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Abstract
Abstractly, a tone curve can be thought of as an increasing

function of input brightness which, when applied to an image,
results in a rendered output that is ready for display and is pre-
ferred. However, the shape of the tone curve is not arbitrary.
Curves that are too steep or too shallow (which concomitantly
result in too much or too little contrast) are not preferred. Thus,
tone curve generation algorithms often constrain the shape of
the tone curves they generate. Recently, it was argued that tone
curves should - as well as being limited in their slopes - only
have one or zero inflexion points.

In this paper, we propose that this inflexion-point require-
ment should be strengthened further. Indeed, the single inflexion-
point-only constraint still admits curves with sharp changes in
slope (which are sometimes the culprits of banding artefacts
in images). Thus, we develop a novel optimisation framework
which additionally ensures sharp changes in the tone curves are
smoothed out (technically, mollified). Our even simpler tone
curves are shown to render most real images to be visually sim-
ilar to those rendered without the constraints. Experiments vali-
date our method.

Introduction
Tone curves are a powerful tool for manipulating tones in

images and occur at multiple stages in the process of taking a
raw image to a final rendered output. Tone curves that map from
real-world scene radiance to pixel values - thereby compressing
the dynamic range - are sometimes called camera response func-
tions [1]. Their inverses are used in radiometric calibration [2].
Tone curves are also used later in the camera processing pipeline
[3, 4] where a power law curve is used to gamma encode the im-
age suitable for display. In image (often contrast) enhancement,
the rendered images are tone-mapped within the same dynamic
range to create more pleasing renditions [5].

Tone curves must be strictly increasing (thus one-to-one)
functions which avoids problems like tone inversions. Other con-
straints are required if we wish tone mapping to produce pre-
ferred images. Contrast Limited Histogram Equalisation casts
the tone mapping problem as optimally increasing the contrast of
an image (in the sense it should have a more uniform histogram
of brightness) but constraining the curves to have a bounded
slope [6]. While bounding the slope certainly makes tone curves
better behaved, they can still be quite wiggly in nature.

Consequently, in [7] it was additionally proposed - to re-
move this wigglyness - that tone curves should be simple. A
simple tone curve is defined to have zero or one inflexion point.
Importantly, it was shown, on a very large dataset of user tone-
mapped images, that the tone curves could be approximated with
simple counterparts. The original versus simple tone-mapped
images were almost visually indistinguishable, demonstrating
that the latitude to make wiggly tone curves was not needed.

In this paper, we propose that tone curves should be even
simpler. In Figure 1 a tone mapping function, T , is shown. It
is piecewise linear comprising two ramps that meet at the point
(0.2,0.8). The curve’s slope is bounded in the interval [ 1

4 ,4].
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Figure 1. The target curve, T , shown in red has a corner at (0.2,0.8)

where the gradient is discontinuous. The blue dotted curve, T S, found by

our method with σ = 2, is optimally close to the target curve but smooth.

The boxed region around the corner is shown in the detail view.

Figure 2. Top is I(x,y) = x2, 0 ≤ x ≤ 1. Middle is T (I(x,y)) from Figure 1

which exhibits a Mach band. Bottom is T S(I(x,y)) and has no artefact.

Moreover, according to the definition given in [7], the curve is
simple. Indeed, it has no inflexion point: the gradient is constant
or decreasing across the entire domain. Yet, the sharp change
in gradient at (0.2,0.8) rankles. Approached from the left of
(0.2,0.8), the gradient of the curve is 4 and approached from the
right, it is 1

4 . There is a step change in the gradient at this point.
We call large discontinuities in gradients corners. In this paper,
we propose that even simpler tone curves are corner-free and,
concomitantly, smooth in some sense (which we define later).

A smoother version of the tone curve, T S, is also plotted in
Figure 1. The curve looks almost identical except at the gradient
discontinuity where the function now smoothly transitions from
a gradient of 4 to a gradient of 1

4 .
Why should we wish to make simple curves even simpler?

Our concern is not simply aesthetic in terms of tone curves and
gradients; it is also of practical importance. In the top of Figure
2 we show an input image I(x,y) = x2, 0 ≤ x ≤ 1. Because it
is quite dark, we will apply the tone curve shown in Figure 1
to brighten it. If I(x,y) denotes an image brightness at image
location (x,y) then an output image, O(x,y) is calculated by

O(x,y) = T (I(x,y)) (1)



The result of applying the tone curve T to the input image is
shown in the middle of Figure 2. Observe the visible disconti-
nuity just left of the centre (corresponding to an input brightness
of 0.2). The step change in gradient at (0.2,0.8) is visible in
the output image. The corner ‘appears’ as a band that is brighter
than its surroundings despite the tones being strictly increasing in
tonal value (brightness). These regions of perceived (though not
actual) tonal inversion are known as Mach bands [8, 9]. Clearly,
we do not wish to make Mach bands appear in any processed im-
ages. Let us apply the smoothed tone function T S to the same
input from the top of Figure 2, generating the output image at the
bottom. Here, no Mach band is apparent. Elsewhere, (away from
the corner) the rendered tones are the same.

A non-smooth function can be made smooth by convolu-
tion with a class of smooth functions known as mollifiers [10].
Amongst these, is the Gaussian function which is uniquely suit-
able for our purposes [11]. Novelly, we show how to incorporate
Gaussian smoothing into a tone curve optimisation. We show
how to find the even simpler tone curve - a mollified version of
a simple tone curve - that is closest to a target curve. That is, we
are not using Gaussian convolution to post-process tone curves
but rather incorporating convolution into the optimisation.

The background to this paper is presented next, followed by
our even simpler tone curve method. Experiments on the MIT-
Adobe FiveK (FiveK) dataset [12] of 25000 tone-adjusted image
pairs show that even simpler curves can well-describe a user’s
tone adjustment. The paper finishes with a short conclusion.

Background

Simple Tone Curves: It is useful to understand the meaning of
a tone curve represented as a vector. Suppose we have n uni-
formly spaced input tonal values in the domain [0,1], written
bbb = [0,1/(n− 1),2/(n− 1), ...,1]⊤. Evaluating the tone curve
T from Equation (1) at these input tonal values, results in the
n-vector ttt = [T (0),T (1/(n−1)),T (2/(n−1)), ...,T (1)]⊤. Here
and throughout the superscript ⊤ denotes the transpose operator.
We use ti to denote the i-th component of ttt. With an appropriate
interpolation scheme, the vector pair bbb, ttt defines the tone curve.

The prior art optimisation to find the simple curve t̂tt that best
approximates a target curve ttt is solved for using the constrained
optimisation summarised in Equations (2).

argmin
t̂tt, c ∈ {1,2,3,4}

∥t̂tt − ttt∥ (2a)

s.t.


t̂1 = t1
t̂n = tn
DDDt̂tt ≥ 000

AAAct̂tt ≥ 000

(2b)

(2c)

(2d)

(2e)

This least-squares optimisation, subject to linear equality
and inequality constraints, is readily solved using quadratic pro-
gramming [13, 14]. The objective function (2a) indicates we
wish to find the closest simple curve t̂tt to ttt where simple is de-
fined by the constraints (2b) to (2e) and depend on the ‘case’
parameter c. The minimisation is over four cases c ∈ {1,2,3,4}
with each case indexing an inflexion point condition. The equal-
ity constraints in (2b) and (2c) ensure the curve maps tones to the
same output range as the target curve ttt.

The n×n matrix DDD calculates the first derivative of a vector.
In terms of the optimisation at hand, DDDt̂tt is

[DDDt̂tt]i =
t̂i − t̂i−1

h
, for i = 2,3, ...,n , (3)

where the input domain step size is h = tn−t1
n−1 and [DDDt̂tt]1 = [DDDt̂tt]2

(we adopt homogeneous Neumann boundary conditions). Here
and later we use a single subscript on a matrix to denote the i-th
row of the matrix. Equation (2d) can now be seen as a constraint
that the tone curve is an increasing function.

Finally, Equation (2e) constrains the curve to have zero or
one inflexion point. An inflexion point is defined by a change in
sign of the second derivative, hence a second derivative operator
DDD2 is defined in Equation (4) as the second-order central finite
difference approximation where we do not calculate 2nd deriva-
tives at the boundary.

[DDD2t̂tt]i =
t̂i−1 −2t̂i + t̂i+1

h2 , for i = 2,3, ...,n−1 (4)

Recall that the minimisation is defined over the four cases,
therefore there are four matrices AAAc that are indexed by the case
number c ∈ {1,2,3,4}. Let us consider each in turn.
Case 1: zero inflexion point, gradient increasing,

AAA1 = DDD2 (5)

Case 2: zero inflexion point, gradient decreasing,

AAA2 =−DDD2 (6)

Clearly, −DDD2t̂tt ≥ 000 =⇒ DDD2t̂tt ≤ 000. That is, the second deriva-
tive is negative and the gradient is decreasing - as required.
Case 3: one inflexion point, gradient increasing then decreasing,

AAA3 =

[
DDD2
[1.. f ]

−DDD2
[( f+1)..n]

]
for f = 2,3, ...,n−1 (7)

where [a..b] defines an interval of integers in the range a to b
inclusive and block notation is used to represent the vertical con-
catenation of the matrices. Here the subscript [a..b] indexes all the
rows of a matrix in this range.
Case 4: one inflexion point, gradient decreasing then increasing,

AAA4 =

[
−DDD2

[1.. f ]
DDD2
[( f+1)..n]

]
for f = 2,3, ...,n−1 (8)

The Dataset: The FiveK dataset [12] is comprised of 5,000 im-
ages that have been retouched by five experts. Each expert has
made adjustments according to their preference resulting in ren-
ditions ranging from similar to distinctly different.

The FiveK dataset has been used in designing automatic
image enhancement algorithms [15, 16] that are constrained to
be global enhancements in [17] and further to be human inter-
pretable curves in [18]. Although each expert can make many
different kinds of adjustments, in summary, their individual edits
can be well-approximated by a single global tone curve. Fol-
lowing the notation from the prior art [7], let I(x,y), P(x,y) and
PG(x,y) denote respectively an input image, an expert adjusted
output and an approximation thereof. The relationship between
these three images is summarised as:

I = [L∗
I a∗I b∗I ]

⊤

P = [L∗
P a∗P b∗P]

⊤

PG = [T (L∗
I ) a∗P b∗P]

⊤
(9)

where dropping the spatial dependence on (x,y), for a single
given pixel, I, P and PG are 3-vectors. In this work, the CIELAB
colour space [19] is used. It follows that the function T in Equa-
tion (1) denotes a tone curve that approximately maps L∗

I to L∗
P.

From [7], we have the 25,000 tone curves that map the input im-
ages to their corresponding outputs.



Method: Even Simpler Tone Curves
A limitation of the existing simple tone curve method is that

it can produce curves that are not continuous in gradient which
can lead to artefacts in the images, including Mach bands (see
Figures 1 and 2 and related text). We therefore want to augment
the method that produces simple curves, to additionally ensure
the curves are smooth.

A simple solution here would be to convolve a simple tone
curve with a Gaussian kernel to smooth out any step changes in
gradient. However, this would not result in the optimal smooth
curve in the sense that it is closest to the target curve. In our new
even simpler tone curves method we embed Gaussian smoothing
into the optimisation. To do so, let us define t̂tt,

t̂tt = GGGzzz, (10)

where GGG is an n×n Gaussian smoothing matrix (to be defined).
The vector zzz represents a curve that, when smoothed, will be
close to the target curve ttt. An advantage of this decomposition is
that some aspects of the optimisation will be expressed in terms
of the curve zzz and others in terms of t̂tt.

Let’s denote a 1D Gaussian kernel as the w-component vec-
tor ggg where the standard deviation is σ and the window size is
w = 2⌈3σ⌉+1. Note from this definition that the kernel has an
odd number of components, thereby ensuring a central element
at ω = ⌈3σ⌉+1. Thus, ggg is defined in Equation (11) which sam-
ples the components gi from the Gaussian function. We further
normalise ggg such that it sums to 1.

gi =
1

σ
√

2π
exp

(
− (i−ω)2

2σ2

)
for i = 1,2, ...,w (11)

We now construct a 2D matrix GGG that, when multiplied by
a vector (in this case zzz), yields the same result as convolving
the vector zzz by the 1D Gaussian kernel ggg. The Gaussian kernel
is placed on each row with its central element on the diagonal.
Clearly, this will result in some elements of ggg falling outside the
boundaries of GGG. Approaches to dealing with the boundaries of
filtering include zero-padding, constant-padding or mirroring the
signal [20]. The issue is that these methods might introduce new
inflexion points, causing the previously expressed simple con-
straints to be violated. Consider the same curve as Figure 1 il-
lustrated in the top left plot of Figure 3 but extrapolated with
constant values at z1 and zn. Convolving with the Gaussian ker-
nel shown in red, produces the curve shown top right which has
a new inflexion point circled in blue. For this reason, we extend
the curve linearly at the boundaries. The middle row of Figure 3
shows this with no new inflexion point in the output.

Let us consider the convolution at the boundary (at the be-
ginning of the tone curve) in more detail. Remembering that z1
denotes the first point on the tone curve (the lower boundary) and
noting z−1 is the first extrapolated point, the discrete gradient at
this position is z2 − z1. It follows that z− j = z1 − j(z2 − z1) =
(1+ j)z1 − jz2 where, for example, j = 0,1, ...,u and the Gaus-
sian kernel has u components that fall beyond the boundary. Dur-
ing convolution, these terms will be multiplied by a Gaussian
weight e.g. giz− j. Observe that z− j depends only on a known
linear combination of z1 and z2. It follows that we can update
the rows of matrix GGG near the boundary so that the dot product of
these rows with the curve zzz correctly computes the convolution
assuming a straight line extrapolation of the tone curve at the up-
per and lower boundaries. The bottom row of Figure 3 illustrates
this. The curve - that has not been extended - is multiplied by the
matrix GGG to produce the same curve as the convolution of ggg and
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Figure 3. Top: a tone curve zzz padded with constant values can introduce

inflexion points (e.g. blue circle) when convolved with a Gaussian (red).

Middle: extrapolating the curve linearly avoids this issue. Bottom: instead

of extending zzz, GGG can be defined to yield the same result. NB: each row of

GGG is different near the boundary so only the first row is shown (red).

(linearly extrapolated) zzz as per the middle plots. Note that only
the first row of GGG is drawn (in red) because each row is different
until (and after) the central portion of GGG where the Gaussian ker-
nel did not fall beyond the boundary. We will given more details
on the construction of GGG elsewhere.

In reformulating the optimisation, we first restate the objec-
tive function in Equation (12a), that the smoothed curve t̂tt = GGGzzz
will be close to the target curve, ttt.

argmin
zzz, c ∈ {1,2,3,4}

∥GGGzzz− ttt∥ (12a)

s.t.


[GGGzzz]1 = t1
[GGGzzz]n = tn
DDDzzz ≥ 000

AAAczzz ≥ 000

(12b)

(12c)

(12d)

(12e)

Constraints (12b) and (12c) ensure the solved for curve has the
same end-points as ttt. Whilst, ultimately, we require the curve t̂tt
to be increasing and have limited inflexion points, constraining it
would leave zzz free to overfit, introducing lots of wiggles and local
extrema which, when multiplied by GGG, would not guarantee the
smoothness of t̂tt. The increasing gradient constraint (12d) and
inflexion constraint (12e) are therefore placed on the curve zzz.

However, the question must be asked whether the curve will
still be simple after convolution. Crucially, convolution with a
Gaussian kernel will not create local extrema (or zero-crossing)
[21, 22]. This property applies to higher-order spatial derivatives,
meaning no additional zero-crossings are introduced in the sec-
ond derivative, hence no additional inflexion points. Therefore,
a simple curve (no more than one zero-crossing of the second
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Figure 4. Example visual results. First column shows the input image I(x,y), next is the ground truth image PG(x,y), then the approximated simply enhanced

image P̂(x,y) and right shows the two tone curves that gave these enhancements. Top row: Image C4340, Middle: A326, Bottom: C3583.

derivative) remains simple after convolution with a Gaussian. In
other words, if zzz is simple, then so will t̂tt. Thus it is important to
apply the inflexion point constraint to zzz, Equation (12e).

Results and Discussion
The even simpler curve t̂tt is obtained from the solution of the

optimisation with Equations (10) and (12). The curve is applied
to every pixel of an input image I(x,y), yielding P̂(x,y) where

P̂ = [T̂ (L∗
I ) a∗P b∗P]

⊤ (13)

Our method is applied to the 25,000 image pairs from the
FiveK dataset [12], comparing P̂(x,y) to PG(x,y) by computing
the mean ∆E colour difference [19]. Figure 4 shows results of
the images at the 0.99 quantile, 3rd worst image and the worst
image with their error statistics given in Table 1.

Table 1: Error statistics of the images shown in Figure 4
Image Mean ∆E Mean ∆E Rank
C4340 1.16 24751
A326 3.99 24998

C3583 7.67 25000

The 0.99 quantile image has ∆E = 1.16 indicating it is al-
most impossible to observe any difference between the images
as seen in Figure 4. That is, at least 99% of the images have no
observable difference. In the middle row, with ∆E = 3.99, im-
age A326 has minimal observable difference which is not readily
noticeable [23, 24]. In the worst case image with ∆E = 7.67 the
difference is noticeable but it is a very challenging enhancement
problem given 10% of the input range is mapped to over 90%
of the output range and almost no detail can be seen in I(x,y).
A theme between several images with high ∆E is poor fitting in

the dark tones when the curve is very steep. The sampled tone
curve points are spaced relatively closely (in terms of distance
along the curve) when the gradient is small and relatively far
apart when the gradient is steep. This makes the averaging ef-
fect of the Gaussian smoothing more aggressive in the regions
where the curve is steep. In future, we would like to investigate
a reparameterisation of the curve to avoid this bias.

For the results thus far, σ = 2 has been used since the band-
ing artefacts of Figure 2 disappeared at that level. For complete-
ness, we report results conducted at different standard deviations,
σ of the Gaussian filter in Table 2.

Table 2: Quantiles of the mean ∆E per σ .
Mean ∆E by quantile

σ 0.50 0.90 0.95 0.99 1.00
0 0.0120 0.140 0.259 0.790 3.98
1 0.0235 0.181 0.327 0.892 4.16
2 0.0479 0.296 0.490 1.16 7.67
3 0.0831 0.445 0.688 1.45 11.9

Conclusion
Tone curves enhance images by mapping input to output

tones and are used widely in image processing, including in the
image processing pipelines in everyone’s smartphones. Prior art
proposed that tone curves should be simple - not wiggly - mean-
ing they have one or zero inflexion points. In this paper, we have
argued that tone curves should be even simpler and we - through
a novel optimisation - smooth abrupt changes in the gradient of
a tone curve. This paper presented a computational method to
find the even simpler curve which was tested on a large dataset
of 25,000 tone adjustments. We find artefacts are not introduced
with this method and, save for a single challenging image, even
simpler tone curves account for all user tone adjustments.
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