], [27] based on deep neural networks have
gained significant advantage by learning a deep representation
on a video dataset. Although those methods achieve good
performance, they cannot handle streaming video because they
work offline and require the entire video to be processed before
making predictions.

Unlike unsupervised video object segmentation (UVOS) in
the offline setting, a major challenge for online UVOS is
that the inference is performed solely on observations of the
past, without utilizing the information from video frames in
the future. While processing video online is beneficial for
many applications, such as video compression [28], [29], [30],
[31], analysis [32], [33], [34], [35], [36], and editing [37].
Tokmakov et al. [38] proposed an end-to-end network to map
the optical flow to motion segmentation, followed by an object
proposal model [39] to extract the candidate objects. Similarly,
Zhou et al. [40] proposed a method based on salient motion
detection and object proposals which were directly predicted
by a pre-trained model [41] without fine-tuning to obtain final
CRF refined results. While these methods require training
on a large dataset or object masks, they incur computational
cost in the optimization (training) and inference process.
In addition, some online UVOS methods suffered from another
shortcoming: inappropriate use of motion cues. For exam-
ple, Taylor et al. [42] used long-term temporal information to
initialize the target object on a few frames for online unsu-
pervised framework. However, uninformative history frames
cause error accumulation during the propagation, which
degrades the performance of online UVOS. Perazzi et al. [43]
employed a salient detection method without considering the
object information and motion cues of video content, which is
a limitation in UVOS where the segmented object was defined
as the main object in the scene with a distinctive motion.

We argue that an online UVOS model must predict
frame-level segmentation in correlation to what happened
hitherto, and as efficiently as possible for the online set-
ting. Therefore, an online UVOS model should satisfy the
following criteria: (i) frame-by-frame manner, (ii) relatively
fast optimization and inference, and (iii) short-term temporal
dependence.

In this paper, a novel online UVOS algorithm is proposed by
using an efficient and accurate online deep subspace clustering
for motion grouping, which directly factorizes the optical flow
into k groups corresponding to k subspaces. The proposed
algorithm processes one video frame at a time without any
additional pre/post-processing (i.e., [44], [45]), and the results
for the frame is depend only on the previous frame. A simple
video auto-encoder model is designed to summarize a set of
subspace prototypes from the latent space, where the deep
auto-encoder is optimized on each individual video sequence
and does not require training on a large dataset. Specifically,
the motion segmentation problem is addressed by training a
generative model that is used to learn an embedded represen-
tation Z of the optical flow. The Z is then combined with
the centers of each segment, i.e., the prototypes, to construct
the subspace affinity vector S for pixel assignments. Each
pixel is assigned to the nearest prototype without relying on
additional learnable parameters. The prototypes are formed

Fig. 2. Paradigm of the proposed clustering method. We iteratively summa-
rize prototypical bases from the embedded representation Z, and the Z are
then combined with the prototypes to compute the affinity S.

by clustering nearby points in the embedding space. They
represent motion groups following the common fate principle.
The network structure of the proposed method is illustrated
in Fig. 2. In order for the auto-encoder to effectively learn
the discriminative features between the foreground and back-
ground, we further exploit an important scene prior [46], i.e.,
the optical flow at the boundary of an image is significantly
different from the motion direction of the object of interest,
to design a pixel-level contrastive learning strategy.

Overall, our main contributions are: 1) a novel online deep
subspace clustering method for the online UVOS by exploit-
ing the motion cue; 2) an effective optimization approach
for the online clustering that can handle an arbitrary video
independently without being trained on large datasets; and
3) a pixel-level contrastive learning strategy that significantly
improves the foreground and background feature discrimina-
tion for the auto-encoder. To validate these contributions, the
proposed method is evaluated on three public benchmarks (i.e.,
DAVIS16, FBMS, and SegTrackV2); the proposed algorithm
outperforms state-of-the-art (SoTA) online UVOS models,
while being faster to optimize and infer.

II. RELATED WORKS

Motion Segmentation is to identify and segment inde-
pendently moving objects in a video, that is, to solve the
problem of motion grouping. Many approaches tackle the
issue from a motion clustering point of view. Shi and Malik
considered motion segmentation as a spatio-temporal image
clustering problem [47]. To increase robustness, some methods
use motion cues, such as point trajectories [48], [49], [50],
[51] or optical flow [19], [52] accumulated over multiple
frames, to segment moving objects. Luo et al. [24] proposed
a complexity awareness framework that exploits local clips
and their relationships for motion segmentation. Kumar et al.
proposed an algorithm to obtain the initial estimate of the
model by dividing the scene into rigidly moving components
to solve a grouping problem to associate pixels into a number
of motion clusters [53]. Brox and Malik defined pairwise
distances between point trajectories from adjacent frames for
the motion clustering [54]. Ochs and Brox [55] adopted the
spectral clustering on hypergraphs which is a similarity map
obtained from a third motion vector, instead of pairs [54] to
segment point trajectories.

It is worth noting that Xie et al. [56] also inserted motion
clustering into their object segmentation problem pipeline.
However, under the premise of a supervised setting, this



method introduces a pixel-trajectory recurrent neural network
that learns the trajectories of foreground pixels and clusters
pixels over time. In contrast, the proposed algorithm learns
motion patterns only using the optical flow without requiring
any manual annotation. In addition, our resulting feature
representations which are optimized on individual videos give
us a global dependence over entire videos.

Unsupervised Video Object Segmentation aims to auto-
matically identify and segment the most visually prominent
objects from the background in sequences, unlike semi-
supervised [57], [58], [59], [60], [61] and referring [62],
[63], [64] video object segmentation which involves human
inspection. Recently, many approaches [2], [3], [38], [65], [66]
have been proposed to tackle the offline UVOS. Although
the term “unsupervised” is used here, in practice there are
some differences from fully unsupervised settings. In general,
many popular algorithms [4], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17] require supervised training on
large-scale datasets to obtain the segmentation masks. Alterna-
tively, a number of works [25], [26], [27] based on the offline
setting employ a deep neural network to discover the objects
of interest from the perspective of completely unsupervised
concepts in the traditional methods. Lu et al. [67] proposed a
unified framework for unsupervised learning, aimed at object
segmentation through the exploitation of the inherent consis-
tency across adjacent frames in unlabeled videos. Similar to
our work, Yang et al. [26] used slot attention [68] to learn to
segment objects in a self-supervised manner, and also took the
optical flow as the input of the auto-encoder, which is a type
of generative model (e.g., VAEs [69] and GANs [70], [71]),
but slot attention and binding graph neural networks (GNN)
rely on large-scale datasets for training. DyStaB employs static
and dynamic models to learn object saliency from motion
in a video, which can then be applied at inference time
to segment objects, even in static images [25]. Deformable
Sprites (DeSprites) [27] are a type of video auto-encoder
model that is optimized on each individual video. Our work
also optimizes an auto-encoder on a specific sequence in an
unsupervised manner. Unlike the SoTA offline UVOS method
DeSprites, our goal is to cluster the points that share motion
patterns in the embedding space, which significantly improves
the effectiveness of the optimization and reduces the inference
time for online UVOS.

Subspace Clustering is to segment the original data space
into its corresponding subspace. Classical subspace clustering
methods used kernels to transform the original data into
a high-dimensional latent feature space in which subspace
clustering is performed [72]. Recently, there have been a few
works that used deep learning techniques for feature extraction
in subspace clustering. Ji et al. developed a convolutional
auto-encoder network combined with a self-expression mod-
ule [73], which showed significant improvement on several
image datasets. Instead of constructing the affinity matrix for
subspace clustering, Zhang et al. utilized deep neural networks
to iteratively project data into a latent space and update the
k-subspaces [74]. In [75] and [76], a k-factorization subspace
clustering was proposed for large-scale subspace clustering,
which effectively reduces the complexity of clustering.

In this paper, we attempt to develop a joint optimization
framework for the online UVOS that can simultaneously learn
feature representation and subspace clustering. Inspired by the
effectiveness of the k-FSC model [75], we combine a powerful
CNN to define k non-learnable prototypes in the latent space
as the k-subspace of clustering.

Contrastive Learning is an attention-grabbing unsuper-
vised representation learning method that maximizes the
similarity of positive pairs while minimizing the similarity
of negative pairs in a feature space [77], [78]. Li et al.
proposed the contrastive clustering method, which per-
forms dual contrastive learning at the instance and cluster
level under a unified framework [79]. By adopting the
foreground-background saliency prior [46] for contrastive
learning, we propose a novel pixel-level contrastive learning
framework without the requirement of image-level supervi-
sion. Features from the foreground are pulled together and
contrasted against those from the background, and vice versa.

III. METHODS

In our “online unsupervised” setting, an optical flow is taken
as our input and all pixels are assigned into different groups to
predict a segment containing the moving object by an online
deep subspace clustering on top of non-learnable prototypes.
One video frame at a time is processed, and the results for
the frame depend only on the previous frame. The overall
framework of the proposed method is shown in Fig. 3.

Problem Formulation 1: Let {X(i)
t→t+1t ∈ RH×W×2

}
N
i=1

(N ∈ N∗) denote optical flow frames from the individual
video, where H ×W indicates the spatial resolution of images.
Assume that a pixel point x(s)

t→t+1t (s ∈ RH×W ) in an
optical flow frame is drawn from a p-dimensional subspaces
{S j } j=1,··· ,k (i.e., x(s)

t→t+1t ∈ S j ), where k clusters correspond
to k different subspaces. For j = 1, . . . , k, the pixel point
x(s)

t→t+1t can be formally represented as:

x(s)
t→t+1t = g(U j v) + ϵ, (1)

where one subspace can be expressed by a specific subspace
base U j ∈ Rp×r j (p < r j ), v ∈ Rr j denotes a random
variable, ϵ ∈ R2 is random noise, and g : Rp

→ R2. Find
k cluster patterns from the r-dimensional latent space U and
p < r .

A. Network Formulation

The auto-encoder is a widely used self-supervised model
and it can embed the raw data into a customizable latent space.
A network architecture consisting of multiple convolutional
layers is adopted to map the optical flow into the r -dimensional
latent space U , and then the p-dimensional embedding features
Z ∈ R

H
c ×

W
c ×p is denoted by

Z = F(8(X)) + A(F(8(X))), (2)

where c is a scale, and a feature multi-layer perceptron (MLP)
which is stacked after the embedding features 8(X) is denoted
by F : Rr

→ Rp (p < r ). A spatial attention module A(·),
which is implemented by the sum of max and average pooling



Fig. 3. The overview optimization diagram for our proposed method with the optical flow as our input. Given an optical flow X , we utilizes auto-encoder to
embed it into a p-dimensional embedding feature Z and outputs its corresponding reconstruction X̂ . During the optimization phase, we iteratively summarize
non-learnable prototypical bases for the motion pattern, while the bases are constrained by our proposed contrastive learning strategy to help shape the feature
space. To obtain the final cluster labels, we use the proposed subspace clustering algorithm with a hard assignment to group each pixel to the prototypical
bases.

followed by an upsampling layer, is added to improve the
spatial stability.

The embedding features Z are fed into a decoder 9(·) to
reconstruct the optical flow, and the reconstruction loss Lc for
the auto-encoder is formulated as:

Lc =
1
S

∥ X − X̂ ∥
2
F=

1
S

∑
s∈S

∥ x(s)
− x̂(s)

∥
2
2 (3)

where X̂ = 9(Z) and S is the entire spatial grid. For
simplicity, the subscript t → t + 1t is omitted for the optical
flow ward in Eqs. 2 and 3. We only leverage the temporal
information from the previous frames for the optical flow
estimation, hence 1t < 0 in the online setting.

B. Non-Learnable Prototypical Subspace Clustering

Suppose P⊤X = X̄ , where X̄ = [X̄1, X̄2, · · · , X̄k] and
P is an unknown permutation matrix. According to the
assumption in the proposed Problem Formulation, once U j
is obtained from Eq. 1, the correct clusters are then identified.
This implies that the U j is not explicitly determined. Instead,
a neural network is exploited to replace Eq. 1 by approximat-
ing x(s), which yields the following formulation:

x̂(s)
= 9(Û j

ˆv(s)), (4)

where z(s)
:= Û j

ˆv(s) (z(s)
∈ L(s)), z(s) refers to the embedding

feature associated with pixel x(s), and L(s) indicates the true
cluster to which x(s) should be assigned. There exists a direct
correspondence between the spatial positions of embedding
features and pixels, establishing a one-to-one relationship
between z(s) and x(s). In fact, it is difficult to determine L(s)

directly. Now the embedding feature z(s) is ℓ2 normalized so
that it lies on the surface of a unit hypersphere, as shown in
Fig. 4. A new variable P ∈ Rp×k is introduced as the subspace
prototypes, where P = [P1,P2, · · · ,Pk] and ∥ P j ∥=1,
j = 1, · · · , k, and p is the dimension of each prototype. The
function of P j is to summarize the subspace S j , j = 1, · · · , k.

Fig. 4. The simplified diagram of p−1 dimensional unit hypersphere, where
each subspace corresponds to the surface area of the unit hypersphere centered
on different prototypes, denoted as P j . When ∥ P⊤

i P j ∥ is sufficiently small
for all i ̸= j , it means that each prototype P j on the unit hypersphere is
situated at a greater distance, enabling the identification of a suitable boundary
for clustering.

Thus ∥ P⊤

i P j ∥ is assumed to be small enough for all i ̸= j ,
i.e.,

∥ P⊤

i P j ∥≤ τ, i ̸= j, (5)

where τ is a small constant.
The embedding feature z(s) of a data sample is compared

with P j ( j = 1, · · · , k) to obtain the winning prototype as

α(s)
= arg max

j
∥ z(s)⊤P j ∥ . (6)

It is assumed that

s(s,α)
=∥ z(s)⊤Pα(s) ∥≫ max

j ̸=α(s)
∥ z(s)⊤P j ∥, s = 1, · · · , S,

(7)

where s(s,α) denotes the affinity. In other words, maximizing
the likelihood of Eq. 6 is assigning z(s) to one of P with a
probability distribution:

p(α(s)
|z(s)) =

exp(s(s,α))∑k
j=1 exp(s(s, j))

. (8)



An online clustering strategy is adopted to update α(s) so
that the pixels with the same motion pattern are assigned to
the prototype P j belonging to that subspace S j according to
s(s, j). It can be known from the permutation matrix P that
the mapping T that assigns the pixel x(s) to the prototypes is
related to it as

T⊤P⊤ Z ∝ P⊤X, (9)

where the column of T ∈ Rk×p is the one-hot assignment
vector of pixel x(s) over k prototypes. In other words, each
pixel is assigned to a single prototype, and the sum of pixels
matched by all the prototypes is equal to all pixels in the frame.
Thus, the augmented assignment T now has the following
constraints:

T⊤1k = 1S and T1S =
S
k

1k, (10)

where 1k denotes the vector of all ones of k dimensions.
The mapping T can be optimized by maximizing the

probability distribution p(α(s)
|z(s)) (Eq. 8) between the pixel

embedding Z and the prototypes P . The solution of the
above optimization problem corresponds to the optimal trans-
port [80]:

max
T∈RS×k

+

Tr(T⊤P⊤ Z) + κh(T ),

s.t. T⊤1k = 1S, T1S =
S
k

1k, (11)

where h(T ) is an entropy, and κ > 0 is a parameter that
controls the smoothness of the distribution. The efficient solver
on GPU of Eq. 11 can be given as the Sinkhorn algorithm [81],
[82]. Our online subspace clustering involves few matrix
multiplications, so it is computed by few steps of iteration.

With Eq. 6, the prototype P j is estimated from the
pixel-wise feature embeddings that are with the highest confi-
dence of clusters j ( j = 1, · · · , k). Specifically, for all pixels
assigned to subspace j , the prototype P j can be derived as
the average of the pixel-wise embeddings, which is the center
of the pixel embedding within segment j .

The proposed online subspace clustering method is per-
formed as follows: pixels with the same motion pattern are
first assigned to the prototype P j belonging to that subspace
S j , and then the prototypes are updated according to the
assignments. It is natural to derive a training objective for
pixel assignment from Eqs. 5 and 7 as

Lpc =
1
S

S∑
s=1

(1 − z(s)⊤Pα(s))
2, (12)

where Lpc indicates the prototypes’ discrinimitiveness, and

Lcc = −
1
S

S∑
s=1

log
exp(z(s)⊤Pα(s))

exp(
∑k

j=1 z(s)⊤P j )
, (13)

Lcc is the cluster contrastive loss.

C. Contrastive Learning Based on a Boundary Prior

Considering the fact that the motion of the foreground object
is different from that of the background [46], a pixel-level
contrastive learning strategy is introduced to improve the fea-
ture discrimination between the foreground and background.
A core design philosophy for this strategy is that the average
motion m of the boundary pixel is compared with all pixels
x(s) (s ∈ RH×W ) in the optical flow frame, so as to judge
the similarity between the pixels and the boundary motion
to determine whether it belongs to the background region.
The cosine similarity between each pixel x(s) and m is first
computed as:

s(s)
= 1 −

x(s)⊤m
∥ x(s) ∥∥ m ∥

. (14)

To determine the background region, a threshold δ is set
to binarize the similarity map derived by Eq. 14. After then,
the foreground and background sets are obtained by K+

=

{x(+)
|s(s) < δ} and K−

= {x(−)
|s(s) ⩾ δ}, respectively. Thus,

the foreground region K+ and the average motion m f of the
foreground pixels are treated as a pair. And the same is true
for the background region K− and the average motion mb
of the background pixels. Our contrastive learning framework
aims to maximize the distance between the foreground and
background representations. The final saliency contrastive loss
is formulated as:

Lsc = −
1

∥ K− ∥

∑
K−

log
exp(x(−)⊤mb)

exp(x(−)⊤mb) + exp(x(−)⊤m f )

−
1

∥ K+ ∥

∑
K+

log
exp(x(+)⊤m f )

exp(x(+)⊤m f ) + exp(x(+)⊤mb)
.

(15)

When the contrastive loss Lsc is applied to pull close and push
apart the representations in positive and negative pairs, the
motion pattern of the foreground object and the background
in the optical flow are gradually separated.

D. Optimization

Stochastic gradient descent (SGD) is adopted to learn the
parameters of the model, which consists of an auto-encoder,
a feature MLP, and a spatial attention module.

Now we show how to solve the VOS using our proposed
contrastive motion clustering algorithm. We initialize the
parameters of the auto-encoder by Eq. 3. The prototypes P j
( j = 1, · · · , k) are initialized by a Gaussian distribution and
are normalized to have unit ℓ2 norm.

At iteration t , we first obtain the embedding features Z
using the auto-encoder and apply ℓ2 normalization. Then,
we assign the label α to each pixel with a posterior probability
as in Eq. 8. In the cluster setting, we use the Sinkhorn
algorithm [81] with hard assignment to group each pixel for
the prototypes P j ( j = 1, · · · , k), as proposed in Eq. 11.
As the M-step of the Expectation-Maximization (EM) frame-
work, the prototypes are then updated by accounting for the
online clustering results. The non-learnable prototypes P j are



not learned by SGD, but are computed as the centers of the
corresponding feature representations Z. In particular, in each
training iteration, each prototype is updated as:

P j =
1

|S j |

∑
α(s)= j

z(s), (16)

where |S j | is the number of pixels belonging to this subspace
S j , and s denotes the spatial position. Meanwhile, we compute
and binarize the saliency map by Eq. 14 to obtain K+ and
K− sets for boundary prior-based contrastive learning. The
parameters of our model are directly optimized by minimizing
the combinatorial loss over all training pixel samples from the
each video:

L = Lc + λ1Lpc + λ2Lcc + λ3Lsc. (17)

After performing each training iteration, the cluster labels
are obtained from the maximum matching formula in Eq. 6.
To guide the object segmentation, we use the boundary motion
information as a prior. We found the optimal assignment
between foreground and background with the Hungarian
algorithm, using the cosine similarity between each prototype
P j and the background region K− as a cost function with
a threshold of η. Unlike the foreground region K+, the
background region K− tends to be more robust to noise than
it.

For each frame, the online subspace clustering is then
performed to achieve unsupervised motion segmentation. The
whole optimization process is detailed in Algorithm 1. The
proposed method achieves a joint optimization of subspace
clustering and embedded representation learning.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets and Evaluation Metrics: To test the per-
formance of our online subspace clustering, we carry out
comprehensive experiments on the following three UVOS
datasets:

DAVIS16 [83] is currently the most popular VOS benchmark,
consisting of 50 high-quality video sequences (30 videos
for the train set and 20 for the val set). Each frame
is densely annotated with pixel-wise ground truth for the
foreground objects. We perform online clustering and eval-
uation on the validation set. For quantitative evaluation,
we adopt standard metrics suggested by [83], namely region
similarity J , which is the intersection-over-union of the
prediction and ground-truth, computing the mean over the
val set.

FBMS [51] contains videos of multiple moving objects, pro-
viding test cases for multiple object segmentation. The FBMS
has 59 sparsely annotated video sequences, with 30 sequences
for validation.

SegTrackV2 [84] contains 14 densely annotated videos and
976 annotated frames. Each sequence contains 1-6 moving
objects and presents challenges such as motion blur, appear-
ance change, complex deformation, occlusion, slow motion,
and interacting objects.

Algorithm 1 Contrastive Clustering of Optical Flow
for Online UVOS
Input: Optical flow; Number of clusters k; Embedding

dimension r ; Subspace dimension p;
Hyperparameters κ , δ, η, λ1, λ2 and λ3;
Maximum iteration Tmax.

Output: Cluster labels of pixels.

1 Initialize auto-encoder by minimizing Eq. 3.

2 Initialize non-learnable prototypes from Gaussian
distribution and apply ℓ2 normalization.

3 while t ⩽ Tmax do
4 Learn embedded representation Z.
5 Compute cluster labels by solving Eqs. 8 and 11.
6 Update non-learnable prototypes according to

cluster labels as in Eq. 16.
7 Compute and binarize the saliency map by Eq. 14

to obtain K+ and K− sets, respectively.
8 Update the network parameters by minimizing the

objective function in Eq. 17.
9 end

10 Use Eq. 6 to obtain the final updated cluster labels.
11 Assign pixel-wise foreground/background labels with

the Hungarian algorithm based on boundary prior.
12 return Foreground/Background labels of pixels.

Following the evaluation protocol in [23], we combine
multiple objects as a single foreground and use the region
similarity J to measure the segmentation performance for the
FBMS and SegTrackV2.

2) Implementation Details: The optical flow is estimated
by using the RAFT [85] and FlowFormer [86]. The flows
are resized to the size of the original image [26], with each
input frame having a size of 480 × 854 for the DAVIS16 and
480 × 640 for the FBMS and SegTrackV2. We convert the opti-
cal flow to 3-channel images with the standard visualization
used for the optical flow and normalize it to [−1, 1], and use
only the previous frames for the optical flow estimation in the
online setting.

We construct our model with a CNN encoder of architecture
[64, MP, 128, MP, 256] and a decoder with deconvo-
lutional layers (or transposed convolution) [87], [88] that
can be used for learnable guided upsampling of interme-
diate encoder representations. Here, MP denotes a max
pooling layer with stride 2. The output dimension of the
embedding network 8(·) is 256, i.e. r = 256. In MLP,
the number of hidden units is [256, 256] with ReLU as
the activation function for the hidden layer. The output
dimension p is 10. We first initialize our auto-encoder by
pre-training 10 epochs on DAVIS16 val, which takes about
7 minutes for DAVIS16 with 480 × 854 resolution. The
whole network is trained using the Adam [89] optimizer
(β1 = 0.9 and β2 = 0.999) with a learning rate of 10−3. The
hyper-parameters are set empirically to: κ = 0.05, δ = 0.1,
η = 0.5, λ1 = λ2 = λ3 = 0.01, and Tmax=100. We also discuss
the impact of different values of the hyper-parameters in
Section IV-B.



TABLE I
COMPARISON OF THE THREE DIFFERENT OPTICAL FLOW METHODS

AS THE INPUT ON THE DAVIS16 DATASET, MEASURED BY THE
MEAN J . IN THE INFERENCE STEP, WE EMPLOY MULTI-SCALE

AND CRF TO IMPROVE THE FINAL PERFORMANCE OF MG [26]

TABLE II
ABLATION STUDY OF THE SPATIAL ATTENTION MODULE ON THE

DAVIS16 DATASET, MEASURED BY THE MEAN J . WE EMPLOY
AN AUTO-ENCODER, WHICH IS IMPLEMENTED BY DIRECTLY

CONNECTING THE ENCODER 8(·) AND THE
DECODER 9(·) AS THE BASELINE FOR ALL

EXPERIMENTS, DENOTED AS AE

B. Ablation Studies

To demonstrate the influence of each component and
hyper-parameters in our method, we perform an ablation study
on the DAVIS16 val set. The evaluation criterion is the mean
region similarity (J ).

1) Choice of Optical Flow Algorithm: Our model takes only
the optical flow as the input to solve the motion grouping
problem. Table I shows the effect of the quality of different
inputs. With the same optical flow estimation methods (i.e.,
PWC-Net [90], RAFT [85], and FlowFormer [86]), our pro-
posed algorithm outperforms MG [26] by 4.2%, 3.7%, and
5.1% points, respectively, in terms of mean J on the DAVIS16
val set. The improved optical flow model (FlowFormer)
further enlarges performance gains. Thus, the optical flow
estimated by the FlowFormer is the input to our model.

2) Effectiveness of Spatial Attention Module: To verify
the effect of the spatial attention module A(·) in Eq. 2,
we gradually remove the spatial attention module A(·), the
average pooling, and max pooling in our auto-encoder, denoted
as AE, w/. max pooling, and w/. average pooling, respectively.
This means that the embedding features Z are directly fed into
the decoder 9(·), where we employ AE as the baseline for
the ablation study. The results can be referred to in Table II.
Compared to the baseline, the variants with max pooling and
average pooling can independently boost the performance by
2.4% and 2.2%, respectively. Based on these high-performance
variants, the spatial attention module A(·), which combines
max and average pooling operations to enhance losing impor-
tant information on the regions of object boundaries, further
improves the performance by 3.3% in terms of mean J . This
demonstrates the superiority of the spatial attention module.

3) Training Objective: We investigate our overall training
objective (Eq. 17). As shown in Table IIIa, the model with
Lc alone achieves a mean J score of 73.9%. Adding Lsc
brings a gain (i.e., 0.5%), which shows that it effectively

improves the discriminability of foreground and background.
After applying Lpc or Lcc individually, we observe that our
model achieves improvements (i.e., 0.4%/0.2%), and their
combinations further improve the performance by nearly 1.0%.
These facts not only demonstrate the effectiveness of Lpc
and Lcc but also indicate that the contributions of the two
constraints are almost orthogonal. Finally, combining all the
losses together leads to the best performance, yielding a mean
J score of 75.4%. This further confirms the effectiveness of
our training objective.

4) Initialization of Prototypes: We evaluate the different ini-
tialization strategies of the prototypes on the DAVIS16 dataset
to get a better impression of the performance. Table IIIb shows
the results of prototypes initialized by the vector 0, the vector
1, the orthogonal vectors [92], the uniform distribution U(0, 1),
the standard normal distribution N (0, 1), and the truncated
normal distribution N (0, 1). We notice that the prototypes
filled with vectors 0 and 1 yield the worst performance
compared to initializing the prototypes randomly. An improper
initialization of the prototypes is problematic, and the constant
initialization cannot guarantee the orthogonality of the proto-
types and prevent all of them from collapsing onto a single
point. It reveals that our method is sensitive to the initializa-
tion. We also compare different random initializations for the
prototypes. We see that the random initialization outperforms
the constant and the Gaussian initialization outperforms all the
strategies. Fig. 5 presents the t-SNE [91] visualization of the
learned embedded representation on the bmx-trees sequence
from the DAVIS16 dataset. In particular, without the random
initialization of the prototypes, the representation learned from
the auto-encoder failed to find a good clustering structure,
leading to a somewhat inferior visualization. In contrast, the
embedded representation leaned from the model with random
initialization becomes significantly discriminative, and the
proposed method can achieve promising performance when
we have a good initialization of prototypes.

5) Number of Clusters: Table IIIc reports the performance
of our approach with regard to the number of clusters k.
For k = 2, we directly segment foreground-background into
2 groups. This baseline obtains a score of 65.6%. We can
see that as k increases, the mean J first increases and then
decreases. Furthermore, when we use more clusters (i.e.,
k = 5), we see a clear performance boost (65.6%→69.2%).
The score improves further when k = 20 or k = 30 is allowed;
however, increasing k beyond 30 gives marginal returns in
performance. Therefore, we empirically set k = 30 for a better
trade-off between the accuracy and computational cost.

6) Background Threshold: To discriminate the foreground
from the background distractors, we introduce boundary
motion information as prior knowledge and propose a con-
trastive loss based on a boundary prior to guide object
segmentation. Fig. 6 shows the t-SNE [91] visualization of
the embedded representation learned by the proposed method
on the camel sequence from the DAVIS16 dataset in different
iterations, as it is important to understand how the repre-
sentation evolves during training. In this scenario, when a
similar object ditractor and texture background appears (e.g.,
the small camel around the target object), our model fails to



Fig. 5. Visualization of the embedded representations Z with t-SNE [91] on the bmx-trees sequence from the DAVIS16 dataset. Note that the number of
prototypes k is set to 5 for each initialization condition, and we optimize our model for 10 iterations on each frame. ■ represents the each prototype P j .

Fig. 6. Visualization of the distribution of the background region K− (blue region) and the each prototype P j (square) during the training iteration. Based on
the cosine similarity between each prototype P j and the background region K−, we draw a contour with a threshold of 0.5. A darker color indicates a higher
similarity. Based on the observations, the distribution of prototypes is iteratively refined. The prototype of the foreground objects ( ) far away from that of
the background center ( ) and the background distractors (e.g., and ) can be filtered by contrastive learning based on a boundary prior. The segmentation
results of each iteration are shown in the upper left corner of each figure. t-SNE [91] is used to reduce the dimensionality of the features.

TABLE III
ABLATION STUDIES OF THE PROPOSED METHOD ON THE DAVIS16 DATASET, MEASURED BY THE MEAN J

capture the primary target in early iterations. However, with
the help of the contrastive loss based on a boundary prior,
we see that the embedded representation of the foreground
object becomes more and more discriminative as the training
iterations increase. For each video, the background region
K− explicitly maintains the consistency of the motion across
the entire video. We empirically choose δ for the foreground
saliency map decision to evaluate our model. The results are
listed in Table IIId. We can see that when as δ increases, the

mean J decreases. As a result, we empirically set δ = 0.1 with
the best performance.

C. Comparison With SoTAs

To widely discuss the speed-accuracy trade-offs in online
methods, we show the detailed results in Table IV, with seven
online UVOS methods, e.g., FSEG [4], SAGE [21], SFM [43],
and UOVOS [40], taken from the VOS benchmark.



TABLE IV
QUANTITATIVE RESULTS ON THE VAL SET OF VIDEO OBJECT SEGMENTATION BENCHMARKS, USING THE REGION SIMILARITY J .

THE BEST PERFORMANCE SCORES ARE HIGHLIGHTED IN BOLD. THE EXTRA MODEL IN THE FIFTH COLUMN DENOTES THE
REQUIRED PRE-TRAINING MODEL. RUNTIME EXCLUDES THE OPTICAL FLOW COMPUTATION. OF AND RGB

REPRESENT THE OPTICAL FLOW AND RGB IMAGE, RESPECTIVELY

Fig. 7. Qualitative results of the proposed method on challenging scenarios from the DAVIS16. From left to right: dynamic background (breakdance, camel,
and drift-chicane), motion blur (bmx-trees, dance-twirl, and motocross-jump), and occlusion (horsejump-high, kite-surf, and libby). The ground truth is shown
in the top row, and our results are shown in the bottom row.

1) DAVIS16 val: As shown in Table IV, our method
achieves the best performance among all of the online algo-
rithms in terms of mean J . Compared to the second-best
method UOVOS [40] which uses the pre-trained Mask
R-CNN [41] to remove the moving background regions, our
model achieves a gain of 0.8% in mean J . It is worth
noting that our model relies on an auto-encoder without
any other additional neural network structures to implement
online subspace clustering for the UVOS. In terms of runtime
efficiency, SFM [43] is the only faster online segmentation
method implemented in C++. We achieve a much higher
region similarity (22.2%) while being faster.

We also show qualitative results in Fig. 7. We choose some
videos from the DAVIS16 dataset with the cases of dynamic
background, motion blur, and occlusion. It can be seen that
our model can handle different challenges. For example,
our method can segment foreground objects when they are
occluded by the background, as shown in the occlusion case
in Fig. 7. When a similar object distractor appears (e.g., the
crowd in breakdance, or the small camel in camel), our method
is able to discriminate a foreground target from background
distractors.

2) FBMS val: As shown in Table IV, our method signifi-
cantly outperforms all previous published works on the FBMS
val set compared to online UVOS methods. For instance,
on the mean J metric, our method surpasses UOVOS [40] by
2.9% and SAGE [21] by 5.2%. In comparison to the perfor-
mance on DAVIS16, our method has a certain gap (i.e., 8.6%)
on the FBMS dataset. This is because our method relies only
on the optical flow, and some sequences of the FBMS dataset
contain multiple objects in a single video. In these challenging

videos, only a subset of objects are moving, so it is difficult to
determine all the objects by optical flow without considering
other cues.

3) SegTrackV2 val: We also report the performance of the
low-resolution dataset in Table IV. Compared to the high-
resolution DAVIS16 dataset, it is more difficult to train an
accurate optical flow model on the SegTrackV2 dataset. Our
algorithm outperforms the online methods, i.e., SAGE [21],
FSEG [4], and UOVOS [40], by 5.0%, 1.2%, and 1.1%,
respectively, in terms of mean J , respectively. However,
compared to the high-resolution datasets (i.e., DAVIS16 and
FBMS), our method performs worse on the SegTrackV2 dataset
for the following reasons: 1) we have only grouped the pixels
that possess the same motion pattern based on the optical flow,
which significantly limits the model in segmenting objects
when the flow is incomplete; and 2) some of the low-resolution
videos from the SegTrackV2 dataset affect the performance of
our model, which only uses the optical flow as its input. This
effect is also seen in FSEG [4], SAGE [21], and UOVOS [40].
In particular, since UOVOS [40] detects the foreground object
based on a salient motion map, using Mask R-CNN on
incomplete optical flow provides little improvement.

D. Runtime Comparison

To further investigate the computational efficiency of our
proposed method, we report the inference time comparisons
on the DAVIS16 datasets at 480p resolution. We compare our
model with the SoTA online methods that share their codes
or include the corresponding experimental results, including
the SFM [43], and UOVOS [40]. For the inference time
comparison, we run the public code of other methods and our



code under the same conditions on the NVIDIA TITAN RTX
GPU. The analysis results are summarized in the last column
of Table IV.

As shown in Table IV, our algorithm shows a faster speed
than other competitors. For online UVOS settings, model
efficiency is an important metric. Our model achieves a
more favorable accuracy-efficiency trade-off than the existing
best online method UOVOS [40], while achieving higher
accuracy. The main computational cost of UOVOS [40] lies
in the object proposal component, which is based on Mask
R-CNN [41]. However, our model relies on an auto-encoder
and online clustering strategy for the UVOS without any other
additional neural network structures. Compared to the faster
online method SFM [43], our model achieves a 22.2% higher
mean J .

V. CONCLUSION REMARKS AND DISCUSSIONS

In this paper, an efficient contrastive subspace motion
clustering is proposed for online unsupervised video object
segmentation (UVOS) by exploring an online clustering
strategy for motion grouping. Specifically, non-learnable pro-
totypical bases are iteratively summarized from the feature
space for different motion patterns, and these bases help
to optimize the feature representation in return. Experi-
mental results demonstrated that our method outperforms
state-of-the-art (SoTA) online UVOS algorithms.

In real-world scenarios, the performance of our online
UVOS system may be violated due to the presence of
low-resolution input, making it inaccurate for small objects.
Therefore, we can see that our method performs worse on
the low-resolution dataset, i.e., SegTrackV2, compared to the
high quality video data. The saturation of moving objects,
such as white vehicles under sunshine and black vehicles in
dim lighting conditions, will also affect the proposed UVOS
method. The problem will be investigated by utilizing the
results in [44], [71], and [93], respectively. Furthermore,
considering the significance of real-time aspects in online
UVOS, we will incorporate a light-weighted design [94], [95]
in our future research.
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