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Abstract
It has recently been established that a linearly-polarized optical vortex possesses spin angular
momentum density in the direction of propagation (longitudinal spin) under tight-focusing. The
helicity of light has long been associated with longitudinal spin angular momentum. Here we
show that the longitudinal spin density of linearly-polarized vortices is anomalous because it has
no associated helicity. It was also recently determined that the polarization-independent helicity
of tightly-focused optical vortices is associated with their transverse spin momentum density.
The key finding of this work is the fact that, in general, longitudinal spin can not necessarily be
associated with helicity, and transverse spin is in general not associated with a zero helicity, and
such extraordinary behaviour manifests most clearly for optical vortices under non-paraxial
conditions.
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1. Introduction

The optical properties (energy, momentum, angular
momentum, and helicity) of paraxial beams of light in gen-
eral align with those of electromagnetic plane-waves. An
important exception is the orbital angular momentum (OAM)
carried by paraxial optical vortex beams along the direction of
propagation [1–3]. Under non-paraxial conditions, i.e. tight-
focusing, the electric and magnetic fields polarized in the
direction of propagation (longitudinal) grow in magnitude
relative to the transverse components [4], leading to a range
of extraordinary behaviours for tightly-focused laser beams.
Examples of these novel optical properties include transverse
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spin angular momentum [5–8] and the optical helicity (also
referred to as chirality) of vortex beams [9–11]. One of the
most surprising results, particularly given the conventional
wisdom of the optical properties of light, is that input laser
beams which are unpolarized before being tightly focused
may possess both spin angular momentum [12] and helicity
[13] densities in the focal plane.

Very recently another remarkable property of non-paraxial
laser beams was discovered: linearly-polarized optical vor-
tex beams when tightly-focused possesses spin angular
momentum density along the direction of propagation. A
paraxial linearly polarized optical vortex beam before focus-
ing has essentially zero spin angular momentum density, but in
the focal plane after traversing a high NA lens a non-zero spin
angular momentum density along the direction of propagation
is generated. This property is unique to optical vortex beams,
and there have been a number of studies to date on both scalar
vortex beams [9, 14–16] and vector vortex beams [17–28].
The underlying mechanism is a form of spin–orbit interaction
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(SOI) of light [29], but in contrast to the well-established spin-
to-OAM conversion it is an orbital to spin angular momentum
density conversion.

It is generally assumed that electromagnetic fields with lon-
gitudinal spin also possess helicity, and that the transverse
spin of light is not associated with helicity. Indeed, a num-
ber of recent works have elaborated on the decomposition of
longitudinal and transverse spin momentum density [30–32].
Our aim in this work is to explicitly highlight the fact that
non-paraxial optical vortex beams do not adhere to this con-
ventional behaviour and in general optical helicity, polariza-
tion ellipticity, and spin momentum are not an interdependent
trinity.

2. Analytical theory of a focused optical vortex
Bessel beam

A popular method to describe the focal fields of a non-
paraxial beam is to use numerical integration techniques, e.g.
Richards–Wolf diffraction theory [4]. In this work we use an
analytical approach based on pure Bessel modes due to their
analytical simplicity and the fact they are solutions to both the
paraxial and nonparaxial wave equations. The analytical meth-
ods we favor here lead to simple analytical results and a deep
insight into the novel contributions from specific higher-order
field components to properties of electromagnetic fields. The
methodology to derive the electromagnetic fields equations (1)
and (2) is well-established, being first introduced by Lax et al
[33]. In a nutshell, the method relies upon taking a ‘zeroth-
order’ 2D polarized solution to the wave equation—a scalar
Bessel mode in our case—which is not an exact solution to
Maxwell’s equations, and via an iterative process, construct-
ing improved solutions to Maxwell’s equations by adding in
higher-order longitudinal and transverse contributions (char-
acterised by a smallness parameter, often referred to as the
paraxial parameter) to the electric and magnetic fields. A dis-
cussion of the different analytical and numerical techniques
can be found in [34]. The electric field for a monochromatic
scalar Bessel beam up to second-order in the paraxial para-
meter kt/kz is (for derivation see [11, 26])

E= [J|ℓ|e
iℓϕ(αx̂+βŷ)+ ẑ

ikt
2kz

((α± iβ)J|ℓ|−1e
i(ℓ∓1)ϕ

+(±iβ−α)J|ℓ|+1e
i(ℓ±1)ϕ)+ x̂

k2t
4k2

(2αJ|ℓ|e
iℓϕ

+ J|ℓ|−2(α± iβ)ei(ℓ∓2)ϕ + J|ℓ|+2(α∓ iβ)ei(ℓ±2)ϕ)

+ ŷ
k2t
4k2

(2βJ|ℓ|e
iℓϕ + J|ℓ|−2(±iα−β)ei(ℓ∓2)ϕ

+ J|ℓ|+2(∓iα−β)ei(ℓ±2)ϕ)]eikzz, (1)

where J|ℓ|[ktr] is a Bessel function of the first-kind of order |ℓ|
and argument ktr (the argument is suppressed in equation (1)
and throughout the manuscript for notational brevity, further
we subsume units of electric field into the Bessel function);

ℓ ∈ Z is the topological charge, ℓ > 0 left-handed helical wave-
fronts, ℓ < 0 right-handed helical wavefronts; ϕ is the azi-
muthal angle; α and β are the Jones vector coefficients which
are in general complex and |α|2 + |β|2 = 1; kz =

√
k2 − k2t

is the longitudinal wavenumber and kt =
√
k2x + k2y the trans-

verse wavenumber. The rule determining which sign to take
for the ± and ∓ parts in equations (1) (and (2) is that if the
topological charge of themode is ℓ > 0 the upper-sign is taken;
if ℓ < 0 the lower sign is taken.

In language first introduced by Lax et al [33], equation (1)
contains the zeroth-order transverse T0 (with respect to the
smallness parameter kt/kz), first-order longitudinal L1, and
second-order transverse field components T2. The zeroth-
order term in equation (1) is the dominating term for a paraxial
(well-collimated) Bessel beam; the ratio of kt/kz becomes
larger upon increasing the tightness of the focus eventually
leading to the higher-order field components—first-order lon-
gitudinal and second-order transverse—becoming significant
enough in magnitude compared to the zeroth-order fields to
yield physically observable effects [10, 35]. Before reaching
the focusing lens, the beam is assumed well-collimated and
paraxial: the only significant field components are the zeroth-
order T0 and the beam is described as being 2D-polarized in
x,y. This polarization state of paraxial light is readily described
by the well-known Poincaré sphere. In the focal plane of a
tight focus, however, the higher-order fields L1 and T2 become
significant in magnitude and in general lead to an extraordin-
arily complex polarization state. Although complex, in gen-
eral the polarization state is now three-dimensional (x,y,z) and
we speak of ‘3D-polarized’ light [36]. Nonetheless, it must be
noted that tightly focused light is routinely described in the
literature as ‘linearly-polarized’ or ‘circularly-polarized’, for
example, when what is technically meant is that these beams
are 2D-linearly polarized or 2D-circularly-polarized, respect-
ively, in the x,y-plane for a z-propagating beam (i.e. their
paraxial state of polarization before focusing).

Maxwell’s equations in free-space are dual symmetric and
unlike paraxial beams, electromagnetic democracy is required
in the expressions to describe the optical properties of non-
paraxial beams [37]. Thus we therefore require the corres-
ponding magnetic field of a Bessel beam:

B= [J|ℓ|e
iℓϕ kz

k
(αŷ−βx̂)+ ẑ

ikt
2k

((±iα−β)J|ℓ|−1e
i(ℓ∓1)ϕ

+(±iα+β)J|ℓ|+1e
i(ℓ±1)ϕ)+ x̂

k2t
4kkz

(−2βJ|ℓ|e
iℓϕ

+ J|ℓ|−2(±iα−β)ei(ℓ∓2)ϕ + J|ℓ|+2(∓iα−β)ei(ℓ±2)ϕ)

+ ŷ
k2t
4kkz

(2αJ|ℓ|e
iℓϕ + J|ℓ|−2(∓iβ−α)ei(ℓ∓2)ϕ

+ J|ℓ|+2(±iβ−α)ei(ℓ±2)ϕ)]
1
c
eikzz. (2)

The analytical electromagnetic fields equations (1) and (2)
containing field components up to second-order in the small-
ness parameter are used in this manuscript to describe a
focused optical vortex beam.
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3. Spin angular momentum density

The spin angular momentum of light can be both longitud-
inal and transverse with respect to the direction of propagation
[1, 5, 6]. Longitudinal spin angular momentum is much more
familiar, and the spin of σh̄ẑ per photon for a z-propagating cir-
cularly polarized plane wave with helicity σ =±1 per photon
is a well-known result (and also highlights how the helicity
and spin are entwined in paraxial fields). The cycle-averaged
dual-symmetric spin momentum density s for a monochro-
matic beam is calculated using [37]

s=
ϵ0
4ω

Im
(
E∗ ×E+ c2B∗ ×B

)
. (3)

The longitudinal spin angular momentum sz is generated
by the cross product between the transverse (x, y) polar-
ized fields, such that up to second-order in the smallness
parameter sEz = E∗

T0 ×ET0 +E∗
T0 ×ET2 +E∗

T2 ×ET0 and sBz =
B∗
T0 ×BT0 +B∗

T0 ×BT2 +B∗
T2 ×BT0. The transverse spin of

light manifests through the cross product of the trans-
verse field with the z-polarized longitudinal component:
sEx,y = E∗

T0 ×EL1 +E∗
L1 ×ET0 and sBx,y = B∗

T0 ×BL1 +B∗
L1 ×

BT0, see appendix for further details on the transverse spin.
In this work we are specifically interested in the spin angular
momentum generated by the cross terms E∗

T0 ×ET2 +E∗
T2 ×

ET0 and B∗
T0 ×BT2 +B∗

T2 ×BT0 for 2D linearly-polarized
fields.

Inserting equations (1) and (2) into equation (3) and assum-
ing real α and β, i.e. a 2D-linearly polarized input beam gives

sEz =
ϵ0k2t
2k2ω

[J|ℓ|J|ℓ|−2(±2αβ sin2ϕ± (α2 −β2)cos2ϕ)

+ J|ℓ|J|ℓ|+2(∓2αβ sin2ϕ± (β2 −α2)cos2ϕ)], (4)

and for the magnetic contribution

sBz =
ϵ0k2t
2k2ω

[J|ℓ|J|ℓ|−2(∓2αβ sin2ϕ± (β2 −α2)cos2ϕ)

+ J|ℓ|J|ℓ|+2(±2αβ sin2ϕ± (α2 −β2)cos2ϕ)]. (5)

For 2D linearly polarized input beams the E∗
T0 ×ET0 and

B∗
T0 ×BT0 contributions to sz are obviously zero. As stated,

the non-zero longitudinal spin densities equations (4) and (5)
are generated from the cross terms E∗

T0 ×ET2 +E∗
T2 ×ET0

and B∗
T0 ×BT2 +B∗

T2 ×BT0, respectively. It is clear to see
that sEz =−sBz and sz = sEz + sBz = 0. Nonetheless, this does
not preclude the experimental observation of either of these
spin angular momentum densities due to the dual-asymmetric
nature of most materials. For an electric (magnetic) dipole
particle a torque would be generated through sEz (s

B
z ). The spa-

tial distributions of equations (4) and (5) are given for α= 1
in figure 1 when ℓ± 1 and figure 2 when ℓ± 2. What is pre-
cluded is a chiral force on a dipolar chiral particle stemming
from a dissapative, non-conservative radiation pressure due to
this total spin of the field [38–40], i.e. F∝ Imχszẑ= 0, where
χ is the chiral dipolar polarizability (see Discussion for more
on this). Finally, the total (integrated across the transverse
cross-section of the beam) spin angular momenta equations (4)
and (5) are zero SEz =

´
sEz d

2r⊥ = 0; SBz =
´
sBz d

2r⊥ = 0.

Figure 1. Normalized electric sEz equation (4) and magnetic sBz
equation (5) longitudinal spin angular momentum density at z= 0
(the focal plane) for tightly-focused kt/kz = 0.6315 2D x-polarized
Bessel beams (i.e. α= 1,β = 0) with topological charge ℓ=±1.
The ratio of kt/kz used corresponds to a beam waist w0 = λ in a
Gaussian-type beam. Clearly sz = sEz + sBz = 0 and the sign of the
topological charge flips the sign of the spin momentum density
locally. Although not shown, it is clear from equations (4) and (5)
the spatial distribution of the local spin density rotates with the
azimuth of the 2D linear polarization state of the input beam,
e.g. the above plots would be rotated by π/2 for 2D y-polarized
input Bessel beams. λ= 729 nm in all plots.

Figure 2. Same as figure 1 but for ℓ=±2 and normalized against
peak value of sz for ℓ= |1|. The spatial distribution of spin spreads
out with increasing ℓ and the peak value decreases.

4. Helicity density

We now highlight that the longitudinal spin angular
momentum density of the previous section has no associ-
ation with a corresponding optical helicity density. The dual
symmetric canonical linear momentum density for a mono-
chromatic cycle averaged electromagnetic field is [37]

po =
ϵ0
4ω

Im
[
E∗ ·∇E+ c2B∗ ·∇B

]
. (6)
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We require the canonical linear momentum density which
stems purely from the zeroth-order transverse fields in our ana-
lysis. This is easily calculated:

pEo =
ϵ0
4ω

J2|ℓ|

(
ℓ

r
ϕ̂+ kzẑ

)
, (7)

pBo =
ϵ0
4ω

kz2

k2
J2|ℓ|

(
ℓ

r
ϕ̂+ kzẑ

)
. (8)

The helicity density h may be defined as the projection of
the spin density on to the canonical linear momentum dens-
ity, i.e. h= s ·po/po(kz) [6]. With this definition we can cal-
culate the following ‘electric’ and ‘magnetic’ contributions
of the helicity associated with the spin momentum densities
equations (4) and (5):

hE = sE ·pEo/pEo (kz)

=
ϵ0k2t
2k2ω

[J|ℓ|J|ℓ|−2(±2αβ sin2ϕ± (|α|2 − |β|2)cos2ϕ)

+ J|ℓ|J|ℓ|+2(∓2αβ sin2ϕ± (|β|2 − |α|2)cos2ϕ)], (9)

and

hB = sB ·pBo /pBo (kz)

=
ϵ0k2t
2k2ω

[J|ℓ|J|ℓ|−2(∓2αβ sin2ϕ± (|β|2 − |α|2)cos2ϕ)

+ J|ℓ|J|ℓ|+2(±2αβ sin2ϕ± (|α|2 − |β|2)cos2ϕ)], (10)

which leads to the fact that:

h= hE + hB = 0. (11)

Thus there is no helicity associated with the spin
momentum density of 2D linearly polarized optical vortices
even though it is longitudinal with respect to the direction of
beam propagation. Although there are ‘individual’ non-zero
electric and magnetic contributions to the helicity, the optical
helicity is a dual symmetric quantity by its very nature [41,
42] and couples to the dual-symmetric chiral polarizability of
particles which mixes electric and magnetic dipoles. Thus one
cannot experimentally determine the individual contributions
hE and hB (unlike spin density sE, sB, energy density wE, wB

, canonical linear momentum density pEo , p
B
o , etc). These res-

ults can be verified using the more standard definition of the
optical helicity density of a monochromatic beam and using
equations (1) and (2):

h=−ϵ0c
2ω

ImE∗ ·B

=−ϵ0c
2ω

Im
(
E∗
T0
+E∗

T2

)
· (BT0 +BT2) = 0, (12)

because E∗
T0
·BT0 = 0, E∗

T2
·BT2 = 0, and importantly E∗

T0
·

BT2 =−E∗
T2
·BT0 [9]. In the above, the E∗

T0
·BT2 term is asso-

ciated with hB and E∗
T2
·BT0 with h

E. We have neglected the
E∗
L1
·BL1 contribution to the helicity in equation (12) because

for 2D linearly polarized input beams it is associated with
the transverse spin momentum density (see Discussion for
further).

5. Discussion and conclusion

Clearly then electromagnetic fields can carry a measurable
electric equation (4) and magnetic equation (5) longitudinal
spin angular momentum density even though they have no
associated helicity equations (9)–(12). It is therefore appar-
ent that it is not correct to equate helicity with longitudinal
spin. If one inspects what the equations for spin density and
helicity density actually quantify in monochromatic beams
this becomes readily apparent. The spin density equation (3)
measures the degree to which two orthogonal field compon-
ents (electric or magnetic) are π/2 out of phase: it measures
the degree of polarization ellipticity in a given 2D plane. The
local spin density of light is thus correlated to polarization
ellipticity. Looking at equations (1) and (2) it is clear that
the T0 and T2 fields possess components with a π/2 out-of-
phase relationship. For example, if α= 1 then the x-polarized
T0 component in equation (1) and the y-polarized T2 compon-
ents are π/2 out of phase due to the factor of i in the latter, thus
in the x,y plane the electric field vector traces out an ellipt-
ical (in general) path generating the local electric spin angular
momentum. Under paraxial conditions kt << kz and the factor
k2t /k

2 is minuscule leading to an essentially non-existent T2

field. The paraxial beam is thus essentially just x-polarized in
the x,y plane due to the large T0 field; as the beam becomes
more focused the ratio of kt/kz grows and the polarization vec-
tor becomes elliptical in the x,y-plane due to the π/2 out of
phase T2 y-component.

On the other hand, the optical helicity equation (12) is a
measure of whether parallel electric and magnetic field com-
ponents (in a single direction x, y, or z) are π/2 out of phase,
which is in general completely independent of polarization
ellipticity (and thus spin). This is why the longitudinal fields
of optical vortex beams, both polarized in z and thus can-
not have ellipticity, can generate non-zero optical helicity
[9–11, 13] via E∗

L1
·BL1 . Although we have shown there is

no helicity associated with the longitudinal spin momentum
densities equations (4) and (5), remarkably the polarization-
independent helicity density of optical vortex beams is asso-
ciated with a transverse spin momentum density [9]. This is
due to the fact that the canonical linear momentum density
of an optical vortex has an azimuthal component in addition
to the standard longitudinal component (see equations (7)
and (8)). When the transverse spin momentum density of a
vortex beam is projected on to the transverse linear momentum
density it produces the non-zero polarization independent heli-
city of vortex beams. While transverse spin is a generic prop-
erty of spatially confined electromagnetic fields, an azimuthal
component of linear momentum density is unique to optical
vortex beams and this accounts for their extraordinary optical
helicity properties.

Finally it is worth briefly revisiting the fact that the longit-
udinal spin of tightly-focused 2D linearly polarized vortices
can not yield a chiral radiation pressure force F∝ Imχszẑ=
0. As we have now established, there is no helicity associ-
ated with this spin angular momentum, and thus no pseudo-
scalar quantity which is required for a true chiral light–matter
interaction. Note this does not preclude or negate the chiral
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radiation pressure force which can manifest through the curl
of the Poynting vector [38, 40].

In conclusion we have identified that the longitudinal spin
density of electromagnetic fields can exist without an asso-
ciated helicity density; previous work has shown that helicity
density can be associated with a transverse spin density. These
remarkable conclusions manifest most clearly in non-paraxial
(tightly focused) optical vortex beams. Such behaviour is in
stark contrast to the canonical picture of spin and helicity,
which applies to paraxial beams and plane waves.

Data availability statement

No data was generated. The data that support the findings
of this study are available upon reasonable request from the
authors.

Appendix. Transverse spin momentum density

The transverse spin momentum density components for a 2D
linearly-polarized Bessel beam are calculated to be

sEx =
ϵ0kt
2kzω

[J|ℓ|J|ℓ|−1(αβ cosϕ+β2 sinϕ)

− J|ℓ|J|ℓ|+1(αβ cosϕ+β2 sinϕ)], (13)

sEy =− ϵ0kt
2kzω

[J|ℓ|J|ℓ|−1(αβ sinϕ+α2 cosϕ)

− J|ℓ|J|ℓ|+1(αβ sinϕ+α2 cosϕ)], (14)

sBx =
ϵ0ktkz
2k2ω

[J|ℓ|J|ℓ|−1(α
2 sinϕ−αβ cosϕ)

− J|ℓ|J|ℓ|+1(α
2 sinϕ−αβ cosϕ)], (15)

and

sBy =
ϵ0ktkz
2k2ω

[J|ℓ|J|ℓ|−1(αβ sinϕ−β2 cosϕ)

+ J|ℓ|J|ℓ|+1(β
2 cosϕ −αβ sinϕ+)]. (16)

These terms a generated via: sEx,y = E∗
T0 ×EL1 +E∗

L1 ×ET0

and sBx,y = B∗
T0 ×BL1 +B∗

L1 ×BT0, and projected on to the
transverse canonical linear momentum density yield a 2D
polarization-independent optical helicity density.
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