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An intensification of surface Earth’s
energy imbalance since the late 20th

century
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Tracking the energy balance of the Earth system is a key method for studying the contribution of
human activities to climate change. However, accurately estimating the surface energy balance has
long been a challenge, primarily due to uncertainties that dwarf the energy flux changes induced and a
lack of precise observational data at the surface. We have employed the Bayesian Model Averaging
(BMA)method, integrating it with recent developments in surface solar radiation observational data, to
refine the ensemble of CMIP6 model outputs. This has resulted in an enhanced estimation of Surface
Earth System Energy Imbalance (EEI) changes since the late 19th century. Our findings show that
CMIP6 model outputs, constrained by this observational data, reflect changes in energy imbalance
consistent with observations in Ocean Heat Content (OHC), offering a narrower uncertainty range at
the 95% confidence level than previous estimates. Observing the EEI series, dominated by changes
due to external forcing, we note a relative stability (0.22Wm−2) over the past half-century, but with a
intensification (reaching 0.80Wm−2) in the mid to late 1990s, indicating an escalation in the adverse
impacts of global warming and climate change, which provides another independent confirmation of
what recent studies have shown.

The scientific community widely recognizes the alarming and accelerating
phenomenon of global warming since industrialization1–3. Compared to the
pre-industrial era, the global mean surface temperature (GMST) in the last
decade (2013–2022) has risen by more than 1.1 °C, as reported by WMO
and the latest IPCC assessments4–6 (Figure S1). The rapid rate and magni-
tude of surface temperature increase have led tomore commonoccurrences
of phenomena such as glacier retreat, sea-level rise, and extreme weather
events5,7. The energy budget is a key factor in determining the direction and
extent of climate change8,9.Generally, Earth’s climate is relatively stable,with
the top of the atmosphere (TOA) maintaining a state of radiative equili-
brium, fluctuating slightly around zero due to internal variability10,11.
However, changes in forcing factors such as aerosols and greenhouse gases
emitted by human activities can lead to an imbalance in the Earth’s energy
budget12. This imbalance heats different components of the climate system
(such as the atmosphere andocean), alters temperature distributions, affects
the water cycle, and changes ocean and atmospheric circulation13. Conse-
quently, it leads to a series of changes in global temperatures, thewater cycle,
atmospheric and oceanic movements14. Extensive evidence indicates that

the primary driver of global warming is the increase in radiative forcing due
to human activities since the industrial era, particularly the large-scale
burning of fossil fuels, which has significantly increased the concentrations
of carbon dioxide and other greenhouse gases in the atmosphere5. The
warming effects of these greenhouse gases are most pronounced over time
scales of 50–100 years15,16.

For more than a century, scientists have attempted to quantify the
various components of the global energy balance. Early research relied on
limited data obtained from surface observation stations and observation
balloons, coupled with numerous assumptions, resulting in high
uncertainty17,18. The adventof satellitemeasurementshas revolutionized this
field, allowing for accurate observations of the shortwave and longwave
exchanges between the Earth and space at the TOA. The Earth Radiation
Budget Experiment19(ERBE) initiated in 1980, and the Clouds and the
Earth’s Radiant Energy System20(CERES) initiated in the early 2000s, have
provided high-resolution data on the radiative fluxes at the TOA. These
datasets have been extensively used in radiation budget assessments and for
the tuning and evaluation of global climate models (GCMs)21–24. However,
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satellite observations constrained by ocean heat content (OHC) changes,
only provide reliable TOA data. The complex internal energy transforma-
tions within Earth’s climate system and the energy budget at the surface still
lack high-quality, high-resolution observational data11,25.

Climate models are extensively used in the study of Earth’s energy
budget26–30. climate models show good consistency in radiative fluxes at the
TOA, but they tend to overestimate downward shortwave radiation at the
surface and underestimate downward longwave radiation31–33, leading to
significant discrepancies in the simulated energy budget at the Earth’s
surface24. A “Model democracy”multi-model ensembles approach is often
adopted, giving equal weight to each model, which makes it difficult to
distinguish between the performances of differentmodels34–38. Some studies
use simple linear regression with observational results to obtain optimal
estimates, which, while intuitive, makes it hard to assess the uncertainty of
these estimates39,40. Although it is straightforward to define a “model per-
formance index”, demonstrating its relevance and usefulness for predictive
accuracy presents a more complex challenge41.The Reliability Ensemble
Averaging (REA) method has been employed to enhance the credibility of
subcontinental-scale climate change projections. This approach evaluates
models based on their ability to reproduce current climate conditions and
the convergence of simulated changes across different models, offering a
quantitative measure of reliability42. The REA method evaluates models
based on their performance in reproducing current climate and the con-
vergence of simulated changes across models. By minimizing the influence
of outlier or poorly performing models, REA significantly reduces uncer-
tainty ranges and provides a quantitative measure of reliability. The Baye-
sianModelAveraging (BMA)methodwas introduced in studies to integrate
model outputs and observational data, providing a framework for assessing
probability distributions of regional temperature changes43,44. BMA refines
the REA method by weighting models according to bias and convergence
criteria, thereby improving prediction accuracy and consistency. Increasing
evidence suggests that observationally-constrained weighting improves the
accuracy and reliability of predictions34,45.

CMIP6 Model Performance in Simulating Surface
Radiation Budget Components and BMAWeight
Allocation
The fundamental concept of theBMA(seeData andMethods) is to consider
all plausible CMIP6 models (see Data and Methods) and assign each a
weight proportional to how well the model matches observation-
constrained data. In this study, our observational constraints are derived
from surface observation data. Specifically, for Surface Solar Radiation
(SSR), we used data reconstructed by Jiao et al. through an improved partial
convolutional neural network46 (see Data and Methods). We selected 34
CMIP6models (Table S2) that include the SSP245 scenario for analysis and
used single run results. Figure 1a-d present the comparison results using
Taylor diagrams47, quantifying each model’s predictions for the various
radiative components based on correlation coefficients (CC), standard
deviation (STD), and root mean square error (RMSE), and comparing the
simple models’ ensembles (SME) and BMA results (based on transient
phenomena). They also reveal that, except for upward shortwave radiation,
the model outputs for other radiation components generally show good
correlation with observations (CC above 0.9) and smaller RMSE, with
distributions that are relatively close. In contrast, the results for upward
shortwave radiation exhibit significant discrepancies, with the SME and
BMA averages showing larger deviations from observations. More specifi-
cally, in the BMA method, the weight of each model is its posterior prob-
ability, which combines its prior probability (reflecting initial belief about
the model) and its likelihood (how well the model matches the observed
data). This ensures higher weights for models that better reproduce
observed climate patterns, improving overall predictive accuracy. The BMA
method, due to its approach of creating aweighted average over all included
models, consistently provides one of the best-performing estimates in the
ensemble. Further comparison of the PDFs for the four components—BMA
constraints, SME, and observations— shows that the BMA constraints

increase the consistency of the PDFs of the individual components with
those from the observations (Figure S4). Figure 1e displays the model
weights for each radiative component as determinedby theBMAmethod. It
is evident that there are significant differences in the weights assigned to
each model under the BMA approach.

Recent Global Radiation Imbalance from a Surface
Perspective Estimated by CMIP6 Models under BMA
Constraint
The surface energy budget components primarily consist of incoming solar
radiation (rsds), outgoing solar radiation (rsus), downward longwave
radiation (rlds), upward longwave radiation (rlus), surface latent heat (hfls),
and surface sensible heat (hfss). The surface energy budget can be expressed
as:

EEI ¼ rsds� rsusþ rlds� rlus� hfls� hfss ð1Þ

However, there remains some differences in the surface radiation
budget components as reported by different teams24,48–51 (see Table S1 and
Figure S2). Table S1 and Figure S2 also provides the uncertainty for each
component and compares it with the most recent estimates from other
teams (except for Stephens et al.51 which covers 2000–2010, others are
averages for 2000–2014). From Table S1, the BMA’s Surface Earth Energy
Imbalance (EEI) fitting result averages 0.7Wm−² during the period of
2000–2014, while the SME result is 1.7Wm−2, and CERES’s average is
0.63Wm−2 for the same period. It is important to note that CMIP6models
inherently possess certain systematic errors in parsing fluxes. For instance,
these models typically only account for shallow soil layers without con-
sidering deep ground heat absorption52. Additionally, in CMIP6, either ice
sheets are assumed to be in a stable state or emissions are assumed to be
constant53. These systematic errors partially explain the excessively high
SME EEI results. By incorporating observational constraints, the BMA
method mitigates the impact of these systematic errors, resulting in lower
EEI data. Besides, Research by Wild et al. indicates that CMIP5 models
significantly overestimate downward shortwave radiation and under-
estimate upward longwave radiation compared to surface observations
(Figure S3), and our study shows that CMIP6 models still exhibit the same
issues39. After being constrained by observational data, the downward
shortwave radiation decreased to 186Wm-2, and the upward longwave
radiation increased to 401Wm-2, which are similar to the results of the latest
IPCC AR6 report54. The BMA results show improvements in upward
longwave radiation, with closer alignment to observational values (Fig. 1d).
This may be linked to significantly higher global surface temperature
anomalies in the early 21st century, which account for changes in Arctic ice
surface temperatures6,55. According to the Stefan-Boltzmann law, this results
in an approximate 1.5Wm-2 increase in thermal radiation, corresponding to
a temperature anomaly increase of about 0.25 °C. Surface sensible and latent
heat fluxes, lacking observational data for BMA constraint, are directly
calculated using the SME method in this study, with latent heat slightly
higher than previous estimates but closer to those based on global pre-
cipitation observations51(Table S1), and sensible heat generally consistent
with other estimates except Kato (2018)50 (Table S1). Figure 2 presents the
updated surface energy budget diagram during 2000–2022.

On the Uncertainties in EEI Estimation
It is important to note that the method of calculating EEI using various
radiative fluxes typically involves considerable uncertainties. The uncer-
tainties in EEI estimates derived fromobserved surface energy imbalance or
net ocean heat flux from space observations can be as high as ±15–17
Wm-²11,50,51,56. The significant uncertainty primarily originates from the
method of summing components. This is because the magnitudes of indi-
vidual radiative fluxes are significantly higher than EEI, and thus their
uncertainties are also much larger than those of EEI, which are then pro-
pagated into theEEI estimates.Anapproachwasproposed to obtain the best
estimates of radiation components from the Earth system model,
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constrained by surface observations and CERES satellite data at the top of
the atmosphere (TOA)57. However, the uncertainty assessment in this
approach still relies on empirical estimates.

Observing the energy change trends in OHC seems to offer a way to
calculate EEI changes with lower levels of uncertainties58,59. These energy

changes are closely related to anthropogenic or natural forcing, mainly
manifestingondecadal or longer scales60.Although themajority of theEEI is
stored in OHC, the interannual variability in OHC does not show strong
responses in certain volcanic years (Fig. 3, Figure S5). These years exhibit
noticeable troughs in the EEI series. This can be explained by the margin of

Fig. 1 | Model simulation and Assessment of Radiation Budget Components.
Comparison of Taylor diagrams for (a) Downward Shortwave Component, (b)
Downward Longwave Component, (c)Upward Shortwave Component, (d) Upward
Longwave Component in various models, BMA fitting, and simple average fitting,
and (e) Distribution of BMA weights for each radiation component across different

models. The radius in the diagram represents the standard deviation size, and the
angle indicates the correlation coefficient with observational data. The comparison
period is from 1960 to 2022, with the SSP245 scenario extended into the future.
Correlations were obtained by calculating the monthly data correlation between
each station and the model data, then averaging across all stations.

https://doi.org/10.1038/s43247-024-01802-z Article

Communications Earth & Environment |           (2024) 5:644 3

www.nature.com/commsenv


error and the changing proportion ofOHC in EEI (Figure S7). Some studies
derive EEI directly from the time derivative ofOHCdivided by afixed ocean
absorption rate λ (e.g., λ = 0.90), which may introduce significant errors in
interannual variations58.

In this study, the uncertainty of each radiative component is calculated
based on the ensemble standard deviation (σ). For the weighted average
results, the weighted σ is used. The uncertainty range is determined by the
95% confidence interval, calculated as1:96 × σ. Considering that the com-
ponents used to calculate EEI are not independent variables but are highly
interdependent, the correlation matrix between variables should be con-
sidered when calculating uncertainties instead of using the root sum square
estimation of uncertainties of individual components as previously
done11,50,51,56. The covariance matrix between components is calculated for
each year, which is then used to determine the uncertainty range of EEI
while considering the correlations between components (Figure S10 shows
the covariance matrix for 2000). Specific methods can be found in the Data
and Method section. Therefore this study arrives at a narrower range of
uncertainty of EEI ( ± 1.0Wm-²).

Table S1 reveals that the two largest numerical values in the calculation
of EEI are derived from longwave radiation components, indicating the
impact of the warming effect of greenhouse gases. This alignswith the IPCC
conclusion that the positive EEI primarily results from the increase in
atmospheric greenhouse gases61. The optimal estimate for downward
longwave radiation at the surface for the years 2000–2014 averages 345.5
Wm-², and for upward longwave radiation, it is 401.4 Wm-², both slightly
higher than the IPCC AR6 estimates (342 Wm-² and 398 Wm-², respec-
tively). In comparison, the contribution of the shortwave component to the
energy imbalance seems slightly lesser in magnitude than that of the long-
wave component, with the best estimate for downward shortwave radiation
for 2000–2014averaging185.8 ± 6.2Wm-².Additionally, among thevarious
radiative components, the shortwave radiation has the largest uncertainty
range (Table S1). This study, utilizing the most precise observational
baseline data available46, constrained the downward shortwave radiation,
thereby further enhancing its accuracy. By applying the BMAmethod, this
study obtained lower EEI levels (from 1.7 Wm-² to 0.7 Wm-²), which are
comparable to that derived from the OHC observations (0.6 Wm-², Fig. 4).

Rationality of the EEI variations
Figure 3 presents the optimal estimate time series of global EEI from1961 to
2022 derived from CMIP6 models. The data after 2014 is spliced using the
SSP245 scenario, as described in other studies62. Besides, Fig. 3 also presents
three types of EEI estimates at TOA: 1) the simple ensemble average of the
CMIP6 models’ output (TOA-SME); 2) the TOA results constrained by
BMA; and 3) the CERES estimate. The BMA estimates for TOA are

constrained using CERES EBAF data as observational data. From a long-
term trend perspective, the TOA EEI results of the CMIP6 models (both
SME andBMA results) exhibit a similar trend to the surface EEI. In terms of
absolute EEI values, the SME results show significantly higher levels. This
also corroborates findings that CMIP6 models tend to generally over-
estimate EEI24. By using CERES EBAF data for BMA constraint, a lower
TOA EEI (blue solid line in Fig. 3) was also obtained. Since both the SME
and BMA results are derived through multi-model ensembles, they are not
able to reproduce inter-annual variations as theCERES results do.However,
whether at the TOAor at the surface of Earth, the changes in EEI seem to be
consistent with each other from the BMA-constrained results.

It is worth noting that the TOA EEI and surface EEI results from SME
are very consistent, indicating good internal consistency within the CMIP6
models, given that these two quantities should be the same on a global scale.
Although the BMA results for TOA EEI and surface EEI are similar in
numerical level and closer to the observations, their interannual variations
show some differences. The primary reason for this discrepancy is the
varying quality of the observational data used for constraints. There is no
good uniformity between the CERES EBAF data used for TOA constraints
and the GEBA station data and improved partial convolutional neural
network SSR data used for surface constraints. Therefore, it is difficult to
obtain consistent EEI sequences for both the surface and TOA.

Whether at the TOA or the surface, compared to the SME results, the
BMA EEI results show a higher rising trend during these decades (from
0.13 ± 0.05 Wm−2decade−1 to 0.17 ± 0.09 Wm−2decade−1at the TOA, from
0.13 ± 0.04 Wm−2 decade−1 to 0.26 ± 0.05Wm−2 decade−1at the surface).
This partially confirms findings that coupled climate models tend to
underestimate the increase in global radiation trends63. However, in this
paper, the BMA results show a surface EEI trend of 0.26 ± 0.11
Wm−2decade−1 (0.17 ± 0.09 Wm−2decade−1 for EEI trend at TOA) from
2000 to 2020, both still lower than the CERES result
(0.38 ± 0.02Wm−2decade−1). This is consistent with findings from inde-
pendent studies, such as theOHC acceleration, which has been estimated at
0.30 ± 0.28 Wm−2decade−1 from 2002 to 202064,65.

Additionally, significant extreme values in the EEI series can be
observed in certain years (Fig. 3). For example, extremely low values
occurred in 1963, 1983, and 1991–1992, typically associated with extreme
natural events such as volcanic eruptions. These volcanic activities released
vast amounts of volcanic ash and sulfur dioxide into the atmosphere, leading
to substantial absorption and reflectionof solar radiation, ultimately causing
a sharp decrease in EEI66.

The ocean, being the largest heat reservoir on Earth, plays a crucial role
in absorbing and storing the excess energy from the Sun. Numerous studies
have shown that most of the heat in the Earth’s energy budget due to the

Fig. 2 | The global Radiation Budget from a sur-
face perspective in this study. The numbers indi-
cate the best estimates and their uncertainties (at
95% confidence level) for the magnitudes of the
globally averaged energy balance components,
obtained using the BMA method constrained by
observational data from 34 CMIP6 models during
2000–2022, representing present-day climate con-
ditions since the start of the 21st century. Downward
shortwave radiation is constrained by reconstructed
SSR data from Jiao et al. 2023, while upward short-
wave and longwave radiation are constrained using
GEBA observational station data. Due to the lack of
observational data for latent and sensible heat fluxes,
SME results are used directly. Uncertainties are
calculated from the weighted ensemble standard
deviation of the models.
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greenhouse effect is absorbed by the oceans59,67,68. Therefore, EEI should
directly correspondwith changes inOHC. Figure 4 displays the relationship
between changes in OHC and EEI. Changes in OHC are obtained by first-
order differencing ofOHCdata, followed by filteringwith a 10-yearmoving
average (essentially a 10-year differencing). Studies have shown that during
the period from 1972 to 2005, CMIP5 simulations of ocean heat content
(OHC) and Earth’s energy imbalance (EEI) tended to overestimate values
compared to observational data. Prior to 2000, CMIP5 ensemble EEI esti-
mates alignedwell with observedOHCchanges, but discrepancies appeared
in the following years69,70. This paper shows that the EEI, constrained by
BMA, has remained consistent with OHC changes since the 1960s (Fig. 4).
The anomalous variations in theOHC time series before 1970 are likely due

to measurement errors from early observation instruments, resulting in
higher uncertainty. Themoving average plot shows that both EEI andOHC
values began to show a continuous increasing trend around the 1980s,
reflecting their decadal-scale consistency. The average oceanic heat
absorption estimated for OHC changes from 2000–2014 is 0.6 ± 0.13Wm-²
(based on OHC ensemble mean series in Fig. 4), slightly lower than the
average EEI value for 2000–2014 (0.70 ± 1.0Wm-²). OHC datasets (Fig-
ure S5) show a rapid rising trend since the 1990s, although some studies
attribute this to the uncertainty in OHC measurement methods71,72. How-
ever, this paper shows that the decadal changes reflected in ocean heat
absorption characteristics are largely consistent with EEI changes, with a
calculated correlation of 0.732 and a 99% confidence level indicating a
significant relationship.This result is consistent with findings from several
other studies that have demonstrated the strong linkage between OHC and
EEI11,64. Similarly, using space geodetic observations through sea-level
budget assessments to determine the thermal expansion of the ocean can
also estimate changes in OHC, thereby further estimating EEI. Figure 3
presents the global EEI estimates obtained through space altimetry and
space gravimetry58, showing good consistency. This indicates that the EEI
and its component estimates calculated by CMIP6 under BMA observa-
tional constraints are quite satisfactory.

The possible link between the intensification of EEI and
the recent rapid warming
FromFig. 3, it canbeobserved thatEEI levels significantly increased after the
1990s. The average value from1961 to 1994was 0.22Wm-², which increases
to 0.32 Wm-² if the effects of major volcanic activities are excluded. From
1995 to 2022, the average value rises to 0.80 Wm-² (see Figure S6). T-tests
indicate a statistically significant change around1995with a 95%confidence
level. This suggests a significant enhancement in EEI in the late 1990s.
Furthermore, a similar t-test conducted on the GMST series also revealed a
statistically significant change in surface temperatures around 1997 ~ 1998,
indicating that the enhancement of EEI aligns with the rise in surface
temperatures at the end of the 20th century. This phenomenon is consistent
with the physical relationship described by EEI ¼ F� αΔT, and is sup-
ported by recent findings73. In addition, the upward trend in EEI also sig-
nificantly accelerated after 1995, from 0.06 ± 0.12 Wm−2decade−1 before
1995 (0.13 ± 0.18 Wm−2decade−1 excluding major volcanic activities) to
0.21 ± 0.09Wm−2decade−1 after 1995.This also corroborates the accelerated
rise in OHC after 19956.

Further, based on the Earth system energy component dataset59, we
observed apossible change in the proportion of the energy change caused by
Ocean Heat Content (OHC) to the total energy of EEI around 1995. Before
1995, this proportion exhibited considerable fluctuations, which might
suggest variability in OHC during this period (with substantial interannual
variability), especially between 1980 and 1995,when the proportion ofOHC
to EEI was likely at a lower level. However, after 1995, there appears to be a
shift in variability, with the OHC/EEI proportion stabilizing around 90%
(Figure S7). While this change may correspond with variations in EEI
estimates based onCMIP6 and global surface temperature records from the
same period, the significant uncertainties surrounding these estimatesmake
it difficult to draw definitive conclusions. The apparent stabilization of the
OHC/EEI proportion could result from uncertainties in early ocean heat
content observations, as well as external forcing factors (such as greenhouse
gas emissions) potentially diluting changes caused by internal ocean
variability. These factors contribute tomore stable interannual variations in
the OHC/EEI proportion, but the overall uncertainty remains too large to
reach a conclusive determination. To verify the changes in the impact of
internal ocean variability on climate, we examined the influence of El Niño-
Southern Oscillation events on global mean surface temperature (GMST).
Before the super El Niño event of 1997–1998, El Niño years generally
corresponded to high-temperature years, and La Niña years corresponded
to low-temperature years. However, after 1998, this pattern changed sig-
nificantly: El Niño years still tended to be high-temperature years, but low-
temperature extremes were not always observed during LaNiña events, and

Fig. 3 | Time Series Analysis of EEI from 1961 to 2022. The red line represents the
CMIP6 ensemble results obtained through BMA constraint, the gray line indicates
the results of a simple models’ ensemble (SME), the blue line shows the EEI results
from the SME at TOA, the purple line shows the EEI results from the BMA at TOA,
the black line displays the estimates from CERES satellite observations, the orange
line represents the OHC changes calculated frommultiple OHC data sets, the green
line represents the Earth’s energy change calculated by Schuckmann et al. 2023 based
on multiple surface energy observations, and the brown line shows the EEI results
calculated by Marti et al. 2022 based on space altimetry and space gravimetry. The
data from Schuckmann et al. and the OHC data have been smoothed using a 10-year
moving average after first-order differencing to convert energy data into energy
change data for comparison with EEI data. A more detailed comparison with the
OHC data is shown in Fig. 4.

Fig. 4 | Time series for changes in EEI and OHC of the upper 2000 m. Blue thick
curve represents the BMA fitted EEI results, orange thick curve shows mean of five
different OHC datasets (Levitus et al. 2012, Cheng et al. 2017, Ishii et al. 2017, Good
et al. 2013, Roemmich et al. 2009), green thick curve denotes EEI results obtained by
calculating the sum of increased OHC, land heat content, heat used formelting fixed
and floating ice, and heat for atmospheric warming (Schuckmann et al. 2023).The
brown thick curve represents the EEI series obtained by calculating the rate of change
of OHC and ocean absorption rate (Matri et al., 2022). Changes are obtained by
calculating the first-order difference, and the changes series have been smoothed
with a 10-year moving average.

https://doi.org/10.1038/s43247-024-01802-z Article

Communications Earth & Environment |           (2024) 5:644 5

www.nature.com/commsenv


some instances even showed high-temperature extremes (Figure S8). This
transition is evident in the temperature changes between El Niño and La
Niña years, indicating that the impact of internal ocean changes is being
masked by stronger external forcing, reducing the correlation between
oscillation and temperature changes (although further removal of the
influence of external forcing changes may be needed here to see more
clearly). These observations may reveal deeper connections between OHC
and the global climate system, providing a crucial perspective for under-
standing the mechanisms of global climate change and predicting future
trends.

Summary and discussion
The main findings of this study indicate that the CMIP6 models demon-
strated certain capabilities in simulating radiation components. Although
the BMA constraint is not always optimal for each component, it generally
outperformsmost individual datasets and significantly exceeds the results of
simple averaging. The average EEI estimate for the period from 2000 to
2014, calculated after applying the BMA constraint to each radiation budget
component, performs better than simple ensemble averaging and aligns
closely with estimates from several international teams. This study also
updates the uncertainty estimate for EEI, taking into account the inter-
dependence of various radiation components. From 1961 to 2022, the pri-
mary contribution to the increasing surface EEI trend comes from longwave
radiation, reflecting the impact of greenhouse gas warming. The energy
balance analysis shows that shortwave components contribute more to the
uncertainty, highlighting the importance of more precise shortwave
observational data. Since the mid-1990s, both simple ensemble and BMA
averages have shown a statistically significant increase in surface EEI. After
1995, both approaches indicate a higher EEI, consistent with more accurate
TOA EEI estimates. In terms of decadal variations, the BMA-constrained
EEI changes show high synchrony with OHC changes.

The increase in EEI is also reflected in similar estimates obtained
through other methods. For instance, the proportion of OHC in EEI, cal-
culated based on ocean, atmosphere, cryosphere, and terrestrial energy59,74,
shows a noticeable increase and exhibits lower interannual variability.
Additionally, global surface temperature anomalies tend to be higher at
elevated EEI levels. Further analysis suggests that this significant increase in
EEI may be linked to some recent abnormal climate warming phenomena,
seemingly reducing the fluctuations in GMST caused by internal variability
of the climate system (e.g., ENSO). Our research offers a perspective for
understanding current and future climate change patterns: from the view-
point of ultimate energy flows, recognizing the contribution of human
activities to Earth system climate changes. This is a useful supplement to the
prevailing research paradigm in climate numerical simulation (physical,
chemical, and biological).

When calculating energy imbalance directly using observational
datasets of surface radiation components, it is often difficult to achieve
closure between the datasets, resulting in EEI absolute values and uncer-
tainty ranges that are often too large51,56. In contrast, the CMIP6 model
calculations of surface energy imbalance provide relatively reasonable
absolute value levels and uncertainty ranges (for 2000–2014, the SME result
is 1.7 ± 1.0Wm-², and the BMA result is 0.7 ± 1.0Wm-²). Additionally, both
SME EEI and BMA EEI show an increasing trend after 2000, which is
consistent with the warming trend of the ocean64,75. The higher increasing
trend of BMA EEI compared to SME EEI also indicates that the CMIP6
models tend to underestimate the increasing trend of EEI63.

It is worth noting that we also conducted a systematic review of the
uncertainty in each component of the surface energy budget and in EEI
estimates, which appears to have reduced the numerical estimate of
uncertainty. However, models still facemany challenges in simulatingmost
of the components of the surface energy budget46. Apart from the surface
shortwave solar radiation, other components still rely heavily on very sparse
terrestrial in situ observational networks for constraint24,39,49. Although our
EEI estimate and those based on the total energy estimate of the ocean, land,
atmosphere, and surface are highly consistent in terms of trend changes,

there are still certain differences in absolute values (Figs. 3–4). Therefore, the
uncertainties in EEI and its components in our study should not be
overlooked.

Data and Methods
Global Temperature Observational Data
China-MST2.0, also known as China-Merged Surface Temperature
(China-MST or CMST), is a new global surface temperature dataset
developed by a team at Sun Yat-sen University. It is created by merging
China-LSAT (China Land Surface Air Temperature or C-LAST)76 as the
land component and ERSSTv5 (Extended Reconstructed Sea Surface
Temperature, version 5)77 as the ocean component78. CMST-interim79 has
been partially used by IPCC AR6. CMST2.0 includes three variants:
CMST2.0-Nrec (no reconstruction), CMST2.0-Imax, and CMST2.0-
Imin, which are differentiated based on the reconstructed surface air
temperature over Arctic Sea ice areas. The most recent reconstruction,
CMST2.0-Imax, achieves over 95% coverage in the Northern Hemi-
sphere and serves as the primary baseline data for monitoring global
temperature changes and trend estimation. The CMST2.0 dataset is
currently available at http://www.gwpu.net.

Radiation Observational Data
Downward shortwave solar radiation is oneof themost crucial elements and
is the most abundantly observed at the Earth’s surface12,51,80.A recent high-
quality observational dataset of global land surface solar radiation (SSR),
excludingAntarctica,was developedby integrating all available surface solar
radiation observations, including existing homogenized SSR results46. They
reconstructed a long-term (1955–2018) global land (excluding Antarctica)
SSR anomaly dataset using an improved Partial Convolutional Neural
Network deep learning method based on the 20th Century Reanalysis
version 3 (20CRv3).

GEBA is an archive providingglobal, regional, and local energy balance
data. It collects, verifies, and publishes a wide range of surface and atmo-
spheric energy balance measurement data, crucial for understanding fun-
damental processes of the Earth’s climate system, validating climatemodels,
and monitoring climate change. All energy fluxes stored in the GEBA
database have undergone “physical reasonableness” checks, with random
measurement errors of about 5% for monthly averages and about 2% for
annual averages81. This study used data from 98 GEBA sites, with the site
distribution shown in Figure S9.

For surface solar radiation (SSR) data, the study used a 5°x5° resolution
gridded dataset46, integrating all available SSR observations, including
existing homogenized SSR results. This dataset was derived using an
improved Partial Convolutional Neural Network deep learning method,
offering high reliability in filling and reconstructing missing values.

Ocean Heat Content Data
Ocean Heat Content data were derived from multiple datasets, including
global average values of 0–2000m ocean heat content from 1960 to
202367,68,82–84. Changes in ocean heat content were calculated using first-
order differencing and smoothed by a ten-year moving average85.

This study assumes that the errors of each ocean heat content dataset
are independent of each other. The uncertainty range of the ocean heat
content results is calculated using the error propagationmethod. Assuming
the errors of each dataset are independent, the uncertainty range of the
results is obtainedby dividing the uncertainty of each dataset by the number
of datasets, summing the squared values, and then taking the square root.

Satellite Data
Satellite observation data were sourced from the CERES (Clouds and the
Earth’s Radiant Energy System) Energy Balanced And Filled (EBAF)
dataset, providing monthly and daily values of global top-of-atmosphere
and surface radiation budgets. These data, derived from multiple CERES
sources, have undergone several iterations and calibrations to ensure the
highest data quality and accuracy50.
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CMIP6 Model Data
The Coupled Model Intercomparison Project (CMIP) has evolved into a
standard framework for assessing and comparing results from multiple
climate models. The latest phase, the Sixth Phase (CMIP6), represents the
most advanced model outputs, providing scientists with extensive data
widely used for studying various issues from climate change to Earth system
processes28. This paper selects monthly radiative component forecast data
from 34 models in CMIP6, covering the years 1865–2022 (Table S2). The
data from 1865 to 2014 come from CMIP6’s “historical all-forcing simu-
lation” experiments. For data from2015onwards, the SSP245data is used to
extended62. This includes surface downward shortwave radiation, surface
downward longwave radiation, surface upward shortwave radiation, surface
upward longwave radiation, latent heat component, and sensible heat
component. Due to the different resolutions of various models, bilinear
interpolation is first used to interpolate the data from each mode. Models
often have multiple ensemble members with slightly different initial con-
ditions. The research by Wild et al. has shown that selecting specific
ensemble members is not crucial, as it has only a minor impact on the
calculations formulti-modelfitting24. Therefore, this study selected only one
member from each model and then constrained it with observational data.

BMAMethod
The differentiation of models is a key approach in this study. Our goal is to
reduce the impact of poorly predicting models on the results through
observational constraints, while selecting and assigning higher weights to
modelswith superior predictions.Ahighly effectivemethod for this purpose
is Bayesian Model Averaging (BMA), a technique based on Bayesian sta-
tistics. Unlike traditional model selection, which involves choosing a single
best model or simple averaging of multiple models, BMA balances and
combines information frommultiple models or hypotheses while retaining
the uncertainty inherent in the multi-model approach.

The fundamental concept of BMA is to consider all possible models
and assign each a weight proportional to how well the model matches the
data. More specifically, this weight is the model’s posterior probability,
which combines its prior probability with its likelihood given the data.

For the target radiation component y, with observational data yt and
model dataM1;M2; :::;MK, theprobability density functionofBMAcanbe
expressed as follows:

p yjðM1;M1; � � � ;MK Þ
� ¼

XK

k¼1

pk Mkjyt
� �

pk yj Mk

� �� � ð2Þ

pkðyjðMkÞÞ represents the probability distribution prediction of y in each
individual model, and pkðMkjytÞ represents the likelihood of that model
being the optimal model, i.e., the posterior probability. We can express the
posterior probability as a weightωk, which can be written as:

pðyjðM1;M1; � � � ;MK ÞÞ ¼
XK

k¼1

ωkpkðyjðMkÞÞ ð3Þ

XK

k¼1

ωk ¼ 1 ð4Þ

For the target radiative component, it is assumed that its probability
density function approximates aGaussian distribution, which can be simply
expressed as follows:

pk yjðMk; y
tÞ� � Nðμk; σ2kÞ ð5Þ

Here, μk represents the mean, and σ is the standard deviation of the
data. μk can be obtained through linear regression, while σ2 and ωk are
determinedusing themaximumlikelihoodmethod. Let s and t represent the
spatial and temporal coordinates, respectively, and Mkst be the prediction

result ofmodel k at ðs; tÞ. Assuming that the forecast error is independent in
both time and space, the log-likelihood function of the BMA model under
given observational constraints can be written as follows:

l θð Þ ¼
X

s;t

logp yjðM1st;M2st; � � � ;MKstÞ
�

ð6Þ

Equation (4) does not have an analytical solution, and common
methods for solving it include the Expectation-MaximizationMethod (EM)
or theMarkovChainMonte CarloMethod. In this study, the EMmethod is
employed. EM is an iterative algorithm that alternates between an Expec-
tation (E) step and aMaximization (M) step. The parameters are initialized
as follows:

j ¼ 0; ωðjÞ
k ¼ 1

K
; σ2st ¼

1
K

XK

k¼1

�μst � μkst
� �2� �

ð7Þ

E-step: Set j ¼ jþ 1, and then compute log-likelihood function:

lðθÞðjÞ ¼
X

s;t

log
XK

k¼1

ωðjÞ
k pkðμkst; σ2ðjÞÞ

�
ð8Þ

M-step: Update the weights and variance:

ωðjÞ
k ¼ 1

N

X

s;t

ωðj�1Þ
k pkðμkst; σ2ðj�1ÞÞ

PK

l¼1
ωðj�1Þ
l plðμlst; σ2ðj�1ÞÞ ð9Þ

�μst ¼
XK

k¼1

ωðjÞ
k μkst ð10Þ

σ2ðjÞst ¼
XK

k¼1

ω
jð Þ
k �μst � μkst

� �2� �
ð11Þ

Examine the changes in lðθÞðjÞ and lðθÞðj�1Þ. If they are less than a
predefined error limit ε, stop the iteration. Otherwise, return to the E-step.
Continue this process until convergence is achieved, after which the pos-
terior probability ωk and variance σ2 are obtained.

Uncertainty estimation for addition /subtraction of highly corre-
lated variables
When calculating the uncertainty range of EEI, it is important to note that
the radiative components are not independent of each other. If calculated as
if they are independent distributions, the resulting uncertainty range could
be excessively large51. For radiative components X andY, their uncertainties
are each calculated by 1.96*σ. If they are independent of eachother, then the
standard deviation of their sum satisfies:

σðXþ YÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σðXÞ2þσðYÞ2

q
ð12Þ

Therefore, the total uncertainty is the geometric mean of the uncer-
tainties of each component. However, the situation becomesmore complex
when there is a correlation between X and Y. In this case, the variance of the
sumof the twovariables includes not only their individual variances but also
the covariancebetween them.At this time, the standarddeviationof the sum
should satisfy:

σðXþ YÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σðXÞ2þσðYÞ2 þ 2CovðX;YÞ

q
ð13Þ
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Covariance measures the degree of similarity in the variation trends of
two variables. It is positive when the variables are positively correlated and
negative when they are negatively correlated. It is evident that when the
covariance is zero, there is no correlation between the variables, and in this
case, the formula for the standard deviation of their sum is the same aswhen
they are independent. The relationship between the Pearson correlation
coefficient ρ and covariance is as follows:

CovðX;YÞ ¼ ρðX;YÞ σðXÞ σðYÞ ð14Þ

When X and Y are completely positively correlated, the standard
deviation of their sum reaches its maximum value σðXÞ þ σðYÞ, and when
they are completely negatively correlated, it reaches its minimum value
σðXÞ � σðYÞ
�� ��. Considering that the sum of the various radiative compo-
nents tends to zero, the correlationbetween these components shouldnot be
overlookedwhen calculating EEI. By stacking the uncertainty ranges, we are
able to obtain a narrower range of uncertainty than previous estimates.

Data availability
The datasets used in this study include: China-MST2.0 and global land
surface solar radiation data reconstructed using a convolutional neural
network, both available at http://www.gwpu.net/h-col-103.html on the
Climate Change: Observation andModeling platform; global, regional, and
local energy balance data from GEBA, available at https://geba.ethz.ch/;
ocean heat content data integrated from multiple sources, with specific
access details found in related publications; satellite observation data from
the CERES EBAF dataset, available at https://ceres.larc.nasa.gov/data/;
CMIP6 model data, available from the official CMIP6 database. Addition-
ally, the BMA calculation results and related EEI and OHC data from this
study can be accessed at https://doi.org/10.5281/zenodo.13911838.

Code availability
Code can be accessed at: https://doi.org/10.5281/zenodo.13911838.
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