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ABSTRACT

Material anisotropy produces differential absorption and birefringence of linearly polarized light; material chi-
rality leads to differential absorption and birefringence of circularly polarized light. Here we highlight how
anisotropic media can produce a differential absorption and birefringence which depends on the sign of the
topological charge ℓ of a focused optical vortex beam. Manifesting purely through electric-dipole interactions
and proportional to the paraxial parameter to first-order, these topological-charge-dependent light-matter inter-
actions are significantly larger than current ℓ-dependent effects which require material chirality and extremely
focused light. The interactions described within represent a novel method for probing the local structure of
advanced materials and nanoscale light.
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1. INTRODUCTION

Light-matter interactions in anisotropic and ordered materials strongly depend on the relative displacement
between the driving electromagnetic field and the driven charges and currents. Classic examples of this opti-
cal anisotropic behaviour include linear birefringence, utilized in wave plates, for example. Distinct, but also
polarization-dependent is optical activity: Chiral materials exhibit polarization-dependent absorption and refrac-
tion of circularly polarized light (CPL) through circular dichroism and circular birefringence (optical rotation),
respectively. At the microscopic level dichroism involves the absorption of light and birefringence (or refraction)
involves the forward Rayleigh (elastic) scattering of light.1

Studies and applications to date in the field of optical anisotropy have generally been centred on paraxially
propagating light with simple or no structure. A classic example of such a beam would be a well-collimated
fundamental Gaussian mode propagating along z and polarized in the x, y plane, i.e. its state of polarization
is two-dimensional (2D). In optical activity (chiral) studies, the case is very similar but of course with circular
polarization states with helicity σ = ±1 (left-handed σ > 0, right-handed σ < 0) generating the required
optical chirality that couples to the electric-magnetic dipole response of the material. In the last decade or so the
remarkable rise of the field of structured or complex light2 has occurred, its own genesis being the realization that
laser beam photons can carry well-defined orbital angular momentum (OAM) in the direction of propagation3

of ℓℏ, where ℓ ∈ Z is the topological charge. Recent studies in chiral light-matter interactions have identified
the remarkable optical chirality properties of optical vortex beams (twisted light),4–15 i.e. structured light which
carries OAM. What has been observed is the general fact that light-matter interactions can depend on the sign
of the vortex wavefront handedness: left-handed vortex beams ℓ > 0 interact differently with chiral materials
than right-handed vortex beams ℓ < 0, and this coupling can be completely independent of the 2D polarization
state of the beam (i.e. it doesn’t require circularly polarized light and σ = 0). In general, these structured
beams needs to be tightly focused to observe the chiral light-matter interactions, and this non-paraxial nature
of the electromagnetic fields leads to a general state of polarization which is three-dimensional (3D),16 i.e. the
electromagnetic field has components in the x, y, and z plane. Such topological-charge-dependent light-matter
interactions are somewhat limited due to the fact they require higher-order multipolar moments (which are
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significantly weaker than electric-dipole coupling) and are proportional to the paraxial smallness parameter to
second order.

In this work we highlight17 how focused vortex beams give rise to a ℓ-dependent absorption and refraction in
optically anisotropic media (generally achiral). The interactions occur purely through electric-dipole coupling and
are proportional to the paraxial parameter to first-order, and thus represent novel light-matter interactions with
significantly more broader scope for applications than the current state-of-the-art topological-charge dependent
interactions in chiral media.

2. TOPOLOGICAL-CHARGE-DEPENDENT POLARIZATION

The electric field for an arbitrarily polarized z -propagating monochromatic Laguerre-Gaussian (LG) beam in
cylindrical coordinates (r, ϕ, z ) which includes terms up to first order in the paraxial parameter 1/kw (we
constrain ourselves to this approximation throughout the manuscript), where k is the wavenumber and w the
beam waist, is18
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α2 + β2 = 1 ; ℓ ∈ Z and p ∈ Z+ are the topological charge and radial index, respectively; uLGℓ,p (r, ϕ, z) is the

well-known amplitude distribution for LG beams, which includes the all-important azimuthal phase eiℓϕ. The
x and y components of Eq. (1) are the transverse electric field (with respect to the direction of propagation)
and account for the 2D polarization state, described using the standard theory of paraxial optics and a 2x2
polarization matrix.19 The z component is the longitudinal field. The full field, including the non-paraxial
longitudinal part, is referred to as 3D polarized and requires a 3x3 polarization matrix to be described.16

To elucidate the topological-charge-dependent polarization we concentrate on 2D linearly polarized light in
this Section (α and β are real). Note that 2D circularly polarized light (β = iσ/

√
2) contributes a small in-phase

transverse-longitudinal contribution proportional to the helicity σ, but is not topologically dependent, see17 for
more information. The z-polarized, longitudinal field terms in Eq. (1) dependent on γ are π

2 out of phase with the
transverse components due to the i prefactor of the z -components. In calculating the cycle-averaged spin angular
momentum density of the field Eq. (1) using sE = Im(E∗ × E) it is easy to show the imaginary longitudinal
components lead to a non-zero transverse spin.20 However, the real longitudinal terms in Eq. (1), which depend
on ℓ , are in-phase with the transverse components. Being dependent on ℓ means that this phenomenon of
in-phase longitudinal and transverse field components for real α and β is unique to optical vortex modes, and
does not manifest in fields where ℓ = 0, e.g. Gaussian beams or evanescent waves (note this is not the case for 2D
polarization with non-zero helicity, see17). Most important for us is that the sign of ℓ determines the orientation
of the polarization state in xz (see Fig. 1) or yz planes. Analogous behaviour is observed for the magnetic field.
This property of ℓ dependent 3D polarization orientation for vortex modes means, in a rather generic sense, that
any observable of a light-matter interaction which depends on the polarization vector of the beam (with respect
to the material orientation) is modified by the topological structure of generic vortex modes (LG, Bessel, etc.).

3. TOPOLOGICAL DICHROISM

The absorption of light by matter to leading order is described by the interaction Hamiltonian truncated to
electric-dipole approximation: Hint = −µiEi (repeated subscript indices imply Einstein summation convention).
The Fermi golden rule tells us the rate of absorption WI→F , is WI→F = 2π

ℏ |⟨F | Hint |I⟩|2ρ(EFI).
21 The density

of states ρ(EFI) is specific to the given light-matter system. Using Eq. (1), the amplitude for absorption is:
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where ⟨ψF | µi |ψI⟩ ≡ µFI
i ≡ µi . Retaining terms up to order 1

kw (often referred to as the paraxial
approximation, though somewhat a misnomer as it includes the non-paraxial longitudinal field) we have for the
absorption probability after cycle-averaging over one time period:



Figure 1. a) 2D x -polarized electric field vector for a z -propagating beam eikz; b) 2D x -polarized light with π/2 out-of-
phase longitudinal component leading to an elliptical polarization vector in the xz -plane. It is this spinning transverse
electric field vector which is responsible for the transverse spin angular momentum of light; c) 2D x -polarized optical
vortex light with an in-phase longitudinal field component for positive values of ℓ. The polarization vector is tilted in
the positive z -direction in the xz -plane; d) same as c but for negative values of ℓ. In this case the polarization vector is
tilted towards the negative z -direction. As is clear from Eq. (1), analogous results would manifest for other 2D states of
polarization.
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The first three terms in Eq. (3), zeroth-order with respect to the paraxial parameter 1/kw, are the well-known
contributions to absorption of light under paraxial conditions;1,21 the remaining terms describe the influence
that a focused vortex beam has on absorption. These terms manifest through the interference between the 2D
polarized transverse field components and the first-order longitudinal component, and are thus proportional to
the paraxial parameter to first order.

There are two important classes of Eq. (3) we can distinguish: whether the input beam is 2D linearly
polarized (in which case α and β are real); or whether the input beam is 2D circularly polarized: α = 1/

√
2,

β = iσ/
√
2, where the helicity is σ = ±1, the upper-sign corresponding to left-handed CPL and the bottom

right-handed CPL. For the 2D linear case Eq. (3) becomes
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The spatial distribution of Eq. (4) and dipole orientation dependence in the focal plane for 2D x-polarized and
2D y-polarized input beams are displayed in Fig. 2 a), e) i) and b), f), j), respectively. The azimuth of the
2D polarization state acts to rotate the spatial distribution of absorption, e.g. compare Fig. 2 e) to Fig. 2 f).
More importantly, it is clear that the sign of the topological charge (wavefront handedness) leads to a differential
absorption of the light by the material: W ℓ

I→F ̸= W−ℓ
I→F . This is analogous to linear and circular dichroism,

but the differential effect stems from the topological charge of the vortex beam: topological-charge-dependent



Figure 2. a)–d) Dipole orientation dependence of Eq. (3) for (solid lines) maximum total absorption, ALG, individually

normalized, (dashed lines) maximum TD contribution, A
∥
LG, normalized to the maximum of the solid line of the same

color. Insets show dipole orientation with respect to θ and given axes. e)–l) Focal plane spatial distributions of Eq. (3)
with θ = 45◦, with dipole orientation matching the inset of the corresponding a)–d) of the same column. p = 0 in all
cases and the magnitude of all dipoles |µi| = 1.

dichroism (TD). In the case of 2D CPL Eq. (3) becomes
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The spatial distribution of Eq. (5) and dipole orientation dependence in the focal plane for 2D right and left
circularly polarized input beams are displayed in Fig. 2 c), g), k) and d), h), l), respectively. There is a clear
interplay of terms depending on σ and ℓ. Namely, the case of parallel SAM and OAM (sgnℓ=sgnσ) differs from
the anti-parallell SAM and OAM (sgnℓ̸=sgnσ): the spatial distribution is more drastically altered by altering
the wavefront handedness than the 2D circular polarization handedness, e.g. compare Fig. 2 g) and k) to g)
and h). This is because the topological charge influences the 3D polarization state significantly more than the
2D polarization helicity.17 Furthermore, comparing Fig. 2 c) to Fig. 2 d) highlights how the TD mechanism is
significantly larger for the anti-parallel case compared to the parallel case: e.g. for w0 = λ the ratio of the TD

contribution to absorption A
∥
LG versus the standard paraxial term is 84%, whereas for the parallel case it is 50%.

This behaviour mirrors that which is known for properties (e.g. intensity) of vortex beams due to longitudinal
field components.22

It is important to appreciate the significant magnitude of the TD mechanism. The intensity of a tightly
focused vortex beam, proportional to E · E∗, consists of the inner product of the dominant 2D transverse fields
producing a contribution which is zeroth-order in the paraxial parameter and the inner product of the first-order
longitudinal components which yield a contribution that is second-order, i.e. ∝ 1/(kw)2. Compared to the 84%
ratio for anti-parallel discussed above, the second-order contribution to the intensity proportional to 1/(kw)2 is
≈ 10% in optimal conditions for w0 = λ relative to the zeroth-order fields18 (though readily observed23). This
highlights the significantly larger TD effect, proportional to first-order in the paraxial parameter 1/(kw). TD



Figure 3. Same as Fig. 2 but for ℓ = 2.

does not manifest in isotropic media (fluids and gases). This is readily seen by rotational averaging Eq. (3) using
the well-known second-rank tensor average: e.g. x̂iẑj⟨µiµj⟩ = δij x̂iẑj |µ|2/3 = 0.

Laguerre-Gaussian modes are described by both ℓ and the radial index p. We have observed how the sign of
ℓ influences TD; here we study the role of the magnitude of ℓ and p. Fig. 3 highlights the linear dependence on
the magnitude of ℓ for TD as we see compared to the ℓ = 1 case of Fig. 2, for ℓ = 2 the relative contribution of
the TD effect increases with increasing ℓ. Figs. 4 and 5 highlights the fact that increasing the radial order p also
yields larger relative TD contributions. This is because the magnitude of p controls the p+1 concentric rings in
the spatial distribution of Laguerre-Gaussian modes. Increasing p increases the transverse gradients of the beam
which generate the longitudinal component via ∇ ·E = 0. Thus, increasing the transverse gradient increases the
magnitude of the first-order longitudinal field component. The TD effect stems from the interference between
the transverse and longitudinal field, and so increasing p increases Ez which in turn makes the TD larger for
increasing values of p. Note also that increasing p increases TD more significantly relative to increasing ℓ.

The magnitude of TD with respect to the standard dichroic absorption mechanism increases with a tighter
focus (smaller w0); with the value of OAM through a larger ℓ; using the anti-parallel combination of ℓ and σ;
increasing the radial order p and manipulating the ratio of ẑiµi/x̂jµj , which can be achieved by inherent material
structure and/or orientation of the absorbing particle/structure.

4. TOPOLOGICAL BIREFRINGENCE

In transparent regions of materials there still manifests differential responses to electromagnetic waves via scat-
tering. Terminology is important here: scattering is generally associated with extinction and a depleted trans-
mission of the input light. However, both linear and circular birefringence at the microscopic level are in fact
consequences of elastic scattering in the forward direction, i.e. coherent scattering (as is all refraction).1,24 To
elucidate the qualitative principle of topologically dependent refraction we use the simplest model of a ‘dilute’
system (low number density of non-polar molecules, neglecting local field effects, etc.). The amplitude for elastic



Figure 4. Same as Fig. 2 but for p = 2.

Figure 5. Same as Fig. 2 but for p = 2 and ℓ = 2.



forward scattering, which produces the dynamic Stark shift ∆E and is also responsible for optical trapping,25

can be related to the refractive index of the molecular medium.1,26 The forward scattering amplitude of Eq. (1)
for a number density N of scattering centres is readily calculated using second-order perturbation theory (see17

for details):
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where αij(ω) is the polarizability of the scattering centre and ILG(r, z) is the intensity of the LG beam.
Accounting for energy conservation between the energy density of the field in vacuum and the energy shift
experienced by the material, Eq. (6) leads to the following refractive index (see17):
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The refractive index Eq. (7) clearly exhibits birefringence with respect to the sign of the topological charge,
i.e. nℓ ̸= n−ℓ. The Stark shift Eq. (6) exhibits the same spatial distribution as TD (see Fig. 2 – 5). Thus,
in addition to TD, there also manifests ℓ dependent forward elastic scattering (topological-charge-dependent
birefringence) of focused vortex beams at transparent frequencies in oriented materials.

5. DISCUSSION AND CONCLUSION

There has recently been a significant interest in light-matter interactions which are dependent on the wavefront
handedness of an optical vortex through the sign of ℓ.5,9, 10,13,27Studies to date have primarily been concerned
with chiral media and the optical chirality of vortex beams, manifesting through the interference of electric
dipole coupling with the higher-order magnetic dipole and electric quadrupole interactions. These chiral effects
are proportional to the second-order paraxial parameter 1/(kw)2 and require multipolar moments which are
roughly 1000 times smaller than electric dipole coupling. Nonetheless, such effects have been experimentally
observed.7,11,12,15 Here we have highlighted absorption and forward elastic scattering (refraction) of light by
oriented media which depends upon the sign of the topological charge of the input structured optical vortex beam
through purely electric dipole interactions (i.e. not requiring chiral materials nor small multipolar couplings)
and which are first-order in the paraxial parameter 1/(kw). The mechanisms we have discussed in this study
should therefore be readily observable, indeed they are of the same order of paraxial parameter as the transverse
SAM density of light which is a well-established experimental phenomenon.28,29

Compared to existing methods which exploit the handedness associated with the topological charge of vortex
beams, techniques based on the phenomena described in this work should be more broadly applicable due to
manifesting through purely electric-dipole couplings, thus representing potentially useful methods in the rapidly
expanding toolkit of twisted light-matter interactions.5,13,27,30,31 One-dimensional (1D) and 2D nanostructures
are highly suitable structures to exhibit ℓ-dependent absorption (and refraction), with the long-axis oriented
parallel to the direction of beam propagation. Examples of these advanced materials which can exhibit TD in-
clude liquid crystals, carbon nanotubes and nanoribbons, metamaterials (e.g. hyperbolic plasmonic nanorods32),
etc. Furthermore, the diverse range of monolayer graphene derivatives and transition metal dichalcogenides,33

including van der Waals heterostructures,34,35 also constitute suitable materials to exhibit TD. Clearly, due to
its local nature, TD lends itself to nano-optical probing methods, e.g. spatially resolved transmission and 3D
Stokes polarimetry techniques. Alternatively, imaging of oriented fluorescent dipole emitters36 would highlight
TD.

The mechanisms we have highlighted have their origins in the fundamental observation that focused optical
vortices possess a polarization state orientation which is dependent on the sign of ℓ. As such, the topologically
dependent absorption (topological-charge-dependent dichrosim, TD) and forward elastic scattering (topological-
charge-dependent birefringence) are generic light-matter interactions for oriented media, and thus open the door
for a whole array of specific applications in a wide range of advanced materials.
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