
Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Path partitions of phylogenetic networks ✩

Manuel Lafond a,∗, Vincent Moulton b,∗

a Department of Computer Science, Université de Sherbrooke, Canada
b School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom

A R T I C L E I N F O A B S T R A C T

Keywords:

Phylogenetic networks

Tree-based

Forest-based

Path partitions

Monotone NAE-3-SAT

In phylogenetics, evolution is traditionally represented in a tree-like manner. However, phylo

genetic networks can be more appropriate for representing evolutionary events such as hybri

dization, horizontal gene transfer, and others. In particular, the class of forest-based networks
was recently introduced to represent introgression, in which genes are swapped between species.
A network is forest-based if it can be obtained by adding arcs to a collection of trees, so that the
endpoints of the new arcs are in different trees. This contrasts with so-called tree-based networks,
which are formed by adding arcs within a single tree.

We are interested in the computational complexity of recognizing forest-based networks, which
was recently left as an open problem by Huber et al. It has been observed that forest-based
networks coincide with directed acyclic graphs that can be partitioned into induced paths, each
ending at a leaf of the original graph. Several types of path partitions have been studied in the
graph theory literature, but to our best knowledge this type of ‘leaf induced path partition’ has not
been directly considered before. The study of forest-based networks in terms of these partitions
allows us to establish closer relationships between phylogenetics and algorithmic graph theory,
and to provide answers to problems in both fields.

More specifically, we show that deciding whether a network is forest-based is NP-complete,
even on input networks that are tree-based, binary, and have only three leaves. This shows that
partitioning a directed acyclic graph into a constant number of induced paths is NP-complete,
answering a recent question of Fernau et al. We then show that the problem is polynomial-time
solvable on binary networks with two leaves and on the recently introduced class of orchards,
which we show to be always forest-based. Finally, for undirected graphs, we introduce unrooted
forest-based networks and provide hardness results for this class as well.

1. Introduction

Recently, there has been growing interest in using networks in addition to rooted trees to represent evolutionary histories of
species [1]. Formally, a network is a connected, directed acyclic graph (DAG) 𝑁 in which the set 𝐿(𝑁) of sinks or leaf set corresponds
to a collection of species. Much work to date has focused on networks having single root, although recent work has also considered
networks that have multiple roots [2]. Networks are commonly used to model the evolution of species which undergo various forms

✩ This article belongs to Section A: Algorithms, automata, complexity and games, Edited by Paul Spirakis.

* Corresponding authors.

E-mail addresses: manuel.lafond@USherbrooke.ca (M. Lafond), v.moulton@uea.ac.uk (V. Moulton).

https://doi.org/10.1016/j.tcs.2024.114907

Received 4 June 2024; Received in revised form 7 October 2024; Accepted 9 October 2024

Theoretical Computer Science 1024 (2025) 114907

Available online 16 October 2024
0304-3975/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:manuel.lafond@USherbrooke.ca
mailto:v.moulton@uea.ac.uk
https://doi.org/10.1016/j.tcs.2024.114907
https://doi.org/10.1016/j.tcs.2024.114907
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2024.114907&domain=pdf
http://creativecommons.org/licenses/by/4.0/

M. Lafond and V. Moulton

of reticulate evolution [3] (e.g. where species come together or hybridize to form a new species), and several classes of networks have
been dfined in recent years that have been intensively studied in the literature (see e.g. [1] for recent survey).

Networks that have a single source or root are usually called phylogenetic networks, and much of the work on these has focused
more specifically on binary phylogenetic networks, in which all of the leaves have indegree one, the root has outdegree 2, and all
other vertices have total degree 3 (see e.g. [4, Chapter 10]). Note that phylogenetic networks whose underlying undirected graph
is a tree are called phylogenetic trees, which are better known as the evolutionary trees that often appear in biology textbooks. One
special class of phylogenetic networks that has recently received considerable attention are the tree-based networks [5,6]. These are
essentially phylogenetic networks that can be formed by adding a collection of arcs to a phylogenetic tree.

Binary tree-based phylogenetic networks have several characterizations, one of which is as follows. Given a directed acyclic graph
𝑁 , we dfine a leaf path partition of 𝑁 to be a collection of directed paths in 𝑁 that partition the vertex set of 𝑁 and such that each
path ends in a leaf (or sink) of 𝑁 . In [7, Theorem 2.1], it is shown that a binary phylogenetic network is tree-based if and only if it
admits a leaf path partition. More recently, it has been noted that leaf path partitions also naturally arise when considering the closely
related class of forest-based networks [8]. These are networks which can be formed by adding arcs to a collection of phylogenetic trees,
or phylogenetic forest, so that each added arc has its end vertices in different trees, and the network so obtained is connected. In [8] it
is shown that a network is forest-based if and only if it admits an induced leaf path partition, that is, a path partition in which each
directed path is an induced path.

By exploiting leaf path partitions, we shall focus on answering some complexity problems concerning forest-based and other
closely related networks. Note that, due in part to their various applications in mathematics and computer science, path partitions of
graphs have been extensively studied (see e.g. [9]), and they remain a topic of current interest. For example, in the recent paper [10]
the complexity of several path partition problems of digraphs, as well in graph in general, is surveyed and determined. However,
although path partitions of directed acyclic graphs in which each path contains one vertex from a fixed subset of the vertex set have
been considered (see e.g. [11] and the references therein where they are called 𝑆-path partitions for a fixed subset 𝑆 of the vertex
set), to our best knowledge the concept of leaf path partitions for general directed acyclic graphs appears to be new.

The main problem that we will consider in this paper is determining the complexity of deciding whether a DAG admits a leaf
induced path partition (leaf IPP for short), as well as the closely related problem of deciding whether a network is forest-based or not.
In [12], using graph colorings, it is shown that it is NP-complete to decide if a binary, tree-child1 network 𝑁 with a fixed number of
roots 𝑘 ≥ 3 is proper forest-based, that is, if 𝑁 can be constructed from a phylogenetic forest with 𝑘 components as described above.
However, the problem of deciding if a network 𝑁 is forest-based is left as an open problem. Also very closely related is the recent
work of Fernau et al. [10], where amongst other results they show that deciding whether a binary planar DAG can be partitioned into
at most 𝑘 induced paths, for given 𝑘, is NP-complete, and also that this problem is 𝑊 [1]-hard on DAGs for parameter 𝑘. Among their
open questions, they ask whether the problem is in XP for parameter 𝑘. In other words, they ask whether it is possible to achieve
time complexity 𝑛𝑓 (𝑘), which would be polynomial if 𝑘 is a constant.

In this paper, we shall show that deciding whether a network 𝑁 is forest-based is NP-complete even in case 𝑁 is a binary, tree

based phylogenetic network. A key component in our proof is to show that it is NP-complete to decide if a directed acyclic graph with
three roots and three leaves admits a leaf IPP, which we do by reducing from Monotone NAE-3-SAT [13]. This implies that it is
NP-complete to decide whether a binary DAG can be split into 𝑘 = 3 induced paths, which thus also answers the question from [10]
mentioned in the last paragraph on XP membership. Our reduction produces networks of linear size, which also implies that under the
Exponential Time Hypothesis (ETH), no sub-exponential time algorithm is possible for the forest-based recognition problem on three
leaves. Recall that the ETH states that, in particular, 3-SAT cannot be solved in time 2𝑜(𝑛+𝑚)𝑛𝑐 , with 𝑛,𝑚 the number of variables and
clauses, respectively, and 𝑐 is any constant [14], and that the lower bound applies to Monotone NAE-3-SAT [15].

We also show that one can decide in polynomial time whether a binary DAG can be split into 𝑘 = 2 induced paths, by a reduction
to 2-SAT. The case of 𝑘 = 2 and non-binary DAGs remains open. As an additional positive result, we show that all the networks that
belong to the well-known class of orchards are forest-based [16,17]. Orchards are networks that are consistent in time and can be
reduced to a single leaf through so-called cherry picking operations, and have several applications, including the development of novel
metric spaces on networks [18,19] and allowing simple algorithms for isomorphism and network containment [20].

Before proceeding, for completeness we mention some further problems related to finding leaf IPPs. In [21] the problem of
removing arcs from a DAG so that every connected component contains exactly one leaf is considered. In addition, the problem
of finding 𝑘 vertex-disjoint paths between specfied start and end vertex pairs (𝑠1, 𝑡1),… , (𝑠𝑘, 𝑡𝑘), without necessarily covering all
vertices, has received considerable attention in both the induced and non-induced settings. In DAGs, this is polynomial-time solvable
if 𝑘 is fixed [22] (see also [23] for a linear-time algorithm when 𝑘 = 2), but the problem is NP-complete on DAGs already when 𝑘 = 2
if the paths are required to be induced [24]. The induced paths version is polynomial-time solvable on directed planar graphs [24]
for fixed 𝑘, and when 𝑘 is treated as a parameter, finding 𝑘 edge-disjoint paths is 𝑊 [1]-hard [25], meaning that there is probably no
algorithm with time complexity of the form 𝑓 (𝑘) ⋅ 𝑛𝑐 , for some function 𝑓 and constant 𝑐. Also see [26,27] for other types of directed
disjoint path problems and analogous results on undirected graphs.

We now give a summary of the contents of the rest of the paper. Section 2 introduces the preliminary notions on phylogenetic
networks and related structures, while Section 3 formally introduces forest-based networks and their variants, along with their
correspondence with path partitions. In Section 4, we show that it is NP-complete to partition a binary DAG into three induced
paths, implying that the forest-based recognition problem is hard even on networks with three leaves. Section 5 focuses on tractable

1 A network is tree-child if each non-leaf vertex has at least one child with indegree 1.

Theoretical Computer Science 1024 (2025) 114907

2

M. Lafond and V. Moulton

instances, where we show that the analogous problem is polynomial-time solvable on binary networks with two leaves, and on
orchards. In Section 6, we introduce unrooted forest-based networks, and show that they are hard to recognize even on networks with
four leaves. We conclude with a brief discussion and presenting some open problems.

2. Preliminaries

In this section, we present some terminology for graphs that we will use in this paper, most of which is standard in graph theory
and phylogenetics (see e.g. [4, Chapter 10]). For a positive integer 𝑛, we use the notation [𝑛] = {1,2,… , 𝑛}. Let 𝑁 be a directed
acyclic graph (DAG). Denote its vertex-set by 𝑉 (𝑁) and its arc-set by 𝐴(𝑁). If (𝑢, 𝑣) ∈𝐴(𝑁) is an arc, then 𝑢 is an in-neighbor of 𝑣 and
𝑣 an out-neighbor of 𝑢. The indegree and outdegree of a vertex are its number of in-neighbors and out-neighbors, respectively. We say
that 𝑣 ∈ 𝑉 (𝑁) is a root of 𝑁 if 𝑣 has indegree 0, and a leaf of 𝑁 if it has outdegree 0. Note that roots and leaves are sometimes called
sources and sinks, respectively. We denote by 𝑅(𝑁) the set of roots of 𝑁 and by 𝐿(𝑁) its set of leaves. A vertex of 𝑉 (𝑁) − 𝐿(𝑁)
is called an internal vertex. If an internal vertex 𝑣 has indegree at least 2, then 𝑣 is called a reticulation, and otherwise 𝑣 is a tree
vertex. A vertex of indegree 1 and outdegree 1 is called a subdivision vertex. A DAG is semi-binary if every root has outdegree 2, every
internal vertex has total degree 2 or 3, and every leaf vertex has indegree 1 or 2; it is called binary if it is semi-binary and contains
no subdivision vertex (that is every internal vertex has total degree 3).

Suppose that 𝑁 is a DAG. Although this is standard notation, due to its importance we note that a directed path in 𝑁 is a sequence
of distinct vertices 𝑣1, 𝑣2,… , 𝑣𝑘, 𝑘 ≥ 1, in 𝑉 (𝑁) such that (𝑣𝑖, 𝑣𝑖+1) ∈𝐴(𝑁) for all 𝑖 ∈ [𝑘−1]. If (𝑣𝑖, 𝑣𝑗) ∉𝐴 for any 𝑗 > 𝑖+1 also holds,
then the sequence forms an induced path. Note that abusing notation we shall sometimes also consider such a path or induced path
as just being its set of vertices 𝑃 = {𝑣1,… , 𝑣𝑘}, from which the ordering of the sequence can be inferred. For 𝐵 ⊆ 𝑉 (𝑁), we write
𝑁[𝐵] for the directed subgraph of 𝑁 induced by 𝐵. We say that 𝑁 is connected if the underlying undirected graph of 𝑁 is connected
(that is, there is an undirected path that connects any pair of its vertices), and a connected component of 𝑁 is the subgraph of 𝑁
induced by the vertices of a connected component of its underlying undirected graph. A tree is a connected DAG with a single root
and no reticulation vertex. A forest is a DAG in which every connected component is a tree.

A path partition of 𝑁 is a collection  of vertex-disjoint directed paths in 𝑁 whose union is 𝑉 (𝑁) (using our notation, each
element of  is a set of vertices); it is called an induced path partition if every path in the partition is an induced directed path in
𝑁 . We may write PP for path partition and IPP for induced path partition. A (induced) path partition is called a leaf (induced) path
partition if every path in the partition ends in a leaf of 𝑁 . Note that since the paths partition 𝑁 , it follows that in a leaf PP or a leaf
IPP, each leaf of 𝑁 must be the end of some path. Observing that no two leaves are in the same path, a leaf PP or leaf IPP, if it exists,
partitions 𝑁 into the smallest possible number of paths. Also note that, as stated in the introduction, path partitions in graphs that
contain a specfied subset of vertices have been studied in the literature; see e.g. [9, Section 3.2].

We say that a DAG 𝑁 with at least two vertices is a network if: 𝑁 is connected; every root has outdegree at least 2; every leaf has
indegree 1; every reticulation has outdegree 1; and 𝑁 has no subdivision vertex. If |𝑉 (𝑁)| = 1, then 𝑁 is a network and 𝑅(𝑁) =𝐿(𝑁).
If a 𝑁 is a tree, then 𝑁 is a phylogenetic tree, and if it is a forest it is a phylogenetic forest. In addition if 𝑁 has a single root it is called
a phylogenetic network.2

3. Forest-based DAGs

In this section, we consider forest-based networks and some of their properties. We call a DAG 𝑁 = (𝑉 ,𝐴) weakly forest-based if
there exists 𝐴′ ⊆ 𝐴 such that 𝐹 ′ = (𝑉 ,𝐴′) is a forest with leaf set 𝐿(𝑁). If in addition every arc in 𝐴 −𝐴′ has its two endpoints in
different trees of 𝐹 ′ (i.e. 𝐹 ′ is an induced forest in 𝑁), then we call 𝑁 forest-based. If 𝑁 is (weakly) forest-based relative to some
spanning forest 𝐹 , we call 𝐹 a subdivision forest (of 𝑁). These definitions generalize the definition of a forest-based network presented
in [8].

Forest-based networks were first introduced in [8] as a generalization of so-called overlaid species forests [28], and can be used
to analyze an evolutionary process called introgression (see more about this evolutionary process in [2]). Note that as mentioned in
the introduction forest-based phylogenetic networks are closely related to tree-based phylogenetic networks. In particular, a binary
phylogenetic network 𝑁 is tree-based if it contains a rooted spanning tree with leaf set 𝐿(𝑁) or, equivalently, it admits a leaf path
partition [7, Theorem 2.1]. Thus, tree-based binary phylogenetic networks are weakly forest-based.

The following key result extends the above stated relationships to DAGs. Its proof is almost identical to [8, Theorem 1], but we
include it for completeness.

Theorem 1. Suppose that 𝑁 is a DAG. Then

(i) 𝑁 is weakly forest-based if and only if 𝑁 contains a leaf path partition.

(ii) 𝑁 is forest-based if and only if 𝑁 contains a leaf induced path partition.

Proof. We prove the result for forest-based DAGs; the proof is the similar for weakly forest-based DAGs.

2 In phylogenetics, it is common to call 𝑁 a phylogenetic network on 𝑋, where 𝑋 = 𝐿(𝑁). But since the labels of the leaves are not important in our arguments,
we shall not follow this convention in this paper.

Theoretical Computer Science 1024 (2025) 114907

3

M. Lafond and V. Moulton

Suppose that 𝑁 admits a leaf induced path partition, then it is clearly forest-based (with subdivision forest a collection of induced
directed paths).

Conversely, suppose that 𝑁 = (𝑉 ,𝐴) is forest-based, with subdivision forest 𝐹 ′. If every connected component in 𝐹 ′ is a directed
path, then the converse holds as these paths must be induced and must each end at a leaf. So, suppose this is not the case, and that
there exists a connected component 𝑇 ′ in 𝐹 ′ that is not a path. Then, as 𝑇 ′ is a tree, there must be a vertex 𝑣 with outdegree at least
2 such that no ancestor of 𝑣 in 𝑇 ′ has outdegree greater than 1. By removing all but one of the arcs from 𝑇 ′ with tail 𝑣, we obtain a
new subdivision forest of 𝑁 , which has more components than 𝐹 ′. Repeating this process if necessary, we eventually end up with a
subdivision forest of 𝑁 that consists of a collection of induced directed paths. So 𝑁 admits a leaf induced path partition. □

Using the link with path partitions given in Theorem 1, we shall show in the next section that it is NP-complete to decide whether
a DAG 𝑁 is forest-based, even if 𝑁 is a binary, weakly forest-based network with three leaves. In contrast, again using this link,
we shall now explain why it is possible to decide whether a DAG 𝑁 is weakly forest-based in polynomial time in |𝑉 (𝑁)|. This is
essentially proven in [7] for the special case that 𝑁 is a binary phylogenetic network, but we present the main ideas in the proof for
DAGs for the reader’s convenience.

For a DAG 𝑁 = (𝑉 ,𝐴), let 𝑑(𝑁) be the smallest number of vertex-disjoint paths that partition the vertex set of 𝑁 . This number
is closely related to the size of a maximum matching in the following undirected bipartite graph 𝐺(𝑁) associated to 𝑁 . The vertex
bipartition of 𝐺(𝑁) is {𝑉1, 𝑉2}, where 𝑉1 and 𝑉2 are copies of 𝑉 , and the edge set of 𝐺(𝑁) consists of those {𝑢, 𝑣} with 𝑢 ∈ 𝑉1 and
𝑣 ∈ 𝑉2 such that there is an arc (𝑢, 𝑣) in 𝐴. The proof of the following result is more-or-less identical to that of [7, Lemma 4.1],3 and
so we shall not repeat it here. Note that it can also be shown using [29, Problem 26-2], which yields essentially the same proof. The
main idea is that the matched vertices of 𝑉1 can have their partner vertex from 𝑉2 as their successor in a path, whereas the unmatched
vertices consist of the ends of the paths.

Theorem 2. Let 𝑁 be a DAG. Then 𝑑(𝑁) is equal to the number of unmatched vertices in 𝑉1 relative to a maximum matching of 𝐺(𝑁).

The following corollary is the DAG-analogue of [7, Corollary 4.2]; the proof is essentially the same but we repeat it for the reader’s
convenience.

Corollary 1. Let 𝑁 be a DAG. Then 𝑁 is weakly forest-based if and only if 𝐺(𝑁) has a matching of size |𝑉 (𝑁)|− |𝐿(𝑁)|. In particular,
we can decide if 𝑁 is weakly forest-based in 𝑂(|𝑉 |5∕2) time.

Proof. The elements of 𝐿(𝑁) in 𝑉1 can clearly never be matched, and so 𝐺(𝑁) has a matching of size |𝑉 (𝑁)|− |𝐿(𝑁)| if and only
if 𝐺(𝑁) has a maximum matching of this size. Now, by Theorem 2, the latter holds if and only if 𝑑(𝑁) = |𝐿(𝑁)|. But this is the case
if and only if 𝑁 is weakly forest-based. The last statement follows since a matching in a bipartite graph with 𝑛 vertices and 𝑚 edges
can be found in (𝑚 + 𝑛)

√
𝑛 time [30], and 𝐺(𝑁) has 2|𝑉 (𝑁)| vertices and 𝑂(|𝑉 (𝑁)|2) edges since 𝐺(𝑁) has the same number of

edges as 𝑁 . □

4. Hardness results

In the main result in this section, we shall show that it is NP-complete to decide whether a binary network 𝑁 with three roots
and three leaves is forest-based. We achieve this using the characterization from Theorem 1. That is, we show that deciding whether
𝑁 admits a leaf IPP is NP-complete. Note that since 𝑁 has three leaves, this is equivalent to asking whether a given DAG can be
partitioned into three induced paths. Recall that the hardness results from [24] imply that it is NP-complete to find three vertex

disjoint induced paths with specfied ends (𝑠1, 𝑡1), (𝑠2, 𝑡2), (𝑠3, 𝑡3). Although these ends could be specfied as the three roots and three
leaves, we note that this problem does not reduce immediately to ours, because the latter has not been shown NP-complete on binary
networks, and because we require our paths to cover every vertex.

The reduction that we shall use for the main result is from Monotone NAE-3-SAT [13]. In this problem, the input is a set of
Boolean clauses, each containing exactly three positive literals (thus, no negation). The goal is to find an assignment of the variables
so that, for each clause, the variables of the clause are not all assigned true, and not all assigned false either.

Theorem 3. It is NP-complete to decide whether a connected binary DAG with three roots and three leaves can be partitioned into three
induced paths.

Moreover, unless the ETH fails, under the same constraints the problem cannot be solved in time 2𝑜(𝑛+𝑚)𝑛𝑐 , where 𝑛,𝑚 are the number of
vertices and arcs, respectively, and 𝑐 is any constant.

Proof. The problem is in NP since it is easy to verify that a given partition of the vertices of a DAG forms three induced paths.

3 In the statement of that lemma take  to be a DAG 𝑁 with leaf-set 𝑋 = 𝐿(𝑁), 𝑝(𝑁) = 𝑑(𝑁) − |𝑋|, and 𝑢() to be the number of unmatched vertices in 𝑉1
relative to a maximum-sized matching of 𝐺(𝑁).

Theoretical Computer Science 1024 (2025) 114907

4

M. Lafond and V. Moulton

Fig. 1. Left: one of the 𝑋𝑖 gadgets. Here, 𝑖 > 1 is assumed (if 𝑖 = 1, 𝑎1 and 𝑏1 are roots). Each vertex 𝑥𝑖(𝑗) has an out-neighbor 𝑦𝑗 (𝑖) that is not shown. Right: one of
the 𝑌𝑗 gadgets for a clause 𝐶𝑗 = (𝑥𝑎 ∨ 𝑥𝑏 ∨ 𝑥𝑐). The in-neighbors of 𝑦𝑗 (𝑎), 𝑦𝑗 (𝑏), 𝑦𝑗 (𝑐) which are not shown are, respectively, 𝑥𝑎(𝑗), 𝑥𝑏(𝑗), 𝑥𝑐 (𝑗). Note that the first vertex
𝑡1 of 𝑌 3

1 has no in-neighbor.

Fig. 2. A detailed example over variables 𝑥1, 𝑥2, 𝑥3, 𝑥4 and clauses 𝐶1 = (𝑥1 ∨ 𝑥2 ∨ 𝑥4), 𝐶2 = (𝑥1 ∨ 𝑥3 ∨ 𝑥4). For clarity, only the vertices entering and exiting the 𝑌𝑗

gadgets are shown. As an example, notice that the vertex 𝑥3(2) exists because 𝑥3 is present in 𝐶2 , which implies the presence of the arc (𝑥3(2), 𝑦2(3)).

For NP-hardness, consider an instance 𝜙 of the Monotone NAE-3-SAT problem, where 𝜙 has variables 𝑥1,… , 𝑥𝑛 and clauses
𝐶1,… ,𝐶𝑚, each with three positive literals. We generate a connected binary DAG 𝑁 with three roots and three leaves as follows.
The main idea is that, in a desired leaf IPP consisting of three induced paths 𝑃1, 𝑃2, 𝑃3, the first two paths 𝑃1 and 𝑃2 will first go
through a set of vertices that represent a choice of values for the variables. The vertices in 𝑃1 will represent the variables assigned
true, and the vertices in 𝑃2 those assigned false. A sequence of variable gadgets is introduced to enforce this. After this, we introduce
a gadget for each clause 𝐶𝑗 = (𝑥𝑎 ∨𝑥𝑏 ∨𝑥𝑐) such that each of the three induced paths must go through a distinct vertex corresponding
to 𝑥𝑎, 𝑥𝑏, 𝑥𝑐 . The paths 𝑃1, 𝑃2 will be able to ``pass through'' this gadget only if each of 𝑃1 and 𝑃2 has not encountered one of the
𝑥𝑎, 𝑥𝑏, 𝑥𝑐 vertices in the previous step (the third path 𝑃3 is only there to cover the remaining vertex of the clause gadget).

For a variable 𝑥𝑖, 𝑖 ∈ [𝑛], let 𝑙(𝑖) denote the number of clauses that contain 𝑥𝑖. To ease notation below, we write 𝑙 ∶= 𝑙(𝑖), with
the understanding that 𝑙 depends on the variable 𝑥𝑖 under consideration. Let 𝑗1,… , 𝑗𝑙 be the set of indices of the clauses that contain
𝑥𝑖, that is, 𝐶𝑗1

,𝐶𝑗2
,… ,𝐶𝑗𝑙

is the set of clauses that contain 𝑥𝑖 . Create a gadget 𝑋𝑖 that contains two induced directed paths 𝑋1
𝑖
,𝑋2

𝑖

(see Fig. 1). The directed path 𝑋1
𝑖

consists of 𝑙 + 2 vertices 𝑎𝑖 → 𝑎′
𝑖
→ 𝑥𝑖(𝑗1)→ 𝑥𝑖(𝑗2)→…→ 𝑥𝑖(𝑗𝑙). The directed path 𝑋2

𝑖
consists of

two vertices 𝑏𝑖 → 𝑏′
𝑖
. Then we add the arcs (𝑎𝑖, 𝑏′𝑖), (𝑏𝑖, 𝑎

′
𝑖
), which will allow switching paths. In addition, we connect the 𝑋𝑖 gadgets

as follows (see Fig. 2). For each 𝑖 ∈ [𝑛− 1], add the arc (𝑥𝑖(𝑗𝑙), 𝑎𝑖+1) and (𝑏′
𝑖
, 𝑏𝑖+1).

Next, for each clause 𝐶𝑗 = (𝑥𝑎 ∨ 𝑥𝑏 ∨ 𝑥𝑐), add a gadget 𝑌𝑗 that consists of three induced directed paths 𝑌 1
𝑗
, 𝑌 2

𝑗
, 𝑌 3

𝑗
as in Fig. 1.

Roughly speaking, first there is a 𝑌 1
𝑗
− 𝑌 2

𝑗
path switcher, followed by a 𝑌 1

𝑗
− 𝑌 3

𝑗
path switcher, and then a 𝑌 2

𝑗
− 𝑌 3

𝑗
path switcher.

The paths respectively end at vertices 𝑦𝑗 (𝑎), 𝑦𝑗 (𝑏), 𝑦𝑗 (𝑐) with, respectively, additional in-neighbors 𝑥𝑎(𝑗), 𝑥𝑏(𝑗), 𝑥𝑐(𝑗). The switchers
allow the permutation of the desired induced paths that enter the gadget in every possible way. In more detail, the 𝑌𝑗 gadget has the
directed path 𝑌 1

𝑗
with vertices 𝑝𝑗 − 𝑝′

𝑗
− 𝑞𝑗 − 𝑞′

𝑗
− 𝑦𝑗 (𝑎), the directed path 𝑌 2

𝑗
with vertices 𝑟𝑗 − 𝑟′

𝑗
− 𝑠𝑗 − 𝑠′

𝑗
− 𝑦𝑗 (𝑏), and the directed

path 𝑌 3
𝑗

with vertices 𝑡𝑗 − 𝑡′
𝑗
− 𝑢𝑗 − 𝑢′

𝑗
− 𝑦𝑗 (𝑐). We add the arcs (𝑝𝑗 , 𝑟′𝑗), (𝑟𝑗 , 𝑝

′
𝑗
), (𝑞𝑗 , 𝑡′𝑗), (𝑡𝑗 , 𝑞

′
𝑗
), and (𝑠𝑗 , 𝑢′𝑗), (𝑢𝑗 , 𝑠

′
𝑗
).

To connect the 𝐶𝑗 gadgets, for each 𝑗 ∈ [𝑚 − 1], add an arc from the last vertex of 𝑌 𝑖
𝑗

to the first vertex of 𝑌 𝑖
𝑗+1, for 𝑖 ∈ {1,2,3}.

Then add an arc from the last vertex of 𝑋𝑖
𝑛

to the first vertex of 𝑌 𝑖
1 , for 𝑖 ∈ {1,2}. The first vertex 𝑡1 of 𝑌 3

1 has no in-neighbor and is
therefore a root. Finally, noting that the vertices 𝑥𝑎(𝑗), 𝑥𝑏(𝑗), 𝑥𝑐 (𝑗) exist, we also add the arcs (𝑥𝑎(𝑗), 𝑦𝑗 (𝑎)), (𝑥𝑏(𝑗), 𝑦𝑗 (𝑏)), (𝑥𝑐 (𝑗), 𝑦𝑗 (𝑐))
(see Fig. 2).

This completes the construction of 𝑁 . One can check that the network is binary. We show that 𝜙 admits a not-all-equal assignment
if and only if 𝑁 admits a leaf IPP.

(⇒) Suppose that 𝜙 admits a not-all-equal assignment 𝐴, where we denote 𝐴(𝑥𝑖) ∈ {𝑇 ,𝐹 } for the value of 𝑥𝑖 assigned by 𝐴. The
three induced paths of 𝑁 are constructed algorithmically. The first phase corresponds to an assignment and puts the vertices of the
𝑋𝑖 gadgets, plus 𝑝1, 𝑟1, into the induced paths 𝑃1, 𝑃2 (and 𝑡1 in 𝑃3). In a second phase, we extend those paths to include the vertices
of the 𝑌𝑗 gadgets.

In the first phase, we begin by initiating the construction of path 𝑃1, which starts at 𝑎1. An illustration is provided in Fig. 3. The
path is built iteratively for 𝑖 = 1,… , 𝑛 in this order, with the invariant that before applying the 𝑖-th step, 𝑃1 contains exactly one of
𝑎𝑖 or 𝑏𝑖 (which is true for 𝑖 = 1). So, for 𝑖∈ [𝑛−1], assume that 𝑃1 currently ends at 𝑎𝑖 or 𝑏𝑖. If 𝐴(𝑥𝑖) = 𝑇 , 𝑃1 goes to 𝑎′

𝑖
, then through

the vertices 𝑥𝑖(𝑗1) −…− 𝑥𝑖(𝑗𝑙), and then to 𝑎𝑖+1 (where here, 𝑙 = 𝑙(𝑖)). If 𝑖 = 𝑛, 𝑃1 is extended in the same manner except that we go

Theoretical Computer Science 1024 (2025) 114907

5

M. Lafond and V. Moulton

Fig. 3. An induced path partition that corresponds to assigning 𝑥1 , 𝑥4 to true and 𝑥2, 𝑥3 to false. Notice that, for example, 𝑃1 goes through 𝑦1(2) and 𝑦2(3) because it
avoided going through 𝑥2(1) and 𝑥3(2).

to 𝑝1, the first vertex of 𝑌 1
1 , as shown in Fig. 3. If 𝐴(𝑥𝑖) = 𝐹 , then 𝑃1 goes to 𝑏′

𝑖
and then to 𝑏𝑖+1 (or, if 𝑖 = 𝑛, to 𝑟1, the first vertex of

𝑌 2
1).

Note that at this stage, 𝑃1 is an induced path, since the only vertices of the 𝑋𝑖 gadgets with two in-neighbors are the 𝑎′
𝑖
, 𝑏′

𝑖
vertices,

and we cannot include both of their in-neighbors in the same path. Also note for later reference that for any vertex of the form 𝑥𝑖(𝑗), 𝑃1
contains 𝑥𝑖(𝑗) if and only if 𝐴(𝑥𝑖) = 𝑇 .

Next, we let 𝑃2 consist of all the vertices of the 𝑋𝑖 gadgets, for 𝑖 ∈ [𝑛], that are not in 𝑃1, plus {𝑝1, 𝑟1} − 𝑃1. In other words, to
construct 𝑃2 follow the same procedure as 𝑃1, but start at 𝑏1 and apply the opposite of the assignment 𝐴. At this stage, 𝑃2 is also
induced by the same arguments. Moreover, 𝑃2 contains 𝑥𝑖(𝑗) if and only if 𝐴(𝑥𝑖) = 𝐹 .

Finally, let 𝑃3 consist of the vertex 𝑡1, the first vertex of 𝑌 3
1 (which is a root). This completes the first phase.

In the second phase, we next extend, in an iterative manner, the induced paths constructed so far by adding the vertices of the
𝑌𝑗 gadgets. For 𝑗 = 1,… ,𝑚 in this order, assume that we have reached a point where the last vertices of 𝑃1, 𝑃2, and 𝑃3 are 𝑝𝑗 , 𝑟𝑗 ,
and 𝑡𝑗 (without assuming which vertex currently ends which path). Note that this is true for 𝑗 = 1 when we start this phase. Let
𝐶𝑗 = (𝑥𝑎 ∨ 𝑥𝑏 ∨ 𝑥𝑐). Since 𝐴 is a not-all-equal assignment, one of the variables is false, say 𝑥𝑑 where 𝑑 ∈ {𝑎, 𝑏, 𝑐}, and one of the
variables is true, say 𝑥𝑒 where 𝑒 ∈ {𝑎, 𝑏, 𝑐} and 𝑒 ≠ 𝑑.

We now extend 𝑃1, 𝑃2, 𝑃3 so that they cover all the vertices of the 𝑌𝑗 gadget, and so that 𝑃1 ends at 𝑦𝑗 (𝑑) and 𝑃2 ends at 𝑦𝑗 (𝑒) (and
𝑃3 ends at the remaining 𝑦𝑗 vertex). This is always possible since the three path switchers in the gadget 𝑌𝑗 can be used to extend and
redirect the paths 𝑃1 and 𝑃2 to the desired exit vertex (see Fig. 4). For example, if 𝑃2, 𝑃1, 𝑃3 enter at 𝑝𝑗 , 𝑟𝑗 , 𝑡𝑗 , respectively, and we
want to extend and redirect them to 𝑦𝑗 (𝑏), 𝑦𝑗 (𝑐), 𝑦𝑗 (𝑎), respectively, then we would use the 123→ 231 permutation (see the caption
of the figure).

Now, consider the vertices with two in-neighbors that are added to the paths at this stage. These include the 𝑝′
𝑗
, 𝑞′

𝑗
, 𝑟′

𝑗
, 𝑠′

𝑗
, 𝑡′
𝑗
, 𝑢′

𝑗

vertices, which in all six cases of Fig. 4 have exactly one in-neighbor in the path that contains them (one way to verify this is to check
that those vertices always have exactly one in-neighbor of the same color). Thus these vertices cannot create non-induced paths.

The other vertices with two in-neighbors are 𝑦𝑗 (𝑎), 𝑦𝑗 (𝑏), 𝑦𝑗 (𝑐). Since 𝑃3 does not contain any 𝑥𝑖(𝑗) vertex, it remains induced. As
for 𝑃1, because 𝑥𝑑 is chosen as a false variable, 𝑃1 does not contain 𝑥𝑑 (𝑗). Therefore, adding 𝑦𝑗 (𝑑) to 𝑃1 safely preserves the induced
property. For 𝑃2, because 𝑥𝑒 is assigned true, 𝑃2 does not contain 𝑥𝑒(𝑗) and 𝑦𝑗 (𝑒) can be added to 𝑃2. It follows that extending the
paths to cover the 𝑌𝑗 vertices preserve the induced property of each path.

Now, if 𝑗 < 𝑛, we then add to each path the single out-neighbor of their respective 𝑦𝑗 (𝑎), 𝑦𝑗 (𝑏), 𝑦𝑗 (𝑐) vertices (which are
𝑝𝑗+1, 𝑟𝑗+1, 𝑡𝑗+1, vertices of in-degree 1 that cannot create non-induced paths by appending them), which ensures that the exten

sion can be applied to the next gadget. When we reach 𝑗 =𝑚, the paths end at the leaves of the 𝐶𝑚 gadget, which concludes the proof
that the three induced paths can be constructed as desired.

(⇐) Suppose that 𝑁 can be partitioned into three induced paths 𝑃1, 𝑃2, 𝑃3, where 𝑃1 starts at 𝑎1, 𝑃2 starts at 𝑏1, and 𝑃3 starts at
𝑡1 in the 𝑌1 gadget. Let 𝑖 ∈ [𝑛], with 𝑙 ∶= 𝑙(𝑖). Observe that in the 𝑋𝑖 gadget, each 𝑥𝑖(𝑗) vertex has a single incoming arc. Because each
vertex aside from the roots must have an in-neighbor in its path, each of these arcs must be in the same induced path. Moreover, the
root of 𝑃3 cannot reach these vertices, and therefore 𝑥𝑖(𝑗1),… , 𝑥𝑖(𝑗𝑙) are either all in 𝑃1, or all in 𝑃2. Also note that by this argument,
none of the arcs (𝑥𝑖(𝑗), 𝑦𝑗 (𝑖)) can be contained in 𝑃1 or 𝑃2, because the out-neighbor of each 𝑥𝑖(𝑗) in its path must be the vertex other
than 𝑦𝑗 (𝑖) (one can check that this is also true for the 𝑥𝑖(𝑗𝑙) vertex, the last vertex of 𝑋1

𝑖
). In other words, 𝑥𝑖(𝑗) and 𝑦𝑗 (𝑖) cannot be

in the same path.

Now, consider the assignment 𝐴 that, for each 𝑖 ∈ [𝑛], puts 𝐴(𝑥𝑖) = 𝑇 if and only if 𝑥𝑖(𝑗1),… , 𝑥𝑖(𝑗𝑙) ∈ 𝑃1, where again for each
𝑥𝑖, 𝑙 = 𝑙(𝑖) is the number of clauses containing 𝑥𝑖 . As argued above, all the 𝑥𝑖(𝑗)’s are in the same path, so 𝐴(𝑥𝑖) is a well-defined
assignment. We argue that 𝐴 is a not-all-equal assignment of 𝜙. Let 𝐶𝑗 = (𝑥𝑎 ∨ 𝑥𝑏 ∨ 𝑥𝑐) be a clause. Observe that in 𝑁 , none of the
vertices in 𝑦𝑗 (𝑎), 𝑦𝑗 (𝑏), 𝑦𝑗 (𝑐) reach each other. Therefore, they must all be in distinct induced paths. In particular, 𝑃1 must go through
one of those, say 𝑦𝑗 (𝑑), where 𝑑 ∈ {𝑎, 𝑏, 𝑐}. This means that 𝑃1 cannot contain 𝑥𝑑 (𝑗), as otherwise 𝑃1 would not be induced (since
(𝑥𝑑 (𝑗), 𝑦𝑗 (𝑑)) exists but it is not used by 𝑃1). This means that we assign 𝐴(𝑥𝑑) = 𝐹 , and thus at least one variable of 𝐶𝑗 is false. Also,
𝑃2 must go through one of the three vertices as well, say 𝑦𝑗 (𝑒) where 𝑒 ∈ {𝑎, 𝑏, 𝑐} and 𝑒 ≠ 𝑑. As before, this means that 𝑃2 does not
contain 𝑥𝑒(𝑗), and thus 𝑃1 must contain 𝑥𝑒(𝑗). We assign 𝐴(𝑥𝑒) = 𝑇 , and thus at least one variable of 𝐶𝑗 is true. Since this holds for
every 𝐶𝑗 , 𝐴 is a not-all-equal assignment of 𝜙.

We have thus shown NP-completeness. As for the ETH lower bound, it was shown in [15, Proposition 5.1] that, unless the ETH
fails, Monotone NAE-3-SAT cannot be solved in time 2𝑜(𝑛+𝑚)𝑛𝑐 , where 𝑛 is the number of variables and 𝑚 the number of clauses.

Theoretical Computer Science 1024 (2025) 114907

6

M. Lafond and V. Moulton

Fig. 4. An illustration of how 𝑃1 , 𝑃2, 𝑃3 can be constructed to make them reach any set of desired ends of the 𝑌𝑗 gadget. Vertices of the same color are in the same
path, and the arcs in bold show the arcs of the three paths. The numbers 1,2,3 refer to the index of the entering path from top to bottom. The permutation 123→ 𝑖𝑗𝑘

means that the first, second, and third paths exit as the 𝑖-th, 𝑗-th, and 𝑘-th paths, respectively.

Consider the number of vertices and arcs of a constructed instance 𝑁 . The number of vertices of each 𝑋𝑖 gadget is 4+ 𝑙(𝑖) and, since
each clause has three variables, the total number of vertices in the 𝑋𝑖 gadgets is 4𝑛+

∑𝑛

𝑖=1 𝑙(𝑖) = 4𝑛+3𝑚. Each 𝑌𝑖 gadget has 15 vertices
and the total number of vertices in the 𝑌𝑖 gadgets is 15𝑚. Therefore, 𝑉 (𝑁) ∈ 𝑂(𝑛 + 𝑚) and, since 𝑁 is binary, 𝐴(𝑁) ∈ 𝑂(𝑛 + 𝑚).
It follows that a 2𝑜(|𝑉 (𝑁)|+|𝐴(𝑁)|)𝑛𝑐 time algorithm for the forest-based recognition problem could be used to solve Monotone NAE
3-SAT in time 2𝑜(𝑛+𝑚)𝑛𝑐 , which cannot occur if the ETH is true. □

It may be interesting to note that in the reduction of Theorem 3, only two paths are ``useful'', in the sense that they respectively
correspond to the variables assigned positively and negatively. The third path is more of a ``dummy'' path solely used to cover unused
vertices. This may lead to the intuition that the problem is NP-complete on two paths, but our positive result in the next section shows
that the dummy path is necessary to make the problem hard, at least in the binary case.

The last theorem answers a question in Fernau et al. [10, Section 9], in which it was asked whether partitioning a DAG into at
most 𝑘 induced paths is in XP, i.e., whether it can be done in polynomial time if 𝑘 is fixed. Recall that a problem is para-NP-hard with
respect to a parameter 𝑘 if the problem is NP-hard even when 𝑘 is a fixed constant, making it unlikely to belong to the XP complexity
class.

Corollary 2. The problem of partitioning a connected binary DAG into at most 𝑘 induced paths is NP-complete for every fixed 𝑘 ≥ 3. The
problem is therefore para-NP-hard with respect to parameter 𝑘.

Proof. Theorem 3 shows that the problem is NP-complete for 𝑘 = 3. For 𝑘 > 3, we can easily reduce from the case of partitioning a
connected binary DAG into three induced paths as follows. Given an instance 𝑁 of the latter, obtain 𝑁 ′ by adding to 𝑁 a connected
component consisting of any binary tree 𝑇 with 𝑘−3 leaves (with arcs directed away from the root). Then take any root 𝑟 of 𝑁 , add a
new vertex 𝑣, and give to 𝑣 as out-neighbors 𝑟 and the root of 𝑇 . This resulting 𝑁 ′ is a connected binary DAG. If 𝑁 can be partitioned
into three induced paths, we take that partition and add any induced path partition of 𝑇 into 𝑘 − 3 induced paths (which is easily
seen to exist, since trees are forest-based), and add 𝑣 to the path that contains the root of 𝑇 . Conversely, if 𝑁 ′ can be partitioned
into 𝑘 induced paths, then 𝑘−3 of these paths must partition 𝑇 , because leaves are in distinct paths and the vertices of 𝑇 only reach
those leaves. This means that the vertices of 𝑁 must be partitioned into the remaining three paths (possibly with 𝑣, which we may
delete from its path). □

With a slight adaptation of the above, we can also show that even tree-based, binary phylogenetic networks are no easier to deal
with than binary DAGs with three roots.

Theoretical Computer Science 1024 (2025) 114907

7

M. Lafond and V. Moulton

Corollary 3. It is NP-complete to decide whether a tree-based, binary phylogenetic network with three leaves is forest-based.

Proof. The NP membership is as in Theorem 3. Let us argue that NP-hardness still holds even if we require 𝑁 to satisfy all the
requirements of a tree-based, binary phylogenetic network.

Let 𝑁 be an instance of the forest-based recognition problem produced by the reduction of Theorem 3, where 𝑁 is binary and
has three roots 𝑟1, 𝑟2, 𝑟3 and three leaves 𝓁1,𝓁2,𝓁3. It can be seen from Fig. 2 that 𝑁 is weakly forest-based. Indeed, 𝑉 (𝑁) can be
partitioned into three (non-induced) paths as follows: one path concatenates all the top paths of the 𝑋𝑖 gadgets, followed by all the
top paths of the 𝑌𝑗 gadgets; one path concatenates all the bottom paths of the 𝑋𝑖 gadgets, followed by all the middle paths of the 𝑌𝑗
gadgets; one path concatenates all the bottom paths of the 𝑌𝑗 gadgets. Also notice that 𝑁 is connected, all roots have outdegree 2, all
reticulations have outdegree 1, and 𝑁 has no subdivision vertex. Thus only the requirement on leaves having indegree 1 is missing
to argue that 𝑁 is a network. This can easily be dealt with by creating a new network 𝑁 ′ , obtained taking the leaves of 𝑁 and, for
each leaf 𝑣 of indegree 2, adding a new leaf 𝑣′ whose single in-neighbor is 𝑣. Then, 𝑁 can be split into three induced paths if and
only if 𝑁 ′ can, since paths of 𝑁 that end at a leaf 𝑣 can be extended with the new leaf 𝑣′, and conversely for paths of 𝑁 ′ that end
at such a leaf 𝑣′, it suffices to remove it. Also note that the aforementioned path partition of 𝑁 can easily be extended to incorporate
𝑣′ in the same manner. It follows that the problem is hard on binary, weakly forest-based networks with three roots and three leaves.

To argue that the problem is also hard on binary phylogenetic networks, that is, binary networks with a single root, take 𝑁 ′

and obtain 𝑁 ′′ by adding two vertices 𝑟, 𝑟′, where 𝑟 has out-neighbors 𝑟′, 𝑟3 and 𝑟′ has out-neighbors 𝑟1, 𝑟2. Note that 𝑁 ′′ is still a
binary network and is single-rooted. Moreover, 𝑁 ′ can be split into three induced paths if and only if 𝑁 ′ can be as well. Indeed, if
{𝑃1, 𝑃2, 𝑃3} is such a partition for 𝑁 ′ , where 𝑃1 starts at 𝑟1, then we can add the sub-path 𝑟→ 𝑟′ → 𝑟1 at the start of 𝑃1, which results
in a leaf IPP for 𝑁 ′′. Conversely, if {𝑃 ′

1 , 𝑃
′
2 , 𝑃

′
3} partitions 𝑁 ′′ into induced paths, the 𝑟𝑖 vertices must be in distinct paths and can

only be preceded by 𝑟 or 𝑟′. Therefore, by removing 𝑟 and 𝑟′ from these paths, we obtain a leaf IPP for 𝑁 ′. One can also see that 𝑁 ′′

is tree-based as follows: take the subgraph of 𝑁 ′ consisting of the three paths from the above path partition, each starting at a distinct
root, then add 𝑟, 𝑟′, and their incident arcs to this subgraph. This results in a spanning tree of 𝑁 ′′ whose leaves are 𝐿(𝑁 ′′), which
shows that 𝑁 ′′ is tree-based. Therefore, the problem is also hard on tree-based, binary phylogenetic networks with three leaves. □

5. Two tractable cases

In this section, we first show that the leaf IPP problem is polynomial-time solvable on semi-binary DAGs with two leaves, showing
that the hardness result from the previous is, in some sense, tight. Note that the positive result also holds on binary networks, in
particular.

We then show that the class of networks known as orchards are all forest-based, as they always admit a leaf IPP. This generalizes [8,
Theorem 2], in which it is shown that binary tree-child networks are forest-based, where a network is tree-child if all of its internal
vertices have a child that is a tree-vertex.

5.1. Partitioning semi-binary DAGs into two induced paths

In the following, we shall assume that 𝑁 is a semi-binary DAG that we want to partition into two induced paths. Unlike in the
previous section, we do not assume that the roots and leaves of the desired paths are specfied, and so we first study a slightly different
variant of the problem.

Given a semi-binary DAG 𝑁 and four distinct vertices 𝑠1, 𝑠2, 𝑡1, 𝑡2 of 𝑁 , we ask: can the vertices of 𝑁 be partitioned into two
induced paths 𝑃1, 𝑃2, such that the paths start at 𝑠1 and 𝑠2, and end at 𝑡1 and 𝑡2? Note that the given vertices are not required to be
roots or leaves, and that the path that starts with 𝑠1 could end at either 𝑡1 or 𝑡2. We call this the Restricted 2-IPP problem. We then
discuss how this can be used to solve the general problem. Again, note that finding two disjoint induced paths between specfied pairs
(𝑠1, 𝑡1), (𝑠2, 𝑡2) is NP-complete on DAGs [24], but that the problem differs from ours since we must cover every vertex and restrict the
problem to binary networks. In fact, the latter two requirements are needed for our algorithm to be correct.

We reduce the Restricted 2-IPP problem to 2-SAT, which given a set of Boolean clauses with two literals each, asks whether
there is an assignment that satifies all clauses. For our purposes, it is sufficient to express our 2-SAT instances as constraints of the
form (𝑥 = 𝑦) or (𝑥 ≠ 𝑦), where 𝑥 and 𝑦 are literals (i.e., 𝑥, 𝑦 are variables or their negation), and where these constraints require the
literals to be either equal or distinct, respectively. In 2-SAT, (𝑥 = 𝑦) is equivalent to having the clauses (¬𝑥 ∨ 𝑦) and (𝑥 ∨ ¬𝑦), and
(𝑥 ≠ 𝑦) is equivalent to having the two clauses (𝑥 ∨ 𝑦) and (¬𝑥 ∨ ¬𝑦).

Given a semi-binary DAG 𝑁 and four vertices 𝑠1, 𝑠2, 𝑡1, 𝑡2, we create a Boolean variable 𝑥𝑣 for each 𝑣 ∈ 𝑉 (𝑁). The variable 𝑥𝑣 is
interpreted to be 𝑡𝑟𝑢𝑒 when 𝑣 belongs to 𝑃1, and 𝑓𝑎𝑙𝑠𝑒 when 𝑣 belongs to 𝑃2. Using this variable representation, the goal is to assign
each vertex to a path while satisfying all requirements of leaf IPPs. Our 2-SAT instance is then obtained by adding the following set
of constraints:

1. leaves and roots are in distinct paths: add the constraints (𝑥𝑠1 ≠ 𝑥𝑠2
) and (𝑥𝑡1 ≠ 𝑥𝑡2

).
2. roots are roots, leaves are leaves: for 𝑖 ∈ {1,2}, and for each in-neighbor 𝑤 of 𝑠𝑖, add the constraint (𝑥𝑤 ≠ 𝑥𝑠𝑖

). Then for each
out-neighbor 𝑤 of 𝑡𝑖, add the constraint (𝑥𝑤 ≠ 𝑥𝑡𝑖

).
3. forced successors: let 𝑣≠ 𝑡1, 𝑡2 be a vertex of 𝑁 with a single out-neighbor 𝑤. Add the constraint (𝑥𝑣 = 𝑥𝑤).
4. exactly one successor: let 𝑣≠ 𝑡1, 𝑡2 be a vertex with two out-neighbors 𝑢,𝑤. Add the constraint (𝑥𝑢 ≠ 𝑥𝑤).
5. exactly one predecessor: let 𝑣≠ 𝑠1, 𝑠2 be a vertex with two in-neighbors 𝑢,𝑤. Add the constraint (𝑥𝑢 ≠ 𝑥𝑤).

Theoretical Computer Science 1024 (2025) 114907

8

M. Lafond and V. Moulton

Note that we have not modeled the constraint that vertices with a single parent should be forced to be equal, since this is implied by
the other constraints. We show that this reduction is correct and leads to a polynomial time algorithm.

Theorem 4. The Restricted 2-IPP problem can be solved in time 𝑂(|𝑉 (𝑁)|) on a semi-binary DAG 𝑁 .

Proof. Let 𝑁 be a semi-binary DAG and 𝑠1, 𝑠2, 𝑡1, 𝑡2 be the four given vertices. Note that if some vertex 𝑣 ≠ 𝑠1, 𝑠2 is a root of 𝑁 , then
no IPP with two paths can start with 𝑠1, 𝑠2. Likewise, if 𝑣 ≠ 𝑡1, 𝑡2 is a leaf of 𝑁 , no solution is possible. If one such case arises, we
reject the instance, so from now on we assume that 𝑁 has no roots or leaves other than 𝑠1, 𝑠2 or 𝑡1, 𝑡2, respectively. We next show
that our reduction to 2-SAT is correct.

Suppose that 𝑁 can be partitioned into two induced paths 𝑃1, 𝑃2 whose roots are 𝑠1, 𝑠2 and whose leaves are 𝑡1, 𝑡2. For each
𝑣 ∈𝑁(𝑉), assign 𝑥𝑣 = 𝑡𝑟𝑢𝑒 if 𝑣 ∈ 𝑃1, and 𝑥𝑣 = 𝑓𝑎𝑙𝑠𝑒 if 𝑣 ∈ 𝑃2. We argue that each constraint is satified.

Because 𝑠1, 𝑠2 are in different paths, 𝑥𝑠1 ≠ 𝑥𝑠2
holds. For similar reasons, 𝑥𝑡1 ≠ 𝑥𝑡2

also holds. Moreover, for 𝑖 ∈ {1,2}, as 𝑠𝑖 is
the start of one of the induced paths, no in-neighbor 𝑤 of 𝑠𝑖 is in the same path as 𝑠𝑖 . Therefore, 𝑥𝑤 ≠ 𝑥𝑠𝑖

. Similarly, since 𝑡𝑖 has no
out-neighbor 𝑤 in its path, 𝑥𝑤 ≠ 𝑥𝑡𝑖

.

Let 𝑣 be a vertex other than 𝑡1, 𝑡2 with a single out-neighbor 𝑤. Since 𝑣 must have a successor in its path, 𝑣 and 𝑤 must be in
the same path and thus 𝑥𝑣 = 𝑥𝑤, thereby satisfying the forced successor constraint. Suppose that 𝑣 has two out-neighbors 𝑢,𝑤. Since
𝑣 ≠ 𝑡1, 𝑡2, it has some out-neighbor in its path, and in fact exactly one out-neighbor since the paths are induced. It follows that 𝑢 and
𝑤 are in distinct paths and 𝑥𝑢 ≠ 𝑥𝑤. Finally, suppose that 𝑣 ≠ 𝑠1, 𝑠2 has two in-neighbors 𝑢,𝑤. Exactly one of them must be in the
same path as 𝑣 (not both, because of the induced property), and so again 𝑥𝑢 ≠ 𝑥𝑤. We deduce that our assignment satifies our 2-SAT
instance.

Conversely, suppose that some assignment of the 𝑥𝑣 variables satifies the 2-SAT instance. We claim that 𝑃1 = {𝑣 ∶ 𝑥𝑣 = 𝑡𝑟𝑢𝑒} and
𝑃2 = {𝑣 ∶ 𝑥𝑣 = 𝑓𝑎𝑙𝑠𝑒} form an induced path partition of 𝑁 . These sets clearly partition 𝑉 (𝑁). Note that 𝑥𝑠1 ≠ 𝑥𝑠2

implies that 𝑠1 is
in one path and 𝑠2 in the other. Without loss of generality, we assume that 𝑠1 ∈ 𝑃1, 𝑠2 ∈ 𝑃2. Also note that 𝑥𝑡1 ≠ 𝑥𝑡2

implies that 𝑡1, 𝑡2
are in different paths, although we do not assume which is in which. Let 𝑡𝑖 be the vertex in 𝑃1. We argue that 𝑃1 is an induced path
that starts at 𝑠1 and ends at 𝑡𝑖 (the proof for 𝑃2 is identical).

First note that because 𝑥𝑤 ≠ 𝑥𝑠1
for every in-neighbor 𝑤 of 𝑠1, no such in-neighbor is in 𝑃1. Likewise, 𝑡𝑖 has no out-neighbor in

𝑃1 because of the constraints 𝑥𝑤 ≠ 𝑥𝑡𝑖
. Let 𝑣 ∈ 𝑃1 − {𝑡𝑖}. Note that because we initially checked that only 𝑡1, 𝑡2 could be leaves of 𝑁 ,

𝑣 is not a leaf of 𝑁 . If 𝑣 has a single out-neighbor 𝑤 in 𝑁 , then 𝑥𝑣 = 𝑥𝑤 and 𝑤 is also in 𝑃1. If 𝑣 has two out-neighbors 𝑢,𝑤, because
𝑥𝑢 ≠ 𝑥𝑤, exactly one of 𝑥𝑢, 𝑥𝑤 is 𝑡𝑟𝑢𝑒 and is in 𝑃1. Thus, every vertex in 𝑁[𝑃1] has a single out-neighbor, except 𝑡𝑖 which has no
out-neighbor.

Next let 𝑣 ∈ 𝑃1 − {𝑠1}. If 𝑣 has two in-neighbors 𝑢,𝑤 in 𝑁 , exactly one of them is in 𝑃1 because of 𝑥𝑢 ≠ 𝑥𝑤. It follows that each
vertex of 𝑃1 has at most one in-neighbor in 𝑁[𝑃1], except 𝑠1.

Because in 𝑁[𝑃1], every vertex has in-degree and out-degree at most 1, and because 𝑁 is acyclic, 𝑁[𝑃1] is a collection of paths.
There can only be one such path because, as we argued, every vertex except 𝑡𝑖 has an out-neighbor in 𝑃1. Moreover, 𝑃1 is induced
because none of its vertices has two out-neighbors in 𝑃1.

By the same arguments, 𝑃2 induces path, and therefore {𝑃1, 𝑃2} is a partition of 𝑁 into two induced paths, such that 𝑃1 starts at
𝑠1 and ends at 𝑡𝑖, and 𝑃2 starts at 𝑠2 and ends at the other 𝑡𝑗 vertex.

It only remains to justify the complexity. Our 2-SAT instance contains 𝑂(|𝑉 (𝑁)|) variables and clauses, since each vertex generates
𝑂(1) clauses. Then, we can use a linear-time algorithm [31] to solve the 2-SAT instance. □

If 𝑠1, 𝑠2, 𝑡1, 𝑡2 are not known in advance, we can simply guess them, which leads to the following.

Corollary 4. Let 𝑁 be a semi-binary DAG. Then we can decide whether 𝑁 can be partitioned into two induced paths in time 𝑂(|𝑉 (𝑁)|3).
Moreover, if 𝑁 has two leaves, we can decide whether 𝑁 admits a leaf IPP in time 𝑂(|𝑉 (𝑁)|2).

Proof. We may assume that 𝑁 has at most two roots and at most two leaves, otherwise no IPP with two paths is possible. Since 𝑁
is a DAG, it has at least one root 𝑠1 and one leaf 𝑡1, which must start and end some path. If 𝑁 has another root 𝑠2 and another leaf
𝑡2, they must also start and end a path, and it suffices to run our algorithm for Restricted 2-IPP on the four vertices.

If 𝑁 does not have another root but has another leaf 𝑡2, we iterate over every vertex that we label as 𝑠2 and, for each such vertex,
we run our algorithm for Restricted 2-IPP. If 𝑁 can be partitioned into two induced paths, there exists a value of 𝑠2 on which the
algorithm returns a positive answer and we will find it. This solves the case where 𝑁 has two leaves in time 𝑂(|𝑉 (𝑁)|2).

The same complexity can be achieved if 𝑁 has another root but no other leaf, by iterating over every possible 𝑡2 . If 𝑁 has only
one root and one leaf, we iterate over all the 𝑂(|𝑉 (𝑁)|2) combinations of 𝑠2, 𝑡2 and run our algorithm for Restricted 2-IPP, for a
total time of 𝑂(|𝑉 (𝑁)|3). □

5.2. Orchard networks

As mentioned in the introduction, tree-based phylogenetic networks were first introduced as phylogenetic networks that can be
obtained from a rooted tree 𝑇 by adding some arcs between some of the vertices of 𝑇 [5] (in the terminology introduced above 𝑇 is
a subdivision-tree for 𝑁). As we have seen, it is NP-complete to decide if a binary, tree-based phylogenetic network is forest-based.

Theoretical Computer Science 1024 (2025) 114907

9

M. Lafond and V. Moulton

Fig. 5. (a) A network 𝑁 reduced by a sequence of four cherry-picking operations. The pairs on top indicate the operations performed to obtain the network (all arcs
point downwards). (b) A forest-based network that is not an orchard.

The main difficulty in recognizing when a tree-based phylogenetic network is forest-based occurs when some of these extra arcs
are between ancestors and descendants in the subdivision-tree. Indeed, if every extra arc is between incomparable vertices of the
subdivision-tree, then it is easy to partition the subdivision-tree into induced paths while ignoring these extra arcs.

This suggests that tree-based phylogenetic networks with ``time-consistent lateral arcs'' should be forest-based. Interestingly, such
phylogenetic networks are precisely dfined in [17], where it is shown that they correspond to a special class of phylogenetic networks
called orchard networks [16]. The authors in [17] also show that, by allowing non-binary orchard phylogenetic networks, one obtains
a class of networks that is strictly broader than time-consistent tree-based networks. We now extend orchard networks even further
to the DAG setting, and show that all such networks are forest-based.

Let 𝑁 be a DAG with no subdivision vertex in which all leaves have in-degree 1 (with 𝑁 not necessarily binary, single-rooted,
nor connected). A cherry of 𝑁 is a pair of distinct leaves (𝑥, 𝑦) such that, if 𝑥′ and 𝑦′ are the respective in-neighbors of 𝑥 and 𝑦, either
𝑥′ = 𝑦′, or 𝑦′ is a reticulation and (𝑥′, 𝑦′) ∈ 𝐴(𝑁). When 𝑥′ = 𝑦′, (𝑥, 𝑦) is called a standard cherry, and in the second case (𝑥, 𝑦) is
called a reticulated cherry. The cherry-picking operation on cherry (𝑥, 𝑦) transforms 𝑁 as follows: if (𝑥, 𝑦) is a standard cherry, remove
𝑦 and its incident arc, and suppress the possible resulting subdivision vertex; if (𝑥, 𝑦) is a reticulated cherry, remove the arc (𝑥′, 𝑦′)
and suppress the possible resulting subdivision vertices. In case 𝑁 is a binary phylogenetic network, this definition agrees with the
operation proposed for the original orchard networks in [16, p. 35].

A DAG is reduced if each of its connected components has only one arc, whose endpoints are a root and a leaf. A DAG 𝑁 is reducible
if there exists a sequence of cherry-picking operations that can be applied to 𝑁 to transform it into a reduced DAG. We say that such
a sequence reduces 𝑁 . A network 𝑁 is a orchard if there is a sequence of cherry-picking operations that reduces it. See Fig. 5.a for an
example with two roots. Also, note that not every forest-based network is orchard. The network in Fig. 5.b is not an orchard network
since it contains no cherry, but it clearly admits a leaf induced path partition.

Theorem 5. All reducible DAGs admit a leaf induced path partition. Consequently, all orchards are forest-based.

Proof. We use induction on the number of cherry-picking operations needed to reduce 𝑁 . If 𝑁 can be reduced with 0 operations,
then every connected component is a path with two vertices and 𝑁 trivially admits a leaf induced path partition. Assume that 𝑁
requires at least one operation to be reduced and that the statement holds for DAGs that require less. Consider a minimum-length
sequence of cherry-picking operations that reduces 𝑁 , and let (𝑥, 𝑦) be the first cherry in this sequence. Let 𝑁 ′ be the DAG obtained
from 𝑁 after picking (𝑥, 𝑦). Note that 𝑁 ′ is reducible in one less operation than 𝑁 . Therefore, the induction hypothesis can be applied
to 𝑁 ′ and we may thus assume that it admits a leaf induced path partition  ′ . We modify  ′ to obtain a leaf induced path partition
 of 𝑁 .

Suppose that (𝑥, 𝑦) is a standard cherry of 𝑁 and let 𝑤 be the common in-neighbor of 𝑥 and 𝑦. If, after the removal of 𝑦, 𝑤 is not
a subdivision vertex, then 𝑁 ′ has the same vertices as 𝑁 , except 𝑦 which was removed. In this case, we take  ′ and add the path
consisting of 𝑦 by itself, which partitions 𝑁 into induced paths as desired.

Otherwise, assume that 𝑤 is removed from 𝑁 ′ because it becomes a subdivision vertex. This happens only if 𝑤 has 𝑥 and 𝑦 as
out-neighbors, and only one in-neighbor 𝑧. In 𝑁 ′, 𝑧 has become the in-neighbor of 𝑥. Let 𝑃𝑧 ∈  ′ be the path that contains 𝑧. We
claim that we can assume that 𝑃𝑧 also contains 𝑥. If 𝑃𝑧 does not contain 𝑥, then {𝑥} by itself is a path of  ′ since 𝑧 is its sole
in-neighbor. In this case, let 𝑃1 be the subpath of 𝑃𝑧 from its first vertex up until 𝑧, and let 𝑃2 be the rest of the 𝑃𝑧 path. In  ′, we
can replace the two paths 𝑃𝑧,{𝑥} with 𝑃1 ∪ {𝑥}, 𝑃2, which are easily seen to be induced paths that cover the same vertices. So we
assume that 𝑃𝑧 uses the arc (𝑧,𝑥).

Let us now revert the cherry-picking operation (𝑥, 𝑦) to go from 𝑁 ′ to 𝑁 by first subdividing (𝑧,𝑥), thereby reinserting 𝑤 as a
subdivision vertex. By replacing (𝑧,𝑥) in 𝑃𝑧 by the subpath 𝑧 −𝑤 − 𝑥, we obtain a perfect induced path partition of the resulting
network (since any path other than 𝑃𝑧 is unaffected by the subdivision, and because adding 𝑤 to 𝑃𝑧 preserves the induced property
as 𝑤 has a single in-neighbor). Then, reincorporate 𝑦 and the arc (𝑤,𝑦). Any path at this point is still induced, and it suffices to add
{𝑦} by itself to obtain a leaf induced path partition of 𝑁 .

Theoretical Computer Science 1024 (2025) 114907

10

M. Lafond and V. Moulton

Fig. 6. An example of a forest-based network that does not admit a leaf IPP.

Suppose that (𝑥, 𝑦) is a reticulated cherry, with 𝑥′, 𝑦′ the respective parents of 𝑥, 𝑦 and 𝑦′ a reticulation with 𝑥′ as an in-neighbor.
Let 𝑝 be the in-neighbor of 𝑥 in 𝑁 ′ and 𝑞 the in-neighbor of 𝑦 in 𝑁 ′. Note that 𝑝 is either equal to 𝑥′, or 𝑝 is the in-neighbor of 𝑥′ in
𝑁 , depending on whether 𝑥′ was suppressed as a subdivision vertex or not. The same holds for 𝑞 and 𝑦′. Let 𝑃 and 𝑄 be the paths
of  ′ that contain 𝑝 and 𝑞, respectively. As before, we claim that we may assume that 𝑥 is in 𝑃 and 𝑦 in 𝑄. Indeed, if 𝑥 is not in 𝑃 ,
then 𝑥 is a path by itself in  ′. We can split 𝑃 in two such that the first subpath ends at 𝑝, and add 𝑥 as the out-neighbor of 𝑝 just as
in the previous case. After performing this replacement if needed, we assume that the arc (𝑝,𝑥) is used by some path, and we can use
the same argument to split 𝑄 if needed and assume that 𝑦 is in 𝑄 (noticing that applying this will not remove (𝑝,𝑥)). Thus, (𝑝,𝑥) is
used by 𝑃 and (𝑞, 𝑦) is used by 𝑄.

To obtain a leaf induced path partition  of 𝑁 , let us reverse the cherry-picking operation from 𝑁 ′ to 𝑁 one step at a time. If
𝑝 ≠ 𝑥′, first subdivide (𝑝,𝑥) to reincorporate 𝑥′, and in 𝑃 replace the arc (𝑝,𝑥) with the subpath 𝑝−𝑥′ −𝑥. As before, this yields a perfect
induced path partition of the resulting network. If 𝑝 = 𝑥′, then leave 𝑃 intact. Likewise, if 𝑞 ≠ 𝑦′, subdivide (𝑞, 𝑦) to reincorporate 𝑦′
and in 𝑄 replace (𝑞, 𝑦) with 𝑞 − 𝑦′ − 𝑦. If 𝑞 = 𝑦′ leave 𝑄 intact. Let  be the resulting leaf induced path partition. Finally, reinsert
the arc (𝑥′, 𝑦′), which results in 𝑁 (and leave  unaltered). If  now contains a non-induced path, it is because of the arc (𝑥′, 𝑦′),
which is a problem only if 𝑥′ and 𝑦′ were in the same path. If this were the case, that path in the previous network would reach 𝑥′
first then go to 𝑦′ or vice-versa, which we know does not occur because in their respective paths, the out-neighbor of 𝑥′ is 𝑥 and the
out-neighbor of 𝑦′ is 𝑦. It follows that  is a leaf induced path partition of 𝑁 . □

Note that there are several other well-studied classes of phylogenetic networks (see e.g. [1]). In [8], the authors established most
of the containment relationships of these classes with forest-based networks. However, the computational complexity of the forest

based recognition problem remains open for several of these classes. We have shown that the problem is hard on tree-based networks
and easy for orchards, but we do not know whether the problem is NP-complete on other classes of interest. This includes for instance
tree-sibling networks, in which every reticulation has a sibling that is a tree-vertex, where a sibling is a vertex with the same parent
(such a sibling may help redirecting partially constructed paths that cannot use the reticulation). Other examples use the notion of
visible vertices, where a vertex 𝑣 is visible if there is a leaf such that 𝑣 is on every path from the root to that leaf. In tree-child networks,
every vertex is visible, and relaxing this condition yields classes on which finding leaf IPPs may be tractable. One such class consists
of reticulation-visible networks, in which every reticulation is visible, and another consists of nearly stable networks, where for each
vertex 𝑣, either 𝑣 itself is visible, or its parents are visible. The complexity on these classes is open even for single-rooted binary
networks.

6. Unrooted forest-based networks

In this section, we introduce an undirected analogue of forest-based networks and consider some of their properties as compared
with their rooted counter-parts. Most of the terms that we use for undirected graphs are standard and similar to those used for directed
graphs and so we shall not present definitions unless we think that clarfication could be helpful.

A leaf in an undirected graph is a vertex with degree 1. An unrooted phylogenetic network is a (simple), connected, undirected graph
𝑁 = (𝑉 ,𝐸) with non-empty leaf-set 𝐿(𝑁), and that contains no vertices with degree two [32,33]. The network 𝑁 is binary if every
vertex in 𝑉 has degree 1 or 3, and it is tree-based if it contains a spanning tree with leaf set 𝐿(𝑁). Note that in contrast to the rooted
case, it is NP-complete to decide if a binary unrooted phylogenetic network is tree-based [32, Theorem 2].

We now introduce the concept of forest-based unrooted networks. In analogy with the rooted case, we call an unrooted phylo

genetic network 𝑁 = (𝑉 ,𝐸) forest-based if it contains a spanning forest 𝐹 with leaf set 𝐿(𝑁), such that every edge in 𝐸 − 𝐹 has its
ends contained in different connected components of 𝐹 , i.e., each tree of 𝐹 is an induced subgraph of 𝑁 . Note that, as in for directed
networks, every forest-based unrooted phylogenetic network is tree-based, but that the converse may not hold. For example, we can
take the network with vertex set {𝑥, 𝑦, 𝑝, 𝑞, 𝑢, 𝑣} and edge set {𝑥𝑝, 𝑝𝑣, 𝑝𝑢, 𝑢𝑣, 𝑢𝑞, 𝑣𝑞, 𝑞𝑦}, which has leaf set {𝑥, 𝑦} and has two possible
spanning trees with leaf set {𝑥, 𝑦}, namely the paths 𝑥, 𝑝, 𝑣, 𝑢, 𝑞, 𝑦 and 𝑥, 𝑝, 𝑢, 𝑣, 𝑞, 𝑦, neither of which are induced paths.

Interestingly, if an unrooted phylogenetic network 𝑁 is forest-based then, in contrast to directed phylogenetic networks, it does
not necessarily follow that 𝑁 contains an induced spanning forest with leaf set 𝐿(𝑁) that is the union of induced paths. Notice that

Theoretical Computer Science 1024 (2025) 114907

11

M. Lafond and V. Moulton

in an undirected induced path, the two endpoints of the path are its leaves, unlike the directed induced paths which only contain one
leaf (the vertex of outdegree 0). The analogous notion of leaf IPP in undirected graphs therefore requires that each path has its two
endpoints in 𝐿(𝑁) (unless the path consists of a single vertex). Consider for example the unrooted network shown in Fig. 6 on the
left. It contains an induced spanning forest, as shown on the right. However, it is not too difficult to verify that this network contains
no leaf IPP. Indeed, if we assume that such a leaf IPP exists, the central vertex of this network is adjacent to two vertices. Thus, one
of the neighboring subnetworks of that central vertex must itself admit a leaf IPP, which can be seen to be impossible.

It could be interesting to characterize forest-based unrooted phylogenetic networks that do have this property. Note that if 𝑁 is
tree-based, then it does have a path partition whose paths all end in 𝐿(𝑁), since we can clearly partition any subdivision tree into
paths having this property.

Despite the above observation concerning unrooted forest-based networks, we can still use path partitions to show that it is NP

complete to decide whether or not an unrooted network is forest-based as follows. Suppose that 𝐺 = (𝑉 ,𝐸) is a connected, undirected
graph. We say that 𝐺 has an induced path partition if its vertex set can be partitioned into a collection of vertex-disjoint, induced paths
in 𝐺. In addition, we say that an unrooted phylogenetic network 𝑁 has a leaf induced path partition if it has an induced path partition
such that every path of length zero in the partition is contained in 𝐿(𝑁), and every other path in the partition intersects 𝐿(𝑁)
precisely in its two end vertices. Note that any phylogenetic tree has such a partition, and that path partitions arise in phylogenetic
trees where they have applications to the so-called phylogenetic targeting problem [34].

Although unrooted forest-based networks do not necessarily correspond to those admitting a leaf IPP, we show that this holds
when the network has four leaves.

Lemma 1. Suppose that 𝑁 is an unrooted phylogenetic network with four leaves that is not a tree. Then 𝑁 is forest-based if and only if 𝑁
has a leaf induced path partition containing two paths.

Proof. If 𝑁 has a leaf induced path partition containing two paths, then clearly 𝑁 is forest-based.

Conversely, suppose that 𝑁 is forest-based, and that 𝐹 is an induced spanning forest in 𝑁 with leaf set 𝐿(𝑁). Consider the number
of connected components of 𝐹 . We see that 𝐹 cannot contain four connected components, since these could only be four paths of
length 0, all being elements of 𝐿(𝑁) (and since unrooted networks are connected by definition, there must be at least one vertex
other than the leaves).

So, suppose that 𝐹 contains three connected components. Then two of these components must be paths of length 0 (i.e. elements
in 𝐿(𝑁)) and one of the components is an induced path 𝑃 . Now, as 𝑁 is not a tree it contains a cycle. But then every vertex in the
cycle must be contained in the path 𝑃 , as 𝑃 contains all vertices except two leaves, which is impossible as it would contradict 𝑃
being an induced path.

Now, suppose that 𝐹 contains two connected components. If these two components are paths, then 𝑁 has a perfect induced path
partition containing two paths. Otherwise, one of the components is an element in 𝐿(𝑁). But then the other component in 𝐹 must
be a tree with three leaves, and it can be seen that this is not possible using a similar argument to the one used in the last paragraph
(that is, all of the cycles in 𝑁 must be in that tree, a contradiction).

Finally, again using a similar argument, it follows that since 𝑁 is not a tree, 𝐹 cannot contain one connected component. □

In the following we will make use of the proof of the following result [35, Theorem 1] which we state using our terminology.

Theorem 6. Suppose that 𝐺 is an undirected graph. Then it is NP-complete to decide whether or not 𝐺 has an induced path partition containing
precisely two paths.

More specifically, we will make use of the difficult instances dfined in the proof of [35, Theorem 1] which, as can quickly be
seen by inspecting the construction, consist of graphs with minimum degree at least 3. Although the difficult graphs from Theorem 6

do not have leaves, we can argue that if the forest-based recognition problem admitted a polynomial-time algorithm, we could call
it multiple times to determine whether such a graph 𝐺 could be split into two induced paths, by adding four extra leaves at every
possible location. Recall that such a reduction, that requires multiple calls to a supposed polynomial time algorithm, is called a Turing
reduction.

Theorem 7. It is NP-complete (under Turing reductions) to decide whether or not an unrooted phylogenetic network is forest-based.

Proof. First note that the problem is in NP, since a forest can serve as a certificate that can be verfied in polynomial time. We next
show that the problem is NP-complete under Turing reductions, via the problem of partitioning an undirected graph into two induced
paths, which we call the 2-path partition problem for the duration of the proof. Recall that to achieve this, we assume access to a
polynomial-time algorithm 𝐴 that can recognize unrooted forest-based networks, and show that this can be used to solve the 2-path
partition problem in polynomial time.

Let 𝐺 be an instance of 2-path partition, where 𝐺 is assumed to be of minimum degree at least 3. In particular, 𝐺 has no leaves.
We may assume that for every vertex 𝑣 ∈ 𝑉 (𝐺), the graph 𝐺− 𝑣 obtained by removing 𝑣 is not an induced path, since such instances
are easy to recognize in polynomial time. Therefore, if 𝐺 can be partitioned into two induced paths, these paths have at least two

Theoretical Computer Science 1024 (2025) 114907

12

M. Lafond and V. Moulton

vertices. Let 𝑄 = {𝑤,𝑥, 𝑦, 𝑧} be a set of four distinct vertices of 𝐺. Dfine the graph 𝐺(𝑄) as follows: for every 𝑢 ∈𝑄, create a new
vertex 𝑢′, and add the edge 𝑢′𝑢. In other words, attach new leaves adjacent to 𝑤′, 𝑥′, 𝑦′, 𝑧′ to 𝑤,𝑥, 𝑦, 𝑧, respectively.

For each subset 𝑄 of four distinct vertices of 𝐺, execute 𝐴 on input 𝐺(𝑄). If there is at least one 𝐺(𝑄) that is forest-based according
to 𝐴, then we return that 𝐺 can be partitioned into two induced paths. Otherwise we return that no such partition exists.

Clearly, this procedure runs in polynomial time if 𝐴 does run in polynomial time. We argue that it decides the instance 𝐺 correctly,
by showing that 𝐺 admits an induced 2-path partition if and only if at least one 𝐺(𝑄) is forest-based. Suppose that 𝐺 can be split into
two induced paths 𝑃1, 𝑃2. By our previous remark, 𝑃1 and 𝑃2 have at least two vertices each. Let 𝑤,𝑥 (resp. 𝑦, 𝑧) be the ends, i.e. the
vertices of degree 1, in 𝑃1 (resp. in 𝑃2). Let 𝑄 = {𝑤,𝑥, 𝑦, 𝑧}. Then 𝐺(𝑄) admits a perfect induced path partition, namely 𝑃1 ∪ {𝑤′, 𝑥′}
and 𝑃2 ∪ {𝑦′, 𝑧′}, because extending the ends of the paths with an extra degree 1 vertex preserves the induced property. Thus the
above procedure correctly returns yes.

Conversely, suppose that 𝐺(𝑄) is forest-based for some 𝑄 = {𝑤,𝑥, 𝑦, 𝑧}. Note that because 𝐺 is assumed to have minimum degree
3, 𝑤′, 𝑥′, 𝑦′, 𝑧′ are the only leaves of 𝐺(𝑄) and 𝐺(𝑄) is not a tree. By Lemma 1, the vertices of 𝐺(𝑄) can be split into two induced
paths 𝑃1, 𝑃2, whose four ends are the leaves. Say that the ends of 𝑃1 are 𝑤′, 𝑥′ and the ends of 𝑃2 are 𝑦′, 𝑧′. Then 𝑃1 − {𝑤′, 𝑥′} and
𝑃2 − {𝑦′, 𝑧′} are induced paths of 𝐺. □

Observe that the hard instances generated in [35] have unbounded degree. The reduction is from NAE-3-SAT, and the maximum
degree depends on the maximum number of occurrences of a variable in the Boolean formula. It is plausible that by taking hard
satifiability instances with bounded variable occurrences, one could obtain hardness for induced 2-path partition with maximum
degree bounded by a constant. However, this constant is likely to be higher than 3, and novel ideas are needed to establish the
complexity of recognizing binary undirected forest-based networks.

7. Discussion

In this work, we have studied algorithmic problems of interest in two active research areas. Indeed, forest-based networks and
their variants will require further investigation in phylogenetics, whereas leaf induced path partitions give rise to novel problems in
graph algorithms. We were able to answer two open questions from both communities, namely that forest-based networks are hard
to recognize, and that partitioning a binary DAG into a minimum number of induced paths is para-NP-hard. Nonetheless, we have
identfied tractable instances that may be of use in practice, especially on orchard networks, and our results on unrooted phylogenetic
networks pave the way for further exploration.

Finally, throughout this paper we have encountered several problems that remain open, as well as results which lead to some
potential research directions. We conclude by summarizing some of these:

• Recall that the level of a network 𝑁 is the maximum number of reticulations in a biconnected component of 𝑁 . We observe that
our difficult instances can have arbitrarily high levels. Is the forest-based recognition problem fixed-parameter tractable, when
parameterized by the level of a network?

• Is the problem of finding a leaf IPP also NP-complete on networks with two leaves, but that are not required to be binary, in
particular on networks of maximum total degree 4?

• Is the forest-based recognition problem in P on superclasses of tree-child networks other than orchards, for instance tree-sibling
networks, reticulation-visible networks, or nearly stable networks?

• Is it NP-complete to decide whether a binary unrooted phylogenetic network is forest-based?

• In [7] polynomial-time computable proximity-indices are introduced for measuring the extent to which an arbitrary binary
phylogenetic network deviates from being tree-based. Unfortunately, in view of Theorem 3, this approach does not directly extend
to forest-based networks. Even so, it could still be interesting to further study proximity measures for forest-based networks.

• There are interesting links between path partitions of digraphs and stable sets -- see e.g. [11]. It could be interesting to study
these concepts further for forest based networks.

CRediT authorship contribution statement

Manuel Lafond: Writing -- original draft. Vincent Moulton: Writing -- original draft.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing
interests: Manuel Lafond reports financial support was provided by Natural Sciences and Engineering Research Council of Canada. If
there are other authors, they declare that they have no known competing financial interests or personal relationships that could have
appeared to ifluence the work reported in this paper.

Acknowledgement

The authors thank the Institute for Mathematical Sciences, National University of Singapore, for their invitation to attend the
``Mathematics of Evolution - Phylogenetic Trees and Networks'' program in 2023, in which they began discussing the problems
investigated in this paper.

Theoretical Computer Science 1024 (2025) 114907

13

M. Lafond and V. Moulton

Data availability

No data was used for the research described in the article.

References

[1] S. Kong, J.C. Pons, L. Kubatko, K. Wicke, Classes of explicit phylogenetic networks and their biological and mathematical significance, J. Math. Biol. 84 (6)
(2022) 47.

[2] G.E. Scholz, A.-A. Popescu, M.I. Taylor, V. Moulton, K.T. Huber, OSF-builder: a new tool for constructing and representing evolutionary histories involving
introgression, Syst. Biol. 68 (5) (2019) 717--729.

[3] P.H. Sneath, Cladistic representation of reticulate evolution, Syst. Zool. 24 (3) (1975) 360--368.

[4] M. Steel, Phylogeny: Discrete and Random Processes in Evolution, SIAM, Philadelphia, 2016.

[5] A.R. Francis, M. Steel, Which phylogenetic networks are merely trees with additional arcs?, Syst. Biol. 64 (5) (2015) 768--777.

[6] L. Jetten, L. Iersel, Nonbinary tree-based phylogenetic networks, IEEE/ACM Trans. Comput. Biol. Bioinform. 15 (1) (2016) 205--217.

[7] A. Francis, C. Semple, M. Steel, New characterisations of tree-based networks and proximity measures, Adv. Appl. Math. 93 (2018) 93--107.

[8] K.T. Huber, V. Moulton, G.E. Scholz, Forest-based networks, Bull. Math. Biol. 84 (10) (2022) 119.

[9] P. Manuel, Revisiting path-type covering and partitioning problems, arXiv preprint, arXiv:1807.10613, 2018.

[10] H. Fernau, F. Foucaud, K. Mann, U. Padariya, K.R. Rao, Parameterizing path partitions, in: International Conference on Algorithms and Complexity, Springer,
2023, pp. 187--201.

[11] M. Sambinelli, C.N. Silva, O. Lee, 𝛼-diperfect digraphs, Discrete Math. 345 (5) (2022) 112759.

[12] K.T. Huber, L. Iersel, V. Moulton, G. Scholz, Is this network proper forest-based?, Inf. Process. Lett. 187 (2025) 106500.

[13] A. Dehghan, M.-R. Sadeghi, A. Ahadi, On the complexity of deciding whether the regular number is at most two, Graphs Comb. 31 (5) (2015) 1359--1365.

[14] R. Impagliazzo, R. Paturi, F. Zane, Which problems have strongly exponential complexity?, J. Comput. Syst. Sci. 63 (4) (2001) 512--530.

[15] D. Antony, Y. Cao, S. Pal, R. Sandeep, Switching classes: characterization and computation, arXiv preprint, arXiv:2403.04263, 2024.

[16] P.L. Erdős, C. Semple, M. Steel, A class of phylogenetic networks reconstructable from ancestral prfiles, Math. Biosci. 313 (2019) 33--40.

[17] L. Iersel, R. Janssen, M. Jones, Y. Murakami, Orchard networks are trees with additional horizontal arcs, Bull. Math. Biol. 84 (8) (2022) 76.

[18] G. Cardona, J.C. Pons, G. Ribas, T.M. Coronado, Comparison of orchard networks using their extended 𝜇-representation, IEEE/ACM Trans. Comput. Biol.
Bioinform. (2024).

[19] K. Landry, O. Tremblay-Savard, M. Lafond, A fixed-parameter tractable algorithm for finding agreement cherry-reduced subnetworks in level-1 orchard networks,
J. Comput. Biol. (2023).

[20] R. Janssen, Y. Murakami, On cherry-picking and network containment, Theor. Comput. Sci. 856 (2021) 121--150.

[21] R. Bevern, R. Bredereck, M. Chopin, S. Hartung, F. Hüffner, A. Nichterlein, O. Suchỳ, Fixed-parameter algorithms for DAG partitioning, Discrete Appl. Math. 220
(2017) 134--160.

[22] S. Fortune, J. Hopcroft, J. Wyllie, The directed subgraph homeomorphism problem, Theor. Comput. Sci. 10 (2) (1980) 111--121.

[23] T. Tholey, Linear time algorithms for two disjoint paths problems on directed acyclic graphs, Theor. Comput. Sci. 465 (2012) 35--48.

[24] K.-i. Kawarabayashi, Y. Kobayashi, The induced disjoint paths problem, in: Integer Programming and Combinatorial Optimization: 13th International Conference,
IPCO 2008, Proceedings, Bertinoro, Italy, May 26-28, 2008, vol. 13, Springer, 2008, pp. 47--61.

[25] A. Slivkins, Parameterized tractability of edge-disjoint paths on directed acyclic graphs, SIAM J. Discrete Math. 24 (1) (2010) 146--157.

[26] K. Bérczi, Y. Kobayashi, The directed disjoint shortest paths problem, in: 25th Annual European Symposium on Algorithms (ESA 2017), Schloss-Dagstuhl-Leibniz
Zentrum für Informatik, 2017.

[27] R. Lopes, I. Sau, A relaxation of the directed disjoint paths problem: a global congestion metric helps, Theor. Comput. Sci. 898 (2022) 75--91.

[28] K.T. Huber, V. Moulton, G.E. Scholz, Overlaid species forests, Discrete Appl. Math. 309 (2022) 110--122.

[29] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, MIT Press, Cambridge, Massachusetts, 2022.

[30] J.E. Hopcroft, R.M. Karp, An 𝑛 5
2 algorithm for maximum matchings in bipartite graphs, SIAM J. Comput. 2 (4) (1973) 225--231.

[31] B. Aspvall, M.F. Plass, R.E. Tarjan, A linear-time algorithm for testing the truth of certain quantfied Boolean formulas, Inf. Process. Lett. 8 (3) (1979) 121--123.

[32] A. Francis, K.T. Huber, V. Moulton, Tree-based unrooted phylogenetic networks, Bull. Math. Biol. 80 (2018) 404--416.

[33] M. Hendriksen, Tree-based unrooted nonbinary phylogenetic networks, Math. Biosci. 302 (2018) 131--138.

[34] C. Arnold, P.F. Stadler, Polynomial algorithms for the maximal pairing problem: efficient phylogenetic targeting on arbitrary trees, Algorithms Mol. Biol. 5 (1)
(2010) 1--10.

[35] H.-O. Le, H. Müller, et al., Splitting a graph into disjoint induced paths or cycles, Discrete Appl. Math. 131 (1) (2003) 199--212.

Theoretical Computer Science 1024 (2025) 114907

14

http://refhub.elsevier.com/S0304-3975(24)00524-3/bib66CDB7F4103FD5A26680D8DDED3435F6s1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bib66CDB7F4103FD5A26680D8DDED3435F6s1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bib894EAE4056CD5FD33C32042CF5BE7F12s1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bib894EAE4056CD5FD33C32042CF5BE7F12s1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bib24DBDA4978A31C0590D60B7F617919E3s1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bibDFE56550EBD0E5ECBA7CFA9D483D5CF8s1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bib92FDC53CE18107B384A64743EC0F8363s1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bib1F015EBE2CED2F1D7BA2E640EEA8BACEs1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bibAE8AC500BE84388B00D9FAAD5C3CB593s1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bib87FBAFDE57DC4D319FC45BA06779B0BAs1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bibABE96CD3811632102E850B1BAE2DAC77s1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bib03634A8BBFED2C138AA758989657441Fs1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bib03634A8BBFED2C138AA758989657441Fs1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bib99F5157BFB9CD616B807C39C52C22181s1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bibEDF44E6B31AB8033C692F3EAFAA97DFBs1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bibCB7EA668AF42563BE5739F86352DAB89s1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bib8AC1562DF442420E0141ABCDBEEEAE74s1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bibC7553EE1017254E70143506C300ECB19s1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bibCF9B83E0E25F6551852DDD0FC310AEEDs1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bib2CF2985E29916315558463D32C49A980s1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bibA84969EC51619341A964408678ACE8A1s1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bibA84969EC51619341A964408678ACE8A1s1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bib473ECD5CFFF506490857E52167856587s1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bib473ECD5CFFF506490857E52167856587s1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bib5111E08EB50CB74F565C9F1C032AF03Bs1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bib6F8DACCAAE894E219527D1C7CE44DBEAs1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bib6F8DACCAAE894E219527D1C7CE44DBEAs1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bibDEA87C7E9CBF5EA2E433BE67AC2C456Bs1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bibCB02716190B9D40E09FCDFC697CFA05Bs1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bibD6F4BF1EE73840802494A0E28D8B1A7Fs1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bibD6F4BF1EE73840802494A0E28D8B1A7Fs1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bibC2CF18D2E71CCF14742C13967E1B3F59s1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bibCBF1006151EB52447844D8E5E98A2E9Fs1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bibCBF1006151EB52447844D8E5E98A2E9Fs1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bibAC2191D25D622C0219F62AF45CACDC4Cs1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bib7788265F833BD65B1EB27D380F0A1309s1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bib7CFE86C42A09E2B833ACF69376E3F893s1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bib0FEAC48DB20E379F632980CAB94EAF59s1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bibD460BB92D0DAD1870413CB9B537B0022s1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bib327960560388845045A922896FBC628Bs1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bib7949B435ACA6A6C4FB66189A21B8CE37s1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bibC4E3364F3DBF4D9D18D6C0E092F276D1s1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bibC4E3364F3DBF4D9D18D6C0E092F276D1s1
http://refhub.elsevier.com/S0304-3975(24)00524-3/bibA7FBF169FC28AA9426254E6A3C0D37D6s1

	Path partitions of phylogenetic networks
	1 Introduction
	2 Preliminaries
	3 Forest-based DAGs
	4 Hardness results
	5 Two tractable cases
	5.1 Partitioning semi-binary DAGs into two induced paths
	5.2 Orchard networks

	6 Unrooted forest-based networks
	7 Discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	Data availability
	References

