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A B S T R A C T

Proxy variables have gained widespread prominence as indispensable tools for identifying
structural VAR models. Analogous to instrumental variables, proxies need to be exogenous, i.e.
uncorrelated with all non-target shocks. Assessing the exogeneity of proxies has traditionally
relied on economic arguments rather than statistical tests. We argue that the economic rationale
underlying the construction of commonly used proxy variables aligns with a stronger form
of exogeneity. Specifically, proxies are typically constructed as variables not containing any
information on the expected value of non-target shocks. We show conditions under which this
enhanced concept of proxy exogeneity is testable without additional identifying assumptions.

1. Introduction

Structural vector autoregressions (SVARs) are routinely combined with external instruments, so-called proxies, to achieve
identification. Proxies are valid for identification under two conditions: They need to be relevant, i.e. contemporaneously correlated
with the target shock; and they need to be exogenous, i.e. contemporaneously uncorrelated with the non-target shocks.

The traditional conception is that proxy exogeneity cannot be tested using only the proxy variable. Instead, the majority of
applications using proxy variables rely on economic arguments to justify the exogeneity condition and not on a statistical test.
More recently, several studies propose to test the proxy exogeneity assumption by identifying the model using other identifying
assumptions, i.e. using heteroskedasticity in Schlaak et al. (2023), sign restrictions in Braun and Brüggemann (2022), independent
and non-Gaussian shocks in Keweloh et al. (2023a,b), changes in unconditional volatility, which can be used to test for proxy
exogeneity ex-post in Angelini et al. (2024), or breaks in the simultaneous interaction in Angelini et al. (2024).

In this study, we propose a proxy exogeneity test that exclusively leverages the information embedded in the proxy variable.
We argue that the economic reasoning employed to construct proxy variables typically implies a stronger form of exogeneity.
Specifically, proxies are typically constructed not merely to exhibit no correlation with non-target shocks but to contain no
information at all on the expected value of the non-target shocks, which we denote as a strongly exogenous proxy. If we extend our
notion of proxy exogeneity to this stronger exogeneity assumption, a proxy variable can contain information beyond its correlation
with the reduced form shocks and this information can be used to detect endogenous proxy variables. Specifically, for a strongly
exogenous proxy 𝑧𝑡, we can generate a synthetic proxy �̃�𝑡 = 𝑧2𝑡 which is also exogenous. Therefore, we obtain two proxies and an
overidentified system, so that a simple 𝐽 -test can be used to test the strong exogeneity assumption.

The crux of our study lies in the expansion of the concept of an exogenous proxy beyond mere uncorrelation with non-target
shocks to strong exogeneity, meaning the absence of any information on the expected value of non-target shocks. Consider, for
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example, the tax proxy in Mertens and Ravn (2014), constructed as a series of tax shocks based on narrative documents, the
monetary policy proxy in Gertler and Karadi (2015) measuring monetary policy shocks based on federal funds futures at FOMC
announcements, or the oil supply news proxy in Känzig (2021) capturing supply news shocks based on changes in oil price futures
t OPEC announcements. In each case, the economic rationale underlying the construction of the proxy is that the proxy is a function

of the target shock but not affected by non-target shocks, which of course justifies uncorrelatedness of the proxy and non-target
shocks. However, we show that it also justifies strong exogeneity. If, for instance, the tax proxy is equal to a series of tax shocks and
ax shocks contain no information on the expected value of other non-target shocks, then the tax proxy contains no information on
he expected value of other non-target shocks and is thus strongly exogenous.

A Strongly exogenous proxy allows to generate additional synthetic proxy variables. Specifically, for a strongly exogenous proxy
𝑧𝑡, it holds that �̃�𝑡 = ℎ(𝑧𝑡) is uncorrelated with non-target shocks and thus �̃�𝑡 is an exogenous synthetic proxy. Intuitively, if the tax
proxy is equal to a series of tax shocks and thus uncorrelated with non-target shocks, the synthetic tax proxy �̃�𝑡 = 𝑧2𝑡 is equal to
a series of squared tax shocks, and thus also uncorrelated with non-target shocks. Consequently, for a strongly exogenous proxy,
we can use the original and a synthetic proxy to obtain a system of two exogenous proxies and jointly test if both proxies are
uncorrelated with the non-target shocks. Rejecting the null hypothesis that both proxies are uncorrelated with the non-target shocks
indicates that the proxy is not strongly exogenous.1

Having established the economic rationale justifying the exogeneity of the synthetic proxy, the remaining question is under
which circumstances does a strongly exogenous proxy contain sufficient information to detect endogeneity? Put differently, what
are the conditions to ensure that the synthetic proxy contains additional information not contained in the original proxy? A proxy
ariable is a function of potentially all structural shocks and additional exogenous variation. If this function is linear and all shocks
re Gaussian, a strongly exogenous proxy contains no information beyond its correlation with the reduced form shocks, such that
o synthetic proxy can contain any information to detect endogeneity. However, if the proxy does not adhere perfectly to a linear
unction or if not all shocks influencing the proxy adhere strictly to a Gaussian distribution, a strongly exogenous proxy can contain
dditional information, which can be leveraged to detect endogeneity of the proxy.

First, consider a proxy 𝑧𝑡 equal to a linear function of the skewed target shock and a noise term. In this scenario, the information
of the proxy is not entirely contained in its correlation with the reduced form shocks, instead, the synthetic proxy �̃�𝑡 = 𝑧2𝑡 is relevant
nd can contain information to detect endogeneity. Intuitively, if tax shocks exhibit a left-skewed distribution, implying that large

negative tax shocks are more likely than large positive ones, high values of the synthetic tax proxy �̃�𝑡 = 𝑧2𝑡 correlate with negative
alues of the tax shock, implying that the synthetic tax proxy is correlated with the target shock and hence provides overidentifying
estrictions. The same argument can be made if a non-target shock which is correlated with the proxy (a so-called ‘‘contaminating
hock’’) exhibits skewness. Second, our approach is not limited to non-Gaussian shocks. Even with Gaussian shocks, the information
f the proxy may not be entirely contained in the second moments if the proxy generating function is non-linear. Only in the special
ase of exactly Gaussian shocks and a perfectly linear proxy model a synthetic proxy cannot contain additional information such
hat our test has no power and rejects at the nominal level.

We broadly relate to SVAR identification approaches relying on information in higher moments of the shocks, which allow full
identification of the SVAR if all shocks are independent and at most one shock is Gaussian, see Matteson and Tsay (2017), Gouriéroux
et al. (2017), Keweloh (2021) and Guay (2021). In contrast, we rely on higher moments of the proxy and aim at testing exogeneity
f the proxy, which only requires mean independence of the non-target shock and proxy. Moreover, a single (or for a non-linear
roxy even no) non-Gaussian shock can be sufficient to detect proxy endogeneity. Additionally, estimates based on higher moments
re of course not limited to SVARs. For example, Lewbel (1997) and Erickson and Whited (2002) construct instruments as functions

of the data to estimate linear regression models with measurement errors in the variables and Bierens (1982) or Donald et al. (2003)
consider estimators for conditional moment restriction models relying on unconditional moment restrictions also involving functions
of the data.

We investigate the finite sample properties of the proposed test in a Monte Carlo study using a stylized and a more realistic
data-generating process (DGP). We find that our test has a precise nominal level in settings usually encountered in macroeconomic
datasets. Its power increases with sample size, with stronger proxies, higher skewness of the target and/ or contaminating shock,
stronger forms of proxy non-linearity, and a higher correlation of the proxy with the contaminating shock.

We apply the proposed exogeneity test to three proxies frequently used in fiscal proxy SVARs. These proxies include the narrative
tax variable used in Mertens and Ravn (2014) as a proxy for tax shocks, the total factor productivity measure of Fernald (2012) as
n output shock proxy, and changes in military spending, which have been used as a government expenditure shock proxy, as seen

in Klein and Linnemann (2019), for instance. Our findings reveal a lack of strong exogeneity in the tax proxy, while providing no
vidence against exogeneity for the output and spending proxies.

The remainder of this paper is organized as follows: Section 2 discusses the model assumption and develops the proxy exogeneity
tests. Section 3 shows the Monte Carlo simulation. Section 4 applies the test in the fiscal SVAR. Section 5 concludes.

1 Note that in general, rejecting strong exogeneity does not necessarily imply that the proxy is correlated with non-target shocks. However, we show that
if the proxy is equal to a function of the target shock and a noise term, both mean independent w.r.t. non-target shocks, rejecting strong proxy exogeneity
implies that the proxy is also a function of the non-target shocks. While it is mathematically possible to construct a proxy equal to a function of the target and
non-target shocks, yet uncorrelated with the non-target shock, this case is clearly not economically interesting.
2 
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2. Model setup

Our model is a 𝐾-dimensional SVAR(𝑝) process,

𝑦𝑡 = 𝜈 + 𝐴1𝑦𝑡−1 +⋯ + 𝐴𝑝𝑦𝑡−𝑝 + 𝑢𝑡 with 𝑢𝑡 = 𝐵0𝜀𝑡 (1)

and a 𝐾 × 1 vector 𝑦𝑡 of endogenous variables, reduced form shocks 𝑢𝑡, and structural shocks 𝜀𝑡. We normalize the diagonal elements
of 𝐵0 to one and w.l.o.g. assume that the first shock, 𝜀1𝑡, is the target shock and 𝜺2𝑡 = (𝜀2𝑡,… , 𝜀𝐾 𝑡)′ contains the non-target shocks.
Analogously, we define 𝒖2𝑡 = (𝑢2𝑡,… , 𝑢𝐾 𝑡)′. Moreover, let 𝛽0 be equal to the last (𝐾 − 1) elements of the first column of 𝐵0, such
that 𝛽0 denotes the simultaneous impact of the target shock on the last (𝐾 − 1) variables and the impact on the first variable is
normalized to one.

The reduced form shocks can be estimated via OLS and the simultaneous impact 𝑢𝑡 = 𝐵0𝜀𝑡 of the target shock can be estimated
using a proxy. For simplicity, we omit the lag structure and focus on the simultaneous interaction. An extension to a VAR(𝑝) with
𝑝 > 0 is straightforward and can be found in Appendix A.

2.1. Proxy SVAR

Typically, the underlying rationale of a proxy is to construct a variable 𝑧𝑡 that contains information about the target shock, 𝜀1𝑡,
but no information on the non-target shocks, 𝜺2𝑡. These properties are imposed using second-order moments, i.e. a proxy is valid if
it is correlated with the target shock and uncorrelated with all non-target shocks.

Assumption 1 (Valid Proxy).
The proxy 𝑧𝑡 for the shock 𝜀1𝑡 is relevant and exogenous:

1. Relevance: 𝐸
[

𝜀1𝑡𝑧𝑡
]

≠ 0 2. Exogeneity: 𝐸
[

𝜺2𝑡𝑧𝑡
]

= 𝟎

Using exogeneity and relevance allows to identify the impact of the target shock with 𝛽0 =
E(𝒖2𝑡𝑧𝑡)
E(𝑢1𝑡𝑧𝑡)

. However, with only a single
proxy variable, we cannot statistically test the identifying uncorrelatedness assumption 𝐸

[

𝜺2𝑡𝑧𝑡
]

= 0. Therefore, it typically remains
p to the researcher to find convincing economic arguments why the proxy should not contain information on the non-target shocks.

Assumption 2 (Strong Exogeneity).
The proxy 𝑧𝑡 for the shock 𝜀1𝑡 is strongly exogenous if 𝐸 [

𝜺2𝑡|𝑧𝑡
]

= 0.

Strong exogeneity is a stronger assumption than uncorrelatedness of the proxy with all non-target shocks, and we propose a
test for the strong exogeneity assumption.2 The question is whether the strong exogeneity assumption is too strong. Meaning, are
here proxy variables that are uncorrelated with the non-target shocks but do not meet the criteria for strong exogeneity? While it

is statistically possible to define such a variable, we are not aware of any reasonable economic examples where proxy variables are
arguably uncorrelated with the non-target shocks yet still contain predictive power on the expected value of the non-target shocks.

The following proposition shows that strong exogeneity of a proxy follows if a proxy is equal to an arbitrary function of the
arget shock 𝜀1𝑡 and a noise term 𝑣𝑡.

Proposition 1. For 𝐸[𝜺2𝑡|𝑣𝑡, 𝜀1𝑡] = 0 and 𝑧𝑡 = 𝑔(𝜀1𝑡, 𝑣𝑡) and a measurable function 𝑔(.) it follows that 𝑧𝑡 is strongly exogenous,
i.e. 𝐸

[

𝜺2𝑡|𝑧𝑡
]

= 0.

Proof. The law of iterated expectations implies

𝐸[𝜺2𝑡|𝑔(𝑣𝑡, 𝜀1𝑡)] = 𝐸[𝐸[𝜺2𝑡|𝑣𝑡, 𝜀1𝑡, 𝑔(𝑣𝑡, 𝜀1𝑡)]|𝑔(𝑣𝑡, 𝜀1𝑡)]. (2)

Using 𝑧𝑡 = 𝑔(𝑣𝑡, 𝜀1𝑡) and 𝐸[𝜺2𝑡|𝑣𝑡, 𝜀1𝑡] = 0 yields 𝐸
[

𝜺2𝑡|𝑧𝑡
]

= 0. □

Therefore, rejecting strong exogeneity indicates that the proxy is not just a function of the target shock and the noise term, but
also a function of the non-target shocks. A linear proxy 𝑧𝑡 = 𝜓1𝜀1𝑡 + 𝑣𝑡 as considered in large parts of the proxy literature, see,
e.g. Angelini and Fanelli (2019), and also internal instruments 𝑧𝑡 = 𝜓1𝜀1𝑡, see, e.g. Jarociński and Karadi (2020), are special cases
of 𝑧𝑡 = 𝑔(𝜀1𝑡, 𝑣𝑡).

Note that in general, rejecting strong exogeneity does not necessarily imply that the proxy is correlated with the non-target
shocks. In general, it is possible that 𝐸[𝜺2𝑡𝑧𝑡] = 0 but 𝐸

[

𝜺2𝑡|𝑧𝑡
]

≠ 0. However, Proposition 1 implies that in this case, the proxy is
also a function of the non-target shocks. For example, a proxy 𝑧𝑡 = 𝜓1𝜀1𝑡 + 𝜓2𝜀2𝑡 −

𝜓2
3 𝜀

3
2𝑡 + 𝑣𝑡 with i.i.d. standard normal shocks

satisfies 𝐸[𝜺2𝑡𝑧𝑡] = 0 even though it is not strongly exogenous. Although mathematically possible, these cases are not economically
relevant. Furthermore, if we only consider a linear (or internal) proxy, i.e. 𝑧𝑡 = 𝜓1𝜀1𝑡 + 𝜓2𝜺2𝑡 + 𝑣𝑡, strong exogeneity implies 𝜓2 = 0
with Proposition 1. Therefore, for a linear proxy, strong exogeneity implies uncorrelatedness of the proxy and non-target shocks.

2 Note that strong exogeneity does not imply independence. For example, strong exogeneity still allows that the proxy variable and the non-target shock are
driven by the same volatility process or that the shocks themselves follow an ARCH-type process. Furthermore, it even allows that the non-target shocks can
have predictive power for the expected value of the proxy variable, only the opposite is prohibited.
3 
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Proposition 1 assumes that the noise and target shock contain no information on the expected value of the non-target shocks.
While assuming 𝐸[𝜺2𝑡|𝑣𝑡] = 0 appears uncontroversial, assuming 𝐸[𝜺2𝑡|𝜀1𝑡] = 0 requires justification. Although most identification
methods require only uncorrelated shocks, 𝐸[𝜀2𝑡𝜀1𝑡] = 0, applications implicitly rest on the mean independence assumption
𝐸[𝜀2𝑡|𝜀1𝑡] = 0, see Keweloh (2024). To see this, let 𝑦1𝑡 = 𝑏11𝜀1𝑡 + 𝑏12𝜀2𝑡. The response 𝑏11 is typically interpreted as the expected
response of 𝑦1𝑡 to 𝜀1𝑡, i.e. 𝑏11 = 𝐸

[

𝑦1𝑡|𝜀1𝑡 = 1]. However, the assumption of uncorrelated shocks is not sufficient to guarantee that
this equality holds, but instead requires mean independent shocks, i.e. in general it holds that 𝐸

[

𝑦1𝑡|𝜀1𝑡 = 1] = 𝑏11𝐸
[

𝜀1𝑡|𝜀1𝑡 = 1] +
𝑏12𝐸

[

𝜀2𝑡|𝜀1𝑡 = 1] and thus 𝑏11 = 𝐸
[

𝑦1𝑡|𝜀1𝑡 = 1] only holds if 𝐸 [

𝜀2𝑡|𝜀1𝑡
]

= 0. Consequently, assuming 𝐸[𝜺2𝑡|𝑣𝑡, 𝜀1𝑡] = 0 in Proposition 1
is a reasonable assumption, which is required anyway to ensure the interpretation of impulse responses as the expected response to
the target shock.

2.2. A strong exogeneity test

In contrast to the commonly used proxy exogeneity Assumption 1, which imposes uncorrelatedness of the proxy with all non-
target shocks, strong exogeneity in Assumption 2 is a conditional moment restriction and can be tested, see e.g. Donald et al. (2003)
or Bierens (1982) for conditional moment restriction tests in general. Intuitively, a strongly exogenous proxy can be used to construct
an additional synthetic proxy, �̃�𝑡. If the synthetic proxy provides overidentifying restrictions, a simple 𝐽 -test can be used to test for
strong exogeneity.

A strongly exogenous proxy contains no information on the expected value of all non-target shocks, 𝐸
[

𝜺2𝑡|𝑧𝑡
]

= 0. The law of
iterated expectations implies 𝐸

[

𝜺2𝑡ℎ(𝑧𝑡)
]

= 0 for any measurable function ℎ(⋅). Under strong exogeneity, the variable

�̃�𝑡 ∶= ℎ(𝑧𝑡) (3)

is uncorrelated with the non-target shocks and thus, satisfies the traditional proxy exogeneity assumption imposing uncorrelatedness
f the proxy with all non-target shocks in Assumption 1. Consequently, we refer to �̃�𝑡 as a synthetic proxy variable. Although Eq. (3)

allows to generate infinitely many synthetic proxies, for simplicity, we focus on a straightforward example and use the synthetic
proxy �̃�𝑡 ∶= 𝑧2𝑡 .

If the original proxy 𝑧𝑡 is strongly exogenous, it follows that both proxies are exogenous, i.e. uncorrelated with the non-target
shocks. The original proxy 𝑧𝑡 yields (𝐾 − 1) moment conditions

𝐸[𝑓𝑧(𝛽 , 𝑢𝑡)] = 0 with 𝑓𝑧(𝛽 , 𝑢𝑡) = 𝒖2𝑡𝑧𝑡 − 𝛽 𝑢1𝑡𝑧𝑡, (4)

which identify 𝛽 if 𝑧𝑡 is valid. The synthetic proxy yields (𝐾 − 1) additional conditions

𝐸[𝑓�̃�(𝛽 , 𝑢𝑡)] = 0 with 𝑓�̃�(𝛽 , 𝑢𝑡) = 𝒖2𝑡�̃�𝑡 − 𝛽 𝑢1𝑡�̃�𝑡, (5)

which lead to a potentially overidentified system. If the proxy 𝑧𝑡 is strongly exogenous, all moment conditions hold3 and the GMM
estimator

𝛽𝑇 ∶= argmin
𝛽∈R𝐾−1

𝑔𝑇 (𝛽)′𝑊 𝑔𝑇 (𝛽) with 𝑔𝑇 (𝛽) =
[ 1
𝑇
∑𝑇
𝑡=1 𝑓𝑧(𝛽 , 𝑢𝑡)

1
𝑇
∑𝑇
𝑡=1 𝑓�̃�(𝛽 , 𝑢𝑡)

]

(6)

with a suitable weighting matrix 𝑊 is consistent, i.e. 𝛽𝑇
𝑝
→ 𝛽, if 𝑧𝑡 is relevant. Moreover, since the model is overidentified, the data

can provide evidence that the moment conditions do not hold, and thus provide evidence against the strong exogeneity assumption.
Therefore, a simple 𝐽 -test can be used to test the strong exogeneity assumption. The 𝐽 -test statistic proposed by Hansen (1982) is
given by

𝐽𝑇 = 𝑇 𝑔𝑇 (𝛽𝑇 )′𝑆−1𝑔𝑇 (𝛽𝑇 ), (7)

with 𝑆 ∶= 𝑙 𝑖𝑚𝑇→∞𝐸
[

𝑇 𝑔𝑇 (𝛽0)𝑔𝑇 (𝛽0)′
]

.4 Under the null hypothesis of a correctly specified model with 𝐸[𝑓𝑧(𝛽 , 𝑢𝑡)] = 𝐸[𝑓�̃�(𝛽 , 𝑢𝑡)] = 0,
the distribution of the test statistic is given by 𝐽𝑇

𝑑
→ 𝜒2

𝑟−𝑞 where 𝑟 = 2(𝐾 − 1) is equal to the number of moment conditions and
𝑞 = 𝐾 − 1 is equal to the number of elements in 𝛽. Rejecting the 𝐽 -test yields evidence that at least one of the moment conditions
is not correct, thus providing evidence against strong exogeneity of the proxy variable.

The 𝐽 -test is robust to weak identification if the efficient weighting matrix is used, see Stock and Wright (2000). If the proxy
s relevant, we consistently estimate the efficient weighting matrix, which implies that the exogeneity test is robust w.r.t weak
ynthetic proxies. However, if the original and synthetic proxy are both irrelevant, the efficient weighting matrix is not consistently

3 If the proxy is strongly exogenous, both moment conditions hold since 𝐸[𝑓𝑧(𝛽 , 𝑢𝑡)] = 𝐸[𝒖2𝑡𝑧𝑡−𝛽 𝑢1𝑡𝑧𝑡] ∗
= 𝛽0𝐸[𝜀1𝑡𝑧𝑡] −𝛽 𝐸[𝜀1𝑡𝑧𝑡] = 0 where the equality highlighted

y ∗ uses the exogeneity assumption and 𝐸[𝑓�̃�(𝛽 , 𝑢𝑡)] = 0 follows analogously.
4 We follow standard practice and use a two-step GMM estimator weighting each moment condition by the inverse of its variance calculated at 𝛽𝑇 obtained

from the proxy variable in the first step and in the second step 𝑊 = �̂�(𝛽𝑇 )−1 with 𝛽𝑇 from the first step and �̂�(𝛽𝑇 ) = 1
𝑇

∑𝑇
𝑡=1

[

𝑓𝑡(𝛽𝑇 )𝑓𝑡(𝛽𝑇 )′
]

. The estimator �̂�(𝛽𝑇 )
s robust to heteroskedasticity and remains a consistent estimator for 𝑆 as long as the moment conditions are serially uncorrelated, see Hall (2005). For serially

correlated moment conditions the estimator could be replaced by a HAC estimator, see Newey and West (1994). Consistency of �̂�(𝛽𝑇 ) ensures that the 𝐽 -test
statistic remains 𝜒2 distributed, see Hall (2005).
4 
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estimated and the test statistic does not follow a 𝜒2
𝑟−𝑞 distribution. In this case, robust critical values can be used based on the

continuous updating estimator (CUE):

𝛽𝐶 𝑈 𝐸𝑇 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝛽

𝐽𝑇 (𝛽) = 𝑇 𝑔𝑇 (𝛽)′𝑆(𝛽)−1𝑔𝑡(𝛽). (8)

Since 𝐽𝑇 (𝛽0)
𝑑
→ 𝜒2

𝑟 and 𝐽𝑇 (𝛽𝐶 𝑈 𝐸𝑇 ) < 𝐽𝑇 (𝛽0), we can use critical values of a 𝜒2
𝑟 instead of a 𝜒2

𝑟−𝑞 distribution to ensure a conservative
est under weak identification, see Stock and Wright (2000). In the appendix, we repeat the Monte Carlo simulations conducted in
he main text with irrelevant proxies. We find that tests using the conservative 𝜒2

𝑟 critical value as well as tests using the standard
2
𝑟−𝑞 critical value reject both below the nominal level under the Null, indicating that the tests behave conservatively if the original
nd the synthetic proxy are both irrelevant. However, the results also show that the conservative 𝜒2

𝑟 critical value leads to a notable
ower loss. Given that the results indicate that both tests, using the standard and conservative critical value, lead to a conservative
est under weak identification, we recommend using the standard critical value 𝜒2

𝑟−𝑞 .

2.3. Power properties

The proposed test only leverages information contained in the proxy. This section derives the conditions under which the proxy
contains sufficient information to provide evidence against strong exogeneity. Specifically, we show how non-Gaussian shocks
and non-linearity of the proxy can lead to informative synthetic proxy variables which allows to provide evidence against strong
exogeneity.

The ability to provide evidence against strong exogeneity depends on whether the information of the proxy is contained entirely
in the second moments 𝐸(𝜀1𝑡𝑧𝑡) and 𝐸(𝜀2𝑡𝑧𝑡). Consider the synthetic proxy moment conditions from Eq. (5) with

𝐸[𝑓�̃�(𝛽 , 𝑢𝑡)] = 𝐸[𝒖2𝑡𝑧2𝑡 − 𝛽 𝑢1𝑡𝑧2𝑡 ] = (𝛽0 − 𝛽)𝐸[𝜀1𝑡𝑧2𝑡 ] + (𝐵22,0 − 𝛽 𝐵12,0)𝐸[𝜀2𝑡𝑧2𝑡 ] = 0,

where 𝐵12,0 is the upper-right (1 × (𝐾 − 1)) matrix of 𝐵0 and 𝐵22,0 is the lower-right ((𝐾 − 1) × (𝐾 − 1)) matrix of 𝐵0. If the synthetic
proxy contains no information on the target or non-target shocks, i.e. 𝐸(𝜀1𝑡𝑧2𝑡 ) = 𝐸(𝜀2𝑡𝑧2𝑡 ) = 0, this set of moment conditions is equal
to zero for any finite 𝛽. Moreover, if the synthetic proxy contains no information beyond the information contained in the second
moments 𝐸(𝜀1𝑡𝑧𝑡) and 𝐸(𝜀2𝑡𝑧𝑡), such that 𝐸(𝜀1𝑡𝑧𝑡) = 𝐸(𝜀1𝑡𝑧2𝑡 ) and 𝐸(𝜀2𝑡𝑧𝑡) = 𝐸(𝜀2𝑡𝑧2𝑡 ), the moment conditions are fulfilled by the same
𝛽 which fulfills the traditional proxy moment conditions in Eq. (4).5 Therefore, if the proxy information is entirely contained in the
second moments and the synthetic proxy contains no additional information, the 𝐽 -test cannot detect endogeneity and rejects at the
nominal level.

Conversely, if the information of the proxy variable is not entirely contained in the second moments, meaning the synthetic
proxy is correlated with the target or contaminating shock, the synthetic proxy moment conditions may not be fulfilled for a given
𝛽 vector, leading to rejection of the 𝐽 -test. This correlation can result from non-Gaussian shocks or a non-linear proxy process.

First, consider a linear proxy process (see e.g. Bruns and Lütkepohl (2023))

𝑧𝑡 = 𝜓1𝜀1𝑡 + 𝜓2𝜀2𝑡 + 𝑣𝑡. (9)

In this case, the moments 𝐸(𝜀1𝑡𝑧2𝑡 ) and 𝐸(𝜀2𝑡𝑧2𝑡 ) of the synthetic proxy are equal to
𝐸(𝜀1𝑡𝑧2𝑡 ) = 𝜓2

1𝐸[𝜀
3
1𝑡] and 𝐸(𝜀2𝑡𝑧2𝑡 ) = 𝜓2

2𝐸[𝜀
3
2𝑡].

For a skewed target shock 𝐸[𝜀31𝑡] ≠ 0 or a skewed contaminating shock 𝐸[𝜀32𝑡] ≠ 0, the synthetic proxy contains information which
can be used for detecting proxy endogeneity.6 Specifically, the synthetic proxy moment conditions in Eq. (5) may not be fulfilled
by the 𝛽 vector which fulfills the traditional proxy moment conditions in Eq. (4), such that the 𝐽 -test rejects.

Second, consider an SVAR with exclusively Gaussian shocks and a non-linear proxy DGP 𝑧𝑡 = 𝑔(𝜖1𝑡, 𝜖2𝑡, 𝑣𝑡). For this proxy, the
covariances are given by

𝐸(𝜀1𝑡𝑧2𝑡 ) = 𝐸[𝜀1𝑡𝑔(𝜖1𝑡, 𝜖2𝑡, 𝑣𝑡)2] and 𝐸(𝜀2𝑡𝑧2𝑡 ) = 𝐸[𝜀2𝑡𝑔(𝜖1𝑡, 𝜖2𝑡, 𝑣𝑡)2].

Depending on the type of non-linearity, either or both correlations can be non-zero even in the presence of fully Gaussian shocks.
As a simple example, consider the process 𝑧𝑡 = 𝜀1𝑡 + 𝜀21𝑡 + 𝜂𝑡 where the proxy is affected by the volatility of the target shock and let
1𝑡 and 𝜂𝑡 be i.i.d. standard normal shocks. In this case, the moment 𝐸(𝜀1𝑡𝑧2𝑡 ) is equal to 𝐸(𝜀1𝑡(𝜀1𝑡 + 𝜀21𝑡 + 𝜂𝑡)

2) = 2𝐸(𝜀41𝑡) ≠ 0, such
hat synthetic proxy moment conditions can again provide evidence against strong exogeneity.

In summary, the proposed test only uses information contained in the proxy variable, which contains sufficient information
o detect endogeneity if the synthetic proxy is informative about the target or contaminating shock. Potential sources for such
nformation are skewed shocks or non-linear proxy variables. Only for the special case of exactly Gaussian shocks and an exactly
inear proxy model, the synthetic proxy cannot provide additional information and the test has no power.

5 This case, for example, occurs for a binary proxy variable.
6 Note that if only the non-contaminating non-target shock 𝜀3𝑡 or the proxy noise term 𝑣𝑡 displays skewness, then the synthetic proxy does not contain

information which can be used to test for strong proxy exogeneity.
5 



M. Bruns and S.A. Keweloh

t
i

𝐸
a

t
o
c

f
t

u
l

i

s
𝑧
p
i

t

t

Journal of Econometrics 245 (2024) 105876 
2.4. Generalizations

The exogeneity test can easily be extended to the case of multiple proxies with multiple target shocks. For example, consider
wo proxy variables 𝑧1𝑡 and 𝑧2𝑡 correlated with the target shocks 𝜀1𝑡 and 𝜀2𝑡, and exogenous w.r.t. the remaining shocks summarized
n 𝜺3𝑡, i.e. 𝐸[𝜺3𝑡𝑧1𝑡] = 𝐸[𝜺3𝑡𝑧2𝑡] = 0. In this case, the proxies identify the target shocks up to a linear transformation, see e.g. Bruns

and Lütkepohl (2024). Analogously to the exogeneity test for a single proxy variable, we can test the strong exogeneity assumption
[𝜺3𝑡|𝑧1𝑡] = 𝐸[𝜺3𝑡|𝑧2𝑡] = 0. Specifically, if both proxies are strongly exogenous w.r.t. 𝜺3𝑡, we can construct synthetic proxies ℎ1(𝑧1𝑡)
nd ℎ2(𝑧2𝑡) and derive a 𝐽 -test analogously to Section 2.2, see Appendix B.

Moreover, synthetic proxies can be useful beyond the proposed exogeneity test. For example, using a synthetic proxy in addition
o the original proxy in the SVAR estimation can lead to asymptotic efficiency gains compared to the estimation using only the
riginal proxy. In a general setup not related to SVAR models, Chamberlain (1987) derives an asymptotic efficiency bound for
onditional moment restrictions models and Donald et al. (2003) propose estimators using a series of unconditional moment

restrictions where the number of moment conditions increases with the sample size, which can achieve the efficiency bound.
However, it is not clear whether synthetic proxies yield efficiency gains in typical macroeconomic applications with small samples,
as distortions introduced by many moments in small samples may outweigh potential asymptotic efficiency gains in small samples.

Lastly, the focus of this section is on a simple illustrating example of a synthetic proxy, i.e. �̃�𝑡 = 𝑧2𝑡 . The simplicity allows to
easily trace the power of the exogeneity test to the shocks’ skewness or non-linearity of the proxy. Furthermore, the application
in Section 4 illustrates that the simple synthetic proxy is capable of providing evidence against exogeneity of a commonly used
iscal proxy. At the same time, the previous subsection highlights cases where the simple synthetic proxy �̃�𝑡 = 𝑧2𝑡 yields no power
o detect endogeneity, while a different synthetic proxy might have power. In general, strong exogeneity 𝐸

[

𝜺2𝑡|𝑧𝑡
]

= 0 implies an
infinite number of synthetic proxies �̃�𝑡 = ℎ(𝑧𝑡). Donald et al. (2003) propose to employ approximating functions to generate a set of
nconditional moment conditions, where the number of moment conditions goes to infinity with the sample size. Therefore, in the
imit, any function ℎ(𝑧𝑡) can be approximated.

3. Monte Carlo simulation

We set up a Monte Carlo experiment to investigate the small sample performance of the proposed exogeneity test. We find that
the size and power depend on sample size, degree of proxy endogeneity, proxy strength, and the degree of the synthetic proxy
nformativeness, which is affected by the skewness of the structural shocks and the non-linearity in the proxy equation. We use two

data-generating processes (DGPs).

3.1. DGP1: Stylized SVAR simulation

First, we use a simplification of the DGP in Lütkepohl and Schlaak (2022) and Bruns and Lütkepohl (2024). The SVAR has three
variables, one proxy to identify one shock, and follows a VAR(0)

𝑢𝑡 = 𝐵0𝜀𝑡 with 𝐵 =
⎡

⎢

⎢

⎣

1 0 1
2 1 4
4 6 6

⎤

⎥

⎥

⎦

.

Structural shocks are generated from the Pearson family of distributions, i.e. 𝜺𝑘𝑡 ∼ (𝜇𝑘, 𝜎2𝑘 , 𝛾𝑘, 𝜅𝑘), where 𝜇𝑘 is the mean, 𝜎2𝑘 the
variance, 𝛾𝑘 the skewness, and 𝜅𝑘 the kurtosis. We assume 𝜇𝑘 = 0, 𝜎2𝑘 = 1 and vary 𝛾𝑘 = [0, 1, 2] for all shocks jointly. We keep 𝜅𝑘 = 6
constant across simulations. Proxies are generated using 𝑧𝑡 = 𝜓1𝜀1𝑡 + 𝜓2𝜀2𝑡 + 𝑣𝑡, with 𝑣𝑡 ∼ 𝑁(0, 1). We choose (𝜓1, 𝜓2) to simulate
samples with three different levels of proxy strength with 𝑐 𝑜𝑟𝑟(𝜀1𝑡, 𝑧𝑡) = (0.5, 0.7, 0.9) and three levels of proxy exogeneity with
𝑐 𝑜𝑟𝑟(𝜀2𝑡, 𝑧𝑡) = (0,−0.2,−0.5). We generate 𝑇 = [150, 300, 600, 1200, 5000] observations (plus pre-sample values) and use 500 repetitions
for each simulation. We use �̃�𝑡 = 𝑧2𝑡 as a synthetic proxy.

Fig. 1 panels (a)–(c) show the rejection frequencies when data are generated under the Null of proxy exogeneity, i.e. 𝑐 𝑜𝑟𝑟(𝜀2𝑡, 𝑧𝑡) =
0, with a nominal level of 10%. While an increase in the sample size, 𝑇 , leads to a better matching of the nominal level, we note
that even for the smallest sample size, 𝑇 = 150 the rejection frequency does not exceed 16% for any setup. Variations in proxy
strength, 𝑐 𝑜𝑟𝑟(𝜀1𝑡, 𝑧𝑡) do not seem to affect the nominal level much. Moreover, the skewness, and consequently the strength of the
synthetic proxy, has little effect on the nominal level.

Fig. 1 panels (d)–(i) show the rejection frequencies when data are generated under proxy endogeneity, i.e. 𝑐 𝑜𝑟𝑟(𝜀2𝑡, 𝑧𝑡) ≠ 0. When
hocks have zero skewness (𝛾𝑘 = 0) the test has no power and rejects close to the nominal level of 10%. Intuitively, in this case
2
𝑡 is not informative and cannot provide evidence against strong exogeneity. A larger skewness, i.e. increasing 𝛾𝑘 leads to more
ower. Stronger proxies, i.e. higher 𝑐 𝑜𝑟𝑟(𝜀1𝑡, 𝑧𝑡) as well as larger deviations from the Null in the form of a higher proxy endogeneity,
.e. higher 𝑐 𝑜𝑟𝑟(𝜀2𝑡, 𝑧𝑡), also increase the test’s power.

In Appendix A, we introduce two approaches for incorporating lags into our testing methodology. First, we propose a one-step
approach, where the 𝐽 -test incorporates supplementary moment conditions corresponding to the lags of the SVAR. Second, we adopt
a two-step approach, where the VAR is estimated in the first step and the 𝐽 -test is conducted similarly to the previous section using
he reduced form shocks from the VAR. A similar two-step procedure is typically used to test proxy strength using an F-test, see,

Stock et al. (2002). Our simulations in the next section and within the appendix show that the two-step approach yields results close
o the nominal level for all simulations with lags and exogenous proxy variables.
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Fig. 1. Relative rejection frequencies for DGP1. Nominal significance level 10%. 𝑝 = 0.

The simulation above is based on a very stylized VAR(0) model. In Appendix D we conduct a wide range of alternative simulations
based on a VAR(p) including models estimated with 𝑝 = (1, 12) lags (Figs. D.1 and D.2). We also show that for our test to have power,
it is enough for either the target (𝜀1𝑡) or the contaminating shock (𝜀2𝑡) to be skewed, while a skewed non-contaminating non-target
shock (𝜀3𝑡) does not provide power (Fig. D.3). Moreover, we investigate a fully Gaussian set of shocks and three different types of
non-linearities in the proxy equation and find that the test has power in these scenarios as well (Fig. D.4). Lastly, we show results
for an SVAR with two proxies for two shocks (Fig. D.5), simulations using different functions of synthetic proxies (Figs. D.6 and
D.7), results for an irrelevant proxy (Fig. D.8), and results using a continuous updating estimator together with weak-instrument
robust critical values (Figs. D.9 and D.10).

3.2. DGP2: Fiscal SVAR simulation

Second, we use a more realistic DGP based on the VAR in Mertens and Ravn (2014). The exact VAR can be found in the appendix.
We estimate models with 𝑝 = [1, 4, 8] lags and intercept for 𝑇 = [300, 600, 1200, 5000] and 500 repetitions per simulation.
7 
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Fig. 2. Relative rejection frequencies for DGP2 (2-step test). Nominal significance level 10%.

Fig. 2 shows the results for the two-step testing procedure. In panel (a) data are generated under the Null of strong proxy
exogeneity, i.e. 𝑐 𝑜𝑟𝑟(𝜀2𝑡, 𝑧𝑡) = 0. The empirical rejections frequencies are close to the nominal level of 10% for all sample sizes
and lag lengths shown. Panels (b) and (c) show that the power of the test increases with sample size and distance from the Null,
i.e. higher correlation of the proxy with the non-target shock, but is only marginally affected by the lag length, 𝑝. In the Appendix
we show that using a one-step testing procedure taking into account the moment conditions for the autoregressive coefficients leads
to higher power at the cost of a less precise nominal level in smaller samples (Fig. D.11). Overall, DGP2 shows that the test has
good size and power properties in a realistic environment.

4. Application

This section applies the proposed exogeneity test to three proxy variables used in the fiscal proxy SVAR literature. Specifically,
we test exogeneity of the tax proxy used in Mertens and Ravn (2014), the Fernald (2012) total factor productivity measure as an
output shock proxy, and military spending changes as a government spending shock proxy (see e.g. Klein and Linnemann (2019)).
We find evidence against strong exogeneity of the tax proxy, but no evidence against exogeneity of the output and spending proxies.
However, we find that the synthetic output proxy is weak, which may limit our ability to detect exogeneity violations of the output
proxy.

We consider the fiscal SVAR as proposed by Mertens and Ravn (2014) for the US. The variables are federal tax revenues (𝜏𝑡),
federal government consumption (𝑔𝑡), and output (𝑦𝑡), all in log real per capita terms for the sample 1950Q2 to 2006Q4, leading
to 𝑇 = 228 observations. The SVAR has four lags a constant, linear and quadratic trends, and a dummy for 1975𝑄2 all contained in
𝑋𝑡 with

⎡

⎢

⎢

⎣

𝜏𝑡
𝑔𝑡
𝑦𝑡

⎤

⎥

⎥

⎦

= 𝛾 𝑋𝑡 +
4
∑

𝑖=1
𝐴𝑖

⎡

⎢

⎢

⎣

𝜏𝑡−𝑖
𝑔𝑡−𝑖
𝑦𝑡−𝑖

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝑢𝜏 ,𝑡
𝑢𝑔 ,𝑡
𝑢𝑦,𝑡

⎤

⎥

⎥

⎦

and
⎡

⎢

⎢

⎣

𝑢𝜏 ,𝑡
𝑢𝑔 ,𝑡
𝑢𝑦,𝑡

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑏11 𝑏12 𝑏13
𝑏21 𝑏22 𝑏23
𝑏31 𝑏32 𝑏33

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝜀𝜏 ,𝑡
𝜀𝑔 ,𝑡
𝜀𝑦,𝑡

⎤

⎥

⎥

⎦

, (10)

tax shocks 𝜀𝜏 ,𝑡, government spending shocks 𝜀𝑔 ,𝑡, and output shocks 𝜀𝑦,𝑡.
We test the exogeneity of the following three proxies. First, the narrative tax proxy 𝑧𝜏 ,𝑡 for tax shocks 𝜀𝜏 ,𝑡 constructed by Mertens

and Ravn (2014) based on the Romer and Romer (2010) tax shocks identified by studying narrative records of tax policy decisions.
Second, the Fernald (2012) TFP measure as a proxy 𝑧𝑦,𝑡 for output shocks 𝜀𝑦,𝑡 used by Caldara and Kamps (2017) as a non-fiscal
proxy. Third, military spending changes as a proxy 𝑧𝑔 ,𝑡 for government spending shocks 𝜀𝑔 ,𝑡 used in Klein and Linnemann (2019).

Table 1 shows evidence for the relevance of the original and synthetic proxies. Since proxies can be thought of as noisy shock
measurements, skewed proxies indicate skewed shocks, which lead to relevant synthetic proxies, see Section 2.3. Therefore, Table 1
displays the skewness of the three proxy variables as well as the F-statistic for the original and synthetic proxies. The F-statistic
indicates that the original tax proxy may be weak. However, the tax proxy exhibits a strong negative skewness (see also Fig. E.12
panel (b) in Appendix E), potentially driven by left skewed structural tax shocks, which leads to a F-statistic of the synthetic tax proxy
close to 10. The spending proxy is right skewed, potentially driven by right skewed spending shocks, and the F-statistic indicates
relevant original and synthetic spending proxies. The F-statistic also indicates a relevant output proxy. However, the output proxy
has a skewness close to zero, which leads to an irrelevant synthetic output proxy. Based on the results presented in the previous
section, we expect that the exogeneity test may have low power for the tax and output proxy.

Table 2 shows the results of the proxy exogeneity tests. First, we find evidence that the tax proxy is endogenous. Specifically, we
reject the null hypothesis that the proxy and synthetic proxy moment conditions (4) and (5) hold at the 10% level, indicating that
the tax proxy is not strongly exogenous. This outcome aligns with the findings of Lewis (2021) and Keweloh et al. (2023b), both
of whom provide evidence against exogeneity of the tax proxy. However, these studies rely on additional identifying assumptions,
i.e. time-varying volatility or non-Gaussian and independent shocks. Our contribution to this body of literature is the provision of
additional evidence challenging the exogeneity of the tax proxy, without relying on any supplementary identifying assumptions,
such as heteroskedasticity or the assumption of independent and non-Gaussian shocks.
8 
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Table 1
Skewness and strength of proxy variables.

Proxy Proxy Synth proxy

Skewness F-stat F-stat (rob) F-stat F-stat (rob)

Tax proxy −4.47 4.22 1.6 9.6 9.3
Spending proxy 3.22 131 69.8 25.7 82.5
Output proxy −0.02 56.5 38.9 0.01 0.01

Note: Robust 𝐹 -statistics allow for heteroskedasticity.

Table 2
Proxy exogeneity test.

𝐽 -statistic 𝑝-Value

Tax proxy 5.48 0.06
Spending proxy 0.68 0.71
Output proxy 1.59 0.45

Note: The table presents the results of the two-stage proxy exogeneity test, which involves estimating the VAR in the first step
and subsequently conducting the exogeneity test in the second step using the original proxy variable 𝑧𝑡 and its corresponding
synthetic proxy �̃�𝑡 = 𝑧2𝑡 .

Second, we find no evidence against exogeneity of the spending and output proxy. Specifically, we cannot reject the null
hypothesis that the proxy and synthetic proxy moment conditions (4) and (5) for the spending and output proxy hold at the 10%
evel. However, we stress that the output proxy displays almost no skewness and the synthetic output proxy appears to be not

relevant. Therefore, the exogeneity test may have little power to detect exogeneity violations of the output proxy. In contrast, the
pending proxy has a positive skewness and both, the original and the synthetic spending proxy, are found to be relevant, indicating
hat our exogeneity test may have power to detect exogeneity violations of the spending proxy.

Consequently, we present evidence against strong exogeneity of the tax proxy. Our findings suggest that the tax proxy carries
nformation related to the expected value of the non-target shocks. It is essential to note that while it is theoretically conceivable that
he tax proxy is uncorrelated with all non-target shocks, while the squared tax proxy, i.e. the synthetic tax proxy, is correlated with
 non-target shock. In such a scenario, our test would indeed reject the strong exogeneity of the tax proxy, even when the tax proxy
tself shows no correlation with non-target shocks. Nevertheless, the critical inquiry does not revolve around the technical possibility
f this scenario but rather its economic plausibility. Mertens and Ravn (2014) construct the tax proxy as a series of unanticipated

tax shocks based on the Romer and Romer (2010) narrative tax shocks. If, indeed, the tax proxy represents a series of unforeseen
tax shocks, then the squared tax proxy equates to a series of squared unforeseen tax shocks. Therefore, the same reasoning used to
motivate exogeneity of the tax proxy can also be applied to argue for exogeneity of the synthetic tax proxy. Consequently, in line
with the economic rationale underlying the proxy’s construction, we expect both the original and synthetic proxy variables to be
exogenous. However, the data provide evidence against this hypothesis. Taking into account the economic rationale of the proxy’s
construction, our results provide evidence against the validity of the proxy itself.

5. Conclusions

Our study addresses the issue of proxy exogeneity in structural vector autoregressions. Traditionally, asserting the exogeneity
f a proxy has rested on economic justifications rather than statistical assessments. We introduce a novel proxy exogeneity test
ased on the strong proxy exogeneity assumption, which implies that the proxy variable is not just uncorrelated with non-target
hocks but contains no information at all on the expected value of non-target shocks. This extension allows for direct testing of the

enhanced notion of proxy exogeneity, offering a more robust framework for evaluating the reliability of proxy-based SVAR models
than just relying on some narrative justification for the exogeneity of the proxy. Importantly, the proposed framework only exploits
information contained in the proxy itself. We show that the proxy itself can contain the necessary information to provide evidence
against exogeneity if the proxy is a non-linear function of the shocks or affected by non-Gaussian shocks. By applying our approach
to widely-used proxy variables in the fiscal SVAR literature, we demonstrate its effectiveness in uncovering deviations from strong
exogeneity.
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Appendix A. Extension to 𝒑 > 𝟎

For the realistic setting of a VAR(p) model with 𝑝 > 0 one needs to decide how to account for the estimation uncertainty in the
esiduals, �̂� . Here, we suggest two approaches: As a baseline, the 𝐽 - test presented in the paper can be directly applied conditioning
𝑡
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on OLS-residuals, �̂�𝑂 𝐿𝑆 , without further changes. We refer to this as the ‘‘two-step’’ testing procedure since it involves first estimating
the model via OLS to obtain residuals and then applying our test. Alternatively, the moment conditions in (B.5) can be augmented
by the 𝐾(𝐾 𝑝 + 3) moment conditions relating to the autoregressive slope coefficients, an intercept term as well as a linear and
quadratic time trend as follows:

�̂�𝑇 ∶= argmin
𝜃∈R𝑛−1+𝐾(𝐾 𝑝+3) 𝑔𝑇 (𝜃)

′𝑊 𝑔𝑇 (𝜃) with 𝑔𝑇 (𝜃) =
⎡

⎢

⎢

⎢

⎢

⎣

1
𝑇
∑𝑇
𝑡=1 𝑥𝑡(𝑦𝑡 −𝛱 𝑥𝑡)

1
𝑇
∑𝑇
𝑡=1 𝑓𝑧(𝛽 , 𝑢𝑡)

1
𝑇
∑𝑇
𝑡=1 𝑓�̃�(𝛽 , 𝑢𝑡)

⎤

⎥

⎥

⎥

⎥

⎦

, (A.11)

with 𝜃 = [𝑣𝑒𝑐(𝛱), 𝛽]′, 𝛱 = [𝐴1,… , 𝐴𝑝], and 𝑥𝑡 = [1, 𝑡, 𝑡2, 𝑦𝑡−1,… , 𝑦𝑡−𝑝]′. We label this the ‘‘one-step’’ testing procedure since the
VAR slope coefficients, 𝛱 , and the impact effects of the identified structural shock, 𝛽, are jointly rather than sequentially estimated.
Compared to the ‘‘two-step’’ procedure it has the advantage that the weighting matrix, 𝑊 , can be chosen to be consistent so that the
implied 𝐽 -statistic has an asymptotic 𝜒2-distribution. In finite samples, and depending on the model’s dimensions, the ‘‘one-step’’
procedure is likely to be less precise. The two approaches are numerically identical for 𝑝 = 0.

Appendix B. Extension to multiple proxies

This section generalizes the proposed strong exogeneity test to multiple proxies with multiple target shocks. For simplicity, we
only consider the case with two proxies and two target shocks. A generalization to an arbitrary number of proxies is straightforward.

Consider two proxy variables 𝑧1𝑡 and 𝑧2𝑡 for the target shocks 𝜀1𝑡 and 𝜀2𝑡. Both proxies are assumed to be strongly exogenous
w.r.t. the non-target shocks summarized in 𝜺3𝑡 such that 𝐸[𝜺3𝑡|𝑧1𝑡] = 𝐸[𝜺3𝑡|𝑧2𝑡] = 0. Strong exogeneity again yields synthetic proxies
�̃�1𝑡 = ℎ(𝑧1𝑡) and �̃�2𝑡 = ℎ(𝑧2𝑡).

Let 𝒖3𝑡 = [𝑢3𝑡,… , 𝑢𝑛𝑡]′, 𝐴0 = 𝐵−1, and rewrite the SVAR as 𝒖3𝑡 = −𝐴0,31𝑢1𝑡 −𝐴0,32𝑢2𝑡 +𝐵33𝜺3𝑡 to obtain the moment conditions. For
𝛽 = [𝛽1, 𝛽2], the proxy moment conditions are now equal to

𝐸[𝑓𝑧1 (𝛽 , 𝑢𝑡)] = 0 with 𝑓𝑧1 (𝛽 , 𝑢𝑡) = 𝒖3𝑡𝑧1𝑡 − 𝛽1𝑢1𝑡𝑧1𝑡 − 𝛽2𝑢2𝑡𝑧1𝑡 (B.1)

and

𝐸[𝑓𝑧2 (𝛽 , 𝑢𝑡)] = 0 with 𝑓𝑧2 (𝛽 , 𝑢𝑡) = 𝒖3𝑡𝑧2𝑡 − 𝛽1𝑢1𝑡𝑧2𝑡 − 𝛽2𝑢2𝑡𝑧2𝑡 (B.2)

and the synthetic proxy moment conditions are now equal to
𝐸[𝑓�̃�1 (𝛽 , 𝑢𝑡)] = 0 with 𝑓�̃�1 (𝛽 , 𝑢𝑡) = 𝒖3𝑡�̃�1𝑡 − 𝛽1𝑢1𝑡�̃�1𝑡 − 𝛽2𝑢2𝑡�̃�1𝑡 (B.3)

and

𝐸[𝑓�̃�2 (𝛽 , 𝑢𝑡)] = 0 with 𝑓�̃�2 (𝛽 , 𝑢𝑡) = 𝒖3𝑡�̃�2𝑡 − 𝛽1𝑢1𝑡�̃�2𝑡 − 𝛽2𝑢2𝑡�̃�2𝑡. (B.4)

The GMM estimator is given by

𝛽𝑇 ∶= argmin
𝛽∈R𝐾−1

𝑔𝑇 (𝛽)′𝑊 𝑔𝑇 (𝛽) with 𝑔𝑇 (𝛽) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1
𝑇
∑𝑇
𝑡=1 𝑓𝑧1 (𝛽 , 𝑢𝑡)

1
𝑇
∑𝑇
𝑡=1 𝑓�̃�1 (𝛽 , 𝑢𝑡)

1
𝑇
∑𝑇
𝑡=1 𝑓𝑧2 (𝛽 , 𝑢𝑡)

1
𝑇
∑𝑇
𝑡=1 𝑓�̃�2 (𝛽 , 𝑢𝑡)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(B.5)

and 𝐽 -test statistic is equal to
𝐽𝑇 = 𝑇 𝑔𝑇 (𝛽𝑇 )′𝑆−1𝑔𝑇 (𝛽𝑇 ). (B.6)

Under the null hypothesis of a correctly specified model, the distribution of the test statistic is given by 𝐽𝑇
𝑑
→ 𝜒2

𝑟−𝑞 where 𝑟 = 2(𝐾− 1)
is equal to the number of moment conditions and 𝑞 = 𝐾 − 1 is equal to the number of elements in 𝛽. Rejecting the 𝐽 -test yields
vidence that at least one of the moment conditions is not correct, thus providing evidence against strong exogeneity of the proxy

variables.
A setup with multiple proxies, which are exogenous w.r.t. the target shock, would require additional identifying assumptions to

achieve point identification of the impact effects of the shocks. The proposed test is robust to such identifying assumptions so that
is can be employed in circumstances where multiple proxies are used to identify multiple target shocks, but no further identifying
information is available to disentangle these shocks.

Appendix C. Extension to multiple synthetic proxies

From the conditional moment restriction implied by strong proxy exogeneity, i.e. 𝐸
[

𝜺2𝑡|𝑧𝑡
]

= 0, we extract two unconditional
oment conditions, namely

𝐸
[

𝜺 𝑧
]

= 0
2𝑡 𝑡

10 



M. Bruns and S.A. Keweloh

𝜀

Journal of Econometrics 245 (2024) 105876 
𝐸
[

𝜺2𝑡𝑧2𝑡
]

= 0,
call 𝑧2𝑡 a ‘‘synthetic proxy’’, and show that this single additional proxy leads to good size and power properties in a large number of
contexts typically encountered in empirical macroeconomics. Of course, additional synthetic proxies (and functions thereof) could
be constructed to exploit higher moments of the structural shocks. However, this construction gives rise to a trade-off between
the potentially limited additional information contained in such additional synthetic proxies, and the additional noise introduced
through more moment conditions. The choice of the number of synthetic proxies is therefore application-specific.

Alternatively, Donald et al. (2003) propose an approach to approximate conditional moments using a function of unconditional
moment conditions. Specifically, they propose to use a vector of spline approximating functions

𝑞𝜂(𝑧𝑡) = (1, 𝑧𝑡,… , 𝑧𝑠𝑡 ,1(𝑧𝑡 − 𝑡1 > 0)(𝑧𝑡 − 𝑡1)𝑠,… ,1(𝑧𝑡 − 𝑡𝜂−𝑠−1 > 0)(𝑧𝑡 − 𝑡𝜂−𝑠−1)𝑠),

where in our context 𝑡1,… , 𝑡𝜂−𝑠−1 are evenly-spaced percentiles of 𝑧𝑡. They then construct the vector of moment conditions.

𝐸
[

(𝒖2𝑡 − 𝛽 𝑢1𝑡)⊗ 𝑞𝜂(𝑧𝑡)
]

= 0. (C.1)

We follow Donald et al. (2003) and use 𝑠 = 3. We investigate a fixed 𝜂 = 3 (see Fig. D.6 bottom row) and a spline order which
increases with the sample size using 𝜂 = 𝑇 1∕3 (see Fig. D.7). This choice ensures the correct rate restrictions for convergence are
satisfied (see Table 1 in Donald et al. (2003)). In both cases the resulting test statistic approximately follows an 𝜒2-distribution, as
in our baseline.

Appendix D. Additional simulation results

D.1. DGP1 with lags

To investigate the test’s performance when including lags in the model, we generate data 𝑦𝑡 from a VAR(1) following Lütkepohl
and Schlaak (2022) and Bruns and Lütkepohl (2024) and augment DGP1 by the following autoregressive parameters:

𝐴1 =
⎡

⎢

⎢

⎣

0.79 0.00 0.25
0.19 0.95 −0.46
0.12 0.00 0.62

⎤

⎥

⎥

⎦

.

The largest Eigenvalue of 𝐴1 is 0.95, implying a persistent but stable process. We generate data recursively without intercept starting
from 𝑦1 = [0, 0, 0]′. The results are shown in Figs. D.1, D.2, D.8 (panel b and c) and D.9 (panel b and c).

D.2. DGP1 with linear proxy model and only one skewed shock

To investigate the test’s performance when the proxy model is linear and not all, but only shock 𝜀𝑘𝑡 exhibit skewness, we modify
DGP1 to allow for only one skewed shock. The results are shown in Fig. D.3. If shocks 𝜀1𝑡 (target shock) or 𝜀2𝑡 (contaminating shock)
are skewed, then the proxy still contains information beyond its first two moments, leading to power to detect a false Null. If only
shock 𝜀3𝑡 is skewed, then the proxy does not contain such information since the third shock does not enter the proxy Eq. (9).

D.3. DGP1 with non-linear proxy model and Gaussain shocks

To investigate the test’s performance when all shocks are exactly Gaussian, but the proxy equation is non-linear, we draw from
𝑘𝑡 ∼ 𝑁(0, 1),∀𝑘 and modify (9) as
NL 1:

𝑧𝑡 =

{

𝜓1𝜀1𝑡 + 𝑣𝑡 𝜀1𝑡 + 𝜀2𝑡 < 𝑎𝑏𝑠(𝛷−1(𝜓3)),
𝜓1𝜀1𝑡 + 𝜓2𝜀2𝑡 + 𝑣𝑡 𝜀1𝑡 + 𝜀2𝑡 > 𝑎𝑏𝑠(𝛷−1(𝜓3))

, (D.1)

where 𝛷−1(𝑥) is the cdf of a normal distribution with standard deviation 2. In words, the proxy is contaminated by shock 𝜀2𝑡 if the
sum 𝜀1𝑡 + 𝜀2𝑡 exceeds a threshold. The non-linearity is stronger for higher values of 𝜓3. We investigate 𝜓1 = 1, 𝜓2 = [0, 0.25, 0.5], and
𝜓3 = [0.8, 0.7, 0.5]. The results are shown in Fig. D.4 (top panel).

Another non-linearity in the proxy is introduced as
NL 2:

𝑧𝑡 = 𝜓1𝜀1𝑡 + 𝜓2𝜀2𝑡 + 𝜓3𝜀
2
1𝑡 + 𝑣𝑡 (D.2)

we set 𝜓1 = 1, vary 𝜓2 = [0, 0.1, 0, 25], and 𝜓3 = [0.01, 0.05, 0.1]. In this case, the non-linearity arises from the squared term, 𝜀21𝑡.
Again, the non-linearity is stronger for higher values of 𝜓3. The results are shown in Fig. D.4 (middle panel).

A third non-linearity in the proxy is motivated by an interest rate zero lower bound. The time series 𝑖𝑡 is a truncated AR(1)
process with 𝑖𝑡 = 𝜓3 + 0.9𝑖𝑡−1 + 𝑢𝑡 and

𝑤𝑡 =

⎧

⎪

⎨

⎪

𝜓1𝜀1𝑡 𝜓3 + 0.9𝑖𝑡−1 + 𝜓1𝜀1𝑡 > 0

𝑚𝑎𝑥(𝜓1𝜀1𝑡,−(𝜓3 + 0.9𝑖𝑡−1)𝜆𝑡) 𝜓3 + 0.9𝑖𝑡−1 + 𝜓1𝜀1𝑡 ≤ 0
(D.3)
⎩

11 



M. Bruns and S.A. Keweloh Journal of Econometrics 245 (2024) 105876 
Fig. D.1. Relative rejection frequencies for DGP1 (2-step test). Nominal significance level 10%. 𝑝 = 1.

and 𝜆𝑡 ∼ [0,1] such that if a shock 𝜀1𝑡 would drive 𝑖𝑡 below the zero lower bound, only a random fraction of the shock is realized

ensuring that 𝑖𝑡 remains above the zero lower bound. The proxy 𝑧𝑡 is given by

12 
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Fig. D.2. Relative rejection frequencies for DGP1 (2-step test). Nominal significance level 10%. 𝑝 = 12.
13 
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Fig. D.3. Relative rejection frequencies for DGP1 when only one shock is skewed. Nominal significance level 10%. 𝑝 = 0. Shock skewness is non-zero only for
shock 𝑤1𝑡 (panels (a)–(c)), only for shock 𝑤2𝑡 (panels (d)–(f)) or only for shock 𝑤3𝑡 (panels (g)–(i)).

NL 3:
𝑧𝑡 = 𝑤𝑡 + 𝜓2𝜀2𝑡 + 𝑣𝑡 (D.4)

with 𝜓1 = 1, 𝜓2 = [0, 0.25, 0.5] determining the degree of endogeneity and proxy strength, and 𝜓3 = [1, 0.1, 0.] governing the degree
of non-linearity where higher values lead to a larger distance to the zero lower bound and thus less non-linearity.
14 
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Fig. D.4. Relative rejection frequencies for DGP1 when proxy equation is non-linear according to NL 1 (top panel), NL 2 (middle panel), and NL 3 (bottom
panel). Nominal significance level 10%. 𝑝 = 0.

The results are shown in Fig. D.4 (bottom panel). The figure shows that our test leads to the correct nominal level if the proxy
is exogenous, i.e. 𝜓2 = 0, irrespective of the non-linearity of the proxy. For endogenous proxy variables with 𝜓2 ≠ 0, we find that
the power increases with the degree of non-linearity, the sample size, and proxy endogeneity.

D.4. DGP1 with multiple proxies for multiple shocks

To investigate the test’s performance when multiple shocks are identified using multiple proxies, the following Monte Carlo
simulation uses DGP1 from the main text. However, we simulate two proxy variables with

𝑧1𝑡 = 𝜓1𝜀1𝑡 +
1
2
𝜓1𝜀2𝑡 + 𝜓2𝜀3𝑡 + 𝑣1𝑡 and 𝑧2𝑡 =

1
2
𝜓1𝜀1𝑡 + 𝜓1𝜀2𝑡 + 𝜓2𝜀3𝑡 + 𝑣2𝑡

where 𝑣1𝑡, 𝑣2𝑡 ∼ 𝑁(0, 1).
As before, 𝜓1, 𝜓2 are chosen to achieve a desired correlation of the proxies with the target and contaminating shocks,

i.e. 𝑐 𝑜𝑟𝑟(𝑧 , 𝜀 ) = 𝑐 𝑜𝑟𝑟(𝑧 , 𝜀 ) = [0.4, 0.5, 0.6] and 𝑐 𝑜𝑟𝑟(𝑧 , 𝜀 ) = 𝑐 𝑜𝑟𝑟(𝑧 , 𝜀 ) = [0,−0.5,−0.6]. Note that 𝑧 is designed to be more
1𝑡 1𝑡 2𝑡 2𝑡 1𝑡 3𝑡 2𝑡 3𝑡 1𝑡
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Fig. D.5. Relative rejection frequencies for DGP1 with two proxies. Nominal significance level 10%. 𝑝 = 0.

strongly correlated with 𝜀1𝑡, while 𝑧1𝑡 is designed to be more strongly correlated with 𝜀1𝑡. Both proxies are contaminated for non-zero
values of 𝜓2.

Fig. D.5 shows that for the case of two proxies and two shocks our test performs equally well as in the baseline in terms of level
and power.

D.5. DGP1 with multiple synthetic proxies and approximations by Donald et al. (2003)

To investigate the test’s performance when a single shock is identified using multiple synthetic proxies, we repeat the simulation
for DGP1 with varying degrees of kurtosis 𝜅𝑘 = (6, 11, 16). We investigate the original setup (Fig. D.6(a)–(c)), a setup with two
synthetic proxies, 𝑧2𝑡 and 𝑧3𝑡 , (Fig. D.6(d)–(f)), the approximation by Donald et al. (2003) using a fixed approximation order
(Fig. D.6(g)–(h)), and the approximation by Donald et al. (2003) using an approximation order, which rises with the sample size at
an appropriate rate (Fig. D.7(a)–(c)).

We confirm that in these cases, the test has power even for non-skewed shocks, as long as they have excess kurtosis compared to
a Gaussian distribution. The power rises with the degree of kurtosis, as expected. In this sense, using higher-order synthetic proxies
can be beneficial. On the other hand, the additional moment conditions will add noise so that a trade-off arises and the choice of the
number of synthetic proxies is application-specific. None of the methods is clearly dominated, but we conclude that the Donald et al.
16 
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Fig. D.6. Relative rejection frequencies for DGP1 with one synthetic proxy (top row), two synthetic proxies (middle row) and Donald et al. approximation with
fixed approximation order (bottom row). 𝑐 𝑜𝑟𝑟(𝑧𝑡 , 𝜀1𝑡) = 0.7, 𝑐 𝑜𝑟𝑟(𝑧𝑡 , 𝜀2𝑡) = −0.2. Nominal significance level 10%. 𝑝 = 0.

Fig. D.7. Relative rejection frequencies for DGP1 with Donald et al. approximation and flexible approximation order. 𝑐 𝑜𝑟𝑟(𝑧𝑡 , 𝜀1𝑡) = 0.7, 𝑐 𝑜𝑟𝑟(𝑧𝑡 , 𝜀2𝑡) = −0.2.
Nominal significance level 10%. 𝑝 = 0.
17 
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Fig. D.8. Relative rejection frequencies for DGP1 with irrelevant proxy, 𝑐 𝑜𝑟𝑟(𝑧𝑡 , 𝜀1,𝑡) = 𝑐 𝑜𝑟𝑟(𝑧𝑡 , 𝜀2,𝑡) = 0. Nominal significance level 10%.

Fig. D.9. Relative rejection frequencies for DGP1 with irrelevant proxy, 𝑐 𝑜𝑟𝑟(𝑧𝑡 , 𝜀1,𝑡) = 𝑐 𝑜𝑟𝑟(𝑧𝑡 , 𝜀2,𝑡) = 0. Nominal significance level 10%. Continuous updating
estimator with conservative critical values.

(2003) approximation with sample size-dependent approximation leads to slightly lower power in our simulation setup compared
to the alternatives.

D.6. Irrelevant proxies and weak proxy robust critical values

Fig. D.8 displays the rejection rates of the exogeneity test in setups with an irrelevant proxy. The results indicate a conservative
test behavior under irrelevant proxies. Fig. D.9 shows the rejection rates of the test based on the CUE with weak proxy robust critical
values. The test again behaves conservatively, which is in line with the theoretical results in Section 2.2. Fig. D.10 uses DGP1 from
the main text, however, the test now uses the CUE with weak proxy robust critical values. We find that the conservative test leads
to a notable loss of power in small samples.

D.7. DGP2 details

To obtain parameters for DGP2 we estimate a VAR(1) model with constant, but without trends or time dummies for the variables
in Mertens and Ravn (2014) to obtain the following parameters:

𝐴1 =
⎡

⎢

⎢

⎣

0.930 0.053 −0.055
−0.063 0.770 0.250
−0.014 −0.043 1.045

⎤

⎥

⎥

⎦

The maximum Eigenvalue of the associated companion form is 0.9975 indicating a very persistent but stable process. We then follow
Mertens and Ravn (2014)’s identification approach and assume that all shocks are uncorrelated with unit variance and restrict the

simultaneous impact of output shocks on government spending to zero to obtain 𝐵 =
⎡

⎢

⎢

⎣

0.004 0 0.028
0.013 0.026 0.000
−0.005 0.008 0.002

⎤

⎥

⎥

⎦

.

Structural shocks are generated with the strongest non-Gaussian specification from DGP1 using 𝛾𝑘 = −2 ∀ 𝑘 and 𝜅𝑘 = 𝛾2𝑘 + 2 = 6
∀ 𝑘, mimicking moments of the proxy in Mertens and Ravn (2014).

The proxy 𝑧𝑡 is generated from Eq. (9) with 𝑐 𝑜𝑟𝑟(𝜀1𝑡, 𝑧𝑡) = 0.26 as in Mertens and Ravn (2014). We investigate 𝑐 𝑜𝑟𝑟(𝜀2𝑡, 𝑧𝑡) =
(0,−0.1,−0.2), which is informed by the finding in Keweloh et al. (2023b) that the tax proxy in Mertens and Ravn (2014) has a
correlation of −0.2 with the output shock, suggesting some degree of endogeneity.
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Fig. D.10. Relative rejection frequencies for DGP1. Nominal significance level 10%. 𝑝 = 0. Continuous updating estimator with robust critical values.

Fig. D.11. Relative rejection frequencies for DGP2 (1-step test). Nominal significance level 10%.
19 
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Fig. E.12. Data.
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Table E.1
Proxy exogeneity test (extended).

Proxies Estimator 𝐽 -statistic 𝑝-Value 𝑝-Value robust

𝑧𝜏 ,𝑡 , 𝑧2𝜏 ,𝑡 GMM 5.48 0.06 –
𝑧𝜏 ,𝑡 , 𝑧2𝜏 ,𝑡 CUE 6.44 0.04 0.17
𝑧𝜏 ,𝑡 , 𝑧2𝜏 ,𝑡 , 𝑧3𝜏 ,𝑡 GMM 7.25 0.12 –
𝑧𝜏 ,𝑡 , 𝑧2𝜏 ,𝑡 , 𝑧3𝜏 ,𝑡 CUE 7.57 0.11 0.27

𝑧𝑔 ,𝑡 , 𝑧2𝑔 ,𝑡 GMM 0.68 0.71 –
𝑧𝑔 ,𝑡 , 𝑧2𝑔 ,𝑡 CUE 0.76 0.68 0.94
𝑧𝑔 ,𝑡 , 𝑧2𝑔 ,𝑡 , 𝑧3𝑔 ,𝑡 GMM 3.42 0.49 –
𝑧𝑔 ,𝑡 , 𝑧2𝑔 ,𝑡 , 𝑧3𝑔 ,𝑡 CUE 3.67 0.45 0.72

𝑧𝑦,𝑡 , 𝑧2𝑦,𝑡 GMM 1.59 0.45 –
𝑧𝑦,𝑡 , 𝑧2𝑦,𝑡 CUE 1.60 0.45 0.81
𝑧𝑦,𝑡 , 𝑧2𝑦,𝑡 , 𝑧3𝑦,𝑡 GMM 2.84 0.58 –
𝑧𝑦,𝑡 , 𝑧2𝑦,𝑡 , 𝑧3𝑦,𝑡 CUE 2.65 0.62 0.85

Note: The table shows the results of different two-stage proxy exogeneity tests. The J-statistics are based on the GMM estimator
or the CUE estimator. The column denoted by 𝑝-Value robust uses the conservative critical values from a 𝜒2

𝑟 distribution which
are robust to weak proxies.

Appendix E. Application

See Table E.1 and Fig. E.12

Appendix F. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2024.105876.
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