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Abstract
There is an extensive literature on methods for meta-analysis of diagnostic test accuracy, but it mainly focuses on a
single test. A multinomial generalised linear mixed model was recently proposed for the joint meta-analysis of studies
comparing two tests on the same participants in a paired tests design with a gold standard. In this setting, we propose
a novel model for joint meta-analysis of studies comparing two diagnostic tests which assumes independent multinomial
distributions for the counts of each combination of test results in diseased and non-diseased patients, conditional on
the latent vector of probabilities of each combination of test results in diseased and non-diseased patients. For the
random effects distribution of the latent proportions, we employ a one-truncated D-vine copula that can provide tail
dependence or asymmetry. The proposed model includes the multinomial generalised linear mixed model as a special
case, accounts for the within-study dependence induced because the tests are applied to the same participants, allows
for between-studies dependence, and can also operate on the original scale of the latent proportions. The latter enables
the derivation of summary receiver operating characteristic curves. Our methodology is demonstrated with simulation
studies and a meta-analysis of screening for Down’s syndrome with two tests: shortened humerus and shortened femur.

Keywords
Mixed models, multinomial generalised linear mixed model, multiple diagnostic tests, multivariate meta-analysis, summary
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1 Introduction
Diagnostic test accuracy studies aim to quantify the diagnostic accuracy of a new test in relation to the current perfect
reference standard, also known as the gold standard. The development of an accurate diagnostic test can lead to early
detection of a specific disease, which can reduce healthcare costs in the long term. For example, if a diagnostic test can
detect cancer at an early stage, before it has spread to other parts of the body, the chances of successful treatment are
much higher. This can reduce the need for more expensive and invasive treatments such as surgery, radiation therapy, or
chemotherapy, which can be associated with high healthcare costs.1 Furthermore, early detection can also help to prevent
the spread of infectious diseases such as COVID-19, which can have a significant impact on healthcare costs. By identifying
infected individuals early, healthcare providers can implement appropriate isolation measures to prevent the spread of the
disease to others.2

The large number of available diagnostic test accuracy studies has led to the use of meta-analysis as an integrated
analysis to detect an accurate diagnostic test versus an analysis based on a single study. As the accuracy of a diagnostic test
is commonly measured by a pair of indices such as the true positive fraction (TPF, the probability that an actual positive
will test positive) and false positive fraction (FPF, the complementary probability that an actual negative will test negative),
synthesis of diagnostic test accuracy studies requires multivariate meta-analysis methods.3 There is an extensive literature
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on methods for meta-analysis of diagnostic studies. All studies evaluate the accuracy of the same diagnostic test when a gold
standard is available, but they mainly focus on a single test.4–8 However, the better understanding of a particular disease,
along with the technological advances in many health sectors has led to the development of multiple tests. Meta-analysis of
multiple diagnostic tests can help to identify the most accurate diagnostic test or combination of tests for a specific condition
or disease. This can help clinicians to make more informed decisions about which tests to use, which can improve patient
outcomes and reduce healthcare costs.9 For example, a meta-analysis of studies evaluating the accuracy of different tests
for diagnosing COVID-19 can help healthcare providers to determine which tests are most reliable and accurate, and which
tests should be prioritised in different settings or patient populations. This can have a significant impact on patient health
by ensuring that accurate diagnoses are made and appropriate treatments are provided in a timely manner.10

As summarised by Takwoingi et al.,11 diagnostic test accuracy studies are comparative when they assess two or more
tests. The robust comparative studies of diagnostic test accuracy use either a paired test (also called multiple or crossover)
design, in which all patients undergo all tests together with the perfect reference standard, or more rarely, a randomised
(also called parallel) design, in which all patients undergo the perfect reference standard test but are randomly allocated to
have only one of the other tests. In this paper, we deal with the joint meta-analysis of studies comparing two diagnostic tests
in a paired test design. We consider the case where the numbers of all different combinations of the test results are given,
that is, there are four possible combinations of positive and negative results with different frequencies for individuals with
or without the target condition. These frequencies are denoted by yijkd , i = 1,… , N , j = 0, 1, k = 0, 1, d = 0, 1, where
i is an index for the individual studies, j is an index for the test 1 outcome (0: negative; 1: positive), k is an index for
the test 2 outcome (0: negative; 1: positive) and d is an index for the disease status (0: non-diseased; 1: diseased). The
“classic” 2×2 table showing the cross-classification of the reference standard result and the index test result is extended to
a 4 × 2 table (Table 1) that cross-classifies the results of two index tests being compared within diseased and non-diseased
participants. Each cell in Table 1 provides the cell frequency corresponding to a combination of index tests and disease
outcome in study i. The additional modelling of the information between the two tests strategically allows to account for
potential within-study dependence that can occur because every study participant underwent both diagnostic tests. This is
an important feature that other proposed models for meta-analysis and comparison of two diagnostic tests fail to fulfil as
they are solely based on two 2 × 2 tables per study, that is, they do not consider cross-classified test results.12,13

Trikalinos et al.14 proposed a multinomial generalised linear mixed model (GLMM) for the joint meta-analysis of two
tests. Their model assumes independent multinomial distributions for the counts of each combination of test results in
diseased patients and the counts of each combination of test results in non-diseased patients in Table 1, conditional on the
six-variate normally distributed transformed latent TPF and FPF for each test, and latent joint TPF and FPF, which capture
information on the agreement between the two tests in each study.

Nevertheless, the six-variate normal distribution of the transformed latent proportions in the multinomial GLMM has
restricted properties, that is, a linear correlation structure and normal margins that might lead to biased meta-analytic
estimates of diagnostic test accuracy. In order to create a flexible distribution to model the random effects we exploit the
use of regular vine copulas,15 as other parametric copulas such as Archimedean, nested Archimedean and elliptical copulas
have limited dependence.16 Regular vine copulas are suitable for high-dimensional data,17 hence given the low dimension,
we use their boundary case, namely a D-vine copula. D-vine copulas have become important in many applications areas
such as finance18,19 and biological sciences,20,21 to name just a few, in order to deal with dependence in the joint tails.
Another boundary case of regular vine copulas is the canonical vine copula, but this parametric family of copulas is suitable
if there exists a pilot variable that drives the dependence among the variables,22–24 which apparently is not the case in this
application area as none of the aforementioned variables in Table 1 is a pilot variable.

We propose a multinomial copula mixed model (CMM) as an extension of the multinomial GLMM by using a D-vine
copula representation of the random effects distribution with normal and beta margins. We assume independent multinomial
distributions for the counts of each combination of test results in diseased patients and the counts of each combination of

Table 1. Data from an individual study in a 4 × 2 table.

Disease (by gold standard)

Test 1 Test 2 + −

+ − yi101 yi100
− + yi011 yi010
+ + yi111 yi110
− − yi001 yi000

Total yi++1 yi++0
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test results in non-diseased patients, conditional on the latent probabilities of each combination of test results in diseased
and non-diseased patients in each study. We consider the case where the same individuals receive both tests, and the results
are cross-classified. The proposed model (a) includes the multinomial GLMM14 as a special case, (b) accounts for the
within-study dependence induced because the tests are applied to the same participants, (c) can have arbitrary univariate
distributions for the random effects, and (d) can provide between-studies tail dependencies and asymmetries. The proposed
model extends the model by Nikoloulopoulos25 for the meta-analysis of one diagnostic test with non-evaluable outcomes
to six rather than four dimensions and to more than one test.

The remainder of the article proceeds as follows. Section 2 introduces the multinomial D-vine CMM for meta-analysis
and comparison of two diagnostic tests, and provides computational details for maximum likelihood (ML) estimation.
Section 3 studies the small-sample efficiency of the proposed ML estimation technique and investigates the effect of
misspecifying the random effects distribution on parameter estimates and standard errors. Section 4 deduces summary
receiver operating characteristic (SROC) curves from the proposed model through quantile regression techniques. Section
5 demonstrates our methodology by insightfully re-analysing the data from the systematic review that examined the screen-
ing accuracy of two second-trimester ultrasonographic tests that screen for Down’s syndrome. We conclude with some
discussion in Section 6, followed by a brief section with software details.

2 The multinomial one-truncated D-vine CMM
In this section, we introduce the multinomial one-truncated D-vine CMM for the joint meta-analysis of two diagnostic tests
and discuss its relationship with the multinomial GLMM. We complete this section with details on ML estimation.

2.1 D-vine copula representation of the random effects distribution
We assume that the counts Yd = (Yi10d , Yi01d , Yi11d , Yi00d) of each combination of test results in diseased (d = 1) or non-
diseased (d = 0) patients are multinomially distributed given Xd = xd , where Xd = (X10d , X01d , X11d) is the latent vector
of transformed probabilities of each combination of test results in diseased (d = 1) or non-diseased (d = 0) patients. The
counts (Yi10d , Yi01d , Yi11d , Yi00d) of each combination of test results in diseased (d = 1) or non-diseased (d = 0) patients
are mutually exclusive outcomes. Since the four outcomes in each population are mutually exclusive, and one must occur,
we have that their probabilities sum to one and hence we have three transformed probabilities (X10d , X01d , X11d) in diseased
(d = 1) or non-diseased (d = 0) patients as the fourth can be derived by the other three.

For the between-studies model, there are different latent variables (X10d , X01d , X11d), but they are dependent. Hence
the observed data yijkd are dependent. In multivariate models with copulas, a copula or multivariate uniform dis-
tribution is combined with a set of univariate margins.26 This is equivalent to assuming that the latent variables
(X10d , X01d , X11d) have been transformed to standard uniform latent variables (U10d , U01d , U11d). So we assume that
(U101, U011, U111, U100, U010, U110) is a six-dimensional random vector where U10d , U01d , U11d ∼ U(0, 1). The joint cdf
is then given by C6(u101, u011, u111, u100, u010, u110) where C6 is a six-dimensional D-vine copula, which is built via suc-
cessive mixing from 15 bivariate linking copulas on levels. For parsimony, we use a one-truncated D-vine copula27 which
has five parametric bivariate copulas C(⋅; 𝜃101,011), C(⋅; 𝜃011,111), C(⋅; 𝜃111,100), C(⋅; 𝜃100,010) and C(⋅; 𝜃010,110) that link X101
with X011, X011 with X111, X111 with X100, X100 with X010 and X010 with X110, respectively, in the first level of the vine and
independence copulas in all the remaining levels of the vine (truncated after the first level). Figure 1 depicts the graphical
representation of the one-truncated D-vine copula model. This truncation, as per the terminology by Brechmann et al.,27

offers a substantial reduction of the copula parameters. In our case there are 10 fewer bivariate copulas, which is extremely
useful for estimation purposes given the typically small number of primary studies involved in meta-analysis.

Let 𝜽 = (𝜃101,011, 𝜃011,111, 𝜃111,100, 𝜃100,010, 𝜃010,110) be the copula parameter vector of the six-dimensional one-truncated

D-vine copula and c(u, v; 𝜃) = 𝜕C(u,v;𝜃)
𝜕u𝜕v

be a bivariate copula density. Then, the six-dimensional one-truncated D-vine copula

Figure 1. Graphical representation of the six-dimensional one-truncated D-vine copula model.
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density is decomposed in a simple manner by multiplying the bivariate copulas densities in the nodes of the tree in Figure 1,
as indicated below

c6

(
u101, u011, u111, u100, u010, u110;𝜽

)
= c

(
u101, u011; 𝜃101,011

)
c
(

u011, u111; 𝜃011,111

)

× c
(

u111, u100; 𝜃111,100

)
c
(

u100, u010; 𝜃100,010

)
c
(

u010, u110; 𝜃010,110

)
(1)

Note that for a six-dimensional D-vine copula density there are 6!
2

distinct permutations of the variables.18 To be concrete
in the exposition of the theory, we use the permutation in Figure 1; the theory though also applies to the other permutations.

2.2 The multinomial one-truncated D-vine CMM with normal margins
The within-study model is the same as in the multinomial GLMM.14 That is

(Yi10d , Yi01d , Yi11d , Yi00d)|(X10d = x10d , X01d = x01d , X11d = x11d)

∼ 4

(
yi++d , l−1(x10d , x01d , x11d), l−1(x01d , x10d , x11d), l−1(x11d , x10d , x01d)

)
(2)

where r(n, p1,… , pr−1) is shorthand notation for the multinomial distribution; r is the number of outcomes, n is the total
number of diseased or non-diseased participants per single study, and (p1,… , pr) with pr = 1 − p1 − … − pr−1 is the r-
dimensional vector of success probabilities and l−1 is the inverse multinomial logit link, for example, l−1(x10d , x01d , x11d) =

ex10d

1+ex10d +ex01d +ex11d
.

The stochastic representation of the between-studies model takes the form

(
Φ
(

X101; l(𝜋101,𝜋011,𝜋111), 𝜎2
101

)
,Φ

(
X011; l(𝜋011,𝜋101,𝜋111), 𝜎2

011

)
,Φ

(
X111; l(𝜋111,𝜋101,𝜋011), 𝜎2

111

)

Φ
(

X100; l(𝜋100,𝜋010,𝜋110), 𝜎2
100

)
,Φ

(
X010, l(𝜋010,𝜋100,𝜋110), 𝜎2

010

)
,Φ

(
X110; l(𝜋110,𝜋100,𝜋010), 𝜎2

110

))
∼ C6(⋅;𝜽) (3)

where C6(⋅;𝜽) is a six-dimensional one-truncated D-vine copula with dependence parameter vector 𝜽, Φ is the cumulative
distribution function (cdf) of the N(𝜇, 𝜎2) distribution, and l is the multinomial logit link, for example, l(𝜋10d ,𝜋01d ,𝜋11d) =
log

(
𝜋10d

1−𝜋10d−𝜋01d−𝜋11d

)
. The copula parameter vector 𝜽 contains parameters of the random effects model and they are sep-

arated from the univariate parameter vectors 𝝅d = (𝜋10d ,𝜋01d ,𝜋11d) and 𝝈
2
d
= (𝜎2

10d
, 𝜎2

01d
, 𝜎2

11d
). The 𝝅d’s have the actual

parameters of interest (see the notation of these parameters for each combination of test results in diseased and non-diseased
participants in Table 2), since 𝜋111 and 𝜋110 is the meta-analytic parameter of joint TPF and joint FPF, respectively, and the
meta-analytic parameters of the TPF (d = 1) or FPF (d = 0) for each test are functions of these parameters, viz.

𝜋1⋅d = 𝜋10d + 𝜋11d 𝜋⋅1d = 𝜋01d + 𝜋11d (4)

The univariate parameter vectors 𝝈2
d
’s denote the variabilities of the random effects.

Table 2. Meta-analytic parameters of interest for each combination of test results in diseased and non-diseased participants in a
4 × 2 table.

Disease (by gold standard)

Test 1 Test 2 + −

+ − 𝜋101 𝜋100
− + 𝜋011 𝜋010
+ + 𝜋111 𝜋110
− − 1 − 𝜋101 − 𝜋011 − 𝜋111 1 − 𝜋100 − 𝜋010 − 𝜋110
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The models in (2) and (3) together specify a multinomial one-truncated D-vine CMM with joint likelihood

L(𝝅1,𝝅0,𝝈2
1,𝝈2

0,𝜽|y1, y0) =
N∏

i=1
∫[0,1]6

1∏
d=0

g
(

yi10d , yi01d , yi11d; yi++d , l−1(x10d , x01d , x11d), l−1(x01d

x10d , x11d), l−1(x11d , x10d , x01d)
)

c6(u101, u011, u111, u100, u010, u110;𝜽)du101du011du111du100du010du110

where

x10d = Φ−1
(

u10d; l(𝜋10d ,𝜋01t,𝜋11d), 𝜎2
10d

)
, x01d = Φ−1

(
u01d; l(𝜋01d ,𝜋10d ,𝜋11d), 𝜎2

01d

)

x11d = Φ−1
(

u11d; l(𝜋11d ,𝜋10d ,𝜋01d), 𝜎2
11d

)
(5)

2.2.1 Relationship with the multinomial GLMM
In this section, we show what happens when all the bivariate copulas are bivariate normal (BVN) and the univariate
distribution of the random effects is the N(𝜇, 𝜎2) distribution.

When all the bivariate pair-copulas are BVN copulas with correlation (copula) parameters 𝜌101,011, 𝜌011,111, 𝜌111,100,
𝜌100,010, 𝜌010,110, the resulting distribution is the six-variate normal with mean vector

𝝁 =
(
l(𝜋101,𝜋011,𝜋111), l(𝜋011,𝜋101,𝜋111), l(𝜋111,𝜋101,𝜋111), l(𝜋100,𝜋010,𝜋110), l(𝜋010,𝜋100,𝜋110), l(𝜋110,𝜋100,𝜋110)

)

and variance covariance matrix

𝚺 =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝜎
2
101

𝜌101,011𝜎101𝜎011 𝜎
2
011

𝜌101,111𝜎101𝜎111 𝜌011,111𝜎011𝜎111 𝜎
2
111

𝜌101,100𝜎101𝜎100 𝜌011,100𝜎011𝜎100 𝜌111,100𝜎111𝜎100 𝜎
2
100

𝜌101,010𝜎101𝜎010 𝜌011,010𝜎011𝜎010 𝜌111,010𝜎111𝜎010 𝜌100,010𝜎100𝜎010 𝜎
2
010

𝜌101,110𝜎101𝜎110 𝜌011,110𝜎011𝜎110 𝜌111,110𝜎111𝜎110 𝜌100,110𝜎100𝜎110 𝜌010,110𝜎010𝜎110 𝜎
2
110

⎞
⎟⎟⎟⎟⎟⎟⎠

where 𝜌101,111 = 𝜌101,011𝜌011,111, 𝜌101,100 = 𝜌101,111𝜌111,100, 𝜌101,010 = 𝜌101,100𝜌010,110, 𝜌101,110 = 𝜌101,010𝜌010,110, 𝜌011,100 =
𝜌011,111𝜌111,100,𝜌011,010 = 𝜌011,100𝜌100,010, 𝜌011,110 = 𝜌011,010𝜌010,110, 𝜌111,010 = 𝜌111,100𝜌100,010, 𝜌111,110 = 𝜌111,010𝜌010,110 and
𝜌100,110 = 𝜌100,010 𝜌010,110.

The covariance and correlation matrices as above play a central role in multivariate Gaussian structures. Nevertheless,
two major difficulties in modelling such matrices are multidimensionality, as the number of parameters grows quadratically
with dimension, and positive definiteness. Our approach overcomes both difficulties. Multidimensionality is controlled by
focusing on a structured correlation matrix. As we use truncation, a structured correlation matrix is exploited and thus five
instead of 15 dependence parameters have to be estimated, which is extremely useful as the sample size in our motivating
example is so small (N = 11). In order to reduce the parameters even further, Trikalinos et al.14 proposed another structured
variant by setting variances and correlations to be equal. Furthermore, our parametrisation of the six-variate Gaussian
distribution as a one-truncated vine consists of algebraically independent correlations and avoids the positive definite
constraints.26

Hence, our model includes the multinomial GLMM with a structured correlation matrix. Trikalinos et al.14 acknowl-
edged that a more direct approach is to model the probabilities on the original scale in the form of a Dirichlet or multivariate
beta distribution and leave this for future research. In the following section, we explicitly develop this method by using a
one-truncated D-vine copula with beta margins representation of the multivariate beta distribution.

2.3 The multinomial one-truncated D-vine CMM with beta margins
Both the multinomial truncated D-vine CMM with normal margins and the multinomial GLMM assume the vector of
probabilities for each combination of test results in diseased and non-diseased patients is on a transformed scale. However,
by using a copula with beta margins representation of the random effects distribution, we can model the latent proportions
on their original scale. As these proportions have unit sum constraints, we choose to elicit the random effects distribution
over the conditional latent proportions that have algebraic independence using the transformation proposed by Wilson.28
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The diseased and non-diseased subjects fall into four possible categories as indicated in the first two columns of Table 1.
Assume that X1 and X0 represent the probability latent vectors for diseased and non-diseased subjects, respectively, falling
into each category, given they have not fallen into any previous categories (rows). We can then recover the original latent
proportions via

X10d X01d(1 − X10d) X11d(1 − X01d)(1 − X10d) (1 − X11d)(1 − X01d)(1 − X10d)

Clearly, the latent proportions X10d remain on the original scale, but by permuting {10d, 01d, 11d} we can eventually get
all the latent proportions on the original scale.

The within-study model takes the form

(Yi10d , Yi01d , Y11d , Yi00d)|(X10d = x10d , X01d = x01d , X11d = x11d) ∼ 4(yi++d , x10d , x01d(1 − x10d), x11d(1 − x01d)(1 − x10d))
(6)

The stochastic representation of the between-studies model is

⎛
⎜⎜⎜⎝
F
(
X101;𝜋101, 𝛾101

)
, F

(
X011;

𝜋011

1 − 𝜋101
, 𝛾011

)
, F

⎛
⎜⎜⎜⎝
X111;

𝜋111(
1 − 𝜋011

1−𝜋101

)
(1 − 𝜋101)

, 𝛾111

⎞
⎟⎟⎟⎠

F
(
X100;𝜋100, 𝛾100

)
, F

(
X010;

𝜋010

1 − 𝜋100
, 𝛾010

)
, F

⎛
⎜⎜⎜⎝
X110;

𝜋110(
1 − 𝜋010

1−𝜋100

)
(1 − 𝜋100)

, 𝛾110

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠
∼ C6(⋅;𝜽) (7)

where C6(⋅;𝜽) is a six-dimensional one-truncated D-vine copula with dependence parameter vector 𝜽 and F(⋅;𝜋, 𝛾) is
the cdf of the Beta(𝜋, 𝛾) distribution with 𝜋 the mean and 𝛾 the dispersion parameter. The copula parameter vector 𝜽

contains the dependence parameters of the random effects model and they are separated from the univariate parameters
𝝅d = (𝜋10d ,𝜋01d ,𝜋11d) and 𝜸d = (𝛾10d , 𝛾01d , 𝛾11d). As in the preceding subsection, the 𝝅d’s are the actual parameters
of interest as the meta-analytic parameters of the TPF and FPF are functions of these parameters as shown in (4). The
univariate parameter vectors 𝜸d’s denote the variabilities of the random effects.

The models in (6) and (7) together specify a multinomial one-truncated D-vine CMM with joint likelihood

L(𝝅1,𝝅0, 𝜸1, 𝜸0,𝜽|y1, y0) =
N∏

i=1
∫[0,1]6

1∏
d=0

g
(
yi10d , yi01d , yi11d; yi++d , x10d , x01d(1 − x10d),

x11d(1 − x01d)(1 − x10d)
)
c6(u101, u011, u111, u100, u010, u110;𝜽)du101du011du111du100du010du110,

where

x10d = F−1(u10d;𝜋10d , 𝛾10d), x01d = F−1
(

u01d;
𝜋01d

1 − 𝜋10d

, 𝛾01d

)

x11d = F−1

⎛
⎜⎜⎜⎝
u11d;

𝜋11d(
1 − 𝜋01d

1−𝜋10d

)
(1 − 𝜋10d)

, 𝛾11d

⎞
⎟⎟⎟⎠

(8)

2.4 ML estimation and computational details
Estimation of the model parameters can be approached by the standard ML method, by maximising the logarithm of the
joint likelihood. The estimated parameters can be obtained by using a quasi-Newton29 method applied to the logarithm of
the joint likelihood. Motivated by our desire to use something like Newton’s method for its speed but without having to
compute the Hessian matrix each time, we use a quasi-Newton method. Hence, the quasi-Newton minimisation with an
input function the negative log-likelihood to be minimised, has output point of minimum and inverse Hessian at point of
minimum.

For the multinomial one-truncated D-vine CMM, numerical evaluation of the joint pmf can be achieved with the
following steps:
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1. Calculate Gauss-Legendre30 quadrature points {uq : q = 1,… , Nq} and weights {wq : q = 1,… , Nq} in terms of
standard uniform.

2. Convert from independent uniform random variables {uq101
: q101 = 1,… , Nq}, {uq011

: q011 = 1,… , Nq}, {uq111
:

q111 = 1,… , Nq}, {uq100
: q100 = 1,… , Nq}, {uq010

: q010 = 1,… , Nq}, and {uq110
: q110 = 1,… , Nq} to dependent

uniform random variables vq101
, vq011

, vq111
, vq100

, vq010
, and vq110

that have a one-truncated D-vine distribution C6(⋅;𝜽):
1: vq101

= uq101

2: vq011
=C−1(uq011

|uq101
; 𝜃101,011)

3: vq111
=C−1(uq111

|vq011
; 𝜃011,111)

4: vq100
=C−1(uq100

|vq111
; 𝜃111,100)

5: vq010
=C−1(uq010

|vq100
; 𝜃100,010)

6: vq110
=C−1(uq110

|vq010
; 𝜃010,110)

where C(v|u; 𝜃) and C−1(v|u; 𝜃) are conditional copula and inverse conditional copula cdfs, respectively. The method is
based on the simulation algorithm of a one-truncated D-vine copula,26 where as input, instead of independent uniform
variates, it uses the independent quadrature points.

3. Numerically evaluate the joint pmf, for example,

∫[0,1]6

1∏
d=0

g
(
yi10d , yi01d , yi11d; yi++d , x10d , x01d(1 − x10d), x11d(1 − x01d)(1 − x10d)

)

× c6(u101, u011, u111, u100, u010, u110;𝜽)du101du011du111du100du010du110,

with x10d , x01d and x11d as in (8), in a sextuple sum:

Nq∑
q101=1

Nq∑
q011=1

Nq∑
q111=1

Nq∑
q100=1

Nq∑
q010=1

Nq∑
q110=1

wq101
wq011

wq111
wq100

wq010
wq110

1∏
d=0

g
(
yi10d , yi01d , yi11d;

yi++d , x10d , xq01d

(
1 − xq10d

)
, xq11d

(
1 − xq01d

) (
1 − xq10d

))

where

xq10d
= F−1(vq10d

;𝜋10d , 𝛾10d), xq01d
= F−1

(
vq01d

;
𝜋01d

1 − 𝜋10d

, 𝛾01d

)

xq11d
= F−1

⎛
⎜⎜⎜⎝
vq11d

;
𝜋11d(

1 − 𝜋01d

1−𝜋10d

)
(1 − 𝜋10d)

, 𝛾11d

⎞
⎟⎟⎟⎠

With Gauss-Legendre quadrature, the same nodes and weights are used for different functions; this helps in yielding
smooth numerical derivatives for numerical optimisation via quasi-Newton.

3 Small-sample efficiency – Misspecification of the random effects distribution
In this section, we study the small-sample efficiency and robustness of the ML estimation of the multinomial one-truncated
D-vine CMM. In Section 3.1, we investigate the dependence structure misspecification by using the multinomial D-vine
CMM without truncation as the true model. In Section 3.2, we gauge the small-sample efficiency of the ML method and in
Section 2.4, we investigate the misspecification of either the parametric margin or bivariate copula of the random effects
distribution.

We use the following simulation process:

1. Simulate (u101, u011, u111, u100, u010, u110) from a six-variate (one-truncated) D-vine distribution C6(⋅;𝜽).
2. Convert to normal or beta realisations x10d , x01d and x11d via the relations in (5) or (8), respectively.
3. Simulate the size of diseased and non-diseased subjects n1 and n0, respectively, from a shifted gamma distribution to

obtain heterogeneous study sizes,31 that is,

nd ∼ sGamma(𝛼 = 1.2, 𝛽 = 0.01, lag = 30)
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and round off n1 and n0 to the nearest integer.
4. • For normal margins draw (y10d , y01d , y11d , y00d) from

4

(
nd , l−1(x10d , x01d , x11d), l−1(x01d , x10d , x11d), l−1(x11d , x10d , x01d)

)

• For beta margins draw (y10d , y01d , y11d , y00d) from

4

(
nd , x10d , x01d(1 − x10d), x11d(1 − x01d)(1 − x10d)

)

In our simulations, we set the sample size and the true univariate and dependence parameters to mimic the data on N = 11
studies from the systematic review that examines the screening accuracy of shortened humerus and shortened femur of
the fetus markers14 and investigate five simulation scenarios. These are complemented with five additional simulation
scenarios that can be found online in the Supplemental Material. Therein, the true univariate and dependence parameters
are set to either mimic the data on N = 22 studies obtained from a meta-analysis that aims to determine whether anticyclic
citrullinated peptide antibody identifies more accurately patients with rheumatoid arthritis than does rheumatoid factor,32

or to larger values of TPF/FPF and dependence than the ones in the aforementioned meta-analyses. When we mimic these
data, we prefer to use N = 11 studies but as true parameters the ones obtained from fitting the multinomial one-truncated
D-vine CMM to the data from the N = 22 studies.

In line with our previous contributions in CMMs,8,12,25,33–37 we use bivariate parametric copulas with different tail
dependence behaviour, namely the BVN with intermediate tail dependence, Frank with tail independence, and Clayton
with positive lower tail dependence. For the latter, we also use its rotated versions to provide negative upper-lower tail
dependence (Clayton rotated by 90◦), positive upper tail dependence (Clayton rotated by 180◦) and negative lower-upper
tail dependence (Clayton rotated by 270◦). To make it easier to compare strengths of dependence, we convert the BVN,
Frank and rotated Clayton estimated copula parameters to Kendall’s 𝜏’s in (−1, 1) via the following relations38–40:

𝜏 = 2
𝜋

arcsin(𝜃) (9)

𝜏 =

{
1 − 4𝜃−1 − 4𝜃−2 ∫ 0

𝜃

t

et−1
dt, 𝜃 < 0

1 − 4𝜃−1 + 4𝜃−2 ∫ 𝜃

0
t

et−1
dt, 𝜃 > 0

(10)

𝜏 =
{
𝜃∕(𝜃 + 2), by 0◦ or 180◦

−𝜃∕(𝜃 + 2), by 90◦ or 270◦ (11)

In Supplemental Figure 1, to depict the different directions of tail dependence, we show contour plots of the Clayton and its
rotated copulas with standard normal margins and dependence parameters corresponding to a Kendall’s 𝜏 value of 0.5 on
absolute value. Sharper corners (relative to ellipse) indicate tail dependence in one of the four tails. We refer the interested
reader to Section 4 by Nikoloulopoulos8 for more details on tail dependence and how a copula with tail dependence differs
from a BVN copula.

3.1 Structure misspecification – Sensitivity analysis to one-truncation
We have simulated from the multinomial (non-truncated) D-vine CMM with BVN copulas and normal margins,
that is, the multinomial GLMM with an unstructured correlation matrix. The true univariate parameters are 𝝅1 =
{0.044, 0.091, 0.299}, 𝝅0 = {0.017, 0.049, 0.030}, 𝝈1 = {1.493, 0.607, 0.563}, 𝝈0 = {0.917, 0.455, 0.576},
the five correlation parameters (converted to Kendall’s 𝜏) are {−0.518, 0.560, 0.266,−0.039, 0.506} and the 10
additional conditional correlation parameters (converted to Kendall’s 𝜏) are {0.128,−0.432, 0.372, 0.804, 0.299,
0.927,−0.205, 0.348,−0.346, 0.950}. We obtain the ML estimates of the multinomial one-truncated D-vine CMM with
BVN copulas and normal margins, that is, the multinomial GLMM with a structured correlation matrix and also include in
the comparison the estimates of the bivariate GLMM6 from two separate meta-analyses, one for each test, for the common
meta-analytic parameters 𝜋1⋅d and 𝜋⋅1d of TPF (d = 1) or FPF (d = 0) for each test.

Table 3 (Supplemental Table 1) contains the resultant mean biases, root mean square errors (RMSEs) and standard

deviations (SDs), along with the square roots of the average theoretical variances (
√

V̄ ), scaled by 100, for the ML estimates
of the multinomial GLMM with a structured correlation matrix and the separate bivariate GLMMs. The theoretical variance
of the ML estimates for each simulated dataset is obtained via the gradients and the Hessian computed numerically during
the quasi-Newton minimisation.
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Table 3. Small sample of sizes N = 11 simulations (103 replications, Nq = 15) from the multinomial D-vine CMM with BVN copulas
and normal margins (that is the multinomial GLMM with an unstructured correlation matrix) and mean biases, RMSEs and SDs,

along with the square roots of the average theoretical variances (
√

V̄), scaled by 100, for the ML estimates of the multinomial one-
truncated D-vine CMM with BVN copulas and normal margins (i.e. the multinomial GLMM with a structured correlation matrix) and
the bivariate GLMMs from two separate meta-analyses, one for each test, for the common meta-analytic parameters 𝜋1⋅d and 𝜋⋅1d of
TPF (d = 1) or FPF (d = 0) for each test.

Multinomial one-truncated D-vine CMM Separate bivariate GLMMs
with BVN copulas and normal margins

True values Bias SD
√

V̄ RMSE Bias SD
√

V̄ RMSE

𝜋101 = 0.044 −0.168 2.818 1.635 2.823 – – – –
𝜋011 = 0.091 0.381 2.175 1.839 2.208 – – – –
𝜋111 = 0.299 0.392 4.531 3.335 4.548 – – – –
𝜋100 = 0.017 0.104 0.727 0.656 0.734 – – – –
𝜋010 = 0.049 0.028 0.957 0.897 0.958 – – – –
𝜋110 = 0.030 −0.014 0.737 0.645 0.737 – – – –
𝜋1⋅1 = 0.342 0.225 3.908 3.040 3.915 4.031 3.880 3.354 5.595
𝜋⋅11 = 0.390 0.774 5.616 4.035 5.669 −1.597 5.141 4.077 5.383
𝜋1⋅0 = 0.047 0.090 1.179 0.944 1.183 0.260 1.152 1.075 1.180
𝜋⋅10 = 0.079 0.014 1.395 1.176 1.396 0.102 1.326 1.225 1.330
𝜎101 = 1.493 −12.300 47.008 28.229 48.591 – – – –
𝜎011 = 0.607 8.286 32.276 23.396 33.323 – – – –
𝜎111 = 0.563 −4.155 21.626 13.883 22.022 – – – –
𝜎100 = 0.917 −11.584 36.732 38.157 38.516 – – – –
𝜎010 = 0.455 −4.339 23.531 23.064 23.928 – – – –
𝜎110 = 0.576 −7.728 27.271 23.955 28.345 – – – –
𝜏101,011 = −0.518 3.779 31.133 31.243 31.361 – – – –
𝜏011,111 = 0.560 −6.437 30.600 27.609 31.270 – – – –
𝜏111,100 = 0.266 1.420 39.642 37.824 39.667 – – –
𝜏100,010 = −0.039 14.107 47.553 50.795 49.601 – – – –
𝜏010,110 = 0.506 1.561 40.204 65.686 40.235 – – – –

CMM: copula mixed model; RMSEs: root mean square errors; SDs: standard deviations; GLMM: generalised linear mixed model; BVN: bivariate normal;
TPF: true positive fraction; FPF: false positive fraction; ML: maximum likelihood.
Nq is the number of quadrature points and weights.

The simulation results from Table 3 and Supplemental Table 1 show that the multinomial one-truncated D-vine CMM
leads to unbiased and efficient estimates when the assumption of conditional independence (truncation) is violated. The use
of an unstructured correlation matrix is not a distributional concern about the dependence between the tests and makes no
difference other than introducing more dependence parameters than are actually required. This is due to the main result by
Joe et al.41: all the bivariate margins of the vine copula have (tail) dependence if the bivariate copulas at level 1 have (tail)
dependence. It is also revealed that assuming independence between the two tests by fitting two separate meta-analyses,
might lead to biased estimates �̂�1⋅d and �̂�⋅1d of the meta-analytic parameters of TPF (d = 1) or FPF (d = 0) for each test as
the between tests information is neglected.

3.2 Margin and bivariate copula misspecification
In this subsection, a simulation study with four different scenarios is conducted to (a) assess the performance of the ML
method, and (b) investigate the effect of the misspecification of either the parametric margin or bivariate copula of the
random effects distribution.

In the first scenario, the simulated data are generated from a multinomial one-truncated D-vine CMM with BVN copulas
and normal margins (the resulting model is the same with the multinomial GLMM), while in the second scenario the
simulated data are generated from a multinomial one-truncated D-vine CMM with BVN copulas and beta margins. Table 4

(Supplemental Table 2) contains the resultant mean biases, RMSEs and SDs, along with
√

V̄ , scaled by 100, for the ML
estimates of the multinomial truncated D-vine CMM with BVN copulas and normal margins, that is, the multinomial
GLMM. We simulate from normal margins and estimated with normals margins (left side of Table 4 and Supplemental
Table 2) or simulate from beta margins and estimated with normals margins (right side of Table 4 and Supplemental Table 2).
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Table 4. Small sample of sizes N = 11 simulations (103 replications, Nq = 15) from the multinomial one-truncated D-vine copula
mixed model with BVN copulas and both normal (that is the same with the multinomial GLMM) and beta margins and mean biases,

RMSEs and SDs, along with the square roots of the average theoretical variances (
√

V̄), scaled by 100, for the MLEs of the
multinomial one-truncated D-vine copula mixed model with BVN copulas and normal margins (multinomial GLMM).

True (simulated) bivariate copula: BVN

True (simulated) univariate margin: normala True (simulated) univariate margin: beta

True values Bias SD
√

V̄ RMSE True values Bias SD
√

V̄ RMSE

𝜋101 = 0.037 0.103 4.184 1.611 4.185 𝜋101 = 0.091 −6.181 2.787 1.529 6.781
𝜋011 = 0.093 0.449 2.125 1.929 2.172 𝜋011 = 0.086 0.773 2.154 2.164 2.289
𝜋111 = 0.295 0.671 4.769 3.685 4.816 𝜋111 = 0.292 1.716 4.445 3.615 4.765
𝜋100 = 0.017 0.128 0.753 0.673 0.764 𝜋100 = 0.024 −0.461 0.724 0.616 0.858
𝜋010 = 0.049 0.067 0.995 0.915 0.997 𝜋010 = 0.054 −0.357 1.014 0.874 1.075
𝜋110 = 0.030 0.026 0.744 0.653 0.745 𝜋110 = 0.034 −0.336 0.724 0.637 0.798
𝜋1⋅1 = 0.331 0.774 4.232 3.364 4.303 𝜋1⋅1 = 0.383 −4.465 4.204 3.444 6.133
𝜋⋅11 = 0.388 1.121 5.898 4.422 6.003 𝜋⋅11 = 0.378 2.489 5.476 4.444 6.015
𝜋1⋅0 = 0.047 0.154 1.064 0.927 1.075 𝜋1⋅0 = 0.058 −0.797 1.014 0.881 1.290
𝜋⋅10 = 0.079 0.093 1.443 1.204 1.446 𝜋⋅10 = 0.088 −0.693 1.430 1.157 1.589
𝜎101 = 1.699 −16.076 59.052 30.366 61.201 𝛾101 = 0.186 – 60.137 38.151 –
𝜎011 = 0.543 13.386 36.956 21.917 39.306 𝛾011 = 0.016 – 36.311 27.041 –
𝜎111 = 0.585 −3.872 23.458 15.216 23.775 𝛾111 = 0.066 – 20.195 15.013 –
𝜎100 = 0.929 −9.645 37.941 37.035 39.148 𝛾100 = 0.015 – 35.120 35.450 –
𝜎010 = 0.490 −6.043 23.022 21.888 23.802 𝛾010 = 0.011 – 22.394 20.545 –
𝜎110 = 0.570 −8.459 27.213 22.832 28.497 𝛾110 = 0.010 – 26.296 23.279
𝜏101,011 = −0.525 5.066 31.093 32.432 31.503 𝜏101,011 = −0.525 16.168 31.319 29.155 35.246
𝜏011,111 = 0.558 −5.571 31.463 27.902 31.952 𝜏011,111 = 0.300 15.472 29.684 29.010 33.474
𝜏111,100 = 0.185 0.800 37.174 36.929 37.183 𝜏111,100 = 0.197 2.185 39.347 38.178 39.408
𝜏100,010 = 0.022 4.256 41.838 55.494 42.053 𝜏100,010 = −0.029 7.018 44.426 56.755 44.977
𝜏010,110 = 0.576 −7.875 42.820 72.731 43.538 𝜏010,110 = 0.544 −2.784 40.708 64.822 40.803

BVN: bivariate normal; GLMM: generalised linear mixed model; RMSEs: root mean square errors; SDs: standard deviations; MLEs: maximum likelihood
estimations; TPF: true positive fraction; FPF: false positive fraction.
aThe resulting model is the same as the multinomial GLMM; 𝜋1⋅d and 𝜋⋅1d are the meta-analytic parameters of TPF (d = 1) or FPF (d = 0) for each test;
𝜋11d is the meta-analytic parameter of the joint TPF (d = 1) or joint FPF (d = 0); Nq is the number of quadrature points and weights.

In the third scenario, the simulated data are generated from a multinomial one-truncated D-vine CMM with normal
margins and

Cln{0◦, 90◦} =
{

Clayton rotated by 0◦ if 𝜏 > 0
Clayton rotated by 90◦ if 𝜏 < 0

copulas, while in the fourth scenario the simulated data are generated from a multinomial one-truncated D-vine CMM with
beta margins and Cln{0◦, 90◦} copulas. Table 5 (Supplemental Table 3) contains the resultant mean biases, RMSEs, and

SDs, along with
√

V̄ , scaled by 100, for the ML estimates of the multinomial one-truncated D-vine CMM with BVN copulas
and beta margins. We simulate from normal margins and estimated with beta margins (left side of Table 5 and Supplemental
Table 3) or simulate from beta margins and estimated with beta margins (right side of Table 5 and Supplemental Table 3).
That is, the simulation results in the left side of the table are from the misspecification of both the margin and bivariate
copula, while the simulation results in the right side of the table are from the misspecification of the parametric bivariate
copula only.

Conclusions from the values in Tables 4 and 5 and Supplemental Tables 2 and 3 are the following:

• ML with the true multinomial one-truncated D-vine CMM is highly efficient according to the calculated biases, SDs
and RMSEs. For example, in Table 4 (Supplemental Table 2) where the true univariate margins are normal the scaled
biases for the ML estimates (MLEs) of 𝝅0 for the multinomial one-truncated vine CMM with BVN copulas and normal
margins range from 0.026 (−0.028) to 0.128 (0.034).

• The MLEs of the univariate parameters of main interest 𝝅1,𝝅0 and their functions, that is, the meta-analytic parameters
𝜋1⋅d and 𝜋⋅1d of TPF (d = 1) or FPF (d = 0) for each test, are not robust to margin misspecification, for example, in
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Table 5. Small sample of sizes N = 11 simulations (103 replications, Nq = 15) from the multinomial one-truncated D-vine copula
mixed model with Cln{0◦, 90◦} copulas and both normal and beta margins and mean biases, RMSEs and SDs, along with the square

roots of the average theoretical variances (
√

V̄), scaled by 100, for the MLEs of the multinomial one-truncated D-vine copula mixed
model with BVN copulas and beta margins.

True (simulated) bivariate copula: Cln{0◦, 90◦}

True (simulated) univariate margin: normal True (simulated) univariate margin: beta

Bias SD
√

V̄ RMSE Bias SD
√

V̄ RMSE

𝜋101 = 0.037 4.493 4.004 1.606 6.018 𝜋101 = 0.091 −0.562 2.903 1.981 2.957
𝜋011 = 0.093 0.217 1.700 1.277 1.714 𝜋011 = 0.086 0.222 1.380 1.253 1.397
𝜋111 = 0.295 −0.330 3.574 3.320 3.589 𝜋111 = 0.292 0.162 3.292 3.287 3.296
𝜋100 = 0.017 0.805 1.120 0.824 1.380 𝜋100 = 0.024 −0.030 0.696 0.697 0.696
𝜋010 = 0.049 0.425 1.036 0.922 1.120 𝜋010 = 0.054 0.023 0.946 0.941 0.946
𝜋110 = 0.030 0.414 0.881 0.719 0.973 𝜋110 = 0.034 −0.005 0.704 0.714 0.704
𝜋1⋅1 = 0.331 4.163 3.286 3.089 5.304 𝜋1⋅1 = 0.383 −0.400 3.221 3.283 3.246
𝜋⋅11 = 0.388 −0.113 4.426 3.924 4.428 𝜋⋅11 = 0.378 0.384 3.913 3.747 3.932
𝜋1⋅0 = 0.047 1.219 1.527 1.100 1.954 𝜋1⋅0 = 0.058 −0.035 0.954 0.988 0.954
𝜋⋅10 = 0.079 0.839 1.566 1.311 1.776 𝜋⋅10 = 0.088 0.018 1.333 1.316 1.333
𝜎101 = 1.699 – 7.300 4.179 – 𝛾101 = 0.186 −1.778 6.815 5.378 7.043
𝜎011 = 0.543 – 1.528 1.053 – 𝛾011 = 0.016 −0.173 1.073 1.045 1.087
𝜎111 = 0.585 – 2.677 2.946 – 𝛾111 = 0.066 −0.656 2.681 3.164 2.760
𝜎100 = 0.929 – 1.817 1.451 – 𝛾100 = 0.015 −0.101 1.152 1.206 1.157
𝜎010 = 0.490 – 1.025 0.905 – 𝛾010 = 0.011 −0.078 0.882 1.072 0.886
𝜎110 = 0.570 – 1.141 0.861 – 𝛾110 = 0.010 −0.055 0.877 0.894 0.879
𝜏101,011 = −0.525 −12.089 24.950 34.488 27.724 𝜏101,011 = −0.525 −9.396 25.705 36.629 27.368
𝜏011,111 = 0.558 −5.753 27.463 25.334 28.059 𝜏011,111 = 0.300 3.714 30.593 26.617 30.817
𝜏111,100 = 0.185 2.300 30.430 33.248 30.517 𝜏111,100 = 0.197 4.809 32.575 36.717 32.928
𝜏100,010 = 0.022 −1.069 34.234 47.512 34.251 𝜏100,010 = −0.029 −2.164 38.512 47.589 38.573
𝜏010,110 = 0.576 5.097 24.725 106.770 25.245 𝜏010,110 = 0.544 10.771 24.970 92.963 27.194

RMSEs: root mean square errors; SDs: standard deviations; MLEs: maximum likelihood estimations; BVN: bivariate normal; TPF: true positive fraction;
FPF: false positive fraction.
𝜋1⋅d and 𝜋⋅1d are the meta-analytic parameters of TPF (d = 1) or FPF (d = 0) for each test; 𝜋11d is the meta-analytic parameter of the joint TPF (d = 1)
or joint FPF (d = 0); Nq is the number of quadrature points and weights.

Table 4 (Supplemental Table 2) where the true univariate margins are beta, the scaled biases for the MLEs of 𝝅1 for the
multinomial one-truncated vine CMM with BVN copulas and normal margins range from −6.181 (−1.074) to 1.716
(1.362).

• The MLEs of 𝜏’s, that is, the dependencies of the random effects, are robust to margin misspecification, for example, in
Table 4 (Supplemental Table 2) where the true univariate margins are beta the scaled biases for the MLEs of 𝜏’s for the
multinomial one-truncated vine CMM with BVN copulas and normal margins range from −2.784 (−9.982) to 16.168
(9.042).

• The MLEs of the univariate parameters of main interest 𝝅1,𝝅0 and their functions 𝜋1⋅t,𝜋⋅1t, that is, the meta-analytic
parameters 𝜋1⋅t and 𝜋⋅1t of TPF (d = 1) or FPF (d = 0) for each test, are reasonably robust to bivariate copula misspec-
ification. For example, in Table 5 (Supplemental Table 3) where the true bivariate copulas are Cln{0◦, 90◦} the scaled
biases for the MLEs of 𝝅0 for the multinomial one-truncated vine CMM with BVN copulas and beta margins range from
−0.030 (−0.098) to 0.023 (0.287).

• The MLEs of 𝜸1, 𝜸0 or 𝝈1,𝝈0, that is, the variabilities of the random effects, are reasonably robust to bivariate copula
misspecification. For example, in Table 5 (Supplemental Table 3) where the true bivariate copulas are Cln{0◦, 90◦} the
scaled biases for the MLEs of 𝜸0 for the multinomial one-truncated vine CMM with BVN copulas and beta margins
range from −0.101 (−1.123) to −0.055 (−0.644).

• The MLEs of 𝜏’s, that is, the dependencies of the random effects, are robust to bivariate copula misspecification, for
example, in Table 5 (Supplemental Table 3) where the true bivariate copulas are Cln{0◦, 90◦} the scaled biases of 𝜏’s for
the multinomial one-truncated vine CMM with BVN copulas and beta margins range from −9.396 (−4.439) to 10.771
(1.968).
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From the summaries above, we observe that a small sample size (i.e. the number of studies) introduces larger biases, SDs

and
√

V̄ ’s for the Kendall’s 𝜏 and variability parameters 𝜸1, 𝜸0 (beta margins) or 𝝈1,𝝈0 (normal margins). This is because
six variability and five Kendall’s 𝜏 parameters have to be estimated in addition to the six probability parameters that are of
main interest. Trikalinos et al.14 also acknowledged these parameters are often not well estimated for small sample sizes.
Nevertheless, this does not have implications for the parameters of main interest 𝝅1,𝝅0 and their functions, that is, the
meta-analytic parameters 𝜋1⋅d and 𝜋⋅1d of TPF (d = 1) or FPF (d = 0) for each test.

Furthermore, the simulation results indicate that the effect of misspecifying the marginal choice can be seen as substan-
tial for both the univariate parameters of main interest 𝝅1,𝝅0 and their functions, that is, the meta-analytic parameters 𝜋1⋅d
and 𝜋⋅1d of TPF (d = 1) or FPF (d = 0) for each test. Hence, the multinomial GLMM can lead to biased meta-analytic
estimates of interest 𝝅1,𝝅0 and their functions, that is the meta-analytic parameters 𝜋1⋅d and 𝜋⋅1d of TPF (d = 1) or FPF
(d = 0) for each test, as it is restricted to a normal margin specification. We also show that the effect of misspecifying
the copula choice can be seen as minimal for both the univariate parameters and Kendall’s tau, which is a strictly increas-
ing function of the copula parameter for any pair-copula, as (a) the meta-analytic parameters are a univariate inference,
and hence, it is the univariate marginal distribution that matters and not the type of the pair-copula, and (b) Kendall’s tau
only accounts for the dependence dominated by the middle of the data, and it is expected to be similar amongst different
families of bivariate copulas. However, the tail dependence varies, and is a property to consider when choosing amongst
different families of bivariate copulas. Any inference that depends on the joint distribution will essentially show the effects
of different model (random effect distribution) assumptions such as the pair-copula choice. We discuss such an inference
in the forthcoming section.

4 Summary receiver operating characteristic curves
Though typically the focus of meta-analysis has been to derive the summary-effect estimates, there is increasing interest
in alternative summary outputs, such as summary receiver operating characteristic (SROC) curves. Trikalinos et al.14 have
not derived the SROC curves from the multinomial GLMM, as the latent vector of probabilities of each combination of
test results in diseased and non-diseased patients is on a transformed scale via the multinomial logit link.

In this section, we derive the SROC curves from the multinomial one-truncated D-vine CMM with beta margins, taking
advantage of the fact that some of the latent proportions can be on the original scale. We have to first strategically permute
the variables as X11d , X10d , X01d , so that X111 (latent joint TPF) and X110 (latent joint FPF) are on the original scale. Hence,
the within-study and between-studies models take the form

(Y11d , Yi10d , Yi01d , Yi00d)|(X11d = x11d , X10d = x10d , X01d = x01d)

∼ 4

(
yi++d , x11d , x10d(1 − x11d), x01d(1 − x10d)(1 − x11d)

)

and

(
F
(

X111;𝜋111, 𝛾111

)
, F

(
X110;𝜋110, 𝛾110

)
, F

(
X101;

𝜋101

1 − 𝜋111
, 𝛾101

)
, F

(
X011;

𝜋011(
1 − 𝜋101

1−𝜋111

)
(1 − 𝜋111)

, 𝛾011

)
,

F
(

X100;
𝜋100

1 − 𝜋110
, 𝛾100

)
, F

(
X010;

𝜋010(
1 − 𝜋100

1−𝜋110

)
(1 − 𝜋110)

, 𝛾010

))
∼ C6(⋅;𝜽′)

respectively, where 𝜽
′ = (𝜃111,110, 𝜃110,101, 𝜃101,011, 𝜃011,100, 𝜃100,010). With this permutation, we achieve that X11d ∼

Beta(𝜋11d , 𝛾11d) and the bivariate copula that links X111 and X110 is C(F(X111;𝜋111, 𝛾111), F(X110;𝜋110, 𝛾110); 𝜃111,110).
We use the notion of median regression of X111 (latent joint TPF) on X110 (latent joint FPF) to derive the SROC curve.8

For x110 in range of X110, let x111 := x̃111(x110) denote a solution to the equation Pr(X111 ≤ x111|X110 = x110) = 0.5. Then
the scatter plot of x̃111(x110) and x110 is the median regression curve of X111 on X110. In addition to just using just median
(q = 0.5) regression curves, we will also exploit the use of quantile regression curves with a focus on high (q = 0.99)
and low quantiles (q = 0.01) which are strongly associated with the upper and lower tail dependence imposed from each
parametric family of copulas. These can be seen as confidence regions, as per the terminology by Rucker and Schumacher,42

of the median regression curve. For q ∈ {0.01, 0.5, 0.99} to find the quantile regression curves:

1. Set C(u111|u110; 𝜃111,110) = q;
2. Solve for the quantile regression curve u111 := ũ111(u110, q; 𝜃111,110) = C−1(q|u110; 𝜃111,110);
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3. Replace u11d by F(x11d;𝜋11d , 𝛾11d);
4. Plot x111 := x̃111(x110, q) versus x110.

As there is no a-priori reason to regress X111 (latent joint TPF) on X110 (latent joint FPF) instead of the other way around,43

quantile regression curves of X110 on X111 are also derived in a similar manner. Finally, in order to reserve the nature of a
bivariate response instead of a univariate response along with a covariate, we plot the corresponding contour graph of the
bivariate copula density with beta margins. The contour plot can be seen as the predictive region (analogously to Reitsma
et al.5) of the estimated pair (�̂�111, �̂�110) of the meta-analytic parameters of joint TPF and joint FPF.

5 Joint meta-analysis of shortened humerus and shortened femur of the
fetus markers

In the research area of detecting fetuses with Down’s syndrome, many screening accuracy of second-trimester ultrasound
markers have been developed. Down syndrome is the most common clinical significant chromosomal abnormality among
fetuses.44 There has been a substantial interest in the prenatal detection of affected fetuses so that parents can be prepared
for the birth of an affected child or even consider pregnancy termination.45 Mothers and fetuses identified by a positive
screening test result are typically offered a definitive diagnosis via amniocentesis, an invasive diagnostic test.14

We demonstrate the modelling process of the proposed approach by insightfully re-analysing the data on N = 11 studies
from the systematic review that examines the screening accuracy of shortened humerus and shortened femur of the fetus
markers (two out of seven ultrasonographic markers or their combination in detecting Down syndrome by Smith-Bindman
et al.45). These data have previously been analysed by Trikalinos et al.14 who fitted the multinomial GLMM and are shown
in Supplemental Table 4. Note in passing that the multinomial GLMM is a special case of our model when all the bivariate
copulas are BVN and the univariate distribution of the random effects is the N(𝜇, 𝜎2) distribution as shown in Section 2.2.1.

5.1 Modelling process
We fit the multinomial one-truncated D-vine CMM for all different pair copulas and univariate marginal distributions. We
use the decomposition of the vine copula density in (1), as different decompositions will lead to similar results due to the
small sample size.25 In our general statistical model, there are no constraints in the choice of the parametric marginal or
pair-copula distributions. This is one of the limitations of the multinomial GLMM where all the pair copulas are BVN and
marginal distributions are normal. However, for ease of interpretation, we do not mix pair-copulas or margins. To make
it easier to compare strengths of dependence amongst different copulas, we convert from the BVN, Frank and (rotated)
Clayton 𝜃’s to 𝜏’s via the relations in (9) to (11), respectively. In cases when fitting the multinomial one-truncated D-vine
CMM, the resultant estimate of one of the Kendall’s 𝜏 parameters was close to the right (0.95) or left boundary (−0.95) of
its parameter space, we set the corresponding bivariate copula to comonotonic (Fréchet lower bound) or countermonotonic
(Fréchet lower bound) copula, respectively. For the Clayton and Clayton rotated by 180◦ (Clayton rotated by 90◦ and
Clayton rotated by 270◦) as they interpolate from the independence when 𝜃 → 0 to the comonotonic copula when 𝜃 → ∞
(interpolate from the countermonotonic copula when 𝜃 → −∞ to the independence when 𝜃 → 0) we substitute the
BVN copula that interpolates from the Fréchet lower (perfect negative dependence) to the Fréchet upper (perfect positive
dependence) bound when the Kendall’s 𝜏 parameters are close to independence.

To find the model that provides the best fit, we don’t use goodness-of-fit procedures; but rather we use the log-likelihood
at the maximum likelihood estimate as a rough diagnostic measure for goodness of fit between the models. The goodness-
of-fit procedures involve a global distance measure between the model-based and empirical distribution, hence they might
not be sensitive to tail behaviours and are not diagnostic in the sense of suggesting improved parametric models in the
case of small p-values.26 For vine copulas, Dissmann et al.46 find that pair-copula selection based on likelihood seem to be
better than using bivariate goodness-of-fit tests. A larger likelihood value indicates a model that better approximates both
the dependence structure of the data and the strength of dependence in the tails.

5.2 Results
The maximised log-likelihoods, estimates and standard errors from fitting the multinomial one-truncated D-vine CMM
with normal and beta margins are given in Supplemental Tables 5 and 6, respectively. The log-likelihoods show that a
multinomial one-truncated D-vine CMM with beta margins and Cln{0◦, 90◦} bivariate copulas provides the best fit. Note
that as there exists counter-monotonic dependence among X101 and X011 (𝜏101,011 = −0.95), this model coincides with the
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model with

Cln{0◦, 270◦} =
{

Clayton rotated by 0◦ if 𝜏 > 0
Clayton rotated by 270◦ if 𝜏 < 0

bivariate copulas and beta margins as both the Clayton copula rotated by 90◦ and the Clayton copula rotated by 270◦ go
to their limiting case the counter-monotonic copula. It is revealed that a multinomial one-truncated D-vine CMM with
the vector of probabilities of each combination of tests results in diseased and non-diseased patients on the original scale
provides better fit than the multinomial GLMM, which models the vector of probabilities of each combination of tests
results in diseased and non-diseased patients on a transformed scale. The improvement over the multinomial GLMM is
small in terms of the likelihood principle, but for a sample size such as N = 11, −3190.43 − (−3192.90) = 2.5 units
log-likelihood difference is sufficient.

The fact that the best-fitting bivariate copulas are Clayton reveals that there exists lower tail dependence amongst the
latent vector of probabilities of each combination of tests results in diseased and non-diseased patients. It is also apparent
that the estimates of the meta-analytic parameters of interest from the multinomial one-truncated vine CMMs with normal
margins (Supplemental Table 5) differentiate from the ones with beta margins (Supplemental Table 6). For example, the
resultant meta-analytic estimate �̂�1⋅1 of TPF for shortened humerous ranges from 0.331 to 0.343 and from 0.382 to 0.391 in
Supplemental Tables 5 and 6, respectively. This is consistent with the simulation results and conclusions in Section 3. The
main parameters of interest, that is, the meta-analytic parameters 𝜋1⋅d and 𝜋⋅1d of TPF (d = 1) or FPF (d = 0) for each test
and the meta-analytic parameters of the joint TPF 𝜋111 and joint FPF 𝜋110, are biased when the univariate random effects
are misspecified. Our general model can allow both normal and beta margins, that is, it is not restricted to normal margins
as the multinomial GLMM.

In order to reveal if the use of the proposed model is worthy, when standard bivariate analyses from two separate meta-
analyses are easy, we also fit the bivariate copula mixed model with both beta and normal margins and different bivariate
copulas to each of the tests ignoring the within-study information. According to the likelihood principle, a bivariate copula
mixed model with a Clayton copula and beta margins provides the best fit for both markers (Supplemental Table 7). It is
apparent that the meta-analytic estimates of TPF (�̂�1⋅1 = 0.391, �̂�⋅11 = 0.385) from the selected multinomial one-truncated
vine CMM, that is, the one with Cln{0◦, 90◦} copulas and beta margins, differentiate from the ones (�̂�1⋅1 = 0.375, �̂�⋅11 =
0.375) from the selected separate bivariate CMMs, that is, the ones with Clayton copula and beta margins. The meta-
analytic estimates of TPF from the separate bivariate analyses are underestimated because the between tests information is
neglected. This is consistent with the simulation results and conclusions in Section 3.

To compare the TPFs and FPFs of shortened humerus and shortened femur, we use the difference between the estimated
meta-analytic parameters of TPF (�̂�⋅11−�̂�1⋅1) or FPF (�̂�⋅10−�̂�1⋅0) of the tests (shortened femur minus shortened humerus). A
positive difference in, for example, the TPF favours shortened femur, in that its average TPF is higher than that of shortened
humerous. A difference of zero favours neither test, and a negative difference favours shortened humerous. For FPF, the
direction is reversed, for example, a negative difference favours shortened femur. Table 6 shows the differences (shortened
femur minus shortened humerus) along with the corresponding standard errors, 95% confidence intervals (CI), z-statistics
and p-values. The differences in FPFs are generally similar across analyses and favour shortened humerous. The TPFs do
not differ across analyses beyond what is expected by chance. Nevertheless, the point estimates of the differences reveal
that in the multinomial GLMM analysis the TPF favours shortened femur, in the multinomial one-truncated D-vine CMM
with Cln{0◦, 90◦} copulas and beta margins analysis the TPF favours shortened humerous, and in the separate bivariate
CMMs analyses the TPF favours neither test. Note in passing the confidence intervals are wider for the GLMM analysis
as the covariances of the meta-analytic parameters are zero due to the assumed independence among the tests.

5.3 SROC curves
Furthermore, assuming independence between the tests, the performance of the markers in combination is not performed
and estimates of the joint accuracy measures are not derived. It also affects the joint tail probabilities of the joint accuracy
measures, and hence, prediction through the SROC curves, since the dependence parameter between the latent joint TPF
X111 and joint FPF X110 affects the shape of the SROC curve and this is set to independence. Figure 2 demonstrates the
SROC curves with a confidence region and summary operating points (a pair of the estimated meta-analytic parameters of
the joint TPF 𝜋111 and joint FPF 𝜋110; shown by the black square) from all the multinomial one-truncated D-vine CMMs
with beta margins, along with the study estimates (shown by the circles in Figure 2). Sharper corners in the predictive region
indicate tail dependence. For all the graphs the joint TPF and joint FPF at study i (point estimates) have been calculated as

yi111

yi++1
and

yi110

yi++0
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Table 6. Comparative test performance: Differences (shortened femur minus shortened humerus)
in the summary TPFs or FPFs along with the corresponding standard errors, 95% confidence
intervals (CI), z-statistics and p-values.

Difference in TPR 95/% CI

𝜋⋅11 − 𝜋1⋅1 Est. SE Lower Upper z p-value

Multinomial one-truncated D-vine CMM 0.056 0.042 −0.027 0.139 1.329 0.184
with BVN copulas and normal marginsa

Multinomial one-truncated D-vine CMM −0.005 0.058 −0.119 0.108 −0.093 0.926
with Cln{0◦, 90◦} copulas and beta margins

Separate bivariate CMMs 0.000 0.058 −0.113 0.113 0.001 0.999
with Clayton copulas and beta margins

Difference in FPR 95/% CI

𝜋⋅10 − 𝜋1⋅0 Est. SE Lower Upper z p-value

Multinomial one-truncated D-vine CMM 0.032 0.009 0.014 0.050 3.423 0.001
with BVN copulas and normal marginsa

Multinomial one-truncated D-vine CMM 0.027 0.009 0.010 0.045 3.100 0.002
with Cln{0◦, 90◦} copulas and beta margins

Separate bivariate CMMs 0.026 0.013 0.000 0.052 1.971 0.049
with Clayton copulas and beta margins

TPF: true positive fraction; FPF: false positive fraction; CMM: copula mixed model; BVN: bivariate normal; GLMM:
generalised linear mixed model; SE: square error.
aThe resulting model is the same as the multinomial GLMM.

respectively, and the estimated parameters by refitting the models using the permutation in Section 4. The estimated
Kendall’s 𝜏 association between the latent joint TPF X111 and joint FPF X110 is roughly 𝜏111,110 = 0.45 from all fitted
copulas, but the shapes and regions of the SROCs are distinct as parametric bivariate copulas have varying tail behaviour.
The predictive region from the best fitted copula (Clayton) has a sharper corner at the lower tail, as the Clayton copula has
lower tail dependence.

6 Discussion
We have proposed a multinomial one-truncated D-vine CMM for joint meta-analysis and comparison of two diagnostic
tests on the same participants in a paired design with a gold standard. Our model generalises the multinomial GLMM14

that can lead to biased estimates of the meta-analytic parameters of interest. It essentially provides an improvement over
the multinomial GLMM as the random effects distribution is expressed via a vine copula that allows for flexible depen-
dence modelling, different from assuming simple linear correlation structures and normality. This strength of multivariate
meta-analysis approaches that use copulas has been pointed out.47,48 Vine copulas, by choosing bivariate copulas appro-
priately, can have a flexible range of lower/upper tail dependence.41 The multinomial one-truncated D-vine CMM allows
for selection of parametric bivariate copulas and univariate margins independently among a variety of parametric families.
Hence, the latent probabilities of each combination of test results in diseased and non-diseased patients can be modelled
on the original proportions scale and can be tail dependent.

Ignoring the fact that the same individuals receive both tests, that is, fitting a separate meta-analysis for each test can
lead to biased estimates of the meta-analytic parameters of TPF and FPF for each test as the within-study dependence is
neglected. Furthermore, assuming independence between the tests, it will affect the joint tail probabilities, and hence, pre-
diction through the SROC curves, since the dependence parameter between the latent joint TPF and joint FPF affects the
shape of the SROC curve and this is set to independence. In an era of evidence-based medicine, decision makers need pro-
cedures, such as the SROC curves, to make predictions. For the multinomial one-truncated D-vine CMM with beta margins,
we derived the associated SROC curves. The SROC curves essentially show the effects of different model assumptions,
such as the choice of parametric bivariate copula and its tail dependence properties, because they are inferences that depend
on the joint distribution. Our proposed model with normal margins or the multinomial GLMM14 cannot be used to produce
the SROC curves, since the latent proportions are modelled on a transformed scale via the multinomial logit link.

We propose an efficient ML estimation technique based on dependent Gauss-Legendre quadrature points that have a
one-truncated D-vine copula distribution. We use the notion of a truncated at level 1 vine copula that leads to a substantial
reduction of the dependence parameters. This is extremely useful for estimation purposes given the typical small sam-
ple sizes in meta-analysis of diagnostic test accuracy studies. Trikalinos et al.14 estimated the multinomial GLMM using
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Figure 2. Summary receiver operating characteristic (SROC) curves with a predictive region and summary operating points (a pair
of the model-based joint true positive fraction and joint false positive fraction) from the fitted multinomial one-truncated D-vine
copula mixed models with beta margins along with the study estimates.
■: summary point (�̂�111, �̂�110) of the estimated pair of the meta-analytic parameters of the joint true positive fraction and joint false
positive fraction; ◦: individual study estimate; red and green lines represent the quantile regression curves x111 := x̃111(x110, q) and
x110 := x̃110(x111, q), respectively; for q = 0.5 solid lines and for q ∈ {0.01, 0.99} dotted lines (confidence region).

Markov chain Monte Carlo methods in the Bayesian framework and acknowledge that optimising the likelihood for joint
meta-analysis is non-trivial, because it involves calculating complicated integrals numerically. Our numerical method that is
based on dependent Gauss-Legendre quadrature points, that have an one-truncated D-vine copula distribution, successively
computes the six-dimensional integrals in sextuple sums over the dependent quadrature points and weights.

Authors of primary studies of diagnostic accuracy that assess two tests with paired designs where each test is applied to
the same patients should not only report details of each index test under investigation, but also describe how the index tests
were compared to each other, that is, report the data as separate 4× 2 tables as in Table 1. However, existing guidance49 for
reporting diagnostic studies has no specific instructions for comparative accuracy studies. Vali et al.50 assessed the reporting
of information on test comparisons in comparative accuracy studies and examine whether data for the construction of
4 × 2 tables were reported by paired accuracy studies. This was the case in only a handful of paired studies. This is also
acknowledged in the Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy; Deeks et al.51 stressed
that many comparative accuracy studies with a paired test design do not present results in a 4 × 2 table but rather give a
separate 2× 2 table of the results of each index test against the gold standard. This illustrates a clear need for improvement
in the standards of reporting for comparative accuracy studies given the fact that we have now proposed the machinery to
meta-analyse comparative studies with a paired test design. Nevertheless, the proposed model or the multinomial GLMM14

that both consider the case the test results are cross-classified cannot be extended to compare the accuracy of more than
two tests as the number of model parameters increases rapidly. For example, one needs 2(2T −1) parameters, where T is the
number of tests, to only model the probabilities of each combination of tests results in diseased and non-diseased patients.
Nikoloulopoulos,37 without using the information on the agreement between the tests, proposes a one-factor CMM that
can be used for conducting meta-analysis of comparative accuracy studies with three or more tests.
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Software
R functions to derive estimates and simulate from the multinomial one-truncated D-vine CMM for meta-analysis of two
diagnostic tests accounting for within and between studies dependence are part of the R package CopulaREMADA.52 The
data and code used in Section 5 are given as code examples in the package.
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