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Abstract
Modern agriculture relies heavily on the precise application of chemicals such as fertilisers, herbicides, and pesticides,

which directly affect both crop yield and environmental footprint. Therefore, it is crucial to assess the accuracy of precision

sprayers regarding the spatial location of spray deposits. However, there is currently no fully automated evaluation method

for this. In this study, we collected a novel dataset from a precision spot spraying system to enable us to classify and detect

spray deposits on target weeds and non-target crops. We employed multiple deep convolutional backbones for this task;

subsequently, we have proposed a robustness testing methodology for evaluation purposes. We experimented with two

novel data augmentation techniques: subtraction and thresholding which enhanced the classification accuracy and

robustness of the developed models. On average, across nine different tests and four distinct convolutional neural networks,

subtraction improves robustness by 50.83%, and thresholding increases by 42.26% from a baseline. Additionally, we have

presented the results from a novel weakly supervised object detection task using our dataset, establishing a baseline

Intersection over Union score of 42.78%. Our proposed pipeline includes an explainable artificial intelligence stage and

provides insights not only into the spatial location of the spray deposits but also into the specific filtering methods within

that spatial location utilised for classification.

Keywords Agri-Robotics � Computer vision � Data augmentation � XAI

1 Introduction

Agricultural sprayers are essential tools for crop protection

and management, as they enable farmers to distribute fer-

tilisers, herbicides, and pesticides over large areas of land.

However, the efficient and effective use of these sprayers

relies heavily on an accurate assessment of their perfor-

mance, particularly in terms of identifying the locations

where spray deposits have landed. Traditionally, this has

been done manually, with methods such as tracers and

water-sensitive papers (WSPs). Both methods require

manual input from farmers and only approximate spray

deposit deposition values on targets or non-targets. Recent

work by [1] shows that system evaluation is required but
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tracers are used for such evaluation, and they have

shortcomings.

In this work, we propose a methodology that can detect

spray deposits using camera images from precision agri-

cultural sprayers without relying on tracers or WSPs.

Because there is a lack of comprehensive solutions for this

challenge, we conducted our own data collection using a

precision spot spraying system equipped with a high-

quality camera and trays of lettuce and target weeds. Our

prior proof-of-concept work [2, 3] introduced a number of

approaches to classify spray deposits without tracers or

water-sensitive papers. To address some of the limitations

in classification accuracy and robustness of the approaches

we developed, we devised and tested a number of novel

augmentation methods to augment our initially collected

dataset. Additionally, we introduce a weakly supervised

object detection (WSOD) process specific to Agri-Robotic

settings.

We employ an explainable artificial intelligence (XAI)

pipeline to assess convolutional neural networks (CNNs)

for the purpose of classifying and detecting spray deposits

on target weeds and non-target lettuce. Using our dataset,

we started with a binary classification task, distinguishing

between sprayed and dry target weeds and non-target let-

tuce. We used multiple pre-trained convolutional back-

bones such as the EfficientNetB0, DenseNet121, ResNet18,

and VGG11 as our feature extractor before training our

domain-specific classification head. Once classified,

effective models generate class activation maps (CAMs),

which are heatmaps illustrating a CNN’s focus areas within

the image. These CAMs are generated by visualising the

focal regions from the final convolutional layer. We assess

these CAMs using XAI metrics such as deletion, insertion,

and a uniquely proposed weakly supervised object detec-

tion (WSOD) process. These metrics help determine if a

CAM effectively explains the features a CNN utilises for

inference. As we also employed novel augmentation

methods, we use classification metrics and a novel

robustness testing methodology using generated CAMs as a

starting point. This process allows for further insights into

what a CNN is using as an important filtering method and

provides us with evaluation metrics to gauge the effec-

tiveness of the applied augmentations in assessing the

robustness of the system we devised.

In the review of the related literature for this work, we

identify a research gap in automating the assessment of

precision sprayers. We also observe the use of stratified

sampling methods used by others to enhance neural net-

work (NN) learning, to explain our stratified sampling

methodology. Furthermore, we examine data augmenta-

tions, starting with general deep learning techniques

applicable across various tasks and domains, and then

looking more into domain and task-specific methods. Our

review suggests that incorporating novel, domain-specific

augmentation methods can significantly enhance the over-

all effectiveness of fully developed vision systems.

From the XAI pipeline and robustness testing method-

ology developed during this work, we find that our novel

augmentations improve classification scores and vastly

improve all robustness augmentation scores. From the

robustness testing stage, the top three filtering methods that

have the highest likelihood used within spatial locations for

CNN inference are identified.

Our contributions are as follows:

• We have proposed a number of novel data augmenta-

tion methods specific to agricultural field settings. We

obtained improved classification scores and robustness

with domain-specific augmentation when compared to a

baseline model.

• We compiled an XAI pipeline with a novel robustness

testing approach, which assesses the proposed data

augmentation methods and demonstrates the effective-

ness of our custom solution.

• Through this robustness testing approach, the developed

pipeline can pinpoint potential features within the

spatial regions of the image that CNNs utilise for

classification, enhancing the comprehension of the

inference process of the trained CNN.

The subsequent sections of this paper are structured as

follows. In Sect. 2, we review pertinent literature con-

cerning precision spraying evaluations, stratified sampling

methodologies, and data augmentations. Section 3 provides

comprehensive insights into our XAI pipeline, the feature-

based stratified sampling method, and additional imple-

mentation details. In Sect. 4, we introduce the dataset and

the novel augmentation methods designed explicitly for

this domain-specific dataset. The evaluation and reporting

of the developed CNNs’ performance, CAM explanations,

and the robustness of our novel augmentation methods are

discussed in Sect. 5. Lastly, in Sect. 6, we summarise the

paper’s conclusions and outline potential avenues for

future research.

2 Related work

To demonstrate the need of an automated assessment for

precision spraying, we review current evaluation method-

ologies. Currently within Agri-Robotics, existing literature

is saturated primarily with the detection of weeds and crops

using CNNs with success [4–6]. However, existing systems

lack information on the evaluation of spraying accuracy

without the use of traditional agricultural methods.

Following this, we identify stratified sampling and data

augmentations as instrumental techniques used to improve
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the effectiveness of machine and deep learning algorithms.

These methods help in mitigating issues related to data

availability. However, existing approaches for data aug-

mentation and stratified sampling may not always provide

satisfactory results. Consequently, in our review, we

identify stratified sampling methodologies from multiple

domains for a variety of tasks. Moreover, in our review of

data augmentations, we look at general use, domain, and

task-specific methods and show a need for domain-specific

methods for Agri-Robotics. From our review of data aug-

mentations, robustness testing can also be identified.

2.1 Precision spraying evaluation

Within precision spraying, three main methodologies have

been used to evaluate the effectiveness of spraying within

fields. Proposed precision sprayers use one of these to

evaluate the spraying of the proposed systems.

The most common method is WSPs. WSPs are yellow

pieces of paper that change colour when they are sprayed

[7], an example is shown in Fig. 1. Many types of ground

and aerial spraying systems have been developed to com-

plete precision spraying and evaluated with WSPs.

Example applications include orchard tree spraying [8–10],

disease detection in potatoes [11], weed spraying in corn

fields, cabbage fields, and cereal fields [12–14]. General

testing for aerial-based spraying has been primarily

explored with the usage of WSPs [15, 16]. However, there

are several drawbacks with WSPs. Firstly, a person has to

put the WSP out to be sprayed and then retrieve it for

analysis after spraying. Secondly, the texture of WSPs is

not the same as the targets and, therefore, will act differ-

ently. Finally, no spraying system when deployed can

perfectly recreate the same spray deposit; therefore, the

spray on the WSP will be different from what is sprayed on

a target or non-target.

The usage of WSPs can be improved upon with tracers,

tracers are dyes that are added to the spraying chemical to

make it abundantly clear where deposits have landed. This

means that the actual spray deposits from each system

proposed can be evaluated. Much like WSPs tracers have

been explored within a range of applications such as pes-

ticide spraying in maize fields, orchards, and rice fields

[17–19]. Weed control has also been explored in field and

in controlled testing environments [20–22]. However,

systems do not use the same tracer as not all are available

for use when mixed with differing types of chemical

applications. Tracers may also need to be harvested in

some cases to be analysed which may be too late or may

require specialist equipment to analyse.

Finally, some systems are evaluated with human inter-

vention where humans will count the number of weeds

sprayed. These systems typically use an AI detection sys-

tem to identify weeds and spray them [23, 24]. Some other

systems calculate the volume of chemical sprayed [25, 26].

However, the intervention of humans creates ambiguity

where weeds can be partially sprayed. This creates more

problems as this does not describe an accurate system.

When considering volume calculations, these can be

skewed, and many commercial systems sell on this factor.

From this review, it can be stated that precision spraying

systems need an automated evaluation system that is

effective and robust. There needs to be a system that can

evaluate without the usage of WSPs or tracers. Therefore,

we have developed an XAI system that can do so with the

usage of stratified sampling and data augmentations to

increase robustness and accuracy.

2.2 Stratified sampling

To allow machine and deep learning algorithms to excel in

terms of accuracy, sampling and stratification methodolo-

gies have been employed due to domain-specific issues

regarding useful data. Stratification refers to organising

data into specific groups based on a relevant criterion.

Whilst sampling takes specific data points and uses them

for training algorithms effectively. This can be through

showing a diverse set of training points for an algorithm to

learn from.

Within the Agri-Robotics, domain sampling methods

have been developed to aid CNNs in their learning within

the object detection task. For example, the system from

[27] blends region convolutional neural networks and

feature pyramid networks to select images from a robotic

system. Once images are collected, t-distributed stochastic

neighbour embedding is applied to select images with

similar features. After clustering with K-means, similar

images are used to aid NN learning. The proposed method

clusters crops that are of the same class without the needFig. 1 Example of WSPs
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for human intervention. The stratified sampling method is

compared to several sampling methods and drastically

improves from these baselines. With this method of clas-

sification and object detection, images can be paired

without the need for human intervention which then can be

used for effective NN learning. However, clustering our

data would cause images that are sprayed and dry to be

clustered together as the images are nearly identical, and

the only changes are from crops and weeds being in dif-

ferent spatial locations. This may not be useful to our

specific task of spray detection within the images.

In the medical imaging domain, sampling methods have

been developed with selective sampling. The selective

sampling method proposed by [28] aids in haemorrhage

detection by dynamically selecting misclassified negative

samples during training. Training samples are heuristically

selected based on classification confidence by the current

status of the CNN. Weights are assigned to the training

samples so that the most informative samples are likely to

be included in the next CNN training iteration. This

method is very effective at identifying small differences in

a binary classification scenario. However, as our images

have a high resolution to be able to identify spray deposits,

this would be computationally expensive. Thus, we have

proposed a simplistic methodology to pair images together

for CNN learning.

Stratified sampling can also be used to create memory-

efficient systems in more complex environments such as a

3D environment [29] and videos [30]. Within the 3D

environment, stratified sampling is primarily used due to

the network architecture, to make the overall system

memory efficient. Within the proposed methodology from

[29], the stratification identifies distant points in 3D space

as keys with a sparse encoding. The proposal serves to

expand the model’s effective receptive field and establish

direct long-range dependencies, whilst incurring minimal

computation. The method is compared to other components

used and is the most successful when the stratified sam-

pling methodology is used. On the other hand, [30] uses

their sampling methodology to find the most useful frames

from videos to complete the classification of human

actions. [30] use a Gaussian weighing function to aggregate

the frames into a smaller subset which results in excellent

classification results. Despite both methods from [29, 30]

being effective in their respective scenarios, in our sce-

nario, these both would not work. Reducing the dataset

from a Gaussian weighing function is only useful when

there is too much data that could be considered noisy, and

usage of a 3D methodology is difficult when the data we

have are currently 2D.

Traditionally, stratified sampling is employed to address

class imbalances within data and cross-validate results,

thereby increasing the effectiveness of developed systems

[31]. Instead, in our approach, we will utilise stratified

sampling to train CNNs in recognising image-specific

features within a binary dataset. From the literature, it has

been observed that creating a stratified sampling method-

ology with minimal computational overhead proves effec-

tive in aiding classification and NN learning. Various

reviewed papers demonstrate improvements through their

respective sampling methodologies. To validate the effec-

tiveness of our proposed method, feature-based stratified

sampling, we will adopt a modular approach and compare

it to random stratified sampling, and random sampling

without stratification.

2.3 Data augmentation

Data augmentation is a useful methodology for helping fix

class imbalances, improving NN learning, robustness, and

creating more accurate systems. There are many types of

image augmentation that can be applied, we will explore

some of the most popular and useful augmentations.

Geometric transformations such as translation, rotation,

flip, and cropping are used throughout a wide variety of

datasets that are publicly available [32]. These augmenta-

tions are not task-specific or domain-specific, yet they can

be applied to not only classification but also other complex

tasks like object detection; these are general augmenta-

tions. General augmentations are used to add more varia-

tion in datasets for NN learning when data are limited and

hard to acquire. This applies to situations where data

entries may be rare or costly to locate, such as in the

context of medical data, where high-risk patient classes are

often under-represented due to their lower prevalence.

Image augmentations can be domain-specific, for

example, within the medical domain, image augmentations

are imperative to ensure NNs can identify areas that can be

used for the correct classification and detection of diseases

[33]. NNs cannot learn well enough with limited datasets

so augmentation becomes necessary to increase data

availability, otherwise, within the medical domain, for

example, poor models can lead to misdiagnosis. In Agri-

Robotics, there have been some non-domain-specific aug-

mentations to data [34]. [34] consider some non-domain-

specific augmentations for agriculture with colour space,

generative adversarial networks (GANs), and geometric

techniques. In our work, using a GAN will likely result in

more dry images as the spray deposits are hard to replicate

as they are non-uniform in shape and size. Changing the

colour space does not seem worthwhile as the targets will

be a specific colour when deployed and will need to be

located. Finally, if we could change the shape of spray

deposits on target weeds with an automated method that

would require a system to identify the deposits first.
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[35] use data augmentations to aid learning for surface

defect detection that could be considered similar to our

problem of finding spray deposits on leaf surfaces. Surfaces

for defect detection have been augmented using GANs to

help improve scores across multiple metrics for CNNs. In

the work by [35], the surfaces are supposed to be uniform

in shape with a consistent texture. However, our problem

has very small spray deposits, which are hardly visible with

non-uniform shapes and on leaves with non-uniform tex-

tures so the approach may not be adequate.

We utilise slicing-aided hyper inference (SAHI) [36] to

augment our data. Currently, SAHI is used to slice an

image into a set number of sub-images that are then used

for either inference or training. Pre-trained and fine-tuned

networks improve when compared to their respective

baselines when using SAHI. This is used for the detection

of small objects within images which is a similar scenario

to this work as spray deposits on leaves are very small.

However, this augmentation has not been used for just

image classification. Our usage is also to augment the

dataset to aim to create closer to realistic row-wise images

of crops and weeds with one crop per image.

When considering the robustness of CNNs, colour

transformations can be considered to improve robustness to

lighting changes. In the context of adversarial networks,

robustness experiments have been conducted to identify

robust methods for data augmentation [37]. Such methods

apply augmentations to an image in an attempt to trick a

network into an incorrect prediction. In our work, we use

unique ways of robustness testing to evaluate the addition

of novel augmentations. Robustness can, in our context,

also be used to identify features that are more likely used in

CNN prediction.

In this paper, we discuss the significance of lightweight

data augmentations that not only enable efficient compu-

tation but also improve NN learning. To accomplish this,

we introduce an innovative approach that harnesses

domain-specific information by using images taken both

before and after spraying. By subtracting these two images,

we can pinpoint areas of interest where spray deposits are

situated. Furthermore, we acknowledge the importance of

concentrating on areas containing green leaves, as the crops

and weeds in our dataset share this characteristic. Conse-

quently, we explore and employ both of these methods, we

presented our findings on this in greater detail in Sect. 4.

3 XAI pipeline

The proposed XAI pipeline, as shown in Fig. 2, consists of

multiple modular components. We begin with data col-

lection and preprocessing. Next, we test our feature-based

stratified sampling method against random sampling,

stratified sampling, and random sampling with a random

data split. After modifying pre-trained CNNs to create a

binary classification head, we assess the sampling methods

using classification metrics to determine the most effective

one. Once this step is completed, we introduce new aug-

mentations and train CNNs using the best sampling

method, we interpret our CNN’s decisions through Grad-

CAM?? [38] visualisations and evaluate these with

deletion, insertion, and WSOD [39]. Finally, we assess the

robustness of our augmentations using our proposed

methodology. Using this pipeline means that there are no

parameters to tune or learn as all methods, apart from

training the model, are statistical methodologies used to

evaluate the trained model. Following the original data

split, we will also evaluate with a tenfold cross-validation,

ensuring the original data split is not one of the folds, and

use all metrics in the evaluation apart from WSOD.

3.1 Feature-based stratified sampling

Stratification is the process of dividing data into subgroups

based on a criterion. For our dataset, we split our quadrant

images into two strata using the binary classification labels

sprayed or dry.

Let x1; x2; ::; xn be our quadrant images, where yi is a

binary variable indicating spray deposits in the image or

not. Let gðyiÞ be a function that assigns data to its stratum:

gðyiÞ ¼
1 if yi ¼ 1

2 if yi ¼ 0

�
ð1Þ

After using the function gðyiÞ, we numerically sort each

stratum based on filenames. Feature-based sampling can

then be completed by taking the same random index from

both strata. Since images were taken before and after

spraying the only differences are the spray deposits.

Random sampling with a random data split and random

stratified sampling in Sect. 5 is used to compare against

feature-based stratified sampling. Random sampling with a

random data split refers to randomly splitting the data into

training, validation, and test to then sample randomly. With

random stratified sampling, the data are stratified using our

methodology but sampled randomly without feature-based

sampling.

3.2 Convolutional neural network architectures

Experiments with four pre-trained CNNs, DenseNet121

[40], EfficientNetB0 [41], ResNet18 [42], and VGG11

[43], have been completed. Previously, we found success

with these networks [2, 3] and will continue to use them.

All networks are pre-trained on the ImageNet [44] dataset

and are then fine-tuned on our dataset allowing for prior
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knowledge, faster training times, and improved accuracy

[4].

All CNNs are given the same learning parameters during

the training phase, to identify which CNN is the most

effective without hyperparameter tuning. We resize our

images to 864 x 1296 pixels as spray deposits are incred-

ibly small; therefore, if images are resized to smaller

dimensions, this can lead to information loss which makes

it much more difficult to locate spray deposits. Therefore,

we do not resize images to be any smaller. In the pipeline, a

stochastic gradient descent optimiser with a learning rate of

0.001, a momentum of 0.9, and a weight decay of 0.1 has

been used. Additionally, a learning rate scheduler that

decays the learning rate, with a step size of 5, and a gamma

constant of 0.3 was used. We train for a maximum of 30

epochs.

3.3 Classification metrics

To evaluate our pipeline in terms of classification, as this is

a binary-class dataset, F1-score and area under the receiver

operating characteristic (AUROC) are used. We define

precision and recall to explain F1-score, and we define the

false-positive rate and the true-positive rate to explain

AUROC.

True positive (TP) is the number of images classified

correctly as positive (sprayed); true negative (TN) is when

a class is correctly predicted as negative (dry); false posi-

tive (FP) is counted when the network incorrectly predicts

another class (misclassification); and false negative (FN) is

counted when the network incorrectly predicts the positive

class as negative (missed classification). Based on those,

we can define the precision, recall, and F1-score values of a

network using the following equations.

• Recall and Precision: Recall measures the networks’

ability to detect positive samples, whereas precision

measures the networks’ accuracy in classifying a

sample as positive. So, for example, precision mea-

sures, out of all of the sprayed images that the model

predicted as sprayed, how many were sprayed, and

recall measures, out of the images that were sprayed,

how many did the model predict correctly. These can be

defined as follows:

Recall ¼ TP
TP þ FN

: ð2Þ

Precision ¼ TP
TP þ FP

: ð3Þ

• F1-Score: Combines the precision and recall of a

network by taking their harmonic mean. As we would

like to optimise both precision and recall, F1 is the

better metric. This metric is primarily used to compare

the performance of multiple networks. F1-score can be

defined as follows:

F1-Score ¼ 2� ðPrecision� RecallÞ
ðPrecisionþ RecallÞ ð4Þ

• FPR: False-positive rate (FPR) is a measure of the

proportion of negative instances that are incorrectly

classified as positive. FPR can be defined as follows:

Fig. 2 XAI pipeline with robustness testing
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FPR ¼ FP
ðTN þ FPÞ

ð5Þ

• TPR: True-positive rate (TPR) is also known as recall,

see Eq. 2.

• AUROC: AUROC is defined as the area under the

receiver operating characteristic (ROC) curve. The

ROC curve is created by plotting the TPR against the

FPR at various threshold settings for a binary classifier.

Where 1 indicates a perfect performance and 0.5

indicates the performance of a random classifier.

AUROC can be defined as follows:

AUROC ¼
Z 1

0

TPRðFPRÞdFPR ð6Þ

3.4 CAM metrics

We will evaluate the patterns identified in the CAMs using

deletion, insertion, and WSOD. Instead of weakly super-

vised object localisation (WSOL), we use WSOD because

localisation typically pertains to a single object instance. In

our case, we have multiple instances of spray deposits in

each image of our dataset. We exclusively tested the

sprayed images for all CAM metrics as we aim to detect

spray deposits in a weakly supervised manner. We reported

the average score across the entire test set in Sect. 5.

For deletion and insertion, the confidence, which is the

probability of a given class, from a CNN prediction is

recorded. Using the highest importance areas from a CAM,

we remove or insert those regions increasing the area by

1% for both until the entire image is deleted or inserted.

After plotting the confidence values from the CNN against

the amount of each image that is deleted or inserted, the

area under the curve (AUC) is calculated using the trape-

zoidal rule as follows:

AUC ¼ h

2
y0 þ 2 y1 þ y2 þ y3 þ � � � þ yn�1ð Þ þ yn½ � ð7Þ

where y is the prediction confidence, n is equal to the

number of plotted points, and h is equal to the increase in

deletion or insertion change. Therefore, deletion scores that

are lower are better and insertion scores that are higher are

better.

WSOD will be completed with Intersection over Union

(IoU). IoU can be calculated as the area of overlap divided

by the area of union using the prediction from the CAM

and ground truth bounding box. Mathematically, it is

defined as follows:

JðA;BÞ ¼ A \ B

A [ B
ð8Þ

where A and B are the prediction and ground truth

bounding boxes, respectively.

3.5 Assessing robustness

Using the CAMs as a starting point, we can also assess the

CNN’s robustness when images are augmented. Here,

robustness refers to the CNN’s ability to detect changes in

an image that affects the confidence of its class prediction.

We can augment test images to identify patterns that may

be used for CNN prediction. We will take the highest

importance region and augment that region first before

increasing the area by 1% until the entire image is aug-

mented. An average, using the entire test set, AUC will be

recorded using Eq. 7 and reported in Sect. 5. In all aug-

mentation scenarios, a higher AUC score indicates the

CNN’s greater capacity to predict in the presence of that

augmentation. This also allows us to identify which fea-

tures after various filtering are vital for classification. For

instance, if an augmentation enhances edges and results in

a larger AUC compared to other augmentations, it signifies

that the edges of the image play a crucial role in prediction.

The augmentation techniques employed in this research

are equalisation, flipping and mirroring, inversion,

increasing and decreasing brightness, increasing and

decreasing contrast, blurring, and sharpening. We chose

these augmentations because they are widely used in the

literature and are readily available in most public libraries.

Each of the augmentation methods is described below:

• Equalisation (1 in Table 8): Equalise the image his-

togram. This function applies a nonlinear mapping to

the input image, in order to create a uniform distribu-

tion of values in the output image.

• Flipping and mirroring (2 in Table 8): Flip image

horizontally (left to right) then flip the image vertically

(top to bottom).

• Inversion (3 in Table 8): Negate the image.

• Brightness (4 and 5 in Table 8): Increase the brightness

by a factor of 1.2 or decrease the brightness by a factor

of 0.8.

• Contrast (6 and 7 in Table 8): Increase the contrast by a

factor of 1.2 or decrease the contrast by a factor of 0.8.

• Blur (8 in Table 8): Blur the image with a Gaussian

blur.

• Sharp (9 in Table 8): Sharpen the image by a factor of

2.

The robustness testing pipeline is shown in Fig. 3 as a

visual example, where we used ‘‘contrast up’’ as an

example. We start with the quadrant image and using the

CAM from the example we apply the mentioned aug-

mentation to that region. Then, we test the CNN’s confi-

dence and create a confidence plot against the degree of
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image augmentation until the entire image is modified,

similar to how deletion and insertion are plotted. Once this

process is done, we calculate the AUC and report the

average across the entire test set in Sect. 5.

4 Dataset description

Precision spraying for this study was completed with the

XY spot spraying system, depicted in Fig. 4. The system

uses a gantry system to move a spray plate to locations to

be sprayed. The spray height can be changed through the

usage of a removable floor. A Canon 500D camera is

attached to the system to capture images. The spraying

height from the spray plate to the tray bed is 30 cm whilst

the distance from the camera lens to the tray bed is 45 cm.

Spray deposits were completed with a pressure of 3 bar

with a spray time of 8 ms which was recommended by

Syngenta.

4.1 Lettuce trays

To create a near-realistic setting, our industrial partner

Syngenta provided us with partially grown lettuces in trays

with even spacing, and the trays also had commonly found

weeds sown randomly in different parts of the tray. In

Table 1, we have included the Biologische Bundesanstalt,

Bundessortenamt und CHemische Industrie (BBCH)

breakdown for the plants and weeds used in our experi-

mental scenario.

4.2 Data collection process

For the data collection process, we placed a Canon 500D

camera on top of the XY sprayer system with the tray

placed underneath (shown in Fig. 4) so that the camera

could clearly capture each tray including the corners of the

tray. The system was then operated and controlled to target

and spray on each weed region once. Figure 5 shows a

comparison of the same tray before and after spraying with

a specific region of weeds zoomed in. As can be seen from

these images, it is a difficult task to differentiate the orig-

inal images as the spray deposits are very small.

Fig. 3 Robustness testing pipeline with contrast up as an example

Fig. 4 XY sprayer with tray of lettuces and weeds
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4.3 Slicing-aided hyper inference (SAHI)
and relabelling

We expanded our dataset size by splitting each image using

a method called SAHI proposed in 2022 by Akyon et al.

[36]. Initially, images in our dataset included trays with

four different crops and randomly scattered weeds. To

make the dataset more representative of commercial farms

where systems move over rows with a single crop per row,

we divided each image into four quadrants, each containing

one crop. This process resulted in images that closely

resemble what is typically encountered in commercial

farming practices. An illustration of SAHI process we

employed in our dataset is shown in Fig. 6.

Now that each image is divided into quadrants, we must

label each quadrant as either sprayed or dry. In Fig. 7, you

can see that whilst some quadrants were initially part of a

sprayed tray, certain individual quadrants may not have any

spray deposits in them.

4.4 Novel data augmentation methods

To enhance the learning process for the CNNs for this

problem, we have devised two unique image augmentation

methods. We employed a subtraction-based and a thresh-

old-based augmentation stage which were specifically

designed in consultation with the domain experts to aid in

the spray detection process and improve the model per-

formance matrices detailed in Sect. 4.

4.4.1 Subtracted augmentation

Our dataset comprises images captured before and after

spraying. By subtracting one from the other, we can pre-

cisely identify pixel-wise differences between the two

images. We then add this difference to the original image,

intensifying areas of change. To ensure quality, we filter

out noise by ignoring insignificant changes in small areas.

An example demonstrating this process is shown in Fig. 8.

Subtracting the dry image from the sprayed image and

adding the result back to the sprayed image yields our new

novel image. This results in subtle yet precise increases in

intensity in areas of interest.

This can be formalised as follows:

sðIÞ ¼
I2s ¼ Is þ ðIs � IÞ if gðyiÞ ¼ 1

Is ¼ I þ ðI � IsÞ if gðyiÞ ¼ 0

�
ð9Þ

where I is the input image that if contains spray deposits

creates case 1 and if not creates case 2.

However, as shown in Fig. 8, there are instances of

spray deposits on the tray that miss targets, which go

unnoticed by the subtraction method. One such missed

region is shown using the red bounding box. The subtrac-

tion augmentation relies on the assumption that targets

sprayed will move due to the force of the spray actuation.

However, as the tray remained stationary, no information

was available about where the subtraction had taken place.

Such movement may not occur for larger targets, as the

force from the actuation may be insufficient to displace

them.

4.4.2 Thresholding augmentation

Therefore, we tested a new augmentation method based on

colour thresholding. We employ colour thresholding to

identify crops and weeds, subsequently enhancing the

intensities in regions relevant to where the CNN should

focus. This enhanced image is then combined with the

original, as illustrated in Fig. 9. The result is an image with

increased intensity in areas of interest, potentially con-

taining spray deposits on both the targets and non-targets,

given the significance of these regions.

We also tested a combination of both augmentations.

Images generated from these augmentation processes

contributed to the final dataset including the quadrant

image, and images from subtracted augmentation, and

thresholding augmentation. We hypothesised, the combi-

nation would bring the benefits of both augmentations for

the developed CNNs.

5 Results and performance evaluation

For ease of reading, we split our results into sampling

evaluation, considering classification metrics, and novel

augmentation evaluation considering classification, CAM,

and our novel robustness methodology metrics. Each sec-

tion has the original data split and the tenfold cross-vali-

dation evaluation.

5.1 Sampling evaluation

In each table within in Sect. 5, the best results for each

metric are shown in bold for each CNN. Table 2 shows the

results for the comparison of the sampling methods. In all

Table 1 BBCH scale for plants used

Latin name EPPO code Common name BBCH

Poa annua POAAN Annual Meadowgrass 10–13

Stellaria media STEME Chickweed 10–22

Lactuca sativa LACSA Lettuce 19
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architectures, the usage of feature-based stratified sampling

is best across all classification metrics used. When using

feature-based stratified sampling, the largest increase from

the random sampling and random data split is 18.09%,

17.41%, and 17.74%, for F1 dry, F1 sprayed, and AUROC,

respectively, for the VGG11.

When considering the tenfold cross-validation classifi-

cation scores, the effect of feature-based stratified sampling

is much larger as shown in Table 3. The standard deviation

shown after the average score shows that all folds when

considering the feature-based stratified sampling are very

small, within 3.07% across the EfficientNetB0, Dense-

Net121, and ResNet18. This shows that the method is

consistent across the data regardless of how the data are

splitted for training and testing. All models tested without

feature-based stratified sampling are unable to score higher

Fig. 6 Slicing-aided hyper

inference (SAHI) process

applied on the collected data

Fig. 5 Comparison of dry tray

a, sprayed tray b, as well as the
chickweed region in both dry c
and sprayed d
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than 52% AUROC, which is essentially a random classifier.

Whereas, with the proposed sampling methodology, the

minimum AUROC is 84.98% with the VGG11. The

VGG11 has a significant decrease when comparing back to

the original data split. This is likely due to the VGG11

model being the smallest of the models tested with far less

Fig. 8 Subtraction

augmentation example, with

instances of spray deposits on

the tray with the missed target

(the missed region is shown

using the red bounding box)

Fig. 9 Thresholding

augmentation example

Fig. 7 Dry tray quadrant a
against sprayed tray quadrant b
where sprayed tray quadrant has

no spray deposits
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convolutional layers. The EfficientNetB0 and Dense-

Net121 AUROC scores improve from the original split.

The ResNet18 across all metrics is within 4% of the

original data split. From these results, we will use feature-

based stratified sampling as the sampling and data split

method for our augmentations following the same training

loop.

5.2 Novel augmentation evaluation

When we analyse the proposed augmentations, we observe

that the majority of the results match the baseline or exhibit

improvements across all classification metrics in the orig-

inal data split. In Table 4, the subtraction augmentation

consistently yields the best performance across almost all

architectures. The EfficientNetB0 architecture demon-

strates improvement across all metrics when this augmen-

tation is applied. DenseNet121 matches the classification

metrics with subtraction and both augmentations when

combined. The ResNet18 performs equally well under all

metrics either with thresholding or subtraction used sepa-

rately. The subtraction and thresholding augmentation

performs best when using the VGG11 architecture; how-

ever, more testing is needed to fully understand why the

classification scores drop by 9% for the VGG11 model

when comparing back to Table 2. However, as mentioned

with the tenfold cross-validation classification scores, it is

likely due to the model size and potentially a lower com-

plexity when compared to the other models tested.

Table 5 shows the cross-validated results when applying

the proposed augmentations to the appropriate folds. It can

be shown that the EfficientNetB0 architecture improves

only in the subtraction augmentation across all metrics

when compared to the original tenfold cross-validation in

Table 3. The other augmentations are within 2% across all

metrics for the EfficientNetB0. DenseNet121 is within 2%

when using the thresholding augmentation when consid-

ering all metrics. The ResNet18 is able to improve with the

subtraction augmentation as well as using both subtraction

and thresholding. However, similarly to the original data

split, the VGG11 struggles with augmentations and has a

large drop. This is likely due to the limited architecture size

as it is significantly smaller than the other architectures

with far less layers.

In Table 6, deletion, insertion, and WSOD scores are

reported when using the augmentations and feature-based

stratified sampling against the baseline of no augmenta-

tions. From the results, the architecture with the best

WSOD is the VGG11 with 42.78% when using no aug-

mentation. Further analysis is needed to fully understand

why this occurs. The VGG11 model does not act similarly

to any of the other models that have been developed, and

this could be due to its lower complexity. However, the

most effective augmentation when using WSOD is sub-

traction as two of the four models tested have the highest

scores from this augmentation. The explanations from all

augmentations tested are not exactly causal in any case,

despite deletion and insertion being designed to comple-

ment each other. However, all augmentations on all mod-

els, apart from VGG11, have a lower deletion than

insertion on average, and therefore, on average, on the

original data split generate CAMs that are representations

of regions of interest that each model is using for classi-

fication. Deletion when not using augmentations scores the

lowest across all CNNs tested. Insertion when using sub-

traction scores the highest across all CNNs tested.

When completing a cross-validated approach for the

CAM results, WSOD has to be excluded as each fold

would need to be labelled defeating the point of WSOD.

Table 7, therefore, shows the results for deletion and

insertion with the augmented folds. The results show that,

on average, adding the augmentation makes it easier to

Table 2 Sampling data split

method results
Architecture Data split method F1 dry (%) F1 sprayed (%) AUROC (%)

EfficientNetB0 Random sampling random split 92.30 91.52 91.94

Random stratified sampling 93.94 93.10 93.55

Feature-based stratified sampling 93.94 93.10 93.55

DenseNet121 Random sampling random split 93.75 93.33 93.55

Random stratified sampling 93.75 93.33 93.55

Feature-based stratified sampling 95.24 95.08 95.16

ResNet18 Random sampling random split 87.09 87.09 87.10

Random stratified sampling 95.38 94.91 95.16

Feature-based stratified sampling 96.88 96.67 96.77

VGG11 Random sampling random split 78.68 79.36 79.03

Random stratified sampling 91.52 92.30 91.94

Feature-based stratified sampling 96.77 96.77 96.77

Bold values indicate the best performance for each architecture
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Table 4 Augmentation (feature-

based stratified sampling)

classification results

Architecture Augmentation F1 dry (%) F1 sprayed (%) AUROC (%)

EfficientNetB0 Thresholding 93.93 93.10 93.55

Subtraction 95.38 94.91 95.16

Subtraction and thresholding 89.23 88.13 88.71

DenseNet121 Thresholding 91.80 92.06 91.94

Subtraction 95.24 95.08 95.16

Subtraction and thresholding 95.24 95.08 95.16

ResNet18 Thresholding 93.54 93.54 93.55

Subtraction 93.54 93.54 93.55

Subtraction and thresholding 93.75 93.33 93.55

VGG11 Thresholding 77.92 63.82 72.58

Subtraction 87.32 83.01 85.48

Subtraction and thresholding 85.71 88.23 87.10

Bold values indicate the best performance for each architecture

Table 5 Tenfold cross-

validation augmentation

(feature-based stratified

sampling) classification results

Architecture Augmentation F1 dry (%) F1 sprayed (%) AUROC (%)

EfficientNetB0 Thresholding 92.64 ± 1.91 91.70 ± 2.5 92.21 ± 2.16

Subtraction 94.7 – 2.15 94.3 – 2.47 94.52 – 2.29

Subtraction and thresholding 92.42 ± 2.73 91.69 ± 3.08 92.07 ± 2.89

DenseNet121 Thresholding 93.92 – 1.45 93.65 – 1.79 93.80 – 1.60

Subtraction 91.78 ± 4.82 89.85 ± 9.04 91.04 ± 6.34

Subtraction and thresholding 91.58 ± 2.70 90.71 ± 3.66 92.03 ± 3.11

ResNet18 Thresholding 93.68 ± 2.17 92.29 ± 2.79 93.36 ± 2.44

Subtraction 94.06 – 2.30 93.81 – 2.47 93.95 – 2.37

Subtraction and thresholding 94.40 – 2.22 94.05 – 2.40 94.23 – 2.30

VGG11 Thresholding 77.48 – 6.69 75.51 – 9.13 77.06 – 6.34

Subtraction 65.52 ± 15.11 72.56 ± 7.15 71.17 ± 6.75

Subtraction and thresholding 70.39 ± 12.02 65.85 ± 9.70 69.35 ± 8.43

Bold values indicate the best performance for each architecture

Table 3 Tenfold cross-

validation sampling data split

method results

Architecture Data split method F1 dry (%) F1 sprayed (%) AUROC (%)

EfficientNetB0 Random sampling random split 22.73 ± 28.95 54.55 ± 20.55 52.00 ± 2.04

Random stratified sampling 15.50 ± 25.78 56.39 ± 21.25 50.86 ± 0.96

Feature-based stratified sampling 94.16 – 2.45 93.39 – 3.07 93.87 – 2.73

DenseNet121 Random sampling random split 0.00 ± 0.00 66.66 ± 0.00 50.00 ± 0.00

Random stratified sampling 0.00 ± 0.00 66.66 ± 0.00 50.00 ± 0.00

Feature-based stratified sampling 95.48 – 1.20 95.28 – 1.30 95.39 – 1.24

ResNet18 Random sampling random split 0.54 ± 1.62 66.02 ± 0.19 50.00 ± 0.00

Random stratified sampling 0.00 ± 0.00 66.66 ± 0.00 50.00 ± 0.00

Feature-based stratified sampling 93.94 – 2.28 93.32 – 2.81 93.65 – 2.52

VGG11 Random sampling random split 6.66 ± 19.99 60.00 ± 19.99 50.00 ± 0.00

Random stratified sampling 13.33 ± 26.66 53.33 ± 26.66 50.00 ± 0.00

Feature-based stratified sampling 85.25 – 8.61 83.52 – 11.68 84.98 – 8.21

Bold values indicate the best performance for each architecture
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create CAMs that are explainable as deletion is lower than

insertion regardless of augmentation methodology. Fur-

thermore, it shows without the augmentations the CAMs

are not explainable as all models have a higher deletion

than insertion.

5.2.1 Assessing robustness with augmentations

For a visual comparison on the effect of augmentations,

Fig. 10 shows one of the test images with CAMs from each

CNN tested. Figure 10 shows the ground truth with

bounding boxes against no augmentation, subtraction,

thresholding, and using both augmentations. At the top of

the image is the ground truth for spray deposits, on the first

(top) row is the EfficientNetB0 CAM, on the second row is

the DenseNet121 CAM, on the third row is the ResNet18

CAM, and on the fourth (bottom) row is the VGG11 CAM.

As shown from Fig. 10, the addition of augmentations does

change the CAM. When using no augmentation, the CAMs

are able to locate spray deposits in a WSOD task as

reported in Table 6. With the addition of the subtraction

augmentation area, intensities increase in all CNNs except

the VGG11. The ResNet18 has the best improvement

visually as it has more areas that overlap with the ground

truth. When looking at thresholding, the effect also

increases interest in the thresholding objects for all archi-

tectures tested. Finally, when using both augmentations,

the intensities are increased for regions where spray

deposits are located.

Table 8 presents the robustness results of our proposed

augmentation methods. Subtraction and both

augmentations consistently outperform the non-augmented

versions. We first report the increase from the highest

baseline (no augmentations) score and then the maximum

increase from the baseline:

• Equalisation (1) with the EfficientNetB0 without aug-

mentation scores 18.70% and improves by 58.73% with

Thresholding. ResNet18 sees a dramatic 86.98%

improvement with subtraction.

• Flipping and mirroring (2) records a maximum baseline

of 29.09% with ResNet18, thresholding raises the score

by 47.11%. Whilst DenseNet121 experiences a 92.44%

boost with subtraction.

• Inversion (3) with the EfficientNetB0 begins with

20.40%, then increases by 37.69% with both augmen-

tations. ResNet18 scores increase by 84.6% using

subtraction.

• Brightness increase (4) scores highest with ResNet18 at

32.27% with no augmentation then increases by 48.69%

with both augmentations. Subtraction achieves an

increase of 88.61% with the DenseNet121.

• Brightness decrease (5) sees its best baseline with

EfficientNetB0 18.92%. Thresholding usage increases

the score by 58.34%. ResNet18 has the largest increase

with 87.46% when using subtraction.

• Contrast increase (6) records the highest score with

ResNet18 at 31.37% without augmentation. Threshold-

ing and Subtraction boost scores by 69.28% and

91.26%, respectively.

• Contrast decrease (7), with EfficientNetB0, starts at

19.92% and sees improvement of 53.79% using both

Table 6 Augmentation (feature-

based stratified sampling) CAM

results

Architecture Augmentation Deletion (%) Insertion (%) WSOD (%)

EfficientNetB0 None 20.38 19.41 37.22

Thresholding 65.96 93.02 34.34

Subtraction 82.05 97.53 36.70

Subtraction and thresholding 68.45 89.70 30.09

DenseNet121 None 14.20 2.37 35.44

Thresholding 49.70 93.48 27.71

Subtraction 52.34 95.90 28.39

Subtraction and thresholding 79.42 87.67 34.47

ResNet18 None 4.65 2.91 38.75

Thresholding 73.55 79.16 32.62

Subtraction 88.07 92.30 37.53

Subtraction and thresholding 74.55 84.37 32.81

VGG11 None 3.29 7.64 42.78

Thresholding 55.22 43.61 35.94

Subtraction 70.11 65.77 35.69

Subtraction and thresholding 70.53 64.15 35.33

Bold values indicate the best performance for each architecture
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augmentations. ResNet18 experiences an 80.1% jump

with subtraction.

• Blurring (8), using EfficientNetB0, has a baseline of

19.34% and an increase of 38.46% with thresholding.

The improvement of 58.16% is observed with Dense-

Net121 using both augmentations.

• Sharpening (9) starts highest with ResNet18 at 55.98%

that increases by 19.74% with thresholding. With both

augmentations applied to EfficientNetB0, improve-

ments of 47.48% are made.

In our robustness experiments prior to applying novel

augmentation methods, we found that three kernels

sharpening, brightness, and contrast increasing consistently

improved CNN detection. This discovery aligns with our

common understanding. Sharpening, for instance, sharpens

the edges of spray deposits, resulting in clearer outlines.

According to our findings, this kernel is consistently

employed across all tested CNNs. The second most fre-

quently used kernel is relevant to brightness adjustment,

which naturally enhances the luminosity of the deposits,

making them easier to identify. Similarly, enhancing con-

trast brings out the differences between light and dark

areas, further enhancing the visibility of spray deposits.

This makes it the third most commonly used kernel across

the tested CNNs in the absence of any additional aug-

mentation in the input data.

With the augmented data, the top three kernels used can

also be monitored for each augmentation. Specifically, the

thresholding augmentation exhibits the highest reliance on

three key filtering kernels: flipping and mirroring, contrast,

and brightness increasing kernels. The use of thresholding

augmentation introduces intensities at specific spatial

locations, encouraging CNNs to assign greater importance

to these regions. Consequently, CNNs achieve their highest

average scores when exposed to spatial transformations

such as flipping and mirroring, regardless of the architec-

ture. This observation is further supported by the signifi-

cance of contrast increase, which emphasises distinct

regions that have undergone thresholding. Additionally,

brightness increase aligns with these findings, as it visually

enhances intensities within regions, creating a sense of

brightness amplification. Collectively, these results high-

light the consistent and crucial role of these top three

kernels across various augmented datasets.

In the context of the subtraction augmentation, the top

three filtering kernels, on average across all CNNs, consist

of sharpening, flipping and mirroring, and contrast

increase. The subtraction augmentation increased pixel

intensity to localised areas of the images, highlighting

regions where crops or weeds have shifted either before or

after spraying. The higher scores for this augmentation can

be explained by the fact that it enhances fine and granular

regions compared to thresholding. In this case, subtraction

creates fine lines tracing the edges of individual crops or

weeds affected by movement. This visual similarity to the

sharpening process clarifies its top position in average

scores in this scenario. Similar to thresholding augmenta-

tion, flipping and mirroring, along with contrast increase,

maintain their positions among the top three filtering ker-

nels due to their impact on intensifying specific spatial

areas.

Table 7 Tenfold cross-

validation augmentation

(feature-based stratified

sampling) CAM results

Architecture Augmentation Deletion (%) Insertion (%)

EfficientNetB0 None 54.61 ± 27.76 47.59 ± 14.06

Thresholding 55.62 – 32.80 56.52 – 33.47

Subtraction 54.01 – 31.30 56.03 – 28.22

Subtraction and thresholding 41.60 – 16.27 56.10 – 27.72

DenseNet121 None 49.38 ± 18.32 48.06 ± 17.31

Thresholding 56.80 – 26.92 59.07 – 24.64

Subtraction 49.06 – 29.97 52.67 – 29.54

Subtraction and thresholding 46.34 – 18.73 51.20 – 17.44

ResNet18 None 50.84 ± 23.82 50.50 ± 28.87

Thresholding 50.48 – 31.79 52.55 – 33.37

Subtraction 44.21 – 21.33 46.44 – 20.72

Subtraction and thresholding 47.55 – 24.61 53.82 – 28.82

VGG11 None 49.76 ± 14.79 46.63 ± 17.10

Thresholding 45.88 – 17.42 47.18 – 18.79

Subtraction 47.77 – 21.95 48.13 – 21.04

Subtraction and thresholding 40.79 – 21.93 49.12 – 14.18

Bold values indicate performance where Deletion is lower than Insertion
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Using both augmentations in the training dataset, the

highest-scoring top three filtering kernels are, flipping and

mirroring, sharpening, and contrast increase. This makes

sense since the combination of both augmentations enables

the models to learn both spatial importance and small detail

differentiation as previously stated.

When applying the tenfold cross-validation for robust-

ness testing, as there are a large number of results, we have

taken the average across all tests and plotted this with the

average standard deviation in Fig. 11. Visually this rein-

forces the points made in the original data split. Even when

considering the highest scores across all splits of data for

no augmentation, this does not meet the baselines of the

lowest scoring augmented results for any of the models

tested.

6 Conclusion

In summary, the proposed approach significantly improves

precision and efficiency in spray deposit detection. Nota-

bly, we achieve these improvements without the need for

costly and cumbersome tracers or WSPs, which are tradi-

tionally used in agricultural field settings. We eliminated

the reliance on these materials in our detection process by

using images only. Our method not only streamlines the

process but also reduces the associated costs for monitoring

the environmental impact, thus contributing to sustainable

and economically viable agricultural practices.

Additionally, our methodology excels in classification

and detection tasks, accurately pinpointing spray deposit

locations within images. What distinguishes our approach

is its ability to achieve these results without requiring to

Fig. 10 Comparison of CAMs considering augmentations against labelled bounding box ground truth image
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include an additional object detector stage in a WSOD

process. This not only simplifies the implementation pro-

cess but also makes it more computationally efficient, thus

paving the way for widespread adoption in the Agri-

Robotics field. We have also significantly enhanced the

robustness of each CNN using novel domain-specific

Table 8 Robustness results

Architecture Augmentation 1 (%) 2 (%) 3 (%) 4 (%) 5 (%) 6 (%) 7 (%) 8 (%) 9 (%)

EfficientNetB0 None 18.70 11.91 20.40 14.75 18.92 12.65 19.92 19.34 43.75

Thresholding 77.43 86.23 69.52 82.26 77.26 81.93 64.69 57.80 86.18

Subtraction 84.71 90.14 80.10 89.30 84.93 87.11 79.79 79.16 90.85

Both 78.24 90.99 58.09 82.08 88.38 83.48 70.28 40.63 91.23

DenseNet121 None 6.00 3.91 15.69 4.06 4.36 3.68 10.49 22.61 3.53

Thresholding 84.45 94.42 52.11 90.57 85.58 93.96 36.99 50.08 93.81

Subtraction 91.59 96.35 49.14 92.67 85.32 94.94 34.50 29.24 95.52

Both 85.08 86.84 79.43 85.90 86.62 87.53 84.09 80.77 88.03

ResNet18 None 3.71 29.09 4.89 32.27 3.63 31.37 4.59 4.71 55.98

Thresholding 76.63 76.20 75.22 76.84 76.18 77.70 73.02 74.21 75.72

Subtraction 90.69 92.00 89.49 91.29 91.09 92.25 84.69 86.93 92.70

Both 80.91 80.41 78.78 80.96 79.54 82.05 73.00 74.33 80.22

VGG11 None 2.93 2.68 3.31 2.68 2.92 2.63 2.95 3.09 2.61

Thresholding 55.69 56.13 55.35 56.14 55.73 56.54 55.42 56.31 56.31

Subtraction 70.73 71.53 70.16 71.16 70.82 72.19 70.66 70.65 72.27

Both 70.79 71.25 70.57 71.13 70.94 71.50 70.79 70.82 71.50

Bold values indicate the best performance for each architecture

Fig. 11 Bar plot with standard deviation bars of the average across all tests
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augmentations, resulting in a substantial improvement over

the baseline. Furthermore, our robustness testing method-

ology helps us identify patterns within spatial regions

crucial for CNN inference. For instance, we have discov-

ered that brightness is a key indicator for identifying spray

deposits in all tested CNNs, providing a foundation for

deeper insights.

To deploy this type of pipeline for precision spraying,

real-world data need to be collected. Therefore, automated

systems will need to be changed to ensure images can be

collected post-spraying or systems will need to be manu-

ally driven. Furthermore, systems that are already compu-

tationally overloaded will need to take further

considerations to incorporate this methodology. The liter-

ature has shown that quantisation could be promising for

resource-constrained devices, and XAI can be applied to

these [45]. Finally, evaluating models with the robustness

pipeline is computationally expensive and should be con-

sidered only where necessary.

In future, we plan to comprehensively compare our

methodology with traditional evaluation methods on target

weeds and non-target crops. We have plans to collect

additional data with mobile spot spraying systems and

develop methods for detecting challenging-to-identify

spray deposits and also to improve the detection of the

under-represented Annual Meadowgrass weeds.
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