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Abstract— Unsupervised video object segmentation (UVOS)
aims at automatically separating the primary foreground
object(s) from the background in a video sequence. Existing
UVOS methods either lack robustness when there are visually
similar surroundings (appearance-based) or suffer from deteri-
oration in the quality of their predictions because of dynamic
background and inaccurate flow (flow-based). To overcome the
limitations, we propose an implicit motion-compensated net-
work (IMCNet) combining complementary cues (i.e., appearance
and motion) with aligned motion information from the adja-
cent frames to the current frame at the feature level without
estimating optical flows. The proposed IMCNet consists of an
affinity computing module (ACM), an attention propagation
module (APM), and a motion compensation module (MCM). The
light-weight ACM extracts commonality between neighboring
input frames based on appearance features. The APM then
transmits global correlation in a top-down manner. Through
coarse-to-fine iterative inspiring, the APM will refine object
regions from multiple resolutions so as to efficiently avoid
losing details. Finally, the MCM aligns motion information from
temporally adjacent frames to the current frame which achieves
implicit motion compensation at the feature level. We perform
extensive experiments on DAVIS16 and YouTube-Objects. Our
network achieves favorable performance while running at a faster
speed compared to the state-of-the-art methods. Our code is
available at https://github.com/xilin1991/IMCNet.

Index Terms— Video processing, video object segmentation,
attention mechanism, motion compensation.

I. INTRODUCTION

THE goal of unsupervised video object segmenta-
tion (UVOS) is to identify and segment the most visu-

ally prominent object(s) from the background in videos.
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Fig. 1. Illustration of the failure case of existing UVOS methods. The images
with a green border as the input frames fed into the models F(θ) to produce
object masks inside the orange border. The objects in the green, blue and
red ellipse box are respectively similar surroundings, misleading objects, and
motion artifacts. Note that target objects (ground-truth) are highlighted by
green translucent masks.

The UVOS has attracted significant attention owing to its
widespread applications in content-based video retrieval [1],
video matting [2], video editing [3], video analysis [4],
and video compression [5]–[10]. Different from the semi-
supervised [11]–[14] and weakly-supervised [15], [16] video
object segmentation, which has a full mask of the object(s) of
interest in the first frame of a video sequence, the UVOS is
more challenging because of the lack of user interactions.

Primary object candidates that span through the whole video
sequence are provided by the algorithm on the UVOS. This
primary foreground object(s) should capture human attention
when the whole video sequence is watched, i.e., objects that
are more likely to be followed by the human gaze. Inspired
by a biological mechanism known as human attention [17],
the UVOS system should have remarkable motion percep-
tion capabilities to quickly orient gaze to moving objects in
dynamic scenes. We argue that the primary object(s) in a
video should be (i) the most distinguishable in a single frame,
(ii) repeatedly appearing throughout the video sequence,
and (iii) moving objects in the video. The former represents the
intra-frame discriminability (local dependence), and the latter
two are inter-frame consistency (global dependence). Fully
exploiting these three properties is crucial for determining the
primary video object(s).

For example, methods in [18]–[20] can work well for
discovering saliency objects in static images. However, they
may not be applicable for UVOS tasks due to motions,
occlusion, and distractor objects, as shown in Fig. 1 (d).
Therefore, it is necessary to make use of inter-frame
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consistency (global dependence) to make up for the drawbacks
caused by ignoring temporal correlation. Earlier traditional
methods [21]–[23] have been investigated from these perspec-
tives, it is inadequately considered by current deep learning-
based solutions. The deep learning-based methods [24]–[26]
and reinforcement learning-based methods [27], [28] boost
the performance of UVOS systems, and yet still face chal-
lenges considering local variations and global consistency
(uniformity), meanwhile. These works mainly proceed in two
directions. One line [24], [25], [29]–[34] is with a learned
model of multi-modality inputs. They typically used optical
flows as an additional modality to capture motion cues, which
leverage the global temporal motion information cross frames.
In general, these multi-modality-based methods introduce an
additional pre-processing stage to predict the optical flow.
However, due to the accuracy of optical flow prediction,
the quality of the UVOS model could deteriorate over time.
The noise introduced by the optical flow may misguide the
UVOS models to predict the primary object(s) incorrectly as
shown in Fig. 1 (a), (f). Another limitation of those methods
is that they ignore local discriminability, such as texture
features. The other direction is based on single-modality [26],
[35]–[43], which matches the appearance of inter-frame to
exploit long-term correlations from a global perspective. How-
ever, they incur significant computational costs on the condi-
tion that non-local operation conducts matrix multiplication
operation. More importantly, due to only mining the matched
pixels across the frames, previous appearance-based methods
may be wrongly taken visually similar surroundings as the
primary object(s) (Fig. 1 (b), (c), (e)).

In this paper, we propose an Implicit Motion-Compensated
Network (IMCNet) for the UVOS. The IMCNet takes several
frames from the same video as inputs to mine the long-term
correlations and align temporally adjacent frames to the cur-
rent frame for implicit motion compensation at the feature
level. The proposed model consists of an affinity computing
module (ACM), an attention propagation module (APM), and
a motion compensation module (MCM). In our method, the
two main objectives are achieved, mining local dependence
and offsetting global dependence from adjacent frames. For
mining local dependence, the light-weight ACM is designed,
it is extended from a co-attention [44], [45] mechanism.
Instead of computing affinity in the feature space, a novel key-
value embedding module is used in ACM to largely reduce
the computational cost and meet high performance. Through
this process, we will see in the experimental results that the
IMCNet is not only more robust but also more efficient than
the algorithm in [37]–[43]. Then, the APM is applied to retain
the primary object(s) at each level of the top-down decoder
architecture. Through coarse-to-fine iterative inspiring, the
APM will refine object regions from multiple resolutions
so as to efficiently avoid losing details. Finally, the MCM
is proposed to implicitly capture global dependence from
adjacent frames. Unlike the previous optical flow-based UVOS
methods [31], [33], [34], our approach can adaptively offset the
current moment from neighboring frames at the feature level
without explicit motion estimation. This is another advantage
of our IMCNet.

Inspired by the deformable convolution [46], [47], our
MCM uses features from the adjacent frames to dynami-
cally predict offsets of sampling convolution kernels. These
dynamic kernels are gradually applied to neighboring features,
and offsets are propagated to the current frame to facilitate
precise motion compensation, similar to the motion transi-
tion based on optical flow in multi-modality models [31],
[33], [34], [48], [49]. Moreover, an additional temporal-spatial
fusion is employed after the cascading deformable operation
to further improve the robustness of compensation. A temporal
attention by computing the similarity between the feature of
compensation and the current frame is applied to utilize motion
cues better. After fusing with temporal attention, a spatial
attention operation is further introduced to automatically select
relatively important features effectively in spatial channels.
In addition, a joint training strategy is introduced for training
our IMCNet to effectively learn the discriminative features of
the primary object(s). It helps our model focus more on pixels
of the primary object(s) with the guidance of the saliency
information, thus filtering out the similar surrounding noise.

Our contributions in this paper are several folds:
• A novel Implicit Motion-Compensated Network (IMC-

Net) combining complementary cues (i.e., appearance and
motion) is proposed to overcome the existing method’s
drawback. This is achieved by a light-weight ACM, APM,
and MCM. Extensive experiments on DAVIS16 [50] and
YouTube-Objects [51] show IMCNet achieves favorable
performance while running at faster speed and using
much fewer parameters compared to the state-of-the-arts.

• A light-weight ACM which embeds a co-attention mech-
anism with a novel key-value component is introduced
to explore the consistent representation from a global
perspective, while at the same time helping to capture
appearance features within inter-frames.

• A novel MCM is incorporated for modeling motion infor-
mation of salient objects within multiple input frames,
leading to a more powerful moving object pattern recog-
nition framework.

• A new joint training strategy is proposed to train our
models on UVOS and SOD datasets, to enhance the
representation ability of local discriminability.

II. PROPOSED METHOD

An end-to-end deep neural network, i.e., IMCNet, is pro-
posed to mine the long-term correlations and implicitly
encodes motion cues in feature level across multi-frames
for the UVOS. The overall framework of the proposed
IMCNet is shown in Fig. 2. The IMCNet is designed as
an encoder-decoder fashion since this kind of architecture is
able to preserve low-level details to refine high-level global
contexts. The proposed model comprises four key modules:
feature extract modular (FEM) (§ II-A), ACM (§ II-B), APM
(§ II-C), and MCM (§ II-D). Given 2N +1 consecutive frames
{Ii ∈ R

w×h×3}t+N�t
i=t−N�t (N ∈ N

∗) with an interval of �t
frames, the middle frame It is selected as the center frame and
the other frames are neighboring frames, and w× h indicates
the spatial resolution of images. The aim of our model Fθ is
to estimate the corresponding objects masks M̂t ∈ {0, 1}w×h .



Fig. 2. The overview of the proposed IMCNet. The 2N + 1 consecutive frames {Ii }t+N�t
i=t−N�t are first fed into the FEM to extract embedding of each frame

as V 2
i ∼ V 5

i . Then, the ACM computes the affinity of each feature V 5
i that summarizes the global dependence among input frames Ii . The attention enhanced

features Zi are further fed into the APM to transmit global dependence via a top-down manner. Finally, the output of the top-down decoder is passed to the
MCM to facilitate obtaining the final segmentation result M̂t . Here, the three key encoders for the center and neighboring frames are parameter-shared.

A. Feature Extract Modular

Our FEM relies on a parallel structure encoder to jointly
embed adjacent frames, which has been proven effective in
many time-related video tasks. The shared feature encoder,
which is pre-trained using the ImageNet [52] and DUTS [53],
takes several frames as inputs. We take the last four con-
volutional blocks of the ResNet [54] as the backbone for
each stream. The FEM Eθ takes consecutive frames {Ii ∈
R
w×h×3}t+N�t

i=t−N�t as inputs, including the center frame It and
neighboring frames, for exploring a consensus representation
in a high-dimensional space. We denote the extracted embed-
dings of Ii as V l

i ∈ R
w
s × h

s ×Cl
v , where l indicates the l-th

(l ∈ {2, 3, 4, 5}) residual stage, s ∈ {4, 8, 16, 32} is scales,
and Cl

v represents the feature map channels, respectively.

B. Affinity Computing Module

To focus more on the primary object(s) in It , we delve
into the intra-frame features supported by neighboring frames.
In detail, we build a key encoder module to extract inde-
pendently a key feature for each frame and is symmetric in
the center and neighboring frames.1 The rationales are that
1) Global dependence is computationally efficient to extract

1Key encoder processing on features from FEM does not depend on
whether they come from center or neighboring frames. The same key encoder
encodes the center and neighboring frames into key maps instead of several
independent key encoders.

from key features than the value (V 5
i ), and 2) Global depen-

dence exists in key features without redundancy, and there is
a lot of distraction on value features. The ACM then takes
two-stream data (i.e. key and value features) of each moment
as inputs to compute similarity.

Key encoder. We take V 5
i features from the FEM as inputs

of the key encoder. Both the center and the neighboring frames
are first encoded into key maps {Ki ∈ R

w�×h�×Ck }t+N�t
i=t−N�t

through the residual block, where w� and h� is 1/32 smaller
than the input image (w × h) and Ck is set as 64. It can be
formally represented as:

Ki = ξθ (V
5
i ), (1)

where ξθ is typically composed of two 3 × 3 convolutional
layers followed by a ReLU activation as a projection head
from the backbone feature to the key space (Ck dimensional).

Affinity computing. Similarities among key features of
the center and neighboring frames are computed to deter-
mine when-and-where to retrieve relevant primary object(s)
correlation from input frames. Key features Ki are learned to
represent the correlations among the center and neighboring
frames in their feature embedding space. Value features {V 5

i ∈
R
w�×h�×Cv }t+N�t

i=t−N�t store detailed information for producing
the object mask prediction. As shown in Fig. 3, given con-
secutive embedding features Ki from the same video, we first
compute the affinity matrix S ∈ R

w�×h�
among input frames:

S = [Ki ]� · W · [Ki ] , i ∈ [t − N�t : t + N�t] , (2)



Fig. 3. Illustration of affinity computing process. Taking center moment
t as an example, the key features Ki are flattened into matrices and used
to compute the affinity matrix S via Eq. 3. Then, the affinity matrix S is
normalized via Eq. 4 as attention weight (i.e., Sr ). Finally, the value features
V 5

t are post-multiplied by the Sr to compute the attention enhanced feature
Zt (Eq. 5).

where [·] denotes the concatenation operation and W ∈
R

Ck×Ck is a trainable weight matrix. The affinity matrix S
can effectively capture global dependence between the feature
space of input images. In order to keep consistency among
the video frames, W is approximately factorized into two
invertible matrices P ∈ R

Ck×Ck and Q ∈ R
Ck×Ck . Then, Eq. 2

can be rewritten as:
S = [Ki ]� · P · Q� · [Ki ]

=
�

P� · [Ki ]
�� ·

�
Q� · [Ki ]

�
, (3)

where i ∈ [t − N�t : t + N�t]. This operation is equivalent
to applying channel-wise feature transformations to key fea-
tures Ki before computing the similarity.

After obtaining the affinity matrix S, as shown in the
light blue area in Fig. 3, we normalize S row-wise with a
softmax function to derive an attention map Sr conditioned
on neighboring images and achieve enhanced features.

Sr = exp(Si j )�
n(exp(Snj ))

∈ [0, 1](w
�h�)×(w�h�) . (4)

With the normalized affinity matrix Sr , the attention sum-
maries for the feature embedding Zi for each frame can be
computed as a weighted sum of the value feature V 5

i with
efficient matrix multiplication (see the green areas in Fig. 3):

Zi = V 5
i · Sr ∈ R

w�×h�×Cv , (5)

which is then passed to the APM.

C. Attention Propagation Module

In general, the FPN [55] decoder is built upon the bottom-
up backbone, and the induced high-level features will be
gradually diluted when transmitted to lower layers. To this

Fig. 4. The proposed APM. Attention propagation operation is implemented
by Eq. 7. The computational graph of center moment t is taken as an example.
Here, ‘⊗’, ‘�’, ‘⊕’, and ‘Up’ indicate element-wise multiplication, element-
wise multiplication with broadcasting, element-wise addition, and bilinear
upsampling, respectively. The ‘GAP’ denotes the global average pooling
operation.

end, we propose an APM to connect encoder-decoder pairs
of our IMCNet, as shown in Fig. 4. The APM progressively
refines the skip-connection of FEM via higher-level prediction
and can locate primary object(s) more accurately without
the interference of irrelevant surroundings. Specifically, for
each layer, the skip-connection of FEM V l

i is guided by the
higher-level prediction M̂l+1

i to produce the final feature Pl
i .

At the top of the APM, we take V 5
i weighted by the enhanced

feature Zi as an immediate feature P5
i to predict the first guide

map M̂5
i : �

P5
i = (V 5

i ∗ Zi )� GAP(Zi )

M̂5
i = ο(ξ5

θ2
(P5

i )),
(6)

where ∗, �, and GAP(·) are element-wise multiplication,
element-wise multiplication with broadcasting, and global
average pooling operation. ξ5

θ2
(·) is implemented by two

convolutional layers followed by a sigmoid layer. After that,
the APM further fed the guide map into the next layer in a
recursive manner:⎧⎪⎪⎨

⎪⎪⎩
Ṽ l

i = (up(M̂i
l+1
) ∗ V l

i )

Pl
i = ξ l

θ1
(up(Pl+1

i )+ π l
θ (Ṽ

l
i )), l ∈ {4, 3, 2} ,

M̂l
i = ο(ξ l

θ2
(Pl

i ))

(7)

where ‘∗’ is the element-wise multiplication. up(·) is the
up-sampling operation with stride 2 via bilinear interpola-
tion. ξθ1(·) is typically composed of a residual block, with
64 kernels. It is similar to lateral connections of FPN [55].
The feature maps Ṽ l

i are then enhanced with features from
the bottom-up pathway via lateral connection, and then ξθ1(·)



refine it to obtain Pl
i . π (·) consists of a head convolutional

layer and a residual block and reduces the refined features
Ṽ l

i to 64 channels. As the last step in the APM, we adopt
two convolutional layers ξθ2(·) followed by a sigmoid layer ο
to predict the side masks M̂l

i for deep supervision. The side
masks M̂l

i can effectively hold the attention on the primary
object(s) in each layer, as presented in the ablation study of
section III. The last P2

i is the final output into the MCM for
learning motion information. P2

t , named as fref , represents the
output of the APM, in which input center frame It . fnbr{+,−}
denote



P2

i

�t+N�t
i=t+�t and



P2

i

�t−�t
i=t−N�t , respectively (i.e., + is

the moment after the center frame, and vice versa).

D. Motion Compensation Module

The MCM is proposed to align the features from neigh-
boring frames to the center frame’s feature space for
implicit motion compensation. As illustrated in Fig. 2, our
MCM includes three sub-modules: a cascading alignment,
a temporal-spatial compensation, and a segmentation.

Cascading alignment. Taking advantage of the deformable
convolution network (DCN) [46], [47], we use an adaptive
deformable kernel to achieve feature-level alignment. Different
from optical flow-based methods, the alignment is applied on
feature of each frame, denoted by fref and fnbr{+,−} . As such,
image warping is not required. The alignment module consists
of multiple alignment operations organized in a cascaded
manner, as shown in Fig. 5. We first take the feature of the
center moment fref as a reference feature to align each neigh-
boring feature fnbrsign (sign ∈ {+,−}), and the feature-level
offset � between the reference feature and neighboring feature
is estimated. In this process, the reference and neighbor-
ing feature are concatenated before the transformation with
a typical convolution layer πθ (·) and a light-weight offset
generator φθ(·):

�l = φl
θ (π

l
θ (

�
fref , f l−1

aligned



)), l ∈ {1, . . . , L} , (8)

where l denotes cascaded layer in depth, θ is the learnable
parameters, and [·, ·] represents the concatenation operation.
In addition, we have f 0

aligned = fnbr{+,−} . For simplicity,
we omit the superscript l for �l , and then � can be formulated
as:

� = {�pn | n = 1, . . . , 	R	} . (9)

Here, � refers to learnable offsets for the convolution kernels
of sampling locations. For instance, the regular grid of 3 ×
3 convolution kernel has 9 sampling locations, where R =
{(−1,−1), (−1, 0), . . . , (0, 1), (1, 1)}. Then, DCN is applied
to align the neighboring features to the reference feature with
the guidance of the offset map �:

f l
aligned = DCN( f l−1

aligned,�
l)

=
�

pn∈R
w(pn) f l−1

aligned(p0 + pn +�pn), (10)

where f l−1
aligned is aligned feature at the (l − 1)-th stage

(l ∈ {1, . . . , L}). w and p0 denote the weight and sampling
locations of a convolutional kernel. As the � is fractional,

Fig. 5. In the architecture of cascading alignment, ‘C’ denotes concatenation.
The alignment process will iterate 4 times (i.e., L = 4), the initial aligned
feature f 0

aligned is fnbr{+,−} . The output of the previous alignment module
will be concatenated with fre f and fed into the next alignment module.

the sampling operation is implemented by using bilinear
interpolation as in [46].

Cascading alignment module consists of several regular
and deformable convolutional layers. For the offset generation
phase, it concatenates fref and f l

aligned (l ∈ {0, . . . , L}) and
then uses a 3 × 3 convolution layer to reduce the channel
number of the concatenated feature map and follow the same
kernel size convolution layer to predict the sampling para-
meters. Finally, the aligned feature f l

aligned is obtained from

f l−1
aligned and �l based on the DCN, where l ∈ {1, . . . , L}.

We use a four-stage cascaded structure, i.e., L = 4, which
gradually refines the coarsely aligned features. The cascading
alignment module in such a coarse-to-fine manner improves
the alignment at the feature level.

Temporal-spatial compensation. Inspired by the
CBAM [56], we propose temporal-spatial compensation (TSC)
to exploit both temporal and spatial-wise attention on each
frame. We focus on ‘where’ is an informative part supported
by reference feature fref . In addition, we employ a pyramid
structure to increase the attention receptive field due to
unequally information of different aligned induced by
occlusion and blur.

Given the reference feature fref ∈ R
w
4 × h

4 ×C and con-
catenated feature [ f L

aligned−, fref , f L
aligned+] ∈ R

w
4 × h

4 ×(2N+1)C

as inputs, the TSC sequentially infers 2N + 1 2D temporal
attention map At ∈ R

w
4 × h

4 ×1 and a spatial attention As ∈
R
w
4 × h

4 ×C , where [·, ·] denotes concatenate operation. The
overall fusion process can be summarized as:

f � = At ([ f L
aligned−, fref , f L

aligned+] | fref ) ∗
[ f L

aligned−, fref , f L
aligned+]

f �� = As( f �) ∗ f � + δθ (As( f �)), (11)

where ‘∗’ denotes the element-wise multiplication, and δθ is
a light-weight encoder with two 3 × 3 convolutional layers
followed by a ReLU activation. The temporal attention At (·)
is implemented by calculating the similarity distance:

At = ο(Sum(φ( f )� · ψ( fre f ))) (12)

where f ∈
�

f L
aligned−, fref , f L

aligned+
�

. φ(·) and ψ(·) are
achieved with simple convolution layers. Sum(·) and ο(·)



Fig. 6. The computational graph of temporal-spatial compensation operation.
‘C’ represents the concatenation. ‘MaxPool’ and ‘AvgPool’ are max and
average pooling layers with stride 2.

denote channel-wise summation and sigmoid activation func-
tion. The spatial attention As employs a pyramid design to
increase the attention receptive field, As can be obtained
by:

As = Up(θ2([MaxPool(θ1( f �)),
AvgPool(θ1( f �))]))+ f � (13)

where θ1(·) and θ2(·) are the typical convolution layer with
dimensional reductions as original input channels. MaxPool(·)
and AvgPool(·) represent max and average pooling layers
with stride 2. Note that we add embedding spatial atten-
tion As to spatial enhanced features to enhance losing
important information on the regions with attention values
close to zero. f �� ∈ R

w
4 × h

4 ×C is the final refined output.
Fig. 6 depicts the computation process of each attention
map.

Segmentation. The segmentation module consists of a
residual block (with 64 filters) and a 1 × 1 convolutional
layer (with one filter and sigmoid) for the final segmentation
prediction based on the last output f �� of TSC.

E. Joint Training Strategy

A possible issue of the existing methods is that the temporal
consistency is not maintained across the whole of the video
sequence in the presence of visual similar objects or surround-
ings. The reason is that these methods focus on mining the
correlation (global dependence) between consecutive frames,
but pay less attention to the saliency object (local dependence),
leading to inaccurate segmentation results. To alleviate this
problem, we use the SOD and UVOS datasets to jointly train
our model for the UVOS task. The efficient joint training
strategy is summarized in Fig. 7.

The SOD and UVOS datasets are divided into two groups:
ImageSet and VideoSet. The ImageSet obtained by
sampling from DUTS [53] dataset consists of each individual
image, and the VideoSet is temporal related consecutive
frames getting from the DAVIS16 [50] dataset. Nb images
or video clips where one clip contains 2N + 1 frames
are randomly sampled in each mini-batch from DUTS or
DAVIS16 datasets, respectively. One mini-batch ImageSet is
repeated after r mini-batches VideoSet. The ratio r is given
by

r =
�

len(VideoSet)

(
len(ImageSet)/Nb� × Nb)

�
, (14)

Fig. 7. Demo of the joint training strategy. Sampling Nb video sequence
samples from the VideoSet create one batch video sample, and likewise,
sampling Nb image samples from the ImageSet constitutes one batch image
sample. One batch image sample is matching with r batches video samples
constitute an iteration for joint training. Here, r is computed by Eq. 14.

where 
·� denotes the floor function, and len(dataset) is
return the size of the dataset. The role of the ImageSet
is that the saliency object constraint is enforced to make the
problem tractable. Through the above steps, the IMCNet can
effectively improve the final segmentation results, as presented
in section III.

F. Loss Functions

The loss functions in [57] are adopted to jointly measure the
prediction in the pixel level by binary cross-entropy loss [58],
in the patch level by SSIM loss [59], as well as in the region
level by IoU loss [60]:

L (M̂,M) = Lbce(M̂,M)+ Lssim(M̂,M) + Liou(M̂,M),

(15)

where M̂ denotes the segmentation prediction and M refers to
the binary ground-truth.

Given consecutive frames {Ii ∈ R
w×h×3}t+N�

i=t−N� from
a video sequence, our IMCNet predicts a final segmen-
tation mask M̂t ∈ {0, 1}w×h and intermediate segmenta-

tion side-outputs
�

M̂l
i ∈ {0, 1}w×h

�t+N�t

i=t−N�t
through l-th (l ∈

{2, . . . , L}) level of APM, and our APM is deeply supervised
with the last four stages, i.e. L = 5. The total loss is
formulated as:

Ltotal = L f inal (M̂t ,Mt )+ Lside(M̂
l
i ,Mi )

= L (M̂t ,Mt )+
t+N�t�

i=t−N�t

L�
l=2

L (M̂l
i ,Mi ). (16)

III. EXPERIMENTS

Extensive experimental results are presented to evaluate the
proposed IMCNet.

A. Datasets and Evaluation Metrics

To test the performance of our method, we carry out
comprehensive experiments on two UVOS datasets:

DAVIS16 [50] is currently the most popular VOS bench-
mark, which consists of 50 high-quality video sequences
(30 videos for training and 20 for testing). Each frame is
densely annotated pixel-wise ground-truth for the foreground



objects. We train our IMCNet on the training set and evaluate
on the validation set. For quantitative evaluation, we adopt two
standard metrics suggested by [50], namely region similarity
J , which is the intersection-over-union of the prediction
and ground-truth, boundary accuracy F , which measures the
accuracy of the predicted mask boundaries. These measures
can be averaged to give an overall J &F score.

YouTube-Objects [51] contains 126 web video sequences
that assign 10 semantic object categories with more than
20,000 frames in total. All the video sequences are used for
performance evaluation. Following YouTube-Objects’s evalua-
tion protocol, we use the region similarity J to measure the
segmentation performance.

B. Implementation Details

1) Detailed Network Architecture: The backbone of
IMCNet is the ResNet101 [54], for each input frame of size
480 × 480 × 3, the frame is a down-sample to the size
of {120, 60, 30, 15} in the last four layers of ResNet101.
The network takes three consecutive frames (i.e., N = 1)
with an interval of four frames (i.e., �t = 4) as inputs
unless otherwise specified. The output size of our IMCNet
is 480 × 480 × 1, for the UVOS task, we use the bilinear
interpolate algorithm to restore the original size of the input.
For the ACM, we implement weight matrices P� and Q� in
Eq. 3 using two 1 × 1 convolutional layers with 64 kernels,
respectively. The channel size C in the TSC module is set to
64.

2) Training Settings: The training data consists of three
parts: 1) all training data from the DAVIS16 [50], including
30 videos with about 2K frames; 2) a subset of the training set
of YouTube-VOS [61] selected 18K frames, which is obtained
by sampling images containing a single object per sequence;
3) DUTS-TR which is the training set of DUTS [53] has
more than 10K images. The training process is divided into
two stages. Stage 1: we first pre-train our network for 200K
iterations on a subset of YouTube-VOS. During this training
period, the entire network is trained using Adam [62] optimizer
(β1 = 0.9 and β2 = 0.999) with a learning rate of 10−6 for the
FEM, 10−5 for the ACM and APM decoder, and the MCM is
set as 10−4. The batch size is set to 8, and the weight decay
is 0. Stage 2: we fine-tune the entire network on the training
set of DAVIS16 and DUTS with our joint training strategy.
In this stage, the Adam optimizer is used with an initial
learning rate of 10−7, 10−6, and 10−5 for each of the above-
mention modules, respectively. We train our network for 155K
iterations in the second training stage. Data augmentation (e.g.,
scaling, flipping, and rotation) is also adopted for both image
and video data. Our IMCNet is implemented in PyTorch [63].
All experiments and analyses are conducted on an NVIDIA
TITAN RTX GPU, and the overall training time is about
72 hours.

3) Test Settings: On the test time, we resize the input frame
to 480 × 480 × 3, and feed three consecutive frames with an
interval of four frames into the network for segmentation. The
segmentation mask M̂t of the center frame It is obtained from
the IMCNet. We follow the common protocol used in existing

works [39], [43] and employ multi-scale and mirrored inputs
to enhance the final segmentation mask without CRFs and
instance pruning.

4) Runtime: During testing, the forward estimation of
our IMCNet takes around 0.05s per frame, while the
post-processing takes about 0.2s.

C. Ablation Study

To demonstrate the influence of each component in the
IMCNet, we perform an ablation study on the test set of
DAVIS16. The evaluation criterion is mean region similarity
(J ) and mean boundary accuracy (F ).

1) Effectiveness of ACM: To demonstrate the effectiveness
of the ACM, we gradually remove the affinity computing and
the key encoder process in our model, denoted as w/o. ACM
and w/o. key encoder, respectively. It means that the features
in the last convolution stage of the FEM are directly fed into
the APM to achieve segmentation results. The results can be
referred in the sub-table named ACM in Table I. From the
results, we can observe that the performance of the variant
without ACM (affinity computing + key encoder) is −2.7%
lower than our full model (with affinity computing + key
encoder) in terms of mean J , and −3.1% lower on mean
F , respectively. In other words, ACM is key to improving
the performance of our proposed method (2.7% and 3.1% on
mean J and mean F , respectively). On this basis, we only
introduced the affinity computing process, the performance of
the variant without the key encoder is improved by 0.6% and
0.7% in terms of mean J and mean F higher than the variant
without ACM. This indicates that affinity computing improves
the performance of the model (0.6% and 0.7% on mean J
and mean F , respectively). After that, we can observe that
the performance of our full model (with affinity computing
and key encoder) is 2.1% and 2.4% higher than the variant
without key encoder on mean J and F , respectively. This
validates the effectiveness of our key encoder that eliminates
the redundancy by only focusing on the features related to
the primary object(s). Meanwhile, our model can address the
UVOS task by capturing global dependence from the multi-
frames, which verifies the effectiveness of ACM.

2) Effectiveness of APM: The purpose of APM (Eq. 7) is
to retain high-level features related to the primary object(s)
during the top-down refinement. To verify such a design,
we implement another network by replacing the APM with
the FPN [55] architecture in which the feature dimension
is set as 64 following the same dimension as the APM,
denoted as w/o. APM. The results in Table I (see w/o. APM)
demonstrate the superiority of APM. As shown in Fig. 8,
the variant, with the FPN architecture, is vulnerable to being
distracted by irrelevant surroundings when top-down refining
object details. Therefore, this variant leads to an obvious drop
in performance.

3) Effectiveness of Cascading Alignment: We study the
effectiveness of the cascading alignment operation in Eq. 10
by comparing our whole model to one variant in which the
deformable convolutional layer is replaced by a 3 × 3 regular
convolutional kernel. We can draw the following conclusion



Fig. 8. Visualization of output feature maps with the decoder on camel video sequences. The left subfigure (a) shows 16 channels features with the APM,
and the right subfigure (b) shows features with the FPN. The feature map with the APM pays more attention to the foreground.

Fig. 9. Illustration of the sampling locations in cascading alignment. The red points in each image represent five adjacent 3 × 3 regular convolution kernels,
and the receptive fields are plotted by a red dotted rectangle. Black points in each image indicate the learned sampling position for deformable convolution
kernel, relative to the original position (red points).

TABLE I

ABLATION STUDY OF IMCNET ON THE DAVIS16 DATASET WITH

DIFFERENT VARIANTS AND TRAINING STRATEGIES, MEASURED
BY THE MEAN J AND MEAN F . SEE § III-C FOR DETAILS

from results in the sub-table named Cascading Alignment
in Table I. The cascading alignment process can achieve an
absolute gain of 1.2% and 1.1% in mean F and mean J ,
respectively. Fig. 9 shows the visualization of sampling posi-
tions on immediate features in cascading alignment. We use
red points (52 = 25 points in each feature map) to represent
the sampling positions of the regular convolution network, and
black points represent the sampling locations of deformable
convolution in the cascading alignment. We observe that the
sampling positions in the regular convolution are fixed all
over the feature map, while they in APM tend to adaptively

adjust according to objects’ shape and scale. The quantita-
tive evidence of such adaptive deformation is provided in
Table I.

Moreover, we also evaluate the performance of the IMCNet
with a different number of cascading layers of alignment.
We can see from the results in Cascading Alignment of Table I
that the performance gradually improves as the number of
cascading layer l increases, reaching the best at l = 4.
Therefore, the default value of l is set as 4 for the cascading
alignment process.

4) Effectiveness of TSC: To verify the effect of the TSC,
we only add a bridge stage, which is implemented by a
3 × 3 convolutional layer, between the cascading alignment
and segmentation module. As shown in Table I, in the sub-
table TSC, the variant without TSC suffers from a significant
performance drop (−2.2% in mean J and −1.8% in mean F ),
which verifies the effectiveness of TSC.

5) Comparison of Different Training Strategies: In order
to enhance the local dependence during the convergence of
training, we introduce a joint training strategy to capture
intra-frame discriminability. The joint training strategy helps
guarantee our model focuses on mining both local and global
dependence. Our IMCNet is trained with our proposed joint
training strategy in Stage 2. To investigate the efficacy of
joint training strategy on the UVOS task, we train our model
with only Stage 1 and Stage 1&Stage 2 w/o. joint train-
ing. Its comparison results in Training Strategy of Table I
demonstrate the effectiveness of such a joint training method.
In Stage 1, our model is trained with a subset of YouTube-
VOS (annotated one objects mask), it is not reliable for
characterizing objects surrounded by cluttered background
(see breakdance in the second row of Fig. 10), leading to
poor generalization. Especially, it easily fails in the presence
of fast motion (in breakdance and motocross-jump sequences).
However, for intra-frame discriminability, it is better than



Fig. 10. Qualitative results on three sequences for different training strategies. From left to right: breakdance, camel, and motocross-jump from the DAVIS16.
GT and JT denote ground-truth and joint training, respectively.

TABLE II

COMPARISONS WITH KEY PARAMETERS (FRAME NUMBER AND STEP) OF

IMCNET ON THE DAVIS16 DATASET, MEASURED BY THE MEAN J
AND MEAN F . SEE § III-D FOR DETAILS

Stage 1 & Stage 2 without joint training, as shown camel
in the second and third rows of Fig. 10. The IMCNet which is
trained with Stage 1 & Stage 2 (w/o. joint training) is sensitive
to similar surroundings and distracting backgrounds, while
joint training strategy effectively improves the intra-frame dis-
criminability (see breakdance and camel in the fourth row of
Fig. 10).

D. Influence of key Parameters

In this section, we analyze the influence of key parameters in
our IMCNet, including the frame number N , and interval step
�t , for input frames on a densely annotated DAVIS16 dataset.
The networks are evaluated using mean region similarity (J )
and mean boundary accuracy (F ).

1) Frame Number: Our IMCNet simultaneously takes 2N +
1 frames as inputs and generates the segmentation mask of the
center frame (i = t). It is of interest to assess the influence
of the number of input frames 2N + 1 (N ∈ [1, 3]) on the
final performance. Table II shows the results for this. From
the results, we can see that the performance can deteriorate as
N increases. When N is larger, it means that the information of

TABLE III

ATTRIBUTE-BASED ABLATION STUDY ON THE DAVIS16 DATASET.
WE COMPARE THE MEAN J OF DIFFERENT FRAME INTERVAL STEP

�t UNDER VARIOUS ATTRIBUTES. THE MAXIMUM AND
MINIMUM RESULTS ARE MARKED IN RED AND BLUE. �J IS

THE DIFFERENCE BETWEEN THE MAXIMUM

AND MINIMUM VALUES

frames which are far from the center frame is also considered,
which may lead to noisy information. Based on this analysis,
the IMCNet achieves the best performance of 82.7% in mean
J and 81.1% in mean F when N = 1 on the DAVIS16 dataset.

2) Step �t: Another key parameter is the step of frames
�t , which decides sequential frames as input in an ordered
manner is selected at a fixed-length frame interval �t . �t =
1 represents selecting three consecutive adjacent video frames
in input frames. Step in Table II reports the mean J and mean
F as a function of the frame interval�t . We can see that when
�t increase, the mean J and mean F first increase and then
decrease.



TABLE IV

QUANTITATIVE RESULTS ON THE TEST SET OF DAVIS16 , USING THE REGION SIMILARITY J , BOUNDARY ACCURACY F . THE TOP THREE RESULTS ARE
MARKED IN RED, GREEN, AND BLUE. WE ALSO REPORT THE INPUT MODALITY FOR EACH UVOS METHOD IN THE SECOND COLUMN. OF, RGB

AND MF REPRESENT OPTICAL FLOW, RGB IMAGE AND MULTI-FRAMES INPUT IN TEST TIME, RESPECTIVELY

Moreover, Table III illustrates the performance comparison
of different �t under various video attributes of DAVIS16,
including low resolution (LR), scale variation (SV), shape
complexity (SC), fast motion (FM), camera-shake (CS), inter-
acting objects (IO), dynamic background (DB), motion blur
(MB), deformation (DEF), occlusion (OCC), heterogeneous
object (HO), edge ambiguity (EA), out-of-view (OV), appear-
ance change (AC), and background cluttering (BC). IMCNet
with �t = 4 has the best performance under most attributes.
As a result, in the presence of appearance change (AC),
dynamic background (DB), and low resolution (LR), the model
with �t = 1 is the most robust due to the primary object(s)
undergoing huge appearance change, scale variation, and it is
difficult to capture the similarity between multi-frames when
�t is larger. We can reach the same conclusion from �J in
Table III that dynamic background (DB) and out-of-view (OV)
have the greatest influence on interval step �t .

E. Comparison With State-of-the-Arts

We compare our proposed IMCNet with the state-of-the-art
methods in two densely annotated video segmentation datasets,
i.e., DAVIS16 [50] and YouTube-Objects [51]. We apply the
training strategy mentioned in § III-B. Input frame numbers
and step �t are set as 3 and 4.

1) Evaluation on DAVIS16: Quantitative result.
Table IV shows the detailed results, with several
top-performing UVOS methods, including single-modality

input methods [26], [35]–[43] and multi-modality input
models [24], [25], [29]–[34], [48], [49] taken from the
DAVIS16 benchmark. We can observe that our IMCNet
achieves competitive performance compared to other
methods. As shown in Table IV, our model achieves the
third-best results in terms of mean J &F and we can find
that IMCNet has achieved the best results 95.9% in terms
of recall value of J . Specifically, our IMCNet outperforms
all single-modality-based methods and achieves the results
on the DAVIS16 with 82.6% over mean J &F , and is equal
to the DFNet [43]. In addition, we do not apply CRF
post-processing. The results indicate that our model can
capture motion information and implicitly compensate motion
by the MCM better than the single-modality input method.
Multi-modality methods [48], [49] use the optical flow as
a cue to segment objects and can better capture the motion
information. Therefore, these two multi-modality methods,
i.e., TransportNet [48] and RTNet [49], achieved the best
results in the UVOS task. Although the multi-modality input
methods TransportNet [48] and RTNet [49] have achieved the
best result, due to introducing an additional pre-processing
stage to predict the optical flow, the number of model
parameters is more than our model, and inference time is
slower (See § III-E.3).

Qualitative results. Fig. 11 depicts the qualitative results on
DAVIS16 which contains some challenges like cluttered back-
ground, deformation, and motion blur, e.g., breakdance, dance-
twirl, and horsejump-high. As seen, our IMCNet is robust



Fig. 11. Qualitative results on three videos from the DAVIS16 dataset. From top to bottom: breakdance, dance-twirl, and horsejump-high.

TABLE V

QUANTITATIVE PERFORMANCE OF EACH CATEGORY ON THE Youtube-Objects WITH THE REGION SIMILARITY (MEAN J ). WE SHOW THE AVERAGE

RESULT FOR EACH OF THE 10 CATEGORIES FROM THE Youtube-Objects AND THE FINAL ROW SHOWS AN AVERAGE OVER ALL CATEGORIES. THE

TOP THREE FINAL RESULTS ARE MARKED IN RED, GREEN, AND BLUE

Fig. 12. Qualitative results on three videos from the YouTube-Objects dataset. From top to bottom: car-0009, dog-0022, and horse-0011.

to these challenges and precisely extracts primary objects(s)
with accurate boundaries. The breakdance and dance-twirl
sequences from the DAVIS16 contain similar surroundings and
large deformation. We can find that our method can effectively
discriminate the target from those background distractors,
thanks to the ACM and APM. Besides, through implicit
learned and compensating motion by the MCM, our IMCNet
can accurately segment some sequences (e.g., horsejump-
high), where there is fast motion and suffer from motion blur.

2) Evaluation on YouTube-Objects: Quantitative result.
Table V reports the results of several compared methods

[24]–[26], [31], [36]–[38], [40]–[42] for different categories on
the YouTube-Objects dataset. Our method achieves promising
performance in most categories and the second-best over-
all results on mean J . It is slightly worse than COS†

(−0.5%) in terms of mean J and achieves the second-
best results. However, we emphasize that the COS† is more
computationally expensive. Compared with COS, our IMCNet
is superior to the COS without group attention mecha-
nisms. It is indicated that COS obtains a precise segmen-
tation mask by capturing richer structure information of
videos, but our IMCNet can achieve sufficient segmentation



TABLE VI

THE NUMBER OF MODEL PARAMETERS AND INFERENCE TIME
COMPARISON WITH STATE-OF-THE-ART METHODS. THE

ABBREVIATION ‘M’ IN THE ‘#PARAM.’ CELL

REPRESENTS A MILLION

Fig. 13. Trade-off between inference time (x-axis) and segmentation accuracy
(y-axis) on DAVIS16. Our approach demonstrates compelling performance
with high efficiency.

accuracy through three frames without damaging inference
speed.

Qualitative results. Fig. 12 shows the qualitative results on
YouTube-Objects. We can observe that the target object suf-
fering some challenging scenarios like fast motion (e.g., car-
0009 and horse-0011) and large deformation (e.g., dog-0022
and horse-0011). Our model can deal with such challenges
well, it verifies the effectiveness of the MCM.

3) Runtime Comparison: To further investigate the com-
putation efficiency of our IMCNet, we report the number of
network parameters and inference time comparisons on the
DAVIS16 datasets with a 480p resolution. We do not count
data loading and only focus on the segmentation time of the
models. We compare the IMCNet with state-of-the-art methods
which share their codes or include the corresponding experi-
mental results, including AGNN [40], AnDiff [39], COS [37],
MAT [31] DFNet [43], TransportNet [48], and RTNet [49]. For
the inference time comparison, we run the public code of other
methods and our code on the same conditions with NVIDIA
TITAN RTX GPU. The analysis results are summarized in
Table VI.

Table VI shows that our IMCNet reduces the model com-
plexity with fewer parameters than the other methods. For
the inference comparison, we can observe that our method
shows a faster speed than other competitors. Fig. 13 depicts a
visualization of the trade-off between accuracy and efficiency
of representative methods on the validation set of DAVIS16.
As can be seen, our IMCNet achieves the best trade-off.

IV. CONCLUSION

In this paper, we proposed a novel framework, IMCNet,
for the UVOS. The proposed IMCNet mines the long-term

correlations from several input frames by a light-weight affin-
ity computing module. In addition, an attention propagation
module is proposed to transmit global correlation in a top-
down manner. Finally, a novel motion compensation module
aligns motion information from temporally adjacent frames to
the current frame which achieves implicit motion compensa-
tion at the feature level. Experimental results demonstrated that
the proposed IMCNet achieves favorable performance against
other methods while running at a faster speed and using much
fewer parameters.
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