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Evidence for separate backward recall and n-back working memory factors: a 
large-scale latent variable analysis
Elizabeth M. Byrne a,b, Rebecca A. Gilbert c, Rogier A. Kievit b,d and Joni Holmes a,b

aSchool of Psychology, University of East Anglia, Norwich, UK; bMRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, 
UK; cDepartment of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; dDonders Institute, Radboud 
University, Nijmegen, Netherlands

ABSTRACT  
Multiple studies have explored the factor structure of working memory (WM) tasks, yet few 
have done so controlling for both the domain and category of the memory items in a single 
study. In the current pre-registered study, we conducted a large-scale latent variable analysis 
using variant forms of n-back and backward recall tasks to test whether they measured a 
single underlying construct, or were distinguished by stimuli-, domain-, or paradigm-specific 
factors. Exploratory analyses investigated how the resulting WM factor(s) were linked to fluid 
intelligence. Participants (N = 703) completed a fluid reasoning test and multiple n-back and 
backward recall tasks containing memoranda that varied across (spatial or verbal material) 
and within (verbal digits or letters) domain, allowing the variance specific to task content 
and paradigm to be assessed. Two distinct but related backward recall and n-back 
constructs best captured the data, in comparison to other plausible model constructions 
(single WM factor, two-factor domain, and three-factor materials models). Common variance 
associated with WM was a stronger predictor of fluid reasoning than a residual n-back factor, 
but the backward recall factor predicted fluid reasoning as strongly as the common WM 
factor. These data emphasise the distinctiveness between backward recall and n-back tasks.
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Working memory (WM) supports a wide range of complex 
behaviours, including reading comprehension, following 
instructions, and problem-solving (Feldman Barrett et al., 
2004; Holmes et al., 2021; Jaroslawska et al., 2018; Peng & 
Kievit, 2019). WM varies between individuals and can be 
measured using a variety of paradigms (e.g., backward 
recall, complex span or n-back). While multiple studies 
have explored the shared variance between different WM 
paradigms (e.g., Kane et al., 2007; Redick & Lindsey, 2013; 
Schmiedek et al., 2009; Schmiedek et al., 2014), sometimes 
controlling for the domain (verbal or visuo-spatial) of the 
memory items (e.g., Kovacs et al., 2019), few have done so 
controlling for content modality (differences in the 
domain and category of the memory items) across tasks. 
Waris et al. (2017) tested whether WM tasks could be distin-
guished by process (e.g., updating or maintenance) or 
“content”, but content was defined as either numerical- 
verbal or visuo-spatial, and did not distinguish between 
different materials within domain (e.g., digits or letters). 
The aim of the current study was to conduct a large-scale 
latent variable analysis controlling for both the domain 

and category of the memoranda using variant forms of n- 
back and backward recall tasks to test whether they 
measure a single underlying construct, or are distinguished 
by stimuli-, domain-, or paradigm-specific factors.

Many WM paradigms combine the temporary storage 
of information with additional processing requirements 
such as reversing a sequence (backward recall), updating 
the contents of WM (n-back), or handling interpolated dis-
tractor tasks (complex span), although measures capturing 
the maintenance of bindings between items in WM, 
without explicit processing, are equally suited to 
measure WM capacity (Oberauer, 2019; Wilhelm et al., 
2013). There are verbal (digits, letters) and visuo-spatial 
(spatial locations) variants of each of these paradigms, 
and in the case of complex span tasks the distractor 
items can also vary by domain. Multiple latent variable 
analyses have examined the construct validity of WM 
tasks, and individual differences studies have explored 
how WM tasks predict other complex cognitive tasks 
such as fluid reasoning (Alloway et al., 2006; Chuderski, 
2013; Engle, Laughlin, et al., 1999; Kane et al., 2007; 
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Oberauer et al., 2000; Schmiedek et al., 2009; Shamosh 
et al., 2008).

Complex span tasks containing different memory items 
and distractor activities correlate extremely well with each 
other and with other measures of WM, including updating 
tasks such as n-back (e.g., Schmiedek et al., 2009). They 
also predict performance on tests of language comprehen-
sion (Daneman & Carpenter, 1980; Kane et al., 2004), atten-
tional control (Kane et al., 2008), and general fluid 
reasoning (Gf; e.g., Schmiedek et al., 2009). Associations 
between different forms of n-back and other WM para-
digms are weaker (Dobbs & Rule, 1989; Jaeggi, Buschkuehl, 
et al., 2010; Jaeggi, Studer-Luethi, et al., 2010; Kane et al., 
2007; McAuley & White, 2011; Miller et al., 2009; Redick & 
Lindsey, 2013; Roberts, 1998; Roberts & Gibson, 2002), 
and n-back has been used less often to predict other cog-
nitive abilities (Kane et al., 2007).

Few studies have validated backward recall tasks against 
other tests of WM, and those that have done so typically 
focus on backward digit recall (BDR; e.g., Hilbert et al., 
2015). This task relies on short-term memory serial order 
mechanisms to maintain digit sequences. The additional 
requirement to recall items in reverse order imposes a sub-
stantial attentionally-demanding processing load similar to 
the executive loads of other WM tasks (Alloway et al., 2006; 
Bull et al., 2008). Evidence from a meta-analysis that back-
ward span is more strongly related to n-back than to 
simple forward span tasks (Redick & Lindsey, 2013), and 
that it is associated with reasoning ability (e.g., Suß et al., 
2002), supports the argument that backward recall has an 
executive component (although see Colom et al., 2005; 
Engle, Laughlin, et al., 1999; St Clair-Thompson & Allen, 
2013 for arguments that BDR is a short-term memory task). 
Indeed, Redick and Lindsey’s meta-analysis (2013) reported 
that the correlation between n-back and backward digit 
span (r = .31) was greater than the correlation between 
n-back and verbal complex span (r = .18), suggesting not 
only that it shares variance with other widely used WM 
tasks, but also that it may have more in common with 
some WM paradigms than others.

There are a number of methodological issues that limit 
the conclusions that can be drawn from the majority of pre-
vious studies exploring shared variance between WM tasks 
(Schmiedek et al., 2009; Schmiedek et al., 2014; Wilhelm 
et al., 2013). First, task associations could be reduced due 
to a mismatch of content modality across paradigms (e.g., 
differences in the domain or category of the memory 
items). For example, weak correlations between n-back and 
complex span reported by Kane et al. (2007) could reflect 
differences in task stimuli (n-back contained letters, 
complex span combined word recall with numerical oper-
ations), rather than differences in paradigm.

Using a single indicator for each paradigm can also be 
problematic because variants of the same paradigm can 
provide different indices of an underlying factor. For 
example, Kane et al. (2004) reported that different complex 
span tasks (operation, reading, counting, navigation, 

rotation, or symmetry span) explained different amounts of 
variance in a single underlying WM construct. Using a 
single measure for any paradigm therefore introduces task- 
specific variance into latent models (Shipstead et al., 2012). 
When performance is averaged across multiple versions of 
a WM task, stronger associations are found between con-
structs (Schmiedek et al., 2014). For example, Shamosh 
et al. (2008) reported a higher correlation between latent 
factors of two n-back tasks and four complex span tasks 
than Kane et al. (2007) who measured associated measures 
of performance on single n-back and complex span tasks.

In the present study we use a latent variable analysis to 
test whether backward recall and n-back measures of WM 
tap into the same underlying construct, or whether the 
tasks are distinguished by stimuli-, domain-, or para-
digm-specific factors. The two paradigms have been 
reported to be weakly associated in previous studies 
(Dobbs & Rule, 1989; McAuley & White, 2011; Miller et al., 
2009; Roberts, 1998; Roberts & Gibson, 2002; and for a 
meta-analysis, see Redick & Lindsey, 2013), but these 
studies have been limited by the shortcomings of using 
single task indicators and not controlling for the 
influence of domain– and task-specific variance. To 
address these issues, we included multiple indicators of 
WM that vary the overlap in task properties by WM para-
digm (backward recall, n-back), stimulus domain (verbal, 
visuo-spatial), and stimulus material (digits, letters). Confi-
rmatory factor analysis was used to test four competing 
models of the underlying structure of the tasks.

The first candidate model tested was a single-factor WM 
model where all backward recall and n-back tasks loaded 
on one factor (see Figure 1A). This is consistent with 
domain-general theories of WM proposing that perform-
ance on WM tasks is dependent on a domain-general 
central executive or attentional control system (Alloway 
et al., 2006; Baddeley, 1986; Engle & Kane, 2004; Engle, 
Kane, et al., 1999; Kane et al., 2004). The second candidate 
model was a two-factor, domain-specific model encom-
passing distinct but related verbal and visuo-spatial 
factors (shown in Figure 1B). This aligns with models pro-
posing that separate pools of resources support the main-
tenance and processing of verbal and visuo-spatial 
information (Daneman & Tardif, 1987; Friedman & 
Miyake, 2000; Shah & Miyake, 1996). The third candidate 
model tested was a two-factor paradigm model (e.g., 
Schmiedek et al., 2009). Both backward recall and n-back 
tasks require the temporary maintenance and processing 
of information, and require the recollection of previously 
presented information (e.g., backward recall requires expli-
cit serial recall, while n-back involves recollecting whether 
the current item has been presented n + 1, n + 2 or more 
steps back) (Oberauer, 2005). However, familiarity-based 
retrieval might introduce additional noise in n-back 
tasks, distinguishing the two paradigms. For this reason, 
the two-factor paradigm model assumes a correlation 
between two distinct backward recall and n-back latent 
constructs. This candidate model is shown in Figure 1C. 
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The final model tested was a three-factor materials model 
that assumed performance across the tasks would be best 
captured by expertise related to the specific type of stimuli 
(e.g., basic skills or knowledge tied to digits, letters, or 
spatial materials). This three-factor model assumed separ-
ate constructs for each category of memory item as 
follows: (i) n-back with digits and backward recall with 
digits; (ii) n-back with letters and backward letter recall; 
and (iii) n-back with spatial locations and backward 
spatial recall. This model is shown in Figure 1D. The proto-
col for this part of the study was preregistered on the Open 
Science Framework (https://osf.io/9qarp/).

In a second pre-registered stage, we explored the associ-
ation between the best fitting WM factor model from 
Figure 1 and fluid reasoning. High correlations between 
WM and fluid reasoning (e.g., Conway et al., 2002; Kane 
et al., 2005) have led some to argue that they are isomorphic 
constructs (e.g., Duncan et al., 2000; Kyllonen & Christal, 
1990). Others, however, argue that they are distinct but 
related constructs (Ackerman et al., 2005; Chuderski, 2013; 
Conway et al., 2003; Fukuda et al., 2010; Kane et al., 2004; 
Oberauer et al., 2005; Schmiedek et al., 2009, 2014). It is 
unclear what processes might support the relationship 
between WM and fluid intelligence, and the current study 
was not designed to tease among these, but it is worth 
noting that this topic is widely debated. Some argue WM 
and fluid reasoning are highly related as they both rely on 
the ability to control attention (Engle, 2018; Kane et al., 
2007; Shipstead et al., 2016), while others suggest that the 
WM processes of building, maintaining, and manipulating 
arbitrary bindings between items supports performance 

on fluid reasoning tasks (Oberauer et al., 2007). A final pro-
posal suggests that the relationship between the two is 
best explained by similar demands on short-term memory 
storage (Colom et al., 2006 ; Colom et al., 2008).

The aims of our exploratory analyses were to test 
whether a single factor model (with all WM and reasoning 
tasks loading on one factor) provided a better account of 
the data than a model with separate but related reasoning 
and WM factors. In a final set of analyses, which were 
exploratory and not pre-registered, we decided that if 
the model with separate but correlated WM and reasoning 
factors was the better fit than the single factor model, we 
would explore whether there were differences in the 
strength of the associations between the different WM 
factors and fluid reasoning. We planned these analyses 
to test whether we could replicate previous studies 
suggesting that different WM tasks might make differential 
contributions to fluid reasoning (e.g., Shipstead et al., 
2012). We also explored whether the variance common 
to all WM tasks was a stronger predictor of fluid reasoning 
than the variance unique to either the backward recall or 
n-back paradigms. The domain-general view of WM 
would predict that the common variance among WM 
task variants should predict reasoning more strongly 
than the variance unique to any paradigm (e.g., Kane 
et al., 2004).

Data availability

The data and R analysis script for this study have been 
made openly available via the Open Science Framework 

Figure 1. Candidate models for the primary analyses. Models A (single-factor working memory), B (two-factor domain), C (two-factor paradigm), and D 
(three-factor materials). Ovals represent latent factors and observed variables are shown in squares. BDR = backward digit recall, BLR = backward letter 
recall, BSR = backward spatial recall, NBD = n-back with digits, NBL = n-back with letters, NBS = n-back with spatial locations.
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online repository for this project, which can be accessed 
here: https://osf.io/9qarp/.

Method

Participants

Seven-hundred and seven native-English speaking par-
ticipants aged 18-35 completed this study and were 
paid £9 for participation. All had normal or corrected to 
normal vision, and no literacy difficulties. Data was 
excluded for four participants who did not follow the 
study instructions correctly. A total sample size of 703 
participants (421 female) was used for the analyses 
(mean age = 27.476, SD = 4.474). Participants were 
recruited through Prolific Academic (https://www. 
prolific.com/; Palan & Schitter, 2018; Peer et al., 2017) 
and completed the tasks online. Only 29 out of over 
5000 observations were identified as extreme outliers, 
and there were only 14 cases of missing data due techni-
cal problems. To foreshadow the results, the quality of 
the data enabled us to detect cognitive factor structure 
(s) underlying nuanced individual differences that are 
consistent with those reported in lab-based studies 
(e.g., Chuderski, 2013; Engle, Laughlin, et al., 1999; 
Schmiedek et al., 2009, 2014). Consistent with other 
studies, these data show high quality cognitive data can 
be collected via web-browser platforms and produced 
outputs comparable to data collected in the lab (Crump 
et al., 2013).

Informed consent was obtained online prior to 
testing. The study was approved by and conducted in 
accordance with the guidelines of the University of Cam-
bridge Psychology Research Ethics Committee (Refer-
ence: PRE.2017.001).

Procedure

Each participant completed six memory tasks and a fluid 
reasoning task in a single session according to one of 12 
possible task orders. The backward recall tasks were 
grouped together (i.e., completed consecutively), and the 
n-back tasks were also grouped together. The task order 
within these two groups was counterbalanced (i.e., all 
possible permutations for the three tasks were used), yield-
ing six orders for each of the two groups of tasks. The order 
of the two groups of backward recall and n-back tasks was 
then counterbalanced, resulting in six possible task orders 
in which the backward recall tasks were completed first, 
and six in which the n-back tasks were completed first. 
An additional reasoning task was completed in between 
the n-back and backward recall tasks in all conditions 
(i.e., it was always the fourth task completed). Participants 
completed practice trials before starting each task. Feed-
back for correct and incorrect responses was shown on 
screen for the practice trials but was not provided during 
the proper tasks.

Materials

The tasks were created using the software programme 
Gorilla (https://gorilla.sc/; Anwyl-Irvine et al., 2018). Partici-
pants completed the study on a laptop or desktop compu-
ter, and all responses were made using a mouse or 
keyboard.

Backward recall
Participants completed three backward recall tasks each 
containing different stimuli: (i) digits (1–9), (ii) letters (B 
H J L N Q R X Z), or (iii) spatial locations (nine random 
but fixed locations on the computer screen). Trials were 
presented in blocks, with each block consisting of four 
trials. During each trial, items were presented visually 
one at a time (stimulus presentation = 750 ms, inter- 
stimulus interval = 250 ms). Participants were then 
prompted to recall the sequence in-backward order via 
an onscreen keypad of digits, letters, or spatial locations. 
Participants began each task at a span of three items. 
Span length was increased by one item in each sub-
sequent block if there were three or more correct 
responses out of the four trials at that length. The tasks 
were discontinued if two or more trials were incorrect 
within a block, or if the highest possible span level was 
reached (13 items). For each of the backward recall 
tasks, we scored participants according to their 
maximum span (i.e., the final span length in which the 
participant met the criterion of at least three out of four 
correct trials).

n-back
Participants completed three n-back tasks, each contain-
ing different stimuli: (i) digits (1–9), (ii) letters (B H J L N Q 
R X Z), or (iii) spatial locations. For each task, stimuli were 
presented randomly, one at a time on screen in a random 
order (stimulus presentation = 760 ms, inter-stimulus 
interval = 2000 ms), with no deliberate placement of 
lures (although some will have occurred by chance). Par-
ticipants were required to indicate whether the current 
item on screen matched the one presented n items 
back in the sequence via a button press. In each block 
participants were presented with a continuous sequence 
of 20 + n items, during which there were a total of six 
possible targets (matches) and 14 + n non-targets. An 
error was scored if participants pressed the button for a 
non-target (false alarm), or if participants failed to press 
the button when a match was present (miss). Total 
errors were calculated as false alarms plus misses. The 
first block began at one-back and difficulty level was 
increased by one in each subsequent block if fewer 
than five errors were made (e.g., an increase from one- 
back to two-back). The task ended if five or more errors 
were made within a block, or if the highest possible 
level was reached (12-back). We scored each of the n- 
back tasks according to the maximum n-level that the 
participant reached (i.e., the final level in which the 
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participant met the criterion of less than five errors in a 
block).

Relational reasoning
Participants were presented with 80 puzzles one at a time 
(Knoll et al., 2016). The stimuli were developed from a set 
of materials that have recently been normed (Fuhrmann 
et al., 2018). Although the stimuli used here are not iden-
tical to those normed by Fuhrmann et al. (2018), they were 
developed from the same source. Each puzzle consisted of 
a 3 × 3 matrix (nine spaces in total). Eight of the spaces 
contained shapes, and the bottom right space was 
always empty. Participants were also presented with four 
boxes at the bottom of the screen containing shapes, 
and were required to select the box with the correct 
answer – the box containing the piece that was missing 
from the empty space in the matrix. The shapes in the 
matrix varied by colour, size, shape, and position. 
Difficulty level also varied. Participants were given 30 s 
to complete each trial, and a prompt appeared on screen 
when only 5s remained. Odd and even items were 
scored separately to generate two relational reasoning 
scores (so that a latent reasoning factor could be formed 
using the two measures for the exploratory analyses). In 
each case the number of correct responses (out of 40) 
was used.

Analysis plan

To address the primary pre-registered research question, 
we ran a series of confirmatory factor analyses to deter-
mine which of the four candidate models (see Figure 1) 
best explain the covariance structure among the six 
WM tasks. The following models were compared: (A) a 
single WM factor model, (B) a two-factor domain- 
specific verbal and visuo-spatial construct model, (C) a 
two-factor backward recall and n-back paradigm model, 
and (D) a three-factor digit, letter, and spatial materials 
model.

After establishing the best-fitting WM model for the 
variables, a set of exploratory analyses that were not 
pre-registered were conducted to test how the two 
classes of WM measures were related to fluid reasoning. 
The configuration of the best-fitting WM model was 
retained, and a reasoning factor was added to explore 
whether the WM factor(s) and the reasoning tasks load 
on a single factor, or on distinct but related constructs. 
If a single-factor WM model was preferred, the plan 
was to examine whether the WM factor is very strongly 
or perfectly correlated with a fluid reasoning factor. 
Alternatively, if a multi-factor model was preferred, 
then the relationship between the WM factors and 
fluid reasoning would be examined to see whether the 
relationship was stronger for different WM sub-factors. 
The multi-factor models were compared to a single- 
factor general ability model including all WM and 
reasoning tasks.

Model fit and comparison

Models were estimated in the lavaan software package 
(version 0.6-14; Rosseel, 2012) in R version 4.1.3 (R Core 
Team, 2018) using maximum likelihood estimation and 
robust standard errors, for which the Yuan-Bentler (YB) 
scaled test statistic is reported. Missing observations 
were dealt with using the full maximum likelihood 
(FIML) parameter estimation technique because it 
allowed us to maximise the utility of all existing data 
and increase power relative to deleting incomplete 
cases (Baraldi & Enders, 2010). The overall fit of each 
model was assessed using the χ² test, the comparative 
fit index (CFI; range: 0-1.0; acceptable fit: .95-.97, good 
fit: ≥ .97; Schermelleh-Engel et al., 2003), and the root 
mean square error of approximation (RMSEA; range: 0- 
1.0; acceptable fit: < .08, good fit: ≤ .05; Schermelleh- 
Engel et al., 2003) which is reported with 90% confidence 
intervals. The four models were also compared. When 
models were nested, they were compared via a likeli-
hood ratio test (i.e., the Satorra-Bentler scaled χ² differ-
ence test; Satorra & Bentler, 2001); otherwise non- 
nested models were directly compared via the Akaike 
information criteria (AIC; Akaike, 1974).

Results

Preliminary analyses

The data were screened to identify outliers (i.e., scores 
deviating > 3.5 SDs from the sample mean on each task). 
Twenty-nine observations were removed during data 
screening for outliers, and an additional 14 observations 
were missing due to technical problems during data col-
lection (total missing observations = 37). Descriptive stat-
istics are summarised in Table 1. Associations between 
tasks are displayed in Figure 2. All tasks were positively cor-
related (all ps < .01). The strongest patterns of association 
were observed between-backward digit and backward 
letter recall (r = .526), and between the three n-back 
tasks (all rs > .4). The two relational reasoning scores 
were very highly correlated (r = .91), suggesting they are 
reliable indicators of the construct.

Table 1. Descriptive statistics for all variables.

Variable N M SD Skewness Kurtosis

Backward digit recall 698 5.307 1.695 .479 −.187
Backward letter recall 690 4.470 1.247 .844 .704
Backward spatial recall 702 5.068 1.214 −.405 −.734
n-back digits 694 3.307 1.723 .977 1.047
n-back letters 698 3.032 1.658 .757 .380
n-back spatial locations 699 2.774 1.511 .984 .591
Relational reasoning 

even
700 24.921 7.604 −.096 −.879

Relational reasoning 
odd

700 23.787 7.431 .037 −.683
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Primary analyses

WM factor models
Confirmatory factor analysis was used to compare the pre-
registered measurement models of the six memory tasks. 
The models tested are displayed in Figure 1. Fit indices 
for each model are provided in Table 2. The fit statistics 
revealed that the single-factor model (Figure 1A), χ2 (9)  
= 195.825, RMSEA = 0.172 (90% confidence interval [CI]  
= .151, .194), and CFI = .678, the two-factor domain 
model (Figure 1B), χ2 (8) = 204.926, RMSEA = .187 (90% 
CI = .164, .211), and CFI = .660, and the three-factor 
materials model (Figure 1D), χ2 (6) = 189.847, RMSEA  
= .209 (90% CI = .181, .237), and CFI = 683, were a poor fit 

to data. In contrast, the two-factor paradigm model 
(Figure 1C), χ2 (8) = 29.108, RMSEA = .061 (90% CI = .038, 
.086), and CFI = .964, was an acceptable fit to the data.

The fit of the single-factor WM model (Figure 1A) was 
compared with each of the other models using the 
Yuan-Bentler χ2 difference tests because it was nested 
within the other models. These analyses revealed that 
the fit of the single-factor model (A) was not significantly 
different to the domain model (B), Δ χ2 = .150, Δ df = 1, p  
= .700, but it did provide a significantly better account of 
the data than the materials model (D), Δ χ2 = 22.367, 
Δ df = 3, p < .001. The two-factor paradigm model (C) out-
performed the single-factor model (A), Δ χ2 = 272.820, 

Figure 2. Matrix of associations between pairs of tasks (N = 703). Simple correlation coefficients are displayed in the top segment (all significant at p < .01), 
density plots are shown along the diagonal, and scatter plots with trend lines are displayed in the lower section. BDR = backward digit recall, BLR = back-
ward letter recall, BSR = backward spatial recall, NBD = n-back with digits, NBL = n-back with letters, NBS = n-back with spatial locations, RR_even = rela-
tional reasoning with even items, and RR_odd = relational reasoning with odd items.

Table 2. Fit statistics for each model included in the primary confirmatory analysis.

Model χ² df YB RMSEA CFI AIC

(A) Single-factor WM 195.825 9 .932 .172 [.151, .194] .678 14739
(B) Two-factor domain 204.926 8 .889 .187 [.164, .211] .660 14741
(C) Two-factor paradigm 29.108 8 .977 .061 [.038, .086] .964 14587
(D) Three-factor materials 189.847 6 .826 .209 [.181, .237] .683 14720

Note. For root mean errors of approximation (RMSEAs), 90% confidence intervals are given. CFI = comparative fit index; AIC = Akaike information criterion. 
The χ² reported is the Yuan-Bentler scaled χ², with the scaling factor reported as YB. WM = working memory.
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Δ df = 1, p < .001. The AIC measurement was used to 
directly compare the other models to one another. The 
two-factor paradigm model (C) was the best fit with the 
lowest AIC value (see Table 2), suggesting that separate 
but related latent constructs corresponding to backward 
recall and n-back best capture the covariance across the 
tasks (see Figure S1 in the Supplementary Materials for 
the Model C diagram).

Improving WM model fit

To explore whether we could improve the fit of the multi- 
factor models, we inspected the modification indices (MI) 
and the standardised residual covariance (SRC) estimates. 
These converged on the same key path for the two- 
factor paradigm model (MI = 17.976, SRC = 3.894) and 
two-factor domain model (MI = 149.144, SRC = 3.804), 
namely a strong residual correlation between the BDR 
and BLR tasks. On reflection, this residual correlation is to 
be expected due to both tasks depending on encoding 
and retrieval processes from verbal short-term memory 
(Norris et al., 2019). As this system stores verbal material 
in phonological rather than semantic form (e.g., Salamé 
& Baddeley, 1982), the processes involved in encoding, 
maintaining, and retrieving representations from verbal 
short-term memory should be the same for letters as 
digits. Based on this reasoning, we allow this additional 
residual covariance path for all models going forward, 
but report the fit for all models with and without it. This 
additional parameter was not added to the three-factor 
materials model, as unlike the within factor cross-loadings 
in the other models, the inclusion of a between factor 
cross-loading would weaken the separation between the 
three individual factors that are central to demarcating 
this model as distinct from the others. As can be seen in 
Table 3 the addition of the residual covariance between 
BDR and BLR improved the fit of all models approximately 
equally, thus not substantively affecting the core goal of 
model comparison. The addition of this residual covari-
ance to each model does not have any effect on the pre-
registered model comparisons.

The revised single-factor WM model (Model E) was a 
good fit to the data, χ2 (8) = 24.154, RMSEA = .054 (90% 
CI = .030, .079), and CFI = .972. The revised domain model 
(Model F) also improved and was an acceptable fit to the 
data, χ2 (7) = 25.036, RMSEA = .061 (90% CI = .035, .088), 
and CFI = .969. A χ2 difference test revealed these two 

models were not significantly different to each other, Δ 
χ2 = .145, Δ df = 1, p <⍰⍰⍰.704. The modified two-factor 
paradigm model (Model G) showed excellent fit to the 
data, χ2 (7) = 10.658, RMSEA = .027 (90% CI = .000, .059), 
and CFI = .994. The χ2 statistic for Model G was non-signifi-
cant (p = .145), a further indication this model was a good 
fit. A χ2 difference test demonstrated that the two-factor 
paradigm model with the residual covariance between 
BDR and BLR (Model G) outperformed the single-factor 
model with the same residual covariance between the 
verbal backward recall tasks (Model E), Δ χ2 = 11.668, Δ 
df = 1, p < .001. A likelihood ratio test was not appropriate 
to compare the revised domain model (F) to the modified 
paradigm model (G) because these two models (F and G) 
are not nested, but the AIC values (see Table 3) suggested 
that model G fit was considerably better than model F (Δ 
AIC = 14), suggesting that the best-fitting model of the 
WM tasks overall was the paradigm-based model with 
residual covariance between the two verbal backward 
recall tasks (G). This model (Model G) is displayed in 
Figure 3.

Exploratory analyses

WM and fluid reasoning
Exploratory analyses, listed in the pre-registration, were 
conducted to explore whether WM and fluid reasoning 
were isomorphic or separable. We tested whether a 
model with a separate reasoning factor linked to the 
two paradigm factors model (Model H) provided a 
better account of the data defined by a model with 
all WM and reasoning tasks loading on a single factor 
(Model I). See Figure 4 for a schematic of these candi-
date models.

For simplicity, and because the residual covariance 
between the BLR and BDR tasks is both theoretically defen-
sible and similarly beneficial for all models reported in the 
primary analysis, we report outcomes using the best-fitting 
WM model with the residual covariance between BDR and 
BLR (Model G, best-fitting WM-only model) when testing 
the candidate models linking WM to fluid reasoning (out-
lined in Figure 4). For completeness the candidate 
models shown in Figure 4 were also tested using the 
best-fitting WM model without the residual covariance 
between BDR and BLR (Model C of the WM-only models). 
A summary of these results and the model comparisons 
are reported in the Supplementary Materials (see Figures 

Table 3. Fit statistics for each model included in the primary confirmatory analysis with residual covariance between the two verbal backward recall tasks.

Model χ2 df YB RMSEA CFI AIC

(E) Single-factor WM with BDR & BLR residual covariance 24.154 8 .996 .054 [.030, .079] .972 14583
(F) Two-factor domain with BDR & BLR residual covariance 25.036 7 .953 .061 [.035, .088] .969 14585
(G) Two-factor paradigm with BDR & BLR residual covariance 10.658 7 .970 .027 [.000, .059] .994 14571

Note. Bold text denotes a non-significant χ² value. For root mean errors of approximation (RMSEAs), 90% confidence intervals are given. CFI = comparative 
fit index; AIC = Akaike information criterion. The χ² reported is the Yuan Bentler scaled χ², with the scaling factor reported as YB. WM = working memory, 
BDR = backward digit recall, BLR = backward letter recall.
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S2 and S3 for models J and K, respectively; see Table S1 for 
model fit statistics).

The fit statistics for the two models displayed in Figure 
4 with the residual covariance between BDR and BLR are 
shown in Table 4. The first candidate model was comprised 
of three correlated latent variables – one for each set of 
backward recall, n-back, and reasoning tasks (Model H; 
see Figure 4, top panel). The fit indices of this model 
were excellent: χ2 (16) = 23.576, p = .099, RMSEA = .026 
(90% CI = .000, .047), and CFI = .996.

The second candidate model assumed a single latent 
construct for all measures (three backward recall, three 
n-back, and two reasoning tasks; Model I, see Figure 4, 
bottom panel). As well as the residual covariance 
between BDR and BLR, the residual covariance 
between the two reasoning tasks was added, as these 

are two halves of the same task. This model was an 
acceptable fit to the data, χ2 (18) = 65.683, RMSEA  
= .061 (90% CI = .046, .078), and CFI = .975 (see Sup-
plementary Materials, Figure S4 for Model I with 
factor loadings).

A χ2 difference test demonstrated that Model H outper-
formed Model I, Δ χ2 = 41.136, Δ df = 2, p < .001. This was 
confirmed by the AIC values (see Table 4), revealing that 
the best-fitting model of the WM and reasoning tasks 
was a three-factor model with latent constructs 

Figure 3. The best model from the primary analyses (Model G); a two-factor 
paradigm-based model with residual covariance between the two verbal 
backward recall tasks. Latent factors are shown in ovals and squares rep-
resent observed variables. Confidence interval for the latent correlation 
between backward recall and n-back, 95% [.533, .823], based on 
Maximum Likelihood (ML) bootstraps. BDR = backward digit recall, BLR =  
backward letter recall, BSR = backward spatial recall, NBD = n-back with 
digits, NBL = n-back with letters, NBS = n-back with spatial locations. All 
parameter estimates shown are fully standardised. Note that a version of 
this model without the residual covariance between the two verbal back-
ward recall tasks (Model C described above) is shown in the Supplementary 
Materials (Figure S1) for comparison. Adding residual covariance between 
the two verbal backward recall tasks strengthens the relationship between 
the two latent constructs and causes the loadings of BLR and BDR on to the 
backward recall factor to decrease and the loading of the BSR task on to this 
factor to increase. These changes reflect the fact that Model G takes into 
account the common variance (correlated error term) between BLR and 
BDR; that is, the phonological encoding and retrieval processes in verbal 
short-term memory that are common to both tasks.

Figure 4. Candidate models for the exploratory analyses. The top panel 
shows the three-factor paradigm and reasoning model (H), and the 
bottom panel displays the single-factor general ability model (I). Ovals rep-
resent latent factors and observed variables are shown in squares. BDR =  
backward digit recall, BLR = backward letter recall, BSR = backward 
spatial recall, NBD = n-back with digits, NBL = n-back with letters, NBS =  
n-back with spatial locations, RR_E = relational reasoning even items, 
RR_O = relational reasoning odd items. Note that the residual covariance 
between the two verbal backward recall tasks is retained in these 
models, but models without this are tested for completeness (Models J 
and K) and reported in the Supplementary Materials (Figures S2 and S3, 
and Table S1).

Table 4. Fit statistics for the models included in the exploratory analyses.

Model χ² df YB RMSEA CFI AIC

(H) Three-factor paradigm & reasoning with BDR & BLR residual covariance 23.576 16 1.006 .026 [.000, .047] .996 22752
(I) Single-factor general ability with BDR & BLR residual covariance, and RR_E & RR_O 

residual covariance
65.683 18 1.009 .061 [.046, .078] .975 22791

Note. Bold text denotes a non-significant χ² value. For root mean errors of approximation (RMSEAs), 90% confidence intervals are given. CFI = comparative 
fit index; AIC = Akaike information criterion. The χ² reported is the Yuan Bentler scaled χ², with the scaling factor reported as YB. RR_E = relational reason-
ing even items, RR_O = relational reasoning odd items, BDR = backward digit recall, BLR = backward letter recall. The fit statistics for models without the 
residual covariance between BDR and BLR are summarised in the Supplementary Materials (Table S1).
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corresponding to backward recall, n-back, and fluid 
reasoning, including the residual covariance between 
BDR and BLR. The winning model is displayed along with 
factor loadings in Figure 5. These distinct latent constructs 
were strongly related to each other, and the relationships 
between-backward recall and reasoning, and between n- 
back and reasoning, were similar (.71 and .59, respectively). 
Individual task loadings on each paradigm factor were 
similar indicating no single task contributed substantially 
more variance than another.

To test whether fluid reasoning is separable from WM, 
additional exploratory analyses were conducted to test 
whether the residual variance of the fluid reasoning 
factor was significant after accounting for that predicted 
jointly by the two WM latent factors. The two paths from 
the individual WM factors jointly predicted 40.8% of the 
variance in the latent fluid reasoning factor. The remain-
ing 59.2% of variance was significant (residual variance 
estimate = 30.836, SE = 2.371, p < .001, standardised 
residual variance = .592). This was confirmed by compar-
ing the AIC of a model where the residual variance was 
freely estimated to a model which constrained the 
residual variance of the fluid reasoning to be zero (Δ 
AIC = 153.2).

Do backward recall and n-back differentially predict 
fluid reasoning?
The winning model (Model H) shows there is a stronger 
relationship between-backward recall and fluid reasoning 
(.71) than between n-back and fluid reasoning (.59). In 

further exploratory analyses, which were not pregistered, 
we tested whether the two WM factors differentially pre-
dicted fluid reasoning by converting Model H into a 
freely varying structural equation model (Model L, see 
Figure 6). This showed numerically that backward recall 
was a stronger predictor of fluid reasoning (.58) than 
n-back (.20). To test whether these differences were sig-
nificantly different we compared the fit of this model 
(Model L), in which the paths were freely estimated 
between each WM factor and reasoning, to a model in 
which the links between each WM factor and reasoning 
were constrained to be equal (constrained model). If the 
backward recall and n-back factors predict reasoning 
differentially, the freely estimated models will provide a 
better fit to the data than the constrained models, but 
if there is no significant difference between the 
models, the data can be explained equally as well by 
assuming the links between each WM factor and reason-
ing are equal. The fit statistics for both models are 
reported in Table S2. A χ2 difference test demonstrated 
that there was no significant difference between the fit 
of the two models, Δ χ2 = 3.710, Δ df = 1, p = .054. 
Repeating these analyses without the residual covariance 
between the BLR and BDR tasks (Model M) revealed the 
same pattern: there was no significant difference 
between the free and constrained models, Δ χ2 = 2.899, 
Δ df = 1, p = .089 (see Table S3 for fit statistics). These 
analyses reveal that there is no significant difference in 
the ways in which backward recall and n-back predict 
fluid reasoning.

Figure 5. The winning model from the exploratory analyses (Model H); a three-factor paradigm and reasoning model with residual covariance between the 
two verbal backward recall tasks. Latent factors are shown in ovals and observed variables are represented by squares. BDR = backward digit recall, BLR =  
backward letter recall, BSR = backward spatial recall, NBD = n-back with digits, NBL = n-back with letters, NBS = n-back with spatial locations, RR_E = rela-
tional reasoning even items, RR_O = relational reasoning odd items. All parameter estimates shown are fully standardised. Note that a version of this model 
without the residual covariance between the two verbal backward recall tasks (Model J) is shown in the Supplementary Materials (Figure S2) for compari-
son. Including the residual covariance between the two verbal tasks did not affect the association between the n-back and Reasoning factors, but the 
association between the backward recall factor and both other factors increased.

1190 E. M. BYRNE ET AL.



Does the common WM variance among tasks predict 
fluid reasoning more strongly than the variance 
unique to either the backward recall or n-back 
paradigms?
Domain-general views of WM predict that the common 
variance among WM task variants should predict reason-
ing more strongly than “residual” variance unique to 
either the backward recall or n-back factors. We tested 
this through a series of bifactor models. Bifactor 
models allow for a single factor to be modelled to 
capture the variance common to all indicators (e.g., a 
WM factor capturing variance common to all tasks). 
This provides a partial account of the correlations 
between the indicators (WM tasks) and allows for 
specific factors to be modelled to account for the 
residual correlations between indicators (e.g., variance 
specific to each WM paradigm). Thus, bifactor models 
allowed us to model the variance common to all the 
WM tasks (WM factor), and separate factors to account 
for the residual correlations between the tasks that was 
specific to each WM paradigm (residual backward recall 
and residual n-back factors).

Bifactor models can be conceptually challenging when 
they are used to make inferences about underlying dimen-
sions and relations between these dimensions and other 
dependent variables. Criticisms include interpretational 
problems related to: (i) allowing indicators to be bidimen-
sional (loading on both a common variance and specific 
residual factor), (ii) allowing common variance factors to 
explain correlations between indicators when their expla-
natory value is, arguably, in accounting for correlations 
between specific (lower-order) factors, and (iii) not allow-
ing for common variance factors to mediate links 

between specific factors and other outcomes (see Dolan 
& Borsboom, 2023 for more details). Here we use bifactor 
modelling as a pragmatic tool to test our specific question 
about whether the variance common to all WM tasks pre-
dicted reasoning more strongly than paradigm-specific 
variance. We do not use it to comment on the ontology 
of underlying factors.

We used a series of bifactor models to test whether the 
common variance among WM task variants (WM factor) pre-
dicted reasoning more strongly than residual variance 
unique to either the backward recall or n-back factors. In 
the first (Model N, Figure 7) the variance common to all 
WM tasks (the three backward recall and three n-back 
tasks, referred to as the “common WM variance”) and a 
residual backward recall factor were modelled as predictors 
of the reasoning factor. To explore whether the common 
WM factor predicted reasoning more strongly than the 
backward recall factor, the fit of this model (Model N), in 
which the paths were freely estimated between each WM 
factor and reasoning, was compared to a model in which 
the links between each WM factor and reasoning were con-
strained to be equal (constrained model). Standardisation 
was used to set the scaling of the factors in the constrained 
model to ensure the variances of the factors were equal, 
and thus the correlations between each WM factor and 
reasoning were equal. The fit statistics for the freely esti-
mated and constrained models are provided in Table S4. 
A χ2 difference test demonstrated that there was no signifi-
cant difference between the fit of the two models, Δ χ2 =  
1.415, Δ df = 1, p = .234, indicating the common WM var-
iance and backward recall factors are equally strong comp-
lementary predictors of reasoning, inconsistent with the 
predictions of a domain-general view of WM.

Figure 6. SEM model from the exploratory analyses (Model L) with residual covariance between the two verbal backward recall tasks. Latent factors are 
shown in ovals and observed variables are represented by squares. BDR = backward digit recall, BLR = backward letter recall, BSR = backward spatial recall, 
NBD = n-back with digits, NBL = n-back with letters, NBS = n-back with spatial locations, RR_E = relational reasoning even items, RR_O = relational reason-
ing odd items. All parameter estimates shown are fully standardised and freely estimated. This model was compared to an equality constrained model 
where the paths between both WM factors and reasoning were assumed to be equal (fit statistics for both models are provided in Supplementary Materials, 
Table S2).

MEMORY 1191



To explore whether the common WM variance factor 
predicted reasoning more strongly than the n-back 
factor both were modelled as predictors of the reason-
ing factor (Model O, Figure 8). The freely estimated 
model was compared to a model in which the links 
between each WM factor and reasoning were con-
strained to be equal (constrained model; see Table S5 
for the fit statistics for both models). Standardisation 
was used to set the scaling of the factors for the con-
strained model to ensure the variances of the factors 
were equal, and thus the correlations between each 
WM factor and reasoning were equal. A χ2 difference 
test demonstrated that there was a significant differ-
ence between the fit of the two models, Δ χ2 = 23.419, 
Δ df = 1, p = <.001, indicating that the common WM var-
iance and n-back factors differentially predicted reason-
ing. The freely estimated model (see Figure 8) revealed 
that the WM common factor explained most variance in 
reasoning (.71), with a modest contribution of n-back 

(.16). This is consistent with the domain-general view 
of WM that predicts a common WM factor should 
account for more variance in reasoning than anything 
paradigm specific.

Discussion

This is the first large-scale latent variable analysis testing 
the overlap in task features between-backward recall and 
n-back tasks controlling for content– and material- 
specific variance. The data were best-captured by two dis-
tinct but related (r = .68) paradigm constructs for backward 
recall and n-back. This result is consistent with previous 
work reporting a paradigm-specific latent structure for 
other WM tasks (e.g., complex span and updating or n- 
back paradigms; Schmiedek et al., 2014; Wilhelm et al., 
2013). In these previous studies, high latent correlations 
were reported between paradigm factors represented by 
variant forms of each task.

Figure 7. Bifactor model (Model N) modelling the prediction of reasoning 
by a common WM variance factor and a residual backward recall factor, 
with residual covariance between the two verbal backward recall tasks. 
Latent factors are shown in ovals and observed variables are represented 
by squares. BDR = backward digit recall, BLR = backward letter recall, 
BSR = backward spatial recall, NBD = n-back with digits, NBL = n-back 
with letters, NBS = n-back with spatial locations, RR_E = relational reason-
ing even items, RR_O = relational reasoning odd items. All parameter esti-
mates shown are fully standardised and freely estimated. This model was 
compared to an equality constrained model where the paths between 
both WM factors and reasoning were assumed to be equal (fit statistics 
for both models are provided in Supplementary Materials, Table S4).

Figure 8. Bifactor model (Model O) modelling the prediction of reasoning 
by a common WM variance factor and a residual n-back factor, with residual 
covariance between the two verbal backward recall tasks. Latent factors are 
shown in ovals and observed variables are represented by squares. BDR =  
backward digit recall, BLR = backward letter recall, BSR = backward spatial 
recall, NBD = n-back with digits, NBL = n-back with letters, NBS = n-back 
with spatial locations, RR_E = relational reasoning even items, RR_O = rela-
tional reasoning odd items. All parameter estimates shown are fully stan-
dardised and freely estimated. This model was compared to an equality 
constrained model where the paths between both WM factors and reason-
ing were assumed to be equal (fit statistics for both models are provided in 
Supplementary Materials, Table S5).
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The zero-order correlations between individual tasks 
were relatively small, consistent with those reported in a 
previous meta-analysis (e.g., Redick & Lindsey, 2013), but 
the association between the n-back and backward recall 
latent variables was higher here than in previous studies 
and meta-analyses (Dobbs & Rule, 1989; McAuley & 
White, 2011; Miller et al., 2009; Redick & Lindsey, 2013; 
Roberts, 1998; Roberts & Gibson, 2002). This difference is 
likely explained by task-specific variance in estimates of 
performance within paradigms, which lowered corre-
lations in earlier studies (Kane et al., 2004; Schmiedek 
et al., 2014). A few studies included variant forms of n- 
back with different verbal and spatial materials (McAuley 
& White, 2011; Redick & Lindsey, 2013), but the majority 
used only a single indicator of n-back (Dobbs & Rule, 
1989; Miller et al., 2009; Roberts, 1998; Roberts & Gibson, 
2002), and all included only one backward recall task 
(BDR). Using a latent variable approach with multiple indi-
cators of each paradigm, we have overcome the problem 
that correlations between single tasks are attenuated by 
paradigm-specific and content-specific sources of individ-
ual variation and measurement error (Schmiedek et al., 
2009, 2014).

The strong correlation between the two WM factors – 
the common source of variance between the backward 
recall and n-back constructs – could reflect commonalities 
across the tasks, for example in the mechanisms used for 
building, maintaining, and updating arbitrary bindings 
between memory items and their serial position 
(Chatham et al., 2011; Oberauer et al., 2007; Schmiedek 
et al., 2009). For backward recall, the relative serial pos-
itions of the memory items must be updated at the 
point of recall, and for n-back the serial position of items 
previously encoded must be updated as new items are 
continuously presented (Redick & Lindsey, 2013). The reor-
dering processes and the role of (re)binding items to the 
appropriate temporal context may be similar across para-
digms (Oberauer, 2005; Redick & Lindsey, 2013; Szmalec 
et al., 2011). An alternative possibility is that individual 
differences in attentional control underlie performance 
on both the n-back and backward recall tasks, consistent 
with theories proposing that attentional control – the pro-
cesses that enable us to selectively focus on task-relevant 
information in the presence of internal and external dis-
tractions – are important for many cognitive abilities 
including working memory (e.g., Engle, 2002; Engle & 
Kane, 2004; Kane & Engle, 2002).

Despite some similarities, these tasks differ in important 
ways, and the importance of task-specific processes may 
explain why two separate paradigm-specific latent con-
structs best captured the data. That is, the paradigms 
may require different sequences of cognitive processes 
to be co-ordinated for task execution (e.g., Byrne et al., 
2020; Gathercole et al., 2019). The tasks can be distin-
guished in terms of retrieval demands: backward recall 
involves explicit serial recall and retrieval is guided by 
self-generated cues (Kane et al., 2007), whereas n-back 

requires recognition and additional noise might be intro-
duced by familiarity-based responding (Oberauer, 2005). 
The updating requirements also differ. For n-back, the 
full sequence must be refreshed as items are added and 
dropped; for backward recall the whole sequence must 
be maintained and transformed at the point of recall.

There was evidence for domain-specificity within the 
backward recall construct, but not in n-back: modification 
indices suggested that modelling residual covariance 
between the two verbal backward recall tasks, BDR and 
BLR, would provide a better account of the data, but the 
same was not true for the n-back tasks. Adding the residual 
covariance between the two verbal backward recall tasks 
accounted for the domain-specificity in backward recall 
and strengthened the relationship between the backward 
recall and n-back constructs. This suggests that the associ-
ation between the n-back and backward recall constructs 
is domain-general. These data also indicate the mechan-
isms supporting n-back may be more domain-general 
and less dependent on stimulus material than backward 
recall (Jaeggi, Buschkuehl, et al., 2010) and/or that subvo-
cal rehearsal is a less optimal strategy for n-back than for 
backward recall. The common variance between the two 
backward recall tasks using verbalisable materials, BLR 
and BDR, might be linked due to common maintenance 
processes. Both tasks may involve repeated cycles of 
forward verbal serial recall of diminishing lengths, 
peeling off the final item each time (Anders & Lillyquist, 
1971; Gathercole et al., 2019; Thomas et al., 2003). The 
encoding and retrieval processes required from verbal 
short-term memory for verbal serial recall are also the 
same for digits and letters (Norris et al., 2019; Page & 
Norris, 1998): the system stores verbal material in phonolo-
gical rather than semantic form (e.g., Salamé & Baddeley, 
1982). In n-back there is less time for subvocal rehearsal 
as n increases, and the continuously updating nature of 
the task might make rehearsal a sub-optimal strategy. 
This means that verbalising may be a less important main-
tenance strategy in n-back, making performance more 
similar across verbal and spatial domains.

Exploratory analyses conducted to investigate the 
relationship between the backward recall and n-back 
factors and fluid reasoning revealed that a model with sep-
arate WM and reasoning constructs was preferred to a 
single-factor model encompassing both WM and reason-
ing. This supports the idea that WM and Gf are highly 
related but dissociable constructs (Kovacs & Conway, 
2016), and is consistent with many previous individual 
differences studies showing strong associations between 
WM capacity and general fluid reasoning (Chuderski, 
2013; Engle & Kane, 2004; Engle, Laughlin, et al., 1999; 
Kane et al., 2004; Kyllonen & Christal, 1990; Schmiedek 
et al., 2009, 2014). While we cannot tease apart the mech-
anisms explaining these strong associations from the 
current data, candidate theories include a shared reliance 
of both WM and fluid intelligence on short-term memory 
(Colom, Rubio, Shih, & Santacreu, 2006; Colom et al., 

MEMORY 1193



2008) or the ability to control attention (Engle, 2018; Kane 
et al., 2007; Shipstead et al., 2016), or a role for WM pro-
cesses in supporting performance on fluid reasoning 
tasks (Oberauer et al., 2007).

The two WM factors did not differentially predict fluid 
reasoning: a model in which the paths between each WM 
factor and fluid reasoning were constrained to be equal 
provided as good a fit to the data as a model in which 
they were allowed to vary freely. This suggests the data 
can be explained equally as well by assuming the links 
between each WM factor and reasoning are equal: there 
is no significant difference in the ways in which n-back 
and backward recall predict reasoning. This is inconsist-
ent with previous results showing that different WM para-
digms (visual array and complex span) predict unique 
variance in fluid reasoning (Shipstead et al., 2012). This 
inconsistency could reflect differences in the analytic 
approaches used across studies. Shipstead et al. (2012) 
used stepwise regression to isolate the unique contri-
bution of each paradigm to reasoning, while the 
current study showed no differences in model fit 
between a model that assumed the contributions of 
both tasks to reasoning were equal and one that 
assumed they differed. Another difference is that the 
paradigms used by Shipstead et al. (2012) differed more 
substantially in terms of task demands. While visual 
array captured differences in the scope of attention, 
complex span captured differences in attentional 
control (Shipstead et al., 2012). Arguably the two tasks 
used in the current study – backward recall and n-back 
– are more similar to one another as both capture individ-
ual differences in attentional control.

Bifactor models, conducted to explore whether the 
common variance across all WM tasks was a stronger 
predictor of reasoning than the variance specific to 
either a residual backward recall or n-back factor, 
revealed that common WM variance was consistently 
related to reasoning, but the paradigm-specific residual 
variances varied depending on the model. While the 
backward recall variance predicted reasoning equally 
as strongly as the common WM variance factor, the var-
iance specific to n-back was significantly less strongly 
related to reasoning than the common WM variance 
factor. Findings for the n-back residual factor support 
the domain-general view of WM (e.g., Kane et al., 
2004), which emphasizes that the shared variance 
among WM paradigms should be a stronger predictor 
of complex cognitive abilities. The backward recall 
outcome, however, suggests the processes specific to 
backward recall that do not overlap with n-back, 
maybe the explicit resequencing of information 
(Thomas et al., 2003; Gathercole et al., 2019), are as 
important for reasoning as the overlapping domain- 
general attention control processes associated with 
both backward recall and n-back (e.g., Engle & Kane, 
2004; Engle, Kane, et al., 1999). Together with the mod-
elling of the WM tasks, which revealed the individual 

tasks were better represented as paradigm-specific 
factors corresponding to backward recall and n-back 
than a single WM factor, these data further cement the 
distinctiveness of n-back and backward recall. They 
also add to the debate around whether WM and fluid 
reasoning are isomorphic constructs (e.g., Duncan 
et al., 2000; Kyllonen & Christal, 1990). The WM and 
fluid reasoning associations were not even identical 
across WM paradigms, and the residual variance in 
fluid reasoning after accounting for that predicted 
jointly by the two WM constructs was significantly 
different to zero. Together, these findings support the 
idea that WM and fluid reasoning are distinct constructs 
(e.g., Kane et al., 2004; Oberauer et al., 2005; Schmiedek 
et al., 2009, 2014).

There is a debate concerning whether BDR is a measure 
of WM (Alloway et al., 2006) or a measure of short-term 
memory that draws on the strategic use of visual 
imagery (Rosen & Engle, 1997; St Clair-Thompson, 2010; 
St Clair-Thompson & Allen, 2013). The shared variance 
between the backward recall tasks and both the n-back 
and fluid reasoning constructs, and the fact that the back-
ward recall factor was an equally strong predictor of 
reasoning as variance common to all the WM tasks, 
suggests backward recall shares common variance with 
other measures of higher-order complex cognition, indi-
cating it may tap into more than just short-term memory.

Limitations and future directions

Major strengths of the current study are the sample size, 
systematic manipulation of WM task features within and 
across paradigms, and the pre-registration. The protocol 
and analysis plan were preregistered via the Open 
Science Framework. Preregistering the models we 
planned to test a priori has enabled us to be clear 
about what our data do and do not confirm, a central 
scientific principle of latent variable methods. Open 
science practices like these should be the norm for all 
confirmatory factor analytic studies. It is important to 
note that preregistration does not undervalue explora-
tory research, but instead encourages researchers to 
clearly distinguish between planned analyses that are 
confirmatory, and those that are exploratory as we have 
exemplified in this paper. We note that we have made 
our data and code freely available and encourage 
readers to engage with our data to move the conversa-
tion further (e.g., by testing hierarchical or network 
models).

There were several limitations to the current study. 
First, ascending list-lengths with discontinue rules were 
used for the WM tasks. While this staircase procedure is 
an efficient way to capture overall WM capacity limits, 
other administration and scoring procedures (e.g., partici-
pants complete fixed list lengths for all levels of difficulty) 
would have allowed for partial credit scoring, and cap-
tured more variability in performance (e.g., Conway 
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et al., 2005; St Clair-Thompson & Sykes, 2010; Unsworth & 
Engle, 2007). Second, stimuli were presented randomly in 
the n-back tasks, with no control over presentation of 
lures. Future work could adopt a parallel approach to 
this study but include near-n lures to minimise the contri-
butions of familiarity, and maximise contributions of active 
WM processes, to the tasks (e.g., Szmalec et al., 2011). 
Third, the exploratory analyses relied on data from one 
fluid reasoning task. Ideally, we would fit our fluid reasoning 
latent variable based on multiple subtest scores, but these 
were not available. Instead, we used a model with two indi-
cators reflecting the sums of the odd and even trials. This 
yielded (very) high factor loadings (> .95) for both indicators 
and empirical identification in the overall model. For these 
reasons, we think it unlikely our results would be meaning-
fully different with alternative specifications of the fluid 
reasoning latent variable. Finally, factor analytic approaches 
provide only one way to determine task overlap, and the pat-
terns of association can be affected by external variables 
such as differences in the difficulty of the tasks. A fruitful 
avenue for future work to test the current findings further 
could involve developing formal measurement models for 
the different tasks, and evaluating how far the parameters 
of these models show conceptual overlap (e.g., Frischkorn 
et al., 2022; Oberauer, 2016).

Summary

To conclude, backward recall and n-back tasks tap into dis-
tinct paradigm-specific processes that are highly corre-
lated with one another and with fluid reasoning, but not 
so strongly that they indicate isomorphic constructs. 
These findings provide some support for domain-general 
views of WM that acknowledge the possibility of task- 
specific variance (e.g., that associated with task-related 
processes and mechanisms), but they emphasise the dis-
tinctiveness between backward recall and n-back both in 
the individual task modelling, and in explorations of the 
associations between the residual variance specific to 
each paradigm (after controlling for common WM var-
iance) and fluid reasoning.
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