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It has long been recognized that segments of the protein main
chain are like robotic manipulators and inverse kinematics
methods from robotics have been applied to model loops to
bridge gaps in protein comparative modelling. The complex
internal motion of a redundant manipulator with fixed ends
is called a self-motion and its character is determined by the
relative position of its ends. Self-motions that are topologically
equivalent (homotopic) occupy the same continous region of
the configuration space. Topologically inequivalent (non-
homotopic) regions are separated by co-regular surfaces and
crossing a co-regular surface can result in a sudden dramatic
change in the character of the self-motion. It is shown, using a
five-residue type I β-turn, that these concepts apply to protein
segments and that as the ends of the five-residue segment
come closer together, a co-regular surface is crossed, and the
structure is locked in to becoming either a type I or type I′
turn. It is also shown that the type II turn is topologically
equivalent to the type I′ turn, not the type I turn. These results
have implications for both native-state protein dynamics and
protein folding.

1. Introduction
During the folding of a globular protein, the two ends of a
main-chain segment will in general come closer together as a
compact structure forms. Changes in the structure of a segment
will be mainly driven by external forces acting directly on
the segment and the movement of the flanking protein chain.
In addition to these external drivers, there are the internal
constraints. These constraints, created by the rigid bonds mean
that a protein segment does not change conformation like a piece
of string but has much more complex dynamics. In this study, it
is shown that concepts concerning the topologies of motions of
robotic manipulators [1] are applicable to the rigid-bond model
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of a protein main-chain segment. It is argued that the findings are valid for more realistic models
and have implications for protein folding and protein dynamics. In particular, they show how during
folding, the character of the internal motion of a segment can change suddenly and dramatically. They
also show how it could get locked into forming a particular structure early in the folding process
suggesting a link to the folding funnel concept [2].

1.1. Robotic manipulator as a model of a protein main-chain segment
Robotic manipulators have rigid links connected by joints that enable relative motion of the links
according to the type of joint. A reasonable model of the protein main chain is one where the bond
lengths, bond angles and ω-torsions are fixed and the only degrees of freedom are the ϕ, ψ torsions.
Thus, a protein main-chain segment can be described as a robotic manipulator with links (the bonds)
arranged serially with revolute joints (the ϕ, ψ torsions). A robotic arm will have a base from which
the first link extends and at the end of the final link a tool called an ‘end-effector’. Here, we will be
concerned with an nR manipulator, where n is the number of joints or for proteins the number of ϕ,ψ torsions. The process in robotics of determining the joint angles to achieve a desired position and
orientation of the end-effector is referred to as ‘inverse kinematics’. Given that an end-effector is a rigid
body with six degrees of freedom, in general this requires n ≥ 6. If n = 6, then generally for a specified
position and orientation of the end-effector, the arm will be fixed, i.e. the joint angles are not able
to vary. Such a system is ‘non-redundant’. For n > 6, even if the end-effector is fixed, the joints will
be able to vary. For this ‘redundant’ manipulator the arm can undergo continuous variation, called a
‘self-motion.’ In proteins, self-motions model the motion that a loop undergoes when both its ends are
fixed.

In this work, we will be concerned with the topologies of self-motions and how understanding these
leads to insights into protein dynamics and folding.

1.2. Inverse kinematics methods in protein loop modelling and protein loop dynamics
Inverse kinematics methods have been used in protein research especially for modelling loops to
bridge the gap between two fixed end points as part of homology or comparative modelling [3]. Go
& Scheraga [4] were the first to find an analytical method to do this but the analogy to the nR robotic
manipulator described above means that methods from robotics can be applied to this problem. These
include cyclic coordinate descent [5] and those methods that reduce the problem to solving a polyno-
mial of degree 16 to find a maximum of 16 different bridging loop conformations [6]. These nonlinear
inverse kinematics methods are ideal for loop modelling in comparative modelling scenarios, but there
is also another application area which is to model protein dynamics. Use of nonlinear methods for the
study of dynamics of a loop with n rotatable bonds where n > 6 (redundant case) usually involves
the division of the n variables into n − 6 controls, and six compensators. Loop closure is achieved for
arbitrary values of the controls by solving the inverse kinematic problem for the six compensators.
These methods can be used to explore conformational variability of loops with more than six variables
[7] and have also been used to generate whole-protein conformational ensembles [8]. Linear inverse
kinematics can model only small changes in conformation while maintaining loop closure. For that
reason, the linear method, applied iteratively, is ideally suited to modelling protein loop dynamics and
has been applied to determine the nature of self-motions in protein loops [9,10].

One of the issues addressed in this study is whether all the conformations generated using
nonlinear inverse kinematics methods for the redundant case are dynamically accessible to each other.

1.3. β-turns
If not all, then almost all globular proteins have β-turns as they bring about the abrupt changes in
the path of the protein chain required to create a globular structure. β-turns are normally defined by
having a hydrogen bond between residue i and residue i + 3, and the type is defined by the ϕ, ψ
angles of the intervening residues i + 1 and i + 2. Venkatachalam [11] was the first to classify β-turns,
followed later by Lewis [12], Richardson [13] and Wilmot & Thornton [14]. The number of different
types of β-turns depends on the classification method used and in more recent studies some have been
discarded and new ones introduced [15,16]. In this study, we will concentrate on types: I, I′, II and II′
which represent the vast majority of β-turns in proteins.
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Although the results presented are for β-turns, the findings of this study can be generalized to any
protein segment and have implications for both protein native state dynamics and protein folding.

2. Methods
This work uses a linear kinematics method that writes down the relative translation and rotation
of the end group of a protein main-chain segment owing to variation of its internal coordinates.
Here, we keep all those degrees of freedom fixed that are relatively constrained compared with
the variation of the ϕ, ψ angles. This means all bond lengths, bond angles and ω-torsion angles
are kept at their initial values. The segments here are defined from the Cα on residue i to the Cα
on residue i + N. The internal variables of which there are, n = 2N, can be expressed as a column
vector, τ = ψi  ϕi + 1  ψi + 1 ϕi + 2  ψi + 2… ϕi + N − 1  ψi + N − 1  ϕi + N t , where t denotes the transpose. The relative
position and orientation of the end group (atoms N, Cα and C of residue i + N) relative to the start
group (atoms N, Cα and C of residue i), referred to here as the ‘end conformation’, is a function of τ.
The articles by Hayward & Kitao [9,10] showed a simple way to calculate the 6 × n Jacobian matrix,J τ , for the translational and rotational displacement of the end group relative to the start for a small
change in τ, in the linear approximation, as:

(2.1)
δφδd =  J τ δτ,

where δφ and δd are both 3 × 1 matrices for the relative rotational and translational displacement of
the end group relative to the start group, and δτ is a small change in τ. Mainly we will be concerned
with a segment five residues in length: that is N = 4 and n = 8. In this case, equation (2.1) represents an
underdetermined system as there are six equations in eight unknowns.

In this work, two main algorithms were used. The first moves the end group directly to a target
location through a rotational and translational displacement, ΔΦ and ΔD. To do this, ∆Φ and ∆D were
divided into small increments δφ and δd, and the end moved iteratively by changing the τ angles
according to,

(2.2)
δτ =  J τ + δφδd ,

where J τ + denotes the pseudo inverse of J τ . Use of the pseudo inverse means that the solution,δτ, has the smallest Euclidian norm in an underdetermined system. Note for a segment length four
residues, where N = 3 and n = 6, J τ  will be a square 6 × 6 matrix and if full rank, the pseudo inverse
is the usual inverse. The first algorithm targets the end of the segment.

Algorithm 1, End Targeting: Iteratively solve equation (2.2) to move the end by a given rotational and
translational displacement, ΔΦ and ΔD.

The other main algorithm randomly moves the configuration point on the null space of J τ , by
iteratively solving:

(2.3)J τ δτ = 0.

Motion in the null space does not change the end conformation. As described previously [10], the δτ
are small steps in random directions determined by randomly combining the orthonormal set of null
space vectors of J τ , which are tangents to the nonlinear self-motion manifold. If occasional drift of
the end group occurs, a minimally disruptive reset is performed [10]. Random exploration maintaining
the end conformation is a self-motion.

Algorithm 2, Self-Motion: Iteratively solve equation (2.3), selecting random directions in the null space at each
step to undergo a random self-motion.

An important theorem for this study is the rank-nullity theorem which for the Jacobian used here
means:

(2.4)rank  J τ + nullity  J τ = n,
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where nullity refers to the dimension of the null space—which is also referred to as the degree
of redundancy in robotics. This means that if rank  J τ = 6, that is J τ  is full rank, then
nullity  J τ = n − 6. For a four-residue segment, where n = 6 this means the null space is of dimension
zero and so with fixed ends the configuration of a four-residue segment is also fixed. This is the
non-redundant case. For a five-residue segment, where n = 8, the null space is a two-dimensional
subspace in the full eight-dimensional configuration space. This is then equivalent to an 8R redundant
manipulator. Rank and nullity can be monitored by performing singular value decomposition (SVD).
SVD decomposes a matrix into a product of three matrices:

(2.5)J τ = USV t,
where U  is a 6 × 6  orthogonal matrix, V  is an n × n  orthogonal matrix and S  is a 6 × n  rectangular
diagonal matrix of singular values, s11 , s22  , …, s66  . If J τ  is of full rank 6, the singular values
are all non-zero, the first six columns of V  span the row space of J τ  and the final n − 6  columns
of V  span the null space. At a singular point where s66 = 0, all other singular values remaining
non-zero, rank  J τ = 5, and for a five-residue segment, the null space dimension increases from 2
to 3.

To help explain the topological concepts that arise in this work it will be useful to consider the 2R
and 3R planar manipulators from the field of robotics.

2.1. 2R and 3R planar manipulators
Before dealing with the 3R planar manipulator, consider the 2R planar manipulator. The Jacobian isJ θ1, θ2  , a 2 × 2 matrix that relates changes in the two joint angles, one for the first link, θ1 , the
other for the second link, θ2 , to changes to the x, y coordinates of the end of the second link, i.e. the
end-effector. This is a non-redundant manipulator (the end-effector has two degrees of freedom) and
the general solution for the linear approximation that relates joint angle changes to displacement of the
end is:

(2.6)
δθ1δθ2

= J θ1, θ2
−1 δxδy .

For the arm-up, /\, and arm-down, \/, configurations, rank  J θ1, θ2 = 2 and nullity J θ1, θ2 = 0, and
when the end is fixed, so is the configuration. The arm-up and arm-down configurations can only
interconvert via the configurations, where θ2 = 180° or θ2 = 0°. At these configurations J θ1, θ2  is
singular, the inverse does not exist, rank  J θ1, θ2 = 1 and nullity J θ1, θ2 = 1. In other words, at the
singularity, the null space dimension increases from 0 to 1 and the manipulator can move through the
singular configuration from the set of arm-up configurations to the set of arm-down configurations, or
vice-versa. Note for each arm-up configuration, there is a corresponding arm-down configuration that
is its mirror image.

The 3R planar manipulator has an extra link and with it an extra joint and joint angle, θ3 . The 3R
planar manipulator is a redundant manipulator and for a general end position nullity J θ1, θ2, θ3 = 1.
This means that when the end of the third link is fixed the configuration can change by moving in the
one-dimensional null space of J θ1, θ2, θ3  , i.e. undergo a self-motion. Figure 1 shows the workspace of
the 3R planar manipulator with link lengths, 6, 3 and 2, an example taken from Lück & Lee [17]. The
workspace is the region that can be reached by the end of the third link. The workspace is divided into
three regions called W-sheets: W-1, W-2 and W-3. Figure 2 shows the configuration space for θ2 and θ3.
The configuration space is often referred to as a ‘pre-map’ of the workspace. The lines in figure 2 are
traces of one-dimensional self-motions at given end distances. The green lines show self-motions with
the end in W-2 (end distance of 6), red lines self-motions with the end in W-1 (end distance of 4.5) or
W-3 (end distance of 7.5), and the black lines self-motions with the end on the W-1/W-2 boundary (end
distance of 5) or the W-2/W-3 boundary (end distance of 7). Indicated by the red broken circles are the
singular points where, θ2 = 0°, θ3 = 180° and θ2 = 180°, θ3 = 180°. Self-motions that go through singular
points, where nullity J θ1, θ2, θ3 = 2, are called ‘co-regular’ self-motions. The traces of the self-motions
at end distances within the W-sheets are homeomorphic to circles, whereas the co-regular self-motions
at the W-sheet boundaries are homeomorphic to a figure ‘8’ with the singular point at the ‘waist’ of the
8 [1], where the null space dimension increases from 1 to 2. A W-sheet boundary is called a ‘critical
value manifold’ or ‘Jacobian surface’ and the pre-map of a critical value manifold which combines
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all the traces of corresponding co-regular self-motions is called a ‘co-regular surface’. The co-regular
surfaces divide the configuration space into different regions called ‘C-bundles’ as indicated in figure
2. There are four C-bundles, C-1, C-2a, C-2b and C-3, which correspond to W-sheets, W-1, W-2, W-2

–11 –7 –5
0

–1

–2

–3

–4

–5

–6

–7

–8

–9

–10

0 1 5 7 11

x

θ1=–60º

θ2=–127º

θ3=36º

W-1

W-2

W-3

2
3

6

6
y

Figure 1. 3R planar manipulator workspace. The link lengths are 6, 3 and 2. The starting configuration of the arm has angles θ1 =
−60°, θ2 = −127°, θ3 = 36°. The green dots are located at positions that can be reached by the end (end of final link) from the
starting configuration. Regions in white cannot be reached. The black dots are at positions where, after targeting the end to this
position followed by self-motion (fixed-end exploration) and then return of end to its original position, a mirror configuration of any
of the self-motion configurations of the starting configuration occurs—identified by having a positive θ2 angle. A boundary between
a green and black region, called a ‘critical value manifold’ or ‘Jacobian surface’, divides the workspace into three ’W-sheets’, W-1, W-2
and W-3.
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Figure 2. Configuration space of the 3R planar manipulator in figure 1, with link lengths 6, 3 and 2. θ1 is not shown as results do not
vary with θ1. The three W-sheets are pre-mapped into four regions in the configuration space called ‘C-bundles’: C-1, C-2a, C-2b and
C-3, coloured light red, light green, light green and light red, respectively. Each line corresponds to a self-motion, the number in the
colour of the line giving the end distance. The black lines indicate co-regular surfaces which demarcate the C-bundles. The red broken
circles indicate a singular point on the co-regular surface. The W-2 region pre-maps to two C-bundles, C-2a and C-2b. To go from C-2a
to C-2b, one must cross either one of the two co-regular surfaces at end distances 5 or 7. The manipulator configurations A–F illustrate
an example. To go from A in C-2b at end distance 6, to its mirror configuration F in C-2a, one can move across the co-regular surface to
B by extending the end to 7.5, then undergo a self-motion to E through C and D, and then finally contract the end back to 6 to reach F.
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and W-3, respectively. Figure 3 shows a ‘connectivity map’ for the 3R planar manipulator as given in
Lück & Lee [17] that summarizes the relationship between C-bundles and W-sheets.

In contrast to the non-redundant 2R planar manipulator, where to go from one configuration
to its corresponding mirror image one must go through a singular configuration, in a redundant
manipulator one can avoid a singular configuration. For the redundant 3R planar manipulator, to go
from configuration A in C-2b in figure 2 to its mirror image configuration F in C-2a, the following steps
avoid a singular configuration:

— step 1: extend the end from A in C-2b to conformation B in C-3, thus crossing a co-regular
surface;

— step 2: perform a self-motion in C-3 from B to E through C and D; and
— step 3: return end to its original position by moving across the co-regular surface from E to F in

C-2a.

Note that configuration F is the mirror image of A. More generally, for every configuration in C-2b, a
mirror image configuration exists in C-2a.

C-1 C-3

W-3W-2W-1

C-2a

C-2b

Figure 3. Connectivity map for the 3R planar manipulator in figure 1. The rectangles refer to the W-sheets in figure 1 and the circles
refer to the C-bundles in figure 2. To go from C-2a to C-2b one must follow the edges, through either C-1 or C-3.
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Figure 4. Ramachandran plots for type I turn from the experimental structure, PDB: 2BK9, chain A, 147–151. Asp148 (red), Asp149
(green) and Gly150 (blue). Top row: result of bringing the end of a structure with randomly generated ϕ,ψ angles (5000 examples)
to the same end conformation as the type I turn experimental structure showing the emergence of the type I´ turn. Bottom row: result
of self-motion (300 000 steps) starting from type I turn experimental structure. The squares show the ϕ,ψ angles of the experimental
structure. Note these are projections of a two-dimensional surface in an eight-dimensional space.
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For those not familiar with inverse kinematics in robotics, an excellent introduction to robotic
manipulators is given in the book by Lynch & Park [18], which describes inverse-kinematics methods.

Calculations were carried out using Matlab version: 9.11.0.1837725 (R2021b) Update 2. Matlab
uses SVD (command: svd) to calculate both the pseudo inverse (command: pinv) and the null space
(command: null) of a matrix.

Table 1 gives the parameter value settings used throughout this work for both algorithms.

3. Results
3.1. Type I turn: random structure returns versus self-motion
Algorithms 1 and 2 were used on the type I turn. The experimental structure of the type I turn was
taken from the article by de Brevern [15]: Protein Data Bank (PDB) structure 2BK9, chain A, residues
147–151. Starting with the four-residue segments 147–150 and 148–151, structures were generated by
selecting random ϕ, ψ angles. For both segments, the ends of the randomly generated structures were
targeted back to the end conformation of the experimental structure using algorithm 1 . For both, all
the resulting structures were a type I turn. This process was repeated for the five-residue segment,
147–151. The result in a Ramachandran plot is shown in the top row of figure 4. Starting from the
type I turn experimental structure, self-motions were carried out using algorithm 2 . The bottom row
of figure 4 shows the result. As can be seen by comparing the top and bottom rows of figure 4, the
randomly generated structures with the end conformation of the type I turn create a new structure
that is dynamically inaccessible to the original type I turn. This new structure is consistent with a type
I′ turn, the enantiomeric counterpart of the type I turn, i.e. its mirror structure. Figure 5 shows two
structures, the experimental type I turn and a type I′ turn that resulted from this process. The analogy
with the 3R planar manipulator, where two mirror configurations of the arm, one in C-2a, the other
in C-2b, suggests the same principle applies here and that the two enantiomeric turn structures are
from different C-bundles in the same W-sheet. From a protein folding perspective, it suggests that as
the ends come together a W-sheet boundary is crossed, and the structure will be locked into either
becoming a type I or a type I′ turn.

3.2. Types I and I′ turns belong to different C-bundles in the same W-sheet
In the case of the 3R planar manipulator, analytical methods can be used to determine W-sheets and
co-regular surfaces. As this did not seem feasible for proteins, the process described in figure 6 was
used. The idea behind this process can be understood by considering steps 1–3 for the 3R planar
manipulator (see §2). If in step 1 the extension of the end does not take it across the W-sheet boundary,
then a self-motion followed by a return of the end to its original position would only result in another
C-2b configuration. Only when the extension in step 1 takes the end beyond the W-sheet boundary, is
it possible that after a self-motion and return of the end, a C-2a configuration will occur. Carrying out
this process systematically for different extensions it should be possible to find the W-sheet boundary.
To verify that the process worked it was first applied to the 3R planar manipulator with link lengths, 6,
3 and 2, to establish whether it could reproduce the known results as given in Lück & Lee [17]. From
the starting configuration with angles θ1 = − 60°, θ2 = − 127° and θ3 = 36°, the end was systematically

Table 1. Parameter values for algorithms 1 and 2.

parameter description value

step size factor for moving end: δφ/ ∆ Φ and δd/ ∆D 0.001

rmsda threshold on end group (N, Cα and C atoms of final residue) for successful targeting of endb 0.1 Å

step size for self-motion, (null space exploration), δτ 2°

msdc threshold on end group in self-motion for end reset 0.001 Å2

armsd: root-msd
bStructures that did not satisfy this threshold were discarded.
c msd: mean-square deviation.
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targeted to an array of points in the intervals x: − 11,11 , y: 0, − 11 , self-motions were carried out and
the end returned to the starting configuration end position. The returned structure either belonged
to C-2b (the C-bundle of the starting configuration) or C-2a, as judged by the range of θ2. Figure 1
confirms that the process in figure 6 works.

For the type I turn the workspace is six-dimensional and too large to explore exhaustively. As this is
a proof-of-principle study, it is sufficient to demonstrate it for the following two workspace subspaces:
one where the end undergoes translation and no rotation, the other where the end undergoes rotation
and no translation. For the case of pure translation, the method used for the 3R planar manipulator was

(a)

(b)

Figure 5. In green the type I turn from PDB structure: 2BK9 chain A, residues 147–151. In cyan the type I´, after targeting the ends of
structures with randomly generated ϕ,ψ angles to the end conformation of the type I turn. See text for details. (a) Side view. (b) Top
view.

Start

Move end to new
target

location/orientation,
m = 0

m = M?

m = M?Start end

achieved?

Target end

achieved?

Yes

Yes Yes

Yes

No

No

No

No

Self-motion at

target end

m = m + 1

Return end to start

Classify returned

configuration

Figure 6. Flow chart for the algorithm used to discover W-sheet boundaries. The end is moved using algorithm 1 and self-motions
generated with algorithm 2. M is the total number of phases of self-motion attempted. The starting configuration of self-motionm was the final configuration of self-motion m ― 1. The nature of the returned configurations determines whether a W-sheet
boundary has been crossed.
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Figure 7. Analogous to figure 1 for the type I turn. The process used to create the figure is described in figure 6. The end was
systematically targeted to displacements (without rotation) in the intervals ΔX:[− 6,6], ΔY:[−6,6], ΔZ:[−6,6] in 0.2 Å steps. Green
dots indicate achievable displacements of the end residue from its starting point in the type I turn. The red cross is at (0,0,0) so
represents the type I/I′ turn end residue position. Regions in white outside the green region cannot be reached. The black dots are at
displacements of the end residue where, after targeting the end residue to this position followed by a self-motion and then return of
end residue to its original position, a type I′ turn occurs as identified by Asp149 having a positive ϕ angle. The boundary between
the green and black regions is a W-sheet boundary that divides the workspace into W-sheets. Labelled red points are samples on the
W-sheet boundary.
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used. The end was systematically targeted to displacements in the intervals ΔX : − 6, 6 , ΔY : − 6, 6 ,
ΔZ : − 6, 6  in 0.2 Å steps. At each end position the process in figure 6 was carried out, which com-
prised 20 rounds (M = 20) of 5000 × rand-step self-motion, where ‘rand’ is a random number between 0
and 1 on a uniform random distribution. Figure 7 which is analogous to figure 1 shows the result. As a
further check, this process was repeated starting from the type I′ turn shown in figure 5. As expected,
the same W-sheet boundary was found. The minimum value for ΔD  on the W-sheet boundary is 3.8
Å. It is noted that movement of the end in certain directions, does not result in the W-sheet boundary
being crossed. For these directions, the configuration is locked into the type I or type I′ turn depending
on its starting configuration. Figure 8 shows the result for pure rotation of the end residue. In this case,
100 000 random rotations of the end were generated. At each end orientation, the process in figure 6
was carried out, which comprised five rounds (M = 5) of 1000 × rand-step self-motion. Again, a W-sheet
boundary was discovered. The minimum value for ∆Φ  on the W-sheet boundary is 26.7°.

Five points were selected at different locations on the W-sheet boundary of both workspace
subspaces to confirm the presence of a co-regular surface and to investigate the nature of the singular
configurations. Figure 9 shows self-motion trajectories with the end located just before, and exactly
on the W-sheet boundary at position (a) in figure 7. For the end located on the W-sheet boundary,
the self-motion has all the characteristics of a co-regular self-motion with a new region ‘bursting out’
from the original region where the end is located just before the boundary. In the original region,
all configurations become type I turns when the end was returned, whereas in the new region all
configurations became type I′ turns. The point where the new region bursts from is a singular point
where the null space dimension increases from 2 to 3. This is equivalent to the ‘waist’ of the figure
‘8’ for the 3R planar manipulator. For two structures on the co-regular surface ‘either side’ but very
close to the structure corresponding to the singular point in figure 9, figure 10a shows the structural
transitions that occur when the end is translated back to the type I/I′ end conformation; one results in a
type I turn, the other in a type I′ turn. Figure 10b shows the equivalent when the end is rotated back to
the type I/I′ end orientation from W-sheet boundary position (d) in figure 8.

For all five points (a)–(e) on figure 7 and the five points (a)–(e) on figure 8, the ϕ, ψ angles at
the singular points on the corresponding co-regular self-motions were determined. SVD was used
to confirm they were singular by checking that s66 = 0. Tables 2 and 3 give the ϕ, ψ angles of these
singular structures for the pure translation and pure rotation workspace subspaces, respectively.
Although in the majority of cases, at least one of the ϕ, ψ angles is either close to 0° or 180°, this
is not always the case, e.g. cases (a) and (d) in tables 2 and 3, respectively. Also given in tables 2 and
3, are the pseudo torsion angles, τ148 − 149 (formed by C147

α − C148
α − C149

α − C150
α ) and τ149 − 150 (formed byC148

α − C149
α − C150

α − C151
α ) of the singular structures. The values for these angles in the type I and type I′

turns are 48.2°, −91.7° and −61.1°, 60.9°, respectively. As one might expect, the pseudo torsion angles at
the singular points suggest flatter structures, with both angles in the interval [−60°, 60°] and at least one

Table 2. ϕ, ψ and τ (pseudo torsion) angles of singular structures at translated end conformations in figure 7. (ΔX, ΔY, ΔZ: (a) 0.76,
2.54, 2.80 (b) −1.0, 2.1, 4.3 (c) 2.5, 1.2, 4.9 (d) 0.6, 0.6, 4.3, (e) 1.4, −5.3, 0.4; units are Å.)

end position label: (a) (b) (c) (d) (e)ψ147 −93.3° −102.1° −129.1° −109.0° 19.7°

ϕ148 −51.3° −28.8° −19.7° −31.7° −12.3°ψ148 −125.2° −59.7° −173.5° 151.6° −175.4°

ϕ149 −78.2° −153.6° −10.0° −10.2° −0.5°ψ149 −59.1° −8.4° −170.7° 4.0° 67.0°

ϕ150 −133.9° −172.5° −40.3° −179.0° 132.6°ψ150 78.6° 84.9° 27.6° 67.3° 62.1°

ϕ151 −128.5° −134.1° −57.4° −125.2° 42.6°τ148 − 149 −44.5° −41.2° −9.9° −49.2° 18.5°τ149 − 150 7.1° 23.1° −27.7° 25.7° 33.0°
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of them restricted to the interval [−30°, 30°]. It is important to realize, however, in a folding process the
conformations need not go through a singular configuration.

3.3. α-helix, β-strand and type II turn: random structure returns versus self-motion
Figure 11 shows the equivalent Ramachandran plot to figure 4 for the type II turn. The turn was also
taken from the article by de Brevern [15]: PDB structure 1H16, chain A, residues 424–428. It does not
show the appearance of a type II′ turn, although comparing the random returns to the self-motion
trajectory for Val425, it is evident that the self-motion is very close to being on a co-regular surface.

The same process was carried out on a five-residue α-helix structure and a five-residue β-strand
structure with ϕ, ψ angles taken from Hovmoller et al. [19]. No difference was found between the
random returns and self-motions for both structures as can be seen in electronic supplementary
material, figures S1 and S2. This shows that for both there is only one C-bundle with their end
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(b)

Figure 9. Ramachandran plots for ϕ,ψ angles of Asp149 in self-motions for type I turn. Green dots are sample points on self-motion
manifolds. Crosses show conformations that return to type I turns and black open circles conformations that return to type I′ turns. (a)
With end conformation just before the W-sheet boundary at point (a) in figure 7. (b) With end conformation exactly on point (a) on the
W-sheet boundary and thus showing a co-regular self-motion. The broken red circles indicate a point close to and at a singular point
on the co-regular surface. Column (a) in table 2 gives the ϕ, ψ angles of all residues at the singular point.
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conformation. It shows that when the end-conformation is reached the α-helix and β-strand structures
are contained within their respective self-motions.

(a)

(b)

Figure 10. (a) In magenta, main-chain structure at singular point on the co-regular surface in figure 9 corresponding to point (a) in
figure 7. Table 2 gives the ϕ, ψ angles for this singular structure. In green, main-chain structure that is close to the singular structure
and which results in a type I turn when the end is translated (indicated by downward pointing arrow) to its position in the type I/type
I′ turn. In cyan, main-chain structure close to singular structure which results in a type I′ turn. (b) Analogous to (a) for pure rotation of
the end. The magenta structure is at the singular point on the co-regular surface corresponding to point (d) in figure 8. Table 3 gives
the ϕ, ψ angles for the singular structure. The pure rotation (indicated by curved arrow) of the end to its orientation in the type I/type
I′ turn brings the structures on either side of the singular structure to the respective type I and type I′ turns.
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Figure 11. Ramachandran plots for type II turn from 1H16, chain A, 424–428. Val425 (red), Gly426 (green) and Lys427 (blue). Top
row: results of bringing the ends of the structure with randomly generated ϕ, ψ angles to the same end conformation as the type II
turn. Bottom row: result of self-motion (fixed-end exploration) starting from type II turn. The squares show the ϕ, ψ angles of the
starting structure.
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3.4. Type II turn as topologically equivalent to the type I′ turn
For the type I turn we have discovered three C-bundles in two W-sheets, one for the type I turn
(which we name ‘C-2I’ in ‘W-2’), one for the type I′ turn (‘C-2I′’ in ‘W-2’) and one that comprises all
configurations with end conformations beyond the W-sheet boundary (‘C-1’ in ‘W-1’). To which of
these three C-bundles does the type II belong? To answer this, the end of the type II turn was targeted
to the end of the type I/I′ turn. After an initial 1000 × rand-step self-motion, the end was rotated
and translated in 10 equal incremental movements to reach the type I/I′ turn end conformation, each
incremental movement being followed by a 1000 × rand-step self-motion. This whole procedure was
repeated 500 times and the ϕ, ψ angles at the end of the final phase of self-motion plotted in figure 12
showing that all resulting structures are type I′ turns. Thus, the type II turn is in the same C-bundle as
the type I′ turn and is therefore topologically equivalent to the type I′ turn, not the type I turn. Figure
13 shows intervening conformations when the end is directly moved from the type II end to the type
I/I′ turn end conformation showing the transition from the type II to type I′ turn. The findings can be

–50

–100

–150

150

100

50

0

–50–100–150 150100500

φ (°)

ψ
 (

°)

Figure 12. In green is the Ramachandran plot for ϕ, ψ angles of Asp149 for type I turn end returns from randomly generated ϕ, ψ
angles as shown in figure 4. The black circles are for the equivalent residue to Asp149 in the type II turn, Gly426, which shows that the
result of targeting the end conformation of the type II turn to the end conformation of type I/type I′ turn, is the type I′ turn only. The
difference between the type I′ distributions is owing to the differences in the values of the bond lengths, bond angles and ω torsion
angles in the type I and type II turn experimental structures. See the main text for further explanation.

Table 3. ϕ, ψ and τ (pseudo torsion) angles of singular structures at rotated end conformations in figure 8. (ΔΦx, ΔΦy, ΔΦz: (a) −25.2°,
−13.2°, 7.8° (b) −28.9°, 34.9°, −41.8° (c) 36.1°, 5.0°, −19.1° (d) 48.3°,2.1°,36.7°, (e) −70.8°, 41.7°, −18.8°.)

end position label: (a) (b) (c) (d) (e)ψ147   −165.4° 55.0° 63.6° −147.7° 88.2°

ϕ148   −2.6° −9.8° −16.4° −37.8° −22.0°ψ148   −57.4° 43.6° 69.1° −98.6° 118.9°

ϕ149   −178.0° 178.7° 146.0° −103.5° 75.2°ψ149   2.8° −2.1° 0.6° −48.4° 38.7°

ϕ150   −178.1° −179.5° 179.4° −140.1° 149.9°ψ150   55.9° 51.0° 62.8° 79.8° 119.2°

ϕ151   −134.8° 160.1° 72.9° 131.6° 132.8°τ148 − 149 −55.2° 39.0° 26.8° −38.8° 15.4°τ149 − 150   26.9° 21.0° 39.6° 12.7° 37.2°
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summarized in the connectivity map of figure 14, which is only a small part of the connectivity map for
the five-residue segment which in its entirety would also include the α-helix, β-strand structures and
any other structure from a distinct C-bundle.

It was found that direct targeting to the type I/I′ turn end conformation from five-residue α-helix
and β-strand structures was impossible, probably owing to the path intersecting a singularity.

4. Discussion
It has been shown using the five-residue main-chain segment with its ϕ, ψ torsions as the only
degrees of freedom, that concepts regarding self-motions in redundant robotic manipulators [1,17] also
apply to protein segments. How would this help in the understanding of protein folding and protein
dynamics?

4.1. Role in protein folding
In protein folding, a compactification of the protein chain occurs in a process that is energetically
driven by hydrophobic regions creating an interior where they are shielded from the water solvent.
The appearance of turns, whether they are β-turns or the 4-turns of the α-helix, is a feature of protein
folding as they bring about the abrupt changes in chain direction necessary for a compact folded
structure. Consider the five-residue segment early in the folding process and in a C-1 configuration
in W-1. Consider also that during the folding process its ends, initially well separated, move progres-
sively towards the end conformation of the type I/I′ turn. As the end conformation comes close to
the W-1/W-2 boundary and the configuration is close to the co-regular surface separating C-1 and C-2I/
C-2I′, its self-motion effectively combines the configurational spaces of C-2I and C-2I′. As the W-1/W-2
boundary is crossed, it will go to either C-2I or C-2I′ depending on its configuration when crossing
the co-regular surface. It is reasonable to suggest that the non-bonded interactions determine this

Type II C-term end to Type I, I’ C-term end

Figure 13. Type II turn in thick blue stick, type I turn in thick green stick, and type I′ turn in thick cyan stick. The thin stick depiction
shows the conformations that occur when the end conformation of the type II turn is moved directly (without any self-motion) to the
type I/type I′ turn end conformation. As can be seen, the structures (blue to red) move towards the type I′ turn conformation not the
type I turn conformation.

C-1

W-1 W-2

C-2l´

Type

l´, ll

C-2l

Type l

Figure 14. Connectivity map for type I, type I′ and type II turns. Type I′ and type II turns belong to the same C-bundle (C-2I′), but the
type I turn belongs to a different C-bundle (C-2I). To go from type I′ or type II turns to a type I turn one must go via C-1 in W-1, i.e. the
end must move beyond the W-1/W-2 sheet boundary.
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configuration and select the turn type that results. In terms of the connectivity map in figure 14, these
interactions select the edge, C-1 to C-2I or C-1 to C-2I′, as one goes from W-1 to W-2. In this model,
there are two drivers determining structure during folding, the first determines the end conformations
of segments, and the second selects the configuration determining the turn type that results as a
co-regular surface is crossed. Crossing a co-regular surface will result in an abrupt change in configura-
tional entropy. In the case of the type I/I′ turn, there will be a dramatic reduction in configurational
entropy in going from C-1 bundle to the C-2I or C-2I′ bundle (see figure 9). Significantly, during
folding, intermediate configurations, in either C-2I or C-2I′, will be locked into their native structures
before their ends reach their final conformation. Such a process suggests a link to the folding funnel
concept [2].

4.2. Role in protein dynamics
In an earlier study [9], it was noticed that for a five-residue loop with fixed ends and its ϕi + 1

angle constrained (in this case self-motions have one degree of freedom and their trajectories can
be visualized as lines in a Ramachandran plot), a so-called ‘looping-out’ occurred in the self-motion
trajectory for only a very small change in the constrained ϕi + 1 angle. Although it was not realized at
the time, this ‘looping-out’ is analogous to what is seen in figure 9, and was the emergence of a new
region on a co-regular surface. The change in the ϕi + 1 angle has the same effect as a change in the end
position here. This means that the topological concepts regarding self-motions also apply to protein
loop dynamics in native proteins and consequently their complex dynamics could be characterized in
connectivity maps.

As mentioned above, both linear and nonlinear inverse-kinematics methods have been applied in
protein research. This study suggests that application of nonlinear inverse kinematics methods for the
study of loop dynamics might result in solutions that are on different self-motion manifolds and would
consequently be dynamically isolated from each other. It seems that some studies which use non-linear
inverse-kinematics to model protein loop dynamics do not take this possibility into account.

4.3. Influence of other degrees of freedom
How would variations in the harder internal degrees of freedom, such as bond lengths, bond angles
and ω-torsion angles affect results? The small effect of these other degrees of freedom in comparison
to variation in ϕ, ψ angles can be seen in figure 12. The impact of the hard degrees of freedom
on the topological features found here, can best be appreciated by again considering the 3R planar
manipulator. If small variations in the lengths of links occur according to a Gaussian probability
distribution, then instead of abrupt W-sheet boundaries, W-sheet boundary regions with this proba-
bility distribution would result. Consequently, co-regular surfaces would also become regions with
associated probabilities. These co-regular regions would still create barriers between C-bundles and the
topological features seen here would remain.

4.4. Unifying picture of folding and dynamics
Here, we have considered a short protein segment, but would these concepts apply to longer seg-
ments? Theorem 1 by Burdick [1] states that for a redundant nR robot manipulator, the number of
self-motions for a given fixed-end conformation would be no more than the 16 inverse kinematics
solutions for the non-redundant 6R manipulator [20,21]. However, this is an upper limit and as n
increases so the number of distinct self-motions decreases. Indeed, for a flexible string there will be
only one self-motion. For a protein, however, the early formation of α-helices during protein folding
means that even for long segments, portions of the chain will be effectively rigid, meaning that distinct
self-motions should still occur in longer segments.

For a general protein segment, its whole conformational space will be partitioned into distinct
non-overlapping regions (C-bundles) demarcated by co-regular surfaces. Self-motions within the same
C-bundle are homotopic as the manifold of one can be smoothly deformed into that of another.
This means that all self-motions which occur within a C-bundle can be united to produce a set of
topologically equivalent motions. Thus, the viewpoint of a self-motion of a segment with fixed ends is
superseded by a viewpoint whereby all motions are united, even those that move the ends, as long as
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the ends do not cross a W-sheet boundary. Self-motions from different C-bundles are not homotopic
and there is a dramatic change in the available conformational space as a co-regular surface is crossed.
From this perspective, the focus is not on individual conformations but on ensembles, with conforma-
tions grouped according to their topological equivalence. In theory, it should be possible to map this
entire configuration space. A connectivity map presents a simplified version of this map indicating
paths between different C-bundles. A more comprehensive description would also specify W-sheet
boundary locations in the six-dimensional space, and their corresponding boundaries (the co-regular
surfaces) in the configurational space. For the five-residue segment considered here, such a description
would encompass all five-residue conformations found within folded and unfolded proteins.
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