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Introduction: Enteral nutrition (EN) involves replacing all or part of a person's habitual diet with a
nutritional formula. The impact of varying doses of EN on the gut microbiome remains understudied.
Methods: Healthy adults replaced all (100% EN) or part (85% EN, 50% EN and 20% EN) of their energy
requirements with EN for 7 days. Faecal samples were collected before and on day 7 of interventions.
Faecal pH, short chain fatty acids (SCFAs), branched-chain fatty acids (BCFAs) and 16S rRNA sequencing
were performed. Dietary assessment was performed with 7-day food diaries.
Results: Sixty-one participants (31 females; median (IQR) age: 24.7 (23.0—27.8) years) were recruited. A
dose-dependent impact of EN on faecal microbiota, SCFAs, BCFAs) and pH was observed, with changes
detectable at EN intakes of at least 50% of energy requirements. 100% and 85% EN reduced the abundance
of fibre-fermenting taxa such as Agathobacter, Faecalibaterium, Succinivibrio and Acidaminococcus. In
parallel, potentially harmful organisms like Eubacterium, Actinomyces, and Klebsiella increased. In the 50%
EN group, adherence to a diet high in fish, vegetables, potatoes, non-alcoholic beverages, and fat spreads,
and low in cereal products, milk, and meat negatively correlated with changes in microbiota structure
(r = —=0.75, P = 0.025). This signal was not observed when using compositional tools for microbiota
analysis.
Conclusions: EN detrimentally influences the faecal microbiota and diet-related bacterial metabolites in a
dose-dependent manner, particularly at doses of at least 50%. The findings of this study have implications
for the dietary management and counselling of patients receiving high volume EN.
© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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fibre [3]. As the gut microbiota is highly dependent on host diet, the
impact EN composition may have on this, and by extension to host

1. Introduction

Enteral nutrition (EN) is a commonly used dietary treatment,
which replaces either a portion (partial enteral nutrition, PEN) or
the entirety (100% EN) of a person's diet with a nutritional formula.
Such treatments are commonly used in nutritional rehabilitation
and as efficacious disease-modifying therapies, for example in
Crohn's disease (CD) [1] and eosinophilic oesophagitis [2].
Although the EN formulas vary in composition, most of them are
nutritionally complete, gluten- and lactose-free ultra-processed
foods containing food additives with no or little amount of dietary
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health is a topic of interest. Several metabolites produced through
bacterial metabolism of diet components can have beneficial or
deleterious effects for human health. As a prime example, bacteria
ferment fibre to produce energy for their survival and growth, and
the host uses the end-products of this anaerobic process, short-
chain fatty acids (SCFAs), for whole body immunity, as energy
substrate for colonocytes, regulation of appetite, and absorption of
electrolytes in the colon [4]. Previous studies conducted in mice
have demonstrated that fibre deprivation resulted in gut
microbiota-mediated colonic barrier dysfunction, leading to
increased intestinal permeability, subsequently altering host im-
mune responses [5,6]. Human studies have shown that 100% EN
reduced microbiota diversity, decreased concentrations of SCFAs,
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and lowered abundance of protective bacterial species. In parallel, it
increased the concentrations of branched-chain fatty acids (BCFAs)
and sulphide, bioproducts of protein fermentation, and the abun-
dance of potentially harmful pro-inflammatory organisms [7].
What also remains unknown is the dosage of EN intake above
which such effects on the microbiota are observed and whether
concurrent habitual diet composition, in the case of PEN, is a
modifying factor of these effects.

The present study explored the acute impact of varying dosages
of EN on the faecal microbiota and diet-related bacterial metabo-
lites, and the potential influence concurrent diet, during PEN, may
have on these alterations.

2. Methods
2.1. Study design & participants

Healthy adults (>18 years old) with no underlying health con-
ditions requiring regular medical consultations were recruited from
the local community via advertisement. Exclusion criteria were
change in weight (>2 kg) in the last month, gut surgery and use of
antibiotics, and prebiotic/probiotic supplements in the past 3
months. Participants were asked to replace all (100%) or part (85%,
50%, 20%) of their daily energy requirements with a polymeric EN
formula (Modulen IBD, Nestle©), which does not contain dietary
fibre, lactose, and gluten, for 7 days. Participants were given the
choice of group allocation to one of the four groups to maximise
adherence to the dietary interventions. Participants were provided
with EN formula and those on PEN with all their preferred meals
free of charge to maximise compliance and facilitate dietary
assessment. Participants’ energy requirements were calculated
using estimated energy requirements [8].

2.2. Dietary assessment and analysis

Participants recorded their diet during the intervention with 7-
day estimated weight food diaries. Adherence to each intervention
was assessed with dietary assessment and through counting left-
over EN formula tins. Dietary analysis was performed as described
in Supplementary Material Online.

2.3. Faecal sample collection and measurements

Fresh faecal samples were collected before and on day 7 of the
interventions and processed for measurements of pH, water con-
tent, SCFAs/BCFAs, Bristol Stool Chart score and 16S rRNA amplicon
sequencing as described in Supplementary Material Online. The
whole bowel movement was collected in disposable tubs, stored
under anaerobic conditions (Oxoid™ AnaeroGen™), and trans-
ferred to the laboratory in a cool bag with ice packs within 2 h of
defecation. The whole sample was homogenized with mechanical
kneading and aliquots were stored appropriately for downstream
analysis.

2.4. Statistical analysis

Data analyses were performed in Minitab Version 20 (Minitab
Ltd, Coventry, UK) and R version 4.1.2 (R Foundation for Statistical
Computing, Vienna, Austria). Between- and within-group com-
parisons were performed with general linear models with Box—Cox
transformation and post-hoc pairwise Fisher's least significant
difference tests, accounting for subject effect, or chi-square test,
when appropriate. For microbiota data analysis, a-diversity indices
(Chao1 index, Shannon a-diversity index and Pielou's evenness
index) were calculated using the “vegan” package [9]. Overall
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community structure was visualised using non-metric multidi-
mensional scaling (NMDS) analysis on the Aitchison distance. This
distance metric was derived from Euclidean distances following
centred log ratio (CLR) normalisation, which considers the
compositional nature of microbial abundance data. In addition, a
conventional NMDS approach using the Bray—Curtis dissimilarity
matrix was used to visualise the data. Differences in community
structure were assessed using permutation analysis of variance
(ANOVA) for within-group comparisons and analysis of covariance
(ANCOVA) and post-hoc Tukey honest significant difference test
accounting for age, sex, and BMI for between-group comparisons.
Quantification of differences in community structure involved
calculating Aitchison and Euclidean distances from the combined
baseline centroid coordinates derived from the Principal Coordi-
nate Analyses (PCoA). For the case of Euclidean distances, the PCoA
was first performed using the respective Bray—Curtis dissimilarity
matrix, this method is an adaption of the PERMDISP2 procedure
[10] for beta dispersion implemented in the “vegan” R package. The
“maaslin2” package was used to identify the bacterial taxa that
changed with each intervention. CLR normalisation was used to
handle the compositional nature of microbial abundance data,
while default total-sum scaling (TSS) normalisation was used for
conventional analyses [11]. Correlations were analysed using
Spearman rank correlation test. The significance was set at p-value
<0.05 or adjusted p-value (qg-value) < 0.10 after Benjamini-
Hochberg corrections for multiple testing.

2.5. Ethical permissions and compensations

The study protocol was approved by the University of Glasgow
Research Ethical Committee (Reference: 200130161). All partici-
pants provided informed consent and received £100 in shopping
vouchers as participation compensation.

3. Results
3.1. Participants characteristics and dietary intake

Sixty-one participants (31 females and 30 males) were enrolled
(Table 1). All participants completed the intervention, returned
food diaries, and provided a total of 61 pairs of faecal samples
(n = 122). No significant differences in baseline participant char-
acteristics were observed among the four groups (Table 1). The
intakes of EN formula across groups closely matched with pre-
scribed intakes (Table 1). Differences in macronutrient and food
group intakes between groups reflected the incremental increase of
EN intake in diet (Table 1).

3.2. Faecal characteristics and metabolites

Faecal characteristics and metabolites were measured across all
122 samples collected. Faecal pH increased after 100%, 85% and 50%
EN (Supplementary Table 1). Significant changes in the levels of
faecal SCFAs and BCFAs were observed with 100% and 85% EN
(Fig. 1). In these two groups, the concentrations of acetate, butyrate
and caproate decreased whereas it was only in the 100% EN group
that the concentrations of propionate and valeric acid reduced too,
and that of isobutyrate and isovalerate increased (Fig. 1). A trend in
increasing levels of BCFAs was also observed after 85% and 50% EN,
but this did not reach statistical significance (p-values between
0.05 and 0.08) (Supplementary Table 1).
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Table 1
Baseline participant characteristics, and dietary intakes assessed with food diaries during the interventions. Data presented as median (Q1-Q3) unless stated otherwise.
100% EN (n = 25) 85% EN (n = 12) 50% EN (n = 12) 20%EN (n = 12) p-value*

Age, years 23.3(22.9-25.1) 24.8 (24.2-27.1) 27.5(25.4-29.1) 26.7 (23.5-28.7) 0.158
Female, n (%) 13/25 (52%) 5/12 (42%) 6/12 (50%) 7/12 (58%) 0.875
BMI, kg/m? 22.4(20.5-24.3) 22.1(20.1-25.8) 24.4 (21.9-26.5) 24.1 (21.6-24.9) 0.098
Height, cm 169.0 (166.0—178.0) 172.0 (168.0-178.3) 175.5 (170.5—182.5) 172.0 (168.5—175.0) 0.591
Body weight, kg 68.1 (56.3—74.4) 68.3 (57.5-76.4) 73.4 (63.6—85.0) 68.8 (62.5—75.3) 0.192
Estimated BMR, kcal/day 1578 (1331-1794) 1721 (1364—1823) 1685 (1458—1913) 1506 (1416—1780) 0.511
Estimated TEE, kcal/day 2209 (1872—2512) 2409 (2229-2644) 2567 (2090—2807) 2129 (2023-2603) 0.239
Total energy intake, kcal/day 2260 (1919—-2628) 2608 (2276—2880) 2589 (2034—2854) 2178 (2004—2702) 0.248
Energy intake/EAR, % 92.3 (84.2—99.8) 99.8 (90.1-111.7) 102.7 (93.5—105.7) 95.6 (91.1-100.3) 0.111
EN intake/TEE, % 96.4 (95.5—98.3)F! 85.6 (84.7—86.9)! 49,9 (48.9-51.0)' 19.8 (19.6—20.6) <0.001
Fat, g 99.7 (81.6—118.9) 115.4 (102.2—130.8) 110.0 (91.4—125.4) 87.9 (82.5-116.1) 0.105
Fat, % 39.9 (39.6—40.7)¢ 40.3 (39.7-40.7)° 39.8 (38.5-41.0)° 38.6 (34.8—39.3) 0.006
Saturated fat, g 56.3 (46.1-67.2)' 62.9 (55.4—69.8)'P 48.4 (41.1-55.8)¢ 36.0 (31.4—43.7) <0.001
Saturated fat, % 22.6 (22.4—23.0)"! 21.8 (21.6—21.9)%! 17.3 (16.8—18.0)' 14.5 (13.1-15.9) <0.001
Carbohydrate, g 252.1 (216.0—289.2) 285.5 (251.0—313.0) 244.7 (202.8—281.3) 232.4 (222.3-255.8) 0.388
Carbohydrate, % 45,0 (44.1-45.4)F¢ 43.7 (42.8—44.1)F 39.1 (37.5-41.0)¢ 43.7 (41.4—44.7) <0.001
Total sugars, g 111.8 (98.3—122.8) 115.5 (97.0-122.4) 86.6 (77.2—103.4) 88.4(81.3—100.1) 0.022
Total sugars, % 19.5 (18.1—20.2)AF! 17.3 (16.3—18.4)F 14.4 (14.0-15.0) 15.9 (15.3-17.7) <0.001
Protein, g 78.9 (65.3—93.5)FC 97.5 (84.4-105.0) 104.9 (93.5-119.8) 90.7 (87.3—121.8) <0.001
Protein, % 14.0 (13.9-14.2)M! 14.8 (14.2—15.6)F1 17.7 (16.6—18.1) 17.3 (16.4-17.7) <0.001
Fibre, g 0.0 (0.0—0.0)BF! 3.6 (2.9-4.3)! 13.7 (11.5-16.0)' 20.6 (15.0-24.4) <0.001
Fibre, g/1000 kcal 0.0 (0.0—0.0)BF! 1.5 (1.2—1.8)! 5.3 (4.7-7.2) 8.1(7.5-9.0) <0.001
Cereals and Cereal Products, g/1000 kcal 106.0 (60.2)" 377.8 (154.9)" 663.5 (156.7) <0.001
Milk and Milk Products, g/1000 kcal 32.1 (25.7) 1414 (57.8) 190.2 (106.8) <0.001
Eggs and Egg Dishes, g/1000 kcal 20.4 (19.5) 35.6 (21.4) 17.8 (0.0—39.3) 0.097
Fat Spreads, g/1000 kcal 10.6 (5.1-20.7)%! 152.9 (112.5-202.5) 182.4 (68.7) <0.001
Meat and Meat Products, g/1000 kcal 48.8 (48.9)F! 145.8 (54.2) 225.2 (148.9) <0.001
Fish and Fish Dishes, /1000 kcal 8.1 (0.0-8.2) 34.8 (0.0-68.5) 48.8 (0.0-76.2) 0.039
Vegetables, Potatoes, g/1000 kcal 7.9 (0.8—62.4)%! 110.2 (58.8) 152.6 (79.8) <0.001
Savoury Snacks, g/1000 kcal 0.0 (0.0-35.2) 0.0 (0.0-21.0) 0.0 (0.0-102.8) 0.133
Nuts and Seeds, g/1000 kcal 0.0 (0.0-39.3) 3.3(0.0-75.7) 25.2(0.0-120.4) 0.186
Fruit, g/1000 kcal 66.9 (49.1)' 100.9 (41.7)" 231.6 (115.2) <0.001
Sugars, Preserves and Confectionery, g/1000 kcal 17.8 (0.0—81.0) 15.7 (0.0—-77.8) 63.1 (59.7) 0.294
Non-Alcoholic Beverages, g/1000 kcal 0.0 (0.0-0.0)' 3.7 (3.2)8 31.0 (35.0) 0.001
Alcoholic Beverages, g/1000 kcal 0.0 (0.0-0.0)° 19.8 (0.0—-94.5) 0.0 (0.0-59.5) 0.038
Miscellaneous, g/1000 kcal 0.0 (0.0—0.0)5¢ 32.1(21.4-61.2) 37.4 (40.7) 0.003

*P-values for between-group comparisons with general linear modelling with Box—Cox transformation. P-values for comparisons of macronutrients from food (habitual diet)
and food groups are between 85%, 50% EN and 20% EN groups. P-values for comparisons of food groups are based on kilocalorie adjusted values (/1000 kcal).

A Significantly different than 85% EN group (P < 0.05); B Significantly different than 85% EN group (P < 0.01); € Significantly different than 85% EN group (P < 0.001);
D Significantly different than 50% EN group (P < 0.05); E Significantly different than 50% EN group (P < 0.01); F Significantly different than 50% EN group (P < 0.001);
C Significantly different than 20% EN group (P < 0.05); " Significantly different than 20% EN group (P < 0.01); ! Significantly different than 20% EN group (P < 0.001) for Fisher

pairwise comparisons after general linear modelling.

Abbreviations used: BMI: Body Mass Index; BMR: Basal Metabolic Rate; EAR: Estimated Average Requirement; EN: Enteral Nutrition; F: Female; M: Male; TEE: Total Energy

Expenditure.

3.3. Faecal microbiota

Microbiota analysis was conducted on a total of 110 samples
which passed the 10,000 reads quality control cut-off
(Supplementary Table 2). Sequencing reads were annotated to
2971 unique amplicon sequence variants (ASVs) and 248 genera.

In all groups, apart from 20% EN, dietary interventions shifted
microbiota structure (Fig. 2) towards the same direction on ordi-
nation plots, and in a dose-dependent manner (Fig. 3). After cor-
recting for baseline values, using the Aitchison distances, which
handle the compositional nature of microbial abundance data, we
observed significant differences between the 100% EN and all other
groups except for the 85% EN group (Fig. 3). Comparable effects in
microbiota structure were observed using the conventional
approach on the Bray—Curtis dissimilarity matrix (Supplementary
Figs. 1 and 2).

Regarding a-diversity indices, an increase in the Chaol index
was observed in the 85% EN group (P = 0.031) only (Fig. 4); albeit
samples from this group had lower baseline values compared to the
50% EN (P = 0.002) and 20% EN (P = 0.023) groups. Other estimates
of a-diversity did not change in any of the groups (Fig. 4).

Among all four groups, the most significant changes in taxon
relative abundance were evident after 100% and 85% EN with
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several of these changes overlapping between the two groups.
Comparatively, fewer changes were observed after 50% and 20% EN,
with the statistical significance of most changes lost when cor-
recting for multiple testing especially for the 20% EN group.
Compositional analysis with CLR normalisation revealed significant
baseline changes in 26% (100/385) of analysed ASVs, 28% (32/114)
genera, and 32% (12/37) families following 100% EN, and in 21% (61/
290) ASVs, 29% (28/97) genera, and 22% (7/32) families following
85% EN (Fig. 5, Supplementary Figs. 3 and 4). At phylum level, we
observed that 100% EN led to a decrease in Bacteroidetes abundance
while increasing Desulfobacterota levels. 85% EN increased abun-
dance of Proteobacteria, and 50% EN decreased both Actino-
bacteriota and Bacteroidetes (Supplementary Fig. 5). Consumption
of 100% EN decreased the abundance of fibre-fermenting and SCFA-
producing taxa such as members of Succinivibrio, Acidaminococcus,
Agathobacter, Faecalibaterium, Bifidobacterium and Ruminonocca-
ceae, while in parallel increased the abundance of potentially
harmful organisms like Eubacterium, Actinomyces, Klebsiella,
Ruminococcus torques group, Escherichia Shigella and Erysipelato-
clostridium. Many changes overlapped between the 85% EN and
100% EN groups (43% (12/28) genera) including reduced abundance
of Acidaminococcus, Agathobacter, and Bifidobacterium, and
increased abundance of the genus R. torques group. 50% EN induced
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Fig. 1. Impact of 20% EN, 50% EN, 85% EN and 100% EN interventions on the faecal diet-related bacterial metabolites (umol/g). *p-value<0.05, **p-value<0.01, ***p-value<0.001.
Abbreviations used: DO: baseline (Day 0); D7: post-intervention (Day 7); EN: enteral nutrition.

changes to 10% (11/109) of analysed genera, of which 55% (6/11) 3.4. Correlations between concurrent diet with faecal microbiota
also overlapped with the 100% EN group. Analysis with TSS nor- changes

malisation revealed a broader spectrum of changes, particularly

within the 85% and 100% EN groups; it is worth noting that many Last, we explored relationships between dietary intake and
changes overlapped between the two approaches (100% EN group: microbiota community structure (Aitchison and Euclidean dis-
52/100 ASVs, 27/32 genera, and 11/12 families; 85% EN group: 25/ tances from baseline centroid) in participants from the 50% EN
61 ASVs, 18/28 genera, and 6/7 families) (Supplementary Figs. 6—9). group in which the dose of EN was sufficient to induce significant
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shifts in microbiota community and while concurrent diet was
making up a significant fraction of their intake to potentially
mitigate some of these shifts. Three dietary patterns were

selected following PCA analysis which collectively explained 61%
of data variance (Supplementary Figs. 10 and 11). While we found
that changes in the community structure measured with the
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Aitchison distances did not correlate with adherence to any of
these dietary patterns, adherence to a pescetarian-like dietary
pattern characterised by high consumption of fish and fish
dishes, vegetables and potatoes, non-alcoholic beverages and fat
spreads, and low consumption of cereal and cereal products, milk
and milk products, and meat and meat products) was negatively
correlated with changes in microbiota composition measured
with the Euclidean distance (r = —0.75, P = 0.025).

4. Discussion

In the present study, we show that EN had significant effects on
faecal microbiota and diet-related bacterial metabolites; in
particular, demonstrating a dose-dependent relationship with
changes detectable at EN intake of at least 50% of energy re-
quirements. Certain microbial changes were observed solely after
exclusive consumption of EN, including changes in the concen-
trations of BCFAs, whereas other alterations were shared between
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more than two groups such as the shifts in overall community
structure. The increase in faecal pH has been observed in all four
groups, indicating that even a small amount of EN (20%) may in-
crease faecal pH levels. Such increments in pH levels with EN
consumption may result from a concomitant decrease in fibre
intake in diet and by extension less luminal fermentable substrate
for bacterial production of SCFAs. The changes observed here are
most likely the result of fibre deficit in the intestinal lumen for
bacterial growth, a corresponding increase in gastrointestinal
transit time and luminal pH when EN is used at doses of at least
85% of energy requirements. At such high volumes, it appears that
EN influences the gut microbiota, and the effect of concurrent diet
may be insignificant. However, when at least 50% of energy intake
is replaced by EN, the composition of a concurrent diet, particu-
larly a dietary pattern resembling a pescetarian diet, may mask
the effect of EN alone on the gut microbiota, although these
findings were not confirmed using compositional tools for
microbiota analyses.
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Fig. 5. Results from maaslin2 with centred log ratio normalisation showing significant changes to bacterial taxa at genus level following 20% EN, 50% EN, 85% EN and 100% EN
interventions. The figure displays directions and magnitudes of these changes, accounting for correction for multiple testing (g-value <0.10) and without correction (p-value <0.05).
No significant differences observed following 20% EN. Abbreviations used: EN: enteral nutrition.

There are implications from the findings of the current study for
dietetic practice and research. In patients where dietary fibre is not
contraindicated, use of EN formulas enriched with dietary fibres
should be encouraged, particularly using blends of different dietary
fibres. Alternatively healthcare professionals should provide advice
to increase fibre-containing foods in the concurrent diet of patients
alongside high-volume EN. Supplementing EN treatment with
probiotics, including traditional and next-generation organisms
such as Bifidobacterium and Faecalibacterium, respectively, may also
aid in mitigating the potentially negative effects of high-volume EN
on the gut microbiome.

Likewise, this study findings may also have indirect implications
relevant to the mechanism of action of EN in the management of
active CD. It has long been believed that the efficacy of 100% EN is
mediated via modulation of the gut microbiota and the findings of
this study align with this hypothesis [12]. In contrast, the inability
of 20% EN to shift the microbiota and SCFAs may explain the inef-
fectiveness of low volume EN to maintain remission in CD [13].
Nonetheless, such suggestions need confirmation in clinical trials in
patients with CD and against disease measures.

Another notable observation is that BCFAs increased only in
participants on 100% EN and not in those on 85% EN and despite
similar shifts to microbiota structure. This finding suggests that
even small amounts of dietary fibre (e.g. average intake of 4 g per
day in the case of the 85% EN) may be adequate to mitigate
excessive protein fermentation and production of BCFAs by the gut
microbiota.

This study has several limitations. We only assessed the short-
term impact of EN, and further research is required to explore the
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long-term effects on the faecal microbiota. The consequences these
microbial signals may have on host immune responses is also an
important topic for further research. An important limitation of this
study is the presence of baseline differences in the species richness
among the study groups, with the 85% EN group demonstrating
lower baseline values compared to other groups. This discrepancy
may have introduced bias and the observed increase in species
richness in the 85% EN group should be interpreted with caution.
Furthermore, it is important to acknowledge that due to the
exploratory nature of our study, formal power calculations were
not carried out, which may have impacted the study ability to
detect small or moderate effects. However, the paired study design
we applied here, with most of the comparative analysis performed
within a group, increased our statistical power to detect significant
effects, despite a modest sample size.

In summary, EN modifies the faecal microbiota and diet-related
bacterial metabolites in a dose-dependent manner, but marginal
effects are to be expected in people consuming 20% EN or less.
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