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Abstract

MicroRNAs are small non-coding RNA molecules that form a post-transcriptional layer

of gene regulation. microRNA binds with messenger RNA in order to repress transla-

tion and accelerate its degradation, ultimately downregulating the expression of genes.

The mechanics of these bindings in animals are complex and entrenched in a myriad of

contextual factors which influence the specificity and efficacy of potential interactions.

This thesis describes the development of miRsight, a novel target prediction tool util-

ising advanced machine learning techniques. miRsight is trained using 44 target recog-

nition features compiled through testing on published microRNA-transfected RNA

sequencing data, an experimental procedure in which microRNA molecules are intro-

duced into a sample to quantify their impact on gene expression. In addition to the tool

itself, a database of pre-computed predictions is hosted at https://mirsight.info,

which also provides search, filter, and export functionality for user convenience.

The results of this study indicate that miRsight is able to more effectively predict

and rank microRNA targets compared to popular target prediction tools. This is

validated by examining the downregulation of gene expression from predicted targets

using microRNA transfection. In the 12 samples reserved for testing, miRsight is shown

to more consistently identify true targets in the top 100, 300 and 500 of predictions by

rank compared to TargetScan, MirTarget and DIANA-microT. Additionally, miRsight

is capable of producing several thousand total predictions for each microRNA while

maintaining this high rate of prediction accuracy.
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Chapter 1

Introduction

The expression of genes is a key mechanism in driving cell development, requiring

precise regulation in order to coordinate the effective functioning of an organism’s

biological processes. Gene expression is largely centred around the metabolism of

messenger RNA (mRNA), a molecule responsible for transferring genetic information

for use in protein synthesis. Regulating the levels of gene expression is a complex and

layered process; in addition to the transcription factors (TFs) that control the rate

that genes are transcribed into mRNA, post-transcriptional suppressive mechanisms,

such as microRNA (miRNA) binding, ensure its continuous regulation (Bartel, 2004).

mRNA suppression by miRNA in plants and animals occurs following complementary

base pairing between the two molecules. In animals, the miRNA:mRNA interaction

is complicated as a result of limited sequence complementarity (Zhang et al., 2007).

Furthermore, there are beyond two thousand unique miRNAs in Homo sapiens (Alles

et al., 2019), and mRNAs not limited to interactions with any single miRNA (Guo et al.,

2014b). As a result, the efficacy and specificity of miRNA targeting is dependent on

numerous interconnected contextual factors, the appreciation of which allows predictive

models to determine candidate targets.

The application for miRNA:mRNA target prediction is multifaceted due to the macro

importance of gene regulation in molecular biology and biomedical research, partic-

ularly in gene studies and biomarker discovery. miRNAs are embedded in a com-

plex regulatory network that mediates the host response to pathogens (Drury et al.,

2017). Dysfunctional miRNA gene regulation is also implicated at numerous stages in

19
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the development of various diseases (Corbett, 2018), such as cancer, where aberrant

miRNA abundance is known to disturb the expression of tumour-suppressive target

genes (Ali Syeda et al., 2020). Consequently, controlled miRNA delivery has emerged

as a potential therapeutic strategy by modulating specific immune responses (Lee et al.,

2019), including cellular response to treatments such as radiotherapy (Podralska et al.,

2020). Synthetic miRNAs have also shown promise in targeting virus structural pro-

teins and enhancing immune responses when encoded into vaccine formulations (Leon-

Icaza et al., 2019). To facilitate further research in these areas, computational tools

capable of accurately predicting miRNA interaction are important in disentangling the

complexity of miRNA-mediated regulation.

This thesis aims to build upon established research for miRNA:mRNA prediction

through the use of data mining and machine learning (ML) techniques on a sophisti-

cated feature set drawn from a wide array of published datasets. This goal is recognised

by the following chapters:

• Chapter 2 provides an examination of the broader biological systems relating

to gene regulation and reviews the target recognition features from established

research that will inform the basis of this study.

• Chapter 3 observes the impact of core target recognition features from popular

prediction tools and applies them in a basic rule-based model.

• Chapter 4 investigates several alternative methods for measuring target site

accessibility, a staple feature in many target prediction algorithms.

• Chapter 5 describes the development of an ML model for target prediction,

integrating discoveries from previous chapters as features.

• Chapter 6 discusses the conversion and finalisation of tooling from previous

chapters into the miRsight command line tool, in addition to the development of

a web application platform to host its predicted targets.

• Chapter 7 concludes this thesis with a summary and discussion of key findings

and potential further research.



Chapter 2

Background

2.1 Nucleic Acids

Within the cells of an organism, copies of genetic information are stored inside nuclei

in the form of deoxyribonucleic acid (DNA). Comprised of 23 pairs of chromosomes

in Homo sapiens, each containing thousands of genes, the genome encodes quater-

nary sequences of adenine (A), cytosine (C), guanine (G) and thymine (T) nucleobase

compounds.

Nucleobases combine with deoxyribose (sugar) and a phosphate group to form nu-

cleotides (nt), which in turn constitute polynucleotide chains by way of covalent bond-

ing of alternating sugar and phosphate groups (Watson and Crick, 1953b). Polynu-

cleotide chains form a single strand of DNA from 5′ → 3′, in reference to the direc-

tionality of the 5th and 3rd carbon atoms present in the furanose (sugar ring) between

chained molecules.

Source: Neurotiker, Public Domain

Figure 2.1: Carbon atoms in a furanose molecule. Chaining occurs at the 5′ and 3′ carbon
atoms, where a chained molecule would be considered upstream and downstream respectively.

21
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DNA is formed of two sugar-phosphate backbones bound together through canonical

Watson-Crick base pairing, in which hydrogen bonding occurs between complementary

A:T and C:G bases (Figure 2.2). The resulting double-stranded binding forms a double

helix structure (Watson and Crick, 1953a).

Source: Darryl Leja, Public Domain

Figure 2.2: DNA canonical base pairing. Pairing occurs between A:T and C:G on opposing
strands, themselves formed of chains between sugar and phosphate.

A derivative of DNA is ribonucleic acid (RNA), produced during transcription as a

functional intermediary between DNA and protein. Like DNA, RNA encodes genetic

information using a combination of four nucleobases, though uracil (U) is used in

place of T. The chemical structure of RNA differs from DNA as it is single-stranded,

significantly shorter and comprised of ribose as opposed to deoxyribose.

2.2 Genetic Regulatory Network

Cell function is varied despite the dissemination of identical DNA throughout an or-

ganism. This specialisation is driven by differences in which genes of the DNA are

selected in a process known as gene expression. Key to this process is transcription,

where genetic information is copied from DNA into a new RNA molecule, and transla-

tion, which synthesises proteins from the RNA template (Schwanhäusser et al., 2011).
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The overarching system is outlined in the central dogma of molecular biology, which

defines rules regarding the flow of genetic information between these three states (Fig-

ure 2.3). It highlights that information flows in a one-way direction from DNA→ RNA

→ protein, although atypical flows can occur in abnormal scenarios (Crick, 1970). The

process of gene expression can be quantified using a combination of experimental and

computational methods (Section 2.3).

Source: Barillot et al. (2012)

Figure 2.3: Central dogma of molecular biology. The solid lines define the flow of genetic
information between states, ruling that it may not flow back from protein to nucleic acid. The dotted
lines indicate abnormal scenarios typically associated with viruses.

Proteins are molecules formed of one or more amino acid residues, linked together

linearly in peptide or polypeptide chains (Ramachandran and Sasisekharan, 1968).

They are responsible for a range of vital processes within an organism and may be

further classified by their specialisation, for example chemical signalling (hormones),

immunity (antibodies) and catalysis (enzymes). RNA was initially characterised by

the role of mRNA in protein synthesis. However, the discovery of regulatory small

non-coding RNAs (sncRNAs), such as miRNA, has shown that its role is substantially

more diverse (Morris and Mattick, 2014).

2.2.1 Gene Expression

During transcription, different portions of genetic code are copied from DNA into

RNA. Depending on whether the transcribed RNA is coding (synthesises protein) or

non-coding (regulatory), the post-transcriptional pathway may include translation, in

which the RNA molecule conveys genetic information to the ribosome in order to
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produce proteins (Yusupova et al., 2001).

2.2.1.1 mRNA Transcription

mRNAs are large RNA molecules defined by their role in conveying genetic information

for a range of cellular processes. mRNA is first introduced in the form of precursor

mRNA (pre-mRNA) by RNA polymerase (RNAP) II enzymes, recruited to the DNA

at core promoter regions (DeHaseth et al., 1998). The likelihood of RNAP II binding is

influenced by cis-regulatory elements (CREs), non-coding DNA sequences in the DNA

that manage the interaction through the recruitment of TFs (Ong and Corces, 2011).

TFs play an important role in regulating gene expression and are broadly categorised

as activators and repressors; those that increase transcriptional activity and those that

suppress it.

Enhancers are positive-influencing CREs which bind with activators to deliver acces-

sory factors to the promoter (Calo and Wysocka, 2013). Antithetical to enhancers,

silencers suppress transcription through binding with repressor proteins to physically

block elongation and prevent splice recognition (Ogbourne and Antalis, 1998). Most

CREs must be local to the promoter to function effectively; however, enhancers act

relatively independent to sequence distance (Pennacchio et al., 2013). Instead, loaded

TFs act to reduce an enhancer’s relative physical proximity to promoters by taking

advantage of the coiling of DNA in the chromatin (Kolovos et al., 2012).

If successful, RNAP II binds to the promoter and creates a transcription bubble by

detaching the two DNA strands (Figure 2.4). RNAP II then moves upstream while

adding complementary bases to the template strand in a process known as elonga-

tion (Pal et al., 2005). When the 5′ end of the pre-mRNA emerges from the RNAP

II, it is capped with an altered G by a capping enzyme (Hirose and Manley, 2000).

Elongation continues until RNAP II has transcribed the remainder of the transcript,

including the polyadenylation signal (PAS) (Rodŕıguez-Molina et al., 2023).

Source: Proanonicholas, CC BY-SA 4.0

Figure 2.4: Creation of pre-mRNA by RNAP II. RNAP II creates pre-mRNA within the
transcription bubble by adding complementary bases to the template strand. A build-up of TFs can
be seen toward the 3′ end of the template strand.
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2.2.1.2 mRNA Processing

Protein-coding mRNAs undergo several stages of post-transcriptional modification in

order to transform them into their mature state for translation. Transcription ter-

mination in mammals is coordinated by a multi-protein complex of at least sixteen

polypeptides, notably encompassing the cleavage and polyadenylation specificity fac-

tor (CPSF) (Schönemann et al., 2014). The binding of the CPSF to the PAS region

catalyses the cleavage and synthesis of a polyadenine tail (poly(A) tail) at the 3′ end

of the pre-mRNA in protein-coding mRNA. The 5′ cap and poly(A) tail terminal mod-

ifications protect and stabilise the newly synthesised RNA and have a broad influence

on gene expression, with the latter also playing a role in translation (Gao et al., 2000).

A two-stage splicing process then strips the pre-mRNA of regions that do not code

for proteins (introns) (Figure 2.5). The removal of introns allows the coding regions

(exons) to be spliced to form the mature mRNA’s coding sequence (CDS), preparing

it for ribosomal interaction and facilitating translation (Zeitlin et al., 1987).

Source: Eric Green, Public Domain

Figure 2.5: RNA splicing Pre-mRNA is formed from DNA in transcription. After exons are spliced
following the removal of introns, the CDS is formed and the resultant single-stranded molecule is a
mature mRNA.

Mature mRNA is composed of a subset of the original segments produced from tran-

scription (Figure 2.6). In the work presented in this thesis, the 3′ untranslated region

(UTR) and CDS are of particular importance.

Source: Daylite, Public Domain

Figure 2.6: Structure of mature mRNA. Mature mRNA is composed of five distinct parts,
formed through several layers of processing.
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2.2.2 Post-transcriptional Regulation

Gene expression is managed by a variety of regulatory factors, most predominantly

TFs and miRNAs (Hobert, 2008). Unlike TFs, which regulate during transcription,

miRNAs form a post-transcriptional regulatory layer in both plants and animals (Krol

et al., 2010). miRNAs are a type of sncRNA, meaning that they are comparatively

small (18-25 nt) and do not code for proteins, instead binding with mRNA to disrupt

the expression of target genes.

2.2.2.1 miRNA Biogenesis

miRNAs are first transcribed from DNA by RNAP II in the form of primary miRNA

(pri-miRNA). In addition to a 5′ cap and poly(A) tail (Lee et al., 2004), pri-miRNA is

notably structured with a hairpin loop (Ha and Kim, 2014). Drosha, a type of RNA

III enzyme, cleaves the pri-miRNA into a smaller stem-loop of around 70nt, resulting

in precursor-miRNA (pre-miRNA) (Lee et al., 2003). Pre-miRNA is then exported

from the nucleus to the cytoplasm for further processing by the Dicer RNAP III en-

zyme (Murchison and Hannon, 2004), which binds to cleave the loop and ultimately

produce an 18-25nt long duplex with a 3′ overhang (Lund and Dahlberg, 2006).

Source: Murchison and Hannon (2004)

Figure 2.7: Trafficking miRNA from Drosha to Dicer. After cleavage by Drosha (a), the
pre-miRNA is transported out of the nucleus by an Exportin-5 protein, itself dependent on a Ras
protein export factor (b). In the cytoplasm, miRNA is prepared for interaction with Dicer (c).

Argonaute (AGO) is a central protein component in RNA-induced silencing complexes

(RISC), a type of heterogeneous molecular complex that targets genes for silenc-

ing (Pratt and MacRae, 2009). AGO is responsible for recruiting sncRNAs to the RISC

to function as binding site hosts for potential targets (Cloonan, 2015) (Figure 2.8). A
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strand of the miRNA duplex is selected by the AGO to function as the ‘guide strand’

in accordance with its 5′ stability characteristics (O’Brien et al., 2018), favouring low

thermodynamic stability and the presence of a 5′ terminal U (Khvorova et al., 2003).

Once loaded into AGO, a typical mature miRNA molecule consists of 22 nt, of which

the first eight bases constitute the seed region. Two miRNAs are said to belong to the

same family if they have identical seed sequences (Brancati and Großhans, 2018).

Source: Cloonan (2015)

Figure 2.8: Canonical pathway of miRNA biogenesis. Pri-miRNA is cleaved by Drosha and
then Dicer to produce short duplexes. After loading into AGO, a strand is selected and prepared for
binding with miRNA, forming a RISC.

2.2.2.2 miRNA-mediated Regulation

The miRNA-loaded RISC degrades or suppresses the transcription of mRNA molecules

through the repression (reduction of translation rate), deadenlyation (removal of adeno-

sine from the poly(A) tail) and decay of the mRNA, following a successful binding

between the RNAs (Bazzini et al., 2012). Bindings may also have imperfect comple-

mentarity, leading to a different suppressive mechanism whereby the mRNA bases are

blocked and rendered inaccessible to other molecules (Bartel, 2009). The mechanics of

miRNA:mRNA binding is further discussed in Section 2.4.

Source: Teixeira et al. (2014)

Figure 2.9: Binding methods of miRNA to degrade or suppress mRNA. miRNA:mRNA
binding may occur through two main scenarios. (Left) miRNA binds perfectly with mRNA, leading
to thorough cleavage and degradation. (Right) miRNA binds imperfectly with mRNA, suppressing
the mRNA target by preventing base access to other molecules.
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2.3 Genetic Sequencing

Genetic sequencing refers to the process of determining the sequence order of bases

within nucleic acids. A typical sequencing method applies biochemical techniques to

obtain a number of shorter sequence ‘reads’ (Figure 2.10). These reads are then re-

assembled to reconstruct the original sequence (Section 2.3.1).

Figure 2.10: Nucleobases in a sequenced read. A read encodes nucleobases using their repre-
sentative letters in a continuous sequence, each accompanied by a per-base sequencing quality score.

Sequencing methods are divided into technological generations in accordance with their

notable traits and underpinning techniques (Pettersson et al., 2009). Early endeavours

suffered a number of drawbacks; they were slow, manual and often involved the use of

radiation (Heather and Chain, 2016). The first generation Sanger technique (Sanger

et al., 1977) evolved to remedy these issues, becoming an industry standard at the end

of the twentieth century (Gharizadeh et al., 2006). Late first generation approaches

are instead recognised by their relatively long read length, limited throughput and low

rate of error (Hebert et al., 2018).

The next-generation sequencing (NGS) era, which comprises the second and third gen-

erations, began in the early 2000s following concurrent advancements in computing and

sequencing chemistry (Slatko et al., 2018). The invention of sequencing by synthesis

(SBS) techniques was key in facilitating NGS, originally finding application in the 2005

Solexa (Illumina) and 454 (Roche) platforms as reverse terminator sequencing (Bentley

et al., 2008) and pyrosequencing (Margulies et al., 2005) respectively.

The SBS techniques of the second generation forsake read length in favour of higher

throughput by short-sequencing reads in parallel (Reis-Filho, 2009), leading to a higher

rate of error due to a deterioration in read quality (Patel and Jain, 2012). Sequence

reassembly of these shorter reads is offset to advanced computational algorithms able

to benefit from periodic technological developments, such as cloud computing, enabling

a faster process that is more scalable to larger genomes compared to Sanger sequenc-

ing (Muir et al., 2016). In contrast, third generation sequencing utilises various tech-

niques that can produce longer reads (Schadt et al., 2010) and includes platforms that

prioritise portability and real-time sequencing (Jain et al., 2016). As a result, NGS
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is broadly recognised for its reduction in time and sequencing costs, yet substantially

increased output compared to the first generation (Kumar et al., 2019).

2.3.1 Sequence Reconstruction

In NGS, millions of reads are produced in parallel, requiring reassembly using com-

putational tools and algorithms. When there is no reference genome available, the

de novo assembly process uses linked data structures to infer the likely positions of

reads from overlapping portions of code. Figure 2.11 demonstrates how reads with

overlapping code ‘contigs’ are used to create ‘scaffolds’, bridges between contigs with

known gaps (Miller et al., 2010). De novo assembly is further complicated by short

NGS reads, as the overlap between sequences is not always sufficient (Li et al., 2010).

Source: Aaron Mayo, CC BY-SA 4.0

Figure 2.11: Sequence assembly process. In de novo assembly, overlaps between reads are
grouped into contigs, which are then assembled into scaffolds to represent the overall sequence.

When a species’ genome is published, such as with Homo sapiens, the reconstruction

process is simplified. In contrast to de novo assembly, sequence alignment reconstructs

the original sequence by mapping them against a reference genome. Sequence alignment

tools explore alignment possibilities by attempting to maximise a scoring function while

considering overlapping regions (Chowdhury and Garai, 2017). Per-base scoring is also

applied to mitigate read sequencing errors that would otherwise complicate the process

with erroneous bases (Engström et al., 2013).
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2.3.2 RNA-seq

RNA sequencing (RNA-seq) is an NGS sequence alignment technique that quantifies

gene expression by mapping RNA reads against a reference genome (Finotello and

Di Camillo, 2015). The core principle of RNA-seq holds that the presence of RNA is

indicative of an expressed gene; therefore, the greater the number of aligned reads, the

higher the level of gene expression (Figure 2.12). RNA-seq is the de facto standard

for estimating gene expression due to its superior precision compared to alternative

techniques (Wang et al., 2009).

In a differential expression analysis, the levels of expression in a sample are compared

against a control group. When the RNA level near a gene differs, the sample’s tested

condition can be said to affect the gene.

Source: Pham et al. (2015)

Figure 2.12: Differential expression analysis. Expression peaks (red) become more abundant
around gene sequences (black), where a higher peak implies greater expression of the gene. The tracks
show expression levels in two wild type samples (top) and corresponding mutant samples (bottom).
‘MGG 11149’ can be seen downregulated in the mutant mycelia sample compared to the wild type.

The difference in RNA abundance in the treated sample compared to the control sample

is often represented as expression fold change, the ratio difference between two expres-

sion values. If the fold change of a gene is zero, it is unaffected by the treatment (Love

et al., 2014). Expression fold change is typically transformed to a logarithmic scale,

for example, log2 fold change.

2.3.2.1 miRNA Transfection

Transfection is a lab procedure for delivering foreign nucleic acids into a sample to

observe its impact on protein expression against a control (non-transfected) sample.

miRNA transfection refers specifically to the introduction of miRNAs to examine the

impact of their interaction with endogenous mRNAs. A differential expression anal-

ysis utilising miRNA-transfected RNA-seq data is therefore capable of quantifying
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the suppressive impact of transfected miRNAs on gene expression profiles. Where a

downregulatory effect is observed, an mRNA can be considered a ‘true target’ of the

miRNA. An alternative to miRNA transfection is knockout, in which an miRNA is

instead removed from a sample to observe an opposite effect.

The log2 fold change of each gene can be represented using a cumulative plot to visualise

expression differentials following an miRNA transfection. In Figure 2.13, the lines show

the log2 fold change of genes with and without seed target sites. Where a leftward shift

can be observed compared to the ‘No seed binding’ control line, a downregulation in

expression of the genes in the associated category has occurred. This line separation

can be quantified using a one-sided two-sample Mann-Whitney (MW) test, as the

resulting p-value offers a statistical assessment of whether one group’s distribution

deviates significantly in a smaller (leftward) direction.

Source: prior work from the lab

Figure 2.13: Cumulative expression fold change plot. The fold change of miR-124 transfected
HeLa cells is compared against a control sample. The orange line plots genes which do not contain
a seed target site for miR-124. As genes without a seed target should not become downregulated
as a result of the introduction of miR-124, this functions as a control line. A leftward shift can be
observed in the green line compared to the orange, indicating the expression of genes containing a
seed target for miR-124 are downregulated. The blue line shifts further still, meaning supplementary
binding conferred a stronger downregulatory impact than seed binding alone. Meanwhile, the jagged
shape of this line highlights that there are fewer data points in this category compared to the others.

2.3.3 SHAPE-seq

Selective 2′-hydroxyl acylation analysed by primer extension sequencing (SHAPE-

seq) (Lucks et al., 2011) is an NGS technique for measuring RNA structure. Folded
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RNA is treated with a reagent to block reactions from reverse transcriptase, leading to a

series of truncated products that allow the original structure to be reconstructed (Fang

and Fullwood, 2016). When sequenced, a SHAPE reactivity value is produced at each

nt, where high values are generally indicative of weaker structure (Lucks et al., 2011).

Source: Lucks et al. (2011)

Figure 2.14: SHAPE-seq reactivity values. At each base of an RNA molecule (numbered in
black), SHAPE-seq outputs a reactivity value (colour coded). A high reactivity values indicates low
levels of internal structure and therefore an openness to external binding (Section 2.4.3).

2.4 Mechanics of miRNA:mRNA Binding

Binding between miRNA and mRNA in animals typically occurs along the 3′ UTR of

the mRNA at accessible seed target sites (Lewis et al., 2003). Figure 2.15 shows how

the miRNA is bound by AGO to ensure effective binding at bases 2-8 relative to the

5′ end, with potential supplementary pairing at positions 13-16. It also demonstrates

how certain bases, notably 1 and 9-12, are twisted from incoming mRNA to prevent

their binding in most cases (Bartel, 2009).

Source: Bartel (2009)

Figure 2.15: Model of miRNA:mRNA interaction. (A) miRNA (red) is loaded by AGO (grey)
to prepare for binding with mRNA (blue). Base 1 is twisted away, while 2-8 are positioned to be
accessible. (B) A match of bases 1-8. The mRNA’s A is recognised by an external factor, such as the
AGO. (C) Seed pairing causes AGO to loosen around the 3′ region of the miRNA to support further
binding. (D) AGO locks the duplex and positions the active site (black arrow) to cleave the mRNA.
(E) Supplementary binding of bases 13-16 (Section 2.4.2). The structure of bases 1-9 is unaffected.
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Thermodynamic stability is a major determinant of the efficacy (down-regulatory im-

pact of a binding on mRNA expression) of a binding. Binding stability is affected by

many factors, including the number of paired bases (Section 2.4.1), presence of gaps

(Section 2.4.4) and wobbles (Section 2.4.5). Minimum free energy (MFE) is a common

measure of this stability (Ui-Tei et al., 2008).

2.4.1 Seed Binding

Seed sites are short and conserved sequences which function as fixed anchor points on

the miRNA for binding (Friedman et al., 2009). The seed region is defined as positions

1-8 at the 5′ end of the miRNA (Sethupathy et al., 2006). To differentiate which specific

combination of bases are utilised, a unique ‘kmer’ identifier is designated, where k refers

to the number of bases involved in binding.

Although precise kmer identifiers can differ by publication, the convention follows

that seed sites are built relative to a ‘6mer’ (six nt) match. There are theoretically

three possible locations for a 6mer within the seed region (Figure 2.16): positions 1-6

(6merα), 2-7 (6merβ) and 3-8 (6merγ). However, due to the relatively low efficacy of

bindings built about 6merα and 6merγ, 6merβ is considered the primary 6mer site,

with 6merγ often referred to as the ‘6mer offset’. This means that a 6mer is strictly

defined as positions 2-7, despite these other possibilities (Ellwanger et al., 2011).

Source: Ellwanger et al. (2011)

Figure 2.16: Potential seed identifiers. Seed bindings are generally recognised relative to a six-
base match. The 6mer, 7mer-a1, 7mer-m8 and 8mer definitions are the most common in literature.

Beyond the 6mer, it is possible for bases 1 and 8 to provide additional stability to a

binding (Nielsen et al., 2007). These ‘7mers’ are identical to 6mers, except an additional

base is brought to relevance by one of two scenarios: a match at position 8 (7mer-m8)

or an A present at position 1 (7mer-a1). It is important to note that for 7mer-a1,

base 1 does not need to be matched, as the structure of miRNA:mRNA binding makes

pairing here unlikely (Section 2.4). Finally, an ‘8mer’ simply refers to a 6mer with a
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match at position 8 and an A present at position 1, or a combination of the 7mer rules.

In cases where there is a match at position 1, these 6merα derived sites are sometimes

distinctly referred to as ‘7mer-m1’ and ‘8mer-m1’.

Source: Bartel (2009)

Figure 2.17: Core seed type summary. (A-C) The 7mer and 8mer sites are subsets of 6mer,
specifically containing either an A at base 1 of the mRNA, a match at base 8, or both. (D-E) The
two primary 6mer sites, in which six consecutive bases are paired beginning at either base 2 or 3.

Binding efficacy increases multiplicatively for each additional base pair (bp) at the seed

site (Fang and Rajewsky, 2011). 7mer-m8 is also known to have a greater downregu-

latory effect than 7mer-a1, meaning the ranked efficacy of each seed site is: 8mer >

7mer-m8 > 7mer-a1 > 6mer (Baek et al., 2008). The performance of 6mers is superior,

yet comparable, to instances of 6mer offset and no binding site (Figure 2.18). This ulti-

mately leads to their exclusion from many target prediction algorithms (Section 2.5.3).

Source: Bartel (2009)

Figure 2.18: Comparison of relative seed site efficacy. Relative rankings from most (top) to
least (bottom) effective: (A) Seed types. (B) 7mers based on the cumulative effect of multiple target
sites (Section 2.4.7). (C) Seed positioning. (D) Local AU content (Section 2.4.3). (E) Additional
supplementary pairing (Section 2.4.2).



35

In terms of frequency, a genome-wide mapping of RNA binding sites found that 6merα

and 6mer offset occur most often, at approximately the same rate of 24% of all sites.

This is followed by 6merβ, 7mer-m8, 7mer-a1 and finally 8mer, with 19%, 13%, 10%

and 9% respectively (Ellwanger et al., 2011). Since alternate 6mer definitions are not

always used, this would make the combined 7mer category the most populous.

2.4.2 Supplementary Binding

It is possible to have additional base pairing towards the 3′ end of the miRNA. These

supplementary pairings offer increased efficacy to a binding by stabilising the regulatory

interaction (Pasquinelli, 2012). In such instances, a seed binding is still required even

with extensive 3′ pairing (Brennecke et al., 2005). The characteristics of supplementary

binding are not as well understood as seed binding, though bases 12-17 are believed

to be important, with 13-16 being of particular significance. In this region, contiguous

pairings of 3-5 bases have a substantial impact on the binding (Grimson et al., 2007).

After accounting for the lack of accessibility in bases 9-12, these bases are of closest

proximity to the seed (Section 2.4).

Source: Friedman et al. (2009)

Figure 2.19: Key bases in supplementary binding. Supplementary binding occurs toward the
3′ end of an miRNA. Bases 13-16 are thought to be the most important in supplementary binding,
followed by 12 and 17.

Supplementary binding can also confer specificity (filters to the range of potential

targets) to miRNAs of the same family (Broughton et al., 2016). This specificity is

largely influenced by the degree and stability of supplementary binding, rather than the

impact of specific base combinations (Brennecke et al., 2005). The relative frequency

of supplementary binding is low across all types of seed, and significantly rarer than

seed binding (Bartel, 2009).
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2.4.2.1 Compensatory Binding

A subclass of supplementary binding is compensatory binding. In a perfect binding,

there are no gaps (Section 2.4.4) or wobbles (Section 2.4.5), meaning the seed and its

target are perfectly complementary. In cases of imperfect seed binding, it is possible for

supplementary pairing to ‘compensate’ and improve binding stability (Bartel, 2009).

Compensatory binding is rarer than supplementary binding, occurring at a rate of 1.5%

of all bindings, compared to 5% for supplementary binding (McGeary et al., 2022).

Source: Friedman et al. (2009)

Figure 2.20: Compensatory binding for a mismatched seed. Extensive binding in the 3′

region of the miRNA may partially compensate for seed instability.

2.4.3 Target Site Accessibility

The single strands of mRNA fold intramolecularly to form complex interconnected

base pairing internally, known as secondary structure (Mahen et al., 2010). Secondary

structure is a factor in mRNA stability, affecting translation and protein synthesis (Sha-

balina et al., 2006). Necessary to RNA function, unfavourable positioning can interfere

with miRNA:mRNA interaction by blocking potential binding sites (Long et al., 2007).

Source: UCSC, Public Domain

Figure 2.21: Secondary structure of an mRNA. An example of the predicted folding of an
mRNA’s 5′ UTR. Internal base pairing occurs frequently, forming motifs, such as loops.

Accessibility is defined as a measure of how open a base is to binding machinery as a

result of secondary structure. Site inaccessibility leads to a reduction in binding effi-

cacy similar to that of imperfect sequence complementarity in the seed (Kertesz et al.,
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2007), making it important in understanding local site context. Local AU content has

traditionally served as an indirect measure of accessibility (Grimson et al., 2007), as

the presence of A and U flanking the seed are indicative of weaker secondary struc-

ture (Riffo-Campos et al., 2016). More recently, direct probing techniques, such as

SHAPE-seq (Section 2.3.3), offer potentially more accurate accessibility measures.

2.4.4 Binding Gaps

A gap, or bulge, is a type of structural abnormality where a base is mismatched on

one or both sides of a binding to allow the rest of the sequence to pair. They generally

occur as a result of secondary structure factors.

Source: Kim et al. (2005)

Figure 2.22: Binding abnormalities. An illustration of various binding structural abnormalities.

Gaps are particularly detrimental to miRNA efficacy when they occur in the alignment

of the seed to the mRNA. Continuous sequences of at least 4-5 nt in this region are

required for effective function, even with extensive compensatory binding (Brennecke

et al., 2005). Nonetheless, sufficient compensation and favourable gap positioning can

allow the overall binding to remain effective (Seok et al., 2016). Figure 2.23 shows how

a bulged 7mer or 8mer may perform as well as a 6mer in these scenarios.
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Source: Hammell et al. (2008)

Figure 2.23: Comparison of perfect and imperfect seed binding. A 7mer or 8mer containing
a gap is as effective as a perfect 6mer, while a 7mer or 8mer with a single G:U wobble has similar
efficacy to a 6mer offset binding. The inclusion of more than one wobble substantially reduces efficacy.

Gaps in the supplementary portion of a binding are tolerated until around five nt (Kiri-

akidou et al., 2004). There is no significant preference for symmetrical or asymmet-

rical gaps; however, traditional base pairing is still favoured over altered structural

pairings (McGeary et al., 2022).

2.4.5 Wobble Pairs

Wobble pairs are those which occur outside the canonical Watson-Crick pairs, most no-

tably G:U base pairings. Wobbles generally provide less binding stability than canon-

ical pairings (Higgs, 2000), although this varies depending on their positioning and

type (Didiano and Hobert, 2006). As with gaps, their presence in the seed is known to

have a strong detrimental effect on miRNA efficacy (Doench and Sharp, 2004).

Source: Peterson et al. (2014)

Figure 2.24: Wobble pairing within the seed. The G:U pair in the seed is a wobble pair. While
it may provide stability to the seed binding, it is inferior to a canonical base pairing.
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A 7mer or 8mer with a single G:U wobble has similar performance to a 6mer offset

binding (Xu et al., 2014), although more than one wobble substantially reduces efficacy

(Figure 2.23).

2.4.6 Evolutionary Conservation

Sequences of genetic code may be retained across species irrespective of changes brought

about by evolution. Such a resistance to mutation can therefore be interpreted as an

indicator of biological importance. Conservation is often quantified by an alignment of

multiple species sequence tracks (Figure 2.25). Where a set of bases do not commonly

mismatch, they can be said to be conserved.

Source: Friedman et al. (2009)

Figure 2.25: Multiple aligned species conservation tracks. (Top) Ten species tracks aligned
to compare sequence conservation. (Bottom) Conservation scores for the sequence tracks. The 6mer
is more conserved than the 7mer-m8, itself more conserved than the 8mer.

In the context of miRNA:mRNA binding, seeds sites are well conserved in animals (Gai-

datzis et al., 2007), across both mammalian and vertebrate species (Yang et al., 2011).

A high level of conservation in a weaker seed type may make it more effective than a

non-conserved, yet stronger seed type; a highly conserved 6mer will be more effective

compared to a non-conserved 7mer (Lewis et al., 2005). However, it should be noted

that low conservation does not necessarily mean a sequence is without function (Johns-

son et al., 2014).

Figure 2.26 highlights how traditionally less effective seeds, such as the 6mer (2-7),

are on average less conserved than the 7mer-a1 (1-7), 7mer-m8 (2-8) and 8mer (1-8).
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Different gap types (BM, BT, LP) and G:U wobble arrangements (GUM, GUT) are

also shown to have similar enrichment to a 6mer.

Source: Gaidatzis et al. (2007)

Figure 2.26: Conservation levels for different seed variations. (a) Breakdown of seed types:
perfect (left), and imperfect as a result of gaps (right) and wobbles (bottom). (b) A comparison of
seed type conservation across four species.

2.4.7 Target Site Abundance

A single mRNA molecule often contains multiple seed target sites (MTS) within its

3′ UTR. The same seed target sequence may also repeat multiple times throughout,

particularly in the case of AU rich seeds (Garcia et al., 2011). In these instances,

there is a strong correlation between the number of target sites for a given miRNA

and the strength of the induced regulation from its binding, as each site can function

redundantly (Doench et al., 2003). This increased down-regulatory effect is illustrated

in Figure 2.18, where two 7mers perform more effectively than a single 8mer, which

would otherwise be the biggest single determinant of efficacy.

The CDS is the primary targeting region for plant miRNA:mRNA interaction (Li et al.,

2011), where near-perfect complementarity of the miRNA is common (Rhoades et al.,

2002). This contrasts with animals, where meaningful targets are most prominent in

the 3′ UTR. Nonetheless, there are approximately 1.1 million potential miRNA target

sites in the 3′ UTR of Homo sapiens, less than the 1.6 million contained within the

CDS (Zhou et al., 2009). Furthermore, miRNA target sites in the CDS of animals are

functional (Hausser et al., 2013), though typically still less effective than those in the

3′ UTR (Schnall-Levin et al., 2011). Still, certain miRNAs are known to target the

CDS specifically (Reczko et al., 2012).
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Targets present in the CDS are able to provide redundancy to those located in the

3′ UTR. However, unlike MTS in the 3′ UTR, the effect is synergistic based on their

presence rather than number (Fang and Rajewsky, 2011).

Source: Fang and Rajewsky (2011)

Figure 2.27: Synergistic effect of CDS targets on 3′ UTR targets. The bars indicate a CDS
seed target is more effective than instances of no seed; however, it is significantly inferior to a 3′

UTR target. When the two exist together, a disproportionate effect is observed. This change is also
represented using a cumulative plot (Section 2.3.2.1).

2.5 Computational Prediction of miRNA Targets

The prediction of miRNA:mRNA binding is a non-trivial computational problem due

to the large number of potential mRNA targets available to each miRNA (Guo et al.,

2014b). As discussed in Section 2.4, the existence of a seed target site is not solely

sufficient in determining an effective binding, as there are many other factors to con-

sider (Didiano and Hobert, 2006). This complexity is compounded by the many-to-

many nature of the problem; a single target site may be targeted by miRNAs from the

same family and an mRNA may contain a large number of different target sites within

its 3′ UTR and CDS (Grimson et al., 2007).

Many prediction algorithms have been developed with the goal of predicting miRNA

targets. These algorithms generally specialise in either plants or animals, or maintain

separate versions, due to a lack of overlap in target recognition mechanisms between

the two (Srivastava et al., 2014). Algorithms are typically published in the form of

a command line program or web application and optionally provide a tabular data

file containing pre-computed targets. Although early prediction efforts centred around
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conditional rule sets with fixed thresholds, prediction tools increasingly utilise ML in

their approaches.

2.5.1 Machine Learning

ML is the computational process of identifying underlying patterns in data through

the development and application of algorithms (Bishop and Nasrabadi, 2006). More

specifically, it refers to the training of a model on a set of data using an algorithm to

analyse patterns and infer an output. ML solutions are largely automated, with little

explicit programming (Samuel, 1959). This allows them to scale to large datasets, po-

tentially recognising patterns that may otherwise be overlooked. The domain shares

significant overlap with data mining, a parallel field centred around the understand-

ing, processing and extracting of important ‘features’ from raw data to better suit

analysis (Friedman, 1998). The extraction of such features is important in identifying

characteristics and measurable properties from data in a form which the model can

use to inform its decision-making process. ML also has a strong basis in statistics,

as problems can benefit from both ML pattern prediction and statistical inference (Ij,

2018).

The process is broadly divided into supervised, unsupervised and reinforcement ap-

proaches. In supervised learning, data is ‘labelled’ with an answer, so the model can

learn by comparison. This is contrary to unsupervised learning, where the model must

maintain internal error correction metrics while attempting to reproduce provided ex-

amples. Similarly, in reinforcement learning, the model learns according to a feedback

mechanism in the environment to reward positive learning (Kotsiantis et al., 2007).

In miRNA:mRNA target prediction, supervised learning is effective because the dataset

can be built using experimentally verified examples (Riolo et al., 2020). Predictions

may therefore be made by way of classification, in which a given miRNA is categorised

as a target or non-target, or regression, where the model predicts a value such as the

level of downregulation caused by an miRNA. There are many supervised learning

algorithms; elements such as complexity, data availability, computational limitations

and the cost of incorrect predictions each affect an algorithm’s suitability to a given

problem.
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2.5.1.1 Sampling and Splitting

A dataset is typically split into training and test sets. During training, the model

may only learn patterns from the training set to ensure that the test set remains an

objective measure of performance. In supervised learning, the training set retains its

label so it may learn by example. Conversely, this label is removed from test cases to

prevent the model observing the answer during testing. A balance between these sets

is required to build an optimised model and effectively evaluate its performance (Xu

and Goodacre, 2018).

A common problem during training is ‘overfitting’, which occurs when the model learns

its training data too closely, impeding its wider application to parallel problems. In-

versely, there may also be ‘underfitting’, in which the model is unable to attain an

in-depth understanding of the data.

Source: Kolluri et al. (2020)

Figure 2.28: Model fitting types. A visualisation of a model’s decision boundary while cate-
gorising two types of data points. (Left) Underfitting: the model’s understanding of the problem is
too simplistic; it cannot accurately solve it. (Center) Optimal fit: the problem is understood and
outliers are ignored, a well-balanced solution. (Right) Overfitting: this specific problem is too well
understood, the model will have issues scaling to other problems.

An optional subset, in addition to the training and testing sets, is the validation

set. The use of validation allows the model a degree of self-correction during train-

ing through techniques such as ‘early stopping’, where the model stops training when

overfitting is detected (Ying, 2019). Validation is also useful for optimising ‘hyper-

parameters’, high-level configuration settings unique to each ML algorithm that affect

performance and generalisation. It may also be applied during feature selection to help

reduce the bias that can otherwise occur (Fox et al., 2017). In this way, the validation

set functions as a kind of ‘internal’ test set.

An alternative approach to using an explicitly defined validation set is cross-validation.
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Cross-validation techniques sample the training set while withholding portions for in-

ternal testing, freeing up data that would have otherwise been reserved. The portion

of data selected, and the number of iterations used to test it, depends on the method

of cross-validation.

Source: Gufosowa, CC BY-SA 4.0

Figure 2.29: k-fold cross-validation. The data is iterated k times. Each time, 1
k of the data

points are sampled for use in internal testing (validation) and the rest is used to train the model.

There is some consensus regarding data splitting ratios, but no explicit rules. Generally,

the training set is composed of between 50% and 80% of the overall dataset. The test

set should utilise the remainder of the data unless a validation set is used, in which

case the validation and test sets should evenly share the remaining data.

2.5.1.2 Decision Tree

Decision tree (DT) uses a flowchart-like decision-making process, forming a graph (tree)

built around edges (branches) and nodes. A DT begins with a singular node (root),

consists of any number of layers (subtrees) containing internal decision nodes, and

ends with one or more terminal nodes (leaves) (Safavian and Landgrebe, 1991). At

each decision node, a dissection occurs with the intent of filtering data points toward

a final classification.



45

Source: Charbuty and Abdulazeez (2021)

Figure 2.30: Visualisation of the DT algorithm. DT dissects data at each decision node, leading
to leaf nodes of one or more data points.

With unrestricted depth and splitting rules, DTs tend towards overfitting, as each data

point will eventually be individually categorised. The pruning of redundant subtrees

is therefore a fundamental step in the DT algorithm (Mehta et al., 1995). There are

many pruning algorithms for DT, for example CART (Breiman, 2017), which is also

used in the random forest (RF) algorithm.

DT is a conceptually simple algorithm, which is likely a factor in its popularity (Char-

buty and Abdulazeez, 2021). ML is highly stochastic and difficult to generalise, however

individual DTs often have poor accuracy when applied to complex problems (Speiser

et al., 2019).

2.5.1.3 Random Forest

Ensemble models utilise a collection of internal classifiers to produce an aggregate

prediction using various weighting and resampling techniques. Despite the simplicity

of the theory, ensembles commonly outperform single classifiers (Dietterich, 2000). A

popular ensemble algorithm is RF, a homogeneous ensemble of CART-based DTs. RF

maintains similar strengths to an individual DT, while achieving greater performance

and a stronger inherent resistance to overfitting (Breiman, 2001).

At its core, RF constructs a number of randomised CART trees. Each tree is provided

with different data subsets through bootstrap aggregating (bagging), a technique that

reduces the instability of estimates in complex problems by maintaining bias while

reducing variance (Biau and Scornet, 2016). Bagging creates random samples from a
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dataset ‘with replacement’, meaning that an instance of data may be selected more than

once. Individual trees influence RF output by voting using unweighted (classification)

or weighted (regression) scoring (Cutler et al., 2012).

RF is a consistently high-ranking algorithm when applied to general classification prob-

lems (Fernández-Delgado et al., 2014). It has seen use in bioinformatics because of its

efficiency at handling large and complex data structures, resistance to overfitting, and

effective generalisation due to bagging (Qi, 2012). Its good out-of-the-box performance

and relative simplicity, due to the low number of hyperparameters requiring tuning,

have made RF a popular ML algorithm (Biau and Scornet, 2016).

2.5.1.4 Support Vector Machine

Support vector machine (SVM) is a mathematically founded algorithm that aims

to optimise the decision boundary (hyperplane) between data points (support vec-

tors) (Karatzoglou et al., 2006). This is achieved through an iterative process of shifting

the hyperplane against measurements taken from candidate support vectors to ensure

the space (margin) is maximised.

The SVM kernel function is responsible for transforming data points into a higher

dimension. In doing so, SVMs are able to form the hyperplane in a space allowing for

a linear separation that would otherwise be impossible.

Source: Kwak (2013)

Figure 2.31: SVM kernel transformation to create linear separation. In 2D, the data types
are not linearly separable. In 3D, the hyperplane (yellow) can more simply dissect the two groups.

SVMs have been used in biological problems to classify microarray gene expression pro-

files, proteins, and DNA sequences (Noble, 2006). However, SVMs have performance

issues regarding runtime complexity and speed (Osuna and Girosi, 1998); in particular,
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non-linear kernels cannot scale to problems with large datasets or feature counts (Lin

and Lin, 2003). A moderately sized dataset may also encounter storage space issues,

with constraint matrices reaching into the millions of cells with only a few thousand

data points (Lee and Mangasarian, 2001).

2.5.1.5 Deep Neural Network

Artificial neural network (ANN) is an umbrella term for algorithms that simulate the

learning processes of biological neural networks in order to capitalise on their high

capacity for learning, adaptability, generalisation and massive parallelism (Jain et al.,

1996).

ANNs are formed of a network of nodes (neurons), connected by edges (synapses) and

arranged into layers. The first layer is referred to as the ‘input layer’ and the last is

the ‘output layer’; there may be any number of layers between them, known as ‘hidden

layers’ (Figure 2.32). An ANN is said to be ‘deep’, or a deep neural network (DNN),

when the number of hidden layers exceeds one, and ‘very deep’ at ten (Schmidhuber,

2015). The direction that information flows between layers determines whether it is

feedforward or recurrent. While the former allows neurons to connect bidirectionally,

feedforward ANNs are sequential; information may only transmit backwards in feed-

forward ANNs via backpropagation, where weights are progressively tuned according

to a loss function.

Figure 2.32: Densely connected DNN layers. The network is composed of three layers, one of
them being a hidden layer. The layers are dense, as each neuron is fully connected to the next.

Each neuron assigns a weight to incoming synapses. These weights are collected and

joined with a bias in the neuron’s summation function (Equation 2.5.1). The overall
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output of the neuron is then determined by feeding the net input into an activation

function, which limits the result to a finite value (Dongare et al., 2012). This overall

process is illustrated in Figure 2.33.

net =
∑
i

(xiwi) + b. (2.5.1)

Source: Koutsoukas et al. (2017)

Figure 2.33: Mathematical breakdown of an artificial neuron. The sum of the weights and
inputs are combined with a bias in the summation function (Equation 2.5.1). This value is then
supplied to the activation function, which determines the overall output of the neuron.

A single hidden layer is sufficient to solve most problems; however, a second hid-

den layer allows DNNs to represent functions of any shape at the cost of potential

overfitting (Heaton, 2008). Applying dropout, where learned information is randomly

omitted, at 50% between densely connected layers is an effective means of reducing

overfitting, as it forces the network towards a more averaged understanding of the

problem (Hinton et al., 2012). Although it is problem-specific, DNNs with two hidden

layers generally perform more effectively than those with a single hidden layer (Thomas

et al., 2017), and the use of a second hidden layer may optimise accuracy (Stathakis,

2009).

Deep learning has seen biological application specifically in miRNA research, as its

ability to understand complex patterns is useful in problems that are otherwise in-

tractable (Mahmud et al., 2018). Still, a significant setback to its application is that

it requires considerable datasets to function effectively (Chen et al., 2018a). The im-

portance DNN places on features is often described as being a ‘black box’ compared

to other algorithms (Almeida, 2002). However, this can be somewhat mitigated by

adjusting input groups to observe effects on the output (Li et al., 2019).
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2.5.2 Prediction Tools

Table 2.1 lists by citation the most popular tools occupying the same problem domain

as this study. For consideration, a tool must support prediction for Homo sapiens and

not be a pure aggregator of other tools’ outputs. Information is collected and cross-

referenced between Tools4miRs (Lukasik et al., 2016), miRToolsGallery (Chen et al.,

2018b), a published study of common features (Peterson et al., 2014) and each tool’s

publications and official website.

Table 2.1: Summary of popular target prediction tools 1/2

Name (Ver.*) Versions Published Use Cited† Active‡

TargetScan

(8.0)

1.0 (Lewis et al., 2003)

2.0 (Lewis et al., 2005)

4.0 (Grimson et al., 2007)

5.0 (Friedman et al., 2009)

6.0 (Garcia et al., 2011)

7.0 (Agarwal et al., 2015)

8.0 (McGeary et al., 2019)

Both 42,514 ✓

miRanda

(mirSVR 3.3a)

1.0 (Enright et al., 2003)

2.0 (John et al., 2004)

microRNA.org (Betel et al., 2008)

miRanda-mirSVR (Betel et al., 2010)

CLI 15,410 ✕

PicTar Original (Krek et al., 2005)

Update (Lall et al., 2006)

Web 6,076 ✕

MirTarget

(v4.0)

MirTarget (Wang and Wang, 2006)

MirTarget2 (Wang and El Naqa, 2008)

miRDB (Wang, 2008)

miRDB 2015 (Wong and Wang, 2015)

MirTarget3 (Wang, 2016)

MirTarget v4.0 (Liu and Wang, 2019)

miRDB 2020 (Chen and Wang, 2020)

Web 5,529 ✓

RNAhybrid

(2.1.2)

RNAhybrid (Rehmsmeier et al., 2004)

Web update (Krüger and Rehmsmeier, 2006)

Both 4,208 ✕

* Version refers to the latest version of the algorithm, as opposed to the tool.

† Via Google Scholar. For tools with multiple versions, citations are summed across papers.

‡ Activity is determined by the presence of a maintained web application or update within five years.
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Table 2.2: Summary of popular target prediction tools 2/2

Name (Ver.*) Versions Published Use Cited† Active‡

DIANA-

microT (CDS)

microT (Kiriakidou et al., 2004)

microT web (Maragkakis et al., 2009b)

microT-v4.0 (Maragkakis et al., 2011)

microT-CDS (Reczko et al., 2012)

microT-v5.0 (Paraskevopoulou et al., 2013)

microT 2023 (Tastsoglou et al., 2023)

Web 4,003 ✓

MiRscan Original (Lim et al., 2003a)

Update (Lim et al., 2003b)

Web 3,548 ✕

PITA (6) (Kertesz et al., 2007) Both 2,693 ✕

RNA22 (2.0) 1.0 (Miranda et al., 2006)

RNA22-GUI (Loher and Rigoutsos, 2012)

Both 2,602 ✕

IntaRNA

(2.4.1)

CopraRNA

(2.1.4)

IntaRNA (Busch et al., 2008)

Freiburg RNA Tools (Smith et al., 2010)

CopraRNA (Wright et al., 2013)

CopraRNA-IntaRNA (Wright et al., 2014)

IntaRNA 2.0 (Mann et al., 2017)

Freiburg RNA T. 2018 (Raden et al., 2018)

Web 1,947 ✓

miRCode (11) (Jeggari et al., 2012) Web 627 ✕

ElMMo (3) ElMMo (Gaidatzis et al., 2007)

MirZ (Hausser et al., 2009)

Web 523 ✕

TargetRank (Nielsen et al., 2007) Web 511 ✕
* Version refers to the latest version of the algorithm, as opposed to the tool.

† Via Google Scholar. For tools with multiple versions, citations are summed across papers.

‡ Activity is determined by the presence of a maintained web application or update within five years.

The majority of popular tools were first published between 2003 and 2008 and received

an average of three major publication updates. TargetScan, MirTarget and DIANA-

microT are notable for being the only tools from the original batch to still receive

regular updates, a likely factor in their comparatively high citation counts. Despite

being first to publish, miRanda has not received an update since its mirSVR overhaul

in 2010. PicTar, RNAhybrid and PITA were also relatively popular upon release, yet

were only maintained for a short period of time.
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TargetScan, miRanda-mirSVR, MirTarget and DIANA-microT are identified for fur-

ther investigation due to their popularity and, except miRanda-mirSVR, status as ac-

tively maintained tools. Although it has not been recently updated, miRanda-mirSVR

is instead chosen because of its research significance. Although all four tools initially

used rule-based prediction, their current versions utilise ML.

2.5.2.1 TargetScan

TargetScan has undergone significant changes throughout its eight primary versions,

though each iteration generally builds on existing logic. The original version scans

the 3′ UTR for perfect seed matches and extends out the window until a mismatch

occurs. This is combined with several other metrics, such as thermodynamic stability,

to generate a score (Lewis et al., 2003). Version 2.0, known as TargetScanS due to

its reliance on targets built about 6mers, mostly simplifies this approach by removing

redundant logic and focusing on conserved 6mer, 7mer and 8mer matches (Lewis et al.,

2005). Version 4.0 introduced a primitive version of the context score, where seed type,

supplementary pairing, local AU and positional contributions are summed to grant each

target a confidence metric (Grimson et al., 2007). This was superseded in version 6.0

by context+, which also accounts for MTS and seed pairing stability (Garcia et al.,

2011). In TargetScan 7.0, the context++ model was introduced. Here, an ensemble of

four linear regression models are separately trained on 6mer, 7mer-a1, 7mer-m8 and

8mer (Agarwal et al., 2015). Of the 26 total features, 14 are selected based on their

importance towards each category.

TargetScan 8.0 marks a fundamental shift from traditional miRNA:mRNA targeting

by providing an additional option for ranking predictions using a novel biochemical

approach (McGeary et al., 2019). Since miRNA is loaded into AGO to facilitate bind-

ing (Figure 2.15), the usage of RNA bind-n-seq to determine miRNA:AGO occupancy

allows a more direct approach to target recognition. This method also utilises a convo-

lutional neural network (CNN) trained on values derived from RNA bind-n-seq using

TensorFlow (Abadi et al., 2015). According to TargetScan, the predictions made do

not significantly differ from previous versions, as the change only affects its ranking

system.
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2.5.2.2 miRanda-mirSVR

miRanda-mirSVR trains a support vector regressor (SVR) (Smola and Schölkopf,

2004), a type of SVM, on predictions output by miRanda. The miRanda-mirSVR

model also expands the feature set of the original miRanda with new site accessibility

features. This allows miRanda to remain competitive with newer prediction tools with-

out sacrificing the accuracy of the original algorithm (Betel et al., 2010). The miRanda

portion of the algorithm uses a conditional rule set to determine targets according to

a primitive feature set, including conservation and the existence of seeds (John et al.,

2004). Predictions are then funnelled through mirSVR, where they are scored and

ranked.

Source: John et al. (2004)

Figure 2.34: Rule flowchart of miRanda 2.0. The miRanda algorithm predicts targets in
accordance with a set of rules. The output targets are used as input to miRanda-mirSVR.

2.5.2.3 MirTarget

The MirTarget algorithm is used to generate predictions for miRDB. In developing

MirTarget v4.0, a large-scale RNA-seq dataset of 25 miRNA transfection experiments

was produced to identify and rank key binding features (Table 3.1). An SVM is trained

on a total of 96 features, largely centred around per-base nt identification. Although all
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features are used in the final model, regardless of statistical significance, each feature

is ranked by recursive feature elimination (RFE) using Weka (Eibe et al., 2016), where

one feature is removed per iteration (Liu and Wang, 2019). The SVM’s hyperparam-

eters are optimised using LIBSVM (Wu et al., 2003), which is also used to output a

probability score for each prediction. The use of RFE and probability scoring had first

been introduced in MirTarget3 (Wang, 2016), with ML via SVM beginning in MirTar-

get2 (Wang and El Naqa, 2008). The original tool used a heuristic approach where

feature filters were weighted by importance. These weights allowed stronger filters to

bypass weaker filters, provided certain thresholds were met (Wang and Wang, 2006),

which is otherwise a limitation of rule-based prediction.

2.5.2.4 DIANA-microT

DIANA-microT is an algorithm branch of the DIANA Tools suite. Predictions are

made by combining positive and negative influencing features using linear models,

internally referred to as miRNA-recognition elements (MREs) (Reczko et al., 2012).

The feature set is optimised using the Akaike information criterion from the R MASS

package (Venables and Ripley, 2013), an estimator of error for a prediction set. The

overall MRE score is computed in DIANA-microT by comparison of SVM, ANN, RF

and generalised linear models. Before ML, prior versions of the program formed their

predictions by sliding sequence windows along the 3′ UTR to compute the binding

energy of pairings measuring at least three nt. After extraction, these windows would

be processed to remove overlaps and filtered into a set of predictions using feature

rules (Kiriakidou et al., 2004).

DIANA-microT-CDS is unique in its additional handling for CDS targets. In this

iteration of the tool, all optimisation is performed separately for both the CDS and

3′ UTR, as both are believed to use different MREs. In doing so, DIANA-microT-

CDS can support CDS targets without lowering its accuracy when predicting 3′ UTR

targets.

2.5.3 Seed Definition

In all tools except MirTarget, the traditional 6mer, 7mer-a1, 7mer-m8 and 8mer def-

initions are supported, while 6mer offset is monitored in some capacity (Table 2.3).

The same tools also allow a maximum of one G:U wobble pair to be present within the
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seed. MirTarget and DIANA-microT use slightly unorthodox seed definitions, as they

are also concerned with the presence of a match at position 1 independently of an A

(6merα). By extension, this means the alternative 7mer-m1 and 8mer-m1 seed types

are also recorded. Despite testing these additional possibilities, MirTarget ultimately

does not incorporate them into the algorithm, arguing that the enrichment is inferior

to 7mer-a1, 7mer-m8 and 8mer (Liu and Wang, 2019).

Table 2.3: Seed type usage of several popular modern tools
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TargetScan 8.0 ✓ ✓* ✓ ✓ ✓ ✓

miRanda-mirSVR 3.3a ✓ ✓ ✓ ✓ ✓ ✓

MirTarget v4.0 ✓ ✓ ✓

DIANA-microT-CDS ✓ ✓ ✓ ✓ ✓ ✓ ✓

* 6mer offset is counted for MTS in the 3′ UTR only, not as a primary seed type.

TargetScan regards each seed as an independent model, allowing feature importance

to be determined relative to seed type. MTS scores 100% in all seed types; however,

the identity of miRNA base 8 scores 0%, 0.8%, 100% and 100% for 8mer, 7mer-m8,

7mer-a1 and 6mer respectively. This suggests an 8mer binding is unconcerned with the

identity of base 8, likely because the seed type already encodes this information. For

situational features such as this, splintering the model adds context to training, which

may improve prediction accuracy.

Tools which implement seed type as a feature may do so in different ways depending

on the number and stringency of seed definitions used. For example, a 6mer can be

represented as a boolean 6mer or by encoding six pair 2, pair 3, pair 4, pair 5,

pair 6, pair 7 descriptors. Individual base flags allow a free-form approach to seed

recognition, making support for alternative seed definitions easier. However, this com-

plicates the feature set with intermediary ‘sub-features’, which must be combined to

offer useful information. DIANA-microT and miRanda-mirSVR each use variations of
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this approach, though miRanda-mirSVR does not record matches at position 1. Mir-

Target uses the fixed definitions ‘seed 7A1’, ‘seed 7b’ and ‘seed 8A1’, corresponding

with 7mer-a1, 7mer-m8 and 8mer.

MirTarget is more discerning in what it categorises as a potential target; it has both the

strictest seed definitions and does not include handling for wobbles or compensatory

3′ pairing (Figure 2.4). On the other hand, DIANA-microT has the loosest definitions,

tracking the seed to an individual base level and even detecting 9mer and base 1

matching. Meanwhile, TargetScan’s per-seed models mean a greater importance is

placed on the type of seed relative to its features.

2.5.4 Common Target Recognition Features

Target prediction tools use a broad range of published features known to be biologically

significant. In the current era, the use of ML has led to an increase in the number of

interconnected features. Although prediction tools often make use of similar feature

sets, there is no consistently recognised optimal set for target prediction. Figure 2.4

provides a breakdown of those which appear in at least two of the considered tools.

Table 2.4: Common features of several popular modern tools
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TargetScan 8.0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

miRanda-mirSVR 3.3a ✓ ✓ ✓ ✓ ✓ ✓ ✓

MirTarget v4.0 ✓ ✓ ✓ ✓ ✓

DIANA-microT-CDS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓



Chapter 3

Rule-based prediction of

miRNA:mRNA Targets

3.1 Summary

This chapter describes the development of a naive target prediction rule set using

fixed feature thresholds. The goal of this work is to build a proof of concept for

established prediction methods in order to inform the development of more advanced

algorithms and tooling. The structure of this algorithm resembles early attempts at

target prediction, such as miRanda’s conditional ruleset (Figure 2.34) and MirTarget’s

original heuristic filter approach.

The predictor is scripted using a combination of Bash (GNU, 2007) and R (R Core

Team, 2018), for the bioinformatics and statistics modules, respectively. There are

three key components to the algorithm: extraction of expression values from miRNA

transfection datasets through the use of a bioinformatics pipeline, computation of bind-

ing features from seed target sites, and target prediction using fixed feature rules and

thresholds. At each stage, a tabular output is produced for each sample, functioning

as both an ad hoc caching system and a method of modular debugging. This simplified

engineering allows the tool to grow in line with the project scope, without committing

to any singular design pattern prematurely.

The end-to-end process of prediction from raw sequencing data is defined in Fig-

ure 3.1. Input RNA-seq reads from miRNA transfection experiments (Section 3.2.1) are

56
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trimmed (Section 3.2.2), aligned against a reference gene set and used to generate gene

abundances (Section 3.2.3). This output is piped into R for several layers of process-

ing, including gene annotation (Section 3.2.4), locating of seed targets (Section 3.2.5),

and calculation of expression values (Section 3.2.6). To determine factors relating to

the structure of the binding, such as accessibility and paired bases, windows about

the seed targets are fed through two folding prediction algorithms (Section 3.2.7). Fi-

nally, conservation scores are generated for the paired sequences (Section 3.2.8). Using

a combination of these extracted features, transcripts are then categorised as either

targets or non-targets.
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Figure 3.1: Rule-based prediction pipeline. The pipeline begins with the extraction of expres-
sion values and a differential expression analysis. This is followed by feature extraction and finally
prediction through classification using rules.
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3.2 Methods

3.2.1 Transfection Dataset

A large batch of sequencing data, recently published alongside the fourth iteration of

the MirTarget prediction tool, is used for the development of this rule-based prediction

algorithm (Liu and Wang, 2019). The dataset is designated the identifier ‘01-liu-HeLa’

because it is the first dataset considered, made available courtesy of Liu and Wang

(2019), and utilises the immortalised Henrietta Lacks cervical cancer cell line (HeLa).

Publicly available miRNA transfection datasets are uncommon and generally limited

to one or two miRNA transfections per publication. 01-liu-HeLa is noteworthy in that

it contains 25 transfections from a single cell line. This is beneficial because it limits

potential batch effects, which may be evident in the low variance between samples

(Figure 3.2). While a homogeneous dataset could lead to a tendency towards miRNA

targeting features that are overly represented in HeLa, it has been shown that miRNA

targeting is mostly unaffected by cell line (Nam et al., 2014). The biggest weakness

of 01-liu-HeLa is arguably in its relatively low number of biological replicates for noise

reduction. However, the dataset is proven for this purpose, as it was previously used

as the sole dataset in the development of a popular target prediction algorithm.

Table 3.1: An overview of 01-liu-HeLa

Internal ID 01-liu-HeLa

Accession PRJNA512378

Species Homo sapiens

Data Type RNA-seq

Procedure 25 miRNA transfections

Cell Line HeLa

Biological Replicates 2

Sequence Type Single-end

Source Liu and Wang (2019)
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Figure 3.2: Unfiltered expression fold change variance between samples in 01-liu-HeLa.
The distribution of unfiltered log2 expression fold change between the 25 transfections of 01-liu-HeLa.
The samples have relatively similar distributions.

3.2.2 Read Trimming

NGS techniques, such as RNA-seq, output a large number of short reads with varying

quality and error rates (Section 2.3). Low-quality reads are not fully representative

of their original sequence, making them less likely to align against a reference, par-

ticularly when perfect match settings are used. Trimming is therefore an important
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pre-processing step to ensure a higher average quality, in turn leading to a better

mapping rate, and functions as a method of assuring a standard across datasets.

When genetic data is sequenced in the FASTQ format, reads are accompanied by a

Phred quality score (Ewing et al., 1998). This is a representation of the quality of

each base at the time of sequencing. Using Phred scores, bases falling beneath a

specified threshold can be truncated or discarded, improving the overall read quality.

Beyond truncation, trimming can also offer improved mapping rates by way of remov-

ing ‘adaptor content’, specific base sequences inserted by many NGS procedures to

facilitate sequencing. Since adaptor content is not present in the species genome, they

complicate the task of alignment by appearing as mismatched segments.

Figure 3.3 illustrates how sequencing data from EX-guo-U20S (Appendix C) fares

before and after trimming. Prior to trimming, a deterioration in average read quality

can be seen towards the 3′ end of the reads. In this instance, trimming resulted in a

reduction in errors across all bases of the sequenced reads, with the effect heightening

from base 12.

Figure 3.3: FastQC read quality before and after trimming. Yellow error bars indicate per-
base Phred scores, where a longer bar is indicative of lower quality. Before trimming, the rate of error
is higher.

Trimming is performed in this project using Trim Galore! (Krueger, 2015), a simpli-

fied wrapper for the Cutadapt trimming tool (Martin, 2011). It provides automatic

quality-based trimming and effective default settings for general scenarios. Trim Ga-

lore! is executed in this pipeline using identical flags to previous work published in

the lab (Bradley and Moxon, 2019). Read quality is evaluated both before and af-

ter trimming with FastQC (Andrews et al., 2010), a reporting tool used to generate
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visualisations of various read attributes. No specific flags are used with FastQC.

1 trim_galore --length 35 --stringency 4 [input_files]

3.2.3 Sequence Alignment

kallisto (Bray et al., 2016) is used to quantify gene expression due to its streamlined

‘pseudoalignment’ approach to sequence alignment. Unlike other alignment tools,

kallisto does not explicitly map reads to the genome itself, instead matching them

against a set of transcript sequences. In addition to increased computational efficiency,

this inherently favours granular transcript-level output as the analysis is performed

transcriptome-wide compared to the gene-level of traditional genomic mapping.

In quantifying expression, kallisto first constructs an index structure similar to those

used in assembly algorithms (Section 2.3.1). Within this structure, each kmer is

mapped to its parent contig and given a relative position, allowing the program to take

shortcuts during lookup procedures (Figure 3.4). With the index complete, kallisto

uses a likelihood function to count RNA transcript abundances from reads.

Source: Bray et al. (2016)

Figure 3.4: Overview of kallisto pseudoalignment. (a-b) Creation of a graph where kmers (cir-
cles) are formed along reads (coloured lines). (c-d) kmer compatibility information (overlaps) reduces
computational requirements by skipping redundant nodes. (e) The intersection of compatibility values
from non-redundant kmers is taken to determine a read’s k-compatibility, essentially indexing it.
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A kallisto index is generated using Ensembl’s GRCh38 release 101 (Cunningham et al.,

2018) using the index command with default settings. Abundances are computed by

passing the generated index and FASTQ files to kallisto’s quant command. Command

line flags used here are again adapted from prior work from the lab (Bradley and

Moxon, 2019), with bootstraps -b also set to allow for differential expression analysis

(Section 3.2.6).

1 kallisto quant -i [index_file] --single --bias -l 180 -s 20 -b 100 -t

8 [input_file]

3.2.4 Gene Annotation

Annotations are pulled from Ensembl databases using the biomaRt package (Durinck

et al., 2005) in R. Annotation is important in supplementing transcripts with the

information required to facilitate further processing, such as the 3′ UTR sequences

used in identifying potential target sites. Furthermore, because kallisto outputs count

data relative to transcripts, gene mappings must be provided to support gene-level

analysis (Soneson et al., 2015). Table 3.2 contains a full breakdown of annotations used

to supplement transcript processing. At this stage, custom filters are used to remove

any transcripts that are non-coding, contain NA values, or are missing annotations.

Additionally, only transcripts from chromosomes 1-22, X and Y are considered.

Table 3.2: Annotations from biomaRt used to support target prediction

Annotation Name Use in algorithm

3utr Locate seed target sites

3 utr start Conservation scoring

3 utr end Conservation scoring

biotype Protein-coding gene filter

chromosome name Conservation scoring

ensembl gene id Transcript-gene map

strand Conservation scoring

transcript mane select Map representative transcript of each gene

The transcript mane select field is provided by the Matched Annotation from the

NCBI and EMBL-EBI (MANE) project, which labels the representative transcript

of each gene (Morales et al., 2022). This information allows transcript-level details,
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such as 3′ UTR sequences, to be attained even when accessed at the gene level, where

traditionally the relationship would be one-to-many.

3.2.5 Seed Target Detection

This work defines a potential target as one built around a minimum perfectly matched

6mer seed. Seed target sequences are computed by taking the reverse complement of

the transfected miRNA’s 6mer site using miRNA sequences provided by miRBase (Ko-

zomara et al., 2019). This target sequence is then used to scan the 3′ UTR of each

mRNA transcript for pattern matches. Since pattern matching cannot account for im-

perfect pairing, such as G:U wobbles or gaps, further specification of the target site is

only determined during folding (Section 3.2.7.2). In instances where a 3′ UTR contains

more than one target site, the associated transcript data is duplicated and treated as

a unique case to support MTS features.

3.2.6 Differential Expression Analysis

Differential expression analysis is a statistical method for comparing the levels of ex-

pression in a sample against a control group. The difference in expression is often rep-

resented as log2 fold change; the ratio difference between two expression values applied

to a log2 scale (Section 2.3.2). Two tools were considered for this task: DESeq2 (Love

et al., 2014), due to its status as an industry standard tool, and Sleuth (Pimentel et al.,

2017), as it shares a pipeline tie-in with kallisto and thus the option of transcript-level

analysis.

Although both tools use statistical modelling to produce similar output, DESeq2 per-

forms its analysis directly on RNA-seq counts, whereas Sleuth uses estimates output by

kallisto’s pseudoalignment. In order to account for uncertainty and variability in these

estimates, kallisto generates multiple rounds of output for Sleuth using a resampling

technique known as bootstrapping, where RNA-seq data is sampled randomly with

replacement.

A key difference that emerges from these alternative approaches is that Sleuth is able

to support transcript-level analysis, whereas DESeq2’s analysis may only be performed

relative to genes. A traditional differential expression analysis is more concerned with
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functional gene output, making this distinction unimportant. However, Sleuth was cho-

sen because genes can contain multiple targets, meaning the impact may be aggregated

if examined at the gene level. This option of further granularity was considered useful

early in the project, though ultimately not used due to the potential introduction of

bias when comparing against gene-based tools.

Beyond their fundamentally different modelling procedures, both tools offer various

bias correction methods, such as count normalisation, filters for the removal of low ex-

pression counts and shrinkage (Zhu et al., 2019), to reduce variability in lowly expressed

genes by scaling their output.

Sleuth is prepared by supplying it with an experimental design object, a list of IDs to

filter, and flags denoting that bootstraps should be used. The gene mode flag and a

set of gene mappings are also used to allow Sleuth to aggregate transcripts to the gene

level as required. Finally, to estimate log2 fold change, a transformation function is

also applied to convert the tool’s b output.

1 so <- sleuth_prep(

2 s2c ,

3 ~condition ,

4 gene_mode = TRUE ,

5 aggregation_column = "ensembl_gene_id",

6 target_mapping = gene_ids ,

7 extra_bootstrap_summary = TRUE ,

8 read_bootstrap_tpm = TRUE ,

9 filter_target_id=filtered_ids ,

10 transformation_function = function(x) log2(x + 0.5)

11 )

3.2.6.1 Filtering

Sleuth applies a basic filter function to remove transcripts with less than 5 mapped

reads in 47% of the samples. Removing poorly mapped reads improves the reliability

of estimations for statistical relationships, such as mean and variance (Law et al.,

2016). While filtering using a read threshold will reduce noise, it does not account

for variations across samples, meaning those with more reads will proportionally have

more transcripts removed. A typical solution is to instead take the mapped reads over

a million bases: TargetScan uses a read filter of 10 reads per million (RPM) (Agarwal

et al., 2015) and MirTarget has a floor of 5 RPM (Liu and Wang, 2019). Transcripts per
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million (TPM) (Wagner et al., 2012) is another normalisation metric which accounts

for read length and sequencing depth (Equations 3.2.1, 3.2.2, 3.2.3).

RPK =
count

lengthKB
(3.2.1)

scalar =

samples∑
n=1

RPKn

1, 000, 000
(3.2.2)

TPM =
RPK

scalar
. (3.2.3)

As the goal of this research is to identify features of true targets, an effective filter

can be defined as one leading to a cleaner separation between targets and non-targets.

The chosen filter must also be consistent between samples to allow fair comparisons to

be made. As outlined in section 2.3.2.1, the separation significance between categories

can be evaluated through the combination of visualising log2 fold change values in a

cumulative plot and comparing the p-value derived from a one-sided MW test.

In Figure 3.5, a TPM filter is set at increasing thresholds of 0.5 to observe the impact

of stricter filtering on the number and distribution of target candidates. As the filter

becomes more stringent, the 6mer line shifts leftward and the corresponding p-value

decreases on each plot, suggesting that a greater ratio of 6mers passing the filter are

having a meaningful impact on expression. However, this comes at the cost of fewer

overall transcripts passing the filter and, therefore, a potentially higher rate of false

negatives. Depending on the transfection, a benefit is clear until 1.0 (p-value 1.4×10−43)

or 1.5 TPM (p-value 1.0× 10−48), becoming increasingly diminished after 2.0 (p-value

7.5× 10−53).
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Figure 3.5: Comparison of different TPM filter thresholds on miR-124-3p. The effect of
filtering low TPM reads is compared on miR-124-3p by increasing the TPM filter in increments of
0.5. The line separation between targets and non-targets increases as the TPM filter value increases.
A target here refers to the presence of a 6mer, 7mer or 8mer target site.
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This effect is reproducible at scale, as shown in Figure 3.6, where all transfections in

the dataset are aggregated. It is difficult to assess the exact impact of the threshold at

this level due to the p-value becoming inconsequential, though a minor improvement

can be observed at -1.0 log2 fold change. With this in mind, a relatively strict TPM

threshold of 2.0 was selected because the dataset uses only two biological replicates,

and the accuracy of data is prioritised over the transcript count. After filtering, the

expression variance is reduced as a result of noise being removed (Figure 3.7).

1 tpm_filter <- function(row) {

2 control_sample_tpms <- row[control_start:control_end]

3 return(mean(control_sample_tpms) >= 2.0)

4 }

Beyond filtering, Sleuth also applies shrinkage to scale expression against read counts

to favour reads with higher confidence. In this way, Sleuth offers additional protection

against noise and outliers.
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Figure 3.6: Comparison of different TPM filter thresholds across aggregated transfec-
tions. The effect of filtering low TPM reads is compared across all transfected samples by increasing
the TPM filter in increments of 0.5. The line separation between targets and non-targets increases as
the TPM filter value increases. A target here refers to the presence of a 6mer, 7mer or 8mer target
site.
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Figure 3.7: Expression fold change variance between samples in 01-liu-HeLa. The dis-
tribution of log2 expression fold change before and after filtering between the 25 transfections of
01-liu-HeLa. The sample variance falls as a result of filtering.

3.2.6.2 Evaluating Transfection Quality

AnMW test is employed on the expression fold change values of each sample to evaluate

the quality of the transfection data (Table 3.3). In each case, the p-value represents

the degree of significance in separation between transcripts containing at least a 6mer

target site and transcript which do not. A clear separation between targets and non-

targets is essential to identify target prediction rules. However, due to the large sample



71

size, the resulting p-values are naturally low. A strict filter is therefore applied, where

any samples producing a p-value greater than 5.0×10−5 are discarded. In this instance,

all tested transfections pass the filter.

Table 3.3: Mann-Whitney p-values for each transfection experiment

Transfection MW p-value Pass

hsa-let-7c-5p 2.4× 10−96 ✓

hsa-miR-107 1.0× 10−74 ✓

hsa-miR-10a-5p 8.1× 10−56 ✓

hsa-miR-124-3p 3.9× 10−102 ✓

hsa-miR-126-3p 3.6× 10−14 ✓

hsa-miR-126-5p 7.5× 10−108 ✓

hsa-miR-133b 4.7× 10−105 ✓

hsa-miR-142-3p 8.1× 10−105 ✓

hsa-miR-145-5p 7.2× 10−147 ✓

hsa-miR-146a-5p 2.5× 10−56 ✓

hsa-miR-155-5p 2.5× 10−262 ✓

hsa-miR-15a-5p 3.9× 10−82 ✓

hsa-miR-16-5p 2.2× 10−114 ✓

hsa-miR-17-5p 4.2× 10−47 ✓

hsa-miR-193b-3p 1.3× 10−73 ✓

hsa-miR-200a-3p 1.2× 10−135 ✓

hsa-miR-200b-3p 2.0× 10−209 ✓

hsa-miR-200c-3p 9.8× 10−224 ✓

hsa-miR-206 8.1× 10−169 ✓

hsa-miR-21-5p 3.0× 10−34 ✓

hsa-miR-210-3p 2.8× 10−42 ✓

hsa-miR-31-5p 2.3× 10−74 ✓

hsa-miR-34a-5p 6.4× 10−129 ✓

hsa-miR-9-3p 4.7× 10−191 ✓

hsa-miR-9-5p 8.7× 10−62 ✓

3.2.7 RNA Folding

At this stage in the pipeline, transcripts are broadly categorised as those with a 6mer

target site and those without. In practice, 6mers are relatively weak bindings compared

to those containing more bases, so defining the exact binding type is important. RNA
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folding tools offer insight into how strands of RNA will pair by predicting the most

likely interactions between windows of bases.

The ViennaRNA package (Lorenz et al., 2011) provides a number of predictive folding

tools for RNA structures. These tools use ‘dot-bracket’ notation to represent the re-

lationship between given sequence strings, where ‘.’ refers to a base with no binding

and ‘(’ or ‘)’ represents a binding in that corresponding direction. Passing binding

constraints ‘|’ allows specific requirements to be set regarding which bases must pair

(Figure 3.9). The two tools used in this chapter are RNAfold for target site accessi-

bility calculation, and RNAcofold (Bernhart et al., 2006b) for seed and supplementary

binding prediction.

3.2.7.1 Predictive Structural Accessibility

RNAfold is a secondary structure prediction tool. As part of its output, it produces

an MFE stability value for the given sequence. Since a binding’s MFE is a numerical

representation of this stability, its inverse can be viewed as a quantification of how

‘open’ the bases are to external binding. As this is not a perfect relationship, being

that it is built on a prediction of structure, a ‘three-window’ approach is used; of three

windows constructed around different seed positions, the one producing the highest

stability (lowest MFE) is used as the representative accessibility value.

A 30 nt window is extracted at different placements around the seed target site to

produce three independent outputs (Figure 3.8). RNAfold does not require further

parameters to determine secondary structure.

Figure 3.8: Overview of accessibility computation using a three-window approach. The
accessibility scores of three windows around a seed target are computed and compared. (A1, B1, C1)
The three sequences to fold, where red bases denote a 6mer and blue a 7mer. All three are derived
from the same mRNA, but the seed anchor point is placed in different positions. (A2, B2, C2) The
RNAfold predicted structure output of the sequences. In parenthesis is the computed window’s MFE,
where lower is stronger. Sequence B2 has the most stable structure and would therefore be treated as
the representative accessibility value by the three-window approach.
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3.2.7.2 Predictive Base Pairing

RNAcofold is a tool for predicting the binding structure of two complementary RNA

sequences. As part of its output, RNAcofold also computes the MFE of its prediction,

where a lower value indicates a greater level of binding stability. Figure 3.9 illustrates

how a constraint can be passed to RNAcofold to ensure the binding contains a 6mer.

It also highlights the importance of RNAcofold when imperfections, such as gaps, are

present outside the seed; a bulge would not be detectable by a simple pattern match

of complementary sequences.

RNAcofold requires complementary sequences from both the miRNA and mRNA, in

addition to a constraint instructing which bases must pair. In extracting the mRNA

portion, the process is identical to A1 in Figure 3.8. For the miRNA, the entire

sequence is used because miRNAs typically only measure around 22 nt. The constraint

is generated by parsing the two complementary sequences and placing ‘|’ ‘must pair’

symbols in line with the 6mer bases of the miRNA. No constraint is used outside

the 6mer to allow RNAcofold to determine the most likely way that the remainder of

the two sequences will bind. Beyond allowing RNAcofold to predict the type of seed

binding, this method is effective in predicting any potential supplementary base pairing

that my occur.

Figure 3.9: Fold prediction using RNAcofold with a 6mer constraint. An example input
and output using RNAcofold with a constraint. (1) An miRNA and mRNA sequence, respectively,
separated by ‘&’. (2) Dot-bracket constraints to ensure a perfect 6mer match at minimum between the
two sequences. (3) A visual representation of the dot-bracket constraints from (2). (4) The resulting
RNAcofold output in dot-bracket notation. A bulge is predicted at the 9th base from the right side.

3.2.7.3 Target Window Extraction

Both tools require a window of bases beyond the six from the 6mer target, as local

context is a factor in RNA folding. As previously discussed, there is often a one-to-many

relationship between transcripts and target sites, meaning this process of extracting

windows must be performed at the target level, instead of the transcript level. As a

result, each target match must be processed independently. A transcript containing
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n target sites therefore has n windows extracted. At 2 TPM, there are 145,654 non-

targets and 80,821 targets (Figure 3.7). As a result of MTS handling, the number of

target sites identified increases from 80,821 to 150,197.

Algorithm 1 Target window extraction algorithm

Input: miRNA sequence, mRNA transcripts + 3′ UTRs

1: extract 6mer site from sequence

2: reverse complement 6mer site for 6mer target

3: for all transcripts do

4: search current transcript 3′ UTR for target

5: for all target matches (MTS) do

6: RNAfold: expand target match to form three RNAfold windows

7: RNAcofold: take one RNAfold window for RNAcofold’s mRNA half

8: RNAcofold: Combine miRNA sequence with RNAcofold window

9: RNAcofold: parse RNAcofold window for dot-bracket constraint

10: end for

11: end for

Output: windows and dot-bracket parses

3.2.7.4 Supplementary Site Definition

There is no single definition for exactly which combination of bases form supplementary

binding, though bases 13-16 relative to the miRNA are known to be particularly im-

portant (Section 2.4.2). A limitation of rule-based target prediction is in the difficulty

of handling edge cases without significantly complicating the algorithm. This means

that an effective supplementary site definition in the context of rule-based prediction

should provide value without the need for conditional logic.

Using RNAcofold output, bp are counted within a set of categories formed by taking

bases 13-16 and expanding outward by 1 nt at a time. In Figure 3.10, these results are

aggregated across all transfections.
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Figure 3.10: Comparison of supplementary definitions across aggregated transfections.
The effect of different supplementary window definitions is compared across an aggregation of the 25
transfection experiments. The categories are created by starting with bases 13-16, then expanding
out an additional base on both sides each time. (Top left) Minimum 4bp. (Top right) Minimum
5bp. (Bottom left) Minimum 6bp. (Bottom right) Minimum 7bp. Category bounds are inclusive, for
example, 13-16 includes both bases 13 and 16.

In all categories, there is limited visual separation, though the majority of shifts are

significant against the seed lines. This is expected, as effective supplementary pairing is

dependent on factors not considered here, such as seed binding stability. Nonetheless, a

trend can be seen where longer sequences with bounds not allowing for gaps tend to lead

to shifts in the opposite direction (12-17 @ 6bp, 11-18 @ 7bp). This is consistent with

the understanding that supplementary binding sequences are not as harshly affected

by gaps as seed binding (Kiriakidou et al., 2004), while also suggesting that longer

continuous sequences may be detrimental. The strongest definition is ‘09-20 @ 5bp’
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(2.3× 10−8), which encompasses the first 11 nt of the 5′ flanking region of the mRNA

from the seed target.

3.2.8 Conservation Scoring

Conservation scores are generated in R using GenomicScores (Puigdevall and Castelo,

2018) in combination with the phastCons100way.UCSC.hg38 track package (Siepel

et al., 2005). GenomicScores allows a given track to be accessed at a per-base level via

genomic coordinates. In this instance, the UCSC track package scores the similarity

ratio of each base over 100 vertebrate sequences aligned in parallel.

For seed sites, the start coordinate is taken as the complementary first base of the

miRNA and the end coordinate is the conditional 8th base. The seed target coordinates

are relative to the 3′ UTR; to calculate their position in the wider genomic context,

they are combined with the 3′ UTR start position.

1 start <- x3_utr_start + seed_start

2 end <- start + 8

For supplementary base coordinates, the extracted region uses the definition decided

in Section 3.2.7.4, beginning at base 9 and ending at base 20 inclusive.

1 start <- x3_utr_start + seed_start + 9

2 end <- start + 12

In either case, these coordinates are passed to GenomicScores in the same way; the

output received is the proportional representation of how conserved the given base

sequence is across 100 vertebrates.

1 range <- GRanges(chromosome , IRanges(start:end), strand)

2 score <- gscores(track_v100 , range)$default

There are a number of issues with this iteration of the conservation logic, namely

that it is several magnitudes slower than all other aspects of the feature processing.

As the output is dependent on transcripts and base coordinates, changes to filters or

contingent elements also require the result to be fully regenerated, making caching

difficult. It is ultimately overhauled in later work (Section 5.2.2.5), though the result

between the two is unchanged.
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3.3 Results

Each feature is first tested in isolation and then applied in a rule based prediction

model. A p-value threshold of 0.05 is used to determine significance from a two-sample

MW test.

3.3.1 Isolated Features

3.3.1.1 Seed Type

Seed types (Section 2.4.1) are identified by providing RNAcofold with complementary

miRNA:mRNA sequences and a 6mer constraint (Section 3.2.7.2).

Figure 3.11: Comparison of aggregate seed type efficacy. Seed types are compared by aggre-
gating the 25 transfection experiments.

The leftward shift in each line indicates that 8mer seed bindings have greater efficacy

than 7mers, which are in turn more effective than 6mers. All seeds are significant in

distinguishing targets from non-targets (p-values: 6mer rounded to 0, 7mer 7.7×10−106

and 8mer 3.2 × 10−102), while also being visually removed from each other. As seed



78

sites are arguably the most important feature of a binding and the basis of many

prediction algorithms, the low p-values of this result suggests the implementation of

RNAcofold for categorising seed binding types is effective. This is further supported

by the consistency of this feature, as the 8mer > 7mer > 6mer relationship is the same

across all individual samples.

3.3.1.2 Multiple Seed Target Sites

MTS, also known as target site abundance (Section 2.4.7), is supported by performing

RNA folding at the target level as opposed to the transcript level (Algorithm 1). The

process is otherwise identical to seed-type identification.

Figure 3.12: Comparison of aggregate MTS efficacy. MTS is compared by aggregating the
25 transfection experiments. (Top left) All seed type overview. (Top right) 6mer only. (Bottom left)
7mer only. (Bottom right) 8mer only.
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A correlation can be seen between MTS and binding efficacy, as each successive tar-

get site leads to a greater leftward shift in all seed types. The effect is particularly

pronounced in the 8mer category, where the 3+ line between -0.5 and -2 has an im-

pact beyond that of any other isolated feature. Despite the downregulatory strength

of multiple 8mer targets in the same 3′ UTR, the relative rarity of 8mers somewhat

lessens its effectiveness as a single feature. The impact of this feature is also noticeably

weaker for 6mers, as the separation between lines is minor even at 3+ target sites.

Figure 3.13: Comparison of MTS efficacy on four individual transfections. A subset of
four MTS comparisons using all seed types to demonstrate result consistency. (Top left) miR-9-3p
transfection: a strong result. (Top right) miR-124-3p transfection: limited separation between 2 and
3 seeds. (Bottom left) miR-126-5p transfection: limited separation between 1 and 2 seeds compared
to 3. (Bottom right) miR-133b transfection: an outlier result for the 3+ line, likely due to limited
occurrences.

There is a degree of inconsistency in individual experiments, stemming from the rarity
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of 3+ bindings in specific seed-type breakdowns. In the combined seed category of

individual transfections, this variation only causes the 3+ category to shift beyond

another in transfections with low overall transcript counts.

3.3.1.3 Binding Stability

Binding stability (Section 2.4.1), represented by MFE, is computed as part of the

output during complementary fold prediction by RNAcofold (Section 3.2.7.2).

Figure 3.14: Comparison of aggregate binding stability efficacy. Binding stability is compared
by aggregating the 25 transfection experiments. (Top left) All seed type overview. (Top right) 6mer
only. (Bottom left) 7mer only. (Bottom right) 8mer only.

Binding stability is a generally ineffective feature in isolation, though it varies by the

type of seed. When comparing the top 10% with the bottom 10%, there is significance

only in the 8mer category. Although 6mer bindings are less stable on average, its
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lower quartile is approximately the mean of an 8mer (Figure 3.15). Additionally, the

interquartile range of a 7mer falls close to that of a general seed. This may explain

why 6mers and 7mers are unable to attain significant separation by stability alone.

Figure 3.15: MFE distribution by seed type. (Left to right) The MFE of all seed types, 6mers
only, 7mers only and 8mers only. Note that MFE is an inverse representation of stability, and lower
values therefore indicate stronger bindings.

In all types of seed, low stability is more effective at distinguishing binding quality

than high stability, as evidenced by the lower p-values of ‘All Seeds vs Seed -10%’

(9.3 × 10−1) compared to ‘Seed +10% vs Seed -10%’ (rounded to 1.0) (Figure 3.14).

There are no binding stability thresholds with a significant deviation from all seeds;

therefore this feature is limited without context. Despite this, it should be noted that

binding stability is shown to be marginally more effective at distinguishing non-targets

than targets.

Binding stability is difficult to assess outside aggregate results as averages vary be-

tween samples, and seed targets are comprised of bases which confer different levels of

stability.
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3.3.1.4 Target Site Accessibility

Target site accessibility (Section 2.4.3) is quantified using the MFE output of the

representative of three RNAfold windows (Section 3.2.7.1).

Figure 3.16: Comparison of aggregate target site accessibility efficacy. Target site accessi-
bility is compared by aggregating the 25 transfection experiments. (Top left) All seed type overview.
(Top right) 6mer only. (Bottom left) 7mer only. (Bottom right) 8mer only.

The result highlights a significant correlation between accessibility and binding efficacy

at all thresholds (p−value 3.0 × 10−74), with low accessibility (p−value 1.8 × 10−54)

being a slightly more impactful measure than high accessibility (p−value 4.8× 10−20).

An important element of this result is the variation between different seed categories

(p−values: 6mer 1.1 × 10−17, 7mer 3.7 × 10−48 and 8mer 1.9 × 10−10). 6mers gain

limited benefit from accessibility compared to 7mers and, while 8mers also have a low
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p-value, the visual line separation indicates this could be due to the lower population

size of the category. This may be an inherent bias of the methods used in this study,

as a 6mer constraint is used with RNAcofold, potentially filtering a percentage of

6mers that would be deemed unlikely to pair due to inaccessible bases beforehand.

This shortcoming would not affect 7mers, as the additional base is not part of the

constraint.

Figure 3.17: Comparison of target site accessibility efficacy on four individual transfec-
tions. A subset of four target site accessibility comparisons using all seed types to demonstrate result
consistency. (Top left) miR-let-7c transfection: a poor result with limited separation. (Top right)
miR-10a-5p transfection: a strong result, with both accessibility and inaccessibility leading to sepa-
ration. (Bottom left) miR-17-5p transfection: separation only in the least accessible bases; however
the shift is strong and almost as effective at determining a non-target as no seed target site. (Bottom
right) miR-206 transfection: separation only in the least accessible bases.

There is a large variation in the results of individual experiments, although one of

two categories always separates from ‘All Seeds’. The overall seed result is generally
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significant at a threshold of 0.05 for ‘Seed +10% vs Seed -10%’ in individual samples

(Figure 3.17). However exceptions exist in samples with relatively few seed targets, for

example let-7c-5p (top-left, p-value 3.8× 10−1).

3.3.1.5 Supplementary Binding

Supplementary binding (Section 2.4.2) is determined by using RNA folding to iden-

tify likely pairings between two complementary sequences and counting the total bp

between a fixed base threshold (Section 3.2.7.4).

Figure 3.18: Comparison of aggregate supplementary binding efficacy. Supplementary
binding is compared by aggregating the 25 transfection experiments. (Top left) All seed type overview.
(Top right) 6mer only. (Bottom left) 7mer only. (Bottom right) 8mer only.

Supplementary binding in isolation provides negligible gains to targeting efficacy de-

spite inflicting a steep cost to the transcript count (150,197 to 61,331). The p-values



85

indicate significance in the 7mer and 8mer categories, but not 6mer (p-values: 6mer

1.1×10−1, 7mer 8.6×10−9 and 8mer 4.0×10−2). A 7mer benefits the most, with 6mer

bindings having a trivial influence on the overall result. This is perhaps contrary to ex-

pectations, as 6mers typically have a lower binding stability than 7mers (Figure 3.15),

making them more likely candidates for support.

Figure 3.19: Comparison of aggregate supplementary binding efficacy on 7mers and
8mers. Supplementary binding is compared by aggregating the 25 transfection experiments. Only
7mers and 8mers are represented, as 6mers are removed.

After removing the statistically insignificant 6mer category from the overall result, sup-

plementary binding produces a p-value of 3.2 × 10−10. This makes it a more effective

distinction than both the 7mer (8.6×10−9) and 8mer (4.0×10−2) supplementary cate-

gories, and the overall seed supplementary category (2.2×10−8). There is a substantial

reduction in the number of transcripts as a result, from 61,331 to 34,640.
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Figure 3.20: Comparison of supplementary binding efficacy on miR-9-3p. Supplementary
binding is compared on miR-9-3p to demonstrate a positive individual result. (Top left) All seed type
overview. (Top right) 6mer only. (Bottom left) 7mer only. (Bottom right) 8mer only.

Supplementary binding for 8mers is insignificant in all individual transfections, whereas

it is only insignificant for 7mers in 18 of 25. Despite this, there are transfections

where all three seed types are influenced by the presence of supplementary binding

(Figure 3.20).

3.3.1.6 Evolutionary Conservation

Evolutionary conservation (Section 2.4.6) uses a track of 100 aligned vertebrate species

sequences to determine the proportional representation of each base (Section 3.2.8).

The overall score is calculated by taking the mean of a sequence’s per-base proportional

representation.
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Figure 3.21: Comparison of aggregate seed conservation efficacy. Seed conservation is
compared by aggregating the 25 transfection experiments. (Top left) All seed type overview. (Top
right) 6mer only. (Bottom left) 7mer only. (Bottom right) 8mer only.

The efficacy gain of highly conserved target sites is significant across all seed types

(p-values: 6mer 1.1× 10−22, 7mer 1.5× 10−64 and 8mer 8.3× 10−23), as is the efficacy

reduction in poorly conserved target sites (p-values: 6mer 1.9×10−12, 7mer 5.1×10−23

and 8mer 4.8 × 10−10). Results also show that high conservation is a significantly

more effective method of dissection than low conservation; high conservation produces

a p-value of 1.2×10−161 against all seeds, compared to 5.0×10−42 for low conservation.

Although there is some variation in individual transfections regarding the 8mer cat-

egories, the overall strength of the feature means this is only the case in the most

sparsely populated of samples.
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Figure 3.22: Comparison of aggregate supplementary conservation efficacy. Supplementary
conservation is compared by aggregating the 25 transfection experiments. Seed conservation is not
represented, despite the seed type being used in chart breakdowns. (Top left) All seed type overview.
(Top right) 6mer only. (Bottom left) 7mer only. (Bottom right) 8mer only.

Similar line shifts are observed when conservation scoring is applied specifically to the

supplementary portion of the binding, where significant p-values are produced in all

seed types (p-values: 6mer 2.8×10−17, 7mer 1.5×10−30 and 8mer 4.6×10−14). Despite

this, the comparatively low frequency of transcripts meeting the thresholds is likely to

reduce the utility of the feature. Only 61,331 of the total 150,197 seed targets contain a

minimum 5 nt supplementary binding, the bulk of which consists of 6mers and 7mers.

This means that a looser threshold for supplementary conservation compared to seed

conservation may be desirable.

As with other isolated features that have lower transcript counts, examining individual
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samples is less informative because a strong pattern does not emerge until the results

are aggregated.

3.3.2 Rule-based Prediction

Three feature rule sets are constructed to output predictions at different stringency

levels. As these thresholds become stricter, a trade-off emerges between accuracy and

the overall number of predictions made. The objectives are as follows:

• Rule set 1: produce a similar level of prediction accuracy to 8mers, while in-

creasing the number of detected targets.

• Rule set 2: strike a balance between prediction accuracy and total predictions.

• Rule set 3: prioritise prediction accuracy at the cost of producing less overall

predictions.

With the exception of supplementary base pairing, all features discussed in the isolated

feature testing are used in some capacity. Supplementary site information is instead

encoded by means of supplementary conservation scores, which is applied only in rule

set 3 due to its substantial reduction to the number of transcripts. The prediction

results are plotted against 8mers, a strong and basic feature that is comparatively easy

to implement.
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Figure 3.23: Comparison of aggregate rule-based prediction thresholds. Three rule sets
constructed from a combination of target recognition features are compared by aggregating the 25
transfection experiments.

At each threshold, an improvement is seen in the predictor’s ability to identify targets.

Each successive line shift is significantly deviated from the previous, evidenced by the

p-values: 5.0× 10−2 rounded up (rule set 1 vs 8mer), 2.5× 10−42 (rule set 2 vs rule set

1) and 4.8× 10−3 (rule set 3 vs rule set 2). However, a lower number of predictions are

made as a result: 32,563 in rule set 1, 7,961 in rule set 2 and 3,621 in rule set 3.
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Figure 3.24: Rule set 1 expressed as a decision tree. A relatively loose set of filters for 6mers,
7mers and 8mers. The prediction of 6mers and 7mers is conditional to ensure their downregulatory
effect is on a similar level to 8mers. A 6mer is only predicted if additional 7mers or an 8mer exists in
the 3′ UTR through MTS.

Rule set 1 is significant in identifying targets at a higher rate to 8mers, despite pro-

ducing over twice the number of predictions (p-value 5.0× 10−2 rounded up).

As 6mers confer significantly less efficacy overall, they require the most stringent filters.

5,287 of 65,181 6mers have a 65% conserved seed and are deemed accessible using a

representative MFE of -5. With the MTS condition met, only 1,130 (1.73%) of all

6mers are predicted under rule set 1.
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7mers are predicted at a rate of 22.91%, making up 15,921 of the 32,563 predicted

targets made by rule set 1, more than unfiltered 8mers. MTS is not required for a

7mer to downregulate at an 8mer average level. Instead, MTS offers a secondary path

for non-conserved, inaccessible or less stable 7mers to pass the filter. This is similar to

the concept of ‘weak’ and ‘strong’ filters utilised in the original MirTarget (Wang and

Wang, 2006), and is responsible for 81.1% of 7mers which pass.

Figure 3.25: Rule set 2 expressed as a decision tree. A relatively balanced set of filters for
6mers, 7mers and 8mers. The prediction of 6mers and 7mers is highly conditional and dependent on
MTS to ensure their downregulatory effect is on a similar level to a well-conserved, accessible 8mer.

Predicting all 8mers is generally not optimal, as they do not all downregulate gene

expression equally. A new benchmark is formed around accessible 8mers with 65%

conservation in rule set 2, meaning both 6mers and 7mers require MTS to compete.

The seed stability requirement of 7mers is removed to reduce stringency, allowing for an

MTS filter. Isolated testing showed MTS is highly effective, but uncommon compared

to other tested features (Section 3.3.1.2). As a result, 88.5% less 7mers pass rule set 2
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compared to rule set 1. The 6mer requirements are unchanged from rule set 1.

Figure 3.26: Rule set 3 expressed as a decision tree. A relatively harsh set of filters for 6mers,
7mers and 8mers. The prediction of 7mers is very stringent and dependent on 8mer MTS, while 6mers
are not predicted. The filter for 8mers is highly conditional and contains several secondary paths.

Rule set 3 suffers a heightened level of diminishing returns compared to rule set 2,

producing 55% fewer predictions at a proportionally reduced, yet significant, shift in

the cumulative plot (p-value 4.8× 10−3).

As strict filtering is already in use at this level, the occurrence of seeds with conserved
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supplementary pairing is proportionally higher in this population. This allows the

feature to be used at a reduced cost to the number of predicted targets relative to the

overall population seen in the isolated feature testing. In 8mers, 1,293 targets pass the

filter prior to the integration of MTS.

Compared to rule set 2, 6mers are not predicted and the 7mer condition is simplified

to a strict subset of previous features. In addition to the existing requirements, 7mer

targets must have a 45% conserved supplementary binding and at least one 8mer site

present in the 3′ UTR. The overall prediction is still comprised of 26.2% 7mers, despite

the higher 8mer benchmark.

3.4 Discussion

The aim of this chapter was to develop a basic prediction model in order to trial estab-

lished miRNA target prediction methods. The isolated testing results (Section 3.3.1)

were consistent with prior background research into target recognition mechanics (Sec-

tion 2.4), and each tested feature was proven capable of assisting prediction in some

capacity. While performing these tests, results were aggregated to demonstrate that

each feature was scalable beyond individual transfection experiments. As a result, the

tooling developed throughout this chapter can be expanded upon in future work.

Prediction accuracy was improved through the integration and combination of these

isolated features at different stringency levels in the rule-based predictor (Figure 3.23).

However, a key issue that arose was the need for leniency in feature boundaries. Of

note, a nuanced approach is likely to be required for MTS and supplementary pairing

to make them viable prediction features due to their large cost to the overall num-

ber of predictions. As Figure 3.25 shows, the complexity of decision branches grows

exponentially as more conditional paths are included. ML is likely popular in mod-

ern target prediction algorithms for this reason, as it has strong implicit handling for

feature interdependency.

A trade-off is clear between the number of targets produced and the accuracy of the

prediction in rule-based prediction. Target prediction tools are used in more than

one context, necessitating that a balance be struck between the two. Depending on

the use case, the optimal stringency is likely to fall somewhere between rule sets 2



95

and 3. As rule set 3 produces fewer, but more highly accurate predictions in its

current state, it would probably be considered more useful unless a ranking system

was introduced. Categories supporting both a ‘top’ and ‘bottom’ line, such as ‘low

conservation‘ and ‘high conservation‘, tend to identify both a positive and negative

shift. Where these correlations exist, the feature could theoretically be used to derive

a primitive confidence metric.

It is apparent that seed type is an important factor affecting all tested features. For

example, in cases such as seed stability and conservation, 6mers exhibit a more subdued

reaction to those with stronger seed types (Figures 3.14 and 3.21). This potentially

highlights an advantage in training individual models for different seed types, a method

used by TargetScan (Section 2.5.2.1).

In terms of individual features, MTS was highly effective (Figure 3.12), and the rule-

based predictor was largely built around it. A considerable number of 6mers and 7mers

are able to benefit from this kind of redundancy because an additional target site is

common in the 3′ UTR. After seed type and MTS, seed conservation was the most

useful feature for building rule sets, which is reflected in its high significance (p-value

1.2 × 10−161) in isolated testing (Figure 3.21). Supplementary binding was the weak-

est individual feature tested (Figure 3.18), although this may be a result of the rigid

method of implementation; bp between predefined windows were simply counted with-

out an examination of the wider binding context. A more effective method may need

to use a case-by-case implementation based on seed type and other binding factors.

For example, a binding with low seed stability may prefer supplementary binding as

close to the seed as possible, regardless of the number of supplementary bases involved

in pairing; on the other hand, an 8mer may simply benefit from any level of supple-

mentary binding not in accordance with a single definition. However, it is also possible

that supplementary binding is inherently conditional and, without considering other

factors, its impact will be reduced. Testing conservation scores on paired supplemen-

tary bases produced substantially stronger results, even without accounting for seed

conservation (Figure 3.22).

All the common features of target prediction tools were tested, except for AU content

(Figure 2.4). In general, accessibility measures are an area of weakness in this chapter.

While the three-window approach was able to identify low accessibility in 7mers and
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8mers (Figure 3.3.1.4), it relies on nested prediction; the most likely window is used to

infer the most likely secondary structure. Furthermore, the implementation is limited

because RNAfold computes an MFE value over a window, as opposed to specific bases.

A more ideal implementation would allow the seed and supplementary bases to be

tested independently to provide more context. An argument could be made that its

positive result in isolated testing may simply be due to the underlying strength of

the feature. Improving the quality of site accessibility measures is therefore important

prior to the feature set becoming fixed for machine learning.



Chapter 4

Site Accessibility Measures

4.1 Summary

This chapter describes research into a number of alternative methods for measuring

target site accessibility, a staple feature of target prediction algorithms (Figure 2.4).

While the rudimentary three-window approach to computing secondary structure was

proposed and tested in Chapter 3, it was highlighted as a candidate for improvement

due to its limitations, such as a lack of per-base precision and highly predictive nature

(Section 3.4).

Three methods of computing site accessibility are introduced to the feature-set: base

pairing prediction with RNAplfold, the measurement of local AU content, and a novel

approach using SHAPE-seq data combined over five cell lines. Each method is able to

compute per-base scores, allowing specific accessibility features to be extracted relative

to both the seed and supplementary portions of a target site, improving the model’s

overall knowledge of the binding context.

4.2 Methods

4.2.1 Secondary Structure Stability

The proportion of AU bases present in secondary structure is indicative of weaker

stability, which may be interpreted as a higher level of site accessibility in nearby bases

(Section 2.4.3). In this way, it provides an alternative measure of accessibility to folding

methods that rely on structural predictions.

97
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Since mRNA sequences are processed extensively in this study, determining the pres-

ence of AU content is achieved by simply examining the windows extracted for RNAfold.

A 30 nt window is taken in both the 5′ and 3′ flanking regions relative to the seed target

site, based on a similar approach originally used by TargetScan (Grimson et al., 2007).

TargetScan weights the importance of bases progressively lower the further they are

from the seed. As TargetScan also builds its model for each seed type independently,

the exact weights chosen differ by seed type. For stronger seeds, a proportionally

higher weighting is placed on bases 9 and 10 in particular. A simplified version of

TargetScan’s weighting system is used, which instead does not weight seed types sep-

arately. Figure 4.1 visualises these weightings as a sequence of progressively shrinking

fractions. Although fractional representations are used to illustrate the sequence, the

weights themselves are normalised by division against the sum total of the sequence.

5′flank←−−−−−−−−−−− seed target←−−−−−−−−→
not counted

3′flank−−−−−−−−−−−→
1
32

... 1
9

1
8

1
7

1
6

1
5

1
4

1
3

8 7 6 5 4 3 2 1 1
3

1
4

1
5

1
6

1
7

1
8

1
9
... 1

32

Figure 4.1: Visualisation of weights used in weighted AU content. Weights are applied in a
decrementing sequence in the flanking regions around a seed target. As a result, emphasis is placed
closer to the seed.

4.2.2 Local RNA Pairing Probability

RNAplfold (Bernhart et al., 2006a) computes the local unpaired probabilities of bp

across a maximal span, with a further option to compute these probabilities consecu-

tively for each successive base. The values are derived from the frequency of certain

pairs in the local minimum energy structures that are constructed from a given win-

dow. A key benefit to using RNAplfold over both the three-window RNAfold and AU

content approaches is that it provides a more direct measure of accessibility, being that

MFE and AU proportion are measures of structure, as opposed to accessibility.

The window (-W) supplied to RNAplfold is extracted by taking 36 nt either side of

the 8 nt potentially involved in a seed binding, for a total of 80 nt. Providing a large

window to RNAplfold allows it to implicitly account for secondary structure that may

affect the bases involved in the binding itself. However, a limit (-L) can also be set for

the maximum span that secondary structure may be considered. RNAplfold computes

a matrix containing the running likelihood of 1-u bases being unpaired, where u refers
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to a user-defined consecutive base limit (-u). The values used for the window size and

maximal span are based on published research for optimal miRNA metrics (Tafer et al.,

2008), while the consecutive sequence limit follows TargetScan’s arguments (Agarwal

et al., 2015).

1 RNAplfold -L 40 -W 80 -u 14 --auto -id -o < input_file

Table 4.1 signifies what a limited output of RNAplfold may look like when using an

8 nt window with a 6 nt running limit. In the resulting 6 × 8 matrix, the walking

probability is output as NA prior to the correct number of bases becoming available

for computation. For example, cell (1, 1) can be computed, as a spanning probability

will only require a single base. However, (1, 2) would require a second base to exist.

In the second row, up to cell (2, 2) can be computed, but (2, 3) requires a third.

The accessibility of a theoretical 6mer ending at base 7 can be calculated by taking

the 6th value of the 7th row, making the unpaired probability 0.091. In this example,

increasing the number of bases available in the window would allow further accessibility

scores to be calculated for the supplementary portion of the target.

Table 4.1: Example RNAplfold output

1 2 3 4 5 6

1 0.591 NA NA NA NA NA

2 0.949 0.541 NA NA NA NA

3 0.139 0.137 0.135 NA NA NA

4 0.181 0.132 0.130 0.129 NA NA

5 0.996 0.181 0.131 0.130 0.129 NA

6 0.955 0.950 0.147 0.121 0.119 0.118

7 0.130 0.117 0.116 0.094 0.093 0.091

8 0.091 0.090 0.085 0.085 0.080 0.080
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4.2.3 RNA Structure Analysis

SHAPE-seq is a sequencing-based approach to quantifying structure information (Sec-

tion 2.3.3). SHAPE-seq functions by chemically modifying RNAs to probe secondary

structure, making it non-predictive in nature. The implementation of SHAPE-seq used

in this study is provided by icSHAPE-pipe (Li et al., 2020), a comprehensive toolkit

for the end-to-end computation of reactivity values with quality control and report-

ing. Published SHAPE-seq data for the HeLa, HEK-293, K562, HepG2 and H9 cell

lines (Sun et al., 2021) is also used to generate SHAPE-seq accessibility scores.

Table 4.2: An overview of SH-sun-HS

Internal ID SH-sun-HS

Accession PRJNA608297

Species Homo sapiens

Data Type SHAPE-seq

Procedure icSHAPE

Cell Line HEK293, HeLa, K562, HepG2, H9

Biological Replicates 2

Sequence Type Single-end

Source Sun et al. (2021)

Sequences are extracted from SHAPE-seq as a set of 0-1 reactivity values. Unlike other

considered accessibility approaches, SHAPE-seq coverage is limited, as only 21,396 of

150,197 (14%) reactivity values for HeLa target sequences are obtainable. This is an

issue for ML because it complicates an ML model’s ability to understand the feature’s

importance, particularly if it is high-performing when data is available. To counteract

this, sequences are logged as NA if there is no available base data, while missing values

in an otherwise populated series are padded to somewhat salvage the remainder of the

sequence.

Using SHAPE-seq data from HeLa only may potentially limit the feature’s application

to RNA-seq data originating from other sources. On the other hand, while published
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SHAPE-seq data does include data from other cell lines, this may lower the effectiveness

of the feature in targeting HeLa. Since increasing coverage is important in making the

method viable for features, individual base reactivity scores are combined across the

same transcripts of different cell lines to observe the extent of their correlation.

Figure 4.2: Correlation between SHAPE-seq reactivity in HeLa and other cell lines. A
scatter plot of each transcript containing a reactivity value in both of the compared cell lines. (Top
left) HeLa vs HEK-293. (Top right) HeLa vs H9. (Bottom left) HeLa vs HepG2. (Bottom Right)
HeLa vs K562.

Plotting HeLa reactivity values against those of HEK-293, H9, HepG2 and K562 shows

a positive correlation in all cases, producing a mean R2 of 0.611. There is a build-up of

scores in all cell lines around 0, though the density scale indicates the majority occur

at (0, 0). Nonetheless, a substantial number occur along the x and y axis, which may

be due to disparities in secondary structure between different cell lines. In these cases,

a consensus value may prove beneficial to the feature accuracy, as target prediction is

independent of cell line.
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Figure 4.3: Correlation between non-zero SHAPE-seq reactivity in HeLa and other cell
lines. A scatter plot of each transcript containing a reactivity value in both of the compared cell
lines. Reactivity values of 0 are removed. (Top left) HeLa vs HEK-293. (Top right) HeLa vs H9.
(Bottom left) HeLa vs HepG2. (Bottom Right) HeLa vs K562.

In order to determine the correlation of values which are more closely related, 0 is

filtered from the results. This increases the mean R2 value to 0.75, which is a relatively

strong correlation between similar values of different cell lines. As previously discussed,

the inclusion of 0 is still beneficial to mitigate skewing towards a single cell line; when

calculating the mean between a variety of sources, these values will reduce the weighting

of a single distorting value.

4.3 Results

The significance of each accessibility measure is tested using a p-value threshold of

0.05, derived from a one-sided two-sample MW test.
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4.3.1 Local AU Content

Local AU content is tested in the 5′ and 3′ flanking regions, defined by TargetScan,

with and without weights. Similarly, an AU score is computed for the seed.

Figure 4.4: Comparison of flanking AU content efficacy. Target site accessibility using AU
content is compared by aggregating the 25 transfection experiments. (Left) AU content in the 5′

flanking region. (Right) AU content in the 3′ flanking region.

The significance in separation between the top 10% and bottom 10% of AU content

scores for the 5′ flanking region (p-value 9.2× 10−67) is slightly higher than that of the

3′ (p-value 2.0 × 10−50). This is likely due to the greater importance of the 5′ region

of the mRNA, as a result of its role in miRNA 3′ supplementary binding. Higher

accessibility in this area allows the bases to pair, strengthening the core binding and

improving efficacy. Despite this, both regions provide new context on unrelated bases,

so their inclusion as features is not mutually exclusive.
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Figure 4.5: Comparison of weighted and unweighted flanking AU content. Target site
accessibility using weighted AU content is compared by aggregating the 25 transfection experiments.
(Left) Weighted and unweighted AU content in the 5′ flanking region. (Right) Weighted and un-
weighted AU content in the 3′ flanking region.

The base-weighted 5′ flank shows a significant improvement compared to its unweighted

result in the bottom 10% of cases (p-value 2.1 × 10−5), though this significance does

not extend to the top 10% (p-value 6.2 × 10−1). There is a logical basis in applying

weightings here, as paired supplementary bases are of greater importance closer to the

seed. The 3′ flanking region does not gain significant benefit from weighting (p-values:

6.4 × 10−1 and 4.9 × 10−1), as such a mechanism is not present on the 3′ side of the

binding.

The effect of AU content in the seed is tested using two different implementations. In

the first, the seed is treated dynamically; the bases used to calculate the proportional

representation of AU content vary depending on the seed definition. In the second,

only the traditional 6mer bases 2-7 are used.
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Figure 4.6: Comparison of dynamic and fixed seed AU content. Target site accessibility
using AU content is compared by aggregating the 25 transfection experiments. (Left) The seed region
is defined dynamically, according to the type of binding that occurs. (Right) The seed is defined as a
6mer of bases 2-7.

Dynamic handling for the seed bases produces an inferior p-values compared to the

static definition, 5.0× 10−8 vs 1.5× 10−27. The difference is mostly observable in the

bottom 10% AU lines, 1.3× 10−3 vs 4.5× 10−37, implying the difference is due to the

critical nature of bases 2-7 to a successful binding. Since this is the primary 6mer

definition that other seed types are derived from, this feature may be considered an

indicator of ‘6mer quality’.

4.3.2 RNAplfold

Using RNAplfold, a separate feature is extracted for the seed and supplementary por-

tions of the binding. A dynamic 6-8 base window is used for the former, depending

on the seed type. The supplementary portion consists of bases 9-20, regardless of the

seed window used.
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Figure 4.7: Comparison of aggregate RNAplfold efficacy. Target site accessibility using
RNAplfold is compared by aggregating the 25 transfection experiments. (Top left) All seed type
overview. (Top right) 6mer only. (Bottom left) 7mer only. (Bottom right) 8mer only.

A statistically significant shift can be observed in all seed types when comparing the top

and bottom 10% accessibility lines (p-value 2.6×10−32). As with all tested accessibility

methods in this study, non-targets (p-value 1.6 × 10−53) are more distinguished than

targets (p-value 3.4 × 10−1). For AU seed content, a substantial improvement can

be seen in RNAplfold’s ability to detect inaccessible seeds, producing a p-value of

1.6× 10−53, compared to 4.5× 10−37 (Figure 4.6).
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Figure 4.8: Comparison of aggregate RNAplfold supplementary efficacy. Target site sup-
plementary accessibility using RNAplfold is compared by aggregating the 25 transfection experiments.
(Top left) All seed type overview. (Top right) 6mer only. (Bottom left) 7mer only. (Bottom right)
8mer only.

Bases 9-20 were previously found to produce the strongest results when testing alterna-

tive supplementary base definitions centred around 13-16 (Section 3.2.7.4). Applying

RNAfold at this window with an 11-base spanning accessibility score produces signifi-

cant separation in the least accessible cases (p-value 4.1×10−46), though it is less than

seed accessibility (p-value 1.6× 10−53). An interesting element to this result is that it

produces a slight leftward shift in the top 10% cases for 7mers and 8mers. The shift is

significant at a p-value of 1.3 × 10−12, despite being insignificant in seed accessibility

3.4× 10−1.
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4.3.3 SHAPE-seq

The same seed and supplementary sequence values are used with SHAPE-seq as they

were with RNAplfold, extracted separately to generate two unique features. Results

are first generated exclusive to HeLa, and then again using a consensus value derived

from the mean of available scores across the five cell lines.

Figure 4.9: Comparison of aggregate SHAPE-seq efficacy from HeLa. Target site accessi-
bility using SHAPE-seq is compared by aggregating the 25 transfection experiments. (Top left) All
seed type overview. (Top right) 6mer only. (Bottom left) 7mer only. (Bottom right) 8mer only.

The plots display a radical shift in the high and low accessibility lines (p-value 3.1 ×

10−40). In particular, 6mers with low accessibility under this measure are comparable

to transcripts without a seed target, shifting rightward close to the control line. The

8mer result is not as effective in determining non-targets using low accessibility, as

it overlaps heavily with the line for 8mers labelled with SHAPE-seq data. This may
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be due to bias, as there is a significant separation between all 8mers and 8mers with

SHAPE-seq coverage (p-value 9.3× 10−27). This value is lower for both 7mer (p-value

3.0× 10−18) and 6mer (p-value 2.1× 10−3).

Figure 4.10: Comparison of aggregate SHAPE-seq supplementary efficacy from HeLa.
Target site supplementary accessibility using SHAPE-seq is compared by aggregating the 25 transfec-
tion experiments. (Top left) All seed type overview. (Top right) 6mer only. (Bottom left) 7mer only.
(Bottom right) 8mer only.

A similar pattern can be seen when applied exclusively to the supplementary region,

where the shift is again significant (p-value 2.2 × 10−40). In general, the separation

between the most and least accessible categories are some of the strongest isolated

feature shifts observed, including those in Section 3.3.1.
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Figure 4.11: Comparison of aggregate SHAPE-seq efficacy from five cell lines. Target site
accessibility using SHAPE-seq is compared by aggregating the 25 transfection experiments. (Top left)
All seed type overview. (Top right) 6mer only. (Bottom left) 7mer only. (Bottom right) 8mer only.

Although the aggregated transfections originate exclusively from HeLa, averaging re-

activity values from all available sources both improves coverage and the overall result.

The bias of labelled values is reduced at all levels, evidenced by the smaller gap between

‘All Seed’ and ‘Seed with shape data’ lines and reduction of p-value from 1.6×10−21 to

1.2× 10−4. There is also an improvement in the detection of non-targets and targets,

with the significance improving from 3.1× 10−40 to 4.1× 10−44. Additionally, the most

accessible 8mers shift leftward at a high rate around the -1.0 log2 fold change mark.

The number of labelled targets after adding data sources is 24% compared to 14%

when using HeLa alone, meaning the consensus value increases coverage by a total of

71%.
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Figure 4.12: Comparison of aggregate SHAPE-seq supplementary efficacy from five cell
lines. Target site supplementary accessibility using SHAPE-seq is compared by aggregating the 25
transfection experiments. (Top left) All seed type overview. (Top right) 6mer only. (Bottom left)
7mer only. (Bottom right) 8mer only.

In terms of the supplementary portion, the pattern in results is similar to those of the

seed. This further suggests that the improvement from aggregating cell lines is not

coincidental and can potentially reduce noise from erroneous reactivity values.

4.4 Discussion

The methods tested in this section each display some merit as potential targeting

features, both in identifying true positive targets and filtering those without sufficient

accessibility to facilitate a binding.
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The strongest overall result is the novel usage of SHAPE-seq structure analysis, both in

terms of seed and supplementary features, and its ability to provide strong positive and

negative filters. As previously discussed, the lack of feature coverage calls its utility

into question. Even with a 71% increase to 24% target coverage, the majority of targets

will not be represented in the data. While this can be somewhat offset by the choice

of ML algorithm, or mitigated through data mining techniques, it is the only feature

to require such measures. Nevertheless, the feature’s performance increasing in line

with data from different cell lines, even when exclusively testing a specific cell line, is

a surprising result warranting further research. Implementing SHAPE-seq data from

more cell lines should continue to increase coverage and reduce skew towards specific

cell lines, though it should be noted that SHAPE-seq data is not as widely available

as RNA-seq.

RNA pairing probability using RNAplfold may be the most useful accessibility feature

after factoring in the limitations of SHAPE-seq data. While the shift is smaller by

comparison, the feature is consistent and capable of more specific targeting than AU

content. Pairing probability has the smallest leftward shifts of the three methods,

instead favouring identification of non-targets with low accessibility. This arguably

makes it a more direct measure of accessibility, as the 10% most inaccessible bases

should reduce binding efficacy more than the 10% most accessible bases increase it, a

pattern observable in both AU content and SHAPE-seq results.

The presence of AU content offers a relatively consistent set of features, though the

use of large flanking windows means it lacks precision compared to the other methods

tested. The seed AU content result is arguably the poorest overall performer, and

the AU content value in this case is not cleanly correlated with target efficacy. The

weighted 5′ result is the strongest of the AU content features, which is expected given

its application in both TargetScan and miRanda-mirSVR.

A total of 8 feature candidates are extracted as a result of this testing: AU content

scores for the 3′ flanking, 5′ flanking, weighted 5′ flanking and seed regions, in ad-

dition to pairing probabilities and RNA structure reactivity scores for both the seed

and supplementary bases. Combined with the original three-window approach (Sec-

tion 3.2.7.1), this brings accessibility scoring features up to a total of 9. There is a
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variation in the quality and utility of these features, in addition to a degree of redun-

dancy. However, there is no limit on the number of features that may be used to build a

model. The inclusion of all potential features at this stage allows an ML model to draw

its own conclusions as to their importance, as it may exclude or lower the weighting of

poorer performers.



Chapter 5

miRNA:mRNA Target Prediction

using Machine Learning

5.1 Summary

This chapter describes the development of an ML model for predicting miRNA targets

by evaluating several supervised learning algorithms and benchmarking the results

against popular prediction tools. The goal of this work is to build upon prior results

by utilising ML to allow for more fluid prediction boundaries and ultimately expand

the feature set.

The model and associated scripts are managed by Python (Van Rossum and Drake Jr,

1995), with R and Bash subroutines used for feature extraction. Where possible,

original feature extraction logic from Chapters 3 and 4 is retained, though the tool

itself is overhauled to function as a more coherent end-to-end piece of software.

5.2 Methods

5.2.1 Tool Architecture

The primary deliverable of Chapter 3 was presented in the form of R scripts with

limited architecture and cohesion. This encouraged a leaner and more exploratory

development process, which could pivot as discoveries were made. As ML approaches

are substantially more complex, improved code structure is a prerequisite to further

development to reduce runtime scaling and potential bugs. The engineering philosophy

114
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adopted at this stage emphasises scalability and rapid feature prototyping.

A key adjustment to the tool architecture is the integration of Python to manage

script execution and link otherwise independent modules. Python is selected due to

its role as a general-purpose programming language, interoperability with R, Linux

support (required by ViennaRNA) and widespread adoption in academic research. In

addition, access to the packages scikit-learn (Pedregosa et al., 2011), for general ML,

and TensorFlow (Abadi et al., 2015), for deep learning, are also determining factors.

The tool is composed of three thematic parts: setup (Figure 5.1), responsible for ac-

quiring annotations and caching conservation scores; feature extraction (Figure 5.2), in

which data relating to target recognition is mined and processed; and ML (Figure 5.3),

where models are trained and evaluated to determine a ‘best’ predictor for future work.

Figure 5.1: Setup module activity diagram. The setup module is primarily responsible for
parsing settings, acquiring annotations and building the conservation cache.



116

Figure 5.2: Feature extraction module activity diagram. The feature extraction module is
primarily responsible for differential expression analysis, target location and feature preparation.
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Figure 5.3: Machine learning module activity diagram. The machine learning module is
primarily responsible for feature processing, model training, making predictions and result evaluation.



118

5.2.1.1 Bioinformatics Pipeline

The bioinformatics pipeline remains unchanged from its initial flow (Figure 5.4). How-

ever, as the deliverable software does not utilise RNA-seq data, and there is little

overlap in technologies, it is now isolated from the rest of the tool.

Figure 5.4: Bioinformatics pipeline. RNA-seq data is trimmed and checked for quality. An index
is then constructed for the specified genome version and reads are quantified using kallisto. RNA-seq
data is only required for model training and evaluation, meaning the end user software does not need
to include this module.

5.2.2 Functionality Enhancements

5.2.2.1 Runtime Settings

A formal method for adjusting runtime settings via external configuration files is intro-

duced to simplify testing flags and file paths. Settings had previously been managed

through global constants, but this becomes more cumbersome when maintained be-

tween scripting languages.

Settings are applied through a JavaScript Object Notation (JSON) file (Ecma Inter-

national, 2017), parsed at runtime by Python into a dictionary object and passed as

command line arguments to Bash scripts. Using the jsonlite package (Ooms, 2014),

the JSON file can also be read directly into R.

5.2.2.2 Output Caching

Intermediary outputs relative to transfection experiments are generated at each stage

of feature extraction (Figure 5.5). When the use caching setting is enabled, the tool
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will attempt to load these files before the execution of the associated stage. This design

pattern is useful in debugging, as each module can be tested in isolation against its

expected behaviour.

Figure 5.5: Cached output directory structure. The tool’s output directory structure. Each
directory stores intermediary outputs which allow the tool to resume from a desired stage.

5.2.2.3 Dynamic Experiment Loading

Experiment metadata is used at several processing stages, such as during differential

expression analysis. Experiment data is supplied manually in Chapter 3 because the

RNA-seq data used at that stage originated from the same source. As more data is

integrated, a method of managing unique identifiers, samples accessions and varying

numbers of biological replicates between batches becomes necessary. This information

is also used by the caching system to create intermediary outputs as required.

Metadata files are dynamically generated using information provided to a JSON array

at runtime.

1 [

2 {

3 "batch_id ": "01-liu -HeLa",

4 "mirna": "hsa -let -7c-5p",

5 "transfected_samples ": [" SRR8382192", "SRR8382193 "],

6 "control_samples ": [" SRR8382242", "SRR8382243 "]

7 },

8 {

9 ...

10 }

11 ]

5.2.2.4 Local Annotation Parsing

Annotations were previously fetched using biomaRt queries in R (Section 3.2.4). As

requirements grew, annotation queries increasingly fell outside biomaRt’s recommended

parameters. This created a limitation where only expressed transcripts were annotated

to reduce overhead. The process therefore became per-sample, meaning the cache was

invalidated if a new miRNA was transfected or the TPM filter was adjusted.
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In addition to biomaRt, Ensembl publishes annotations in General Transfer Format

(GTF) tabular files with each genome release. Parsing is necessary to convert these

files into R tables due to the non-standard attribute fields, which contain different

numbers of semicolon separated metadata. The transcript mane select had previ-

ously been pulled as part of the biomaRt query, but is now acquired from an additional

third party GTF file published by NCBI. As the filter context of the original query is

lost, a MANE version mapping ensures the correct genome version is used.

Using coordinate annotations from the GTF file, 3′ UTR and CDS sequences are ex-

tracted for all transcripts using the ensembldb (Rainer et al., 2019) R package. After

mapping the local annotation database to the BSgenome.Hsapiens.NCBI.GRCh38 (The

Bioconductor Dev Team, 2014) genome track, it is queried using GenomicFeatures

(Lawrence et al., 2013) to extract sequences at given coordinates.

1 genome <- BSgenome.Hsapiens.NCBI.GRCh38

2 filter <- protein_coding_filter & chromosome_filter

3 utrs <- ensembldb :: threeUTRsByTranscript(ensdb , filter = filter)

4

5 utr_seqs <- GenomicFeatures :: extractTranscriptSeqs(genome , utrs)

Annotations parsed with this method are ultimately identical to those described in

Table 3.2. CDS coordinates are also included using extraction methods parallel to that

of the 3′ UTR to support the inclusion of CDS-related features.

5.2.2.5 Genome-wide Conservation Caching

Conservation scoring is a computationally expensive process because sequence scores

must be generated, accessed and processed for a large number of targets per transfec-

tion. Previously, this created a bottleneck during conservation scoring. By decoupling

per-genome and per-sample annotation logic, and removing annotation download caps

(Section 5.2.2.4), conservation scoring can be partially cached.

It is not possible to know where target sites lie on a 3′ UTR before examining the

transfected miRNA’s seed sequence. However, the combination of expressed and un-

expressed transcripts, and therefore their 3′ UTR sequences, do not change between

samples. With annotations being expanded to include unexpressed transcripts, a con-

servation score can be pre-computed for each base in all the 3′ UTRs in preparation

for when the seed target sequences are known. While this comes at the cost of up-front
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computation, the cache is valid until the genome version is changed.

GenomicScores is used to compute a conservation score for every 3′ UTR sequence

using the original method described in Section 3.2.8. A minor upgrade here is that an

interval of 1 nt is used to enable per-base scoring, as opposed to the averaged window

scoring used previously.

1 range <- GRanges(chromosome , IRanges(utr_start:utr_end , 1), strand)

The dimensions of a matrix cache for conservation scores across a genome can be

defined as ‘genome transcript count’ × ‘genome longest 3′ UTR length’, or 84, 419 ×

270, 375. An empty vector of this size has a data allocation of 125.9 GB in R, making

it unfeasible to retain in memory. Utilising a non-uniform data structure, such as a

jagged array, reduces this memory requirement. However, R’s native support for non-

uniform structures is limited. Truncating or filtering the longest 3′ UTRs is another

option for reducing the memory footprint, as the majority fall shorter than 10,000 nt.

Figure 5.6: Histogram of 3′ UTR lengths. The vast majority of 3′ UTR lengths are shorter
than 10% of the binned scale. (Left) All 3′ UTRs in Homo sapiens. (Right) Filtered 3′ UTRs to those
longer than 50,000 nt.

A 100,000 nt base limit results in a 46.3% (58.3 GB) reduction in memory, with a loss

of 0.00004% (36) transcripts (Table 5.1). At 12,500 nt, there is a loss of 0.00713% (602)

transcripts for a resulting 8.5 GB matrix. Although this reduction is beneficial, a loss

of transcripts could have a significant impact in samples where a truncated or removed

transcript contains a true positive target. MTS also means a removed transcript could

potentially host more than one target.
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Table 5.1: Matrix size as a trade-off against transcript loss

3′ UTR Length Limit Matrix Size (GB) Transcripts Lost Transcript Loss (%)

No limit 125.9 0 0

100,000 67.6 36 0.00004

50,000 31.5 104 0.00123

25,000 16.9 214 0.00254

12,500 8.5 602 0.00713

10,000 6.8 860 0.01019

7,500 5.1 1497 0.01773

5,000 3.4 3240 0.03839

Another approach to improve memory efficiency is to simplify the data structure by

collapsing the scoring columns into a single sequence. Since R is used to extract

conservation scores, yet Python governs the ML component, this can be achieved by

writing the scores directly to file as they are generated, row-by-row. In this way, neither

language holds more than a single row of the data structure in memory at a time.

Algorithm 2 Genome-wide per-base conservation score logging algorithm

Input: transcripts and full annotations

1: open file for writing

2: for all transcripts do

3: log transcript ID

4: log tab

5: if 3′ UTR start or end coordinate is NA then

6: log NA

7: else

8: compute and log tab-separated per-base scores

9: end if

10: start new line

11: end for

12: close file

Output: conservation scores tabular file

The cache is accessed once the seed target sequences and corresponding coordinates

have been identified for a sample. The loss of columns is counteracted by parsing the
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sequences of each row using Python’s string-character iteration (Algorithm 3). With

this method, the data structure is reduced to 218 MB at rest, expanding to 228 MB

when loaded into a Python Pandas (Wes McKinney, 2010) DataFrame.

Algorithm 3 Conservation score fetching algorithm

Input: targets and annotations

1: for all targets do

2: locate target using transcript ID

3: for all abundant target sites do

4: seed score = conservation[start seed:end seed]

5: supplementary score = conservation[start sup:end sup]

6: 3′ flanking score = conservation[start sup:start sup + 30]

7: 5′ flanking score = conservation[start seed - 31:start seed - 1]

8: calculate mean of each score, skip NAs

9: end for

10: end for

11: store results

Output: per-target conservation scores

Owing to these enhancements, two new conservation tracks are added to support

additional ML features: phastCons7way.UCSC.hg38 (Siepel et al., 2005) and phy-

loP100way.UCSC.hg38 (Pollard et al., 2010). Additionally, the flexibility in base ex-

traction means conservation is also recorded for the 30 bases immediately flanking

the seed, as conservation in these regions has been shown to impact target prediction

accuracy (Ohler et al., 2004).

5.2.3 Dataset Construction

5.2.3.1 Additional Datasets

The 01-liu-HeLa dataset described in Table 3.1 is expanded using EBI Search (Madeira

et al., 2022), and crawling the NCBI GEO (Edgar et al., 2002) and BioProject (Wheeler

et al., 2007) databases with filter queries. Increasing the number of transfections avail-

able at this stage is important to facilitate ML, as data used to train models cannot be

used to tweak algorithm parameters or produce test results without introducing biases.

A full list of additional datasets is provided in Appendix A.
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5.2.3.2 Data Quality Evaluation

A comparison of expression change distribution shows a degree of variation between

transfection datasets, likely due to differences in lab techniques (Figure 5.7). In partic-

ular, 14-nam-Hela hsa-miR-155-5p and 09-tam-U251 hsa-miR-137-3p have large devi-

ations. 01-liu-HeLa remains the largest dataset source, with 25 individual transfections

from a single cell line. This is substantially more than the second largest, containing

seven transfections from four sources (datasets 11-14).

Figure 5.7: Filtered expression fold change variance between all datasets. The distribution
of filtered log2 expression fold change within each sample. There is more variation in samples outside
of 01-liu-HeLa.
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In Section 3.2.6.2, an MW test was performed to compare the expression fold change of

targets and non-targets in order to filter samples with a p-value greater than 5.0×10−5.

Applying this filter to the additional datasets, three fail to show significant separation

and are excluded from the ML datasets.

Table 5.2: Mann-Whitney p-values for each new transfection experiment

Transfection MW p-value Pass

02-wan-SW982 hsa-miR-424-5p 6.2× 10−28 ✓

02-wan-SW982 hsa-miR-497-5p 6.9× 10−22 ✓

03-lmu-HUVEC hsa-miR-125a-5p 2.0× 10−19 ✓

04-bev-22Rv1 hsa-miR-642a-5p 1.8× 10−39 ✓

05-ham-LX-2 hsa-miR-6133 4.1× 10−222 ✓

06-kim-MDA-MB-231 hsa-miR-200a-3p 2.3× 10−1 ✕

07-hms-HUVEC hsa-miR-146a-5p 2.0× 10−84 ✓

08-mor-HEK293T hsa-miR-16-5p 6.6× 10−168 ✓

08-mor-HEK293T hsa-miR-214-3p 6.8× 10−13 ✓

09-tam-U251 hsa-miR-137-3p 9.5× 10−49 ✓

10-tam-U343 hsa-miR-137-3p 2.1× 10−136 ✓

11-nam-IMR90 hsa-miR-124-3p 2.9× 10−24 ✓

12-nam-Huh7 hsa-miR-124-3p 6.5× 10−14 ✓

12-nam-Huh7 hsa-miR-155-5p 1.1× 10−41 ✓

13-nam-HEK293 hsa-miR-124-3p 2.4× 10−61 ✓

13-nam-HEK293 hsa-miR-155-5p 2.5× 10−231 ✓

14-nam-HeLa hsa-miR-124-3p 3.3× 10−42 ✓

14-nam-HeLa hsa-miR-155-5p 1.4× 10−111 ✓

15-hu-293T hsa-miR-941 4.2× 10−2 ✕

16-icl-HPAEC hsa-miR-181a-5p 1.1× 10−68 ✓

16-icl-HPAEC hsa-miR-324-5p 9.9× 10−1 ✕

17-guo-HeLa hsa-miR-1-3p 5.3× 10−35 ✓

17-guo-HeLa hsa-miR-155-5p 2.2× 10−42 ✓

18-mit-A549 hsa-miR-30a-3p 1.4× 10−163 ✓

18-mit-A549 hsa-miR-30a-5p 2.0× 10−43 ✓

19-tav-FLS hsa-miR-27b-3p 1.6× 10−81 ✓

20-sob-MSC hsa-miR-130a-3p 2.3× 10−35 ✓

20-sob-MSC hsa-miR-130b-3p 1.1× 10−36 ✓

21-zhu-UM-SCC-1 hsa-miR-204-5p 2.5× 10−156 ✓

22-sxh-PBMC hsa-miR-98-5p 5.1× 10−36 ✓
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5.2.3.3 Train and Test Split

A pool of 55 individual miRNA transfections are available to form the training and

test sets, though there are some limitations. miRNA transfection data has an implicit

grouping based on the transfected miRNA sequence that should be maintained during

splitting. Allowing targets from the same miRNA transfection to populate both sets

will potentially allow test cases partial access to the label, particularly in the case of

MTS (Figure 5.8). This may also be an issue for same-family miRNAs, as the model

could become biased towards efficacy factors in these over-represented seed sequences.

Figure 5.8: Grouped vs random data splits. In a random split, data is arbitrarily placed in
each category. In a grouped split, related data is prevented from entering other sets.

The presence of mislabelled or noisy training data has a detrimental effect on a model’s

ability to learn (Brodley and Friedl, 1999). As 01-liu-HeLa has been tested extensively

in this study, it is chosen to comprise the entirety of the training set. Although there is a

concern that this data originates exclusively from HeLa, cell lines generally do not affect

miRNA targeting (Nam et al., 2014). Nonetheless, to maintain fair test conditions

during model evaluation and benchmarking, HeLa data is not used in testing.

The validation set is formed using the scikit-learn library’s StratifiedGroupKFold

cross-validation function. In k-fold cross-validation, the training set is subset k times

while withholding a portion of the data for validation (Section 2.5.1.1). Grouped k-

fold cross-validation is a derivative technique for ensuring groupings are retained across

these splits, while stratification preserves class distributions.

In order to determine groupings for the train and test split, experiments are organised

based on the 6mer seed sequence of the transfected miRNA.
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Table 5.3: Transfected miRNAs with fully unique seeds

miRNA Seed Count* Present In

hsa-miR-107 AGCAGCAU 1 01-liu-HeLa

hsa-miR-10a-5p UACCCUGU 1 01-liu-HeLa

hsa-miR-124-3p UAAGGCAC 5 01-liu-HeLa, 11-nam-IMR90,

12-nam-Huh7, 13-nam-HEK293,

14-nam-HeLa

hsa-miR-126-3p UCGUACCG 1 01-liu-HeLa

hsa-miR-126-5p CAUUAUUA 1 01-liu-HeLa

hsa-miR-133b UUUGGUCC 1 01-liu-HeLa

hsa-miR-142-3p UGUAGUGU 1 01-liu-HeLa

hsa-miR-145-5p GUCCAGUU 1 01-liu-HeLa

hsa-miR-146a-5p UGAGAACU 2 01-liu-HeLa, 07-hms-HUVEC

hsa-miR-155-5p UUAAUGCU 5 01-liu-HeLa, 12-nam-Huh7,

13-nam-HEK293, 14-nam-HeLa,

17-guo-HeLa

hsa-miR-17-5p CAAAGUGC 1 01-liu-HeLa

hsa-miR-193b-3p AACUGGCC 1 01-liu-HeLa

hsa-miR-200a-3p UAACACUG 2 (1) 01-liu-HeLa, 06-kim-MDA-MB-231

hsa-miR-21-5p UAGCUUAU 1 01-liu-HeLa

hsa-miR-210-3p CUGUGCGU 1 01-liu-HeLa

hsa-miR-31-5p AGGCAAGA 1 01-liu-HeLa

hsa-miR-34a-5p UGGCAGUG 1 01-liu-HeLa

hsa-miR-9-3p AUAAAGCU 1 01-liu-HeLa

hsa-miR-9-5p UCUUUGGU 1 01-liu-HeLa

hsa-miR-125a-5p UCCCUGAG 1 03-lmu-HUVEC

hsa-miR-642a-5p GUCCCUCU 1 04-bev-22Rv1

hsa-miR-6133 UGAGGGAG 1 05-ham-LX-2

hsa-miR-214-3p ACAGCAGG 1 08-mor-HEK293T

hsa-miR-137-3p UUAUUGCU 2 09-tam-U251, 10-tam-U343

hsa-miR-941 CACCCGGC 1 (0) 15-hu-293T

hsa-miR-181a-5p AACAUUCA 1 16-icl-HPAEC

hsa-miR-324-5p CGCAUCCC 1 (0) 16-icl-HPAEC

hsa-miR-30a-3p CUUUCAGU 1 18-mit-A549

hsa-miR-30a-5p UGUAAACA 1 18-mit-A549

hsa-miR-27b-3p UUCACAGU 1 19-tav-FLS

hsa-miR-204-5p UUCCCUUU 1 21-zhu-UM-SCC-1
* Parentheses account for those which did not pass the p-value filter.
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Table 5.4: Transfected same-family miRNAs with the AGCAGC 6mer

miRNA Seed Count Present In

hsa-miR-15a-5p UAGCAGCA 1 01-liu-HeLa

hsa-miR-16-5p UAGCAGCA 2 01-liu-HeLa, 08-mor-HEK293T

hsa-miR-424-5p CAGCAGCA 1 02-wan-SW982

hsa-miR-497-5p CAGCAGCA 1 02-wan-SW982

Table 5.5: Transfected same-family miRNAs with the AAUACU 6mer

miRNA Seed Count Present In

hsa-miR-200b-3p UAAUACUG 1 01-liu-HeLa

hsa-miR-200c-3p UAAUACUG 1 01-liu-HeLa

Table 5.6: Transfected same-family miRNAs with the AGUGCA 6mer

miRNA Seed Count Present In

hsa-miR-130a-3p CAGUGCAA 1 20-sob-MSC

hsa-miR-130b-3p CAGUGCAA 1 20-sob-MSC

Table 5.7: Transfected same-family miRNAs with the GGAAUG 6mer

miRNA Seed Count Present In

hsa-miR-206 UGGAAUGU 1 01-liu-HeLa

hsa-miR-1-3p UGGAAUGU 1 17-guo-HeLa

Table 5.8: Transfected same-family miRNAs with the GAGGUA 6mer

miRNA Seed Count Present In

hsa-let-7c-5p UGAGGUAG 1 01-liu-HeLa

hsa-miR-98-5p UGAGGUAG 1 22-sxh-PBMC

In the 01-liu-HeLa dataset, there are two same-family overlaps between hsa-miR-15a-

5p and hsa-miR-16-5p, and hsa-miR-200b-3p and hsa-miR-200c-3p. To prevent these

seed sequences becoming over-represented in the training set, hsa-miR-15a-5p and hsa-

miR-200b-3p are excluded as they had higher p-values, and therefore a less significant

separation between targets and non-targets, in the transfection evaluation (Table 5.2).
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There are 30 potential transfection experiments to build the test set, 13 after account-

ing for same-family miRNAs in the training set. Of the remainder, hsa-miR-137-3p

is transfected twice, making one a redundant test. The 09-tam-U251 iteration of this

transfection is therefore removed due to its inferior p-value, bringing the total to 12.

Finally, hsa-miR-130a-3p and hsa-miR-130b-3p share a seed sequence, but are indepen-

dent miRNAs. Since there is no feedback mechanism to the model that could introduce

bias, and this sequence is not present in the training set, they are both included in the

test set.

Table 5.9: Dataset splits after accounting for same-family miRNAs

Training Set Test Set

01-liu-HeLa hsa-let-7c-5p 03-lmu-HUVEC hsa-miR-125a-5p

01-liu-HeLa hsa-miR-107 04-bev-22Rv1 hsa-miR-642a-5p

01-liu-HeLa hsa-miR-10a-5p 05-ham-LX-2 hsa-miR-6133

01-liu-HeLa hsa-miR-126-3p 08-mor-HEK293T hsa-miR-214-3p

01-liu-HeLa hsa-miR-126-5p 10-tam-U343 hsa-miR-137-3p

01-liu-HeLa hsa-miR-142-3p 16-icl-HPAEC hsa-miR-181a-5p

01-liu-HeLa hsa-miR-146a-5p 18-mit-A549 hsa-miR-30a-3p

01-liu-HeLa hsa-miR-155-5p 18-mit-A549 hsa-miR-30a-5p

01-liu-HeLa hsa-miR-16-5p 19-tav-FLS hsa-miR-27b-3p

01-liu-HeLa hsa-miR-17-5p 20-sob-MSC hsa-miR-130a-3p

01-liu-HeLa hsa-miR-193b-3p 20-sob-MSC hsa-miR-130b-3p

01-liu-HeLa hsa-miR-200a-3p 21-zhu-UM-SCC-1 hsa-miR-204-5p

01-liu-HeLa hsa-miR-200c-3p

01-liu-HeLa hsa-miR-206

01-liu-HeLa hsa-miR-21-5p

01-liu-HeLa hsa-miR-210-3p

01-liu-HeLa hsa-miR-31-5p

01-liu-HeLa hsa-miR-34a-5p

01-liu-HeLa hsa-miR-9-3p

01-liu-HeLa hsa-miR-9-5p

01-liu-HeLa hsa-miR-124-3p

01-liu-HeLa hsa-miR-145-5p

01-liu-HeLa hsa-miR-133b

TPM filtering was used to improve the quality of the training set by removing poorly
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mapped reads (Section 3.2.6.1). Filtering is not applied to the test set in order to

maintain fair test conditions.

5.2.4 Data Preparation

Following the examination of popular prediction tools (Section 2.5.2), and testing of

isolated features (Section 3.3) and site accessibility measurement methods (Section 4.3),

the feature set is expanded to take advantage of ML’s heightened feature capacity.

Unless explicitly discussed prior, new features are derivative of an existing feature and

did not require noteworthy development.

5.2.4.1 Collinearity Reduction

Throughout this study, many target recognition features have been investigated. Con-

sequently, there is some overlap between the information gained from these features,

such as alternate site accessibility measures. This feature collinearity does not neces-

sarily influence overall prediction accuracy (Mason and Perreault Jr, 1991); rather, it

destabilises and complicates the model’s ability to draw conclusions about the distinct

influence of individual variables. This makes it problematic to regression approaches

in particular (Midi et al., 2010). Furthermore, in both classification and regression

problems, redundant features increase the computational complexity of the model.
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Figure 5.9: Training set feature correlation heatmap. The correlation of each feature pair is
compared in a hierarchically clustered heatmap, where a dark colour indicates higher correlation. A
number of closely related feature clusters exist, notably those relating to evolutionary conservation
and supplementary binding.

An examination of feature-to-feature correlation highlights three kinds of collinearity.

In the first type, two features simply describe the same piece of information, possibly

represented in a different form. These features are the easiest to remove, as a two-way

correlation means little information is lost by removing either variable.
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Table 5.10: Two-way collinear features

Collinear features Description

binding site pos

rel utr pos

The position of the miRNA target relative to the 3′ UTR,

the relative position gives the result as a proportion rather

than an nt count.

au content 6mer

rnacofold seed mfe

The presence of AU content indicates weaker seed stability,

and predicted seed MFE is also a measure of this stability.

perfect pair 8

seed type

Between 7mer-m8 and 8mer, the existence of a perfect pair

at base 8 is encoded in seed type.

Another observable type of collinearity is when one feature partially encodes another,

for example, site abundance 7mer and site abundance 7m8. While information is

still gained by maintaining both states, a third variable, site abundance 7a1, leads

to an overlap between the three features. In these cases, one of the features can be

removed without a significant reduction in the information available to the model.

Table 5.11: Three-way collinear features

Collinear features Description

perfect pair 1

au 1

seed type

A:U is a type of perfect binding, and at base 1 this is

described by the 7mer-a1 seed type.

au content 5

au content 5 weighted

au content sup

AU content to the 5′ side of the mRNA target is mea-

sured in three different ways; the supplementary and

weighted methods favour bases close to the seed.

site abundance 7mer

site abundance 7a1

site abundance 7m8

7mer-a1 and 7mer-m8 are the two subtypes of 7mer.

site abundance 7cds

site abundance 7a1cds

site abundance 7m8cds

7mer-a1 and 7mer-m8 are the two subtypes of 7mer.

The third type of collinearity present in the matrix is overlap between feature clusters.

Features revolving around sequence windows are expected to have some collinearity

because there is a correlation between adjacent base sequences. However, parallel



133

features, such as alternate conservation scoring methods, were initially used to avoid

ruling out potentially valuable features during development, but are instead now a

source of unnecessary complexity.

Table 5.12: Clustered collinear features

Collinear features Description

Conservation using the

phast7, phast100 and

phylo100 tracks.

The three tracks are all metrics for conservation, however

phast100 and phylo100 are derived from the same 100

species, whereas phast7 is a 7 species subset.

Supplementary features

using bases 12-17 and

9-20.

Both feature clusters describe subsets of the supplemen-

tary bases, of which 12-17 follows established literature

on the importance of continuous pairings in the region,

whereas 9-20 uses the definition found to be useful in

this study for pair count features.

The two-way collinear relationships are solved by removing the lesser informative fea-

ture. For three-way correlations, preference is given to utilising as few variables as

possible to fully encode the relationship. The exception to this rule is AU content,

where both the weighted and supplementary iterations of the feature are maintained

despite some redundancy. This preserves a popular feature in target prediction algo-

rithms, while also retaining information regarding the supplementary portion.

The cluster of evolutionary conservation features are simplified by preferring compar-

isons over 100 species. phylo100 is selected because it is a derivative of phast100 which

uses per-base scoring, as opposed to phast’s window average approach. Finally, when

considering supplementary binding features, base definition 12-17 is important because

contiguous pairing of 3-5 bp between bases 12-14 are more effective (Grimson et al.,

2007). Features revolving around continuous pairings and positioning therefore use

the base 12-17 definition, whereas abstract supplementary features use the base 9-20

definition that was previously found effective in this study (Section 3.2.7.4).
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Figure 5.10: Training set feature correlation heatmap after reducing collinearity. The
correlation of each feature pair is compared in a hierarchically clustered heatmap, where a dark colour
indicates higher correlation. After the removal of closely related feature clusters, there is a reduction
in the general feature correlation.

5.2.4.2 Common Features

Seed site implementations vary between TargetScan, miRanda-mirSVR, MirTarget and

DIANA-microT (Section 2.5.3), though the use of 6mer, 7mer and 8mer is consistent. In

this study, alternative definitions such as 6merα are implemented through the tracking

of base matches in uncommon positions such as 1 and 9. G:U wobbles are also permitted

in this way, provided the 6mer is perfectly matched. Similar to TargetScan, 6mer offset

is recorded as an alternative seed type in MTS.
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Table 5.13: Seed type usage in comparison to other tools
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TargetScan 8.0 ✓ ✓* ✓ ✓ ✓ ✓

miRanda-mirSVR 3.3a ✓ ✓ ✓ ✓ ✓ ✓

MirTarget v4.0 ✓ ✓ ✓

DIANA-microT-CDS ✓ ✓ ✓ ✓ ✓ ✓ ✓

This tool ✓† ✓ ✓* ✓ ✓ ✓ ✓†

* 6mer offset is counted for MTS in the 3′ UTR only, not as a primary seed type.

† Tracked by features, not treated as a primary seed type.

All common features discussed in Section 2.5.4 are implemented.

Table 5.14: Common features in comparison to other tools
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TargetScan 8.0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

miRanda-mirSVR 3.3a ✓ ✓ ✓ ✓ ✓ ✓ ✓

MirTarget v4.0 ✓ ✓ ✓ ✓ ✓

DIANA-microT-CDS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

This tool ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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5.2.4.3 Full Feature List

A total of 44 features are extracted for use in ML.

Table 5.15: Features relating to seed definitions

Feature Potential Information Gain Basis

Seed binding type* Core feature of miRNA:mRNA in-

teraction

Lewis et al. (2003),

Lewis et al. (2005),

Grimson et al. (2007)

Base 1 perfect match Encodes alternative seeds: 6merα,

7mer-m1 and 8mer-m1

Ellwanger et al.

(2011)

Base 1 G:U G:U wobbles may be tolerated in

seeds, track 7mer-m1 wobble

Didiano and Hobert

(2006)

Base 8 G:U G:U wobbles may be tolerated in

seeds, track 7mer-m8 wobble

Didiano and Hobert

(2006)

Base 9 perfect match Encodes alternative 9mer seed be-

ginning at base 1

Maragkakis et al.

(2009a)

Base 9 G:U Track potential 9mer wobble Didiano and Hobert

(2006), Maragkakis

et al. (2009a)

Base 10 perfect match Encodes alternative 9mer seed be-

ginning at base 2

Maragkakis et al.

(2009a)

Base 10 G:U Track potential 9mer wobble Didiano and Hobert

(2006), Maragkakis

et al. (2009a)

miRNA base 1 A Base context for 7mer and 8mer Agarwal et al. (2015)

miRNA base 8 identity Base context for 7mer and 8mer Agarwal et al. (2015)

mRNA base 8 identity Base context for 7mer and 8mer Agarwal et al. (2015)
* 6mer, 7mer-a1, 7mer-m8, or 8mer.

Table 5.16: Features relating to binding stability

Feature Potential Information Gain Basis

RNAcofold seed MFE Measure of seed stability Garcia et al. (2011)

RNAcofold full binding

MFE

Measure of binding stability Garcia et al. (2011)
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Table 5.17: Features relating to supplementary sites

Feature Potential Information Gain Basis

Base 12-17 longest any

pair sequence

3-5 contiguous pairs beginning at

bases 12-14 offer greater benefit

Grimson et al. (2007)

Base 12-17 longest any

pair seq. start

3-5 contiguous pairs beginning at

bases 12-14 offer greater benefit

Grimson et al. (2007)

Base 9-20 perfect pair

count

9-20 encompasses a larger window

of bases expanded from 12-17

Grimson et al. (2007)

Base 9-20 avg. distance

between pairs

Gaps are tolerated in the supple-

mentary portion to around 5 bases

Kiriakidou et al.

(2004)

Base 9-20 G:U count Frequent wobbles may destabilise

bindings

Didiano and Hobert

(2006)

Table 5.18: Features relating to conservation

Feature Potential Information Gain Basis

Base 1-8 PhyloP100 Seed conservation score Lewis et al. (2005)

Base 9-20 PhyloP100 Supplementary conservation score Lewis et al. (2005)

3′ flank PhyloP100 Flanking conservation score Ohler et al. (2004)

5′ flank PhyloP100 Flanking conservation score Ohler et al. (2004)
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Table 5.19: Features relating to site accessibility

Feature Potential Information Gain Basis

RNAfold MFE of

three-window*

Basic measure of seed accessibility Kertesz et al. (2007)

RNAfold position of

three-window*

Context on which side of the bind-

ing is least accessible

Kertesz et al. (2007)

RNAplfold unpairing

seed

Predictive measure of sequence ac-

cessibility

Kertesz et al. (2007),

Agarwal et al. (2015)

RNAplfold unpairing

supplementary

Predictive measure of sequence ac-

cessibility

Kertesz et al. (2007),

Agarwal et al. (2015)

AU content 3′ flank Effective sites often reside within

rich AU content

Grimson et al. (2007)

Weighted AU content

5′ flank

Effective sites often reside within

rich AU content

Grimson et al. (2007)

AU content supplemen-

tary

Effective sites often reside within

rich AU content

Grimson et al. (2007)

SHAPE-seq reactivity

seed

Objective measure of sequence ac-

cessibility

Kertesz et al. (2007)

SHAPE-seq reactivity

supplementary

Objective measure of sequence ac-

cessibility

Kertesz et al. (2007)

* Three windows are taken to the left, right, and centre of a binding. The strongest MFE predicted

by RNAfold is taken as representative (Section 3.2.7.1).
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Table 5.20: Features relating to MTS

Feature Potential Information Gain Basis

Best MTS* Context on current target relative

to others in the same transcript

Garcia et al. (2011)

3′ UTR 6mer MTS Track 6mer MTS Garcia et al. (2011)

3′ UTR 6mer offset

MTS

Track 6mer offset MTS Garcia et al. (2011)

3′ UTR 7mer MTS Track 7mer MTS Garcia et al. (2011)

3′ UTR 8mer MTS Track 8mer MTS Garcia et al. (2011)

Length of 3′ UTR MTS is higher in long 3′ UTRs, but

sites are less effective

Stark et al. (2005),

Hausser et al. (2009)

CDS 6mer MTS Track 6mer MTS Reczko et al. (2012)

CDS 7mer MTS Track 7mer MTS Reczko et al. (2012)

CDS 8mer MTS Track 8mer MTS Reczko et al. (2012)

Length of CDS CDS equivalent to 3′ UTR length Agarwal et al. (2015)
* Refers to the target with the most bases paired and strongest MFE when there are multiple

targets on the same 3′ UTR.

Table 5.21: Features relating to target positioning

Feature Potential Information Gain Basis

Relative binding posi-

tion in 3′ UTR

Bindings are generally more effec-

tive close to 3′ UTR ends

Grimson et al. (2007)

Minimum distance to 3′

UTR end

Bindings are generally more effec-

tive close to 3′ UTR ends

Grimson et al. (2007)

Table 5.22: Features relating to the entire miRNA and complementary mRNA bases

Feature Potential Information Gain Basis

mRNA binding spread Indicates the extent of gaps and

bulges

Ding et al. (2016)

5.2.4.4 Categorical Data Encoding

With the exception of seed type, all extracted features are numerical or binary. To

support non-binary categorical data, the four possible seed type values ‘6mer’, ‘7mer-

a1’, ‘7mer-m8’ and ‘8mer’ are encoded as 0, 1, 2 and 3. This allows the model to
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maintain four independent non-continuous numerical states for seed types.

5.2.4.5 Incomplete Data Imputation

Imputation is a technique for populating missing data with reasonable values. Impu-

tation ranges from a simple replacement of NA values with 0, to predicting missing

values using complex regression models. Alternative approaches to imputation include

the removal of data points or features, or the use of binary flags for indicating missing

fields. Due to the high rate of missing SHAPE-seq derived data (76%), these alternative

methods are unlikely to be effective.

Figure 5.11: Training set missing data visualisations. (Left) Histogram of missing data by
feature. Except for SHAPE-seq features, unavailability occurs at a rate of less than 0.5% in other
features. (Right) Missing data patterns. The pattern of unavailability for both SHAPE-seq fields
simultaneously is the most frequent, followed by full data availability. Generally, seed features are
more available than supplementary features.

Multivariate imputation by chained equations (MICE) is a multiple imputation ap-

proach which generates and analyses numerous potential imputations, and pools them

to produce an output (Van Buuren and Oudshoorn, 1999). The potential imputations

are first seeded randomly, before a more sophisticated prediction is made using strongly

correlated features. MICE is integrated in this study through the use of its R pack-

ages (Van Buuren and Groothuis-Oudshoorn, 2011), and internal predictions are made

using the CART algorithm.



141

Source: Van Buuren and Groothuis-Oudshoorn (2011)

Figure 5.12: Multiple imputation steps in MICE. (Left to right) Taking incomplete data from
the data frame, a user-defined number of multiply imputed dataset (mids) values are generated (3
pictured). The mids are analysed and assigned an interest coefficient to transform them into multiply
imputed repeated analysis (mira) objects. Finally, they are recombined to produce a multiple imputed
pooled outcomes (mipo) object.

The effectiveness of MICE is situational, but it has been to shown to be potentially

effective even at a rate of 80% incomplete data (Poyatos et al., 2018). More specifically,

it is capable of mostly preserving data patterns with up to 60% missing values, after

which the rate of error increases exponentially, though the value does not entirely

disappear (Penone et al., 2014).

An examination of distributions between a feature with a low (Figure 5.13) and high

(Figure 5.14) missing rate highlights this relationship with the overall result. In the

former, it is difficult to observe a distinction between the two distributions, though a

small build-up of red pixels can be observed to the right of the mean line below 4. In

the latter, MICE is able to somewhat reproduce the original distribution, although it

is a vastly inferior result.
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Figure 5.13: Comparison of original and MICE-imputed phylo100 5′ conservation scores.
MICE can impute new values for the feature without changing the original distribution. A small
deviation in imputed values can be seen to the right of the mean line.

Figure 5.14: Comparison of original and MICE-imputed SHAPE-seq reactivity values.
MICE can mostly reproduce the original distribution, with a large build-up around 0. As a result,
the mean is lower in the imputed set.
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In Figure 5.15, aggregate imputed SHAPE-seq values for seed targets in 01-liu-HeLa

are plotted against the original values in Figure 4.9. The 10% most and least accessible

values with imputation, represented by the ‘Seed +10% imp’ and ‘Seed -10% imp’ lines,

are able to maintain a separation. However, the degree of separation is visually lower

than when the categories contain only non-imputed values, as in the ‘Seed -10% acc’

and ‘Seed -10% acc’ lines. In both categories, the imputed line performs worse than the

original (p-values: rounded to 1), though the total number of data points is increased

by 75.8%. As a result, while the feature gains utility, its effectiveness is somewhat

diminished.

Figure 5.15: Comparison of aggregate SHAPE-seq efficacy before and after imputation.
Imputation is compared by aggregating the 25 transfection experiments. The ability of SHAPE-seq
data to distinguish high and low accessibility targets is reduced, but a separation still exists.

5.2.4.6 Scale Transformation

Transformation to a log scale allows features with values occupying a wide spectrum

to be compacted without a loss of information. In the training data, there is a large

difference in magnitude between the three features tracking 3′ UTR and CDS spans

compared to the rest of the feature set (Figure 5.16).
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Figure 5.16: Feature scale prior to transformation. The natural value range has a high degree
of variation due to features regarding sequence length causing scale distortions.

After transforming skewed features to log10 scale, the distribution is more visibly bal-

anced. This standardisation prevents models that are not invariant to distance from

becoming biased towards features of greater magnitude.

Figure 5.17: Feature scale after transformation. After transforming the length features to log10
scale, the values are distributed over a narrower range.



145

5.2.4.7 Outlier Removal

The removal of outliers is performed using scikit-learn’s LocalOutlierFactor function,

which compares the local deviation of a sample relative to its neighbours using k-nearest

neighbours clustering. Removing outliers from the training set allows the model to

better learn from the data by reducing the number of noise-influenced samples. As a

result, the number of training samples is reduced from 150,197 to 149,480, or a 0.005%

total reduction.

5.2.4.8 Normalisation

Normalisation is a technique for removing variations in magnitude between features.

In tree-based algorithms such as DT and RF, normalisation is unnecessary as the

decision nodes split based on isolated features, meaning the process is unaffected by

feature scaling. Conversely, normalisation improves the performance of SVM and ANN

models, due to their data point distance computation involving feature comparisons.

Normalisation is applied using scikit-learn’s MinMaxScaler implementation of min-max

scaling (Equation 5.2.1). Using the scalar, features are transformed so that all values

fall between 0 and 1.

xnorm =
x− xmin

xmax − xmin

(5.2.1)

While the log10 scale transformation is applied only to UTR and CDS span features

(Section 5.2.4.6), normalisation is applied to all features, causing the feature scale to

become uniform.
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Figure 5.18: Feature scale after normalisation. With the application of min-max scaling, the
range of feature values is normalised to 0-1.

5.2.5 Machine Learning

ML is performed by training a model on a set of data using an algorithm (Section 2.5.1).

Four algorithms are compared to determine which offers the greatest performance:

• DT: used as a baseline for classifier performance, but not expected to perform

well (Section 2.5.1.2).

• RF: popular for biological applications, one of four algorithms used by DIANA-

microT (Section 2.5.1.3).

• SVM: generally popular in many fields, used by DIANA-microT, miRanda-

mirSVR, MirTarget and previously TargetScan (Section 2.5.1.4).

• DNN: cutting-edge performance for some problems, but substantially harder to

train, used by TargetScan and DIANA-microT (Section 2.5.1.5).

All ML algorithms are implemented using their associated scikit-learn packages (Pe-

dregosa et al., 2011), except for DNN, which is instead provided by TensorFlow’s Keras

library (Abadi et al., 2015).

5.2.5.1 Class Label Assignment

The goal of classification is to categorise data through an assignment of class labels. In

binary classification, there are only two class labels, one corresponding with positive
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(P) and the other negative (N). In the context of this work, the expression log2 fold

change of a sample can be taken at a threshold to produce a binary categorisation of

downregulated (P) and not downregulated (N).

Figure 5.19: Distribution of training set log2 fold change. A histogram breakdown of the
expression log2 fold change over the training set. The dotted line indicates the mean.

Using these labels, a real miRNA target is a true positive (TP) if predicted, or a

false negative (FN) if not predicted. Conversely, a non-target is a false positive (FP)

if predicted, or a true negative (TN) if not predicted. A naive metric for classifier

performance can be computed using these statistics.

accuracy =
TP + TN

TP + TN + FP + FN
=

TP + TN

P +N
(5.2.2)

Trialling class labels at different downregulation thresholds highlights a potential class

imbalance at lower values (Figure 5.20). When a class is underrepresented, the model

is unable to learn effectively from the limited training samples and may incorrectly

favour predictions towards the majority class (Guo et al., 2008). Although there is no

commonly accepted definition for an imbalanced dataset, a severe imbalance is highly

detrimental to model performance and will often necessitate re-balancing techniques

such as sampling (Buda et al., 2018). In these cases, accuracy (Equation 5.2.2) is

unable to offer effective scoring because the majority class becomes disproportionately
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easy to classify.

Figure 5.20: Training set class balance at different log2 fold change thresholds. As the
class label threshold becomes more negative, the class imbalance becomes larger.

Assigning a threshold too close to 0 introduces a disproportionately high rate of FP

due to experimental noise and magnitude differences between samples, however it also

increases the rate of P in general. On the other hand, assigning too negative of a thresh-

old leads to class imbalance, although this stricter categorisation allows the model to

better learn the pattern of TP at the cost of overall P. At -0.2 log2 fold change, tran-

scripts showing at least a 13% reduction in expression are considered downregulated,

amounting to 1:2.5 ratio of downregulated to not downregulated transcripts. At -0.3,

the 19% reduction leads to a ratio of 1:5. With this in mind, -0.2 log2 fold change

is selected as the class label threshold as it favours P, without being subjected to the

high rate of diminishing returns that increases in line with lower values.
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5.2.5.2 Evaluative Metrics

In miRNA target prediction, the identification of miRNA targets is preferred to ex-

plicitly ruling out non-targets. Depending on the use case, a researcher may have

preferences as to how they wish to use the predicted targets. For research centred

around a set of genes, it is generally more useful to examine all of a gene’s potential

targets. On the other hand, when examining targets of a particular miRNA, testing

fewer but higher confidence predictions is more feasible. In either case, P is held in

higher regard than N, while missed targets FN are more costly than incorrectly pre-

dicted targets FP. A method of balancing these use cases, common in prediction tools,

is to produce many predictions and utilise confidence metrics to allow the user to fine-

tune results. This may compensate for a lower prediction accuracy, provided the total

number of predictions is sufficient.

A well-tuned predictor of miRNA targets therefore strikes a balance between recall

(Equation 5.2.3) and precision (Equation 5.2.4); recognition of TP against P, and

recognition of TP against all predictions, respectively. While both metrics favour P,

recall prioritises a large number of P, whereas precision aims to prevent FP from enter-

ing the prediction set. In other words, a lower log2 fold change threshold emphasises

precision, whereas recall is favoured closer to 0.

recall =
TP

TP + FN
=

TP

P
(5.2.3)

precision =
TP

TP + FP
(5.2.4)

The F1 score calculates the harmonic mean between recall and precision, allowing

them to be represented under a single metric (Equation 5.2.5). This makes the F1

score useful as an internal metric for optimising models towards identifying targets

over non-targets. A downside of using F1 score is that it does not account for TN,

making it an incomplete metric to evaluate a trained classifier’s overall performance

with imbalanced classes.
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F1 =
2TP

2TP + FP + FN
= 2

(
precision ∗ recall
precision+ recall

)
(5.2.5)

The area under the curve (AUC) represents the probability that a classifier will cor-

rectly determine a randomly selected positive instance from a randomly selected nega-

tive instance (Fawcett, 2006). The metric refers to the area under the receiver operating

characteristic (ROC) curve (Figure 5.21), charted using the FP rate (FPR) and TP

rate (TPR) (Equations 5.2.7, 5.2.6). In an ROC curve, the FPR and TPR make up

the x-axis and y-axis respectively, and the physical area to the right of the line as a

proportion of the chart (AUC), is indicative of performance. AUC is a particularly

effective evaluative metric because it is invariant to class weight (Airola et al., 2008).

FPR =
FP

FP + TN
=

FP

N
(5.2.6)

TPR =
TP

TP + FN
=

TP

P
(5.2.7)

Source: Sachs (2017)

Figure 5.21: ROC chart. An example ROC chart plotting the performance of two models. Model
A has a higher AUC than B, approximately 0.8 compared to 0.7. This means in 80% of samples,
model A will correctly classify a positive instance over a negative one regardless of class balance. The
diagonal line is used to indicate 50% AUC.

Finally, a confusion matrix provides an overview of how predicted labels are categorised

compared to correct labels (Table 5.22). As the dataset is imbalanced towards negative
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cases, this skew is likely to be represented in the confusion matrices, as it is more

difficult for the model to identify TP without introducing FP; in stronger results, the

positive labels will therefore be more precisely allocated.

Predicted

P N

Actual P TP FP

N FN TN

Figure 5.22: Layout of a confusion matrix. A matrix is formed by categorising P and N
predictions according to where they were predicted compared to what the actual result is. An ideal
confusion matrix shows a high number of values in the top left (TP) and bottom right (TN) boxes,
while the top right (FP) and bottom left (FN) values should be as low as possible.

5.3 Results

The hyperparameters of DT, RF, SVM and DNN are tuned by optimising against the

F1 score. The fitted models are then compared using a one-sided two-sample MW test

to determine significance at a p-value threshold of 0.05. After selecting the best model

for use in miRsight, the trained model is compared with TargetScan, MirTarget and

DIANA-microT over the 12 transfection test set.

5.3.1 Hyperparameter Tuning

Hyperparameters are tuned by supplying a list of values to scikit-learn’s GridSearchCV

function, which computes scoring metrics for each feature-value combination. The best

fit for the classifier is determined by the mean F1 score over five cross-validation folds.

In each case, an F1 score is generated for both the training and validation (internal

test) sets. The use of validation is useful in identifying when the model becomes

overfit, which is observable when the training line rises but the validation line falls.

The hyperparameters and values used are unique to each model.

5.3.1.1 Decision Tree

In DT, the hyperparameters to be tuned are class weight and a group of parameters

centred around preventing overfitting. class weight sets weights inverse to class pro-

portions, thereby preventing the classifier from favouring overpopulated classes. The

classifier exposes max depth, min samples split and min samples leaf for overfitting

prevention. max depth simply limits the number of splits the tree can make, whereas
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min samples split and min samples leaf limit tree growth according to conditions

relating to the number of data points required to split.

1 DecisionTreeClassifier: {

2 "class_weight ": [None , "balanced"],

3 "max_depth ": range(1, 20),

4 }

Figure 5.23: Hyperparameter tuning results for DT. The mean F1 score of five cross-validation
folds is computed using different hyperparameter values.
Optimal values - class weight: balanced, max depth: 7.

Re-balancing class weight leads to a substantial improvement in DT’s ability to clas-

sify samples, doubling the score in both the training and validation set. The max depth

chart shows underfitting at a depth of three and below, with an optimal range of fitting

between four and seven. From eight, the classifier begins to overfit on the training set,

steadily worsening validation performance.

5.3.1.2 Random Forest

RF shares the same base hyperparameters as DT, with an additional max features

parameter for placing restrictions on the number of features that may be considered

when splitting. The accuracy of RF increases in line with the n estimators (number of

trees) in the ensemble, with diminishing returns which eventually level out performance

gain (Oshiro et al., 2012).

1 RandomForestClassifier: {

2 "class_weight ": [None , "balanced"],

3 "n_estimators ": [200, 500],

4 "max_features ": [5, 8, 11, 14, 17, 20],

5 "max_depth ": [5, 8, 11, 14, 17, 20],

6 }
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Figure 5.24: Hyperparameter tuning results for RF. The mean F1 score of five cross-validation
folds is computed using different hyperparameter values.
Optimal values - class weight: balanced, max depth: 8, max features: 17, n estimators: 500.

Similarly to DT, RF favours a balanced class weight and low max depth. In this

instance, the grid search reduced overfitting using max depth, though max features

could have been employed to obtain a similar result. Increasing n estimators from

200 to 500 resulted in a trivial improvement in performance, as the initial performance

gain had been reached before 200 trees. Since this number of trees did not substantially

reduce prediction speed, it was not re-tested with a lower number.

5.3.1.3 Support Vector Machine

The high dimensionality of the dataset means that only a linear kernel is viable for

SVM. As a result, the only hyperparameters to be tuned are C and class weight. C

manages regularisation and must be positive. At higher values, it pushes the hyperplane

to favour categorisation over margin optimisation. Tuning C is best achieved using an

exponential sequence of potential values, for example: 2.0 × 10−2, 2.0 × 10−1, 2 × 10,

2.0× 101, 2.0× 102 (Hsu et al., 2003).

1 LinearSVC: {

2 "class_weight ": [None , "balanced"],

3 "c": [0.002 , 0.002 , 0.02, 0.2, 2, 20]

4 }
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Figure 5.25: Hyperparameter tuning results for SVM. The mean F1 score of five cross-
validation folds is computed using different hyperparameter values.
Optimal values - C: 0.2, class weight: balanced.

Using a balanced class weight substantially improves SVM’s performance (Figure 5.25),

at a rate higher than DT and RF (Figures 5.23 and 5.24). This is likely because SVMs

are highly sensitive to class imbalances (Tang et al., 2008). Increasing the C regulari-

sation causes a marginal improvement in the F1 score, mostly levelling out at 0.02 and

reaching a peak value at 0.2.

5.3.1.4 Deep Neural Network

Testing on DT, RF and SVM indicates that performance is significantly increased by

rebalancing class weights. Class imbalance has a detrimental effect on the accuracy of

deep learning classifiers (Buda et al., 2018). Therefore, as DNN has a larger number of

variable components compared to other models, the class weight is balanced in advance

to reduce training computation.

The number of nodes in each layer is tuned using unit1 for the first hidden layer, and

unit2 for the second. The learning process of ANNs is iterative; the optimiser contin-

ually adjusts the model over numerous passes through the dataset (epochs). nb epoch

manages the number of epochs used to train the classifier, while batch size sets the

number of samples required for an adjustment to take place. Finally, learn rate refers

to magnitude of these learning adjustments.

1 KerasClassifier: {

2 "batch_size ": [10, 20, 30, 40],

3 "nb_epoch ": [50, 200, 350],

4 "unit1": [8, 16, 32, 64],

5 "unit2": [8, 16, 32, 64],

6 "learn_rate ": [0.0001 , 0.001 , 0.01]

7 }
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Figure 5.26: Hyperparameter tuning results for DNN. The mean F1 score of five cross-
validation folds is computed using different hyperparameter values.
Optimal values - batch size: 40, learnrate: 0.001, nb epoch: 200, unit1: 64, unit2: 64.

Figure 5.26 shows that the hyperparameter tuning identified 64 as the optimal number

of nodes in unit1 and unit2, meaning both hidden layers should use the same layout.

Balancing DNN hyperparameters is difficult, as changes tend to destabilise the optimal

settings of other hyperparameters, particularly between batch size and learnrate.

Figure 5.27 illustrates the constructed DNN model. Notably, two hidden layers are used

with a 50% dropout layer placed between them to reduce overfitting (Section 2.5.1.5).

Figure 5.27: Tuned DNN layers. (Top to bottom) The topmost layer is the input layer, sized
according to the number of features. At the bottom is the output layer, which uses a sigmoid function
to enforce a binary prediction. The hidden layers are comprised of two dense layers set according to
hyperparameter tuning, and a 50% dropout.
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5.3.2 Classifier Performance

In a critical difference (CD) diagram (Demšar, 2006), the rank of each classifier is

averaged over several datasets. The CD refers to the range at which a classifier’s

average rank must deviate to be meaningfully separated. In this instance, the CD

diagrams are created using AUC and F1 scores over the 12 experiment test set.

Figure 5.28: CD diagram for AUC and F1 rankings on the test set. Average rankings of
each classifier over the 12 miRNA transfections in the test set. The ranking is the same under both
metrics.

Under both metrics, RF has the highest performance and is critically different from

both DNN and DT. However, it is not critically different from SVM. DNN ranks above

DT in AUC, but below DT in F1. In terms of AUC, RF ranks first in 8 of 12 tests

compared to 5 of 12 for SVM, with one result being a shared first place tie. The mean

AUC scores are 0.599 for RF and 0.592 for SVM.

An examination of ROC charts shows a high level of consistency across experiments

(Figure 5.29). The most significant variation is in miR-125a-5p, where there is a large

line separation between all four classifiers. Generally, for DNN and DT to score highly

in comparison to RF and SVM, the latter classifiers under-perform rather than the

former over-performing. Examples of this are miR-181-5p (AUC 0.567) and miR-130a-

3p (AUC 0.557), where the AUC scores are lower than average.

RF and SVM are consistently the highest scoring classifiers under both metrics, with

RF ranking higher overall. The trained RF classifier is therefore selected as the foun-

dation of the miRsight target prediction algorithm.
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Figure 5.29: ROC chart collage for the test set. Each of the 12 miRNA transfections which
comprise the test set are plotted on an independent ROC chart. Where a line shifts further to the
left, the area under the curve increases. The AUC scores of each classifier are listed on the right side
of each chart.

5.3.3 Benchmarking

Predictions output by miRsight are compared against TargetScan, miRDB’s MirTarget

and DIANA-microT. These tools were previously identified as the most popular target
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prediction tools to receive active maintenance (Section 2.5.2). TargetScan results are

obtained by supplying the tool with the same list of unfiltered transcripts used in this

study. As MirTarget and DIANA-microT are web-only tools, pre-computed predic-

tions for Homo sapiens are obtained directly from the data download pages on their

respective websites.

Table 5.23: Prediction tool data summary

Tool Version Prediction Algorithm Release Date

TargetScan 8.0 TargetScan 7.2 September 2021

miRDB 6.0 MirTarget V4 June 2019

DIANA-microT 2023 DIANA-microT-CDS April 2023

As discussed, target prediction tools cater to multiple use cases, generally favouring

either a large number of predictions, or a smaller number of more confident results.

Benchmarking is therefore performed with respect to all targets, followed by the top

500, 300 and 100 predictions, ranked by confidence score. The results are first visualised

using an aggregate cumulative plot for each prediction threshold, then elaborated in a

heatmap comparison of p-values from individual experiments.
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Figure 5.30: Benchmark comparison of miRsight predictions against TargetScan, MirTar-
get and DIANA-microT. Prediction accuracy is compared by aggregating the 12 test transfection
experiments. In each prediction threshold chart, the number of predicted targets are 12 times higher
due to aggregation, while the control line simply plots all 139,711 log2 values output by Sleuth. (Top
left) All predictions. (Top right) Top 500 predictions per experiment. (Bottom left) Top 300 predic-
tions per experiment. (Bottom right) Top 100 predictions per experiment. In 1 of the 12 transfections,
MirTarget does not produce the 500 total predictions required for the top 500 category.

Fewer overall predictions are made by miRsight (49,521) than DIANA-microT (85,267)

and TargetScan (68,311), but substantially more than MirTarget (8,708). MirTarget’s

low prediction output may be due to its stricter method of seed identification compared

to other tools (Section 2.5.3). It should be noted that the ‘All Predictions’ plot does

not account for a tool’s confidence score, and therefore favours tools that make less

overall predictions, particularly in the case of MirTarget’s significantly lower number

of predictions.
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miRsight has the highest degree of separation in all three aggregate breakdowns, with

the clearest line separation in the top 500 category. In this category, the p-values are

significant against DIANA-microT (1.2×10−14), MirTarget (9.6×10−8) and TargetScan

(1.6 × 10−12). MirTarget places second in all three categories (p-values: 9.6 × 10−8,

2.2× 10−5 and 5.6× 10−4), followed by TargetScan (p-values: 1.6× 10−12, 4.6× 10−8

and 2.3× 10−5) and DIANA-microT (p-values: 1.2× 10−14, 3.0× 10−8 and 1.3× 10−6).

DIANA-microT places higher than TargetScan in the top 300 prediction category.

miRsight is most effective in identifying true targets between -0.75 and 0. In all three

plots, the line separation is most clearly visible in this range. This sensitivity to log2

fold change values close to 0 is likely to be a result of setting the classification label at

-0.2 instead of a more extreme value.

A heatmap summary of p-values is constructed from the 12 individual cumulative

plots which comprise these aggregated results (Figure 5.31). A further breakdown is

provided in Appendix B, where each individual cumulative plots is presented alongside

miRsight’s confusion matrix.

Figure 5.31: Heatmap of miRsight predictions against TargetScan, MirTarget and
DIANA-microT. The MW p-value quantifies the separation in lines between miRsight and each
tool in the 12 individual test transfections (listed right-hand side. These values are presented as a
heatmap. (Blue) p-value 0-0.05: significant and positive result compared to the other tool. (White)
p-value 0.05-0.5: insignificant but positive result compared to the other tool. (Red) p-value 0.5-1.0:
poor result compared to the other tool. (Grey) Insufficient predictions to make a fair comparison.

miRsight predicts true targets at a significantly higher rate (blue) than a compared
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tool in 46 tests, an insignificantly higher rate (white) in 50 tests, and a much lower rate

(red) in 11 tests. There is a single incompatible comparison (grey), due to MirTarget

outputting an insufficient number of predictions.

The significant results are most notable in the top 500 category, where there is only

one instance of another tool attaining a greater leftward line separation (TargetScan

in miR-642a-5p). miR-642a-5p may be an unusual test, as this p-value is statistically

miRsight’s worst result across all comparisons (8.1 × 10−1), for which MirTarget can

also only identify 321 potential targets. In stricter categories, particularly the top 100

predictions by confidence, significance is harder to achieve due to the lower number of

data points. A white result still favours miRsight, but the line shift is generally less

defined when the p-value increased beyond 0.2.

MirTarget scores the highest number of significant results over miRsight, particularly

in miR-204-5p (top 300 p-value 6.9×10−1 and top 100 p-value 6.6×10−1), miR-27b-3p

(top 100 p-value 6.4 × 10−1) and miR-130a-3p (top 300 p-value 5.2 × 10−1). In miR-

204-5p, miRsight appears to have difficulty in classifying transcripts with expression

log2 fold change values lower than -1.0 (Figure B.12), particularly in the top 300 and

500 categories.

5.3.4 Feature Importance

Feature importance scores can be extracted from trained RF and SVM models. While

limited, particularly in untangling feature interdependency, these scores offer insight

into the weights assigned during the training process.
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Figure 5.32: Feature coefficients in the trained RF. Ranked feature scores from the RF model
using its trained importance weights. MTS, binding positioning, conservation and accessibility features
score highly.

Figure 5.33: Feature coefficients in the trained SVM. Ranked feature scores from the SVM
model using its trained coefficients. MTS, conservation, accessibility, and binding positioning features
score highly.
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MTS is considered the most valuable feature by both models, particularly 7mer 3′

UTR MTS (site abundance 7mer). In RF, 7mer 3′ UTR MTS comprises 22% of the

overall feature importance and has the highest coefficient in SVM with 2.11. The length

of the 3′ UTR (X3 utr length) is also rated second highest (14.8%, -1.34), which is

intrinsically linked to MTS, as longer 3′ UTRs contain more target sites (Stark et al.,

2005). The parallel CDS MTS features do not score as highly, however CDS length

ranks 4th in RF and 11th in SVM.

After MTS, RF ranks binding positioning (dist closest utr end) and conservation

features (phylo100 seed) in 5th and 6th. SVM also favours seed conservation in 3rd,

although it does not value binding positioning as highly (14th). RF rates seed stability

(rnacofold seed mfe) in 7th, whereas SVM places more weight on accessibility, being

that it places in 7th (rnafold mfe) and 9th (au content 5 weighted).

Features which track specific bp in the supplementary portion score poorly in both

models, however supplementary base accessibility (au content 5 weighted) and con-

servation (phylo100 5) each place in the top half of both tools; this is consistent with

results from Chapters 4 and 3. Of the features specifically engineered to track supple-

mentary bp, a novel feature recording the average distance between pairs ranks highest

in both models (any pair avg dist 09 20).

Features encoding alternative seeds, such as wobbles (gu 1, gu 8), and 9mer and 10mer

matching (perfect pair 9, perfect pair 10) are the lowest scoring in both tools.

The novel feature that tracks the placement of the three-window method’s representa-

tive window (rnafold direction), used in accessibility measurement, is also deemed

unimportant to both models. In general, features that rank above these very bottom

placements are able to provide some degree of value to the model.

5.4 Discussion

In this chapter, four machine learning models were trained by collating methods and

features researched in Chapters 3 and 4. The trained miRsight model was demon-

strated to be capable of making accurate predictions to the standard of established

target prediction tools. Across all 12 miRNA transfections, miRsight consistently pro-

duced a significant p-value for line separation in at least one category (Figure 5.31).
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Furthermore, there are many cases of miRsight attaining a significant p-value in mul-

tiple categories against all four compared tools. Over 12 tests, miRsight produced an

unfiltered output of 49,521 predictions, more than five times that of MirTarget (8,708),

but less than TargetScan (68,311) and DIANA-microT (85,267) (Figure 5.30). As a

result, when combined with the confidence score, this will be sufficient in allowing a

user to tailor miRsight towards their intended use.

The two strongest results relative to TargetScan are miR-6133 (p-values: top 500 3.0×

10−5, top 300 8.5 × 10−3 and top 100 4.5 × 10−2) and miR-30a-3p (p-values: top 500

7.4 × 10−9, top 300 1.9 × 10−8 and top 100 1.6 × 10−3), as a significant separation

can be observed at all thresholds. In both cases, this is reflected by the relatively

higher number of TP in the confusion matrices (Figures B.3 and B.7), where miR-

6133 is indicated to be the stronger result, as there are 6.8% more TP predictions.

While miRsight predicts miR-30a-3p well compared to TargetScan, the second-worst

overall result occurs against MirTarget in the top 100 category of this test (p-value

7.1 × 10−1). Furthermore, miRsight’s miR-30a-3p results are not significant against

DIANA-microT at any threshold. The AUC values may explain this inconsistency

(Figure 5.29); miR-6133 has an AUC of 0.603 for RF, 0.004 above the mean, however

the AUC of miR-30a-3p is only 0.587, making it one of the worst scores. This means

that while miR-6133 is a legitimately good result for miRsight, miR-30a-3p may be

more of an instance of TargetScan under-performing.

miRsight’s worst results are arguably in the miR-204-5p and miR-130a-3p transfections

(Figures B.12 and B.10). In both cases, miRsight performs worse than DIANA-microT

and MirTarget in multiple categories, in addition to shifting further to the right of

the ‘All Targets’ control line in miR-130a-3p. A potential reason for this is that the

miR-130a-3p transfection has an unusually steep gradient in the cumulative log2 fold

change compared to other transfections. Nonetheless, while these results are weaker,

the performance of miRsight across the remaining 10 transfections is the highest and

most consistent of the tested tools.

MirTarget is generally the second-highest performing tool, followed by TargetScan.

The placement of miRsight and MirTarget highlights the value of a large, low-noise

dataset for model training, as both tools are exclusively trained using data from 01-

liu-HeLa. It should be noted that none of the data used in testing originates from
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01-liu-HeLa, the HeLa cell line, or same-family miRNAs transfected in 01-liu-HeLa, so

it is unlikely that this is a result of dataset bias. As both tools were trained on HeLa,

it is more likely that their application to the unique cell lines of the test set would

suffer as a result.

The classification models were internally optimised using F1 score to maintain a bal-

ance between the number and quality of target predictions. There is an argument to

be made that, based on the number of predictions produced, the models could have

been weighted more towards precision, as in MirTarget’s case. This would lead to an

improvement in prediction accuracy and, while some users may prefer a large number

of predictions, 500 predictions or more may be excessive even with confidence scoring.

Setting the class label close to 0 caused the miRsight to be more accurate than the

compared tools between -0.75 and 0 log2 fold change, possibly at the cost of being

worse at predicting targets beyond -1.0. This decision was made to address the trade-

off between class imbalance and noise (Figure 5.20). An alternative approach could

be to use regression, as it would remove the need for a class label altogether. Using a

regression model, the level of downregulation could be predicted directly using patterns

learned in training. However, it is also possible that, similar to the classifier, the

regressor would struggle to infer values below -1.0 due to these training examples

forming a smaller proportion of the dataset.

Based on the CD rankings of each classifier (Figure 5.28), DNN is likely to be under-

performing; a well-trained DNN would be expected to perform at a similar level to

RF and SVM, as opposed to DT (Koutsoukas et al., 2017). In addition to having the

most hyperparameters to tune, layer adjustments invalidate any previously optimised

hyperparameter values, meaning DNN may have not been tuned as effectively as the

other models under the process that was used. Another potential reason could be that

because DNN requires a large amount of training data to function optimally (Chen

et al., 2018a), the amount supplied was not sufficient. Had DNN placed closely to RF

and SVM in the AUC CD rankings, constructing a heterogeneous ensemble of DNN,

RF and SVM may have led to a more effective model, as an ensemble of even three

accurate classifiers can improve performance over a single classifier by averaging out

erroneous predictions (Dietterich, 2000).

RF was useful as a baseline classifier because the algorithm was capable of producing
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competent predictions before tuning. A large factor of ML complexity stems from

its stochastic nature and vast number of variables. RF could have been better em-

ployed during the data mining phases to help make more informed decisions on feature

collinearity and testing. Inversely, treating DNN as a regular ML algorithm increased

the complexity of the project due to its poor performance under default settings, cou-

pled with its disproportionate complexity. A more efficient process would have been to

use RF to establish baseline methods and performance, then progress to deep learning

once extraneous factors were reduced.

A consensus was found between high importance features in the trained models (Fig-

ures 5.32 and 5.32), and high-ranking features in the isolated feature tests (Sec-

tion 3.3.1). In particular, MTS and conservation were found to be highly effective

in identifying targets in both scenarios, whereas features using fixed bp thresholds to

determine supplementary pairing were mostly unable to distinguish targets from non-

targets. In both instances, utilising accessibility and conservation features on the 5′

flanking region of the mRNA target site was more valuable in measuring traits of the

supplementary region directly.

Over one third of feature importance consists of MTS. This is similar to findings dis-

cussed in Section 3.4 where it was most of the rule-based prediction model’s focus. As

previously discussed, the 3′ UTR length is related to MTS because longer 3′ UTRs

typically contain more target sites (Stark et al., 2005), which means this proportion is

possibly higher than it appears. This theory is corroborated by the negative coefficient

that the 3′ UTR (and CDS) length is given by SVM (figure 5.33), as this may indicate

they are internally scaling the effect of MTS. Merging these two feature groups by

scaling MTS against the length of the region may help to reduce the overall weighting

these features receive.

The seed type is not as important of a feature as expected, given its central role in

miRNA:mRNA binding. As potential targets require a minimum 6mer binding, some

information this feature encodes will have been used to filter the target pool before

the prediction model is involved. Furthermore, the assigned classification label is -0.2

log2 fold change. At such a threshold, it is possible that further categorisation of seeds

beyond the 6mer does not lead to a radical change in the prediction label. Therefore,

if the class label assignment were to be more negative, this feature may become more



167

important to the classification model regardless of the 6mer target requirement.

The two SHAPE-seq features ranked midway in importance for both RF and SVM,

despite having collinearity with alternative accessibility measures and less than 25%

data coverage. As discussed, MICE is exponentially less effective as a greater percent-

age of data is missing, particularly past 60% (Penone et al., 2014). This is therefore

a promising result in showing the potential of SHAPE-seq and MICE, provided more

data can be assembled.

The miRNA transfection datasets collated for use in the training and test sets may

prove useful to further research in this area. In general, a lack of available transfec-

tion data is a limiting factor in miRNA target prediction, particularly in training ML

models.



Chapter 6

Software Development

6.1 Summary

This chapter outlines the finalisation of tooling created throughout this thesis into the

miRsight command line application. In addition, it discusses the development of a web

application for hosting and querying its pre-computed predictions. The goal of this

work is to increase the accessibility of miRsight by providing simple methods for its

use.

The miRsight command line tool is a combined subset of modules discussed in Sec-

tion 5.2.1, notably encompassing the trained RF model of Section 5.3. As a user-facing

tool does not require performance evaluation, modules relating to RNA-seq are re-

moved at this stage (Section 6.2.1). Additionally, the ML component is simplified as

the model is already trained following Chapter 5. The tool can be downloaded from

https://github.com/ryanjp18/mirsight.

For the web application, miRsight predictions are pre-computed for each human miRNA

and ingested into a database (Section 6.2.2.1). The database is managed and accessed

by the back-end (Section 6.2.2.2) in response to requests from the front-end user in-

terface (Section 6.2.2.3). Following deployment (Section 6.2.2.4), the miRsight web

application is hosted at https://mirsight.info.

168
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6.2 Methods

Both tools utilise Git (Chacon and Straub, 2014) for source control, enabling the

tracking of changes and flexible feature development using code branches.

6.2.1 Command Line Application

In Chapter 3, architectural decisions were deferred as the scope of the project was

unclear. In Chapter 5, the software became more sophisticated with the integration

of Python, and cohesive functionality was grouped into modules. As a result of this

iterative development, producing the final miRsight software is a mostly superficial

conversion of any modules tightly coupled with RNA-seq and model training.

Figure 6.1: miRsight activity diagram. miRsight is an amalgam of previous tooling. The
application flow begins with the setup module, which generates annotations and caches. Next is
feature extraction, which is simplified by the removal of RNA-seq. Finally, ML is used to make
predictions. As the RF is already trained, these ML steps are also simplified.
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Since expression log2 fold change values are integral to training a model for ML, miRNA

transfection experiments were previously used to drive the tool. For each transfected

miRNA, the seed target sequence was used to extract features. As RNA-seq data is no

longer required, a list of all potential human miRNAs are now pulled from miRBase.

The process of locating the seed sequence and extracting features is otherwise identical.

The version of the miRsight software is expressed using semantic versioning (Preston-

Werner, 2009), where the syntax MAJOR.MINOR.PATCH denotes three independent track-

ing numbers dependent on the type of update. In semantic versioning, MAJOR is in-

cremented in response to breaking functionality changes. Of backwards-compatible

changes, MINOR is incremented in response to additional functionality and PATCH is

incremented for bug fixes.

6.2.2 Web Application

Docker is used to simplify the deployment of the miRsight web application through

containers; executable software bundles that host an application and its dependencies in

a virtual environment. Each core module of the web application is granted a container:

database, backend and frontend. The frontend communicates with the backend

via application programming interface (API) routes tied to user actions, while the

backend is responsible for interacting with the database and sending responses back

to the frontend.

6.2.2.1 Database Layout

The MySQL-managed database (Oracle, 2023) contains a single predictions table

for storing miRsight predictions. The initial version of predictions has five visible

columns (Table 6.1). This can potentially be extended to utilise the expansive anno-

tation and feature data collected by miRsight. However, minimising database content

is important in reducing load times and storage requirements.
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Table 6.1: Prediction table data type declaration

Column Type Visible

id unique auto-incrementing ID

mirna id string ✓

ensembl transcript id string ✓

position integer ✓

seed type string ✓

score float ✓

created at datetime

updated at datetime

6.2.2.2 Back-end Architecture

Laravel (Otwell, 2023) is a back-end systems framework for PHP (Bakken et al., 2000)

that provides lightweight templating and database interaction tooling. It performs

three key functions for the web application: database population, front-end communi-

cations management and testing.

The predictions table is created using a custom schema defined by extending Lar-

avel’s Migration class. Migrations allow a database to undergo structural changes

without being reset, as they define the actions required to transition it between two

states. This is useful to miRsight because the predictions table contains millions of

rows, and the schema is likely to require adjustments based on user feedback. A custom

seeder, which extends the Seeder class, is responsible for populating the predictions

table by parsing predictions from miRsight output. The seeder utilises chunking, a

method of compiling small pieces of information into larger units to reduce memory

usage (Thalmann et al., 2019). A combination of migrations and seeders is useful in

preventing data loss as the database setup is reduced to a set of reproducible instruc-

tions; where a row already exists, the seeder does not attempt to add it twice.

When a user searches on the website, the search term is passed from front-end to back-

end by way of the search mirna and search transcript API routes. A query is then

constructed to collect database rows matching the search pattern, for which indexing is

applied to optimise lookup speed. In B-Tree indexing, the number of steps required to

reach a search result is reduced by splitting the data and ensuring each decision branch
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points to a higher or lower index (Schwartz et al., 2012). Once the query is complete,

the result set is sent back to the front-end in JSON format and used to populate the

web page.

6.2.2.3 Front-end Design and Development

The front-end is programmed using TypeScript (Microsoft, 2023), and formatted using

HTML (W3C, 2024) and CSS (W3C, 2023). TypeScript is a programming language

that compiles into JavaScript (Ecma International, 2024) code as part of an appli-

cation’s build process. It provides several benefits compared to native JavaScript,

notably static typing and tighter scoping (Bierman et al., 2014). Vue.js (You, 2023) is

a front-end framework for building data-driven apps, providing out-of-the-box support

for single-page applications (SPAs), reusable elements (components) and automatic up-

dating of page content to reflect data changes (reactivity). Finally, Vite (You, 2024) is

a Vue.js build tool that provides optimised asset bundling and basic code obfuscation.

Target prediction websites typically employ a minimal and professional aesthetic, albeit

they are often grounded in older design philosophy. miRsight attempts to update this

style through the use of reactive and dynamic page elements, in addition to a subtler

colour palette compared to traditional web-safe HTML colour schemes. Developing

the website as an SPA is another such modernisation, as asynchronous updates and

the avoidance of page loading offer a more seamless user experience to static pages.

Furthermore, both mobile and tablet layouts are supported through responsive design

patterns and media queries. While the former is unlikely to see significant use in

miRNA research, tablet use is relatively widespread and rapidly growing in tangential

industries such as healthcare (Sclafani et al., 2013).

Search terms are first collected on the website through a unified search box, which infers

whether the user is searching by miRNA or transcript. Debouncing prevents bandwidth

issues by ensuring searches do not occur more than once per second. Following a search,

the request is sent asynchronously to the associated API path using JavaScript’s fetch

API. When a response is received, the results are stored in a Vue.js ref object to

enforce reactivity, visually updating elements that use the results ref automatically.

A component refers to a group of HTML elements with tightly coupled layout, logic,
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or styling. Using Vue.js, a Table component is constructed to display miRsight pre-

dictions. Table is reactively linked to search results, meaning it is automatically

redrawn to reflect new response data from the server. Using v-for list rendering, a row

is created for each predicted target of results, populating child elements according to

corresponding display fields. In this way, the Table component can be easily extended

as user requirements grow.

1 <div class="row" v-for=" result in filteredResults">

2 <p class="cell">{{ result [" mirna_id "] }}</p>

3 <p class="cell">{{ result [" ensembl_transcript_id "] }}</p>

4 <p class="cell">{{ result [" transcript_start "] }}</p>

5 <p class="cell">{{ result [" transcript_end "] }}</p>

6 <p class="cell">{{ result [" score"] }}</p>

7 </div >

A range slider allows users to filter results by confidence. The slider is two-way

data bound to a filter ref, synchronising the slider and filter. This filter is

automatically applied to the results table using a computed property. In summary, the

results of a search are mapped to the confidence filter (and slider), which in turn

is mapped to the Table component. As a result, the page automatically re-renders to

display new data following user actions.

1 const filteredResults = computed(

2 () => results.value.filter(result => result.score > filter.value)

3 );

For more precise filtering, a user can click on a prediction to have it removed from the

results. Filtered results can be printed, exported to a document, or downloaded as a

tabular file by clicking on the corresponding button.

6.2.2.4 Deployment

When running on a web server, common communication ports can be exposed by

Docker containers to enable network connections. Most notably, the frontend server

must be exposed to external connections to allow users to access the website. Simi-

larly, opening ports for internal connections allow the backend API routes to be made

accessible to the frontend container, providing a proxy for database communication.

Network communications occur over the Hypertext Transfer Protocol (HTTP) protocol
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by default. However, these communications can be encrypted to instead utilise Hy-

pertext Transfer Protocol Secure (HTTPS) through Transport Layer Security (TLS).

Beyond the benefits of encryption, HTTPS is a requirement in modern web browsers

to prevent security warnings that may deter users from accessing the website. A robust

server host is required for TLS, which is provided here by Nginx (Reese, 2008).

An automated deployment pipeline is built by providing Docker with a set of commands

specific to each of the containers. In all cases, Docker is instructed to download and

install dependencies, execute respective tooling and expose necessary network ports.

The frontend container is additionally required to produce a front-end build with

Vite, serve the build to Nginx and provide Nginx with TLS certification.

6.3 Results

The miRsight web application is hosted at https://mirsight.info, while the com-

mand line tool itself can be downloaded directly from its GitHub repository, located

at https://github.com/ryanjp18/mirsight.

6.3.1 Testing

The integrity of the database and API routes is tested using Laravel’s unit testing. In

each test, a factory is used to generate randomised fake prediction data according to a

set of realistic seeding rules.

Figure 6.2: Unit testing for miRsight. A set of unit tests executed using Laravel. (1) Assert
that the correct miRNA targets are returned when searching by miRNA ID. (2) Assert that no results
are found when searching for a non-existent miRNA. (3) Assert that the correct transcript results are
returned when searching by transcript ID. (4) Assert that no results are found when searching for a
non-existent transcript. (5) Assert that the database schema is correct.
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6.3.2 User Interface

Figure 6.3: miRsight website search bar. When miRsight is loaded, the home page displays
usage information and the unified search field. An example miRNA query is provided for ease of use.
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Figure 6.4: miRsight website results table. Searching for either an miRNA or transcript brings
up the results table. By default, these results are filtered to 0.7 confidence.

Figure 6.5: miRsight website results filtering. Dragging the confidence score slider above the
results table, or manually clicking predictions to remove them, filters the predictions on the page.
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Figure 6.6: miRsight website printing filtered results. Selecting the print icon sends the
filtered results to the browser’s print window, where they can be exported to file or printed.

Figure 6.7: miRsight website downloading filtered results. Selecting the download icon sends
the filtered results to a tabular file and prompts the browser to download it.
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6.3.3 Responsive Design

Figure 6.8: miRsight website scaled to tablet dimensions. At tablet size, miRsight can show
all of its content on the screen without resizing.

Figure 6.9: miRsight website scaled to mobile dimensions. At mobile size, media queries are
used to resize padding and font sizes to fit the screen.
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6.4 Discussion

In this chapter, a command line tool and web application have been developed with the

aim of improving the accessibility of miRsight predictions. As software development

is an iterative process, steps have been taken to ensure that code is maintainable and

extensible.

Both tools adhere to modern development practices; in particular, the separation of

concerns between modules means that enhancements and fixes can be performed with-

out causing a ripple effect. Communication between modules is restricted and inter-

action instead occurs through inputs and outputs, which reduces the risk of regression

bugs and simplifies development. While the RF model would need to be retrained

following new features being added, the command line tool is not opinionated in which

features it uses between modules, as the ML component will simply use any provided in

its input. An additional benefit of this approach is code abstraction, as other modules

are not required to be deeply understood to engineer adjacent functionality.

A key motivation behind the web server’s design philosophy was in minimising the need

for maintenance. Section 2.5.2 highlighted that prediction tools have long product

lifespans, yet commonly lack upkeep. By utilising a simple design and feature set,

issues stemming from browser and device support are reduced. Furthermore, the use

of responsive design, as opposed to targeted device support, means that new screen sizes

will continue to be naturally supported. Finally, using the component and reactivity

of Vue.js, much of the web functionality is encapsulated in a way that allows new fields

and display methods to be added without complicating the existing code base.

The use of Git for source control also assists in mitigating potential bugs through its

version history and branch functionality. As a result, feature development can occur

in discrete version releases, simplifying testing and shrinking the surface of potential

bugs. As parallel development is also simplified owing to the tool’s modular architec-

ture, miRsight may also benefit from the open-source collaboration afforded by Git

platforms. Regardless of direct collaboration, it is at least expected that user enhance-

ment requests and bug reports will be periodically submitted in this way.

Docker was particularly beneficial in deploying the web application. Following develop-

ment work, changes are pulled on the server using Git, then deployed by resetting the
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associated Docker image once unit tests are run. This could be further simplified using

a workflow management tool to create a fully automated pipeline, although this may

be excessive at this stage. An element of Docker that is possibly underutilised here

is in its ability to simplify dependencies and provide multi-platform support. Docker

is presently only used in the web component of miRsight. However, the command

line application has numerous dependencies and an operating system limitation due to

ViennaRNA’s Linux requirement. Supplying a Docker method of installation would

reduce the software dependency to Docker alone, in addition to allowing the tool to

run on any operating system that supports Docker.



Chapter 7

Conclusion and Future Work

7.1 Summary

This thesis presents a new miRNA target prediction algorithm in miRsight, the pre-

computed predictions of which can be accessed at https://mirsight.info, while

the tool can be downloaded directly from https://github.com/ryanjp18/mirsight.

Across the 12 datasets tested, miRsight is shown to perform to a consistently higher

standard of accuracy than TargetScan, MirTarget and DIANA-microT. As demon-

strated by its performance in the top 100, 300 and 500 categories ranked by confi-

dence, miRsight is also capable of effectively sorting and filtering its predictions to fit

the needs of individual users. In addition to delivery of miRsight, some observations

were made throughout this thesis:

• Target recognition features: Many targeting features that affect the efficacy

and specificity of miRNA:mRNA bindings have been discovered throughout the

course of miRNA research. However, relatively few prediction tools implement

more than a small subset of common features. In general, there is a strong

acceptance in modern tools for features centred around seed types, conservation,

and site accessibility. However, MTS is perhaps not as well utilised as its impact

in Chapters 3 and 5 would suggest. Furthermore, there is a lack of consistency

in the implementation of even these prolific features, including seed type, for

which research is well-established and consistent as to the importance of the

three canonical sites compared to marginal and alternative sites.
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• Site accessibility using SHAPE-seq: There is potential for SHAPE-seq as a

novel measure of accessibility, if an appropriate amount of data can be assem-

bled. The discovery that reactivity values can be merged between cell lines to

improve both the feature coverage and overall efficacy may help to mitigate the

relative rarity of SHAPE-seq compared to RNA-seq data (Section 4.3.3). Still,

the current implementation of the feature provides value to miRsight according

to both feature importance rankings (Figures 5.32 and 5.33), despite having less

than 25% coverage.

• Supplementary pairing definitions: It is unclear exactly which method is

best used to capture information for the supplementary portion of bindings.

Many alternative definitions for recording fixed bp combinations were tested

throughout this thesis, yet little impact was observed unless supported with ad-

ditional features. For example, weighted AU content scoring of the seed target’s

5′ flanking region is often used in prediction tools as a means of encoding supple-

mentary pairing. Nonetheless, of those tested, conservation scoring in this region

was shown to be particularly effective (Figure 3.22), ranking as the 10th most

important feature in the RF model (Figure 5.32). On the other hand, calculating

the average distance between paired bases in the 11 nt downstream of the seed

was the most effective isolate supplementary pairing feature tested.

• Machine learning: The shift in target prediction from rule-based models to

ML models is advantageous due to the number of target recognition features and

degree of their interdependence. The 01-liu-HeLa dataset published by MirTar-

get (Liu and Wang, 2019) was invaluable in developing this tool, and highlights

the importance of a large and consistent dataset for ML model training. Fur-

thermore, the strategy of grouping this data by miRNA transfection, as opposed

to individual data points, was used to great effect in this thesis. In terms of ML

models, there is little consensus in the use of specific algorithms among prediction

tools; SVMs are widespread in miRNA target prediction, while deep learning is

likely to become more popular in the field as a result of recent innovations and

adoption in many industries. However, it should be noted that RF is highly

effective as an out-of-the-box classifier (Biau and Scornet, 2016), which was par-

ticularly useful in this thesis for exploring the subtleties of targeting mechanics.
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• miRNA transfection dataset: Over 50 miRNA transfections were collated

from various databases throughout this project. As the performance of ML algo-

rithms is directly correlated with the quality and quantity of available data, this

dataset may provide value as a starting point for further development of miRNA

targeting software.

7.2 Future Work

Several potential improvements were uncovered during the course of this thesis, which

may be expanded upon in future releases of miRsight:

• Handling for imperfect seeds and CDS targets: The decision to use a fixed

6mer seed target constraint to exclusively target the 3′ UTR was made early

in development. Tools such as TargetScan have found success in allowing G:U

wobbles and gaps at specific positions within the seed (Agarwal et al., 2015),

while DIANA-microT-CDS trains an independent model to locate CDS target

sites (Reczko et al., 2012). Accounting for these scenarios would allow the tool

to predict targets that are currently not able to enter the prediction pool.

• Machine learning improvements: The use of an ensemble model often offers

improved performance over single classifiers (Dietterich, 2000). DIANA-microT-

CDS compares four models to determine its MRE score (Reczko et al., 2012),

and TargetScan trains an individual model for each type of seed (Agarwal et al.,

2015). More unique models will be needed to utilise a similar approach to the

former, as the current implementation of DNN is under-performing, likely due

to limited training data (Chen et al., 2018a), or insufficient optimisation. All

four models were trained using the same process to promote fair test conditions;

however, DNN training is significantly more complex than DT, RF and SVM,

and has a number of deviations to warrant special treatment, such as the need to

optimise layers and a disproportionate number of hyperparameters. With DNN

functioning effectively, a combination of RF, SVM and DNN may be sufficient in

forming a heterogeneous ensemble. Alternatively, building a homogeneous of RF

classifiers according to each seed typein a manner similar to TargetScan. This is a

viable option because feature importance variations in accordance with seed type

was a phenomenon noted in isolated feature testing (Section 3.3.1). Finally, there



184

is a relationship between the assigned class label of -0.2 and miRsight’s sensitivity

to targets between 0 and -0.5 log2 fold change (Appendix B). However, the

relatively inconsistent correlation between AUC and ROC (Figure 5.29), and the

model’s overall performance in these cumulative plots, suggests the relationship

between this threshold and the underlying biology is not perfect. A greater

prediction accuracy may there for achieved by changing the evaluative metric,

class label threshold, or using a regression approach.

• Integrating more datasets: The present SHAPE-seq data originates from a

single source. As aggregating SHAPE-seq data between cell lines did not lead

to a reduction in data quality (Figure 4.11), the integration of further datasets

should improve the quality of these features. In terms of RNA-seq, the dataset is

composed entirely of miRNA transfection data. miRNA knockouts could be used

to substantially increase the amount of data available for use in ML. Furthermore,

the use of knockout typically leads to lower noise, as the absence of an miRNA

shows a stronger signal than increasing the amount of an miRNA that may

already be expressed in a particular cell.

• Package management and operating system support: The website is in-

tended to be the primary use case for the miRsight algorithm; however, some

users will prefer to use the command line tool with their own specific configura-

tion. The feature extraction algorithm has several dependencies which complicate

both the set-up process and maintenance over the tool’s life-cycle. Furthermore,

miRsight is Linux-only, due to a restriction imposed by the ViennaRNA suite. A

simple solution to these problems would be to provide pre-configured Docker im-

ages for miRsight. This method has been used by some recent target prediction

tools, such as isoTar (Distefano et al., 2019).

• External target verification: DIANA-microT verifies predictions against Tar-

getScan in their prediction results. A similar system would reduce risk for the

end user, as lab verification or high confidence targets predicted by more than

one tool are more likely to be true positive predictions.
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7.3 Conclusion

miRNA target prediction remains a difficult problem despite substantial methodologi-

cal advancement over the past two decades. A promising recent innovation is the use

of RNA bind-n-seq to directly probe the miRNA:AGO interaction, a technique first

applied in TargetScan 8.0 (McGeary et al., 2019). Such a forthright approach may

encourage more efficient solutions by eliminating some of the numerous intermediary

features that complicate miRNA:mRNA binding prediction. Nonetheless, following the

progression from comparatively simple rule-based approaches to the sophisticated ML

models of modern tools, future efforts are prone to become even more complex in their

attempts to model miRNA interaction, particularly in light of widespread industry

trends towards deep learning. With this being the case, high-quality datasets, such

as the primary 01-liu-HeLa miRNA transfection dataset used in this study (Liu and

Wang, 2019), are likely to become increasingly important in training these data-hungry

algorithms.
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Appendix A

Additional Datasets

The following datasets were used in Chapter 5 to increase the number of transfections

available to ML.

Table A.1: Additional datasets used to support ML

Internal ID 02-wan-SW982

Accession PRJNA669842

Species Homo sapiens

Data Type RNA-seq

Procedure 2 miRNA transfections

Cell Line SW982

Biological Replicates 4

Sequence Type Paired-end

Source Wang et al. (2021)

Internal ID 03-lmu-HUVEC

Accession PRJNA784113

Species Homo sapiens

Data Type RNA-seq

Procedure 1 miRNA transfection

Cell Line HUVEC

Biological Replicates 5

Sequence Type Paired-end

Source Müller et al. (2022)
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Internal ID 04-bev-22Rv1

Accession PRJNA674323

Species Homo sapiens

Data Type RNA-seq

Procedure 1 miRNA transfection

Cell Line 22Rv1

Biological Replicates 3

Sequence Type Single-end

Source Beveridge et al. (2021)

Internal ID 05-ham-LX-2

Accession PRJNA665381

Species Homo sapiens

Data Type RNA-seq

Procedure 1 miRNA transfection

Cell Line LX-2

Biological Replicates 2

Sequence Type Paired-end

Source Hamada-Tsutsumi et al. (2020)

Internal ID 06-kim-MDA-MB-231

Accession PRJNA625036

Species Homo sapiens

Data Type RNA-seq

Procedure 1 miRNA transfection

Cell Line MDA-MB-231

Biological Replicates 2

Sequence Type Single-end

Source Kim et al. (2020)
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Internal ID 07-hms-HUVEC

Accession PRJNA439194

Species Homo sapiens

Data Type RNA-seq

Procedure 1 miRNA transfection

Cell Line HUVEC

Biological Replicates 2

Sequence Type Paired-end

Source Data accessible at NCBI GEO database (Edgar

et al., 2002), accession GSE112059

Internal ID 08-mor-HEK293T

Accession PRJNA528188

Species Homo sapiens

Data Type RNA-seq

Procedure 2 miRNA transfections

Cell Line HEK-293-T

Biological Replicates 3

Sequence Type Single-end

Source Morrison et al. (2019)

Internal ID 09-tam-U251, 10-tam-U343

Accession PRJNA231155

Species Homo sapiens

Data Type RNA-seq

Procedure 1, 1 miRNA transfection

Cell Line U251, U343

Biological Replicates 2

Sequence Type Single-end

Source Tamim et al. (2014)
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Internal ID 11-nam-IMR90, 12-nam-Huh7,

13-nam-HEK293, 14-nam-HeLa

Accession PRJNA229375

Species Homo sapiens

Data Type RNA-seq

Procedure 1, 2, 2, 2 miRNA transfections

Cell Line IMR-90, Huh-7, HEK-293, HeLa

Biological Replicates 2

Sequence Type Single-end

Source Nam et al. (2014)

Internal ID 15-hu-293T

Accession PRJNA362193

Species Homo sapiens

Data Type RNA-seq

Procedure 1 miRNA transfection

Cell Line HEK-293-T

Biological Replicates 3

Sequence Type Single-end

Source Hu et al. (2018)

Internal ID 16-icl-HPAEC

Accession PRJNA531359

Species Homo sapiens

Data Type RNA-seq

Procedure 2 miRNA transfections

Cell Line HPAEC

Biological Replicates 2

Sequence Type Paired-end

Source Sindi et al. (2020)
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Internal ID 17-guo-HeLa

Accession PRJNA129385

Species Homo sapiens

Data Type RNA-seq

Procedure 2 miRNA transfections

Cell Line HeLa

Biological Replicates 3

Sequence Type Single-end

Source Guo et al. (2010)

Internal ID 18-mit-A549

Accession PRJNA597999

Species Homo sapiens

Data Type RNA-seq

Procedure 2 miRNA transfections

Cell Line A549

Biological Replicates 3

Sequence Type Paired-end

Source Guo et al. (2010)

Internal ID 18-mit-A549

Accession PRJNA597999

Species Homo sapiens

Data Type RNA-seq

Procedure 2 miRNA transfections

Cell Line A549

Biological Replicates 3

Sequence Type Paired-end

Source Mitra et al. (2020)
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Internal ID 19-tav-FLS

Accession PRJNA639874

Species Homo sapiens

Data Type RNA-seq

Procedure 1 miRNA transfection

Cell Line FLS

Biological Replicates 3

Sequence Type Paired-end

Source Tavallaee et al. (2022)

Internal ID 20-sob-MSC

Accession PRJNA834773

Species Homo sapiens

Data Type RNA-seq

Procedure 2 miRNA transfections

Cell Line MSC

Biological Replicates 3

Sequence Type Paired-end

Source Data accessible at NCBI GEO database (Edgar

et al., 2002), accession GSE202135

Internal ID 21-zhu-UM-SCC-1

Accession PRJNA528871

Species Homo sapiens

Data Type RNA-seq

Procedure 1 miRNA transfection

Cell Line UM-SCC-1

Biological Replicates 3

Sequence Type Paired-end

Source Zhuang et al. (2020)
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Internal ID 22-sxh-PBMC

Accession PRJNA607802

Species Homo sapiens

Data Type RNA-seq

Procedure 1 miRNA transfection

Cell Line PBMC

Biological Replicates 3

Sequence Type Paired-end

Source Data accessible at NCBI GEO database (Edgar

et al., 2002), accession GSE145652



Appendix B

Individual Benchmark Results

The following results were generated in Section 5.3.3 to compare the prediction accuracy

of miRsight against TargetScan, MirTarget and DIANA-microT.
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Figure B.1: Benchmark comparison of miRsight predictions against TargetScan, Mir-
Target and DIANA-microT for miR-125a-5p. (Top left) All predictions. (Top right) Top 500
predictions. (Middle left) Top 300 predictions. (Middle right) Top 100 predictions. (Bottom) miR-
sight confusion matrix.
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Figure B.2: Benchmark comparison of miRsight predictions against TargetScan, MirTar-
get and DIANA-microT for miR-642a-5p. Note that MirTarget does not produce the required
500 predictions in the top 500 category. (Top left) All predictions. (Top right) Top 500 predictions.
(Middle left) Top 300 predictions. (Middle right) Top 100 predictions. (Bottom) miRsight confusion
matrix.
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Figure B.3: Benchmark comparison of miRsight predictions against TargetScan, Mir-
Target and DIANA-microT for miR-6133. (Top left) All predictions. (Top right) Top 500
predictions. (Middle left) Top 300 predictions. (Middle right) Top 100 predictions. (Bottom) miR-
sight confusion matrix.
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Figure B.4: Benchmark comparison of miRsight predictions against TargetScan, Mir-
Target and DIANA-microT for miR-214-3p. (Top left) All predictions. (Top right) Top 500
predictions. (Middle left) Top 300 predictions. (Middle right) Top 100 predictions. (Bottom) miR-
sight confusion matrix.



224

Figure B.5: Benchmark comparison of miRsight predictions against TargetScan, Mir-
Target and DIANA-microT for miR-137-3p. (Top left) All predictions. (Top right) Top 500
predictions. (Middle left) Top 300 predictions. (Middle right) Top 100 predictions. (Bottom) miR-
sight confusion matrix.
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Figure B.6: Benchmark comparison of miRsight predictions against TargetScan, Mir-
Target and DIANA-microT for miR-181a-5p. (Top left) All predictions. (Top right) Top 500
predictions. (Middle left) Top 300 predictions. (Middle right) Top 100 predictions. (Bottom) miR-
sight confusion matrix.
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Figure B.7: Benchmark comparison of miRsight predictions against TargetScan, Mir-
Target and DIANA-microT for miR-30a-3p. (Top left) All predictions. (Top right) Top 500
predictions. (Middle left) Top 300 predictions. (Middle right) Top 100 predictions. (Bottom) miR-
sight confusion matrix.
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Figure B.8: Benchmark comparison of miRsight predictions against TargetScan, Mir-
Target and DIANA-microT for miR-30a-5p. (Top left) All predictions. (Top right) Top 500
predictions. (Middle left) Top 300 predictions. (Middle right) Top 100 predictions. (Bottom) miR-
sight confusion matrix.
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Figure B.9: Benchmark comparison of miRsight predictions against TargetScan, Mir-
Target and DIANA-microT for miR-27b-3p. (Top left) All predictions. (Top right) Top 500
predictions. (Middle left) Top 300 predictions. (Middle right) Top 100 predictions. (Bottom) miR-
sight confusion matrix.
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Figure B.10: Benchmark comparison of miRsight predictions against TargetScan, Mir-
Target and DIANA-microT for miR-130a-3p. (Top left) All predictions. (Top right) Top 500
predictions. (Middle left) Top 300 predictions. (Middle right) Top 100 predictions. (Bottom) miR-
sight confusion matrix.
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Figure B.11: Benchmark comparison of miRsight predictions against TargetScan, Mir-
Target and DIANA-microT for miR-130b-3p. (Top left) All predictions. (Top right) Top 500
predictions. (Middle left) Top 300 predictions. (Middle right) Top 100 predictions. (Bottom) miR-
sight confusion matrix.
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Figure B.12: Benchmark comparison of miRsight predictions against TargetScan, Mir-
Target and DIANA-microT for miR-204-5p. (Top left) All predictions. (Top right) Top 500
predictions. (Middle left) Top 300 predictions. (Middle right) Top 100 predictions. (Bottom) miR-
sight confusion matrix.



Appendix C

Unused Datasets

The following datasets were used for research in some capacity, but are not integrated

in the results of any final deliverable.

Table C.1: Dataset EX-guo-U20S summary

Internal ID EX-guo-U20S

Accession PRJNA223608

Species Homo sapiens

Data Type RNA-seq

Procedure 2 miRNA transfections

Cell Line U20S

Biological Replicates 1

Sequence Type Single-end

Source Guo et al. (2014a)
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