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Abstract

Histogram based tone adjustment algorithms have been used in a number of different com-

puter vision applications in the recent years. One of the primary benefits of using the image

histogram to derive the tone curve to enhance an image, is that it ensures the scene contents

drives the enhancement i.e., each image has a unique tone curve.

Perhaps the most well known image enhancement algorithm, Histogram Equalisation (HE),

is a contrast adjustment algorithm that uses the image histogram, directly, to define a tone

curve that brings out image details. However, HE often makes tone curves with large

slopes that generate unpleasing reproductions. Contrast Limited Histogram Equalisation

(CLHE) builds naturally upon HE and constrains the slopes of the tone curve such that

the reproductions look better. Indeed, in almost all cases CLHE is preferred to HE.

In this thesis we explore the CLHE algorithm in detail and highlight the shortcomings of the

algorithm. We explore and discuss several approaches aimed at overcoming the limitations

of CLHE, while also considering modern histogram based tone adjustment algorithms.

The work in this thesis is motivated by the fact that CLHE is very popular in the modern

literature. CLHE also - due to it’s inclusion in the Apical Iridix tone mapper - ships in

many thousands of cameras.
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1 Introduction

When a camera takes an image the sensor records an image that looks very different to

the final reproductions that we see. In fact, the image recorded by the camera sensor is a

measure of light, and so it has no inherent idea of the colours of the scene, the brightness,

nor the contrast. It is only after the application of a series of processing steps - often

referred to as an image processing pipeline - that an image appears as we are used to

seeing it. These steps include demosaicing [47], white balancing [29], colour correction [10],

and tone mapping [55], before the RAW image is converted to the final output e.g, a JPG

image. However, it is important that the content of the images appear in the certain way we

expect. For example, trees should appear green, human faces should be visible, and the sky

should be blue. Therefore, one would expect the architecture of the pipeline to have some

consideration for scene contents when processing the image, and this is not always delivered

in current architectures that process an image independent of the scene contents.

A key component of the image processing pipeline is contrast enhancement. There are many

reasons why an image may have poor contrast including: incorrect exposure setting, the

problem of dynamic range compression [27], and that preferred image reproductions typi-

cally have more contrast than the original physical scene [13]. Poor contrast can manifest

in an image as too-little (when details in the image are hard to see) as well as too-much

(when details are over emphasised in the image and it looks unnatural).

Often we can improve contrast in an image by simply darkening or brightening the pixels.

Indeed, if an image appears dark then all the pixels must have small values and so, by

definition, the contrast (or difference) between pixels must also be small. Increasing the

image brightnesses effectively stretches the image histogram, which in turn leads to the

average difference between pixels to increase. We can also increase contrast by, analogously,

1
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stretching the range of image brightnesses when the image histogram is predominantly

skewed toward larger pixel values. Informally, contrast is said to be enhanced when detail

that is hard to see in an input image is made more conspicuous in the reproduction.

1.1 Why are we looking at CLHE?

The algorithm at the core of this thesis is Contrast Limited Histogram Equalisation (CLHE)

[53], a tone mapping algorithm that uses the image histogram to generate a tone curve that

makes a contrast enhanced reproduction of an input image. By using the image histogram to

drive the contrast enhancement, CLHE is able to develop a per-image mapping that ensures

that the contrast of the reproduction is increased in the most-represented brightness regions

of the input image, where scene independent mapping often falls short. We can usefully

think about the two main objectives of contrast enhancement as: 1) to make an image look

better, and 2) to improve the performance of an image for some other task e.g., when the

image is used for classification, object detection, segmentation, etc.

Despite it’s introduction in 1987 [53], CLHE remains extremely relevant in modern lit-

erature, with 100’s of novel publications each year using CLHE as part of their method,

many of which we will analyse in this thesis. CLHE has been used to enhance images for

a wide range of computer vision tasks, such as in automatic driving applications where it

has been used to aid in sign [34], pedestrian [15], and vehicle [75] detection. It has been

used to enhance details in underwater images [82; 54] and improve segmentation in farming

images [50; 38]. CLHE has featured extensively in medical image enhancement methods,

for example in breast cancer image analysis [8; 30], for segmenting blood vessels in retinal

images [69; 12; 62; 63], for enhancing x-ray images [42; 7], as well as segmenting and classi-

fying different cells [31; 72]. In recent years with deep learning techniques becoming more

popular for many areas in computer vision, CLHE is frequently used as a pre-processing

tool when training Neural Networks to identify details in images [73; 74; 25]
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CLHE also has strong roots in industry, as it underpins the Apical Iridix tone mapper [20],

a dynamic range compression algorithm that features in hundreds of thousands of cameras,

ranging from small sensors to DSLR cameras.

So what is it about CLHE that ensures it’s longevity in such a fast-moving field? Well,

the algorithm can be made to execute quickly (see Chapter 5), and is - on a high level at

least - intuitive to understand and use. Furthermore CLHE generates tone curves, and

so it can simply fit into frameworks that enhance contrast both globally and locally. The

algorithm itself is driven by a user defined hyper-parameter called the ‘clip limit’. As we

shall see later in this thesis, the clip limit determines the level of contrast enhancement

applied to the input image. Increasing or decreasing the value for this parameter increases

or decreases the contrast in the reproduction. In the Background section of this thesis we

show that the clip limit can be better described as a ‘slope limit’, a more fitting description

for the utility of the hyper-parameter.

The work presented in this thesis centres around CLHE and what can be done to improve

the algorithm. Due to it’s extremely widespread use in both academia and industry, the

algorithms we present here could - either directly or indirectly - improve the performance

of literally thousands of published works in the literature, and also potentially improve

the quality of images from thousands of cameras. Finally, another not inconsequential

reason for considering CLHE is that this thesis was funded by a company (Spectral Edge

Ltd), and they expressed a strong interest in understanding and developing this classical

algorithm.

1.2 What is CLHE?

CLHE is a variant of Histogram Equalisation (HE). In HE an input brightness image is

mapped to an output image such that the latter has a flat histogram (and from informa-

tion theory [64] this implies it encodes the maximum information). In HE the tone map

(brightness transfer function) is the cumulative histogram of the input brightness distribu-
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tion. However, see Figure 1.1, HE can produce poor images. In CLHE the input histogram

is mapped to a ‘proxy’ such that the tone map - defined as the integral of the proxy - has

bounded slope. This boundedness balances good contrast enhancement (without over doing

it).

Figure 1.1: An illustration of HE and CLHE. Left, original image. Middle, HE

reproduction. Right, CLHE reproduction.

1.3 Problems with CLHE

CLHE repeatedly modifies the image histogram with the same processing steps many times

[57; 52]. In order to converge, the tone curve found by the algorithm must have bounded

slopes (that are defined by the slope constraint hyper-parameter), and must map all possible

inputs to all possible outputs e.g., for an input image Ii(x,y) ∈ [0,1] the output reproduc-

tion must also be an image I(x,y) ∈ [0,1]. CLHE knows to converge only by evaluating

that these conditions are met after every iteration of the algorithm, and unfortunately, it

is not always possible to know in advance how many iterations are going to be required to

reach convergence. While many images converge quickly in a few iterations, from our ex-

periments we found empirically that it is not uncommon for CLHE to iterate 90+ times in

the worst-case. In these instances the slow convergence can render the algorithm infeasible

for real-time applications such as video processing (without sacrificing quality by arbitrarily

limiting the number of permitted iterations).

Another important observation of CLHE is that it tries - and fails - to find a histogram

that is as close as possible to the original in a least squares sense while adhering to the
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convergence constraints (the proxy returned by CLHE is not least-squares optimal). This

becomes evident when the steps of the algorithm are analysed deeper (Chapter 4 of this

thesis). In summary, when considered individually, the two steps that comprise the algo-

rithm are themselves least squares optimal, however as we shall see, since the steps execute

in sequence CLHE rarely resolves to the actual optimal histogram.

Another problem with CLHE is that it operates within a mathematical paradigm. That is

the formulation of CLHE (that it makes an output image whose brightness histogram is

more uniform subject to slope limits on a tone curve) - while certainly reasonable - does not

include any information about the images that people actually like. Indeed, there are many

histogram based tone mappers (which have been developed to incorporate preference) but

it is not clear the extent to which a CLHE-type-algorithm relates or does not relate to

these approaches.

1.4 Contributions and Publications

In this thesis we will present several contributions. In general, the contributions we make

here begin as solutions to the aforementioned problems with the CLHE algorithm. As we

shall see, the solutions we define lead naturally into us considering other algorithms in the

modern literature, and we propose several new and novel methods for histogram based tone

adjustment in images in general.

Linear histogram estimation. We address the uncertainty and slow convergence of

CLHE by reformulating the algorithm as a matrix-vector product of the discrete histogram

vector. This work makes it clear that it is indeed possible to achieve excellent quality

image reproductions on par with more computationally expensive methods such as Neural

Networks and Quadratic Programming, that are so prevalent in the modern literature.

This work was published as “Linear Histogram Adjustment for Image Enhancement” [45]

by McVey at the London Image Meeting in 2020.
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Least squares optimal CLHE. Here we study the CLHE algorithm in detail. It maps

an input histogram to a proxy that has the property that the counts in the bins are bounded

by upper and lower limits (and when the histogram is integrated these limits translate to

bounds on the slope of the tone curve). CLHE achieves its proxy by successively clipping

the input histogram to meet the slope limit and then redistributing the clipped bin-counts

(so when added to the clipped histogram the overall histogram count is maintained). The

redistribution can push histogram bins over the slope limit, so we iterate these two step

(clip and redistribute) to convergence. Each of the two steps are themselves least-squares

optimal. But, the final proxy histogram need not be the closest to the original (that meets

the clip limits). We recast the proxy computation as a quadratic program. We show that it

is possible to find the closest proxy histogram to the input in a least-squares sense. We show

many cases where the CLHE and least squares optimal reproductions differ noticeably, and

therefore contribute a demonstrable step-up from CLHE. The work is spread across two

publications as: “Least-Squares Optimal Contrast Limited Histogram Equalisation” [46] by

McVey and Finalyson at the Colour and Imaging Conference in 2019, as well as “Fast and

Optimal Contrast Limited Tone Mapping” by McVey and Finlayson at The Congress of the

International Color Association (AIC) in 2021.

TM-Net: Neural network framework for tone mapping. Here we demonstrate that

CLHE can be exactly reformulated as a deep tone mapping Neural Network (which we

call TM-Net). The ‘unrolled’ CLHE is a (albeit an elegant) transcription of the CLHE

algorithm. However, once in the neural network domain we can retrain the network to

account for the data. Our hypothesis is that we might implement CLHE with a fixed small

number of layers (that correspond to CLHE iterations) by retraining the network. On a

large corpus of image data we show that a two layer TM-Net (or a sort of two iteration

CLHE) can well approximate the CLHE algorithm (which can take 90+ iterations to

coverage). This work was published as “TM-Net: A Neural Net Architecture for Tone

Mapping” [28] by Finlayson and McVey in the MDPI Journal of Imaging.
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Generalised tone mapper approximation. We build upon our previous contributions

by applying our approaches to a well known method in the literature, a Histogram Mod-

ification Framework (HMF) [11]. We make several contributions here. First we show a

lightweight implementation of the algorithm can be found with our linear approach. Next,

we show that the formalism can be improved with the addition of direct slope bounds on the

tone curve, that is found using Quadratic Programming. Finally, we show that a bespoke

version of TM-Net (HMF-Net) can be trained to resolve to the HMF tone curve quickly

and accurately on tens of thousands of test cases.

1.5 Thesis Structure

Perhaps unusually for a thesis on image reproductions - that means making images that

look better than inputs - we are not interested in psychophysical experiments. Instead, our

focus and interest is on the algorithmic side of histogram adjustment algorithms.

In Chapter 2 we describe histogram-based tone adjustment of images in detail. We then

review CLHE more closely, as well as many other fundamental publications in the litera-

ture.

In Chapter 3 we discuss our linear approach to histogram estimation. We show that the orig-

inal Histogram Equalisation (HE) algorithm can be represented neatly as a matrix-vector

product by the histogram vector, and ask the question whether or not the linear formalism

is a good one, but a better matrix (than the one defined by HE) can be found.

In Chapter 4 we describe our least squares optimal approach to Contrast Limited Histogram

Equalisation. Our model - built using Quadratic Programming - finds the optimal histogram

that adheres to the CLHE constraints.

In Chapter 5 we show how CLHE can be implemented, exactly, in a multi layer neural

network (with the number of layers equal to the max number of iterations in the CLHE

algorithm), called TM-Net. The operation of the TM-Net (like all neural nets) are
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defined by the network weights and these are defined by CLHE algorithm. Importantly,

we show that the default architecture with 90 layers (because CLHE can take 90 iterations

to converge) can be replaced with a 2 layer architecture when we relearn the weights.

Effectively, through learning, we make CLHE 45 × faster.

In Chapter 6 we show that the TM-Net can be used to predict the outputs of a second

(non CLHE) algorithm for tone-mapping. The HMF (histogram modification framework)

places many more constraints on the shape of tone curves than CLHE but has a more

complex formulation. Indeed, it is a constrained optimisation (solved using Quadratic

programming). Here we show by training a 2-layer TM-Net we can simulate the HMF

computation. Our TM-Net version operates 100 × faster than HMF. Because of the

relationship between CLHE and TM-Net it follows that because we can transcribe HMF

into the TM-Net form we can also do the reverse. We can write the HMF algorithm

as a 2-iteration CLHE-type computations. We also present a simplified linear approach

to approximating the HMF tone map, as well as demonstrate that we might improve the

HMF formalism but introducing CLHe-style slope constraints into the optimisation.

In Chapter 7 we conclude the work presented here and discuss possibilities for future

work.
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2 Background

This chapter provides a survey of histogram-based tone adjustment. To begin we define

the tone curve and discuss the application of tone curves to greyscale and colour images.

Next, we review the venerable Histogram Equalisation (HE) algorithm [32] that defines the

framework from which many of the algorithms discussed in this thesis expand upon. This

leads naturally into the discussion of Contrast Limited Histogram Equalisation (CLHE),

which is the primary focus of this thesis. We review the parameters that drive the algorithm,

and discuss the related literature. Finally, we end with a discussion on several other modern

advances to histogram-based tone adjustment in the recent literature, many of which take

advantage of tools such as Quadratic Programming (QP) and deep learning technologies to

generate tone curves.

2.1 Applying Tone Curves to Images

Many of the contributions in this thesis are based on algorithms that generate tone curves.

A tone curve is simply a mapping function that - when applied to an image - changes the

values of the image pixels to generate an output image. With respect to tone mapping if a

pixel brightness b is mapped to t(b) (t() denotes the tone mapping function) then all pixels

with brightness b are mapped to t(b). Also, the function t() is almost always monotonically

increasing.

Let us now discuss how we can intuit the tonal changes just by looking at the curve, how

tone curves are generated, and how they are applied to different types of images (greyscale,

RGB, L*a*b*).

9
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Figure 2.1: Illustration of two arbitrary tone curves. The blue tone curve is steep in

some areas and shallow in others. The dotted orange tone curve has a uniform slope

of 1 (it is the identity tone curve).

In Figure 2.1 we illustrate two tone curves. Firstly note the scale of the axes, here we

expect pixel intensities to be in the range [0, 1], and so the tone curve is a function H(),

where H : [0, 1],→ [0, 1]. The slope of the tone curve tells us whether - on a given interval

- contrast is going to be increased or decreased in the output image. When the slope of

the tone curve is greater than 1 on an arbitrary interval then those intensities will be more

spread out in the reproduction, and so will appear with more details (contrast is increased).

Conversely a slope of less than 1 has the effect of compressing details. All tone curves, other

than the identity tone curve (shown as a dotted orange line in the figure) will have some

intervals where contrast is increased, and others where it is decreased. And so, for example,

a tone curve with a steep slope in the lower intensity range and shallow slope in the higher

intensity range tells us the darker pixels of the input image will have greater details in the

reproduction, and the lighter pixel details will be compressed.

Tone mapping functions can be defined as a parametric adjustment e.g. H(a) = min(ka, 1),

where k is a positive scalar. Other useful parametric forms of tone adjustment include the

Naka Rushton function[65], the Michaelis-Menten Equations [76] and gamma adjustment

algorithms [56; 36; 70]. However, the focus of this thesis are non-parametric contrast ad-
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justments. Here, the tone mapping functions are defined by input-output brightness pairs

- that are to be mapped exactly - and a suitable interpolation function, e.g. [23].

For a single-channel greyscale image we simply apply the tone mapping function to each pixel

to generate the output image. For an RGB image we might apply a tone curve individually

to each of the image channels, although adjusting the colour channels directly often results

in unexpected colour changes and poor quality outputs. It is more typical to adjust the

brightness tones in a colourspace that decouples brightness from chromaticity.

Here, we convert RGB to CIE L ∗a ∗ b∗ [21] space. In this representation L∗ is an encoding

of image brightness and a ∗ b∗ the chromatic aspect. This conversion is a simple bijective

function. Throughout this thesis, the brightness histogram calculated from the lightness

channel (L∗).

The output of any tone mapping algorithm is an image that has different brightnesses which,

here, we denote L′∗. Given an input and output brightness we calculate the modified a′∗

and b′∗ as:

a′∗ = L′∗
L∗a∗

b′∗ = L′∗
L∗b∗

(2.1)

Then we map the modified CIE L ∗ a ∗ b∗ colour to a modified RGB to obtain the output

reproduction.

2.2 Image Histograms

The histogram of an image is a graphical representation of the pixel intensity distribution in

that image. For a greyscale image I(x, y) with N possible intensity values (typically 256),

the histogram h ∈ RN can be usefully thought of as a discrete vector with N elements,

where each element hk counts the occurrences of pixel intensity k in the image. However,

since the number of pixels in any given image can vary, it is often more practical to nor-
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malise this histogram such that the sum of h is one. In this case the histogram h is the

probability density function (PDF) that represents the distribution of brightnesses in the

image. Importantly, since h is discrete, it can also be useful the also consider continuous

representation of the histogram, h(a), where a ∈ [0, 1].

We illustrate an image and it’s histograms in Figure 2.2 with an example greyscale image

from the Kodak dataset [kod]. In 2.2B we show the discrete histogram h, and in 2.2C the

continuous histogram h(a). The key difference is that the brightnesses in the continuous

histogram are normalised (a ∈ [0, 1]). Here and henceforth, unless stated otherwise, when

referring to the histogram of an image we refer to the continuous version. Although the

reader should understand that we will switch between the continuous and discrete repre-

sentations of the histogram where appropriate to make an exposition easier to follow.

Figure 2.2: Obtaining the histogram from a greyscale image. A) Door image from

the Kodak dataset. B) Discrete histogram of the image. C) Histogram of the image.

2.3 Histogram Equalisation

Perhaps the most well known contrast enhancement algorithm is Histogram Equalisation

(HE). In HE the histogram is used, directly, to define the tone curve that maps input to

output intensities in an image. The tone curve is the cumulative sum of the probability

density function (it is the cumulative density function, or CDF).

The HE algorithm, as the name suggests, seeks to find an image with a more or less equal

(uniform) histogram. That is to say HE attempts to modify the brightnesses in an image
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such that the each element of the discrete image histogram would hold the value 1
N . If we

consider the goal of a contrast enhancement algorithm to be solely based on the conspicuity

of detail, then we would consider HE to be in two senses optimal. First, when an image has

a uniform brightness histogram and we compute the average absolute brightness difference

(i.e. contrast) between random pairs of pixels, then this average is maximised since each

possible pixel value appears in equal frequency in the image. Second, images that have a

uniform brightness histogram have greater entropy/information (i.e. they must take more

bits to encode) [64].

Figure 2.3: An illustration of HE and CLHE. a) Original image. b) Brightness

histogram of a (solid blue), and the CLHE proxy histogram (dotted orange). c)

Image enhanced with HE. d) HE tone curve. e) Image enhanced with CLHE. f)

CLHE tone curve.
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Unfortunately, the theoretical conspicuity of detail in an image does not always correlate

with the perceived quality of the final reproduction. In Figure 2.3a we show the door

image from the Kodak dataset, and in 2.3c the same image enhanced with HE. Clearly, the

background of the HE enhanced image now has unnatural contrast and most of the details

on the doorknob have been lost. It looks worse than the original image. These problems

with the reproduction are explained by the shape of the tone curve in Figure 2.3d. In the

interval [0.3, 0.4] the tone curve is very steep and as a result the brightness detail is overly

stretched (directly leading to the unnatural contrast in the tone mapped door). The detail

is overly compressed - the tone curve is flat - in the interval [0.5, 1] (and the detail on

the doorknob is reduced). The problems of overly stretching contrast and feature loss (due

to compression of the tonal range) are commonly encountered when HE is used as a tone

mapping algorithm.

The key property of HE is the relationship between the histogram of an image and the

subsequent tone curve it generates. The latter is the cumulative histogram - equally, the

integral - of the former. Let h(a) denote the brightness histogram. Then, the HE tone map

is defined as H(a) =
∫ 1
0 h(a) δa. From which it follows that h(a) = δ

δaH(a). Henceforth in

this thesis, we adopt the convention that histograms (probability densities) are denoted in

lowercase and their integrals - i.e. the corresponding tone maps used for image enhancement

- are denoted in uppercase.

From this integration and differentiation relationship between the histogram and the tone

curve, it is clear that the slope of a tone curve must correlate with the height of the bins in

the histogram. Finally, an important mathematical detail in relating H(a) to the integral

of h(a) is that we need to set H(0) = h(0) in order to determine the constant of integration

(formally, H(0) = h(0) is a Dirichilet boundary condition [18]).

One final note on Histogram Equalisation is that - by employing the histogram of an image

to define a tone curve - we are, in fact, harnessing the content of the image to guide

the enhancement process. The histogram is a graphical representation of pixel intensities
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within an image. By tailoring the tone curve based on this histogram, we are directly

responding to the unique content and contrast properties of the image itself. This means

we are adaptively enhancing the image by placing emphasis on the specific tonal regions

that require adjustment, effectively aligning the image enhancement process with the image

content.

2.4 Contrast Limited Histogram Equalisation

Contrast Limited Histogram Equalisation (CLHE) [53] is the natural extension to HE that

directly addresses the problems of too-high and too-low slopes in the tone curve. Returning

to the examples in Figure 2.3, suppose H(a) is the tone mapping function - from HE - that

resulted in a poor image reproduction. There were areas where contrast was too high and

others where it was too low. Let us suppose there exists a better tone mapping function,

G(a). From our previous discussion, by differentiating G(a) we can return a histogram

(density function) g(a). It turns out that finding G(a) can be usefully expressed as the

problem of finding g(a) given h(a). The aim is to find a new histogram g(a) - as a proxy

for h(a) - that would integrate to a better tone map. In our case a better tone map is one

that generates a more visually pleasing output image.

Suppose that we choose g(a) to be close to h(a), but we constrain the values of g(a) to be

neither too-large nor too-small. It follows then that the corresponding tone curve - found

as the integral of histogram - must have bounded slopes. This is the central idea that

underpins the CLHE algorithm. By constraining the minimum and maximum value in the

proxy histogram we directly enforce slope constraints onto the tone curve. And since the

slopes of a tone curve determine the level of contrast enhancement, this allows us to control

the contrast in the reproduction.

It is common in the CLHE literature to refer to the bounds we place on the histogram

as ‘clip limits’. Often it is said that one of the primary problems with CLHE is that the

specific tuning of this clip limit has a large impact on the quality of the reproductions
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[61; 35]. For this reason, in this thesis we enforce an analogous idea by defining slope

constraints as maximum and minimum values for elements in the histogram, since we can

define them explicitly, and it is much simpler to visualise the slope limit on the solved for

tone curves.

So how does the CLHE proxy histogram look? In Figure 2.3b we show two histograms

obtained from the door image. The first is the HE histogram shown as the solid blue line,

and the CLHE histogram is the dotted orange line. We see that the shape of the CLHE

histogram is close to the original but the values are bounded. In this example the slope

bounds are 2 and 0.5, which converts to 2
100 = 0.02 and 0.5

100 = 0.005 (the brightness range

here is divided into 100 bins). The corresponding tone curve is shown in Figure 2.3f. Notice

how the maximum slope is reduced and the minimum slope is increased. Finally, in 2.3e we

show the CLHE enhanced image. Here we have good detail throughout the image and a

pleasing reproduction, where the image detail is rendered to be more conspicuous but not

unnatural, and the image looks better than the original.

2.4.1 Finding the CLHE Proxy Histogram

While CLHE almost always generates a preferred reproduction when compared to HE, the

algorithm has two well known problems. Firstly that it is often slow to converge [57; 52],

and secondly that a poor choice in slope limit often generates poor quality reproductions

[61; 35]. Let us give an overview of the steps that define CLHE in order to understand

the cases when it performs poorly. CLHE is an iterative algorithm that is made up of two

steps. These steps occur together and repeat until convergence criteria (explained next) are

satisfied.

The first step of CLHE seeks to constrain the slope of the tone curve, so in step 1 we ‘clip’

the input histogram so that it meets the Lower and Upper slope limits:

ĥ = min(max(h,
L

N
),
U

N
) (2.2)

Chapter 2 Jake McVey 16



Contrast Limited Histogram Equalisation Revisited

where L and U represent the slope of the tone curve, N is the number of bins in the

histogram, and the min and max functions are applied to each element of the discrete

histogram h.

As we saw previously in Figure 2.3, constraining the densities in this way allows us to

control the slope of the tone curve. The problem with this step is that our histogram - that

previously summed to 1 - will no longer sum to 1 once we modify any (although this step

often alters many) of the bins. The problem with this becomes apparent when we remember

how a tone curve is generated from a histogram. Since the tone curve is the integral (equally,

the cumulative sum) of the histogram, and we expect pixel intensities to be in the range

[0, 1], a histogram that does not sum to 1 will map to intensities outside of the desired

range. We illustrate this with two examples in Figure 2.4. Left, we show two histograms.

The solid blue histogram has a sum greater than 1, and the dashed red histogram has a

sum less than 1. On the right we see the tone curves found as the cumulative sum of these

respective histograms. Notice that neither tone curve maps inputs to outputs in the desired

range [0, 1] → [0, 1].

Figure 2.4: Illustrating necessity of CLHE redistribution. A) Histograms (densities)

that do not sum to 1. B) Associated tone curves, both tone curves do not map to the

desired range [0, 1] → [0, 1].
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And so in the second step of CLHE we add a constant ∆ to each bin of the clipped discrete

histogram so that it sums to 1 again:

h = ĥ + ∆ (2.3)

where ∆ is the amount the sum of the clipped histogram deviates from 1, divided evenly

by the number of bins in the histogram, N :

∆ =
(1 −

∑N
k=1 ĥk)

N
(2.4)

This second step is sometimes referred to as a ‘redistribution step’. Now that we have added

the ∆ it is possible the new histogram, once again, does not meet the lower and upper slope

limits. So, the algorithm iterates, stepping through Equations 2.2 to 2.4 until the histogram

satisfies the lower and upper slope limits and also sums to 1. Finally, we illustrate CLHE

histogram modification with a toy example in Figure 2.5. In our example CLHE converges

quickly but in many cases (as we shall see later) it can take upwards of 90 iterations.

Figure 2.5: An illustration of CLHE. Dashed lines represent the lower and upper

slope bounds of 0.6 and 1.5. a) Input discrete histogram with values [0.4, 0.6, 0]. Sums

to 1, but bins 2 and 3 do not obey slope bounds. b) Histogram clipped to slope limits.

All bins obey slope limit, but sum of histogram is 1.1, ∆ = −0.1 c) Histogram with

∆ evenly distributed (−0.33 to all bins). The result sums to 1, but bin 3 does not

obey slope constraint and will be clipped again to 0.2. d) Histogram after 5 clip and

redistribution steps. Final values [0.35, 0.45, 0.2] satisfy slope bounds and sum to 1.

Chapter 2 Jake McVey 18



Contrast Limited Histogram Equalisation Revisited

As a final note on the CLHE histogram modification process, one may be wondering how

exactly we choose the best values for the slope bounds (L and U in Equation 2.2)? In the

literature it is common to choose the slope bounds empirically based on the characteristics

of the images being used [50; 43; 84; 60]. This approach is validated when we look at

the images in Figure 2.6, where the ‘optimal’ values can drastically change based on the

characteristics of the image. In column A of the Figure we show two input images, one very

dark, and one normal image. The next three columns, B,C,D respectively, show the images

enhanced with CLHE with a max and min slope of 2 and 1
2 , 6 and 1

6 , and no slope bounds

at all (D is equivalent to HE). Clearly the first image looks best in C, and the second

image looks best in B. The rest of the images are either too dark to see the details, or look

too punchy and unnatural. It is clear that darker images therefore require greater contrast

enhancement (and thus greater maximum and lower minimum slopes) than a normal image.

Minimum slopes are not as common as maximum slopes in the literature, in this thesis we

suggest minimum slopes to be defined as the reciprocal of the maximum i.e. a tone curve

with a maximum slope of 2 will have a minimum slope of 1
2 .

Figure 2.6: Images enhanced with CLHE with varying slope bounds. A) Original

image. B) Max and min slope of 2 and 1
2 . C) Max and min slope of 6 and 1

6 . D) No

max and min slope (HE).

Several methods in the literature propose novel techniques for automatic tuning of the slope

parameters. For example, [61] tunes the slope by enhancing an input image many times
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with varying values for the slopes, and measuring the entropy in each enhanced image. The

slope bound that represents the maximum change in entropy (from it’s previous neighbour)

is chosen as optimal. Of course - for an algorithm we have already described as computa-

tionally slow - enhancing an image several times to tune the slope bounds is impractical.

Furthermore, the link between entropy and perceived image quality is questionable, as HE

has maximum entropy but also usually introduces artefacts (see discussion of Histogram

Equalisation above).

A more convincing approach to tuning is presented in [49], where the optimal slope pa-

rameters are obtained by solving a multi objective meta-heuristic that seeks to maximise

image entropy and Structural Similarity Index (SSIM) [78] simultaneously. The addition of

SSIM to the objective brings credibility to the method as it makes the distinction between

amount of contrast (entropy) vs perceived image quality (SSIM). In this work they found

that that specialists using the method would need different contrast levels in the output

images to highlight different structures in the image. So - while the method is logical - we

return to the necessity of empirical tuning of the terms for the best results.

2.5 Image Datasets and Evaluation

The methods in this thesis - in general - are algorithm focused, and are derived to be

quantifiable improvements over existing algorithms in the literature. Perhaps unusually for

a thesis on image reproductions - that means making images that look better than inputs -

we are not interested in psycho-physical experiments. Instead, our focus and interest is on

the algorithmic side of histogram adjustment algorithms.

That being said we aim to be comprehensive in our evaluation and therefore use a range of

objective evaluation metrics. Full reference and no-reference approaches to image evaluation

are essential for assessing the quality and fidelity of contrast enhanced images. Full reference

methods compare the image under evaluation to a known high-quality reference image,

providing a precise and objective measure of image quality by quantifying the differences
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between them. Conversely, no-reference methods evaluate image quality without the need

for a reference image, making them more suitable for real-world scenarios where such a

reference may be unavailable or impractical. For our image evaluation, we will employ a

combination of full reference metrics, specifically Delta E* 76 and the Structural Similarity

Index (SSIM), which comprehensively assess color and structural fidelity. Additionally,

we will utilise two no-reference metrics, NIQE (Natural Image Quality Evaluator) and

BRISQUE (Blind/Referenceless Image Spatial Quality Evaluator), to provide an objective

measure of image quality without relying on a reference image. This approach ensures a

well-rounded evaluation of image quality.

We have seen images that require different CLHE slope parameters to look good (see Figure

2.6). As such, we declare here 4 primary datasets that will be used in this work. They are:

firstly, the Kodak [kod] dataset that contains 24 images. Secondly, a randomly selected

subset of 50,000 images from ImageNet [ima]. Thirdly, another 50,000 randomly selected

images from the MIT Places Database [pla]. And finally 485 darker images from the LOw-

Light (LOL) dataset [79]. Empirically we found that images from Kodak, ImageNet, and

Places often look most pleasing with CLHE slope parmaters of 2 and 1
2 , and the LOL

images look best with 6 and 1
6 . We include all datasets (at least, sometimes we use more)

in all experiments to validate our methods.

2.6 Histogram-based Tone Adjustment in the Literature

Histograms can tell us a lot about an image. When the elements of a histogram are all

close together, it usually means large regions of the possible dynamic range of an image are

most likely underutilised. Histogram modification techniques are designed such that - when

applied to the input image - the histogram of the reproduction is more spread out (and so

the contrast is increased). For methods that adopt the HE framework, a tone curve derived

from the histogram is used to modify the image intensities. By convention in the literature

most methods - like CLHE - are referred to as an acronym prefixed to HE.
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2.6.1 Brightness Preservation

Many of the histogram modification algorithms in the literature in the recent years seek

to enhance the contrast in an image while maintaining the mean brightness of the input

image. One advantage of maintaining consistent brightness is that similar images viewed

in rapid succession (e.g., a video) could be enhanced without noticeable flickering from the

brightness changes. As we saw in Figure 2.3 the average brightness of an image usually (and

often intentionally) shifts drastically when a tone curve is applied. It is worth noting that we

also saw in Figure 2.6 instances where brightness preservation would not be desired.

One method featuring brightness preservation in the HE framework was Brightness Pre-

serving Bi-histogram Equalisation [41] (BBHE). Remembering that HE makes an image

with a uniform histogram, the mean intensity of the HE reproduction is roughly in the

middle of the available dynamic range. To ensure that the mean intensity of the BBHE

reproduction matches the input image, two histograms are obtained from the input im-

age. The first is a histogram of brightnesses less than the mean intensity of the input

image, and the second contains brightnesses greater than the mean. These two histograms

are integrated to independent tone curves and applied to the image. Instead of the usual

tone mapping of [0, 1] → [0, 1], these tone curves map [0, µ] → [0, µ] and [µ, 1] → [µ, 1]

respectively (µ is the mean intensity of the input image). This framework was also used in

Dualistic Sub-Image Histogram Equalisation [77] (DSIHE), except the median intensity of

the input image was used to separate the two histograms. The essence of the idea is that

by selecting the median intensity, both histograms will contain a roughly equal number of

pixels. Unfortunately, as is common with many methods in the literature, neither of these

methods facilitate any control over the level of contrast enhancement, nor do they limit the

slope of the tone curves in any way.

Minimum Mean Brightness Error Bi-histogram Equalisation (MMBEBHE) [17] is an ex-

tension to BBHE that introduces the desired quantifiable basis for choice of separating

intensity. Here, the optimal separating intensity is found by testing all possible values.
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That is, each of the N bins of the histogram is used as a separating point, and so they

generate N reproductions of the input image. The chosen output is the reproduction with

a mean brightness most-close to the mean brightness of the input.

The same authors next proposed another extension to BBHE, Recursive Mean Seperate

Histogram Equalisation (RMSHE) [16]. This method iteratively runs [16], separating the

input histogram on the mean value recursively t times (generating 2r histograms). For

example if the mean is 0.3 then there are intervals [0, 0.3] and [0.3, 1]. If the means of

the interval [0, 0.3] is 0.1 then this seeds 2 more intervals [0, 0.1] and [0.1, 0.3]. Ultimately

- for the intervals - all 2r intervals are equalised. The Recursive Sub-Image Histogram

Equalisation (RSIHE) [68], method is the same as RMSHE but intervals are split on the

median.

Multi-Peak Histogram Equalisation with Brightness Preserving [81] (MPHEBP) - like

CLHE - uses the intuition that the shape of the input histogram should drive the contrast

enhancement. Firstly a 1-D smoothing filter is applied to the histogram, and then the

separation points are found as the local maximums of the smoothed histogram. There are

as many histograms as there are local maximums. Like in RMSHE, each sub histogram is

equalised independently.

Two final methods that separate the input histogram into sub histograms are Dynamic

Histogram Equalisation [6] (DHE), and Brightness Preserving Dynamic Histogram Equali-

sation [37] (BPDHE). The first method, as the name suggests, does not maintain brightness

in the reproductions. But it does overcome the problems of having too-many histograms.

Here, after smoothing and separating based on local minimums, each sub histogram is as-

signed an output range to equalise proportional to the histogram size. The second method

uses the same framework as the first, except local maximums are used as separation points,

and brightness is preserved in the reproductions by normalising the image after it has

been equalised (tone adjusted). A final note on brightness preserving HE methods is that

preservation of brightness does not necessarily imply naturalness [11; 19].
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2.6.2 Optimisation-based Adjustment

As in many areas of computer vision, widespread access to greater computational power

(relative to previous years) has led to a large increase in novel techniques that take advantage

of that power. The same is true for histogram based tone adjustment, where the recent

literature has been more explicit in formulating the problem as an optimisation. Like

CLHE, methods are developed to derive a new histogram from the original which has

properties - such as closeness to the uniform histogram - which result in the corresponding

tone curve obeying certain defined properties.

A well-known approach to finding a proxy histogram using optimisation is the Histogram

Modification Framework (HMF) [11]. Here, an objective function is defined with four

weighted penalty terms, that each enforce a characteristic on the solved-for histogram.

These characteristics ensure the histogram is: close to the original, has controllable levels

of contrast enhancement, is smooth, and makes good blacks and whites in the reproduc-

tion. This method does not explicitly enforce any slope constraints onto the histogram.

A heuristic way to meet desired upper and lower bounds is to adjust some of the penalty

terms, however empirically we found this was hard to reproduce automatically and further-

more produced very smooth histograms that has correspondingly too-smooth tone curves

(and so the desired enhancement was lessened). The histogram is found using Quadratic

Programming [14].

Histogram-based Locality Preserving Contrast Enhancement [66] (HBLPCE) also uses

Quadratic Programming to modify the histogram. There, it is argued that the local shape

of the histogram should be similar to the original. This is enforced through an optimisation

defined as a least-squares objective function, where the solved-for histogram should be close

to the original (based on a ‘locality’ constraint defined there), while also being close to the

uniform histogram. Without ensuring closeness to the uniform histogram, the algorithm

would return the input histogram (i.e., it is HE). This method is extended in [40]. There, a

term is added to the objective function that ensures that the solved-for tone curve is steep

Chapter 2 Jake McVey 24



Contrast Limited Histogram Equalisation Revisited

on the interval where large amount of neighbouring pixels occur together. This ensures that

the reproduction has sufficient contrast.

In Global and Local Contrast Enhancement (GLCE) [83] a Neural Network is used to

derive the tone curve. Of course, training a Neural Network to for this purpose requires

there to be a known ground truth output, and so it is not immediately clear how a Network

can be used in this context. Here, a training dataset of 1477 image pairs from [33] was

used. Each pair includes a low contrast image and an associated contrast enhanced image

chosen from subjective ratings of a 22 observers. Importantly, the outputs here are not

solely found by application of the solved for tone curve. The image is further altered by the

network based on the local distribution of intensities around each pixel.

In [44] a tone curve is found with the goal of compressing the dynamic range of an input

image to a desired range, while ensuring the reproduction is as close as possible (based on

Mean Squared Error, MSE) to the input High Dynamic Range (HDR) image. There, the

optimal tone curve is found as the output of an objective function that can be solved with

Quadratic Programming. They also suggest a closed-form approximation of the method

that reduces the high computational cost of QP.
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In this Chapter we define a non-iterative version of CLHE. As we have said in the pre-

vious section, CLHE is well known to be computationally expensive in the sense it can

take many iterations to converge. Furthermore, in the recent literature there have been

many new tone mapping methods developed that use tools such as Deep Learning and

Quadratic Programming. While these approaches often generate excellent images, we con-

tribute here an exploration into the idea that a more computationally simple linear approach

to histogram-based tone curve generation can make equally good reproductions.

3.1 Convergence Rate of CLHE

To motivate our approach further let us consider the number of iterations it takes CLHE

to converge (we refer to this as the CLHE convergence rate). In Figure 3.1 we show

two bar charts illustrating: left, the mean convergence rate (error bars denote standard

deviation), and right, the max convergence rate for the four primary datasets used in this

thesis. The colours of the individual bars represent CLHE with different maximum slope

bound parameters (remember that we use the reciprocal as the minimum slope). It is

important to consider CLHE performance over a range of different slope parameters since,

as we have seen, low light conditions typically require much higher slope bounds to generate

pleasing reproductions. We remind the reader of the RGB image datasets used here, they

are: ImageNet, containing 50,000 images. Kodak, containing 24 images. LOL, containing

485 dark images. And finally Places, containing 50,000 images.

We see that the mean convergence rate is similar for all datasets, and that the slope bounds

do not seem to have much of an impact on the mean convergence rate. The error bars on
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the left of the Figure represent the standard deviation. Interestingly it appears that for the

worst case convergence rate it does have an effect, and the maximum number of iterations

were observed with the highest slope bounds for three out of the four datasets.

Figure 3.1: Convergence rates of CLHE with three different max and min slope

bounds (respectively, 2 and 1
2 , 4 and 1

4 , 6 and 1
6 ) for the four primary datasets of this

thesis. Left, mean (bars denote standard deviation) convergence rate.

Evidently, CLHE takes many iterations to iterate fully. Roughly 20 iterations in the average

cases (irrespective of the magnitude of the slope constraints) and independent of dataset.

The max iterations to convergence is almost 100 in the worst case.

While the CLHE procedure is not hugely expensive in the sense that each iteration requires

mapping one histogram to another (and the histogram will have at most a few hundreds

of bins) the cost is not insignificant viewed in the context of an image processing pipeline.

For example, smartphones process video feeds in real time which means all computations,

including tone mapping, must take place at 30+ frames per second. In the austere world of

camera pipelines, if we could run CLHE more quickly then this would release important

compute time for other tasks (e.g. denoising and white point estimation).
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3.2 Linear Histogram Equalisation

In Histogram Equalisation we find the tone curve, H, as the cumulative sum of the discrete

image histogram, h. Let us write the cumulative sum as the matrix vector product:

H = Mh (3.1)

where M is a lower triangular matrix with 1’s on the lower half, and 0’s everywhere

else:

MHE =



1 0 · · · 0 0

1 1 · · · 0 0

1 1
. . . 0 0

...
... · · · 1 0

1 1 · · · 1 1


(3.2)

where HE denotes Histogram Equalisation. Each element of the tone curve vector Hk holds

the sum of the first k elements of the histogram. While this simple rewrite of HE as a

matrix operation applied to a histogram is not in itself surprising it is informative - for our

work in this chapter - to write it in this way. Here we will be interested in defining other

matrices M that map a histogram to a tone curve (with the tone curve delivering preferred

tone rendering compared to HE).

3.3 Deriving the Linear Transform that Computes the CLHE

Tone Curve

The method we describe here is encapsulated by Equation 3.1. Assuming that the sum of

the histogram is one, we seek to derive some matrix M such that H = Mh will generate a

tone curve that makes reproductions perceptually identical to CLHE.
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To begin let us suppose we have a large set of J discrete histograms, each denoted hi,

(i = 1, 2 · · · , J). And we calculate the corresponding J tone curves, Hi, using CLHE. For

the purpose of this exposition the max and min slope bounds are 2 and 1
2 , although the

choice is arbitrary. Our hypothesis is that there exists some matrix such that Mhi ≈ Hi.

The goal is to minimise

M = min
M

(
J∑

i=1

||Mhi −Hi||22) (3.3)

The matrix M can be determined using the standard Moore-Penrose [26] pseudo-inverse

closed form solution. First let us write the set of J image histograms and CLHE tone

curves by the J × 100 matrices H and H respectively (the histograms and tone curves have

100 elements and there are J of them). Note that each histogram and corresponding tone

curve is placed in the rows of the matrices H and H. The input histograms and output

tone curves are 100-dimensional vectors and there are J images in the training set. The

Moore-penrose inverse calculates the desired least-squares mapping M as

Mt = [HtH]−1HtH (3.4)

where t denotes the matrix transpose.

The meaning of Mh is that the values in h (the histogram counts that sum to 1) are used

as a convex combination of the columns M. Thus each column of M is a tone curve and

Mh is a new tone-curve computed from this basis set. In Figure 3.2 we plot of the columns

of M calculated using Equation 3.4. It is clear that naively solving the regression finds

a solution that is unstable. In this case we classify a solution as unstable when the pixel

mapping would go outside the desired range of [0, 1], or when the tone curves are not strictly

increasing. We have seen in the background section of this thesis why tone curves that do

not map intensity values from [0, 1] → [0, 1] can be a problem. A tone curve that decreases
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Figure 3.2: Plot of M calculated using Equation 3.4. Without regularisation the

solution is unstable (maps to values outside the desired range [0,1], is not strictly

increasing).

over time will cause neighbouring intensities from the original image to change unevenly

(the brighter values become darker than it’s darker neighbour) in the reproduction.

In this case the instability follows from the fact that the histograms, h, that were used

to build the model do no span 100-dimensional space (in this case the discrete histograms

contain 100 elements). In order to guide the solution towards one that is more stable we

introduce a user-defined Tikhonov regularisation parameter to the equation as λ:

M = min
M

(
J∑

i=1

||Mhi −Hi||22 + λ||M||22) (3.5)

For which the closed form solution is

Mt = (HtH + λI)−1HtH. (3.6)

where I is a 100 × 100 identity matrix. In Figure 3.3 we show 3 examples of M calculated

using 3 different values for λ. Notice that M - with an ill-fitting value for λ - in 3.3A and

3.3B converges to (what we previously described as) an unstable solution. The result in
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3.3c is clearly much more suitable. It is evident that - without any explicit enforcement on

our part - the tone curves we solved for look naturally smooth.

Figure 3.3: Plot of M calculated using Equation 3.6 with varying values for λ. A)

λ = 0.05. B) λ = 0.2. C) λ = 1.6. The CLHE max and min slope parameters used

here were 2 and 1
2 respectively.

The best performing value for the regularisation parameter, 1.6 was found via cross val-

idation on the training data. The training dataset consists of 10,000 randomly selected

images from both the ImageNet and Places datasets (J = 20,000 total images). We used

4-fold cross validation to find the optimal λ, illustrated in Figure 3.4. The training data

was separated into 4 equal sections (5,000 images each), and each section is used once as a

test set.

To find the λ we tested λ = 0 → λ = 5 in 0.5 increments (11 total). Once the highest

performing value was found we narrowed the increment to 0.1 and searched again. For

example, if λ = 1.5 performed the best in the 11 tests, we next try λ = 1.1 → λ = 1.9 in

0.1 increments (9 total). Performance was evaluated with mean Delta E (explained in the

Experiments section next). The λ with lowest Delta E for the 9 tests is the ‘winner’ of each

fold. The winning values were then averaged to find the chosen value 1.6.

3.3.1 Dealing with Large Spikes in the Histogram

Unfortunately, as defined our linear approximation has no inherent robustness to histograms

with large spikes. When most of the pixels in an image have the same (or very similar)
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Figure 3.4: Illustration of 4-fold cross validation. Each fold uses a distinct (and equal

size) subset of the training data as a test set.

intensities, the histogram of that image will have a large spike. This is the cause of too-high

slopes in general HE, and a similar (although greatly lessened) effect occurs here. This is

illustrated in Figure 3.5. We show two sets of histograms, column A, and associated tone

curves, column B.

Notice that for the bottom histogram there is no spike, and as such the tone curve found

by our method (dotted orange line in the Figure) closely matches the CLHE tone curve.

However in the top histogram there is a large spike, and consequently the tone curve found

by our method exhibits a much steeper slope than CLHE in the middle, and a shallower

slope at either end.

To add robustness to large histogram spikes into our method we conditionally pre-process

the input histogram with a single iteration of CLHE when the maximum value in the

histogram exceeds a bounding threshold. That is we clip the histogram to the slope bounds

and redistribute the Delta (so it sums to one) a single time. And so our actual formalism

is equal to
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Figure 3.5: Two histograms (left) and their respective tone curves (right). The tone

curve found by Equation 3.1 is not robust the spikes in the histogram.

H = Mf(h) (3.7)

where f() is defined

f(h) =

 CLHE1(h), if max(h) ≥ 0.1

h, if max(h) < 0.1

 (3.8)

Where CLHE1 represents a single iteration of CLHE. Empirically we found that an upper

bounding threshold of 0.1 provided satisfactory robustness to spikes, while leaving most
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other histograms unperturbed. Remember here that we represent discrete histograms with

100 elements, and so our bound is the value that would correspond to a tone curve with

a slope of 10. An alternative (an equivalent) way to write the bounding threshold is 10
N ,

where N is the size of the histogram.

We demonstrate the utility of our histogram pre-processing on the histogram with a large

spike in Figure 3.6. In 3.6B it is clear that the tone curve found from Equation 3.7 (dotted

orange line) is much closer to the CLHE curve than the tone curve found without pre-

processing (dashed green line). Using Equation 3.6 with λ = 1.6 to define M, our proposed

linear approach to histogram adjustment is found using Equation 3.7.

Figure 3.6: The effect of pre-processing the histogram with Equation 3.8 before

transforming the histogram. Left, input histogram. Right, associated tone curves. The

pre processed histogram (dotted orange line) is much closer to the CLHE histogram

(solid blue line).

3.4 Experiments

We evaluate the success of our method using the set of well-established image quality

metrics defined previously. These metrics are Delta E 76 and the Structural Similarity

Index (SSIM) as full reference metrics, and the no-reference metrics, NIQE (Natural Image
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Quality Evaluator) and BRISQUE (Blind/Referenceless Image Spatial Quality Evaluator).

This multi-pronged approach ensures a thorough and robust assessment of our method’s

performance across a wide spectrum of image quality aspects.

In this work we construct two models. The first maps input histograms to tone curves

with maximum and minimum slope bounds of 2 and 1
2 , and the second maps to to curves

with maximum and minimum slopes of 6 and 1
6 . The first model is used for the Kodak,

ImageNet, and Places dataset. The second model is used for the (LOw-Light) LOL dataset.

We use a separate model for the LOL dataset because - as we saw in the Background of this

thesis - high slopes are required to generate pleasing reproductions for very dark images.

To build each model we used the same 10,000 randomly selected images from the ImageNet

and Places datasets (20,000 images total). The remaining images from ImageNet and Places

were used as test datasets. Images from the Kodak and LOL datasets were not used to

build the model but were used as independent test sets.

The mean and standard deviation for the Delta E across all test datasets are calculated

and shown in the Figure 3.7. Later, in Figure 3.9 we show some images for comparison.

Left is the original un-enhanced Kodak image. The CLHE image is shown in the middle.

Our simple enhancement - where the tone curve applied is calculated as a simple linear

transform of the input image’s histogram - is shown right. CLHE produces pleasing results

and our linear transform algorithm provides visually indistinguishable results, validating

our method.

3.5 Results and Discussion

The target Delta E value for image matching is not universally accepted. In [71] it is argued

that a mean Delta E of less than 2.15 in a complex image is required for close perceptual

uniformity, while in [48] it is reported a Delta E of 5 is sufficient. On the left of Figure 3.7

we show that our method is able to satisfy both benchmarks.
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We remark that for the LOL dataset the Delta E’s in general are higher. This is because the

dataset consists of very dark images that have systematically high peaks in the associated

histograms. Consequently, even minor deviations in the tone curve lead to large differences

in the intensities in the reproductions.

Also shown in Figure 3.7 are the SSIM statistics for all datasets. SSIM provides a value on

a scale from -1 to 1, where an SSIM value close to 1 indicates that the compared images

are very similar in terms of their structure, texture, and overall content. Simply, when the

SSIM is close to 1, it suggests a high degree of similarity, and the images are nearly identical

in terms of visual quality and content. We demonstrate here an SSIM close to 1 between

CLHE and the proposed method in all cases.

Figure 3.7: Left, box plot illustrating the mean of the mean Delta E* between CLHE

enhanced images and the proposed method. Right, the SSIM between these images.

The SSIM is close to 1 in all cases.

In Figure 3.8 we show two box plots for the no-reference methods BRISQUE (left), and

NIQE (right). Both of these metrics assess image quality, and a score closer to 0 represents

a better perceptual quality of an image. When interpreting BRISQUE and NIQE we often

compare relative scores because, for example, BRISQUE scores themselves do not have a

universally fixed interpretation or threshold that applies to all images and applications.
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The relative approach takes into account the context and the dataset against which you

are assessing image quality. Simply, if the difference in scores between our method and the

target is low, then the reproductions are close to identical.

The box plots below illustrate the difference between the respective BRISQUE and NIQE

scores for images enhanced with CLHE and the proposed method. We subtract the CLHE

score from the score of the proposed method, therefore negative numbers indicate the image

found by the proposed method appears with higher perceptual quality. We see that the

mean score is below 0 for the first 3 datasets for both BRISQUE and NIQE. However

importantly, the scores in general are close to 0, implying close similarity between the

compared images.

Figure 3.8: Left, box plot illustrating the relative BRISQUE scores between CLHE

and the proposed method. We subtract the CLHE score from the proposed score,

therefore negative numbers represent a higher perceptual quality image from our

method. Right, the same process with relative NIQE scores.

In Figure 3.9 we show several images from the Kodak data set. The middle images enhanced

with CLHE all present with pleasing contrast, and are better than the input images on

the left. On the right we show the same images enhanced with curves obtained by our

proposed method. The Delta E for each pair of enhanced images is also presented. The

Chapter 3 Jake McVey 37



Contrast Limited Histogram Equalisation Revisited

images in this Figure teach us that the suggested target Delta E of 3 is sensible, since even

the ‘most-different’ image in the set - the red door - only begins to show slight differences

upon close observation.

A potential advantage of our method is that it will be easier to analyse how the algorithm

works when the input is perturbed. If the input histogram f(h) is perturbed by a random

bin adjustment ϵ the tone curve, perforce, will be the sum of the two i.e. Mf(h) + Mϵ.

In this chapter we demonstrated the interesting fact that we can closely approximate His-

togram Equalisation based methods - that generate tone curves from the histogram of an

image - by a linear matrix computation. Specifically, the tone curve we propose applying

to an image is found by applying a linear transform to the input histogram. Further, this

transform can be found by regularised regression.

While our focus was on CLHE, we anticipate that our method is likely to work with other

histogram modification algorithms that further modify the histogram (since CLHE only

enforces slope constraints). We return to this method later in the thesis in Chapter 6 where

we explore its application to the well known Histogram Modification Framework (HMF)

[11]. We believe that our method is in many cases a powerful improvement to CLHE,

since our linear approach converges quickly every time, ensuring there are no longer worst-

case images that take too-long to enhance, while also producing reproductions that are

perceptually identical to CLHE.

As a final note we add that our linear approach may actually be more applicable to modern

tone mappers than CLHE. As we will see in the following Chapters, modern tone mappers

often place high importance on generating tone curves that are smooth (where CLHE

makes no consideration of smoothness). We saw in Figure 3.3 that our regularised regression

naturally defines smooth tone curves, and so the its application to modern tone mappers is

clear.
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Figure 3.9: For each image in the set: First, original image. Middle, image enhanced

with CLHE. Right, image enhanced with proposed method.
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4 Least Squares Optimal CLHE

In CLHE the tone curve applied to an image is defined as the cumulative sum of the proxy

histogram for an input image. Where the proxy histogram is close to the actual input image

histogram but which satisfies slope constraints. Specifically, that the corresponding tone

curve slope is neither too steep nor too shallow. Equivalently, the proxy histogram has bin

counts which lie within slope limits. As we show in this chapter the CLHE proxy is not

optimal in the sense that it need not compute the best proxy which is defined to be the

closest histogram to input image histogram that satisfies the clip limits.

In detail, the CLHE algorithm operates iteratively. CLHE modifies the discrete his-

togram until two conditions are met: the sum of the histogram is one, and all elements

of the histogram fall within the pre-determined upper and lower bounds (sometimes called

slope constraints). Each iteration of the algorithm consists of two steps that repeat until

convergence.

As we shall see, while both steps of the CLHE algorithm are themselves step-wise ‘optimal’

in a least squares sense, the algorithm routinely fails to converge to the actual least squares

optimal histogram in almost all cases. In this Chapter we show why it is that CLHE falls

short of optimality. Next, we will reformulate CLHE as an optimisation problem and show

that we can use Quadratic Programming (QP) to guarantee that we find the optimal proxy

histogram. Finally, we present a more light-weight implementation of our QP formalism

that generates visually indistinguishable reproductions to the fully converged QP-CLHE

algorithm.
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4.1 Falling short of least squares optimality

We consider a proxy histogram to be ‘least squares optimal’ if it is as close as possible in a

least squares sense to the original, while adhering to the CLHE constraints and summing

to 1. To begin, let us briefly recap the steps of the CLHE algorithm. The input histogram

has unbounded values with the constraint that it sums to one. In CLHE’s first step the

histogram bins are clipped so that they fall within defined lower and upper bounds (L

and U) on the min and max bin counts. Given a histogram h then the clipping step is,

mathematically, written as min(max(h, L), U). Enforcing the bounds on the histogram

counts often generates a histogram that no longer sums to one, and so the second step is to

adjust the histogram elements (by incrementing or decrementing) evenly until the histogram

again sums to one.

Both steps are illustrated in Figure 4.1. The input histogram before any modification is

shown in Figure 4.1a, let us call this histogram h0, where the subscript 0 represents the

current iteration of CLHE. In 4.1b we show the histogram after it has been clipped, let

us call this h0′ . And finally in 4.1c we show the histogram after redistribution, that is

h1.

Figure 4.1: Illustration of the steps that define the CLHE algorithm. Dotted lines

represent the slope bounds.
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CLHE iteratively clips and redistributes until convergence (we have a histogram that meets

the clip limits and sums to one). It is obvious that min(max(h, L), U) is closer to h than

any other histogram that satisfies the lower and upper clip limits. To show this we clearly do

not need to consider histogram bin counts that lie within the limits as they are unchanged

by the clipping operation. Without loss of generality, assume the ith bin of the histogram

is larger than the upper clip limit. We write hi > U . Suppose instead of setting hi = U we

instead set it to hi = x where x ∈ (U,L]. Clearly, ||hi−U || < ||hi−x||. A similar argument

applies for bin counts less than the lower clip limit. It follows that clipping to the upper

and lower thresholds is least-squares optimal.

Suppose we have a histogram h that doesn’t sum to 1. Assuming h has N bins we can

think of the summation as a dot-product operation. Specifically let u be an N -vector where

u = [1, 1, · · · , 1]. Then the sum of h can be written as

N∑
i=1

hi = h.u = k, (k ̸= 1). (4.1)

We would like to find a new histogram, h′ such that

min
h′

||h′ − h|| s.t. h′ · u = 1 (4.2)

Equivalently, using a Lagrange multiplier, we wish to minimise:

min
h′

||h′ − h|| + λ(h′ · u− 1) (4.3)

Differentiating with respect to h′ and setting to 0 we find that the required minimum

satisfies

h′ − h + (λ/2)u = 0 (4.4)
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And rearranging we see that the new histogram must be equal to the old one plus the same

scalar added to all histogram bins

h′ = h + (λ/2)u (4.5)

In this way we have shown the redistribution step is also, in isolation, step-wise least-squares

optimal. Given the histogram in Figure 4.1A as an input, CLHE converges to the final

histogram [0.35, 0.45, 0.2].

4.2 Making CLHE optimal using Quadratic Programming

Quadratic Programs (QP) have been used in the literature to optimise histogram modifi-

cation algorithms [40; 67; 11]. A quadratic objective function subject to linear constraints

can be expressed in the form of a Quadratic Program. That we write an optimisation in

this way has two main advantages. Firstly, quadratic objective functions bound by linear

constraints have a unique global optimum, and this is always found by the QP algorithm

[80], and furthermore this optimum can be found quickly [14].

In the last section we saw that the CLHE algorithm iterates and successively clips and

redistributes until convergence. Each individual clipping step and each individual redistri-

bution is least-squares optimal. That is, the output histogram calculated from an input

histogram in a step (clipping or redistribution) is - given the definition of the step - least-

squares optimal (the output is as close as possible to the input). However, the ultimate goal

of CLHE can be considered to be to finding a proxy histogram that is close to an image

histogram where the proxy satisfies clip constraints and sums to one. This said, there is no

reason why the successive - per step optimal histogram refinement - approach of CLHE

should lead to the best overall proxy histogram (i.e. the one that is closes to the original

image histogram). Let us assert that CLHE would ‘like to be’ overall optimal. Now we

will show how the optimal proxy can be found.
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Let us directly rewrite CLHE as a constrained optimisation as:

min
h

||h− hi||2

s.t.


hk ≥ L, k = 1, 2, · · · , N

hk ≤ U, k = 1, 2, · · · , N∑N
k=1 hk = 1

(4.6)

where the objective term captures the idea that we wish to find a proxy histogram, h,

that is as close as possible to the input histogram, hi, in a least squares sense. The con-

straints define the properties the proxy histogram must satisfy, in this case they match the

two CLHE conditions which are, in order: each element of the proxy histogram hold a

value above the minimum and below the maximum slope bound, and the sum of the proxy

histogram should be one.

4.2.1 Solving using a QP solver

To solve the optimisation in Equation 4.6 we use MATLAB’s quadprog solver [qua]. In

order to use quadprog we must transcribe Equation 4.6 to the form:

min
x

1
2x

THx + fTx

s.t.


A · x ≤ b,

Aeq · x = beq,

lb ≤ x ≤ ub.

(4.7)

where H and A are matrices, Aeq, f , b, lb, ub, and x are vectors, and beq is a scalar.

We have no inequality constraints and so A and b are not defined. We have the equality

constraint that the histogram must sum to one, so Aeq ∈ N × 1 is a matrix of ones (u as

defined in the last section), and beq = 1. Here, lb = L and ub = U .
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For the objective terms remember that we seek a histogram that is as close as possible to

the input that meets the constraints, and so the matrix H ∈ N ×N is the identity matrix,

and f ∈ N × 1 is the input histogram −hi. For the remainder of this chapter we refer to

the least squares optimal histogram found in Equation 4.6 as the QP-CLHE histogram.

In this Chapter when discussing CLHE and QP-CLHE we assume the maximum and

minimum slope bounds to be 2 and 1
2 respectively. The ideas presented here extend simply

to different values for these bounds.

In Figure 4.2 we show the output of running the QP-CLHE formulation using the his-

togram in Figure 4.1A as input.

Figure 4.2: Using QP-CLHE to find the least-squares optimal histogram. Left,

input histogram. Middle, QP-CLHE histogram. Right, CLHE histogram.

The QP-CLHE best proxy histogram is [0.3, 0.5, 0.2] compared with [0.35, 0.45, 0.2] for

CLHE. The distances to the original histogram [.6, .4, 0] are respectively .3742 and .3240

(for CLHE and QP-CLHE). The CLHE solution (proxy histogram) is over 15% further

than the QP-CLHE optimal solution from the input histogram.

4.3 Comparing CLHE and QP-CLHE

We have seen that - at least for the toy example in Figure 4.1 - CLHE does not find

the optimal histogram and importantly that we can use QP to find it. Naturally we next

consider the questions of: does this difference hold in general? And if so, how different are

QP-CLHE and CLHE?.
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To begin our comparison we look the percentage deviation of the proxy histograms compared

to the input histogram. We calculate this difference as ||hi−h||/||hi||, where hi is the input

histogram and h represents the the respective proxy (QP-CLHE and CLHE) histograms.

We will calculate this percentage error for the 24 images from the commonly used Kodak

image set [kod] where our brightness histograms have 100 bins and are computed from

the L* channel (of the CIE L*a*b* colour space, see section 2.1 in the Background for a

discussion). The results in Table 4.1 demonstrate that the difference between QP-CLHE

and CLHE can be modest, but for every image there is indeed a discrepancy between the

two. Further, while these results are indicative of general performance, we show next that

often the difference is much greater.

Next, we compare QP-CLHE and CLHE reproductions, and present examples where the

difference between the two is significant. In Figure 4.3 we show a series of 5 enhanced

reproductions from image ImageNet dataset. The images shown here were chosen as they

are the most-different images from all 50,000 in the ImageNet dataset used in this thesis.

The columns of the Figure show, respectively, the CLHE image, the QP-CLHE image, and

then the histograms. The Delta E differences between the CLHE and QP-CLHE images

are shown in the top right of the images. The Delta E’s for these images are very large and

there is a noticeable difference between the images in all cases. As a reminder to the reader,

to calculate the Delta E of an image we first convert the enhanced reproductions to CIE

L*a*b* colour space. Next, we obtain a per pixel error using Delta E (see [Robertson]).

This gives us an ‘error image’ with a Delta E value for each pixel in the image. Given this

error image we can calculate mean (and sometimes the median, and 99 percentile) error

statistics for the entire image.

In Figure 4.3 as well as contrasting the outputs from CLHE and QP-CLHE we show 3

histograms per image: the input image histogram (input image not shown) and the proxies

calculated by CLHE (left) and QP-CLHE (middle). It is evident, as we would expect

that the QP-CLHE histograms are closer to the original histograms. Reflecting on the
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% Error

Kodak Image #: QP-CLHE CLHE

1: stone building 28.72% 30.62%

2: red door 84.41% 84.62%

3: hats 32.55% 32.89%

4: portrait of girl in red 28.4% 30.46%

5: motocross bikes 19.15% 20.28%

6: sailboat at anchor 40.9% 41.01%

7: shuttered windows 45.2% 45.23%

8: market place 12.35% 12.65%

9: sailboats under spinnakers 42.04% 43.02%

10: off-shore sailboat race 37.68% 38.04%

11: sailboat at pier 59.51% 60.15%

12: couple on beach 55.29% 56.02%

13: mountain stream 20.1% 20.78%

14: white water rafters 20.67% 20.99%

15: girl with painted face 32.06% 32.9%

16: tropical key 27.06% 28.84%

17: monument 39.24% 39.92%

18: model in black dress 37.4% 37.93%

19: lighthouse in Maine 24.98% 25.96%

20: P51 Mustang 90.34% 90.43%

21: Portland headlight 51.94% 52.8%

22: barn and pond 29.37% 31.07%

23: two macaws 26.77% 27.47%

24: mountain chalet 33.76% 35.17%

Average Difference: 0.81%

Table 4.1: Percentage error between QP-CLHE and CLHE for images in the Kodak

dataset [kod].
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goal of CLHE we remember that it is meant to (to some extent) make an image with

a more uniform (more equalised) histogram than the input but where the tone mapping

has a bounded slope. If there are no slope bounds then CLHE becomes HE (Histogram

Equalisation), and HE often suffers from too much contrast. Intuitively then if the proxy is

closer to the input histogram, then the output should be more like the outputs for HE. For

the 5 images shown this intuition manifest itself with output images that appear to have

greater contrast compared to the CLHE result. In all cases this author prefers the output

of the QP-CLHE algorithm.

Finally in Table 4.2 we show the Delta E statistics for QP-CLHE compared to CLHE for

the 4 test datasets used in this thesis. Note again that the maximum and minimum slope

constraints for the Kodak, ImageNet, and Places datasets were 2 and 1
2 , and for the LOL

dataset we used 6 and 1
6 . In the Table we show the mean of the mean Delta E, the median

of the median Delta E, and the 99-percentile of the 99-percentile Delta E for each dataset.

We obtain the per pixel Delta E for each image in the datasets, calculate the mean, median,

and 99-percentile error, and then average this across all images in the datasets. The mean

and median error is in general quite low, informing us that for many images the not least

squares optimal CLHE algorithm generates a reproduction that appears very similar to the

optimal solution. However, as we have seen in Figure 4.3 and in the 99-percentile statistics,

there exist many images where the differences are very large. As such, the framework we

present here, that uses CLHE in a Quadratic Programming framework, generates proxy

histograms that are least squares optimal and thus has clear utility.

Mean of Mean Delta E Med of Med. Delta E 99pt. of 99pt. Delta E

Kodak 0.6112 (± 1.04) 0.2698 (± 0.89) 5.9579 (± 1.41)

ImgNet 0.5277 (± 0.79) 0.1443 (± 0.86) 7.4692 (± 1.95)

Places 0.4147 (± 0.62) 0.1272 (± 0.71) 6.4997 (± 1.48)

LOL 0.2360 (± 0.45) 0.124 (± 0.43) 6.4204 (± 1.26)

Table 4.2: Mean, median, and 99-percentile (± standard deviation) error statistics

for QP-CLHE compared to CLHE.
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Figure 4.3: Image examples from the ImageNet dataset where CLHE and least

squares optimal QP-CLHE are very different. A) CLHE image. B) Least squares

optimal QP-CLHE. C) Proxy histograms (respectively, dotted blue and solid orange),

and input histogram (dashed yellow). The mean Delta E for the images are shown in

the top right of the CLHE image.
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Our Delta E* experiments have provided evidence of a noticeable distinction between the

CLHE and QP-CLHE image enhancement methods in several cases. However, we evalu-

ate both algorithms with SSIM, BRISQUE, and NIQE as before to ensure comprehensive

coverage. These supplementary evaluations provide a more holistic and well-rounded as-

sessment, considering factors beyond color differences alone, and thereby provide a more

comprehensive understanding of the overall impact of each algorithm on the quality of the

image enhancement methods.

Figure 4.4: Box plot illustrating the SSIM between QP-CLHE and CLHE. The

SSIM is extremely close to 1 in all cases.

Figure 4.5: Box plots illustrating the difference in BRISQUE (left) and NIQE (right)

scores between QP-CLHE and CLHE for all datasets. The difference is close to 0 in

all cases.
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Considering the SSIM, BRISQUE, and NIQE box plots in Figures 4.4 and 4.5, the high SSIM

between QP-CLHE and CLHE, which is close to 1, indicates a strong overall similarity in

terms of structural and textural details within the images they produce. This suggests that

both methods - in an average case -generally yield very similar results. Furthermore, the

similarity observed in the BRISQUE and NIQE scores (both close to 0), coupled with our

prior knowledge that CLHE is effective, implies that both algorithms consistently generate

visually pleasing images. We do concede that - while the mean of the BRISQUE scores

lies slightly below zero (implying QP-CLHE images look better) - the reverse is true for

the NIQE scores. However when we consider the scale of the differences, combined with

the fact that in [9] it is shown that no single metric consistently conforms with actual user

preference tests, we can be satisfied that both algorithms indeed perform well.

4.4 Reducing the Computational Complexity of QP-CLHE

The method presented for finding the QP-CLHE histogram using Quadratic Programming

is, like many QP solutions, a much more laborious computation than CLHE. As we saw in

Chapter 3, the convergence rate of CLHE maxes out at around 90 iterations in the very

worst case. Under the hood, Quadratic programming is also an iterative algorithm and,

like CLHE, we refine the solved-for proxy histogram at each iteration. But QP has the

advantage that - because of how it is formulated - the final result found is least-squares

optimal.

However our QP solution as presented can take 100’s of iterations to converge. Thus,

while the derived histogram is optimal, it does come at the expense of high computational

overhead. In this section we investigate the QP-CLHE solution that is found when the

number of iterations is a priori limited. Our hypothesis is that the derived histogram after

a small number of iterations will induce a tone curve that will produce a tone mapped

image that is visually indistinguishable from the reproduction found after full iteration to

convergence.
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To begin, let us find the optimal number of iterations in QP-CLHE that generates good

images. Here, optimality is considered as the trade off between the quality of the enhanced

images and the computation time (measured as the number of iterations permitted to the

QP solver). To find the optimal number of iterations we run the full iteration-to-convergence

QP-CLHE algorithm to generate the ground truth tone-mapped images. Next, we generate

an alternative tone curve by stopping the QP search after a fixed number of iterations.

For each max number of iterations, M , we compare the generated outputs to the ground

truth images. For our error measure we use the mean of the mean Delta E between the

images.

M = 1 M = 2 M = 3 M = 4 M = 5

Kodak 5.37 (± 1.55) 4.58 (± 1.21) 1.57 (± 0.41) 0.29 (± 0.08) 0.01 (± 0.00)

ImgNet 4.68 (± 1.31) 3.92 (± 0.97) 1.33 (± 0.53) 0.3 (± 0.05) 0.02 (± 0.00)

Places 4.79 (± 1.22) 4.01 (± 0.63) 1.76 (± 0.51) 0.33 (± 0.04) 0.02 (± 0.00)

LOL 4.12 (± 1.12 3.82 (± 0.8) 1.17 (± 0.38) 0.23 (± 0.03) 0.01 (± 0.00)

Table 4.3: Mean (± standard deviation) of the mean Delta E for QP-CLHE images

compared to reproductions found when the number of QP-CLHE iterations is limited

to M .

In Table 4.3 we show the Delta E error statistics for QPCLHE compared to limited-

QPCLHE when the maximum iterations are constrained to be between 1 and 5. Clearly,

for the four image sets the error is very close to zero as the number of iterations approaches

5. From the data in the Table it appears that constraining the number of iterations to

a maximum of between 3-5 is the sensible choice for minimising computation and still

generating good quality images.

In Figure 4.6 we compare reproductions found with QP-CLHE and limited-QP-CLHE

after five iterations. To further illustrate the utility of our limited-QP-CLHE we have

chosen the same images from Figure 4.3, since these are the images on which CLHE

performs worst. The structure of the Figure is the similar. The columns show, respectively,

the limited-QP-CLHE image, the iterated to convergence QP-CLHE image, and then

the histograms.

Chapter 4 Jake McVey 52



Contrast Limited Histogram Equalisation Revisited

Figure 4.6: Comparison of image reproductions found with A) 5 iteration limited-

QP-CLHE. B) Fully converged QP-CLHE. The relevant histograms for the images

are shown in C.
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For each image we show five total histograms. The input histogram is shown in solid green,

and the CLHE histogram in solid blue. Next, the three proxy histograms found with QP

are shown. The fully iterated QP-CLHE histogram is solid orange, and the histograms

found after limiting QP-CLHE to 3 and 5 iterations are, respectively, the dotted yellow

and purple lines. After 3 QP iterations the proxy histograms are indeed closer to the QP-

CLHE histogram than CLHE, however there is a noticeable difference in all cases. When

we permit 5 iterations the limited-QP-CLHE histogram almost exactly matches the fully

converged QP-CLHE solution. The Delta E differences between the reproductions are

shown in the top right of the 5 iteration limited-QP-CLHE images. The Delta E’s for all

images are very close to 0.

In Figure 4.7 we illustrate the effect of limiting the permitted iterations on the red door

image from the Kodak dataset. This image was chosen for this comparison because it has

a small range of brightnesses and the histogram has a large spike. The columns of the

Figure show the image enhanced with max and min slopes of 2 and 1
2 , 4 and 1

4 , and 6 and

1
6 respectively. Each row in the Figure shows the image found by the QP solver after 1-5

iterations respectively, and the final row shows the fully iterated to convergence QP-CLHE

image.

The Delta E error for each limited-iteration reproduction compared to the fully iteration

version is shown in the top right. Clearly, the errors are very large when a single iteration

is permitted. Naturally, the error decreases rapidly as the number of permitted iterations

grows larger. In Table 4.3 it was suggested that limiting the iterations to 3 was sensible,

although we see in this Figure that in the worst case this can still result in poor quality

reproduction. The 3 iteration image with a max/min slope of 2 and 1
2 (that we would

suggest looks best and is most suitable for this image) is very noticeably different from the

fully converged reproduction. Limiting the iterations to 5 provides visually indistinguishable

reproductions (and very low Delta E’s) in all cases.
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In Figure 4.8 we show a similar series of reproductions from a darker image in the LOL

dataset. This image was chosen as it was the worst-case image in the dataset, as the single

QP iteration image for the suggested slope bounds of 6 and 1
6 has a very large Delta E of

31.211. As before, the Delta E decreases rapidly as the number of permitted iterations.

This time the most visually pleasing image is found with the highest slope bounds (that we

suggest for all images in this dataset). We see similarly to before that the error is low at

3 iterations, but much closer to 0 with 5 iterations. Also, the 3 iteration QP reproduction

looks visually quite different from the full QP-CLHE image, further suggesting that the

optimal choice is to limit the QP iterations to 5.

4.5 Discussion

In this Chapter we examined the steps of the CLHE algorithm and saw that it attempts

(and fails) to find a proxy histogram that is as close as possible to the input in a least

squares sense, while ensuring the bins of the histogram are neither too large nor to small,

and that the proxy histogram sums to 1.

We first showed that CLHE can be reformulated as a QP program, that we call QP-

CLHE, and demonstrated quantitatively and visually that CLHE almost uniformly fails

to converge to the least squares optimal histogram it seeks. We showed QP-CLHE and

CLHE, in the general case, make reproductions that are visually similar. Importantly, we

also showed that there are many cases when the difference between them is great, and that

CLHE is vulnerable to under-enhancing images when the histogram contains large spikes,

while QP-CLHE does not suffer these drawbacks.

Next, we showed that while the QP-CLHE algorithm performs well, it - like most Quadratic

Programs - can be computationally expensive and take 100’s of iterations to converge. Our

approach to improve the convergence time is to limit the number of QP iteration to 5.

We showed through quantitative and visual experiments that the most sensible choice for

iteration-limited QP-CLHE is when the number of iterations is limited to a maximum of
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5. The Delta E differences for all test images (tens of thousands) was very close to 0. We

also showed visually the worst case examples from the Kodak and LOL datasets. Even in

the worst case examples a maximum iteration of 5 resulted in Delta E errors very close

to 0, while the reproductions found when the maximum iterations were 3 can have some

noticeable differences. Therefore, 5 iteration-limited QP-CLHE is able to consistently and

quickly find proxy histograms that make better images than CLHE.

4.5.1 Further work

We remark that the framework we defined here can be further extended to find proxy

histograms that are further constrained. While the ability to improve on CLHE is very

interesting, perhaps we can take the idea further by enforcing more constraints onto the

histogram (and subsequent tone curve). In Chapter 6 we explore this idea and further

develop the framework we define here to include constraints that ensure the solved for tone

curve is smooth, that the image is not over-enhanced, and that the image presents with

pleasing blacks and whites.
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Figure 4.7: A comparison of reproductions of the red door image from the Kodak

dataset as the number of permitted iterations to the QP solver grows. 3 different slope

constraints are shown. Mean Delta E’s between each limited-iteration reproduction

and the max iteration QP-CLHE reproduction are shown in the top right.
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Figure 4.8: A comparison of reproductions of an image from the LOL dataset as the

number of permitted iterations to the QP solver grows. 3 different slope constraints

are shown. Mean Delta E’s between each limited-iteration reproduction and the max

iteration QP-CLHE reproduction are shown in the top right.
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Like many areas in computer vision, novel tone mapping techniques are popular in the

modern literature, many of which we have reviewed earlier in this thesis. The framework we

present here is spawned from the remarkable fact that CLHE can be exactly reformulated as

a deep tone mapping neural network (that we call TM-Net). As we show, the transcription

from CLHE refinement to network layer is 1-to-1, and so the TM-Net has as many layers as

there are refinements in CLHE (i.e. 90+ layers since CLHE can take up to 90 refinements

to converge). Importantly, the weights of the TM-Net at initialisation are not random. We

show here that we can derive the network parameters such that the output proxy histogram

(before training the network) matches the CLHE histogram with numerical precision.

5.1 Neural Networks

The Universal Approximation Theorem informs us that a neural network can be used to

approximate any continuous function [22]. We can usefully think about the individual layers

in a neural network by using the compact vectorised form described in Equation 5.1. We

refer the reader to [51] for a more detailed derivation of each component, but for now let

us borrow the notation. The network layer is expressed as:

al = σ(wlal−1 + bl). (5.1)

Where al ∈ RN is a vector that is the output of layer l in the network. Next, σ() is an

activation function. wl ∈ RN×N is a matrix of weights that scales the contribution of each

neuron in the previous layer, l− 1. The output of the previous layer is denoted al−1 ∈ RN ,

and bl ∈ RN denotes the bias value vector (one scalar bias for each neuron in layer l).
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5.1.1 Algorithm Unrolling

Deep neural networks perform well for a variety of tasks, but are often criticised for their

black box nature. Even in cases where the deep net performs well, it is not always possible

to interpret how exactly the outputs were found. In the recent literature a new technique

known as algorithm unrolling is increasing in popularity. Algorithm unrolling seeks to

eliminate the interpretability issues of the deep net and create a systematic link between

the structure (layers) of a network and iterative algorithms.

Figure 5.1: High level overview of unrolling and algorithm. In panel A, pseudo

code representing the CLHE algorithm. In panel B, the computation function can be

represented as a single layer neural net block. In panel C, iterations of the algorithm

become layers in the neural network. This allows us to learn the network parameters

and potentially achieve greater performance than the original algorithm.

We explain algorithm unrolling with the high level overview in Figure 5.1. In the Figure

we have 3 panels. In panel A we show pseudocode for the CLHE algorithm that maps an

input brightness density, h0(a) to the output density g(a) (where, ultimately, the tone map

will be defined as G(a) =
∫ 1
0 g(a) da). The function computation() represents the CLHE
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histogram modification steps. In each iteration, the density hi(a) is refined from hi−1(a).

The iteration terminates when a convergence criterion is met.

On the right hand side in panel B we illustrate the transcription of computation() to a

layer of a neural network i.e., we transcribe the two steps of CLHE to the form expressed

in Equation 5.1. The input and output densities (vectors of numbers) are the solid blue

bars, connected in the usual neural network way via a series of weighted connections. The

connections in the Figure are for illustration only. In the usual neural net way the output

layer feeds through an activation function, here piece-wise linear. Importantly, the piece-

wise linearity follows exactly from how CLHE enforces height constraints on the probability

densities.

The idea of unrolling becomes clear in panel C, when a series of these computation() layers

join to form the neural network. The network is formed of multiple layers as usual, but in

the TM-Net each layer corresponds exactly to a single refinement of CLHE. Thus, the

function of each layer is interpretable, and we avoid the black-box problem.

5.2 The TM-Net

In Equation 5.1, we summarised the key components of a Neural Network layer. The 4

components include 2 known and 2 unknown variables. The known variables are the output

of the previous layer in the network (al−1), and the activation function (σ()). The unknown

variables are the weight matrix (wl) and bias vector (bl). Training a Neural Network means

that we need to solve for wl and bl that map the input vector to a desired output vector (al).

In this section we marry CLHE and Equation 5.1 i.e. we derive the matrix, bias vector,

and activation function that - when used in Equation 5.1 - would generate an output vector

that exactly matches one iteration of CLHE.

We start with the observation that the clipping step of CLHE (Equation 2.2 in the Back-

ground) is analogous to the role of an activation function in a Neural Network and so the

transcription is natural. Indeed, a simple piece-wise linear function [39] is illustrated in Fig-
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ure 5.2a that computes the clipping step of CLHE. The function is linear on the interval

[L,U ], and flat everywhere else. Here, L and U denote the lower and upper slope bounds

(clip limits) respectively. When this function is applied to the histogram in 5.2b we find

the ‘clipped’ histogram in 5.2c.

Figure 5.2: A piece-wise linear activation function and it’s effect of a histogram vector.

a) A function that is linear between at 0.005 and 0.02 (and clips to the these values

for inputs outside this range). b) A histogram. c) This histogram after it has been

clipped by (a).

The redistribution step of CLHE is visualised in Figure 5.3. We will conceptualise the

redistribution process as two separate steps. First, we consider how to add an offset so a

histogram, h, sums to zero, 5.3b. Given a zero-mean histogram, we can add a further offset

of 1 ( 1
N to each bin) to make a histogram that sums to 1, shown in 5.3c. This two step view

makes the redistribution step simple to write in matrix form.

Let us define the N × 1 vectors v and w where vi = 1 and wi = 1
N (i = 1, 2, · · · , N).

Remembering that our N -bin histogram is denoted h and denoting the N × N identity

matrix by I, we calculate:

h0 = [I − vwT ]h (5.2)
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Figure 5.3: Manipulating a histogram (with N bins) until it sums to 1. a) A his-

togram. b) Histogram with all bins evenly decremented until it sums to 0. c) All bins

incremented by 1
N . The histogram now sums to 1.

which, effectively, adds the same value to each element of h so that the resulting histogram

sums to 0 (we use the superscript 0 to denote the histogram has a zero mean). Now we add

the second offset. We define a fixed N -vector b where each component bi = 1
N (the sum of

b is 1).

h1 = h0 + b (5.3)

Using the piece-wise linear function from Figure 5.2 as σ(), we can now express the histogram

found by i + 1 iterations of CLHE, hi+1, as:

hi+1 = [I − vwT ]σ(hi) + b (5.4)

Returning to Equation 5.1 we now wish to transcribe the CLHE into a network computa-

tion. For σ() we use the piece-wise linear function in Figure 5.2 with bounds at the desired

clip limits. The wl weight matrix is calculated as vwT as defined above. And bl is a vector

that holds 1
N in each element.
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Our transposition from matrix equation to a Neural Network layer is further illustrated for

a 5-bin example in Figure 5.4. Weighted connections between bins are represented as arrows

in the Figure (initialised to the shown values). From left to right, the input to the network

first passes through the piece-wise linear clipping function. Next, the dashed orange and

green lines represent multiplication of the input by v and wT respectively, which is fed

into the output layer. The input layer also feeds directly into the output layer, and - along

with the bias vector (b) - the sum of all components define the output. This output -

depending on the network architecture - is either fed into the activation function again, or

is the network output.

Figure 5.4: Graphical representation of a single layer in an N -bin Tone-Mapping

network (TM-Net). In this example N = 5.

Figure 5.4 shows that each iteration of CLHE can be thought of as a standard type of neural

net computational block, where the input histogram is mapped to an output version by a

matrix operation plus a bias, that is then rectified by a piece-wise linear function. Clearly,
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if we repeat the block structure enough times then the network must, by construction,

calculate the same answer as CLHE. That is, if the conventional CLHE algorithm takes

m steps to converge then the same answer can be found by replicating m layers of the form

shown in Figure 5.4. In our experiments in the previous Chapter, we found CLHE always

converged in 90 iterations or fewer (mostly in fewer than 30 iterations). So, we need a 90

layer deep TM-Net to guarantee the same result as CLHE (to numerical precision). We

call our repeating block architecture a Tone-Mapping Network or TM-Net for short.

5.3 CLHE-Net: Relearning CLHE

Of course, all we have done at this stage is re-represent an existing computation in a different

form. Now, we wish to use our TM-Net architecture to make CLHE faster to compute.

Next, we replace our 90+ repeating block architecture with a simple 2 layer TM-Net.

But, now, rather than adopting the default CLHE weights, we relearn them in the usual

deep learning way (by Stochastic Gradient Descent [58]). Our loss is determined by the

difference between the 2 layer TM-Net output and the iterated-to-convergence CLHE

output. We therefore seek - in just 2 layers - to compute the same output histogram as

CLHE. Effectively reducing the number of iterations allows us to overcome one of the

primary drawbacks of CLHE, it’s unpredictable and often expensive computation time

[57; 52].

To be more concrete, suppose we have a network that has m layers built as described

in the last section, and let us denote the output of a TM-Net as TM(h). For the ith

histogram in a dataset the network computes TM(hi) We would like the network to produce

histograms that are similar to the CLHE computation, CLHE(hi) i.e. we would like

TM(hi) ≈ CLHE(hi).

Suppose we use m computational layers of the form shown in Figure 5.4. In the kth (of

m) computational block we have to learn 3N unknowns which we denote vk, wk and bk.

Grouping the complete set of all the unknown v’s, w’s and b’s as the N ×m matrices V ,
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W and B (each column of each matrix is respectively v, w and b). Then for an m-layer

network we need to minimise

J = min
V,W,B

∑
i

||CLHE(hi) − TM(hi)||2 (5.5)

where the Equation 5.5 is a simple least-squares loss function. It is implicit that to minimise

Equation 5.5 that we need to find V , W and B (the network parameters) that makes the

squared error as small as possible. In fact we would also like to place some constraints on

these hidden variables. Given that vi - a set of network weights - is weighting a histogram,

and a histogram has a natural order (bins range from a brightness level of 0 to 1 in increasing

order) we would like vi to be smooth in some sense. The intuition here is that we do not

expect the kth weight wl
k to be significantly different from wl

k+1. That is, we expect the

weight vectors vl, wl and the bias bl (viewed as functions we might plot on a graph) to be

smooth. For our purposes we define the smoothness of all the parameters as

S = (||DV ||2 + ||DW ||2 + ||DB||2) (5.6)

where D is the N ×N linear operator that calculates the discrete derivative (of a column

vector), e.g. see [11]. In Equation 5.7 we set forth the final form of our minimization (where

λ is a user defined parameter weighting the importance of the smoothness of the network

parameters).

min J + λS. (5.7)

The weights and biases - underpinning the optimization in Equation 5.7 - can be found by

Stochastic Gradient Descent (SGD) implemented using back propagation (BP) algorithm.

The details of the SGD and BP algorithms (e.g.[58]) are not important here. What is impor-
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tant is we can optimise Equation 5.7 efficiently using standard techniques. By minimizing

Equation 5.7 we relearn CLHE.

5.3.1 Training the truncated TM-Net (Implementation details)

We will attempt to learn the full CLHE with as few as two network layers. The data

used to train the network was taken from a randomly sampled set of 30,000 images from

the ImageNet dataset. From each image we obtained the original histogram, and modified

histogram found by CLHE. These served as the input and target of the network respectively.

We trained the network using a regularised mean squared error loss function (Equation 5.7)

with λ = 1e− 04, and the following hyper parameters: batch size = 30000, learning rate =

1e− 04, and epochs = 500.

As we will show in the experiments section, we also train networks (with the same hyper

parameters) with more than 2 layers.

5.3.2 Cost of learning and applying a tone map

Our method - like CLHE - generates a tone curve from the histogram of brightnesses in

an image. To build this histogram we need to visit each image pixel once. Once we have

calculated the tone curve then to apply this curve we again need to visit each pixel once.

Thus the cost of CLHE and our variant is proportional to the number of pixels in the

image. But, the actual cost of calculating the tone curve is constant (independent of the

size of the image).

5.4 Experiments

We evaluate the performance of our TM-Net by comparing the closeness of images en-

hanced with the TM-Net against CLHE [53]. We first use the Delta E distance metric to

quantify closeness of the enhanced images. This was a deliberate choice because the tone

curves used in this work are applied globally to each image. We also ran tests using the
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SSIM (structural similarity measure) and PSNR (peak signal to noise ratio), and found the

results to follow the same trend as the Delta E errors.

Finally, we conclude the experiments with BRISQUE and NIQE analyses to evaluate the

performance of the TM-Net on the most challenging images. In doing so, we demonstrate

that our method performs well not just under optimal circumstances but also in adverse

cases.

To obtain the Delta E statistics we take a reference image and enhance it with the target

algorithm, and then enhance the same image independently with the tone curve found by

our TM-Net. Each enhanced image is then converted to the CIE L∗a∗b∗ colour-space, and

the per-pixel difference of respective channels in each image is calculated to generate an

error image (as in Figure 5.8). From this error image here we calculate the mean, median,

and 99-percentile error statistics for the input image, and do this for all images in the test

datasets.

To be precise the mean statistic is the mean of the individual means calculated per image.

Similarly our median statistic is the median of the median errors again calculated per image.

Similarly, for a given image we can calculate the 99-percentile CIE L∗a∗b∗ Delta E error.

Then over a data set we can calculate the 99-percentile of the 99-percentile errors.

In our experiments, we use the Kodak, Places, ImageNet, and LOw-Light (LOL) datasets

as described in the background of this thesis. Remembering that 30,000 ImageNet images

were used to train our model, this means the test sets are comprised of 24, 50,000, 20,000,

and 485 images respectively. Our 5th and final image set draws challenging images from the

Kodak, Places, and ImageNet datasets. Challenging examples are images that take more

than 45 iterations for CLHE to converge. We used a separate TM-Net trained (with the

same ImageNet train set) for the LOL images, to find tone curves with min and max slopes

of 6 and 1
6 respectively.
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5.4.1 Approximating CLHE: Contrast Limited Histogram Equalisation

Here we wish to use our TM-Net to approximate CLHE. We will compare the outputs of

the TM-Net according to our mean, median and 99-percentile statistics over our 5 image

data sets. In all cases we found that the TM-Net always well approximated CLHE in 3

or fewer layers (and so we will only consider these approximations here).

Figure 5.5: Change in Delta E as the number of blocks in the TM-Net increases.

Left, mean of mean Delta E. Middle, median of median Delta E. Right, 99-percentile

of 99-percentile Delta E

In Figure 5.5, from left to right, we plot the mean of the mean, median of the median, and

99-percentile of the 99-percentile of Delta E for each of the test datasets, as a function of

the number of layers in the TM-Net. We see that while the error in all instances is not

0, it is indeed close to 0 and, naturally, becomes closer to 0 as the number of layers in the

TM-Net increases. A common heuristic approach to determining the point of diminishing

returns is to identify the ‘elbow’ of the error curve. For all examples in the figure the elbow

occurs at 2 layers.

Moreover, in complex images (e.g. photographic pictures like the ones used in this work)

an average Delta E - where the error is distributed throughout the image - of between 3

and 5 [48; 71] is generally thought to be visually not noticeable. For our data, this - like

the elbow - points to a 2 layer TM-Net sufficing.

In Figure 5.6, we compare the performance of a 2-layer TM-Net against fully converged

CLHE. Notice the mean of the mean Delta E is close to zero (visually indistinguishable
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in most cases). Significantly, for the most challenging images, the error is still low in the

worst cases which is visually not significant for complex images.

Figure 5.6: Mean Delta E statistics between the 2-layer TM-Net and CLHE.

In Figure 5.7 we present an example of the kind of outputs generated using images drawn

from the challenging dataset. We compare the output of the fully converged CLHE with

the 2-layer TM-Net. As expected from the error stats presented, the outputs are visually

identical. For comparison, we also run CLHE but terminate it, arbitrarily, after 2 itera-

tions. Here, there is a significant residual difference. Pay close attention the image outputs

corresponding to the input region bounded by the red rectangle.

In Figure 5.7 (right) we show the input histogram and the modified histograms for the 3

algorithms. We see that the TM-Net output is almost identical to CLHE iterating to

convergence. But, the the 2-iteration CLHE has a noticeable delta.

Additionally, we highlight the differences between the 2-layer TM-Net (left) and 2-iteration

CLHE (right) outputs with a heat-map of Delta E in Figure 5.8. The colours in the figure

moving from blue to yellow represent increasing difference between the output images from

the target image. The erroneous pixels for the limited CLHE error image cluster around
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the diver. The mean of the mean Delta E error for the TM-Net and limited CLHE outputs

are low, 1.1 and 1.9 respectively. While the 99-percentile of the 99-percentile Delta E error

tells us the same respective difference is 2.6 and 3.9. Clearly, the TM-Net output is much

closer to the target.

Figure 5.7: Left, a standard RGB image. Middle, the highlighted section enhanced

with CLHE, a 2-layer TM-Net, and CLHE limited to 2 iterations. Right, input and

modified histograms found by each method.

Finally, in Figure 5.11 we show several images from the Kodak dataset (left) enhanced with

full-iteration CLHE (middle) and the 2-layer TM-Net (right). The Delta E for each image

in the set is shown in the top right. The mean Delta E error is close to 0 for all images and

there are close to zero noticeable differences even under very close observation.

5.4.2 PSNR and SSIM

We present Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index Measure

(SSIM) statistics for the challenging images dataset in Table 5.1. To obtain these statistics,

we used MATLAB’s respective ssim and psnr functions to compare the TM-Net repro-

ductions against CLHE reproductions. The final row in the table compares the CLHE

TM-Net against 2-iteration CLHE. Mean PSNR and SSIM results are shown and their

standard deviations.
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Figure 5.8: Error image for a) 2-layer TM-Net. b) CLHE limited to 2 iterations.

PSNR SSIM

2-Layer TM-Net CLHE 47.52 (± 8.79) 0.97 (± 0.17)

2-iteration CLHE 38.13 (± 10.17) 0.95 (± 0.23)

Table 5.1: Mean (± standard deviation) PSNR and SSIM statistics for both networks

using the Challenging Images dataset.

For the 2-layer TM-Net approximation to CLHE, both the PSNR and SSIM results show

that the 2-layer TM-Net delivers a better approximation to the full CLHE algorithm

compared to running CLHE for two iterations. The PSNR is 47.52 for the 2-layer TM-

Net but only 38.13 when CLHE is run for two iterations. Analogously, the SSIM (where

1 means perfect similarity), the mean SSIM for the 2-layer TM-Net is 0.97 and 0.95 when

CLHE is run twice.
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5.4.3 BRISQUE and NIQE

In Figures 5.9 and 5.10 we show several pairs of images. In both Figures the TM-Net

reproduction is shown on the left, and the CLHE reproduction on the right. We show,

respectively, the BRISQUE and NIQE scores for each image in the top right. Remember

that a lower score reflects a better quality image. We see that in all Figures there is a

(albeit slightly varying) noticeable change in brightness between the two images. This is

reflected by the large different we see in the scores. Interestingly, there does not appear to

be a correlation between the brightness of an image and it’s related score, as in some cases

the TM-Net has the better score, and in others CLHE.

The images in these Figures were chosen as the worst case examples from the challenging

image dataset. The goal here was to find instances where the TM-Net struggles. We

submit that the root cause of the differences stems from the low contrast characteristic of

all the images. As we have seen - low contrast images present with large spikes in their

histogram, and as such even minor deviations in the tone curve can cause a noticeable

change in the outputs, as we see in these images.

5.4.4 Execution Time of CLHE vs. TM-Net

Finally, we compare the speed of the TM-Net compared to CLHE. Since the tone curves

here are applied to images in exactly the same way, when we measure timings we only

consider the execution of the histogram modification steps (and not the application of the

tone curve to images). In the introduction, we stated CLHE in the worst case we found

converges in 90 iterations, and our TM-Net has two layers, thus from the perspective of

modification steps the TM-Net is up to 45 times faster.

Next, we measured our MATLAB implementation of CLHE on the ImageNet and Places

datasets (70,000 images total). The total computation time was 1063 s, or 26.6 ms per

image. The TM-Net on the same dataset converged in 712 s, or 17.8ms per image. That
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is, running CLHE on the dataset took 49.3% longer. These timing experiments were

performed on a machine running an Intel i7 CPU and an NVIDIA RTX 2070S.

5.5 Discussion and Further Work

In this Chapter we showed that the refinement steps of CLHE can be transcribed exactly

into matrix-form, and that this form is expressible as a layer in neural network that we call

the TM-Net. Since the transcription of CLHE refinement to network layer is 1-to-1, the

TM-Net has as many layers as there are refinements in CLHE (90+ in the worst case we

saw). The inventive transcription we do here has a large benefit in that the layers of the

TM-Net are interpretable, where a typical neural network can suffer from the black-box

problem.

That we define CLHE as a neural network allows us to take advantage of the fact that

a network can learn new parameters. That is, we need not use the weights that follow

from the CLHE algorithm but we can relearn them in the usual network way i.e. by

stochastic gradient descent. Surprisingly, we show that the outputs from a 2-layer TM-Net

visually approximate the images generated by the CLHE algorithm running to convergence.

Furthermore, the 2-layer TM-Net always runs much faster than the CLHE algorithm that

it approximates.

In the next Chapter, we wonder if TM-Net architecture could be used to learn other tone

mapping algorithms. To test this idea, we took the the Histogram Modification Framework

(HMF) [11] as an exemplar algorithm. The general HMF framework finds a tone curve

with an optimisation defined as Quadratic Program. In HMF various objective functions

are minimised, including terms that ensure the tone curve maps, respectively, blacks to

blacks and whites to whites, and that the tone curve should be smooth. Significantly,

overall the HMF framework produces preferred tone-renderings to CLHE.
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Figure 5.9: Comparison of worst case challenging images. Left, TM-Net reproduc-

tion. Right, CLHE reproduction. The BRISQUE score of each image is shown in the

top right.
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Figure 5.10: Comparison of worst case challenging images. Left, TM-Net reproduc-

tion. Right, CLHE reproduction. The NIQE score of each image is shown in the top

right.
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Figure 5.11: For each image in the set: First, original image. Middle, image enhanced

with CLHE. Right, image enhanced with a 2-layer TM-Net. Mean of mean Delta E

shown in top right of each image.
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6 HMF

In this Chapter we show how the methods we developed in this can be applied to other

histogram-based tone mappers. In particular, we consider the Histogram Modification

Framework (HMF) [11] and show how it’s - by default, necessarily complex - algorithmic

implementation can be made much simpler (without any performance decrement).

6.1 Motivation

In this thesis we made several contributions towards histogram based tone adjustment

algorithms. The primary force driving the development of these algorithms was CLHE,

due to it’s widespread use in the literature and in industry [20].

Our objective was to make CLHE simpler. In Chapter 3 a Linear Histogram Approximation

approach was our first attempt to make a CLHE-type tone mapper that had a simpler

closed-form formulation. In Chapter 4 using Quadratic Programming we improved upon the

CLHE algorithm. Specifically, given the formulation of CLHE we argued that the CLHE

algorithm attempts to find a proxy histogram that has certain boundedness properties (the

integral of which is the tone curve). We showed how to find an optimal proxy using a

quadratic programming formulations. Finally, we made CLHE faster in the last chapter

where we developed the TM-Net.

Here, we would like to achieve similar improvements (simpler, better and faster) for other

more recent - and more preferred - tone mappers. In the modern literature for histogram-

based tone mapping many methods are more explicit in formulating the problem of proxy

histogram generation as an optimisation problem [24; 40; 44; 67]. Like CLHE, these meth-

ods are developed to find a proxy histogram - based on the original histogram - that has
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properties that ensure the corresponding tone curve generates a reproduction with certain

qualities.

In the Histogram Modification Framework [11] (HMF) a comprehensive approach to his-

togram modification is defined. There, an objective function is constructed with several

weighted penalty terms that can be tuned (through user defined parameters) to manipu-

late the characteristics of the proxy histogram. This optimisation is written in Equation

6.1.

min
h

||h− hi||2 + λ||h− u||2 + γ||∇h||2 + α||Sh||2 (6.1)

The output of this optimisation is a histogram h that is close to the original input histogram

hi, and this closeness is captured by the term ||h − hi||2. This optimisation is further

conditioned by three penalty terms (which add constraints on the histogram that is derived).

The penalty terms are weighted by three user defined scalars λ, γ, and α. The first penalty

term, ||h − u||2 teaches that the derived histogram should be close to u, the uniform

histogram. Remembering our discussion of CLHE which maps an input histogram to be

within upper and lower bounds (and so also closer to the uniform histogram) this penalty

term plays an analogous role. Next, in γ||∇h||2, ∇ denotes the first derivative operator,

this constraint steers the optimisation to find a histogram (and corresponding tone curve)

that is/are smooth.

The last term, α||Sh||2 requires more explanation. In the original paper it is argued that

the tone curve should have a small gradient (close to 0) for brightnesses close to 0 and 1.

This enforces a tone curve which is somewhat ‘S-shaped’ in design, and that the input image

is mapped to an output image that has good blacks and whites. For this reason they call

the third penalty term “black-white stretching”. One way we could capture this concept

mathematically, would be to write a penalty terms as α(
∑b

k=1 h
2
k +

∑N
k=w h2

k), where b and

w respectively delimit a few brightnesses close to 0 and 1, and N represents the number of
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elements in the histogram. In fact this is exactly the meaning of the third penalty term.

As per our example, S denotes a N ×N diagonal matrix. The diagonal has 1’s for the first

and last b and N − w terms respectively and is otherwise all 0.

Figure 6.1: Comparison of HMF and CLHE reproductions. A) Input image. B)

CLHE image. C) HMF image. D) HE image. Histograms and tone curves shown in

Figure 6.2.

We illustrate HMF in comparison to CLHE in Figure 6.1. On the top left in 6.1A we

show the Red Door image from the Kodak dataset. Next in 6.1B the CLHE reproduction,

and in 6.1C the HMF reproduction. Notice that the details in the HMF image are more

pronounced, but the overall brightness of the image remains more-similar to the original
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Figure 6.2: HMF and CLHE histograms and tone curves from the Red Door image

in Figure 6.1.

than the CLHE reproduction. Also notice that the details on the doorknob remain clearly

visible in both images.

The differences of the CLHE and HMF reproductions are explained by the histograms

shown in Figure 6.2. The input histogram and corresponding tone curve are shown as

dashed yellow lines. The slope of the input tone curve is too-large and generates the

poor quality reproduction in 6.1D. The CLHE histogram and tone curve are solid blue,

and HMF is solid orange. Notice that the central tone curve transition (near the input

brightness of 0.4) is smoother for HMF. Also at the black and white brightnesses the HMF

curve, as expected, has a S-shape

Finally, notice that this minimisation in Equation 6.1 will not, in general, return a new

histogram that either sums to 1 or satisfies the upper and lower bounds as expressed in

CLHE. A heuristic way to meet the upper and lower bounds is to increase the penalty term

λ (and maybe γ too). In order to ensure the HMF proxy histogram sums to 1 we normalise

the histogram output by Equation 6.1 before we generate the tone curve (hi = hi∑N
j=1 h

j
).

The terms of the HMF optimisation facilitate much greater control over the shape of the
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proxy histogram (and therefore the contrast of the reproduction). Thus, HMF in general

can be used to generate reproductions that are preferred to CLHE.

6.2 Linear Histogram Approximation

The HMF tone curve defined by Equation 6.1 is solved for using a computationally ex-

pensive Quadratic Programming (QP) solver. We have discussed previously that the heavy

computational overhead of QP can render the method infeasible for many applications

where processing speed is important. As an example it is unlikely that QP could be used

to process video frames at frame rate. Here, we seek to define an approximation of HMF

as a linear algorithm in the form:

H ≈ Mh (6.2)

where H closely approximates the HMF tone curve, and M is a linear transformation

matrix applied to the discrete input histogram h. As a reminder to the reader, histograms

here have 100 bins, and so M is a 100 × 100 matrix (as in Section 3.3).

As in Chapter 3, let us suppose we have a large set of J discrete histograms denoted hi,

(i = 1, 2, · · · , J). And we calculate the corresponding J tone curves, Hi, using HMF. For

the purpose of this exposition the values for the HMF penalty terms are λ = 1, γ = 5,

α = 5, and the first and last 10 terms of the black and white stretching matrix, S, are 1’s,

as defined in the original paper. Our hypothesis is that there exists some matrix such that

Mhi ≈ Hi. The goal is to minimise

M = min
M

(
J∑

i=1

||Mhi −Hi||22). (6.3)

We solve for the matrix M using the standard Moore-Penrose [26] inverse. To do this we

first reform the sets of J histograms and tone curves as J × 100 matrices, where the rows
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of each matrix are corresponding pairs of histograms and tone curves (each row is a 100

element vector, and there are J rows). We denote these matrices of histograms and tone

curves as H and H respectively. We use these matrices to find the least-squares optimal

mapping from histogram to tone curve as Mt with the Moore-Penrose inverse as:

Mt = [HtH]−1HtH (6.4)

where t denotes the matrix transpose.

Here, like the CLHE approximation in Chapter 3, Equation 3.4 finds an unstable solution

(tone curves are not strictly increasing, or map [0, 1] → [0, 1]), although the degree of

instability is much less. As before, we guide the solution towards stability with regularisation

where β in 3.4 is a user defined scalar.

M = min
M

(

J∑
i=1

||Mhi −Hi||22 + β||M||22) (6.5)

For which the closed form solution is

Mt = (HtH + βI)−1HtH. (6.6)

where I is a 100 × 100 identity matrix.

The best performing value for the regularisation parameter, 1.5 (it was 1.6 in Chapter 3)

was found via cross validation on the training data. The training dataset consists of 10,000

randomly selected images from both the ImageNet and Places datasets (J = 20,000 total

images). We used 4-fold cross validation to find the optimal β, illustrated in Figure 3.4

(Chapter 3). The training data was separated into 4 equal sections (5,000 images each),

and each section is used once as a test set.
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To find the β we tested β = 0 → β = 5 in increments of 0.5 (11 total). Once the highest

performing value was found we narrowed the increment to 0.1 and searched again. For

example, if β = 1.5 performed the best in the 11 tests, we next try β = 1.1 → β = 1.9 in 0.1

increments (9 total). Performance was evaluated by comparing these reproductions against

the full HMF reproduction with mean Delta E . The β with lowest Delta E for the 9 tests

is the ‘winner’ of each fold. The winning values were then averaged to find the chosen value

1.5.

The meaning of Mh is that the values in h (the histogram counts that sum to 1) are

used as a convex combination of the columns M. Thus each column of M is a tone curve

and Mh is a new tone-curve computed from this basis set. We visualise the columns of

M with four different values for β in Figure 6.3, and their corresponding performance on

the validation data in Table 6.1. In the top left of the Figure we show M with β = 0

(no regularisation). The curves are smooth, but some of the curves dip below 0 and so

the solution is unstable (tone curves should be monotonically increasing starting at 0 and

ending at 1). This improves with the small regularisation term β = 1.5 in the top right,

which ensures the curves are smooth and the solution is stable.

The Delta E statistics in Table 6.1 show a similar small improvement with the regularisation

parameter. As a reminder to the reader, to calculate the Delta E of an image we first convert

the enhanced reproductions to CIE L*a*b* colour space. Next, we obtain a per pixel error

using Delta E (see [Robertson]). This gives us an ‘error image’ with a Delta E value for

each pixel in the image. Given this error image we can calculate mean (and sometimes the

median, and 99 percentile) error statistics for the entire image. Note that the performance

of the not-regularised M (β = 0) can sometimes be unfairly boosted as in the cases where

the tone curve would map image intensities outside the range [0, 1] then we clip the values

to the closest bound e.g., 1.1 → 1 and −0.1 → 0.
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Figure 6.3: Plots of M with varying values for β in Equation 3.6. Without regulari-

sation (top left) the curves go below 0 and so the solution is unstable. The best results

(see Table 6.1) were found using the top right β = 1.5.

6.2.1 Robustness to histogram spikes

We saw in Chapter 3 that the linear approach to histogram estimation often falls short when

an image has many pixels of a similar intensity (the histogram has a large spike), and the

same is true here. To add robustness to histogram spikes we conditionally pre process the

histogram with a single iteration of CLHE if the maximum value in the histogram exceeds

a threshold, here 0.1. The final linear formalism then is written:

H = Mf(h) (6.7)
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Mean Delta E Median Delta E 99pt. Delta E

β = 0 1.59 (± 0.87) 1.4 (± 0.85) 3.78 (± 2.13)

β = 1.5 1.58 (± 0.82) 1.39 (± 0.83) 3.73 (± 2.01)

β = 3 1.61 (± 0.94) 1.42 (± 0.93) 3.74 (± 2.13)

β = 4.5 1.66 (± 1.02) 1.48 (± 1) 3.77 (± 2.14)

Table 6.1: Mean (± standard deviation) of the mean, median, and 99-percentile Delta

E for different Tikhonov regularisation β parameters (Equation 3.6).

where f() is defined

f(h) =

 CLHE1(h), if max(h) ≥ 0.1

h, if max(h) < 0.1

 (6.8)

In Figure 6.4 we show 3 tone curves. The target HMF tone curve is in blue. The dotted

orange tone curve is the histogram found by Equation 6.2 (no histogram pre processing).

The dotted yellow tone curve found by Equation 6.7, and is clearly much more-similar to

the target.

Figure 6.4: The HMF tone curve (blue) and two linear approximations. The red

dotted tone curve is found without pre-clipping the input histogram. The dotted yellow

tone curve is found with Equation 6.8, where the input histogram is pre-processed with

CLHE.
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6.2.2 Experiments and Discussion

We evaluate the success of our linear approximation by comparing the closeness of images

found by our method against the HMF image. We evaluate closeness as before using

CIELAB Delta E 76 [Robertson], NIQE and BRISQUE.

In Figure 6.5 we show the Delta E statistics for each dataset. The errors are not 0, but

they are low in all cases. The Delta E’s here are uniformly lower than the linear CLHE

method from Chapter 3. This is encouraging since the HMF algorithm is proposed as an

improvement - in terms of image quality - compared to CLHE.

We previously hypothesised that the linear formalism is more-suited to approximating his-

tograms that are conditioned to be smooth, since our solved-for tone curves are themselves

smooth without any explicit enforcement on our part (see the curves in Figure 6.3). This hy-

pothesis appears to be well founded since the approximated HMF tone curves we find here

generate reproductions closer to the target algorithm than we found when approximating

CLHE in the same framework.

Figure 6.5: Box plot of Delta E statistics between HMF and our linearly approxi-

mated HMF.
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In Figures 6.6 and 6.7 we show sets of images from the Kodak and ImageNet datasets. For

each image in the sets we show the input on the left, the HMF image in the middle, and our

linearly approximated HMF images on the right. The Delta E’s are shown in the top right.

In all cases the Delta E’s are low, and the enhanced reproductions look better than the

original. There are very few differences between the HMF images and our approximated

reproductions even under very close observation.

Finally, in Figure 6.8 we show two pairs of images from the Kodak dataset. Here, we wished

to visualise the worst-case images for both NIQE and BRISQUE. Worst case in this instance

was determined by the differential between the respective scores for the target algorithm

(HMF) and the proposed linear approximation, shown in the top right of each image. The

reproductions look very similar even under close observation.
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Figure 6.6: For each image in the set: First, original image. Middle, image enhanced

with HMF. Right, image enhanced with our linear approximation of HMF. Mean of

mean Delta E shown in top right of the first image.
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Figure 6.7: For each image in the set: First, original image. Middle, image enhanced

with HMF. Right, image enhanced with our linear approximation of HMF. Mean of

mean Delta E shown in top right of the first image.
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Figure 6.8: For both pairs of images: Left, HMF and right, linear HMF approx-

imation. Worst case images from the Kodak dataset for NIQE (top) and BRISQUE

(bottom). The respective scored are shown in the top right. Both pairs of images

appear very similar.
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6.3 Improving HMF with QP

We have seen that the HMF formalism has no slope constraints. In order to enforce slope

constraints within the confines of the framework we must tune the penalty terms λ (and to

a lesser extent γ).

In Figure 6.9 we show two rows of HMF histograms conditioned by different values of

λ and γ. The black dashed lines denote the values that integrate to a tone curve with a

max/min slope of 2 and 1
2 respectively. In the left-most panel we use the default parameters

suggested in the original HMF paper. In the top row we show a histogram with a large

spike. Left to right we vary the regularisation parameters to try and ensure that the proxy

histogram lies within the clip limits (dashed black lines). For this top example, we need to

strongly weight the closeness-to-uniform term, λ.

Figure 6.9: Tuning λ in the HMF formalism to enforce slope constraints on the proxy

histogram. Top row: a histogram with a large spike requires λ = 13 to adhere to the

constraints. Bottom row: a typical histogram with no spike. The histogram shape is

almost completely lost when λ is large.
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For now let us consider only the upper slope bounds. The top histogram far exceeds the

bounds with the default parameters (left). We further condition the histogram with a much

larger λ of 10 (middle) and it still is insufficiently bounded. Finally, with λ = 13 (right) the

largest bin falls within the bounds. Here, since the value of λ is so large it dominates the

optimisation. Consequently, even the largest and smallest densities (that we expect to be

close to zero due to the black white stretching) now hold a value greater than the minimum

slope constraint.

For the bottom histogram we see that the default algorithm parameters are almost sufficient

to enforce the desired slope constraints. As we condition the histogram with the same

parameters as before, the proxy histogram becomes much less similar to the original, and

is closer to the uniform histogram (that prohibits any contrast enhancement). Therefore it

is clear that there are no one-size-fits-all values for the penalty terms to incorporate slope

constraints into the HMF framework. Note: here we considered the upper slope bounds

only since - as will be made clear in our proposed improvements to the framework - minimum

slope constraints can impact the efficacy of the black and white stretching parameters.

6.3.1 CLHE constraints within the HMF

One way we might improve the HMF is to directly introduce slope constraints into the

formalism, and further constrain the solver to find a histogram that sums to 1. We saw in

Chapter 4 that we can reformulate CLHE as a Quadratic Program. Combining the CLHE

slope conditions with the HMF optimisation (Equation 6.1) we obtain the Contrast Limited

Histogram Modification Framework (CLHMF):
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min
h

||h− hi||2 + λ||h− u||2 + γ||∇h||2 + α||Sh||2

s.t.



hk ≥ L, k = 1, 2, · · · , N

hk ≤ U, k = 1, 2, · · · , N∑N
k=1 hk = 1

hk ≤ L
2 , k ∈ [1, b] and k ∈ [w,N ]

(6.9)

The objective terms in Equation 6.9 are unchanged from the HMF formalism, but here we

have 4 further conditions for the proxy histogram. The first and second ensure the slope

constraints are met by, respectively, bounding each bin above and below by U and L. The

third condition ensures that the sum of the histogram is 1.

The final condition requires more explanation. Throughout this thesis we have used - and

demonstrated the utility of - minimum slope bounds in tone curves. However the HMF

proxy histogram employs black and white stretching, and so it is conditioned to have very

small values in the first as last few bins. We found that in all cases the minimum slope

bounds are too-high to efficaciously enforce black and white stretching in the reproduction.

Hence, here, the fourth condition lessens the lower slope bound to half its usual value for

densities in the black and white stretching range (defined by b and w).

6.3.2 Experiments

The utility of CLHMF is demonstrated through comparison to HMF. We show several

cases where - using the same values for the penalty terms - the HMF reproductions appear

pleasing for one image, and low quality for the next. For all experiments in this section we

use the default HMF parameters suggested in the original paper (λ = 1, γ = 5, α = 5, and

the first and last 10 terms of the black and white stretching matrix are 1’s). The CLHMF

reproductions are found with the same penalty values, and additionally a max/min slope

of 2 and 1
2 respectively.
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In Figure 6.10 we show several images from the ImageNet dataset and their contrast en-

hanced reproductions. To select these images we ran HMF and CLHMF on all 50,000

images in the ImageNet dataset, and present some of the images for which the difference

between the two algorithms (measured in Delta E) was large. For each image in the set

we show the original on the left, the HMF reproduction in the middle, and the CLHMF

reproduction on the right. Notice first that, even though the penalty terms are the same

for each image, the HMF reproductions often do not look good. In all cases the CLHMF

on the right is preferred compared to the original. Regarding the “duck” image, arguably

the HMF image might be preferred. However, on close inspection the detail on the back

of the duck is completely lost due to the image becoming too bright. Preferred contrast

enhancement - as a rule of thumb - should always strive to make all image content more

conspicuous (and not some areas at the expense of other areas as in this example).

The histograms and tone curves for these images are shown in Figure 6.11. The tone curves

inform us as to why the HMF reproductions appear to have too much contrast, that is

because the slopes (see dotted orange lines) are large in all cases (because HMF - without

empirical tuning - is not robust to spikes in the input histogram). The proxy histograms

on the right side of the Figure show us why CLHMF avoids this issue. The CLHMF

proxy histograms are bounded by the upper and lower slope bounds, and so the CLHMF

reproductions avoid the over enhancement of contrast.

Finally, in Figure 6.12 we show several images from the Kodak dataset (left) for which

HMF generates a reproduction that is preferred to the original (middle). We also show

the CLHMF reproductions (right). Clearly, there are very few differences between the

CLHMF and HMF images. We see the reason for the similarity by looking at the his-

tograms and tone curves used to make these reproductions in Figure 6.13. The histograms

and tone curves are mostly very similar, with the only noticeable differences apparent at

the extreme ends of the histogram (where the lower slope condition of CLHMF is relaxed).

We see therefore that for input histograms that would (without modifications) generate a
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tone curve within the upper and lower bounds, CLHMF makes reproductions perceptu-

ally identical to HMF. While in the cases where an input histogram would far exceed the

bounds, CLHMF generates reproductions that look better than the original, where HMF

would generate an over-enhanced image.
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Figure 6.10: For each image in the set: First, original image. Middle, image enhanced

with HMF. Right, image enhanced with CLHMF. The CLHMF images are preferred

to the original, while the HMF images do not look good.
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Figure 6.11: Tone curves (left) and associated proxy histograms (right) for the images

in Figure 6.10.
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Figure 6.12: For each image in the set: First, original image. Middle, image enhanced

with HMF. Right, image enhanced with CLHMF. The HMF and CLHMF images

look better than the original.
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Figure 6.13: Tone curves (left) and associated proxy histograms (right) for the images

in Figure 6.12.
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6.4 The HMF-Net

The original Quadratic Programming (QP) based implementation of HMF is complex

(see Equation 6.1). Here, we seek to reformulate the algorithm into the TM-Net form.

Essentially, we ask if this more complex algorithm be made as simple as CLHE. As a

reminder to the reader, the TM-Net is born from the idea that the steps CLHE can be

exactly reformulated as a neural network layer. For a detailed breakdown the reader should

revisit Section 5.2, but for now let us summarise the essence of the method.

A layer of a neural network is expressible in the form:

al = σ(wlal−1 + bl). (6.10)

Where al ∈ RN is a vector that is the output of layer l in the network. Next, σ() is an

activation function. wl ∈ RN×N is a matrix of weights that scales the contribution of each

neuron in the previous layer, l− 1. The output of the previous layer is denoted al−1 ∈ RN ,

and bl ∈ RN denotes the bias value vector (one scalar bias for each neuron in layer l).

We showed in the last chapter that one iteration of CLHE can be written in the same

form as Equation 6.10, thereby defining an interpretable neural network version of CLHE

that we called the TM-Net. The TM-Net has 90 layers because CLHE takes (in the

worst case we found, see Chapter 3) 90 iterations to converge. We then showed that we

needn’t use so many layers, and that a truncated TM-Net with just 2 layers (referred to as

CLHE-Net) was sufficient to accurately approximate CLHE. Importantly, the parameters

of the CLHE-Net net were learned in the usual deep learning way, via Stochastic Gradient

Descent [58].

Here, we consider whether the TM-Net framework can be generalised to approximate the

HMF algorithm, a significantly more expensive algorithm (relative to CLHE) to implement
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and run. If successful, then the complexity of the HMF will be found to be no greater than

CLHE.

6.4.1 HMF-Net: Relearning the HMF

Let us denote the output of a TM-Net as TM(h). For the ith histogram in a dataset

the network computes TM(hi) We would like the network to produce histograms that are

similar to the HMF computation, HMF (hi) i.e. we would like TM(hi) ≈ HMF (hi).

Here, like the CLHE-Net, the HMF-Net consists of 2 layers.

Recall, (and see Section 5.2 for the breakdown), a layer of the TM-Net consists of 3 N -

vectors of unknowns which we denote vk, wk and bk. Grouping the complete set of all the

unknown v’s, w’s and b’s as the N × 2 matrices V , W and B (each column of each matrix

is respectively v, w and b). Then for an 2-layer network we need to minimise

J = min
V,W,B

∑
i

||HMF (hi) − TM(hi)||2 (6.11)

where the Equation 6.11 is a simple least-squares loss function. It is implicit that to minimise

Equation 6.11 that we need to find V , W and B (the network parameters) that makes the

squared error as small as possible. As before we introduce the smoothing penalty as:

S = (||DV ||2 + ||DW ||2 + ||DB||2) (6.12)

where D is the N ×N linear operator that calculates the discrete derivative (of a column

vector), e.g. see [11]. In Equation 6.13 we set forth the final form of our minimization

(where λ is a user defined parameter weighting the importance of the smoothness of the

network parameters).

min J + λS. (6.13)
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The weights and biases - underpinning the optimization in Equation 6.13 - can be found by

Stochastic Gradient Descent (SGD) implemented using back propagation (BP) algorithm.

The details of the SGD and BP algorithms (e.g.[58]) are not important here. What is impor-

tant is we can optimise Equation 6.13 efficiently using standard techniques. By minimizing

Equation 6.13 we relearn the HMF.

6.4.2 Training the truncated TM-Net (Implementation details)

The HMF-Net was trained using 30,000 images randomly samples from the ImageNet

dataset [ima]. From each training image we obtain the input histogram and the HMF

histogram, both with 100 bins (the network does not see the full image, only the histograms).

These histograms serve as the input and target of the network respectively. The network

was trained using the regularised mean squared error loss function (in Equation 6.13) with

λ = 1e− 05 (it was λ = 1e− 04 in the last Chapter), and the following hyper parameters:

batch size = 30000, learning rate = 1e − 04, and epochs = 500. The machine used for

training uses PyTorch and an Intel i7 CPU and an NVIDIA RTX 2070S. Each training

epoch resolved in 0.75 seconds for a total training time of 6 minutes.

6.4.3 Experiments

We evaluate the performance of our HMF-Net by comparing the closeness of images en-

hanced with the HMF-Net against the full HMF algorithm [11]. As we have done through-

out this Thesis, closeness of enhanced images is measured using Delta E, supplmented with

the no-reference metrics BRISQUE, and NIQE.

In our experiments, we use the Kodak, Places, ImageNet, and LOw-Light (LOL) datasets

as described in the background of this thesis. Remembering that 30,000 ImageNet images

were used to train our model, this means the test sets are comprised of 24, 50,000, 20,000,

and 485 images respectively. For completeness, even though we here approximate HMF,

we also use the challenging dataset from the last Chapter containing images that CLHE

performed worst on.
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In Figure 6.14 we compare the performance of our bespoke 2-layer TM-Net against the

Histogram Modification Framework [11]. Clearly, the Delta E is not zero, but the numbers

are small. As it did for approximating CLHE, a 2-layer TM-Net suffices to approximate

the HMF framework.

Figure 6.14: Box plot of Delta E statistics between HMF and our HMF-Net.

Next, in Figure 6.15 we show several images from the Kodak dataset (left) enhanced with

HMF (middle) and the 2-layer HMF-Net (right). The Delta E for each image in the set is

shown in the top right of the input images. The mean Delta E error is small (close to 1) for

all images and there are few zero noticeable differences even under close observation.

Next, in Figures 6.16 and 6.17 we show, respectively, the worst-case BRISQUE and NIQE

images from the ImageNet test image dataset. Worst-case in this context is measured as

the reproductions where the HMF and HMF-Net have the largest differential in BRISQUE

and NIQE scores. By demonstrating that these worst-case images have few differences

under close observation we validate that our HMF-Net well-approximates the target algo-

rithm.

Finally we compare the speed of the HMF-Net compared to HMF. Since the tone curves

here are applied to images in exactly the same way, when we measure timings we only
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consider the time taken to calculate the proxy histograms (and not the application of the

tone curve to images). We measured our MATLAB implementation of the HMF (using

MATLAB’s quadprog solver) on the ImageNet and Places datasets (70,000 images total).

The total computation time was 3150 seconds, or 45ms per image. The HMF-Net on the

same dataset converged in 1232 seconds, or 17.6ms per image. That is, running HMF on

the dataset took 2.56 times longer. These timing experiments were performed on a machine

running an Intel i7 CPU and an NVIDIA RTX 2070S.
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Figure 6.15: For each image in the set: First, original image. Middle, image enhanced

with HMF. Right, image enhanced with the HMF-Net. All reproductions look better

than the original, and there are very few differences between the reproductions even

under close observation. Mean Delta E between the HMF and HMF-Net images are

shown in the top right of the input image.
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Figure 6.16: Left, HMF-Net image. Right, HMF image. The BRISQUE differential

of 5 is the largest of all images in the ImageNet test dataset. The reproductions look

visually very similar under even close observation.

Figure 6.17: Left, HMF-Net image. Right, HMF image. The NIQE differential of

1.6 is the largest of all images in the ImageNet test dataset. The reproductions look

visually very similar, although there is a noticeable difference in the brightness of the

snow behind the dog.
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7 Conclusions and Future Work

In this thesis we have made 6 contributions. Our first contribution was to simplify the

CLHE algorithm with a linear approach to histogram modification that had a closed-form

formulation. In general Histogram Equalisation (HE) the tone curve, H, is the cumulative

sum of the image histogram, h. We can neatly express the cumulative sum as a matrix

operation on the histogram vector, H = Mh, where M is a lower triangular matrix with

1’s on the bottom half, and 0’s elsewhere. While this simple rewrite of HE as a matrix

operation applied to a histogram is not in itself surprising it is informative to write it

in this way. We demonstrated that other matrices (than M) can be derived that map a

histogram to a tone curve (with the tone curve delivering preferred tone rendering compared

to HE).

Our second contribution was to improve CLHE by finding the least-squares optimal proxy

histogram (that we argue CLHE tries and fails to find). We demonstrated that, while both

steps of the CLHE algorithm are themselves step-wise ‘optimal’ in a least squares sense,

the algorithm routinely fails to converge to the actual least squares optimal histogram in

almost all cases. We showed why it is that CLHE falls short of optimality, reformulated

CLHE as an optimisation problem, and showed that we can use Quadratic Programming

(QP) to guarantee that we find the optimal proxy histogram. Our third contribution in the

same Chapter improved upon the speed of the QP-CLHE formalism. We demonstrated

that terminating the iterative QP solver after few iterations is sufficient to find a tone map

that closely approximates the full QP-CLHE.

Our fourth contribution was to define the Tone Mapping Neural Network that we call

TM-Net. The TM-Net is spawned from the remarkable fact that CLHE can be exactly

reformulated as a deep tone mapping neural network. We demonstrated the direct tran-
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scription from CLHE refinement to network layer to be 1-to-1, and so the TM-Net has

as many layers as there are refinements in CLHE (i.e. 90+ layers since CLHE can take

up to 90 refinements to converge). The weights that define the TM-Net at initialisation

are not random. We showed that we can derive the network parameters such that the

output proxy histogram (before training the network) matches the CLHE histogram with

numerical precision. Next, we truncated the TM-Net to just 2 layers, and showed that

- by training in the usual neural network way - we can learn new network parameters to

closely approximate CLHE.

Out fifth contribution was to find similar improvements (simpler, better, and faster) for

other more recent - and more preferred - tone mappers. In particular, we considered the His-

togram Modification Framework (HMF) and show how it’s - by default, necessarily complex

- algorithmic implementation can be made much simpler (without any performance decre-

ment). We demonstrated that we can simplify the algorithm with our closed-form linear

formulation. That we can use the TM-Net framework to well approximate the algorithm

more quickly than the original. And in our sixth and final contribution we demonstrate that

the HMF algorithm can be improved with the addition of CLHE-style slope constraints

into the QP formalism, becoming the Contrast-Limited Histogram Modification Framework

(CLHMF).

7.1 Future Work

For future work one might consider introducing local tone mapping into the frameworks

we have described in this thesis. Indeed, the algorithms we presented here define a global

tone map to apply to an image i.e., if the tone map maps pixel intensity x → y, then every

instance of pixel intensity x in the image becomes y in the reproduction. But, perhaps there

exist cases where this behaviour is not preferred.

Next we might use the TM-Net to understand how real people make preferred tone ad-

justments in images. The MIT-Adobe FiveK dataset [fiv] contains 5,000 images covering
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a broad range of scenes and subjects. Each image comes with 5 corresponding manually

tone-adjusted images by 5 photography students. Using the TM-Net we could learn the

mapping from input to preferred tone adjusted image. Then, the interpretable layers of the

TM-Net might teach us about how preferred tone mapping is performed.

Thirdly, we note that our transposition of CLHE into a TM-Net can also be applied in

reverse. That is we can make a simple iterative algorithm - which looks like the CLHE

algorithm - but which converges after 2 iterations. Equally the HMF framework - also

implemented here as a TM-Net - can be rewritten as a CLHE-type algorithm. Here it

might be worth investigating a TM-Net with more than 2 layers. If for example, a 5 layer

network well approximated HMF in all cases (so people could not see the difference between

the HMF algorithm and the TM-Net output) then we could re-implement HMF as an

iterative CLHE algorithm. More generally, using this sort of reasoning we are, in effect,

hypothesising that any histogram-based tone mapper - can be written as a CLHE-type

algorithm.

Fourth we note that a key part of our CLHE to TM-Net transcription rests on the idea

that CLHE finds tone curves with bounded slope. Yet, many tone mapping algorithms seek

to enhance HDR images where very large slopes (in tone curves) are needed. It would be

interesting to investigate how unbounded slopes could be added to the TM-Net framework.

We note that if the upper slope constraint were removed then our activation becomes similar

to ReLU. In the ReLU activation function the output, x, from a layer is rectified and becomes

max(x, 0). If we only have a minimum slope constraint the activation for the TM-Net

would be max(x, k) where k > 0 (and chosen to bound the minimum slope).

Of course it is a key premise of this whole thesis - because we are setting forth methods to

(very) well approximate existing algorithms - that we shouldn’t undertake any psychophys-

ical investigations. However, on our journey we have in fact touched upon the topic of

designing new algorithms. As an example the slope limited HMF is a new contribution

and has not been tested from a preference viewpoint.
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