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Abstract

Persons with visual impairment are affected daily by the lack of accessibility.

In this thesis, we address the research question: Can we use computer vision

techniques to improve the accuracy of geolocation estimation to potentially

assist persons with visual impairment navigating outdoors? We analyse the

requisites to create an outdoor visual navigation system and highlight the main

problems involved. The main challenge identified is estimating an accurate user

position. To tackle this problem, we detail the construction of the HLoc+SV,

a vision-based geolocation method inspired by a version of the hierarchical

localisation framework that exploits information from a set of geotagged street-

view images. In a dataset of 58 pictures and 80 geotagged street-view reference

images, HLoc+SV had a mean absolute geolocation error of 0.77m (SD 0.41),

while a smartphone GNSS receptor had a 12.09m (SD 8.67) error. Nonetheless,

the HLoc+SV is a potential solution suitable only for the scenario when the

GNSS service is available and relatively accurate. When the GNSS service is

unreliable or unavailable, we analyse a framework to geolocate an image using

a GMCP-based image retrieval method combined with the Self Quotient Image

(SQI) illuminance normalisation. We found out there is a degradation of 4%

on results compared to the original method when a geometric transformation

is estimated by combining images with and without SQI. We also propose a

method to isolate and measure the impact of changes in illuminants using a

graph-morphological algorithm known as Sieve. We investigate the impact of

using SQI on local features by segmenting images by levels of detail. We found

that flat areas produced by the sieve have a positive effect on the detection

of MSER blobs. MSER combined with SQI and sieve proved to be robust in

matching street view images, increasing the matching score by 90% in specific

scenarios compared to SIFT features extracted from original images.
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Chapter 1

Introduction

Disability has different meanings in different communities and its definition

has been changing over the centuries. Currently, the British Equality Act 2010

defines disability as ‘a physical or mental impairment that has a substantial

and long-term negative effect on the ability to do normal daily activities’

[145]. The World Health Organisation broadens this understanding, defining

disabilities as ‘an umbrella term for impairments, activity limitations, and

participation restrictions, denoting the negative aspects of the interaction

between an individual (with a health condition) and that individual’s contextual

factors (environmental and personal factors)’ [163]. These modern definitions

emphasise that disability is not solely a medical condition but is also shaped

by social, economic, and cultural factors.

Approximately 2.2 billion persons in the world who are blind or partially

sighted have difficulties engaging in activities that involve social relations,

which affects their process of socialisation [137, 164]. Transportation is one of

the greatest barriers and a major challenge for persons with visual impairment.
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1.1 Autonomous navigation of persons with
visual impairment

The Royal National Institute of Blind People UK (RNIB) shows that trans-

portation is a major challenge [116]. Those who became blind in adulthood,

especially those who used to drive, find life too limiting without the flexibility

that a car provides. Many use taxis, but their cost is a limiting factor. Only a

minority of the persons with visual impairment report using public transport.

This option is most commonly used by persons who are blind from birth and

have become more confident in using it over the years. Even so, there are

challenges in the various stages of using public transport – from getting updated

information, often not having anyone to ask; identifying the correct transport

arriving; knowing the exact place of getting out; until the arrival itself, and

finally, accessing a public venue.

Autonomous mobility is affected not only by transport availability, but also

by difficulties in walking outdoors, including crossing streets and locating the

final destination. There are, for example, risks of accidents and difficulty in

identifying obstacles on their way. People commonly stumble across road signs

and architectural barriers [116].

Although persons with visual impairment already have access to some

technology to assist them with professional and daily tasks, huge barriers in

transport and locomotion often prevent them from obtaining formal education

[116]. Difficulties to arrive at the workplace, school or university creates a

vicious circle: persons with visual impairment do not get a university degree

because they cannot get a job and they cannot get a job because they do not

have a degree. They then end up being excluded from society because pursuing
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a technical or undergraduate degree to get a job is extremely challenging.

Historically, canes have been the easiest and most widely used tool to detect

obstacles outdoors, mainly due to their affordability and portability [116].

Using a cane, it is possible to detect obstacles at ground level by scanning the

area in front of them. The tool helps to discover barriers such as holes, stairs,

steps, and walls, but it fails to detect obstacles in movement, over the knee

level, or beyond a 30 cm to 60 cm range. These kinds of obstacles sometimes

can be detected only when they are dangerously close to the user.

Dog guides are a common alternative to canes [116]. They are competent

in guiding and providing a good detection range, but they cannot avoid risky

barriers at the head level. Furthermore, guide dogs typically work for an

average of six years and it requires regular expenses and relevant changes in

the user’s lifestyle [82].

Navigation Assistance for the Visually Impaired (NAVI) refers to systems

that assist or guide persons with visual impairment through audible instructions

[6]. Most of the systems found in the literature focus on the detection of

obstacles. Few solutions have been proposed to improve outdoor mobility and

safety for persons with visual impairment. Analysing the NAVI systems present

in the literature, it became evident that for most people they are not viable

[55, 123]. In general, the users need to carry complex hardware systems and,

in some cases, the environment also has to be somehow prepared beforehand.

Thus, part of this study involves analysing the requirements of a solution that

integrates all outdoor journey stages, using new technologies to potentially

support and improve the well-being of persons living with such conditions.

A key aspect of a safe NAVI system is that it must estimate the user’s

location with high accuracy in real-time. At first glance, this problem might
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seem solved with the use of GNSS. However, the GNSS accuracy is approxim-

ately 5m to 10m in urban areas [148], which does not even allow identifying

on which side of the street the user is. It also lacks directional information,

usually provided by additional sensors.

A navigation system for persons with visual impairment must also consider

the case when the GNSS receptor information is not reliable or completely

nonexistent. For the application studied, a GNSS outage or signal obstruction

represents a life threat to the user.

Therefore, the use of GNSS alone is not suitable for safe and autonomous

pedestrian navigation of persons with visual impairment. The geopositioning

accuracy must be greatly improved before making such a system available to

the public. There are plenty of methods aiming to improve GNSS receptor

accuracy, but they usually involve bulky, expensive and slow equipment.

1.2 Vision-based geolocation

With advances in computer vision algorithms, a camera is a potential ally to

accurately geolocate someone in real-time at a low cost. The vision-based

geolocation problem is a key topic in the field of computer vision and a major

challenge for researchers all over the world. Many practical applications require

automatic, accurate, and fast visual recognition outdoors, such as autonomous

vehicle driving, pedestrian navigation, and robot path planning.

The idea of using a camera to navigate is not new. Simultaneous Localisation

and Mapping (SLAM) is a technique used in computer vision to enable an

autonomous agent to build a map of an environment while simultaneously

tracking its own direction and location in local coordinates. The agent usually
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uses sensors such as Light Detection and Ranging (LiDAR) and Inertial

Measurement Units (IMU) to collect data about the environment. More

recently, camera-based SLAM systems, called Visual SLAM (V-SLAM), have

gained more attention due to their low cost and rapid development of powerful

computer vision algorithms [14, 77]. SLAM and V-SLAM are particularly

useful when there is no environment map available in advance, e.g. in search

and rescue operations or exploration missions. Although a few georeferenced

SLAM systems have been proposed [21], usually SLAM and V-SLAM do not

attempt to locate the agent in world coordinates.

Vision-Based Localisation (VBL) is a problem closely related to V-SLAM

that focuses on estimating the geolocation and orientation of an agent using

visual information only (e.g. pictures or video frames). Unlike SLAM and

V-SLAM, which estimate a relative pose, VBL techniques retrieve the absolute

pose of a camera using a reference world coordinate system. The process

typically involves matching visual features extracted from the camera (query

images) with features found in a dataset (reference images). Differences found

in photographs of the same scene taken a long time apart may be significant.

This problem may also puzzle humans to some extent. Visiting a city

after many years, for example, can be challenging: weather changes, buildings

are refurbished over time, facades are covered during maintenance works, old

stores give place to new ones, and pavements are extended. The appearance of

buildings changes in all sorts of ways over the course of years.

The light also plays an important role in computational vision-based scene

understanding. Shadows can decrease the performance not only of image

geolocation, but also scene analysis, image segmentation, object recognition and

shape reconstruction [41]. Therefore, using local image descriptors invariant
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to illuminance seems a good starting point for solving this problem. The

accuracy of vision-based localisation systems can be improved with a better

understanding and manipulation of shadows, although automatically detecting

and removing shadows from images is known to be an extremely challenging

task.

Other factors such as low image resolution, scenes photographed from

different points-of-view and occlusion are also crucial for matching images. All

of these changes affect both the detection of consistent features and the ability

to match features when their appearance is substantially distinct.

There are studies on the impact of specific changes on images [99], but

when we compare street-view images taken years apart, all these aspects occur

simultaneously. The change of point of view in the same scene is handled

by SLAM algorithms [7, 46]. Partial occlusion of a scene, changes in the

appearance of buildings, or even minor changes in illumination are well handled

by local feature detectors and descriptors. Neural networks using bottleneck

layers can process small-scale information on high-resolution images. A much

greater challenge arises when some or all of those aspects are combined.

1.3 Motivation and aim

This study aims to tackle the problem of outdoor geolocation estimation

employing vision-based methods. While GNSS technology has revolutionised

outdoor geolocation, it has limitations in dense urban areas where the satellite

signal is subject to interference or can be completely blocked.

Vision-based geolocation methods offer an alternative approach that can

be used in areas where GNSS is not available or inaccurate. These methods
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rely on cameras and computer vision algorithms to determine the location of a

person or object by analysing the visual features of the environment, handling

variations in illumination, weather conditions, and environmental factors.

In this study, we consider two scenarios: when the GNSS service is available

and when it is not. For urban areas with GNSS coverage, we refine the user’s

GNSS geoposition information using a hierarchical localisation framework with

geotagged street-view images and a Structure from Motion (SfM) model built

on-the-fly. For the more challenging scenario where the GNSS service is not

available or unreliable, we analyse the use of a GMCP-based geolocation method

combined with Self-Quotient Image (SQI) illuminance normalisation. The

results obtained by this last experiment led us to conduct a careful investigation

on the impact of illuminance normalisation with SQI on the accuracy and

repeatability of SIFT, SURF, and MSER detectors and descriptors. We use a

graph-morphological algorithm known as sieve to analyse differences in local

features detection between original and SQI images by progressively eliminating

image details.

1.4 Research question

In this thesis, we ask: ‘Can we use computer vision techniques to improve the

accuracy of geolocation estimation to potentially assist persons with visual

impairment navigating outdoors?’

There are several relevant points for why we find this topic of interest:

1. The GNSS geolocation service is mistakenly seen as more accurate and

reliable than it often is.
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2. A solution to guide persons with visual impairment places much higher

geolocation accuracy requirements than other applications.

3. The rapid advances in computer vision ought to feed into better vision-

based geolocation systems.

1.5 Thesis structure

This thesis outline is as follows. Chapter 2 presents a review of state-of-the-art

techniques of NAVI systems, focusing primarily on the equipment used, their

features, and limitations. We also present a brief description of image processing

techniques relevant to image geolocation estimation and deep-feature extraction.

In Chapter 3, we analyse the requirements of a vision-based NAVI system.

In Chapter 4, we propose and evaluate a method for improving the GNSS

geolocation using a single camera and a set of street-view reference images. In

Chapter 5, we study a method to estimate the user geolocation when there is

no GNSS service available using a GMCP-based image retrieval geolocation

estimation and SQI illuminance normalisation. In Chapter 6, we investigate

the impact of normalising illuminance in images with the Self-Quotient Image

(SQI) filter on the accuracy and repeatability of local feature detectors and

descriptors using a graph-morphological algorithm known as sieve. Finally,

conclusions and perspectives of future work are drawn in Chapter 7.

The Appendix A presents an introduction to image formation and light norm-

alisation techniques. Appendix B brings an overview of the graph-morphological

sieve algorithm. Finally, Appendix C shows examples of SIFT, SURF and

MSER features detected in images at progressive scales of detail using sieve,

with and without SQI illuminance normalisation.
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1.6 Statement of originality

Unless otherwise noted or referenced in the text, the work described in this

thesis is that of the author. The following aspects of this work are considered

novel:

1. Requirement analysis of vision-based outdoor navigation assistants for

persons with visual impairment (Chapter 3)

2. Development of a GNSS geolocation refinement method using a single

camera and a set of geotagged street-view reference images (Chapter 4)

3. Use of the SQI illuminant normalisation associated to a GMCP–based

image matching method as an attempt to geolocate street-view images

(Chapter 5)

4. Creation of the structured Anne Frank House image dataset (Chapter 6)

5. Use of sieve as a proxy to evaluate the performance of local feature

detection and description at different levels of detail, as well as the impact

of using SQI on this process (Chapter 6)

1.7 Contributing publications

The following publication has been produced by the work in this thesis:

• R. Busatto and R. Harvey, ‘Outdoor Navigation Assistants for Visually

Impaired Persons: Problems and Challenges,’ Journal on Technology and

Persons with Disabilities, vol. 10, pp. 184–205, 2022.



Chapter 2

Literature review

Part of the content of this chapter features in the following published article:

• R. Busatto and R. Harvey, ‘Outdoor Navigation Assistants for Visually

Impaired Persons: Problems and Challenges,’ Journal on Technology and

Persons with Disabilities, vol. 10, pp. 184–205, 2022.

2.1 Background

The perspective on disability has evolved over time. Throughout the history of

civilisation, limited understanding and acceptance of human differences led to

segregation, exclusion, and even extermination of minority groups.

In ancient Greece, it was common to kill newborn babies and children for

various reasons. In Figure 2.1, for example, the Greek semi-goddess Medea is

depicted killing one of her sons. Newborns with deformations or disabilities were

murdered. Their view of disabilities was less about the individual’s capacity

to lead a regular life, but more aesthetic [141]. The same word πεπηρωμένον

(pepēromēnon) was used to describe both a severe wound and a newborn baby

with a clear physical impairment. In Sparta, they used to examine their infants

for any indication of fragility or abnormality; if they did show any of these
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signs they were thrown from an abyss [141]. In Athens, there was a ceremony

called Ἀμφιδρόμια (Amphidromia), translated as ‘running around the circle’, in

which a newborn baby was carried around by family members to be inspected.

In Plato’s Theaetetus [121, s. 160e], he uses this ceremony as an analogy to

eliminate bad arguments. Most ancient texts addressing disability follow the

concept of exposure, which is now recognised as infanticide [141].

Nowadays, some societies still sacrifice persons who are born with disabilities.

Members of the Brazilian tribe Yanomami, for example, sacrifice newborns in

whom serious health problems are identified [117]. There are also reports of

murders of persons with disabilities by relatives who considered them to be

heavy burdens [168]. Such murders are rooted in superstition and ignorance.

Although these cruel and unjustifiable acts go violently against basic human

Figure 2.1: Greek semi-goddess Medea killing one of her sons. Side
A from a Campanian (Capouan) red-figure neck-amphora, ca. 330 BC.
From Cumae, Italy. Photographer: Bibi Saint-Pol. Wikimedia Commons
(public domain).
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rights, they are often done in the name of tradition or religious beliefs, considered

part of the culture, or merciful.

According to Judith Butler, people who deviate from the normative stand-

ards of society are often not conceived as humans. In Frames of War, Butler

raises questions about this precariousness of life to which we are all exposed:

There are “subjects” who are not quite recognizable as subjects,

and there are “lives” that are not quite—or, indeed, are never—

recognized as lives. In what sense does life, then, always exceed the

normative conditions of its recognizability? To claim that it does so

is not to say that “life” has as its essence a resistance to normativity,

but only that each and every construction of life requires time to do

its job, and that no job it does can overcome time itself. In other

words, the job is never done “once and for all.” [25, p. 4]

Butler makes clear that some people (i.e. subjects) are not recognised as

people, therefore their lives are perceived as less worthy. This is the root cause

of human rights violations: we discriminate between lives worth living and

lives that can be ended, eliminated, or neglected to death. Persons with some

kind of impairment claim their humanity every time their rights are flouted,

often on a daily basis.

Even when the infanticide of newborns with disabilities has been overcome,

adults with disabilities continue to be marginalised, undervalued, and hidden

from social life. According to the World Health Organisation [163], persons with

disabilities have more limited access to healthcare, lower formal education, lower

income and higher poverty rates compared to the general population. Persons

who are disabled often experience huge barriers to accessing services that
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most people take for granted, such as health services, education, employment,

transportation, and information. The urban environment is often designed for

persons with no disability, or at best, only the most common disabilities are

considered, and when it does not imply a high cost of implementation.

2.2 Navigation assistance for persons with visual
impairment

Within this complex landscape, the importance of wayfinding for individuals

with disabilities becomes evident. The British RNIB Wayfinding Project [165]

breaks down this task into key journey stages – walking, catching a transport

(bus, train, tube, ferry, plane), and navigating within a building. Walking is

the most important stage that connects the other stages of the journey, yet it

is the one with the least amount of information or assistance. These stages are

further refined into activities and actions following four principles of wayfinding:

getting information and using it, orientating within the environment, navigating

within the environment, and identification of entrances and exits.

Many studies have been conducted to develop equipment and technology

to assist autonomous navigation of persons with visual impairment, known

as Navigation Assistance for Visually Impaired (NAVI) systems. In this

chapter, we review the main NAVI systems available, primarily focusing on the

equipment used, their features, and limitations. Table 2.1 outlines the systems

reviewed along with the equipment used and navigation abilities.

The Table 2.1 covers a variety of systems and technologies designed to assist

persons with visual impairments in navigating indoors and outdoors. These

systems can be broadly categorised into three groups based on their functional-
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ities: remote human assistance, sensor-based navigation, and smartphone-based

navigation. In this section, we analyse the differences between the various

technologies proposed, equipment used, and sensors embedded in these systems.
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Table 2.1: Overview of NAVI systems including main features, sensors used and references. (continue)

System, year [ref.] Equipment
Obstacle
detection

Object
identif.

Indoor
path

Outdoor
path

Aira Explorer, 2015 [74] Remote human agent, smartglasses, smartphone,
camera, GNSS

✓ ✓ ✓ ✓

Be My Eyes, 2015 [161] Remote human agent, smartphone, camera ✓ ✓ ✓ ✓

Drishti, 2004 [122] Computer, GNSS, wifi, sonar ✓ - ✓ ✓

Wang et al., 2014 [158] RGBD camera ✓ ✓ - -

Wang et al., 2017 [155] RGBD camera, computer, haptic ✓ ✓ - -

ISANA, 2016 [85] Tablet, RGBD camera ✓ - ✓ -

NAVIG, 2010 [73, 76] Computer, GNSS, stereoscopic camera, motion
tracker

✓ - - ✓

ODILIA, 2008 [96] Computer, mobile phone, GNSS, infrared, dead
reckoning device

✓ - - ✓

WaveOut, 2021 [37] Smartphone, GNSS, camera ✓ - - ✓

Koley and Mishra, 2012 [80] GNSS, sonar ✓ - - ✓a

BlindSquare, 2012 [20] Smartphone, GNSS, compass, bluetooth - - ✓ ✓

Wayfindr, 2017 [159] Smartphone, bluetooth - - ✓b ✓b



2
Literature

review
36

Table 2.1: Overview of NAVI systems including main features, sensors used and references. (continued)

System, year [ref.] Equipment
Obstacle
detection

Object
identif.

Indoor
path

Outdoor
path

Agrawal et al., 2017 [4] Sonar, GNSS, GSM ✓ - - -

Aladrén et al., 2014 [6] RGBD camera, infrared, RFID ✓ - - -

Ifukube et al., 1991 [69] Sonar ✓ - - -

Kanwal et al., 2015 [75] RGBD camera, infrared ✓ - - -

RG, 2005 [81] Computer, RFID, sonar ✓ - - -

Mahmud et al., 2014 [92] Sonar ✓ - - -

G4B, 2017 [93] Sonar, infrared ✓ - - -

Nandhini et al., 2014 [104] GNSS, RFID, sonar ✓ - - -

Tapu et al., 2014 [142] Camera ✓ - - -

Smart Cane, 2011 [152] Sonar, water detector ✓ - - -

Cydalion, 2016 [45] Smartphone, camera ✓ - - -

EYECane, 2009 [71] Computer, camera ✓ - - -

Orcam, 2013 [103, 110] Wearable camera - ✓ - -

NavCog, 2016 [5] Smartphone, wifi, bluetooth - - ✓ -
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Table 2.1: Overview of NAVI systems including main features, sensors used and references. (continued)

System, year [ref.] Equipment
Obstacle
detection

Object
identif.

Indoor
path

Outdoor
path

Chaccour and Badr, 2015 [28] Smartphone, bluetooth, wifi, surveillance cameras,
head marker

- - ✓ -

Fusco and Coughlan, 2020 [47] Smartphone, camera, gyrocompass - - ✓ -

Jain, 2014 [70] Smartphone, RFID - - ✓ -

VI-Navi, 2011 [97] RFID, bluetooth, compass - - ✓ -

Nassih et al., 2012 [105] RFID - - ✓ -

Öktem et al., 2008 [108] RFID, compass - - ✓ -

RightHear, 2015 [125] Smartphone, bluetooth - - ✓ -

Nearby Explorer, 2013 [9] Smartphone, GNSS - - - ✓

Brusnighan et al., 1989 [22] GNSS - - - ✓

Victor Reader, 2017 [68] GNSS - - - ✓

Voice Maps, 2010 [72] Computer, GNSS, gyrocompass, keyboard - - - ✓

Voice Helper, 2015 [86] Smartphone, GNSS - - - ✓

Seeing Eye, 2013 [135] Smartphone, GNSS - - - ✓
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Table 2.1: Overview of NAVI systems including main features, sensors used and references. (continued)

System, year [ref.] Equipment
Obstacle
detection

Object
identif.

Indoor
path

Outdoor
path

BrailleNote GPS, 2002 [134] GNSS - - - ✓

PGS, 2005 [87] Computer, GNSS, compass - - - ✓

MOBIC, 1996 [118] Handheld computer, mobile phone, GNSS, compass - - - ✓

Ariadne GPS, 2011 [31] Smartphone, GNSS - - - ✓

iMove, 2013 [40] Smartphone, GNSS - - - ✓

MyWay Classic, 2012 [140] Smartphone, GNSS - - - ✓

Seeing Assistant, 2013 [147] Smartphone, GNSS - - - ✓

ViaOpta Nav, 2014 [107] Smartphone, GNSS - - - ✓

Loadstone GPS, 2004 [78] Smartphone, GNSS - - - ✓

Corsair GPS, 2016 [138] Smartphone, GNSS, compass - - - ✓

Lazarillo, 2016 [38] Smartphone, GNSS, compass - - - ✓

PocketNavigator, 2010 [120] Smartphone, GNSS, compass - - - ✓

OsmAnd, 2010 [111] Smartphone, GNSS, compass - - - ✓

NAVIGON, 2011 [48] Smartphone, GNSS, compass - - - ✓
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Table 2.1: Overview of NAVI systems including main features, sensors used and references. (continued)

System, year [ref.] Equipment
Obstacle
detection

Object
identif.

Indoor
path

Outdoor
path

ARGUS, 2014 [27, 112] Smartphone, GNSS, dead reckoning device - - - ✓a

Lakehal et al., 2020 [83] Smartglasses, smartphone, GNSS - - - ✓a

Soundscape, 2018 [143] Smartphone, camera - - - ✓a

Dharani et al., 2012 [34] RFID - - - -

Gulati, 2011 [59] GNSS - - - -

TANIA, 2009 [67] Tablet, GNSS, RFID, inertial sensor - - - -

a Path has to be recorded beforehand b Just on underground stations and selected locations
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2.2.1 Remote human assistance

Systems based on connection with a remote human agent [74, 161] connect a

user with visual impairment to a sighted remote agent. When the user requests

assistance, the system makes a video call so that the agent can talk to the

user and help them. Both mentioned systems share the image captured by a

camera and audio in real-time. Be My Eyes [161] is a free smartphone app

that requires the user to point their device to the scene or object, which can be

challenging for persons with an impairment. The Aira Explorer [74] provides

smart glasses with a camera, allowing agents to see from the user’s point of

view, as well as access the user’s geolocation and compass direction.

Using remote assistance, users can request help and interact using natural

spoken language. The scenarios covered are varied – users could ask, for example,

for assistance to shop, read books, cook meals, or navigate to unknown locations.

This type of app is used on a daily basis by some users [35].

Although remote human assistance can be versatile, a reliable internet

connection must be available during the video call. The interruption or delay

of calls poses a great risk, such as when there is traffic nearby or when the user

is crossing a street. No call history is available to remote agents – information

provided by users on previous calls is not stored. Furthermore, disclosing what

users are seeing or doing to remote agents can be undesirable and embarrassing.

Users report that they do not feel safe to disclose where they are going to

strangers, neither in person nor in a video call [13, 162]. It further raises privacy

and legal concerns, since agents and users may be in different jurisdictions with

different mores. For these reasons, we do not consider using remote human

assistants as viable for truly autonomous navigation.
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2.2.2 Global Navigation Satellite Systems

Global Navigation Satellite System (GNSS) refers to any positioning and

navigation services provided by a constellation of satellites on a global or

regional basis. The most well-known GNSS service is GPS, owned and managed

by the United States. Nevertheless, other nations have also developed their

own independent systems. The main ones are Galileo (European Union), QZSS

(Japan), GLONASS (Russia), BeiDou (China) and NavIC (India) [149].

Back in 1989, when the GPS service was made available to civilians by

the United States government, Brusnighan et al. [22] proposed an outdoors

NAVI system that employed such technology. Since then, most proposed NAVI

systems have made use of GNSS services [9, 20, 22, 27, 30, 31, 37, 38, 40, 48,

68, 72–74, 76, 78, 80, 83, 86, 87, 96, 107, 111, 118, 120, 122, 134, 135, 138, 140,

147]. In general, the user sets a destination, and a route is calculated using the

user’s geolocation, points of interest and a map with allowed pedestrian paths.

They are usually operated through smartphones or dedicated mobile devices

with an internet connection.

Although GNSS systems are a global solution for geolocation, there are

some challenges to using them on NAVI systems. Their horizontal accuracy

of approximately 5m to 10m [148] makes it impossible to safely guide a

pedestrian with acceptable precision. In places with many obstructions, such as

metropolitan areas or inside buildings, obstructions can block satellites’ signals

to the extent that the receiver is not able to calculate its position.
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2.2.3 Camera and computer vision algorithms

Digital cameras are used in this context to connect helpers by video call [74,

161], detect obstacles [6, 45, 71, 73, 75, 76, 85, 142, 155, 158] or recognise

objects [103, 110, 155, 158]. Most research projects use common cameras,

including the ones built in smartphones [45, 71, 74, 103, 110, 142, 143, 161]. A

few projects make use of more complex cameras with depth sensors [6, 73, 75,

76, 85, 155, 158].

Cameras are cheap components, compact and easy to maintain, and are

widely available on smartphones and laptops. When associated with computer

vision algorithms, it becomes possible to perform tasks such as reading signs,

labels, and texts, identifying colour information, objects, people or cash.

Although distinguishing between close and far objects with a single camera is

possible, this task is not trivial. Usually, extra sensors are used to accomplish

this task, e.g. stereo or RGBD cameras; ultrasonic, Bluetooth, or infrared

devices.

Computer vision algorithms have been advancing since the last decade.

Complex algorithms now can run in real-time on smartphones and wearable

devices due to the miniaturisation of hardware components and an increase

in processing power, storage capacity, and faster mobile internet connection.

Computer vision algorithms are easier to reproduce and can interpret real

scenes locally without human interaction, allowing greater privacy for the user.

Few solutions exploit the potential of computer vision algorithms. OrCam

[110], for example, aims to recognise labels, products, text and other objects

close to the user. It is not clear whether they assist in outdoor navigation.

Google has announced a visual navigation system, available at selected locations
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and integrated into their map app [124]. Although it is not specifically designed

for persons with visual impairment, they use augmented reality and computer

vision algorithms to match images taken in real-time from the user’s smartphone

with a dataset to improve their geolocation estimation. The path is then shown

on the screen using augmented reality.

Computer vision algorithms rely on visual appearance to detect obstacles

and objects. They are therefore sensitive to factors that change the visual

appearance of scenes, such as illumination, point of view, and occlusion. Internal

factors such as processing power and trained models also affect accuracy. Some

classes of objects are well studied and present a high detection accuracy, while

others need more study and larger datasets for training purposes.

2.2.4 Ultrasonic range sensor

Ultrasonic sensors use sound propagation to measure the distance to objects in

a short range. Widely available Raspberry Pi sensors, for example, work at

about 2 cm to 400 cm [1]. They are cheap and do not need preparation of the

environment beforehand.

Although ultrasound pulses propagate in three dimensions, the distance

information is unidimensional. It is possible to combine sensors pointing in

different directions, but this approach can be problematic when performing

more complex tasks, such as measuring long-range distances or the shape of

objects. On NAVI systems, ultrasonic sensors may help to avoid obstacles,

but they cannot help the user reach a point of interest following a proposed

path. They also need to be attached to the main processing device, as it is not

usually embedded on laptops or smartphones.
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2.2.5 Bluetooth and infrared beacons

Bluetooth and infrared beacons are cheap devices used as tags, installed on

the environment beforehand. A receptor detects nearby beacons and reads the

information transmitted by them. These devices receive contextual information

in indoor environments and can infer their self-location if the exact position of

the beacons is known. Their maximum range is limited to 100 cm [130] and

infrared beacons usually need to be aligned with the receptor.

Bluetooth technology has the advantage of being embedded on mainstream

devices like laptops and smartphones, and can also be used to connect com-

patible wireless devices. However, Bluetooth beacons are not suitable for

navigation in unprepared outdoor areas that are unknown to the user.

2.2.6 Inertial instrument

Inertial instruments use motion and rotation sensors to trace the route of a

moving object. Their main advantage is that there is no need for external

references. Although precise inertial instruments are complex and expensive,

most smartphones have basic motion and rotation sensors. Precise inertial

instruments are particularly useful on NAVI systems when there is no access

to the GNSS signal, temporarily or permanently.

The errors of the calculated position using inertial instruments are cumulat-

ive and increase over time. Even the best accelerometers would accumulate

about 50m errors within 17min [60]. Therefore, the position must be periodic-

ally corrected by other sensors or by the navigation system. Guo et al. [60], for

example, created a device embedded on a boot that corrects the user’s position

at every step, achieving an accumulative error of 4m after an 85min walk.
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2.2.7 Compass

Electronic compasses rely on the magnetic field of the Earth to identify the

orientation of the user. They are useful when combined with GNSS or other

positioning systems. Their measurements must be carefully considered, as they

can be affected by any magnetic field other than Earth’s. Most smartphones

have a built-in electronic compass.

2.2.8 Internet connection

An internet connection allows systems to make use of the processing power of

a server, especially when more complex algorithms are needed. For a real-time

experience, processing must be done locally as much as possible.

Ideally, outdoor NAVI systems should function without an internet connec-

tion, as it is not reliable when outdoors. Nonetheless, it can be used to fetch

updated information about maps, roads, pavements and available routes.

2.3 Computing devices

Smartglasses

Smartglasses are wearable devices that have limited computing power and

usually connect wirelessly to the main processing device, e.g. a smartphone.

Common components are the camera, visual interface projected on the glasses’

lens, microphone, and speaker. The camera gives the user’s point of view

(PoV). Hands-free interfaces have been reported to be more intuitive for users

with or without visual impairment, especially when speech recognition and

audio feedback are combined [83, 151].
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Smartphone and tablet

Smartphones and tablets are multipurpose mobile computing devices that

integrate several electronic components. Common components in conjunction

with a mobile network transceiver are wifi transceiver, camera, inertial sensor,

Bluetooth, compass, GNSS, and USB connection. The user interface includes a

touchscreen display, sound speaker, microphone and vibration motor. Although

less portable, tablets usually have more processing power and bigger screens.

When used for NAVI systems, smartphones and tablets are convenient

out-of-the-shelf mobile options with a variety of useful sensors for outdoor

navigation and communication. It is possible to connect other sensors and

devices by Bluetooth or USB interface. Persons with visual impairment can

use smartphones and tablets when a screen reader is built into the operating

system, e.g. Apple’s VoiceOver and Android’s TalkBack. Although some proof-

of-concept NAVI projects require the user to connect smartphones and tablets,

these devices were not designed to be worn.

Handheld

Handheld devices are similar to smartphones but have physical buttons, less

computing power, and generally no touchscreen display. Although physical

buttons are preferred by users with visual impairment, the limited computing

power and lack of more advanced components make it less convenient to use

them as a platform for NAVI systems.
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Laptop

Laptops have more processing power available compared to smartphones and

tablets, but the core components of NAVI systems are not integrated, e.g.

GNSS, compass, inertial sensor, and mobile network transceiver. Laptops are

widely used for proof of concept of NAVI systems, usually carried by the user

in a backpack. They are unlikely to be adopted as an end-user solution.

2.4 Image processing techniques for geolocation

Image geolocation is the problem of determining the location on Earth where a

particular image was captured. Can the origin of a photograph be identified

exclusively based on its pixels? Geolocating a photo even within a city can be

challenging. Consider the photographs in Figure 2.2, taken in Norwich. The

first one (a) is easy – it is the Norwich castle. The second picture (b) looks like

one of the many medieval English churches. The last photo (c) is the most

challenging. Probably, all that could be said is that it is a formal garden.

The online game Geoguessr.com brings this challenge to another level. In

this game, the player is placed on a street somewhere in the world and they

have to guess where it is. The player has a 360◦ view of the street and can walk

© Google

(a)

© Google

(b)

© Google

(c)

Figure 2.2: Are you able to say where these photos were taken?

https://geoguessr.com
https://goo.gl/maps/Stnmk3o921nHFwcY6
https://goo.gl/maps/Ztpsce6gn3fmdUPfA
https://goo.gl/maps/WHRhujTidG4S2REw9
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along the road. In the absence of obvious and notable landmarks, humans use

their own experience and multiple cues to guess the location of a photo. Street

signs, plantations, weather, written texts, building styles and people’s clothes

can narrow down the number of possible locations. Traditional computer vision

algorithms usually do not use this semantic information, relying on visual

features available during training. Feature extraction methods have evolved

significantly over time, with deep learning techniques representing a significant

advancement in the field.

Traditionally, local feature extraction relied primarily on highly tailored

techniques such as Histogram of Oriented Gradients (HOG) [32], Scale-Invariant

Feature Transform (SIFT) [88], and Maximally Stable Extremal Regions

(MSER) [106]. These methods aim to capture specific patterns, textures, or

areas in images. They require manual design of feature extraction algorithms

tailored to specific tasks.

Deep learning, particularly convolutional neural networks (CNN), gained

prominence in feature extraction around the mid-2010s [57]. CNNs revolu-

tionised the field of computer vision by automatically learning hierarchical

representations of data directly from raw input through convolutional, pooling,

and fully connected layers [91]. Recent methods such as SuperPoint [33] and

SuperGlue [128] outperform more traditional local features algorithms such

as SIFT in terms of repeatability of detected features and accurate descriptor

matching.

In general, each layer of a CNN progressively learns to extract more abstract

and high-level features from the input data. The lower layers capture low-

level features, such as edges and textures, and the higher layers capture

more abstract concepts, such as object parts and semantic attributes. This
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hierarchical learning enables better generalisation of unseen data and improved

performance on complex tasks.

Deep learning methods automatically learn feature representations directly

from the data, which is particularly advantageous in computer vision and

natural language processing, where manually designing feature extraction

algorithms is challenging or impractical. Deep learning models are also highly

adaptable and can be trained on diverse datasets and tasks with minimal

modifications. They can learn complex patterns and relationships from large-

scale data, leading to superior performance compared to traditional local

features extraction and shallow learning methods.

In this section, we examine the key methods and techniques used in single

image geolocation and highlight the differences between them.

2.4.1 Convolutional Neural Networks

HLoc

The hierarchical localisation method (HLoc) proposed by Sarlin et al. [127] is

based on HF-Net, a convolutional neural network trained to detect robust local

features for camera pose estimation. This method aims to calculate the camera

position within a Structure-from-Motion (SfM) model, with local coordinates.

Broadly speaking, the process is divided into the following steps:

1. Offline, processing of the image dataset:

(a) Extraction of local features and global descriptors from the image

dataset using HF-Net.

(b) Index the global image descriptors based on co-visibility.
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(c) Construction of a Structure-from-Motion model of the scene using

local features.

2. Online, processing of the query image:

(a) Extraction of local features and global descriptors from the query

image using HF-Net.

(b) Retrieve 𝑘 nearest neighbours (kNN) from the index of global

descriptors. These 𝑘 images, called frames, are used as candidate

locations on the map.

(c) The frames are clustered by the co-visibility of 3D structures. These

connected frames are called places.

(d) For each place, the local features extracted from the query image are

matched against the 3D points present in the place using SuperGlue

[128]. The camera poses are estimated with a geometric consistency

check with the perspective-three-point algorithm [79].

(e) The process ends when a valid camera pose is successfully estimated.

In the end, this method returns the camera pose in local coordinates, i.e. its

position within the SfM model. The model itself is not geolocated, and there is

no attempt to estimate global coordinates (latitude, longitude and altitude).

The HF-Net neural network is structured around a single encoder, based

on MobileNet [126], and three prediction heads: local feature detection scores,

dense local descriptors, and a global image-wide descriptor.

Local features and descriptors are decoded using the SuperPoint architecture

[33], which decodes local features and descriptors using a fixed non-learned
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mechanism. This method has the advantage that the execution time does not

depend on the number of local features detected.

For the global descriptor, HF-Net uses the NetVLAD [126] layer applied to

the last feature map of the encoder. This layer aggregates local descriptors to

create a compact representation of the entire image.

This method was evaluated using the Aachen, RobotCar and CMU datasets

[131]. Together, the three datasets have over 100,000 day and night urban and

suburban images. The latest version of HLoc [129] is able to localise 89.6% of

the daytime images in the Aachen dataset within 25 cm, and 95.4% within

50 cm. Taking into account only images at night, it localises 86.7% of the

images within 25 cm and 93.9% within 50 cm.

PlaNet

Weyand et al. [160] published their work on PlaNet, a convolutional neural

network trained with 126 million geotagged photos for ten weeks on a super-

computer. The geolocation task is reduced to a classification problem, with

the Earth’s surface subdivided into a set of 26,263 regions (the classes of the

model) and almost 100 million parameters.

In this classification approach, the output classes are the geographical cells.

This CNN receives an input image and outputs a probability distribution over

the world. Although the output is not expressed in latitude and longitude

coordinates, this formulation expresses its uncertainty assigning a confidence

level to each cell.

The S2 geometry library is used to create non-overlapping cells that cover

the Earth’s surface employing a hierarchical partitioning technique. This is

achieved by projecting the surfaces of a cube onto it. As the distribution of
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photos available on training is not uniform across the globe, the subdivision

recursively descends each quad-tree and subdivides cells until all cells contain

up to 10,000 photos. This partitioning is illustrated in Figure 2.3.

The authors argue that this adaptive tiling makes training classes more

balanced, uses the parameter spaces more efficiently by focusing in densely

populated areas, and has the potential to reach street-level accuracy in areas

where cells are small enough. Despite such massive effort, PlaNet is able to

localise just 3.6% of the dataset at the street level and 10.1% at the city level.

One reason for that is exactly the use of location discretisation, which hurts its

accuracy in sparse areas. Although the S2 library allows for a representation of

every square centimetre on Earth, it would be necessary to have a couple of

images of each cell to obtain an acceptable accuracy at such a level.

Figure 2.3: Hierarchical partitioning of the Earth’s surface into over
26.000 non-overlapping cells. Adapted from Weyand et al. [160]
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2.4.2 Multiple Nearest Neighbour

Recently, large-scale image geolocation methods that employ techniques based

on image matching and retrieval have attracted a great deal of interest [64,

119, 124, 169]. In such methods, the geolocation of a query image is estimated

by finding a match in a dataset of geotagged photos.

Hays and Efros [64] propose the IM2GPS, an algorithm based on scene

matching. For this task, six million geotagged images from Flickr [44] are

used as a reference dataset. In an effort to exploit the correlation between the

images’ properties and geographic location, a range of features are extracted

from the images:

Tiny images. Images are reduced to 16 × 16 pixels to reduce computational

processing and make the algorithm less sensitive to exact alignment.

Colour histograms. Images are transformed into the CIELAB colour space.

The ranges of dimensions 𝐿, 𝑎 and 𝑏 are reduced to 4, 14 and 14,

respectively. The intensity dimension 𝐿 has fewer bins because other

descriptors already capture information on the intensity distribution of

images.

Texton histograms. A universal texton dictionary with 512 entries is built

using a bank of filters. Texture features are useful in distinguishing

between geographically correlated characteristics such as terrain types,

vegetation, building materials and ornamentation styles.

Line features. The use of histograms based on line angles and lengths enables

the discrimination between natural and man-made landscapes, as well as

the identification of scenes with similar vanishing points.
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GIST descriptor. This descriptor is reported to be efficient at scene categor-

isation and retrieval of scenes semantically and structurally similar.

Geometry context. Image regions are classified into three classes – ground,

sky and vertical – using geometric class probabilities.

Given a query image, all features above are extracted and the feature

distance is calculated for every image in the dataset. The distances are then

normalised in such a way that each feature contributes equally to the ordering

of scene matches. Based on the aggregated feature distances, the algorithm

then identifies the nearest neighbours [102] in the dataset for the query image

and estimates the geolocation based on the geolocation of those neighbours.

The authors argue that the first nearest neighbour is not robust enough

to estimate geolocation. They select 120 nearest neighbours, use a mean-shift

bandwidth of 500 km and ignore clusters with fewer than four matches, leading

to the formation of 6 to 12 clusters that contain approximately two-thirds of

the original matches. In the end, the cluster with the highest cardinality is

reported as the query image’s geolocation.

The mean-shift heuristic localised about 25% of the test images within

the scale of a country (750 km) and 12% at a city level (25 km). An updated

version of the algorithm reaches an accuracy of 2.5% at street level (1 km) [65].

Despite the huge number of photos in their dataset and the wide range

of features extracted, the IM2GPS algorithm still has low accuracy at the

street level. We can highlight the inefficient cluster approach to select the most

suitable matches among the nearest neighbours.

Compared to the previous approach, IM2GPS has some shortcomings.

On PlaNet, clusters are defined beforehand, based on the number of images
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available for training. In this approach, clusters are formed based on their visual

similarity with the query image. Although both approaches are prejudiced on

areas with few reference photos, the IM2GPS is even more affected in this case.

Its clusters tend to be more sparse and unpredictable, enclosing matches in

a 500 km range. Therefore, the error is expected to be in the same order of

magnitude.

2.4.3 Generalised Minimum Clique Problem

Zamir and Shah [169] propose an elaborated framework for geolocating an

image based on image retrieval using a multiple nearest neighbour local feature

matching method and reducing the problem to a Generalised Minimum Clique

Problem (GMCP).

In this method, SIFT features are extracted from a query image (query

features) and 𝑘 nearest neighbours (NNs) [102] for each feature are retrieved

from the reference image set (reference features). To accelerate the matching

process, the query features that do not have distinctive NNs are coarsely

removed at this point. The remaining query features and their corresponding

𝑘 NNs reference features are organised in a graph structure. For each query

feature, a single reference feature among the 𝑘 NNs is selected using a GMCP–

based feature matching such that all matches are globally consistent. Finally,

the location of the reference image with the greatest number of feature matches

is returned as the location of the query image. Algorithm 2.1 gives an overview

of this framework.

Explaining the Algorithm 2.1 in more detail, the query image 𝑄 is given as

an input with the number of nearest neighbours 𝑘. In addition, the program
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Algorithm 2.1: Single image geolocation using GMCP
Input :Query image 𝑄, number of nearest neighbours 𝑘
Output :Geolocation estimative of 𝑄
Data :Reference image dataset 𝐼

𝑘d-tree 𝐾 ← extract local features from images in 𝐼;
𝑞𝑖 ← extract 𝑀 local features from 𝑄;
𝑣𝑖𝑚 ← find 𝑘 + 1 nearest neighbours for each 𝑞𝑖;

/* Pruning */
foreach feature 𝑞𝑖 do

if 𝑣𝑖1 and 𝑣𝑖
𝑘+1 are more than 80% similar then remove 𝑞𝑖;

end

/* Define graph and clusters */
graph 𝐺 ← (V, 𝐸, 𝜔, 𝑤), where

V← nodes corresponding to each 𝑣𝑖𝑚
𝐸 ← edges between all nodes as long as they do not belong

to the same cluster,
𝜔(𝑣𝑖𝑚) ← node cost as the similarity between the node 𝑣𝑖𝑚 and

its corresponding query feature 𝑞𝑖,
𝑤(𝑣𝑖𝑚, 𝑣

𝑗
𝑛) ← edge weight as the distance between the geolocation

coordinates of images from where local features 𝑣𝑖𝑚 and 𝑣 𝑗𝑛
were extracted;

𝐶𝑖 ← 𝐿 disjoint clusters containing 𝑣𝑖𝑚 nodes;

/* Compute cost of feasible solutions */
subgraph 𝐺𝑆 ← (V𝑆, 𝐸𝑆, 𝜔𝑆, 𝑤𝑆) representing each feasible solution in

which one node 𝑣𝑖𝑚 is selected from each cluster 𝐶𝑖;
𝐶 (V𝑆) ← cost function of the graph 𝐺𝑆 induced by its nodes and edges;
V̂𝑆 ← solution with minimal cost, i.e. argminV𝑆

𝐶 (V𝑆);
return geolocation of reference image with the highest number of

feature nodes in V̂𝑆;
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has access to a reference image dataset 𝐼. At the end, the algorithm returns

the geolocation estimative of 𝑄.

At first, all images in the reference set 𝐼 are processed and local features

are organised in a 𝑘d-tree 𝐾. The query image 𝑄 is then processed and 𝑀

local features are detected. The local descriptor of the 𝑖th query feature is

referred to as 𝑞𝑖 , where 𝑖 ∈ Z+ : 1 ≤ 𝑖 ≤ 𝑀.

Each query feature 𝑞𝑖 is then compared to the reference features stored

in the 𝑘d-tree 𝐾, and 𝑘 + 1 NNs are retrieved for each 𝑞𝑖. In this way,

the 𝑚th NN reference feature of the 𝑖th query feature is called 𝑣𝑖𝑚, where

𝑚 ∈ Z+ : 1 ≤ 𝑚 ≤ 𝑘 + 1.

The query image contains numerous local features that are not relevant to

this task, such as those identified on passing objects, trees, or on the ground.

Such features are identified and removed based on their similarity to the last

NN retrieved, i.e.


remove 𝑞𝑖, if

∥𝑞𝑖 − 𝜁 (𝑣𝑖1)∥
∥𝑞𝑖 − 𝜁 (𝑣𝑖𝑘+1)∥

> 0.8

retain 𝑞𝑖, otherwise,
(2.1)

where ∥.∥ represents the Euclidean distance between vectors and 𝜁 (.) retrieves

the feature descriptor of the argument node. In this framework, the 𝑖th query

feature is pruned if its first and (𝑘 + 1)th NNs are more than 80% similar.

In other words, a query feature 𝑞𝑖 is considered uninformative and pruned if

the first and last NN reference features retrieved from the 𝑘d-tree 𝐾 have a

similarity ratio greater than 80%. After the pruning, only 𝐿 features are kept

for the next step, where 𝐿 ∈ Z+ : 1 ≤ 𝑖 ≤ 𝑀.

At this point, the problem starts to be reduced to a Generalised Minimum
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Clique Problem (GMCP). A graph 𝐺 = (V, 𝐸, 𝜔, 𝑤) is defined, where V, 𝐸 , 𝜔

and 𝑤 are the set of nodes, edges, node costs and edge weights, respectively.

Each element is defined as follows:

• V = {𝑣𝑖𝑚}, i.e. the nodes in V correspond to the reference features 𝑣𝑖𝑚

• 𝐸 = {(𝑣𝑖𝑚, 𝑣
𝑗
𝑛) |𝑖 ≠ 𝑗}, i.e. the edges in 𝐸 connect every possible pair of

node 𝑣𝑖𝑚 as long as they do not belong to the same cluster

• 𝜔(𝑣𝑖𝑚) = ∥𝑞𝑖 − 𝜁 (𝑣𝑖𝑚)∥, with 𝜔 : V → R+, i.e. the node cost 𝜔 is the

local feature similarity between the node 𝑣𝑖𝑚 and its corresponding query

feature 𝑞𝑖

• 𝑤(𝑣𝑖𝑚, 𝑣
𝑗
𝑛) = ∥𝜌(𝑣𝑖𝑚) − 𝜌(𝑣

𝑗
𝑛)∥, with 𝑤 : 𝐸 → R+, i.e. the edge weight

between two nodes is the similarity between the global features of their

parent images, which is retrieved by 𝜌(.)

Now the graph 𝐺 is created, 𝐿 disjoint clusters 𝐶𝑖 are formed with the

nodes in V, with each cluster corresponding to a query feature 𝑞𝑖. The subset

of nodes in each cluster 𝐶𝑖 represents the 𝑘 corresponding NNs to the query

feature 𝑞𝑖. Figure 2.4 shows an example of graph 𝐺 with five disjoint clusters.

A feasible solution to this Generalised Minimum Clique Problem is rep-

resented by a clique with a single node from each and every cluster. In other

words, a feasible clique is a subgraph 𝐺𝑆 of 𝐺 in which one node 𝑣𝑖𝑚 is selected

from each cluster 𝐶𝑖. This subgraph is defined as 𝐺𝑆 = (V𝑆, 𝐸𝑆, 𝜔𝑆, 𝑤𝑆), where

V𝑆 = {𝑣1𝑎, 𝑣2𝑏, 𝑣
3
𝑐 , . . . }, i.e. 𝑎th node from 𝐶1, 𝑏th node from 𝐶2, and so on,

edges 𝐸𝑆 = {𝐸 (𝑝, 𝑞) |𝑝, 𝑞 ∈ V𝑆}, node costs 𝜔𝑆 = {𝜔(𝑝) |𝑝 ∈ V𝑆} and edge

weights 𝑤𝑆 = {𝑤(𝑝, 𝑞) |𝑝, 𝑞 ∈ V𝑆}. To keep it simple, the set of nodes V𝑆 can

be referred to as a feasible solution as it is enough to form 𝐺𝑆.
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Figure 2.4: An example of Generalised Minimum Clique Problem
(GMCP) applied to a graph 𝐺 with five disjoint clusters 𝐶𝑖. A feasible
solution is a clique with one node from each cluster. From [169].

In this way, the cost 𝐶 of a feasible solution V𝑆 is defined as

𝐶 (V𝑆) =
1

2

𝐿∑︁
𝑖=1

𝐿∑︁
𝑗=1,
𝑗≠𝑖

(
1

2
𝛼

local features︷                         ︸︸                         ︷(
𝜔(V𝑆 (𝑖)) + 𝜔(V𝑆 ( 𝑗))

)
+(1 − 𝛼) 𝑤(V𝑆 (𝑖),V𝑆 ( 𝑗))︸               ︷︷               ︸

global features

)
,

(2.2)

i.e. the sum of all weights of nodes (global features) and edges (local features)

of 𝐺𝑆, balanced by a factor 0 ≤ 𝛼 ≤ 1. A larger 𝛼 increases the contribution of

node weights (global features) to the cost of the solution V𝑆, while a smaller 𝛼

increases the contribution of edge weights (local features) instead.

Thus, low values for edge and node weights mean a low solution cost and

therefore a high global consistency. Finally, the optimal solution with the

minimum cost is expressed by V̂𝑆 = argminV𝑆
𝐶 (V𝑆), which is the solution for

the Generalised Minimum Clique Problem. The geolocation of the reference

image with the highest number of feature nodes in V̂𝑆 is given as the geolocation

estimation of the query image.
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Distance function

This GMCP-based method employs a function 𝐷 to measure the distance

between global features. The choice of function is important to reduce the

impact of outlier nodes from disjoint groups. Thus, Zamir and Shah [169] use

the function

𝐷 (𝑥, 𝑦) =
√︃
2 − 2𝑒−

∥𝑥−𝑦 ∥2
2𝜎2 , (2.3)

which boosts short distances and caps the effect of outliers to a constant value

𝜏 =
√
2. The distance function 𝐷 is plotted in Figure 2.5. Using this function

makes large distances contribute equally to the cost function, while tight groups

of global features reduce the overall cost.

0 1 2 3 4 5 6
0

0.5

1

𝜏 =
√
2

∥𝑥 − 𝑦∥
𝜎

𝐷
(𝑥
,
𝑦
)

Figure 2.5: Plot of the distance function 𝐷 defined in (2.3). It dumps
large values and boosts short ones.

This GMCP-based geolocation method reaches an accuracy of 40% in a

50m range and 57% in a 200m range with the robustified distance metric 𝐷

(2.3). These results are achieved using SIFT features to match the query and

the reference images. No other local feature algorithms are considered.
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2.5 Conclusion

In this chapter, we presented the state-of-the-art technology for helping outdoor

navigation of persons with visual impairment. The functionality of these systems

is, however, often limited to obstacle detection and navigation assistance based

just on GNSS information presented to the user in limited forms. We also

examined the key image processing methods and techniques used for single

image geolocation.

Analysing the needs of persons with visual impairment for locomotion and

social inclusion, we recognise the need to analyse the requisites of a NAVI

system that incorporates new technologies and vision-based solutions to support

outdoor navigation.



Chapter 3

Desired features of a vision-based
navigation assistant

Part of the content of this chapter features in the following published article:

• R. Busatto and R. Harvey, ‘Outdoor Navigation Assistants for Visually

Impaired Persons: Problems and Challenges,’ Journal on Technology and

Persons with Disabilities, vol. 10, pp. 184–205, 2022.

In this chapter, we present the desired features and user interface of a

vision-based NAVI system for outdoor navigation, with a focus on addressing

the needs of individuals with visual impairments. We consider the equipment

and sensors currently available that could make it possible to build a system

with such features, identifying key technology gaps and areas that need further

research.

3.1 Methodology

The methodology for this requirement analysis began with active engagement

with end users from Action for Blind People, a division of the Royal National

Institute of Blind People (RNIB). A semistructured focus group session was
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conducted on October 16, 2015, at the Action for Blind People’s office in

Cringleford. Three associated members who are blind participated in the

session. They were asked to narrate their experiences navigating outdoors as

individuals with visual impairment.

The session lasted two hours, and notes were taken to register the information

shared by the participants. The use of a narrative methodology allowed to

explore the challenges faced by individuals when navigating outdoors. For

example, a participant shared their experience trying to get to a dentist

appointment, illustrating the practical difficulties faced in everyday situations.

As soon as they leave home, they need to (i) walk to the bus stop; (ii) catch

the right bus that takes them as close as possible to their destination; (iii) get

on the bus and find a seat; (iv) get off the bus at the right stop; (v) find their

way to their destination; (vi) find the right building; (vii) find the entrance;

and (viii) find the reception. From there they are more likely to receive human

assistance to find their way indoors.

This journey presents some risks, e.g. walking off the pavement and collisions,

that must be safely avoided at all times. A step on the road exposes the user

to life-threatening risks. Some other tasks, e.g. identifying buildings, shops,

buses, entrances, signs and written information, are hardly possible without

the assistance of an electronic device or a person with no visual impairment.

The insights gathered from the focus group session were integrated with the

literature review reported in Chapter 2. By analysing the findings from both the

focus group session and the literature review, a comprehensive understanding of

the requirements for a navigation assistant system emerged, which is presented

in this chapter. This integrated approach ensured that the identified features

are grounded in the lived experiences of end users, while also being informed
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by the latest developments in assistive technology.

3.2 Features and user interface

Algorithm 3.1 shows a sequence diagram for the task of vision-based outdoor

navigation. First, when the user requests assistance to reach a destination, the

system (controller) must retrieve the user’s geolocation and request a route to

the online server. An internet connection allows making use of more complex

algorithms and access to services such as the Google Directions API [52] and

the Apple WebKit [12] for up-to-date information about maps, roads, and

available routes. However, local processing is preferred when possible.

The evaluation of possible routes must consider: (i) time and length of

journey, (ii) accessibility and safety of the route, considering if it is well

signposted and paved, (iii) easy access to public transport like bus, tube, train,

and tram, and (iv) roadworks and closed ways. The route retrieved from the

server is segmented, and the user is expected to reach checkpoints in sequence

to arrive at the destination.

The route segments and checkpoints need to be carefully chosen. A segment

that involves crossing a street, for example, must be broken down into more

specific steps: ‘approach the pedestrian crossing,’ ‘activate pedestrian traffic

light,’ ‘cross the street’ and ‘reach the sidewalk’. These steps are usually

implicit for persons who are sighted, yet they are essential to allow autonomous

journeys of persons with visual impairment. It is not just about giving more

instructions; the quality of instructions is essentially different. Even when the

same route is followed by persons with and without visual impairment, the

instructions must consider the individual needs of each user.
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:User :Controller :Sensors :Server

Set destination
Get geolocation

Get route
Route checkpoints

Get camera image

Get geolocation

Calculate position

Check visual cues

Detect collision

Walk instructions

LoopLoop While checkpoint is not reached

LoopLoop For each checkpoint

Destination
reached

Algorithm 3.1: Sequence diagram for the vision-based outdoor navigation task.
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For each checkpoint on the route, the system must guide the user by

audio and keep estimating the user position in real-time, evaluating whether

they are on track or the route needs to be recalculated. Ideally, the camera

should identify obstacles in real time and assess imminent collision risk. In a

scenario of crossing a street, for example, the camera allows the identification

of pedestrian crossings, traffic lights, cyclists and cars to decide when it is safe

to cross. In addition, the system must also identify and prioritise recognised

text to announce relevant information only according to the context. A big

sign far away may be less relevant than a small street sign near the user.

With no priority classification, the user may be overwhelmed by irrelevant

announcements.

The walk instructions are ideally given by both spoken and audible signals.

The audio feedback must not block signals from external sources, which helps

in keeping the safety of users. With the use of smart glasses and binaural audio,

users may receive audio instructions to aim their heads towards locations where

they expect important visual targets [26]. In this way, there is no need to train

users beforehand. A heads-up display may be used by persons with low vision,

enabling announcements both by audio and on the display. Yet, the use of a

display is secondary and is not in any way essential.

The use of non-visual references is fundamental when giving navigation

instructions. A simple instruction such as ‘walk 20m’ is hard to follow because

it refers to a measure not easily verifiable in such a situation. Alternatively,

saying ‘walk twenty steps’ is more intuitive and easily verifiable. Although it is

not as accurate, checking the user’s position in real-time allows route correction

and follow-up instructions such as ‘walk two more steps’ or ‘you have reached

the street corner, turn left now’.
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The geolocation accuracy requirement should ideally be under one meter to

ensure the system can accurately guide users with visual impairments through

complex environments. Precise location is critical for safe navigation in dense

urban environments where small errors could lead to potentially hazardous

situations. Additionally, with accurate geolocation, the system can provide

precise instructions such as indicating the exact point to cross a street or reach

a specific checkpoint. This level of accuracy enhances the user’s confidence in

following the navigation instructions and reduces the chance of errors.

When the destination is finally reached, the system may learn the user’s

preferences considering the journey actually undertaken. The more people use

it, the better it would get at suggesting convenient routes to everyone.

3.3 Technology gaps

Table 3.1 summarises the desired features of an outdoor NAVI system as

described and highlights their current development status reported in the

literature.

The first task in Table 3.1 is to localise the user with high accuracy (F1).

Although there are some subtleties in certain scenarios, it is a standard task,

so we have marked it as such. Although GNSS provides only around 10m

accuracy, which is either sufficient for many purposes (e.g. maritime navigation)

or can be combined with tracking models to give improvements. In autonomous

vehicle navigation, for example, systems assume that the vehicle is located

on the road using an up-to-date map. Thus, cross-track errors can be zeroed.

Pedestrian navigation is more challenging because people roam off streets. With

good tracking, newer GNSS components such as Galileo, SBAS systems such
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Table 3.1: Features of the NAVI model for outdoors navigation.

Feature Development Solved?

F1 Localise user with high
accuracy

Current accuracy is
approximately 10m with
GNSS; Maximum required
error is 0.5m

Partially

F2 Calculate the best route to
reach a point of interest

Pedestrian routing is freely
available on smartphones
map apps [11, 52]

Yes

F3 Define micronavigation
instructions

Further studies needed on
Human Computer Interface
(HCI) [23]

No

F4 Recognise public transport
vehicles

Solved by Computer Vision
detection and classification
algorithms

Yes

F5 Locate doors and entrances Solved by Computer Vision
algorithms with 97.96%
accuracy [113]

Yes

F6 Recognise relevant signs and
labels

Partially solved by Computer
Vision detection,
classification and OCR
algorithms [110]

Partially

F7 Identify the pavement Solved by Computer Vision
segmentation algorithms
[109]

Yes

F8 Access collision risk Solved by Computer Vision
algorithms

Yes

F9 Perform visual navigation Further studies needed in
Computer Vision

No

F10 Interact with the user in a
natural and intuitive way

Further studies needed on
Human Computer Interface
(HCI) [23]

Partially
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as WAAS and EGNOS, combined with vision-based solutions, it is reasonable

to assume that determining outdoor pedestrian geolocation might be solved

within 1m. Indoor navigation will either require significantly greater antenna

gain at the receiver using larger and more complex receptors, or wide-scale

deployment of indoor GNSS augmentation systems. Both seem unlikely within

the next ten years. Hence are other ‘partially’ ratings.

Calculating the best route (F2) can be considered solved for outdoor

pedestrian navigation. Google and Apple services provide pedestrian routing

freely available online and with vast documentation [12, 53]. These services

consider factors such as time, walking distance, accessibility, and roadworks.

Defining the micronavigation instructions (F3), on the other hand, remains

a challenging open problem. The route segments retrieved from online routing

services must be broken down into more specific segments. Navigating in large

open spaces, in a park, for example, is hardly a problem for persons who are

sighted. Persons with visual impairment, on the other hand, may get lost

or go astray without accurate navigation instructions and constant rerouting

assessment. Furthermore, there is every reason to think that instructions need

to be personalised since visual disabilities are diverse.

Recent advances in computer vision make viable the recognition of vehicles

(F4), doors (F5), signs (F6) and sidewalks (F7) with high accuracy. Recognition

of labels using Orcam MyEye and Seeing AI, for example, is reported to achieve

greater than 95% accuracy in text recognition for flat, plain word documents

[54]. Recent research has been conducted on the detection of signs specifically

for the navigation of persons with visual impairment [29]. When recognition is

associated with tracking objects, it becomes possible to access collision risks in

real-time (F8) without the need for extra sensors.
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Despite notable improvements in visual recognition, performing visual

navigation (F9) remains a very significant problem for NAVI systems. Current

solutions involve building 3D maps a priori [36], which is not desirable in

outdoor navigation. Even if the user position could be calculated with enough

accuracy, the information retrieved by the camera and processed by computer

vision algorithms still needs to be classified and organised into instructions to

the user. This is the basis for naturally interacting with users (F10).

It is important to recognise that this analysis is written from the traditional

research perspective, which focuses on the lower Technology Readiness Levels

(TRLs 0 to 4). It goes without saying that to be useful, all research needs to

be pushed to higher TRL levels, which requires commercial or government

investment.

The main focus of this thesis is to investigate vision-based geolocation

methods to localise the user with high accuracy (F1). In Algorithm 3.1, this

corresponds to the steps ‘get camera image’, ‘get geolocation’, and ‘calculate

position.’ This is an essential requirement for navigating safely through urban

environments. Vision-based approaches have the potential to achieve sub-meter

accuracy, as they can use visual cues present in the environment to determine

the user’s location. Unlike traditional methods relying on GNSS or inertial

sensors only, vision-based techniques can reduce localisation errors caused by

signal occlusion, multipath effects, or urban canyon areas (as discussed in the

next chapters). Vision-based geolocation methods show potential to advance

the state-of-the-art in outdoor navigation systems, potentially improving the

safety, efficiency, and user experience in real-world settings.



3 Desired features of a vision-based navigation assistant 71

3.4 Conclusion

In this chapter, we explored the requisites of building vision-based outdoor

navigation assistants for persons with visual impairment. We presented the

requisites of building a NAVI system integrating all journey stages and exploiting

the current technology to its full potential. Finally, we highlighted the areas

that need further research and the problems that need to be solved to make such

a system possible. An accurate estimate of the user position, for example, is

essential for a safe NAVI system. In the next chapters, we explore vision-based

geolocation methods as an attempt to geolocate the user outdoors.



Chapter 4

GNSS geolocation refinement using
geotagged street-view images

Vision-based geolocation methods can be classified into two main categories

based on whether they construct an internal 3D structure or not. Methods that

fall into the first category construct an internal 3D model of the environment,

which can be used to estimate the position and orientation of the camera.

Algorithms in this category employ techniques such as Structure from Motion

(SfM) [132], which uses a series of 2D images of a scene taken from different

viewpoints to construct a 3D model of the environment. The SfM works by

identifying common features in multiple images and using them to estimate the

relative position and orientation of the cameras. Once the camera positions are

estimated, the 3D structure of the scene can be reconstructed by triangulating

the position of the features observed in the images. It is usually computationally

expensive to both build an SfM model and to match features from a query

image against large SfM models [119].

The second category of vision-based geolocation methods does not involve

constructing an internal 3D model of the environment. Instead, these methods

are usually based on image retrieval, which involves matching the query image

72
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captured by the camera with a dataset of images with known geolocation in-

formation. The feature matching is based on the similarity of features extracted

from the query image and the dataset images. Although computationally faster,

these methods are usually less accurate, as they do not exploit the epipolar

geometric relation between local features and their projections onto 2D images

[119].

The choice of local feature detectors and descriptors is crucial for algorithms

in either category. The Scale-Invariant Feature Transform (SIFT) has tra-

ditionally been used in various applications due to its partial invariance to

changes in illuminance, occlusion, and point-of-view. However, SIFT features

may fail to match when the changes are significant or multiple aspects change

simultaneously. Recently, with the advance of neural network algorithms, new

local feature detectors and descriptors have been proposed [33]. These ‘deep

features’ learn changes caused by challenging factors, such as illuminance and

changes in point-of-view, resulting in the ability to match features that look

dramatically different.

In this chapter, we present a method for refining GNSS geolocation through

the use of geotagged street-view images. This method builds upon the hierarch-

ical localisation (HLoc) framework proposed by Sarlin et al. [127] with several

key enhancements. Unlike the original HLoc method that aims to estimate the

camera pose in local coordinates within a large SfM model (see Section 2.4.1

for more details), the primary objective of our approach (HLoc+SV) is to

accurately estimate the world coordinates of a user’s camera by integrating

geotagged street-view images into the SfM model.

There are several novel aspects of our approach presented in this chapter.

Firstly, the original HLoc method does not attempt to use any geolocation
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information. On the other hand, we progressively add geotagged street view

images to the SfM model and use them as ‘anchors’ to geolocate the whole

model. Secondly, instead of using global visual features to search for pictures

taken nearby, we use the user’s GNSS geolocation to dynamically download

street view images near the user. In this way, we can build the SfM model

on-the-fly rather than having to process a pre-existing dataset of images

and build the SfM model offline. Additionally, to overcome the challenge

of evaluating results without a high-accuracy GNSS receiver (e.g. RTK), we

estimate ground truth by identifying clear marks on the ground visible on

satellite images and manually retrieving their geocoordinates. Lastly, another

significant contribution is the creation of a dataset with 58 user images and 80

street view images, covering seven scenes in Norwich and London. Each user

image includes GNSS coordinates retrieved by the smartphone and also their

ground truth for evaluation purposes. This dataset enables accurate testing

and validation of visual geolocation methods in urban scenarios.

4.1 Method

The method proposed in this chapter (HLoc+SV) aims to estimate accurate

world coordinates of the user camera. We use the GNSS receiver information to

retrieve a set of geotagged street-view images, which are used to geolocate the

SfM model and estimate the user geocoordinates. Figure 4.1 shows a diagram of

our method, which is based on the hierarchical localisation framework proposed

by Sarlin et al. [127] with significant modifications and extensions to integrate

world coordinates and geolocation information.

In the original framework [127], a Structure from Motion (SfM) model [132]
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Geolocation of
user images

Geotagged
street-view images

Local features SfM structure in
world coord. (lon,lat,alt)

Retrieved user
geolocation

User images Local features SfM structure in
local coord. (x,y,z)

Adapted
hierarchical
localisation
framework

Figure 4.1: Diagram of the method HLoc+SV to estimate the geoloca-
tion of the user camera.

is built a priori from a set of images using the HF-Net neural network [127] and

SuperPoint [33] deep features. A query image is then matched against dataset

images using global descriptors, and 𝑘 nearest neighbours are retrieved. These

𝑘 retrieved images are clustered based on covisible features in SfM structures.

For each retrieved SfM structure, the local features of the query image are

matched against the features in that particular SfM structure. The algorithm

then estimates the six-degree-of-freedom camera pose using RANSAC [43] to

solve the perspective-𝑛-point [79] problem and verify the geometric consistency.

The coordinates of their SfM model are local. No effort is made to locate the

camera in world coordinates.

In our method, called HLoc+SV, a set of images taken by the user (using

a smartphone in the experiments reported below) are converted to greyscale

and reduced to a maximum resolution of 1024 × 1024 pixels. The images are

then fed into the HF-Net, and SuperPoint deep features are extracted, with an

upper limit of 4096 features per image. For the feature matching step, we use

the SuperGlue [128] neural network, pretrained on the Aarchen dataset [131] as
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provided by the authors [127]. Since we use few user images, all pairs of images

are matched exhaustively – i.e. for 𝑛 images, we consider all 𝑛(𝑛 − 1)/2 pairs.

A geometric verification of the matches is then performed to eliminate those

image pairs that do not share an overlapping view of the scene, which is done

using the COLMAP pipeline [132, 133]. Considering that the camera is not

calibrated and its intrinsic parameters will be estimated at the next step, the

geometric verification is performed by estimating the fundamental matrix 𝐹

(instead of estimating the essential matrix, which is suitable for calibrated

cameras) [62]. A robust estimation of 𝐹 is performed using RANSAC [43] to

eliminate the several outliers that usually contaminate the feature matches.

The geometrically verified pairs of images are then progressively added

to an SfM model, i.e. the 3D reconstruction of the scene. The model is

initialised with an image pair from a dense location (i.e. an overlapping area

registered by many cameras), and the following images are individually added

by triangulating its features’ matches with the existing features in the SfM

model. This triangulation is the base for solving the perspective-n-point (PnP)

problem, which estimates the camera pose and its intrinsic parameters.

We use the COLMAP pipeline to solve the PnP problem using a simple

radial camera model, which estimates two intrinsic parameters and covers

pincushion and barrel distortions (an introduction to the camera matrix model

can be found in [63]). As all user images were taken from the same camera,

therefore all images are set to have the same camera parameters. We empirically

found this to be the simplest camera model that correctly models the lens

distortion in this scenario, accelerating the convergence to find a consistent

solution. The SfM model construction finishes when all images are added to

the model.
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Differently from the original framework, this SfM model does not need to

be built beforehand. The 3D model is not created using images stored in a

dataset, but from a sequence of images taken by the user a few metres apart

from each other. For this reason, the original offline processing step is not

needed.

Once the SfM model is created using user images, we add the reference

street-view images to the model. Using the user geolocation reported by the

user’s GNSS receiver, which is embedded in each one of the user photos, we

retrieve the street-view images closest to the user from the Google Street View

API. Note that, different from similar methods, we do not retrieve images

from a dataset using nearest neighbours (NN) algorithms. Instead, we use the

GNSS information embedded in the user images to have a rough idea of the

user’s location and retrieve nearby street-view images. For these experiments,

we manually selected the street-view images closest to the user and removed

the images that did not have a common overlapping area to any of the user

images (pointing to the opposite direction or taken on a perpendicular street,

for example). Although the COLMAP pipeline is able to handle images that

are not related to the scene, we chose to remove unrelated street-view images

to accelerate the process.

The street-view images retrieved by the Google API are added later, in a

second step, because each one of them has its own internal camera parameters.

Google Street View images are the result of merging images from several

cameras attached to the top of a car, merged into a 360° spherical view [10].

The distortion caused by the camera lens is further exaggerated by this post-

processing merging. Using their API, we break down each spherical view into

eight side sections (at every 45°) with a field-of-view of 60° and a pitch of +10°.
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The street-view image sections are progressively added to the SfM model, and

the intrinsic parameters of the camera are estimated using a simplified radial

camera model. Although the distortions are known to be more severe, we

empirically found that the use of more complex models fails to converge to a

solution.

4.1.1 Estimation of world coordinates

At this point, all user images and street-view images are added to the SfM

model, which contains a 3D map of the scene and the estimation of the camera

position of each image in local coordinates.

For the HLoc+SV method, the geocoordinates of the street-view images

are used to convert the SfM model from local coordinates (𝑥, 𝑦, 𝑧) to geodetic

world coordinates (WGS-84) expressed in terms of longitude 𝜑, latitude 𝜆 and

altitude ℎ, i.e. (𝜑, 𝜆, ℎ). To achieve this, the street-view images’ geocoordinates

are first converted to an intermediate Earth-centred-Earth-fixed Cartesian

coordinate system (ECEF), expressed in (𝑋,𝑌, 𝑍) coordinates. Both WGS-84

and ECEF coordinate systems are geocentric, i.e. have identical origins at

the centre of the Earth. WGS-84 coordinates (𝜑, 𝜆, ℎ) are converted to ECEF

coordinates (𝑋,𝑌, 𝑍) using the equations [66]:

𝑋 = (𝑁 + ℎ) cos 𝜑 cos𝜆 (4.1)

𝑌 = (𝑁 + ℎ) cos 𝜑 sin𝜆 (4.2)

𝑍 =

(
𝑏2

𝑎2
𝑁 + ℎ

)
sin 𝜑 (4.3)

where 𝑎 and 𝑏 are the ellipsoid semi-axes, and N is the radius of curvature in
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prime vertical, defined as

𝑁 =
𝑎2√︁

𝑎2 cos 𝜑2 + 𝑏2 sin 𝜑2
. (4.4)

We use COLMAP to estimate a 3D similarity transformation from local

coordinates (𝑥, 𝑦, 𝑧) to ECEF coordinates (𝑋,𝑌, 𝑍). The street-view ECEF

geolocations are used as the only reference coordinates (no coordinates from

user images are used). This transformation is estimated using RANSAC to

be robust to possible outliers, with a maximum error threshold of 8.0 and

minimum inlier ratio of 10%. Although no information about the Google Street

View geolocation error or equipment is provided, we assume that it is more

precise and reliable than the geolocation retrieved by the user’s smartphone.

After applying the similarity transformation, the SfM model is finally

geolocated in ECEF coordinates (𝑋,𝑌, 𝑍). As a result, the camera poses of user

images within the SfM model are also expressed in the same coordinates system.

As a final step, we perform an inverse geodetic computation [66] to express the

user’s camera poses in WGS-84 coordinates (𝜑, 𝜆, ℎ). These coordinates are

then returned as a set of user geolocations, one for each user image.

For comparison, we also estimate the user geolocation using the user’s GNSS

receptor information instead of using the street-view coordinates (reported

below as HLoc+GNSS). This scenario simulates when Google Street View

images are not available. This similarity transformation is problematic given

that the GNSS information retrieved by the user device is often subject to

interference in urban centres [156].

For the simpler HLoc+GNSS method, the geolocation embedded in the

user images is first converted from WGS-84 coordinates (𝜑, 𝜆, ℎ) to ECEF
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coordinates (𝑋,𝑌, 𝑍) using (4.1) to (4.4). In this method, the user images’

ECEF geolocations are used as the only reference coordinates (instead of the

street-view coordinates). The 3D similarity transformation from local (𝑥, 𝑦, 𝑧)

to ECEF (𝑋,𝑌, 𝑍) coordinates is robustly estimated using COLMAP with

the same parameters as before. Finally, the camera poses of user images are

converted to WGS-84 coordinates (𝜑, 𝜆, ℎ), which are returned as the result of

the HLoc+GNSS method.

4.1.2 Ground truth

There was no high-accuracy GNSS receiver available for this research when these

experiments were conducted. Equipment used for land surveys, such as RTK

GNSS, is commonly used in research to achieve millimetre-level positioning

accuracy. With no such equipment available, the evaluation of results became

very challenging.

To overcome this limitation, we estimated the ground truth by carefully

choosing locations with clear marks on the floor that are visible on satellite

images. We chose locations with clear markings on the ground, such as painted

lines and manholes, which are visible on Google Maps’ high-resolution satellite

images. The user photos were taken with the camera positioned on top of these

marks. In this way, the ground truth was retrieved by manually checking the

geolocation of such marks on Google Maps satellite images. Figure 4.2 shows

some examples of street marks.
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(a) Ground mark (b) Ground mark seen from satellite

Figure 4.2: Example of a ground mark used to estimate the user’s
geolocation ground truth. (a) Ground mark from where the user photo
was taken. (b) Satellite image of the scene. The ground mark is visible
on the pavement.

4.2 Setup

Locations We created a dataset of user images with day and night time

photos taken at seven outdoor locations: one in Norwich and six in

central London, UK. The number of pictures taken at each location varies

from four to twenty-three. Some examples can be seen in Figure 4.3.

Characteristics of each location All pictures in London were taken on the

same day over the afternoon and evening. The pictures taken in front of

the Norwich Cathedral were all taken on the same afternoon.

Data collection We collected data in July 2022 (scene S1) and October 2022

(scenes S2 to S7). All images were reduced to a maximum resolution

of 1024 × 1024 pixels. For geolocation information, we used the GNSS
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(a) User image, scene S5 (b) User image, scene S6

Figure 4.3: Examples of user images taken using a smartphone.

(a) Street-view image, scene S5 (b) Street-view image, scene S6

Figure 4.4: Examples of street-view images retrieved from the Google
API closest to the user’s GNSS geolocation.
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data embedded in the pictures. The native smartphone camera app was

allowed to stay open on screen for a minute before each picture was taken

so the calculation of the GNSS location would have time to converge.

The number of images varies between scenes to assess the robustness of

methods under different conditions, specifically with a limited number of

user images. As all scenes had similar performance, even with as few as

four user images, we also conducted a systematic analysis of the HLoc+SV

performance with varying number of images (Section 4.4).

Sensors Only the iPhone camera and embedded GNSS receiver were used.

No post-processing or data refinement is done afterwards.

Street-view reference dataset For each location, street-view images from

the Google Street View API were downloaded. They have a resolution of

640 × 640 pixels and geolocation information embedded. Google Street

View images are captured with a set of cameras, lasers and GNSS receivers

attached to the roof of a car [10]. No information about the specific

equipment used is provided. The Google Street View pictures were

captured between March 2019 and July 2022. Some examples can be

seen in Figure 4.4.

Equipment All experiments reported in this chapter run on an Apple M1 Pro

10-core processor and 16-core GPU. An iPhone XR was used to take user

pictures and retrieve the user’s GNSS geolocation.

Libraries and source code The hierarchical localisation framework [127]

was used as a base pipeline to extract SuperPoint deep features and

match using the SuperGlue algorithm with the HF-Net neural network
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pretrained on the Aarchen dataset. The COLMAP framework [132, 133]

was used to create the SfM model and estimate the camera poses. The

coordinate transformations were performed using the PROJ software [39].

The code to run the experiments was written in Python 3.9.

Hyper-parameters For the SuperPoint features, we detected a maximum

of 4096 keypoints, NMS within a radius of 3 pixels, converted images

to greyscale and resized to a maximum of 1024 × 1024 pixels. For the

SuperGlue feature matching, we perform 50 Sinkhorn iterations, with

outdoor weights. For the COLMAP, we use a radial camera model. For

the PROJ, we use the default parameters.

4.3 Results

The results consider both methods – aligning the SfM model using only the

GNSS receiver information (HLoc+GNSS) and using the street-view photos

geolocation (HLoc+SV). Table 4.1 shows the estimated geoposition mean abso-

lute error (MAE) of the GNSS receiver and both of our methods (HLoc+GNSS

and HLoc+SV).

The first row of Table 4.1 shows that, in scene S1, the user pictures were

taken during the day and 23 pictures were used to build the SfM model. To

geolocate the SfM model, 14 images were retrieved from the Google Street

View API. The GNSS receiver embedded in a smartphone had a mean absolute

error of 6.65m (Standard Deviation 3.43). Our method HLoc+GNSS, with no

use of street-view images, had a mean error of 3.60m (SD 2.24). Finally, our

method HLoc+ SV, which adds street view images to the SfM model, had a

mean absolute error of 0.46m (SD 0.28).
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Table 4.1: Geoposition mean absolute error (MAE) in meters of a
smartphone GNSS receiver, HLoc+GNSS and HLoc+SV methods.

# of images Mean absolute error (m)

Scene Time User SV GNSS HLoc+GNSS HLoc+SV

S1 Day 23 14 6.65 (SD 3.43) 3.60 (SD 2.24) 0.46 (SD 0.28)

S2 Day 5 9 16.92 (SD 1.87) 16.90 (SD 0.59) 0.54 (SD 0.39)

S3 Day 4 10 5.87 (SD 0.96) 5.84 (SD 0.81) 0.96 (SD 0.44)

S4 Day 4 11 10.97 (SD 1.49) 10.95 (SD 0.75) 0.99 (SD 0.33)

S5 Day 4 6 3.20 (SD 1.19) 3.14 (SD 0.18) 0.57 (SD 0.28)

S6 Night 10 18 14.21 (SD 1.98) 14.15 (SD 1.45) 1.19 (SD 0.12)

S7 Night 8 12 30.21 (SD 1.65) 30.20 (SD 1.30) 1.17 (SD 0.07)

Total 58 80 12.09 (SD 8.67) 10.87 (SD 9.35) 0.77 (SD 0.41)

Taking into account the overall performance of all scenes, with all 58

user images and 80 street-view images, the GNSS receiver achieved a mean

absolute error of 12.09m (SD 8.67). The HLoc+GNSS had an overall mean

absolute error of 10.87m (SD 9.35), and the HLoc+SV, 0.77m (SD 0.41).

Extremely challenging scenarios for GNSS presented the greatest improvement

in performance. Scene S7, for example, has nighttime pictures and over 30m

GNSS positioning error. Using HLoc+SV, the positioning error is reduced to

1.17m.

We run this experiment considering seven scenes: five with pictures taken

during the day and two at night. The scenes with night pictures had a greater

geoposition error when considering the HLoc+SV method due to the image

matching be against street-view pictures taken during the day. Even so, the

HLoc+SV has shown a lower mean absolute error in all scenes tested.

Figure 4.5 shows the cumulative distribution of absolute geoposition errors

of the GNSS receptor, HLoc+GNSS and HLoc+SV. At a distance threshold of
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3m, for example, 21% of all images had their camera poses correctly geolocated

with HLoc+GNSS and 9% with GNSS. On the other hand, 100% of images

were geolocated within 1.49m with HLoc+SV.
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Figure 4.5: Cumulative distribution of absolute geoposition errors.
Our method (HLoc+SV) localised all photos within 1.49 m.

Figure 4.6 shows a box plot of absolute geoposition errors. The GNSS error

range is between 1.80m and 33.11m, with quartiles at 5.35m (Q1), 9.30m

(Q2) and 15.48m (Q3). For the HLoc+GNSS, the error range is between 0.25m

and 31.92m, with quartiles at 3.24m (Q1), 7.68m (Q2) and 15.83m (Q3).

Finally, the HLoc+SV error range is between 0.11m and 1.49m, with quartiles

at 0.43m (Q1), 0.71m (Q2) and 1.12m (Q3).

Figure 4.7 shows map projections of the GNSS and HLoc+SV geopositions

in scenes S1 and S2, respectively. The red dots represent the ground truth

manually retrieved. The blue triangles represent the geolocation of street-view

images retrieved from the Google API, used as a reference to geolocate the

SfM model. The GNSS position drift is represented by black lines, showing the
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Figure 4.6: Box plot of absolute geoposition errors.

distance between the ground truth geolocation (red dot) and the geolocation

obtained by the GNSS receiver (other end of the line). The line in magenta

represents the geolocation drift of our method HLoc+SV. The scale of 2m is

represented at the bottom of each map. Note the difference in length between

the black and magenta lines. In all cases, the absolute HLoc+SV position error

(line length) is lower than the absolute GNSS receiver error.

The photos in scene S1 (top map in Figure 4.7) were taken in Norwich,

in front of a cathedral with a clear view of the sky (and consequently a good

reception of GNSS signal). All other photos were taken in central London,

a highly urban area with tall buildings and urban canyons, more subject to

interference and reflection of the GNSS satellites’ electromagnetic waves. It is

interesting to note that in scene S1 the geolocations reported by the GNSS

receiver do not drift in the same direction, but they do in scene S2 (bottom

map in Figure 4.7) and in all other scenes.

The most time-consuming step of HLoc+SV is to create the SfM model.

The feature extraction runs in real-time at 20 fps. The SfM model building
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Map data ©2023 Google 2 m  Report a map error

Map data ©2023 2 m  Report a map error

Figure 4.7: Projection on map of geopositions in scenes S1 and S2,
respectively. Ground truth position in red. The black line shows the drift
between the GNSS position and the ground truth. The Magenta line
shows the geoposition drift of our method.
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took about 2min for each scene on an Apple M1 Pro 10-core processor and

16-core GPU.

4.4 Impact of the number of images on perform-
ance

The results presented so far showed that HLoc+SV has significantly lower errors

even on scenes with as few as four user images and six street view images (scene

S5) when compared to using the GNSS information alone (HLoc+GNSS).

For this reason, we conducted a further analysis to investigate how the

number of pictures, both user images and street view images, can affect the

geolocation performance. Thus, we can discover the minimum number of street

view images and user images necessary, and how increasing the number of

pictures positively affects performance.

To achieve this objective, we used the following methodology:

1. Vary the number of images: The number of user images and street

view images was progressively increased from one to the maximum

available.

2. Generate permutations: For each combination of user images and

street view images, up to ten unique permutations were selected.

3. Build and geolocate SfM model: The HLoc+SV method run for each

permutation of images.

4. Evaluate model performance: The mean absolute error (MAE) was

computed for each SfM model. We set an error limit of 10m for cases
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where the geolocation error was higher than 10m or a model could not

be built.

5. Calculate mean performance: Finally, we determined the mean MAE

of all ten permutations.

For example, to calculate the geolocation error for five user images and

seven street view images, we randomly select up to ten unique permutations of

user and street view images, run the HLoc+SV method for each permutation,

calculate the MAE, and then the mean of all ten MAE.

The experiment results for the two scenes with the highest number of

images, S1 and S6, are presented in Figure 4.8, where the x-axis represents

the number of user images and the y-axis represents the number of street view

images. Each cell in the matrix represents the mean MAE of up to ten image

permutations. A gradient colour error bar is used, with white representing

geolocation errors within 5m, blue representing errors from 0m to 5m, and

red representing errors from 5m to 10m.

The results demonstrated a clear and expected trend that an increase in

the number of user and street view images corresponded to a reduction in

geolocation error. A minimum of three street view images are required to

geolocate the SfM model. Below this threshold, it is not possible to geolocate

the model using street view pictures. In these cases, the HLoc+SV method

falls back to localising the model using only the geolocation of user images, i.e.

the HLoc+GNSS method, which is less accurate. In both scenes, using more

than ten street view images does not improve the performance significantly.

When ten or more street view images are used to build the SfM model, even a

single user image can be geolocated accurately.
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(a) Scene S1
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(b) Scene S6

Figure 4.8: Mean absolute error matrix in metres showing how the
number of pictures, both user images and street view images, can affect
the geolocation performance.

The observed accuracy trend follows an almost monotonic pattern. The

fluctuations are due to the random image selection. In cases when the set

of user and street view images show non-overlapping parts of the scene, the

construction of an SfM model fails and, consequently, the mean MAE error

increases. Despite these variations, the overall consistency in the relationship

between the number of street view images and the geolocation performance

confirms the expected outcome.

4.5 Discussion

The HLoc+SV presented excellent performance to geolocate user images when

street-view reference images are used. Without the use of street-view images,

the HLoc+GNSS marginally improves the precision of the user’s geolocation

due to the robust SfM coordinates transformation using RANSAC.

To illustrate how the HLoc+SV method improves error considerably com-
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pared to other methods, consider a specific scenario in which a user captures a

series of images in an urban environment with varying levels of GNSS accuracy.

We will compare HLoc+SV with GNSS and HLoc+GNSS. Note that the original

HLoc method is not suitable for this comparison, as it aims to solve a different

problem, i.e. calculate the camera pose within a large SfM model in local

coordinates.

In this scenario, the user is walking along the pavement and captures a

sequence of 6 images using a smartphone equipped with a GNSS receiver.

The GNSS accuracy varies, leading to geolocation errors from 3m to 30m.

Additionally, a dataset of geotagged street view images of the area is available,

which serve as reference points for geolocation.

Using GNSS information alone to estimate the user geolocation is not

accurate enough for this navigation task, as it is not possible to know even on

which side of the street the user is. It results in inaccurate positioning even

when the geolocation error is as low as 3m,

The HLoc+GNSS method uses the user images to build an SfM model of

the scene. It incorporates GNSS information to geolocate the model, which

is used to estimate the camera pose in world coordinates. As the GNSS

information is the only reference to geolocate the SfM model, GNSS positioning

errors propagate into the camera pose estimation process, leading to similar

localisation results.

The HLoc+SV method integrates geotagged street-view images into the

SfM model to refine geolocation accuracy. The GNSS information is used to

retrieve street-view images nearby, which are added to the model and serve as

‘anchors’ to geolocate the whole model.

When street-view images are added to the process, the local coordinates
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of the SfM model are transformed into world coordinates using accurate

geopositions. Although the resolution of Google Street View API images is as

low as 640× 640 pixels, their geoposition is more accurate [10], as demonstrated

by the results. In fact, when we align the SfM model using the reference set

(HLoc+SV), our method achieves an average mean error of 77 cm (SD 41).

Matching night-time images is a well-known challenge in computer vis-

ion. The change in appearance due to illumination, strong shadows, light

temperature, and colour makes the appearance of local features change to

the extent that they are not recognised as being the same. Associated with

that, the change of perspective distorts angles and changes the appearance

of local features even further. For small-scale features, the angles change and

textures get distorted. For large-scale features, the relative position between

objects changes proportionally to the distance between their perspective plan

(known as the parallax effect). Combined, these two aspects make it extremely

challenging to match local features under such conditions. Nonetheless, the

SuperPont deep features and SuperGlue matching algorithm used in HLoc+SV

handled well these challenges, achieving a mean absolute error in night scenes

of 1.19m in S6 and 1.17m in S7, while the GNSS receiver achieved a mean

absolute error of 14.21m and 30.21m, respectively.

Building the SfM model is the most time-consuming step, which takes about

2 minutes for each scene. The feature extraction runs in real-time at 20 fps.

One way of accelerating this process is to build SfM models in advance. There

are 3D modelling projects of cities such as London, New York, Tokyo, and San

Francisco [167]. Nonetheless, the SfM models must be built using the same

feature descriptors (SuperPoint) to be used in this process.

If the mobile internet connection is reliable enough, the features of the
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user’s image can be extracted locally and uploaded to the server, where the

building of an SfM model can be done more quickly, potentially in real-time.

With the availability of 5G connections in the near future, which is expected

to have a very low latency and high speeds, this real-time processing could be

possible over the internet. Then, the SfM model can be downloaded by the

user and from there the processing can be done locally in real-time.

The HLoc+SV is loosely dependent on the user’s GNSS receiver information.

The GNSS geolocation is only used to retrieve nearby street-view images.

The street-view images’ geolocation is then used to transform the SfM local

coordinates to world coordinates. The rough geolocation of the user could

potentially be obtained in other ways, such as Wi-Fi signal, mobile phone

carrier antennas, or even visual identification of the place using only the camera,

with no additional sensors.

In scene S1 (top map in Figure 4.7), the GNSS geolocation drifts in all

directions. In all other scenes, the GNSS coordinates all drift in the same

direction. This behaviour is common in urban centres, where GNSS satellite

signals are easily blocked in areas surrounded by tall buildings (called urban

canyons) [171]. The use of geotagged street-view images solves this problem.

In this way, they act as an anchor to correctly align the SfM model to world

coordinates. The estimated camera position on the SfM model after this

alignment is regarded as the user position.

There is a marginal improvement in geoposition errors when the SfM model

is aligned using geocoordinates reported by the user’s GNSS receiver only

(HLoc+GNSS). When the set geopositions obtained by the GNSS receptor drift

in the same direction, the robust alignment with RANSAC is not very helpful.

When positioning is scattered in all directions (e.g. in scene S1), RANSAC
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is able to fit the SfM model to the position of the user with more precision.

Nonetheless, the HLoc+GNSS is not precise enough for visual pedestrian

navigation.

Figure 4.8 revealed a clear trend that increasing the number of street

view images consistently led to a reduction in geolocation error. While user

images provide valuable context and contribute to building consistent SfM

models, street view images play a critical role in enhancing accuracy. Error

fluctuations occurred due to random image selection and non-overlapping scene

parts, which made the construction of SfM models fail. Overall, the trend

confirmed a consistent relationship between the number of street view images

and geolocation performance. This experiment also revealed that a minimum

of three street view images is necessary to build an SfM model and, for the two

scenes analysed, using more than ten street view images does not increase the

performance significantly.

Finally, the Google Street View is not the only street-view service available.

There are other services that can be used instead. The Apple MapKit, for

example, provides street-view images for Apple devices only. Recently, the

company announced the Apple Maps Server API, for access from any device

through HTTP requests. Although similar to MapKit, the Maps Server API

does not yet provide access to streetview images. Another alternative is

Mapillary, a platform that makes street-level images and map data uploaded

by users freely available to everyone. Their coverage is not as wide as Google’s

yet, and the geolocation of uploaded images are manually set by the users.

The Google Street View API also has a partnership program with selected

universities to provide high-quality street view images with a resolution of

2048 × 2048.
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4.6 Conclusion

In this chapter, we detailed the construction of the HLoc+SV, a vision-based

geolocation method based on a version of the hierarchical localisation framework

that exploits information from a dataset of geotagged street-view images. For

the experiments, we collected 58 street-view pictures from seven places in

the United Kingdom and downloaded 80 geotagged images on demand from

the Google Street View service. Comparing our results with a smartphone

GNSS receptor, we see that the mean absolute error decreased from 12.09m

(SD 8.67) to 0.77m (SD 0.41). Extremely challenging scenarios for GNSS

presented the greatest improvement in performance, even when night-time

pictures were considered. When the mean absolute geoposition error of the

GNSS in a night scene is as high as 30.21m, the error with HLoc+SV is 1.17m.

Overall, a minimum of three street view images is necessary to build an SfM

model. Where ten or more street view images are available, even a single user

image can be geolocated accurately.

The resources used in these experiments – GNSS receptor, camera, and

internet connection – are all available in smartphones, which makes this solution

have the potential to be used in end-user applications.

These results add evidence to the argument that vision-based solutions

can improve the accuracy of geolocation estimation. Nonetheless, would be

interesting to analyse the performance of HLoc+SV on a larger dataset of user

pictures, using higher resolution street-view reference images with information

about the equipment used, and ground truth data collected from a high precision

GNSS receiver (such as RTK GNSS).

The HLoc+SV is a potential solution only suitable for the scenario when
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the GNSS service is available and relatively accurate. When the GNSS service

is unreliable or unavailable, we need to explore other solutions. This is what

we will cover in the next chapter.



Chapter 5

Geolocation using image retrieval
and light normalisation

A number of applications rely on GNSS service worldwide, although its availab-

ility or reliability is far from granted. There are several scenarios in which the

GNSS service may suffer interference or be completely blocked [171]. The GNSS

signal is easily tampered with by physical obstructions such as mountains,

trees, or tall buildings. Even when the GNSS signal is not completely blocked,

these obstructions reflect the electromagnetic waves before reaching the receiver

antenna, causing an effect called ‘multipath’. The reflected signal combines

with the original signal and creates interference, resulting in errors in the

calculated position. Electrical structures such as telecommunication towers,

high-tension equipment, radar systems and even smaller electrical devices may

also interfere with GNSS receivers. These effects are easily observed in highly

urban areas, where it is common to have inaccurate readings or complete loss

of GNSS signal.

Global events can affect GNSS coverage on a larger scale. Weather condi-

tions, such as heavy rain or snow, or atmospheric events, such as solar flares,

can disrupt the GNSS service in an entire city or county. The GNSS satellites

98
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are also subject to outages due to system malfunction or maintenance.

The GNSS service can be easily disrupted on purpose by jamming or

spoofing. A malicious agent can do this by broadcasting electromagnetic waves

at the same frequency as GNSS signals. Although illegal in many countries,

GNSS jammers can be purchased online and are often used by individuals or

organisations that want to prevent tracking or surveillance. In a war, military

forces may jam or disrupt GNSS signals to prevent their adversaries from

using this technology. Some countries may choose to degrade or even turn off

GNSS signals to civilians to prevent enemies from using the GNSS service for

navigation or targeting.

There are few alternatives to geolocating an individual when the GNSS

service is unreliable or not available. Leaving aside analogical options such

as celestial navigation, paper maps, and magnetic compasses, vision-based

approaches using images or video frames are a good alternative in this scenario.

In this chapter, we study the problem of geolocating a single image with

no previous geolocation information. There is a wide range of approaches in

the literature trying to solve this vision-based geolocation problem. Many of

them require additional sensors or more information than a colour image [6,

104, 158]. Recent approaches involve the use of convolutional neural networks

[160] and nearest neighbour local feature matching [65, 169].

A review of single-image geolocation methods with a brief explanation of

techniques is presented in Section 2.4. Despite several attempts to increase the

accuracy of geolocating a single picture taken outdoors, the best results we

could find in the literature are not suitable for safely building a navigation

assistant with the requirements described in Chapter 2 when no geolocation

data is available. Furthermore, most proposed solutions in this area do not
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discuss the role and impact of different local descriptors in this task. The

manipulation of illuminance and shadows on photographs is an option to

increase the performance of image matching under such a challenging scenario.

The question of estimating and eliminating the effects of illuminants is a

highly active research field [8, 41, 56, 153, 157]. These methods produce images

partially or fully invariant to illuminants by producing a derived representation

of the image that does not change when the illumination changes. Various

methods are proposed in the literature for obtaining post-processed images

that are invariant to illumination colour, intensity, shading, and specularities.

In Appendix A, we review two of these methods and also briefly explain the

process of image formation.

This chapter concerns creating and analysing a geolocation method for

when there is no GNSS service available based on image retrieval. We use

a method based on a Generalised Minimum Clique Problem (GMCP) image

retrieval framework, and attempt to further improve it by normalising the

illuminance of images with the Self Quotient Image algorithm. We test the

geolocation estimation on the UCF Street View dataset, which contains more

than 62,000 Google Street View images of three cities in the US. Furthermore,

we compare the performance of SIFT, SURF and MSER local descriptors on a

smaller dataset of 400 street-view images taken years apart.

When we ran the experiments reported in this chapter, deep features were

in an early development stage. For this reason, we do not approach them in

this chapter.
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Extract local
features

Query 
image

Retrieve nearest
neighbours for
each feature

Prune overly
common features

Match features
based on GMCP

Select the best
match using
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Estimated 

geolocation

Normalise 
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Figure 5.1: Sequence diagram of the image retrieval and geolocation
task using the GMCP-based framework and Self Quotient Image to
normalise the effect of illuminants.

5.1 Method

We aim to geolocate a query image taken by the user by retrieving the closest

street-view image from a reference set. We perform the image retrieval and

geolocation task using a GMCP-based framework [169], preprocessing all images

with the Self Quotient Image filter to remove the effect of illuminants. Figure 5.1

shows a sequence diagram of this experiment. Please see Section 2.4 for more

details on GMCP-based image retrieval and the Appendix A for details on the

SQI algorithm.

In the original GMCP-based approach [169], SIFT local features are extrac-

ted from all images in the reference set and are organised in a kd-tree. Given

a query image, its SIFT features are extracted and, for each feature, the 𝑘

nearest neighbours are retrieved from the kd-tree [102].

In contrast to the assumption that the first nearest neighbour is the

optimal choice for local feature matching, the original GMCP-based method

acknowledges that this may not be the case when multiple very similar local

features are present (such as undistinctive features present in trees, cars, and

roads, for example). For this reason, they exclude local features that are too

common in the dataset. The remaining features are then matched to multiple
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features in the reference set.

A GMCP-based feature matching technique is then employed to identify

a single nearest neighbour match for each query feature, ensuring that all

matches are globally consistent. Once the GMCP is solved, a voting scheme is

employed to elect the strongest reference image match.

The geolocation information of the images in the reference set is converted

to Cartesian coordinate values to be used as a global feature. They use a

robust distance function to measure the similarity between global features and

select the reference image with the greatest number of feature matches. The

idea is that clusters of reference images geographically close to each other are

prioritised in this voting scheme. In the end, the geolocation of the winning

reference image is returned as the estimated geolocation of the query image.

In our method (GMCP+SQI), we first transform the query image and all

the images in the reference set into an illuminant-free image space using the

Self Quotient Image (SQI) algorithm. In this way, the differences between

images due to changes in illuminance are removed, therefore we expect to have

a greater number of SIFT features correctly matched. The images processed

with the SQI filter are then fed into the GMCP-based framework.

We also analyse two alternative voting schemes: counting the number of

matching features (GMCP+SQI w/ weights) and estimating the geometric

transformation (GMCP+SQI w/ geom. transf.). We estimate which frame-

work provides the best result (GMCP or GMCP+SQI) considering these two

alternative voting schemes, and selected it as the final answer.

For the GMCP+SQI w/ weights, the decision parameter for the voting

scheme is the number of matched features considering all images in the reference

set. In other words, for every image in the reference set, we count one point
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for each matched feature remaining in the best GMCP solution. Thus, the

image with the greatest cardinality of matched features is the winner. Finally,

the last step is to estimate the camera pose.

5.2 Fundamental matrix

Calculating the camera pose involves determining the position and orientation

of the camera relative to a reference image (2D) or scene (3D). In this section,

we discuss the method to estimate the pose of uncalibrated cameras relative to

a reference image using fundamental matrices. A more detailed explanation

can be found in [62, 63].

The first step is to detect local features in both query and reference images.

A feature matching algorithm is then used to find the corresponding features

between the two images. Common methods for feature matching include nearest

neighbour search [102] using distance metrics such as Euclidean distance or

Hamming distance, followed by a ratio test to remove outliers and ambiguous

matches [88].

Using the correspondences obtained from feature matching, the essential

matrix (for calibrated cameras) or the fundamental matrix (for uncalibrated

cameras) can be computed [62]. The essential matrix relates the camera poses

between two views, whereas the fundamental matrix describes the epipolar

geometry between two images.

The fundamental matrix conveys the geometric relationship between two

views of a scene captured by cameras with arbitrary motion and intrinsics.

Formally, the fundamental matrix 𝐹 relates the corresponding points in two

images through the epipolar constraint [62], i.e. given a set of corresponding



5 Geolocation using image retrieval and light normalisation 104

points 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖, 1)𝑇 in one image and 𝑝′
𝑖
= (𝑥′

𝑖
, 𝑦′
𝑖
, 1)𝑇 in the other image, the

epipolar constraint is such that 𝑝′
𝑖
𝑇𝐹𝑝𝑖 = 0.

The fundamental matrix can be estimated from these correspondences using

various methods [62]. The simplest one is the 8-point algorithm, in which the

fundamental matrix 𝐹 is calculated by solving the linear system 𝐴 𝑓 = 0, where

𝐴 is the coefficient matrix constructed from the point matches and 𝑓 is the

vectorised form of 𝐹.

Given a set of 𝑁 point correspondences {𝑝𝑖, 𝑝′𝑖}𝑁𝑖=1, the goal is to find the

fundamental matrix 𝐹 that satisfies the epipolar constraint 𝑝′
𝑖
𝑇𝐹𝑝𝑖 = 0 for

all 𝑖. For 𝑁 point correspondences, we obtain 𝑁 linear equations of the form

𝑝′
𝑖
𝑇𝐹𝑝𝑖 = 0. Since 𝐹 is defined up to scale, it is usually constrained to be

of rank 2 by performing singular value decomposition (SVD) and null space

extraction. Methods such as RANSAC [43] and MSAC [146] can also be applied

to robustly estimate 𝐹 from a set of noisy matches. It is possible to calculate

𝐹 ‘when only 7 point correspondences are known’ [62, p. 281].

In the normalised version of the 8-point algorithm, the point correspondences

are first normalised by transforming the point coordinates such that they have

zero mean and standard deviation equals 1. After estimating 𝐹 in the normalised

space, it is denormalised to obtain the final estimate.

Once the fundamental matrix 𝐹 is estimated, it can be used to enforce

geometric constraints (such as the epipolar lines) and to extract the camera pose

and 3D structure of the scene. Given a point 𝑝𝑖 in one image, its corresponding

epipolar line 𝑙′
𝑖
in the second image can be computed as 𝑙′

𝑖
= 𝐹𝑝𝑖. Similarly, for

a point 𝑝′
𝑖
in the second image, its corresponding epipolar line 𝑙𝑖 in the first

image can be computed as 𝑙𝑖 = 𝐹𝑇 𝑝′𝑖. Therefore, the epipolar lines establish

a relationship between any 𝑝𝑖 and 𝑝′
𝑖
without knowing the actual position of
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such points in 3D space or the intrinsics of the cameras. The relative pose

between the two cameras can be calculated from 𝐹 [62].

For the GMCP+SQI w/ geom. transf., we attempt to robustly estimate the

fundamental matrix 𝐹 for each image from the reference set with at least three

matched feature points using MSAC. The image with the greatest reciprocal

condition of 𝐹 is considered the best image match. When it is not possible

to estimate 𝐹 for any image, we use the original voting scheme (using global

features) on the GMCP method to decide the winning reference image.

5.3 Effect of light normalisation on features de-
tection

Before conducting the experiments reported in Section 5.5, we visually checked

the impact of SQI light normalisation on the detection of local features. As we

can see in Figure 5.2, the Self Quotient Images only contain small-scale SIFT

features. This is due to the low contrast of processed images and the SIFT

detection method based on the Difference of Gaussian (DoG).

This approach has the advantage that small-scale features focus on details

such as doors, windows and textures. This type of information is more stable

and is less prone to variation when compared to a broader view of the scene.

Large-scale features change with the scene composition of different planes and

are more strongly affected by the parallax effect.
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(a) Original (b) SQI

Figure 5.2: Example of light normalisation using SQI. (a) Original
and (b) processed images. SIFT features are illustrated in green. Only
small-scale SIFT features are detected in the image processed with SQI.

5.4 Datasets

In this section, we introduce the three datasets used in the experiments reported

in Section 5.5.

5.4.1 Reference set

We use the UCF street-view dataset [169] containing 62,058 images from the

Google Street View service [51] at a resolution of 1281 × 1025 pixels each. We

chose this dataset because it was the one used to test the original GMCP-based

image retrieval framework [169]. It allowed us to directly compare the results

reported in this chapter with the results achieved by the original GMCP-based

geolocation framework. Furthermore, when we conducted the experiments, it

was one of the most comprehensive structured street-view datasets publicly

available including camera pose information and geocoordinates.

This dataset covers areas in three US cities: Pittsburgh, Orlando, and
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North

East

South

West

(a) 676 Smithfield St (b) 226 Fort Pitt Blvd

Figure 5.3: Street-view sample images from the reference set taken in
Pittsburgh, US. Each column corresponds to a placemark.
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Manhattan. Pictures are taken every 10m along the road. Each street-view

placemark is divided into four side views (north, east, south and west). Although

these are daytime images, there is no information about the date or time when

they were taken. Figure 5.3 shows some examples.

For each street-view placemark (i.e. each spot along the road), a 360°

spherical view is broken down into four side views and an upward view.

5.4.2 Query set

We created a dataset with four hundred images retrieved from the Google Street

View API. They correspond to a hundred randomly selected placemarks in the

reference dataset, four images per placemark (with the camera pointing to the

north, east, south and west). All new images have a 640 × 640 pixels resolution

and were taken during the day. Some samples are shown in Figure 5.4.

The illuminance and point-of-view of these new images are remarkably

distinct from those in the reference dataset. Although all the photos in both

datasets were taken every 10m along the streets, the position of the placemarks

does not necessarily lie in the same place. For each placemark, there is a

camera shift of up to 5m.

In short, the most significant differences identified between the datasets

are (i) the illuminance; (ii) the image resolution; (iii) the point of view, which

changes up to 5m; (iv) the camera lens; (v) the light exposition and saturation;

(vi) the foliage, depending on the season; (vii) the improvements on roads and

pavements; (viii) the changes on buildings; and (ix) the areas occluded by

buildings’ maintenance and cars.
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Reference set Query set

Figure 5.4: Street-view images from the reference and query sets taken
in Pittsburgh, US. Each row corresponds to the same placemark and
same camera direction.
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5.4.3 Test set

The UCF street-view test set [169] has 644 images retrieved from Picasa,

Panoramio and Flickr, geotagged by users, and manually corrected afterwards.

Seven sample images are shown in Figure 5.5. The resolution of images in this

test set is not uniform across all images, although all images have a resolution

greater than the resolution of images in the street-view reference set (1281×1025

pixels).

Figure 5.5: Samples from the UCF street-view test set. From [169].

5.5 Results and discussion

In this section, we describe the details of our evaluation and present the results

for the feature matching. In Section 5.5.1, we use five images of the same

scene to evaluate the performance of SIFT, SURF and MSER, and fine-adjust

settings. In Section 5.5.2, we analyse the performance of SIFT, SURF and

MSER feature matches on correspondent image pairs in the reference and query
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sets. Finally, in Section 5.5.3, we evaluate the use of GMCP–based methods

with and without SQI normalisation using alternative voting schemes.

In all experiments, the SURF and MSER features were detected using

the MATLAB 2016b Computer Vision toolbox [144] and the SIFT features

were calculated using the open source VLFeat toolbox [150]. The Large scale

GMCP–based image geolocation framework run using the MATLAB 2016b

on the UEA High Performance Computing Cluster, optimised for parallel

processing.

5.5.1 Single case image matching

A single image was randomly selected from the reference set. Then four similar

images were downloaded from the Google Street View service [51] with a

progressive change in the camera’s perspective and illumination conditions.

The settings used to detect the features are listed in Table 5.1. The images

retrieved for the single case image matching can be seen in Figure 5.6.

Table 5.1: Settings used on single image pair matching.

Detector Descriptor Settings

SURF SURF Threshold of 50 and 15 square filters from 9 to 93
pixels, inclusive.

MSER SURF Step size between intensity level of 0.8%, a minimum
area of 9 pixels and maximum area variation between
extremal regions threshold of 1.0.

DoG SIFT Difference of Gaussians (DoG) detection method,
peak threshold of 10−4 and estimation of affine ad-
aptation [99] and orientation of features.
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(a)

(b) (c)

(d) (e)

Figure 5.6: Images used in this experiment. (a) Reference and (b-e)
query images. The query images are sorted by visual similarity to the
reference image.
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Fundamental matrices were estimated using the MSAC method with a

maximum number of random trials of 8000, confidence of 99%, and maximum

distance from point to projection of 10 pixels. Matrices with a reciprocal

condition index lower than 10−7 were considered poorly conditioned and

discarded. To evaluate the performance of the feature matching, we compare

the number of matches in each pair of images. In this way, we observe the

descriptors’ invariance due to differences in extrinsic conditions, e.g. point of

view and illuminance.

A comparison of the results is shown in Figure 5.7. The SIFT descriptor

showed the best performance among all evaluated algorithms; in all four cases, it

was possible to generate consistent fundamental matrices from SIFT matching

features. Although there are 6 to 9 matching features in (d) when SURF and

MSER algorithms are used, it was not possible to generate well-conditioned

fundamental matrices.
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Figure 5.7: Comparison of SIFT, SURF and MSER feature matching
on the photos presented in Figure 5.6.



5 Geolocation using image retrieval and light normalisation 114

Although we can find in the literature reports of performance decrease when

illumination and perspective change separately, these experimental results

indicate that the combination of illumination and perspective change has the

potential to cause an exponentially negative effect on the performance of all

local features analysed.

5.5.2 Image matching on query set

This experiment concerns the efficiency of SIFT, SURF and MSER local features

detectors and descriptors on matching street-view images with simultaneous

changes in perspective, illumination and occlusion. Our approach to exploring

this question is to evaluate the accuracy of SIFT, SURF and MSER by

measuring their repeatability rate when applied to this problem. Ultimately,

we hope to answer to what extent matching out-of-the-box local features can

be useful in street-view images taken years apart.

To verify the accuracy of matching features through a range of images, we

matched the images in the query set with their corresponding images in the

reference set. The parameters were the same as used previously.

The robustness of descriptors was measured by the number of inline matching

points. Results are shown in Figure 5.8. The SIFT descriptor (b) was the most

robust, generating consistent fundamental matrices for 69% of the query set,

followed by SURF (c) with 57% and MSER (d) with 53%. The robustness

of SIFT was confirmed on the histogram of inlier features in each image (b).

Figure 5.9 shows some examples of matches.

The original GMCP-based method for street-view image retrieval uses SIFT

features [169]. Although they do not discuss the reasons for choosing SIFT,
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(a) Accuracy of each descriptor (b) SIFT

(c) SURF (d) MSER

Figure 5.8: Comparison of SIFT, SURF and MSER feature matching
results for the images in the query set. (a) Bar chart with the accuracy
of each method. (b-d) Histograms of the number of matching features in
each image pair.

our results confirm that SIFT outperforms other feature detectors and leads to

more accurate matching features on street-view images.

Although SIFT outperforms SURF and MSER, 31% of the query dataset

images does not generate consistent fundamental matrices, even when the

selected image pairs to be matched are known to be from the same place. We

can conclude that any solution based on matching these local features with no

image pre-processing is limited to an accuracy of 69%.
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(a) SIFT, success (b) SIFT, fail

(c) SURF, success (d) SURF, fail

(e) MSER, success (f) MSER, fail

Figure 5.9: Sample cases of the query set matching test. Left: successful
cases. Right: cases where it was not possible to estimate a fundamental
matrix.

5.5.3 Large scale GMCP–based image retrieval

In this section, we evaluate our GMCP+SQI method. For this experiment, we

used the following hyper-parameters:

Pruning Multiple-nearest neighbour pruning is used to remove query features

that do not have distinctive NNs. The threshold value of 80% when com-

paring the similarity between the first and (𝑘 + 1)th feature is empirically

found in the literature to be optimal [88, 169], so we set the pruning

similarity threshold = 80%.
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Number of nearest neighbours 𝑘 The optimal value of 𝑘 for the feature

matching process depends on the extent of similarity and repetition in the

reference set features. If 𝑘 is too small, there may be insufficient nearest

neighbours considered, leading to a reduced likelihood of identifying the

correct one. In contrast, an overly large value of 𝑘 would result in too

many nearest neighbours included in the input graph, increasing the

complexity of the optimisation task. The threshold value of 𝑘 = 5 is

empirically found to be optimal for this task [169], so we set 𝑘 = 5 in our

experiments.

Global feature The geolocation information is converted to Cartesian co-

ordinate values to be used as a global feature.

Distance function The distance function is used to measure the similarity

between global features. In these experiments, we use the robust function

𝐷 and the empirical value 𝜎 = 256 when geolocation is used as a global

feature (see Section 2.4 for more details on 𝐷 and 𝜎).

Figure 5.10 shows the results of evaluating this method compared to the

baselines in terms of overall geolocation results using reference and test sets.

The solid red curve shows the performance of the original GMCP–based feature

matching [169], and the solid blue curve is the performance of our method.

The dotted cyan curve in Figure 5.10 shows the results using the voting

scheme with weights. The dotted magenta curve illustrates the results with a

voting scheme that considers the conditioning of the geometric transformation

matrix. In very few cases, it improved the results compared with the original

GMCP–based approach. In general, there were not enough feature matches to
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Figure 5.10: Cumulative distribution of absolute geoposition errors
using GMCP and SQI, as well as using alternative voting schemes
(geometric transformation and weights). The horizontal axis shows the
distance threshold and the vertical axis represents the percentage of the
test set localised within the distance threshold.

estimate a geometric transformation, which is the first step in estimating the

camera pose (see Section 5.2).

The lack of feature matches is an inherent characteristic of this GMCP–based

method, which retrieves a single reference image closest to the query image.

The process involves identifying corresponding local features across several

images in the same location and, as a result, feature points corresponding to

the same physical location are scattered across different images. Thus, in most

cases, the reference image alone is not enough to calculate the fundamental

matrix needed for accurate camera pose estimation.

Large scale features that cover large areas present in the GMCP method

can be safely removed using the SQI algorithm. Small areas are more stable
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and less affected by changes in perspective. The matching needs to be reliable,

even if only a few points are associated.

5.6 Conclusion

In this chapter, we explored the use of multiple nearest neighbour feature

matching (kNN), generalised graphs (GMCP) and illuminant normalisation

with Self Quotient Image (SQI) for the task of single street-view image geoloca-

tion. Two street-view datasets were specifically built for these experimental

evaluations.

The results show that SIFT performed better in this task, being able

to deliver enough points to generate fundamental matrices for 69% of the

query dataset. Nonetheless, the performance of all detectors evaluated drops

exponentially when there is a simultaneous change in illumination and point of

view.

We found out that there is no performance improvement with use of SQI

with the GMCP–based image geolocation framework. Moreover, there was a

degradation of 4% in results when the estimation of geometric transformation

was used to combine the results of normalised and non-normalised images. We

found that the SQI prevents the detection of large SIFT features due to the

reduction of contrast between objects. Finally, it is interesting to see that the

estimation of the geometric transformation was prejudiced by the distributed

feature matching system introduced by GMCP.

Despite our efforts to calculate the camera pose, it was not possible to

estimate a geometric transformation based on the images retrieved using this

method. In most cases, there were not enough inlier matches to estimate a



5 Geolocation using image retrieval and light normalisation 120

fundamental matrix.

Some factors were decisive for this outcome. The significant difference in

perspective changes MSER and SURF descriptors to the extent that features

from the same points become dissimilar. With SIFT features, on the other hand,

perspective distortion is partially mitigated by affine adaptation, although

it creates more mismatches. All three methods are partially invariant to

illumination, yet their performance drops drastically when both perspective

and illuminance change simultaneously.

Illumination plays a crucial role in the performance of feature detection

on street-view images, especially when changes in illumination are combined

with a perspective shift. Considering that it was not possible to improve the

performance of feature matching using images normalised with SQI, in the next

chapter, we investigate the impact of SQI on the accuracy and repeatability

of local feature detectors and descriptors by progressively removing details in

images using a graph-morphological algorithm known as Sieve.



Chapter 6

Impact of illuminance
normalisation on local feature
matching

There are disadvantages to using illuminance normalisation algorithms on

images of urban areas, where there is a predominance of flat areas with sharp

delineations between objects and buildings. Broadly speaking, illuminant

normalisation algorithms based on retinex [84] compare averages of the scene,

which gives the average of the illuminant, with the specifics of the scene. This

approach blurs flat areas, destroying useful information. Retinex algorithms

work well in scenes illuminated by a single constant diffuse illuminant, where

blurring does not affect so much. In a forest, for example, retinex would

probably work well, as the trees would diffuse the sunlight. In urban scenes,

a segmentation algorithm to process and extract information from naturally

well-defined built areas would perform better. In the class of segmentation

algorithms, the Sieve is an interesting one, allowing the separation of connected

components by scale.

Very small-scale information (such as texture) is unlikely to be reliable for

feature matching in urban scenes. On the other end, large-scale information is

121
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excessively big for the buildings. There must be a threshold in between that

gives us information about this matching process. In most photos, we can

identify corners, windows and texture variation in a 10 × 10 pixels window.

We expect that features used for geometric alignment do not span multiple

scales in the Sieve. Very small-scale information is unlikely to be reliable

for feature matching, and at a large scale is information that contains the

illuminant. In this way, systematically removing those scales serves as a proxy

for solving the illuminant. The illuminant is expected to be removed when

large-scale information is removed, while small-scale information is intact.

In this chapter, we investigate the impact of normalising the illuminance

on images using the Self Quotient Image (SQI) filter on the accuracy and

repeatability of local feature detectors and descriptors. We use a graph-

morphological algorithm known as Sieve to progressively eliminate image

details and analyse differences between original images and SQI images at each

scale of detail. We aim to learn more about the performance of SIFT and

MSER at each scale of detail, as well as the impact of Self Quotient Images on

this process. A novel dataset was created to conduct this study on a controlled

set of images carefully aligned. We present suggestions for improvement and

further research in the last section of this chapter.

When we ran the experiments reported in this chapter, deep features were

in an early development stage. For this reason, we do not approach them in

this chapter.
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6.1 Dataset

We built a new structured image dataset to analyse the challenging factors

involved in matching street-view images. A favourable scene for this study has

the following desirable characteristics:

Landmark An ideal landmark for this study must be well known so it would

be easier to get images under a wide range of conditions and facilitate

the dataset expansion in the future.

Almost plane facade A landmark with a planar front makes it easier to

study transformations close to projective rather than epipolar. It is

easier to manually align the images, obtain a ground truth and check

the accuracy of reprojections. Nonetheless, it also allows studying the

effect of projective and epipolar projections at the same time, considering

structures and objects out-of-plane with the building facade. Buildings

with complex structures would take a long time to accurately align.

Variety of sources This allows us to analyse the effect of extreme changes

when the landmark is projected on a plane. Images taken from distinct

cameras and points-of-view allow a camera-independent approach. At the

same time, a variety of light conditions and weather becomes essential to

investigate the effect of the illuminance in such scenarios. Therefore, this

dataset must have images from a variety of sources, e.g. Google Street

View, Flickr, Panoramio, Instagram and Facebook.

Clear view Occlusion is a common problem in image matching, partially

solved by the bag-of-features approach. Yet, it becomes a real challenge

when it is combined with all the other factors mentioned above.
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The historical house of Anne Frank (Figure 6.1) meets all the mentioned

requirements. It has a simple and almost completely flat facade, which facilitates

a manual alignment. Its neighbouring houses are slightly out-of-plane with

some projecting elements, e.g. hangs, windows, surveillance cameras, doors

and roofs. It is exhaustively photographed by tourists and shared online on

social media. The building has a wide-open area in front, allowing people to

take pictures from distinct points of view, including the other margin of the

canal. It is easy to find pictures of the Anne Frank house under very distinct

light conditions and weather, day and night, from 0◦ to almost 90◦, i.e. front

view to almost absolute side view. There is also a tree about 8m tall in front

of it, which helps to study the effect of occlusion consistently.

We so define a new dataset with twenty-two photos of the Anne Frank house

in Amsterdam, geocoordinates 52◦ 22′ 31.2′′N, 4◦ 53′ 2.6′′E. The images were

collected online, taken from different cameras and under different circumstances.

Figure 6.1 shows some examples of images in this dataset.

We analyse the relative variability of our dataset by hand aligning all images

and projecting them all onto a canonical image. It can be observed in Figure 6.2

that the Anne Frank house (at the centre of both images) is sharper than its

surrounding buildings. This is due to the effect of projective transformation

and lens distortions. Elements out of the chosen alignment plan appear with a

ghost effect or, at extremes, are completely vanished. The 8m tall tree in front

of the house is an example of that. It is a few meters away from the facade

and its appearance changes with the seasons. The large arm and hook sticking

out from the top of the building disappear as they are also out-of-plane.

https://earth.google.com/web/search/52.375333,4.884056/
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Figure 6.1: Sample images from the Anne Frank House dataset.
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(a) Original image

(b) Self Quotient Image

Figure 6.2: Coefficient of dispersion of all images on the Anne Frank
House dataset, manually aligned and projected on top of each other. The
coefficient of dispersion is calculated as the ratio of the interquartile
range to the mean at each pixel.
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6.2 Sieve

The Sieves were first proposed as morphological extensions of one-dimensional

recursive median filters [18]. These filters were then extended to two dimensions

using graph morphology, and since then they have been applied to a range of

problems in computer vision including lip-reading [95], stereo vision [100] and

image retrieval [50]. A brief explanation of the Sieve algorithm can be found

in Appendix B. A more detailed mathematical description of the Sieve, its

theorems and properties are available in the literature [15, 16, 49, 58].

In a nutshell, the Sieve is a non-linear decomposition algorithm that identifies

intensity extrema by the scale and removes them by slicing off the peaks, up

or down, to the next most extreme level. It uses morphological operations to

eliminate increasing scale detail keeping the signal’s basic structure. Figure 6.3

and Figure 6.4 show an image decomposition using the Sieve algorithm for

greyscale and SQI images, respectively.

Selecting the most suitable operator is crucial when using the Sieve for

image segmentation. Using M- and N -filters, the sliced regions precisely align

with shadow or illumination highlights, i.e. the granules naturally follow the

isophotes.

6.3 Overlap comparison

Our objective in conducting the following experiments is to measure the

accuracy and repeatability of detectors and to determine to what extent the

detected regions overlap in the same scene area.

First, we convert all images to grayscale by transforming them to the

CIELAB colour space and retaining only the 𝐿 dimension. Based on the
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Figure 6.3: Original grey scale image at 1024 × 768 pixels (top left)
sieved with an M-filter at scales 10𝑛, 𝑛 = 0 . . . 5 (shown left-to-right).
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Figure 6.4: Self Quotient Image of the picture in Figure 6.3 sieved with
an M-filter to scales 10𝑛, 𝑛 = 0 . . . 5 (shown left-to-right).



6 Impact of illuminance normalisation on local feature matching 130

experimental results reported in Chapter 5, we chose to detect SIFT features

with affine shape estimation on each pair of images. MSER and SIFT without

affine estimation features are also tested for comparison.

To assess the accuracy and reliability of detectors, we establish an overlap

error threshold and normalise the sizes of the detected regions. We then test

the repeatability of SIFT features by gradually increasing the mesh size of the

Sieve algorithm to measure how the number of corresponding regions changes

with scale. We record both the actual and relative numbers of corresponding

regions. A robust detector should present a large number of correspondences

and a high repeatability score.

The ground truth was calculated by hand-mapping four points precisely

at the corners of the Anne Frank house in all pictures contained in the

dataset. It allowed us to then compute the projective transformation matrices

[90] for each pair of images. To evaluate the performance of detectors, we

calculate the overlap area between the detected region in a reference image

and its corresponding region in the query image. We then use the projective

transformation 𝐻 to project the overlap onto the reference image.

The correspondence of two regions may be measured by the overlap error

[98], defined as

𝜖𝑜 = 1 −
𝑅𝜇𝑎 ∩ 𝑅𝐻𝑇 𝜇𝑏𝐻

𝑅𝜇𝑎 ∪ 𝑅𝐻𝑇 𝜇𝑏𝐻

(6.1)

where 𝑅𝜇 gives the elliptical region defined by 𝑥𝑇𝜇𝑥 = 1.

A closer look at the definition of 𝜖𝑜 reveals that larger regions are more

likely to obtain favourable overlap scores [98]. The overlap performance of

a region detector can be increased by merely doubling the size of all regions.

To promote a fair comparison, we normalise the regions 𝑅𝜇 fixing their size
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by applying an arbitrary scaling factor 𝑠. This scaling is performed only to

calculate 𝜖𝑜, such normalisation is not performed or even desired at other steps.

We normalise the region size by applying a scaling factor 𝑠 that resizes the

regions to a fixed area 𝑠 · 𝑅𝜇𝑎 . This scaling factor 𝑠 is also applied to 𝑅𝐻𝑇 𝜇𝑏𝐻
,

which is the region detected in the other image mapped onto the reference

image. We use these normalised regions to calculate the actual overlap error as

described earlier.

To determine the repeatability score for a specific pair of images, we divide

the number of region-to-region correspondences by the smaller number of

regions detected in the pair of images. In our experiments, we consider only

the regions in common for each pair of images.

In the first set of experiments, we measure how the number of correspond-

ences varies with the Sieve mesh size. The overlap error threshold 𝜖𝑜 is set to

be less than 40%, and the normalised region size is set to have a radius of

30 px. In general, a detector with a higher repeatability score and a greater

number of correspondences is considered to be more robust. This test provides

a means of measuring the robustness of the detectors at each Sieve band.

In practical applications, the matching or clustering of regions is based

not only on the accuracy and repeatability of the detection but also on the

distinctiveness of the detected regions. To assess the effectiveness of region

matching, we examine both the number of matches found and the ratio of

correct matches to mismatches.

The matching score between two images is calculated in two steps:

1. Two regions are considered correspondent if the overlap error 𝜖𝑜 ≤ 40%.

Only correspondent regions are considered for the next step.
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2. To count a match, we check if the first nearest neighbour in the descriptor

space retrieves the corresponding area when compared by the Euclidean

distance to all other features in that specific image. The matching score

is calculated by dividing the number of matches by the smaller number

of detected regions in a pair of images.

We also measure the impact of the Self Quotient Image algorithm on the

detection of local features. The process described above is also applied to the

sieved Self Quotient Images at the same scales and parameters used on the

original images.

6.4 Experimental results

For these experiments, we consider both SIFT [89] and MSER [94] features

with affine shape estimation [101] and original SIFT without affine estimation

for all detected regions, and check which regions correctly match with each

detector. To compensate for the affine geometric deformations, we map each

elliptical region to a circular region of 30 × 30 pixels, rotating it based on the

estimated gradient orientation.

The results of these experimental tests are shown in Figure 6.5 to Figure 6.12.

The six first figures are composed of four plots: (a) repeatability score, (b)

number of correspondences, (c) matching score and (d) number of correct

matches. The first row of plots, i.e. subfigures (a) and (b), refers to the

performance of feature detection. The second row considers the matching of

features when the first nearest neighbour is retrieved. The matching score (c)

indicates the proportion of features that match, while the number of correct

matches is shown in (d). These two plots evaluate the efficiency of feature
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descriptors, i.e. if the description of a point of interest matches with, and only

with, its correspondent. Notice that the matching score is always lower than

the repeatability. This happens because the correct correspondence of a pair of

features is a prerequisite to consider a correct match. Similarly, the number of

correct matches could never be greater than the number of correspondences.

We analyse the performance of SIFT and MSER features with an estimation

of affine shapes, as well as original SIFT features with no affine estimation.

Figure 6.5 and Figure 6.6 are relative to a low-pass Sieve segmentation of

original images and Self Quotient Images, respectively. The following figures

show the results of high-pass (Figure 6.7 and Figure 6.8) and band-pass sieving

(Figure 6.9 and Figure 6.10) for original images and Self Quotient Images. All

results are presented as the mean performance of matching images on the Anne

Frank House dataset with a reference image.

For low-pass Sieve (Figure 6.5), Sieve mesh = 1 represents the original image

with no Sieve processing. The repeatability score obtained at this Sieve mesh

= 1 indicates the performance of each detector on the original photos and the

degree to which the detector is influenced by changes in perspective, illuminance,

and other factors. Plot (a) shows that the repeatability scores of original images

are similar when we use SIFT with or without affine shape estimation. The

repeatability score of MSER is 39% lower. On the other hand, the number

of MSER correspondences is almost identical to the number of SIFT-affine

correspondences. Therefore, more MSER points have no correspondence on

the reference image.

Regarding the number of matches (d), SIFT and MSER reach 50 matches

when we use affine shape adaptation (Figure 6.5(d), Sieve mesh = 1). The

performance of SIFT with no projection estimation drops 60% relative to the
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number of correct matches. The matching score (c), on the other hand, is 61%

higher when we use SIFT, with or without affine estimation.

The slope of the curves reflects how much a detector is affected by progress-

ively removing details with a low-pass Sieve. As we start to remove detail,

at mesh = 10, the performance of all four indicators stays the same or even

improves slightly. This is due to the removal of fine noise in the images. We

Low-pass Sieve, original images
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Figure 6.5: Low-pass Sieve segmentation for the structured scene (Anne
Frank house dataset, Section 6.1). (a) Repeatability score for increasing
Sieve mesh size (default settings: overlap error ≤ 40%, normalised size =
30 px). (b) Number of corresponding regions. (c) Matching score. (d)
Number of correct nearest neighbour matches.
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observe a substantial decrease in performance for Sieve meshes greater than

100. The number of matches is negligible for Sieve meshes equal to or greater

than 10,000.

The repeatability curve (a) for MSER does not follow the tendency of

other algorithms. Both repeatability and matching scores increase until a

Sieve mesh = 1000. This is explained by the fact that MSER detects areas

and SIFT detects corners and edges. Increasing Sieve meshes progressively

remove detail, and areas of interest become more evident, which helps MSER.

Nonetheless, the absolute number of areas detected (b) drops 62% at Sieve

mesh = 100. Therefore, increasing mesh sizes effectively eliminates incorrect

MSER correspondences at a higher rate than it eliminates correct ones.

The results for the matching plots (c) and (d) follow the same tendency

observed in the corresponding regions (a) and (b), although the former has a

performance 87% lower than the latter. This means that the lack of distinctive-

ness in the regions detected results in a high number of mismatches. In practice,

more complex methods than considering just the first nearest neighbour are

used to match region descriptors. Therefore, these results must be considered

with caution.

Results are quite different when we apply a low-pass Sieve to Self Quotient

Images (Figure 6.6). SIFT-affine is negatively affected when we consider Self

Quotient Images. SIFT with no affine estimation has a more stable curve,

although its performance also decreases.

MSER benefits from using SQI, as the number of correspondences (b)

increases by 52% when we consider original images (Sieve mesh = 1) and by

41% with a Sieve mesh = 10. SIFT-affine also has 10% more correspondences

when we apply Sieve with a mesh size = 10.
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These results help to understand what happened with the experiments

reported in Chapter 5. Self Quotient Images do increase the number of

correspondences. Nonetheless, the description of features detected on SQI is

not distinctive enough to allow matching correct pairs of corresponding features.

The fact is that the SIFT descriptor does not work well with SQI. This is due

to the low contrast of SQI, which wipes away most of the information used to

Low-pass Sieve, Self Quotient Images
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Figure 6.6: Low-pass Sieve segmentation for the Self Quotient Images
(SQI) of the structured scene (Anne Frank house dataset, Section 6.1).
(a) Repeatability score for increasing Sieve mesh size (default settings).
(b) Number of corresponding regions. (c) Matching score. (d) Number of
correct nearest neighbour matches.
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describe points of interest.

Unlike the low-pass Sieve, a high-pass Sieve (Figure 6.7 and Figure 6.8)

keeps detail instead of removing it. At Sieve mesh = 1, we just have a mid-grey

image for all algorithms. At Sieve mesh = 10, only fine details are kept and

everything else is removed. Larger meshes incorporate coarser details until

Sieve mesh = 100,000, which is very similar to the original image.

High-pass Sieve, original images
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Figure 6.7: High-pass Sieve segmentation for the structured scene (Anne
Frank house dataset, Section 6.1). (a) Repeatability score for increasing
Sieve mesh size (default settings). (b) Number of corresponding regions.
(c) Matching score. (d) Number of correct nearest neighbour matches.
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The value of each pixel processed with a high-pass Sieve can range from

−255 to +255, although most images have an effective range of 255 values

at all mesh sizes. For this reason, we need to adjust the contrast of images

processed with a high-pass Sieve so pixel values lie between 0 and +255. The

same happens with the band-pass that we analyse later.

There is no significant increase in performance when we work just with

High-pass sieve, Self Quotient Images
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Figure 6.8: High-pass Sieve segmentation for the Self Quotient Images
(SQI) of the structured scene (Anne Frank house dataset, Section 6.1).
(a) Repeatability score for increasing Sieve mesh size (default settings).
(b) Number of corresponding regions. (c) Matching score. (d) Number of
correct nearest neighbour matches.
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the details given by the high-pass Sieve. Figure 6.8 shows that the process of

detecting features is once more helped by using Self Quotient Images, although

the high-pass processing itself does not increase performance.

For the band-pass Sieve, Figure 6.9 and Figure 6.10, we represent the Sieve

bands by positioning the values of the graph curves between the ticks on the

𝑥-axis. A value between 10 and 100, for example, indicates that is the result for

Band-pass sieve, original images
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Figure 6.9: Band-pass Sieve segmentation for the structured scene
(Anne Frank house dataset, Section 6.1). (a) Repeatability score for
increasing Sieve mesh size (default settings). (b) Number of corresponding
regions. (c) Matching score. (d) Number of correct nearest neighbour
matches.
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the band with granules between scales 10 and 100. These results indicate what

size of details holds more useful information for the detection and matching of

features. Mid-size information retrieved with band-pass 100 to 1000 holds the

majority of detected and matched features with SIFT algorithms. The number

of MSER correspondences (b) is 20% higher at Sieve band 10 to 100 when

compared to the band 100 to 1000.

Band-pass sieve, Self Quotient Images
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Figure 6.10: Band-pass Sieve segmentation for the Self Quotient Images
(SQI) of the structured scene (Anne Frank house dataset, Section 6.1).
(a) Repeatability score for increasing Sieve mesh size (default settings).
(b) Number of corresponding regions. (c) Matching score. (d) Number of
correct nearest neighbour matches.



6 Impact of illuminance normalisation on local feature matching 141

On Self Quotient Images, Figure 6.10(b), band-pass sieving reveals that

most of the information used to detect features is between Sieve meshes 10 and

100, especially when MSER features are considered.

Figure 6.11 presents plots with the number of correspondences vs the

number of matches. These plots help us to compare different image treatments

more directly, letting the variation of Sieve meshes implicit on the curves.

In all these plots, the closer to the top right corner the better. A greater

number of intermediate Sieve meshes would create smoother curves. On plot

(a), SIFT-affine and MSER both have approximately 400 correspondences

(𝑥-axis), yet the number of MSER matches surpasses by 22% the number of

SIFT-affine matches. All three algorithms in (a) show an optimal Sieve scale,

and all three passes have optimal scales as well. The high-pass Sieve displays

monotonic lines, which is different from the other passes. Looking at these

plots, it becomes clear that the use of Self Quotient Images indeed increases

the number of correspondences and decreases the number of matches.



6 Impact of illuminance normalisation on local feature matching 142

0 100 200 300 400 500 600 700

Mean number of correspondences

0

10

20

30

40

50

M
e

a
n

 n
u

m
b

e
r 

o
f 

m
a

tc
h

e
s

SIFT-Affine

SIFT

MSER-Affine

(a) Low-pass Sieve, original

0 100 200 300 400 500 600 700

Mean number of correspondences

0

10

20

30

40

50

M
e

a
n

 n
u

m
b

e
r 

o
f 

m
a

tc
h

e
s

SIFT-Affine SQI

SIFT SQI

MSER-Affine SQI

(b) Low-pass Sieve, SQI

0 100 200 300 400 500 600 700

Mean number of correspondences

0

10

20

30

40

50

M
e

a
n

 n
u

m
b

e
r 

o
f 

m
a

tc
h

e
s

SIFT-Affine

SIFT

MSER-Affine

(c) High-pass Sieve, original
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(d) High-pass Sieve, SQI
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(e) Band-pass Sieve, original
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(f) Band-pass Sieve, SQI

Figure 6.11: Number of correspondences versus number of correct
matches considering Sieved original images and Self Quotient Images of
the Anne Frank house dataset.
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(a) Low-pass Sieve, original
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(c) High-pass Sieve, original
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(e) Band-pass Sieve, original
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(f) Band-pass Sieve, SQI

Figure 6.12: Repeatability versus matching score considering Sieved
original images and Self Quotient Images of the Anne Frank house dataset.



6 Impact of illuminance normalisation on local feature matching 144

6.5 Discussion

All plots presented in the previous section show two action points. One is

around Sieve mesh = 20, below which we can remove detail without affecting

the algorithms. The other is around Sieve mesh = 5000, above which scenes

become unrecognisable and the number of features is low.

On average, the MSER detector achieves the best results. The number

of corresponding areas using SIFT-affine and MSER at Sieve mesh = 10 are

similar to those detected on the original image (mesh size = 1). The highest

mean repeatability score of 21% is given by MSER with a Sieve mesh = 1000.

Flat areas produced by the Sieve have a positive effect on the detection of

MSER blobs, producing a few areas with a high repeatability score.

MSER does not follow the curves produced by SIFT because it detects blobs

of interest rather than points and edges. This method benefits from using the

Sieve, which makes areas more evident. SIFT is an averaging algorithm that

uses multi-scale windows. It has some tolerance to change in illuminance by

design. Nonetheless, it is not robust enough to deal with changes in illuminance

observed on real-life street-view images.

The power of MSER becomes evident when we use Self Quotient Images.

Although the number of matches drops compared to original images (Figure 6.5

and Figure 6.6), MSER still outperforms SIFT-affine.

Self Quotient Images do not improve the number of correct matches as we

expected. Illuminance variation is a major concern for accomplishing this task

of matching features, therefore normalising the effects of changes in illuminance

should increase the performance of all algorithms that detect and describe

features. What we observe instead is that the Self Quotient Images algorithm
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changes the appearance of images dramatically, as can be seen in Figure 6.3. It

is a true challenge to guess even in which country those pictures were taken.

There are hardly any matches at Sieve meshes above 1000. Such images become

just a composition of abstract grey blobs. Yet, MSER is successfully selecting

large regions without losing precision.

In Chapter 5, we observe that Self Quotient Images make GMCP–based

image geolocation considerably worse. This geolocation method was designed to

use SIFT-affine features. Results presented in Figure 6.5 show that SIFT-affine

features reach a correct match ratio of 2% and 46 correct matches. When

we use SQI (Figure 6.6), the performance is less than half of that. Results

presented in this chapter clarify that the use of Self Quotient Images successfully

improves the detection of features, although matching those features becomes

more challenging.

MSER stands out as a better detection algorithm for this problem. When

combined with the Sieve, the matching score can increase to 4.5% at Sieve

mesh = 1000. There are just a few good matches at this scale, but as few

as seven correspondences are enough to estimate a fundamental matrix (see

Section 5.2 for more details on the process of estimating the fundamental

matrix).

Using a Sieve to remove a small amount of low-scale artefacts helps to

detect and match features. The question of what Sieve scale to use remains for

other images not tested during this experiment.
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Limitations and future work

In this set of experiments, we focus on the detection and matching of local

features at distinct levels of detail using a dataset of twenty-two images. This

technique is useful to have insight into such a dataset, but it would not be

appropriate to draw more general conclusions without a larger study on a more

comprehensive dataset of street-view images. Although such a larger study

would take a long time to be conducted, the proposed method can be applied

to a larger dataset with little adaptation.

We demonstrated that MSER features are robust for matching street-view

images, but further investigation is needed to fully define the optimal settings

for use with the Sieve and Self Quotient Images on a real application. The result

of processing an image with the Sieve depends on the resolution of the input

image. The same occurs with Self Quotient Images. Therefore, the parameters

for both algorithms must be adjusted for the input image resolution.

6.6 Conclusion

Image matching over extended periods is extremely challenging, and methods

that are routinely used in SLAM or local matching fail catastrophically when

applied to images like the ones illustrated in Figure 6.1. But what is the cause

of the failure? To help quantify this problem we have devised a new dataset

and a scale-based analysis that allows us to identify the nature of the problem

and hence develop alternative local feature extraction and matching methods.

We tested the performance of SIFT and MSER, with and without affine

shape estimation, on the new Anne Frank House dataset. A graph-morphological

Sieve algorithm was used to observe the behaviour of algorithms at different
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levels of detail. MSER combined with SQI and Sieve proved to be robust for

matching street-view images, increasing by 90% the matching score in some

cases when compared to SIFT features extracted from original images.

We observe that illuminant normalisation also needs to be done. SQI might

not be the ideal one for this problem, but some sort of illuminant normalisation

has to be done because illuminant variation is a recurrent problem and can be

quite dramatic in real-life situations. The effects of illuminant variation destroy

conventional feature description algorithms. The SIFT algorithm considered in

this study is frequently used in academic projects and industry; it is reasonable

to suppose that similar algorithms would also fail. However, if we move to

another feature detection method, which MSER seems the most promising,

and combine that with a method of keeping only mid-scale visual information,

we then have a new framework for matching street-view images under a wide

range of conditions.



Chapter 7

Conclusion

7.1 Methodology overview

The methodology employed in this thesis aimed to answer the research question:

Can we use computer vision techniques to improve the accuracy of geolocation

estimation to potentially assist persons with visual impairment navigating

outdoors? To address this question, we first reviewed the state-of-the-art

navigation assistants for the visually impaired (NAVI) used for outdoor navig-

ation, and conducted a literature review on image processing techniques for

geolocation. This review reported in Chapter 2 provided an understanding of

the NAVI systems currently available, the equipment most commonly used,

and the key image processing methods used for single image geolocation.

Next, we analysed the desired requisites of a vision-based navigation as-

sistant (Chapter 3). In addition to the literature review, a semistructured

focus group session was organised with three individuals who are blind to

explore the participants’ challenges when navigating outdoors. This integrated

approach ensured that the identified requirements were based on the challenges

experienced by individuals, as well as on the state-of-the-art image processing

methods and equipment for outdoor navigation. Among the technical gaps

148
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identified, the need for high-accuracy user localisation was highlighted as a

critical requirement for safe navigation in urban environments.

We then explored vision-based methods to geolocate the user in urban

areas due to their potential to achieve sub-meter accuracy. We considered two

scenarios: when the GNSS service is available and when it is not.

For urban areas with GNSS coverage, we presented HLoc+SV, a method

for refining GNSS geolocation through the use of geotagged street-view images

(Chapter 4). This method builds upon the hierarchical localisation (HLoc)

framework to accurately estimate the world coordinates of a user’s camera by

integrating geotagged street-view images into the SfM model.

The HLoc+SV method presents several novel aspects. Firstly, we progress-

ively add geotagged street view images to the SfM model and use them as

‘anchors’ to geolocate the entire model. Secondly, we use the user’s GNSS

geolocation to dynamically download street view images near the user and

build the SfM model on-the-fly. Additionally, to overcome the challenge of

evaluating results without a high-accuracy GNSS receiver, we estimated ground

truth by identifying clear marks on the ground visible on satellite images and

manually retrieving their geocoordinates. For this study, we created a dataset

with 58 user images and 80 street view images, covering seven scenes in Norwich

and London. Each user image includes GNSS coordinates retrieved by the

smartphone and also their ground truth for evaluation purposes. Although

the results added evidence to the argument that vision-based solutions can

improve the accuracy of geolocation estimation, the HLoc+SV is only suitable

for the scenario when the GNSS service is available and relatively accurate.

For areas where the GNSS service is unreliable or unavailable, we studied the

problem of geolocating a single image with no previous geolocation information.
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We reviewed the main approaches in the literature (Section 2.4), but the

best results we could find have geolocation errors of the order of hundreds of

metres and are not suitable for safely building a navigation assistant with the

requirements described in Chapter 2. Furthermore, most proposed solutions in

this area do not discuss the role and impact of different local descriptors on

the geolocation task.

For this task, we proposed a geolocation method based on a Generalised

Minimum Clique Problem (GMCP) image retrieval framework, and attempted

to further improve it by normalising the illuminance of images with the Self

Quotient Image algorithm (Chapter 5). To understand this problem, we visually

checked the impact of SQI light normalisation on the detection of local features

(Section 5.3), analysed a single scene with progressive change in the camera’s

perspective and illumination conditions (Section 5.5.1), and compared the

performance of SIFT, SURF and MSER features on matching street-view

images with simultaneous changes in perspective, illumination and occlusion on

a dataset of 400 street-view images taken years apart (Section 5.5.2). We tested

our geolocation estimation method on the UCF Street View dataset, which

contains more than 62,000 Google Street View images of three cities in the

US. The results obtained in this experiment indicated that illumination plays

a crucial role in the performance of feature detection on street-view images,

especially when changes in illumination are combined with a perspective shift.

Finally, those results led us to investigate the impact of SQI on the accuracy

and repeatability of local feature detectors and descriptors (Chapter 6) by

progressively removing details in images using a graph-morphological algorithm

known as Sieve. For this study, we built a new structured image dataset with

twenty-two photos of the Anne Frank house in Amsterdam, and analysed their
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relative variability by hand aligning all images and projecting them all onto a

canonical image. We then tested the performance of SIFT and MSER, with

and without affine shape estimation, on this dataset. The results showed that

MSER combined with SQI and Sieve were robust for matching street-view

images, increasing by 90% the matching score in some cases when compared

to SIFT features extracted from original images.

In conclusion, the methodology adopted in this research focused on exploring

the use of vision-based methods for geolocation, which can potentially be

employed in outdoor navigation assistants. We proposed novel vision-based

approaches, such as the HLoc+SV and the GMCP-based image retrieval method

with SQI illuminance normalisation techniques, which ultimately contribute to

the vision-based geolocation research field.

7.2 Summary

In this thesis, we addressed the research question: Can we use computer vision

techniques to improve the accuracy of geolocation estimation to potentially assist

persons with visual impairment navigating outdoors? The answer is yes, we

can. We detailed the construction of the HLoc+SV, a vision-based geolocation

method based on a version of the hierarchical localisation framework that

exploits information from a dataset of geotagged street-view images. In a dataset

of 58 user pictures and 80 geotagged street-view reference images, HLoc+SV

had a mean absolute geolocation error of 0.77m (SD 0.41), while a smartphone

GNSS receptor had a 12.09m (SD 8.67) error. Extremely challenging scenarios

for GNSS presented the greatest improvement in performance, even when night-

time pictures were considered. When the GNSS mean absolute geoposition
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error in a scene is as high as 30.21m (SD 1.65), the error with HLoc+SV is

1.17m (SD 0.07). Nonetheless, the HLoc+SV is a potential solution suitable

only for the scenario when the GNSS service is available and relatively accurate.

We also explored solutions for the scenario when the GNSS service is

unreliable or unavailable. We proposed and analysed a framework to geolocate

an image using a GMCP-based image matching method combined with the

SQI illuminance normalisation. Our method first normalises the illuminance of

images and then retrieves and matches the local features from a reference set.

We found out that there is no performance improvement with the use of the SQI

illumination normalisation with GMCP–based image geolocation framework.

Moreover, there is a degradation of 4% in the results compared to the original

GMCP-based method when the estimation of geometric transformation was

used to combine the results of normalised and non-normalised images. We

found that the light normalisation with SQI, when used with SIFT features,

prevents the detection of large features due to the reduction of contrast between

objects.

These results led us to conduct a careful investigation into the impact

of illuminance normalisation with SQI on the accuracy and repeatability of

SIFT and MSER detectors and descriptors. We use a graph-morphological

operator known as Sieve to progressively eliminate image details and analyse

differences between original images and SQI images at each scale of detail. A

novel dataset was created to conduct this study on a controlled set of images

carefully aligned. In the first set of experiments, we measure how the number of

correspondences varies with the Sieve mesh size. We compute both SIFT and

MSER with affine shape estimation and original SIFT without affine estimation

for all detected regions, and check which regions correctly match with each
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detector. We also measure the impact of the SQI algorithm on the detection of

local features. On average, the MSER detector achieves the best results. The

number of corresponding areas using SIFT-affine and MSER at Sieve mesh

= 10 are similar to those detected on the original image (mesh size = 1). The

highest mean repeatability score of 21% is given by MSER with a Sieve mesh

= 1000. The flat areas produced by the Sieve positively affect the detection

of MSER blobs, producing a few areas with high repeatability scores. MSER

combined with SQI and Sieve proved to be robust for matching street-view

images, increasing by 90% the matching score in some cases when compared

to SIFT features extracted from original images. Although SQI might not be

the ideal illuminant normalisation algorithm for this problem, the effects of

illuminant variation must be attenuated. Illuminant variation is a recurrent

problem that can be quite dramatic in real-life situations.

7.3 Limitations

We evaluated the performance of HLoc+SV on a small set of 58 user images

and 80 street-view geotagged images. The street-view reference images had no

meta information about the camera, lens, GNSS receptor or any equipment

used. Furthermore, ground truth information was manually estimated using

ground marks and satellite images instead of using accurate GNSS equipment

such as RTK. Ultimately, the HLoc+SV is a potential solution only suitable

for the scenario when the GNSS service is available and relatively accurate.

The GMCP-based geolocation method combined with the SQI illuminance

normalisation was not designed to operate in real time. Currently, it cannot

download street-view reference images on-demand, instead it requires access to
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all images in a reference set to build the 𝑘d-tree. The dataset contains street-

view images from three US cities only. A larger study would take a long time

to conduct due to the need to process all images in the dataset. Furthermore,

the low number of feature matches prevents estimating a fundamental matrix,

which is necessary to compute the relative camera pose of images.

The investigation on the impact of SQI on SIFT and MSER detectors and

descriptors using Sieve was done in a small set of 22 street-view images, which

were manually aligned. Finally, the experiments reported in Chapter 5 and

Chapter 6 do not consider the use of deep features because they were in an

early stage of development when those evaluations were conducted.

7.4 Future work

The research presented in this thesis has provided insights into the development

of vision-based geolocation methods. However, there are several areas where

future work can be carried out to enhance the accuracy and applicability of

these methods.

(a) The HLoc+SV method presented in Chapter 4 can potentially be adapted

for a scenario where there is no GNSS signal. Although modern mobile

devices use alternative methods to determine the user location, such

as wifi triangulation, mobile phone tower triangulation, and IP address

lookup, they can have errors in the order of hundreds of meters [170].

The GMCP-based image retrieval method studied in Chapter 5 also has

errors of the same magnitude. In these cases, a potential solution could

be to pre-build geotagged SfM models using high-resolution street view

images where the user is expected to be located. As these models would
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cover extensive areas (potentially entire towns and cities), the global

feature matching step of the original hierarchical localisation method

could be used to accelerate the estimation of the camera pose. Working

with large-scale SfM models can be computationally intensive, which has

the risk of increasing both processing time and resource requirements,

potentially making it impractical to run in real time.

(b) One area of future work is exploring the use of deep features such as

SuperPoint [33] with the GMCP-based image retrieval framework [169]

reported in Chapter 5. A more efficient feature detector method has

the potential to increase the number of feature matches, which would

increase the performance and allow estimating the camera pose.

(c) Another potential area of future work is the integration of sensors to

estimate the user’s geolocation, e.g. inertial sensors and electronic com-

passes. The use of a fusion approach to combine information from multiple

sensors available on smartphones can help to improve the accuracy and

robustness of vision-based methods for outdoor pedestrian navigation.

(d) The evaluations reported in this thesis can be extended by analysing

other datasets covering different environments and scenarios. Field tests

in urban and rural environments can provide valuable insights into the

applicability of the system in real-world navigation scenarios.

(e) Ultimately, the development of a user-friendly interface for the localisation

system as presented in Chapter 2, specifically the micronavigation in-

structions, can facilitate its adoption by non-expert users, requiring little

or no training. The interface must provide clear and concise instructions
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for users to navigate using the system. Additionally, the interface can

incorporate augmented reality overlays to provide additional information

to users with low vision during navigation.



Appendix A

Light and shadows

This appendix provides an overview of the image formation process, presents the

challenge of separating an image into reflectance and illuminance components,

and examines two techniques for light normalisation.

A.1 Image formation

First of all, images do not exist without light. We can think of the images we

see (and cameras register) as the result of light interacting with surfaces in

the world and then reaching our eyes. The light shines onto a surface, part of

the light is reflected back, which is finally captured by a sensor (Figure A.1).

Therefore, the signal that reaches us changes depending on the characteristics

of both the source light and the object surface. This presents a challenge when

trying to understand the appearance of a scene in a consistent way.

To ensure clarity, we present some terminology (as defined by Adelson [2]):

Luminance is the amount of light that comes to the sensor from a surface.

Illuminance is the amount of light incident on a surface.

Reflectance is the proportion of incident light that is reflected from a surface.
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Light
source Sensor

Surface

Figure A.1: The light shines onto a surface, colour changes and the
new signal reflects back to the sensor.

Reflectance (or albedo) ranges from 0 to 1, equivalent to 0% to 100%. The

ideal black is 0%, while the ideal white is 100%. However, in practice, typical

black paint has a reflectance of approximately 5%, and typical white paint has

a reflectance of about 85% [2]. For simplicity, we only examine matte surfaces,

which can be accurately described using a single reflectance value.

Luminance, illuminance and reflectance are measurable physical quantities.

Additionally, there are two related subjective variables [2]:

Lightness is the perception of a surface’s reflectance based on the luminances

present in a scene.

Brightness is the perceived overall level of luminance of the image itself, with

no relation to the attributes of the depicted scene. It can be thought of

as the perceived luminance surface of the image.

Figure A.2 provides context for understanding these terms. It shows a

checker block made up of a 2 × 2 grid of cubes coloured either light or dark

grey. The checker block is illuminated from an oblique angle, creating distinct

lighting across the various faces. The luminance image can be factored into two
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Luminance image Reflectance image Illuminance image

Figure A.2: The luminance image of a checker-block can be decomposed
into two intrinsic images: reflectance and illuminance. Adapted from [2].

separate images: the reflectance and the illuminance. These two images are

known as intrinsic images [19], which can be used to study lightness perception.

Comparing the different patches 𝑝, 𝑞 and 𝑟 in Figure A.2, we see that two

patches may have the same reflectance, but different luminances (such as 𝑝

and 𝑞); or have different reflectances and different luminances, but the same

illuminance (such as 𝑞 and 𝑟). Interestingly, two patches may also happen to

display the same luminance, despite having distinct reflectance and illuminance

(such as 𝑝 and 𝑟). Although 𝑝 has a lower reflectance, it is balanced by its

higher illuminance. Even knowing that 𝑝 and 𝑟 have the same luminance, we

humans perceive these two patches as being different. This counter-intuitive

phenomenon is known as lightness constancy.

From a physical perspective, the lightness constancy problem can be for-

mulated as follows. A luminance image 𝐿 (𝑥, 𝑦) is the result of multiplying a

reflectance image 𝑅(𝑥, 𝑦) by an illuminance image 𝐸 (𝑥, 𝑦), i.e.

𝐿 (𝑥, 𝑦) = 𝑅(𝑥, 𝑦)𝐸 (𝑥, 𝑦). (A.1)

Looking at (A.1), it becomes clear that it is not possible to retrieve the two
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Figure A.3: Example of lightness constancy. Our visual system makes
us perceive square A as darker than square B, when in fact they both
have exactly the same shade of grey. Diagram originally from [3].

values 𝑅 and 𝐸 that were multiplied to make 𝐿, as it is not possible to unmultiply

two numbers. Given any arbitrary value for 𝑅(𝑥, 𝑦), there are infinite possible

values for 𝐸 (𝑥, 𝑦) that produce the same value 𝐿 (𝑥, 𝑦). Although this problem

seems impossible to solve, our human vision system does it incredibly well.

Observe the Figure A.3. The two squares 𝐴 and 𝐵 have exactly the same

shade of grey. However, we perceive square 𝐵 as lighter than square 𝐴. In fact,

our human visual system can separate reflectance change from illuminance

change. Thus, this must mean that reflectance and illuminance are not arbitrary.

As proposed by Land and McCann in their Retinex theory [84], there are indeed

statistical constraints to the possible values of reflectance and illuminance

based on properties of the world.

A clear understanding of the luminance, reflectance and illuminance of a

picture can help not just to identify unique local features, but also to have a

better understanding of challenging scenes. This way, we explore the potential
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use of illuminant-invariant images as the feature space for matching street-view

images for geolocation purposes. We explore in the next sections two distinct

approaches: elimination of the effects of the illuminants and automatic shadow

removal.

A.2 Self quotient image

The Self Quotient Image (SQI) [153] was first proposed to eliminate the

effect of illumination in images for facial recognition. Compared to other

methods [166], it has the advantage of having a straightforward implementation,

easy application on real images and no need for training data. This method

assumes that natural illumination variations are often characterised by low

spatial frequencies. The illumination is normalised by dividing the image by a

smoothed version of itself using local filters.

The Quotient Image (QI) is formed by dividing an image by a linear

combination of three images with non-coplanar illuminants [136]. The QI

depends on the albedo only, and therefore is independent of illumination. The

SQI develops this method further and eliminates many assumptions, including

the need for a set of aligned images.

The SQI factorises an image into two parts: an intrinsic and an extrinsic

part, i.e.

𝐼 (𝑥, 𝑦) = 𝜌(𝑥, 𝑦)𝑛(𝑥, 𝑦)𝑇 · 𝑠 = 𝐹 (𝑥, 𝑦) · 𝑠 (A.2)

where 𝜌 is the albedo and 𝑛 represents the surface normal. 𝐹 = 𝜌𝑛𝑇 depends

only on the albedo and surface normal and, therefore, is intrinsic. 𝐹 represents

the object identity. 𝑠 is the illumination, therefore extrinsic.

The SQI method has two main steps: (i) estimation of the illumination
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and (ii) removal of the illumination effect. The first step is to estimate the

extrinsic factor and generate a synthetic image 𝐼 that maintains the shape and

illumination of 𝐼 but with a distinct albedo. The illumination normalisation

is achieved by calculating the logarithmic difference between 𝐼 and 𝐼. The

synthetic image 𝐼 has a similar 3D shape and illumination as the original image

𝐼. Hence, the resulting normalised image is log 𝜌0 − log 𝜌1, where 𝜌0 and 𝜌1 are

the albedo maps of 𝐼 and 𝐼, respectively. The normalised image 𝐼 is therefore

unaffected by variations in illumination.

An image 𝐼 has its Self Quotient Image 𝑄 defined by

𝑄 =
𝐼

𝐼
=

𝐼

𝐹 · 𝐼 (A.3)

where 𝐹 is the smoothing kernel. 𝑄 is an illumination independent image for

almost all regions. The regions with both no shadow and an abrupt surface

normal variation are still illumination dependent.

The smoothing kernel 𝐹 is defined as a weighted Gaussian filter 𝐹 = 𝑊𝐺,

where 𝑊 is the weight and 𝐺 is the Gaussian kernel. A convolution region Ω is

divided into two sub-regions, 𝑀1 and 𝑀2, based on the threshold 𝜏 = Mean(𝐼Ω),

i.e. the mean value of all pixels in Ω. Assuming that 𝑀1 has more pixels than

𝑀2, 𝑊 is defined by

𝑊 (𝑢, 𝑣) =


0, 𝐼 (𝑢, 𝑣) ∈ 𝑀2

1, 𝐼 (𝑢, 𝑣) ∈ 𝑀1

(A.4)

This filter is multi-scaled, i.e. the kernel outputs at different scales are

linearly combined. Figure A.4 illustrates the formation of the smoothing kernel.

A few variations of the Self Quotient Image method have been proposed,

with modifications to the filter kernel and final combination function. The
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Figure A.4: Self Quotient Image weighted Gaussian filter. From [154].

Gabor Quotient Image method (GQI) [139] uses the even Gabor filter kernel

𝐺even defined as:

𝐺even(𝑥, 𝑦) = cos

(
2𝜋

𝜆
𝑥𝑟

)
exp

(
−1
2

(
𝑥2𝑟

𝜎2
𝑥

+ 𝑦
2
𝑟

𝜎2
𝑦

))
, (A.5)

a linear transformation to normalise the quotient image 𝑄 to a range of [0, 1]:

𝑄′(𝑥, 𝑦) = 𝑄(𝑥, 𝑦) −𝑄min

𝑄max −𝑄min
(A.6)

and an exponential normalisation 𝑄norm to increase image contrast:

𝑄norm(𝑥, 𝑦) = 1 − exp
(
− 𝑄′(𝑥, 𝑦)
mean(𝑄′(𝑥, 𝑦))

)
(A.7)

where 𝑄min and 𝑄max are the minimum and maximum values of 𝑄, respectively.

The Fast Self Quotient Image method (FSQI) [115] is another variation that

uses a circularly shifted Gaussian filter kernel instead.

Implementation

We implemented the original SQI algorithm using MATLAB. It takes approx-

imately 7.5 s to process a greyscale image with 1025 × 1082 pixels. Figure A.5

shows an example of the final result.



A Light and shadows 164

(a) Original (b) SQI

Figure A.5: Light normalisation using SQI applied to the reference
dataset. (a) Original and (b) processed images.

A.3 Shadow removal using paired regions

The presence of shadows in images can degrade the performance of many

visual tasks such as image segmentation, object recognition, tracking, and face

recognition. Removing shadows is a challenging problem widely studied [42,

61, 114].

To address the problem of detecting and removing shadows from natural

scene images, Guo et al. [61] employ pairwise classification to estimate the

relative illumination conditions between regions based on their appearances.

Using this information, a segment graph is constructed, and graph-cuts are

applied to classify regions as either shadow or non-shadow. In the end, an

image matting filter is applied, and a lighting model is used to re-light each

pixel and produce a shadow-free image. Figure A.6 illustrates this method.

First, the image is segmented using the mean shift algorithm. A trained

classifier is then used to estimate the probability that a region is in shadow.

Additionally, they classify pairs of regions made of the same material as having
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Figure A.6: Method to detect and remove shadows using paired regions.
From [61]

the same or different illumination. A graph is then created with the confident

illumination pairs. Finally, an objective function is maximised to solve for the

shadow labels. The relational graph is illustrated in Figure A.7.

The output of this process is a binary shadow mask that assigns a value 𝑘𝑖

of 0 or 1 to each pixel 𝑖 in the image, indicating whether it belongs to a shadow

or not. However, using these detection results as shadow coefficients can cause

strong boundary effects, as the change in illumination is often gradual and the

segmentation results can be inaccurate near region boundaries. To obtain more

precise shadowing coefficients 𝑘𝑖 and achieve smooth transitions, the authors

use a soft matting technique in the end.
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(a) (b)

Figure A.7: Illumination relation graph plotted onto two example
images. The green lines connect two areas with the same illumination.
The red sticks connect areas with different illumination, in which the
white end indicates non-shadow regions and the black end indicates
shadows. The confidence of each pair is indicated by the line width.
From [61]

Implementation

This algorithm’s implementation has not been made available online and,

despite our efforts to implement it based on the description given in their

published papers using MATLAB, it was not possible to obtain shadow-free

images that would somehow be useful to solve the problem of matching images

as presented in Section 2.4.

Conclusion

In this appendix, we review the process of forming an image, covering the

main concepts used in this area. We introduced the problem of decomposing

an image into reflectance and illuminance and discussed implementations of

illuminant normalisation algorithms applied to single images. We explored

the implementation of two distinct approaches: elimination of the effects of

illuminants and shadow removal.
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Sieve algorithm

The Sieves were first proposed as morphological extensions of one-dimensional

recursive median filters [18]. These filters were then extended to two dimensions

using graph morphology, and since then they have been applied to a range of

problems in computer vision including lip-reading [95], stereo vision [100] and

image retrieval [50].

In this appendix, we provide a brief introduction to the Sieve algorithm. A

more detailed mathematical description of the Sieve, its theorems and properties

are available in the literature [15, 16, 49, 50, 58].

B.1 Morphological operators

The Sieve progressively removes features at each scale by merging groups of

connected pixels with their neighbours. An example of a Sieve decomposition

is shown in Figure B.1. At each scale, a filter removes extrema (maxima or

minima) in particular areas. In the first stage, the Sieve removes flat regions of

one pixel. For this example, three regions are removed. The granularity is the

difference between the input and the output image at each stage. Therefore,

the granules are the areas merged at a specific scale. In the second stage, the

167



B Sieve algorithm 168

ImageScale

1

2

Granularity

3

4

7

Figure B.1: Sieve decomposition process. The differences between each
scale, called granules, are shown as black regions.
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filter removes regions of two pixels. At this scale, only one region was removed.

This process continues for bigger scales until all regions are merged into a single

blob. In the example, the Sieve merges the remaining regions at scales 4 and 7,

which is the whole image.

In Figure B.1, the connectivity between adjacent pixels is four-connected:

each pixel has two horizontal and two vertical connections. The connectivity

can also be eight-connected when diagonal links are considered (see Figure B.2).

Although we just use two dimensions for images, this notation can be extended

to define connected sets in an arbitrary number of dimensions.

Regarding the operation of merging pixels, four different morphological

operators can be used: opening, closing, M- and N -filter (Table B.1). The

effect of applying an opening filter, for example, would be the removal of all

maxima at a specific scale. Similarly, a closing filter removes all minima smaller

than a defined size. The opening and closing operators produce quite distinct

results. TheM and N filters differ little in practice, both remove maxima and

minima at each scale.

The merging order of granules described so far, i.e. from smaller granules

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(a) (b) (c)

Figure B.2: Pixel connectivity in two dimensions. (a) 4 × 4 pixels
image in greyscale. (b) Four-connected pixels and (c) eight-connected
pixels configurations. Adapted from [50].
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to coarser ones, can also be called a low-pass. Two possible variations of this

processing order are high- and band-passes. A high-pass Sieve merges coarser

granules first, and a band-pass merges granules above and below two scales.

B.2 Sieve tree

The sequence of granules obtained at each scale of the Sieve can be organised

in a hierarchical structure called a Sieve tree, where the granules form the

nodes and the edges denote merging or containment. The Sieve tree structure

has a node-root, and each node is a granule that has been merged into the

next larger scale granule, forming a parent-child relationship. It is possible

to generate more than one granule at each scale. This happens when small

areas merge into distinct bigger areas, therefore forming distinct hierarchical

relationships.

In Figure B.3 there is an example of decomposition into a Sieve tree. The

image on the right-hand side is processed using an M-filter. Initially, nineteen

flat areas are forming the image of a cat. At the first pass, the two smallest

areas corresponding to the back legs in black (minima) are merged to the

adjacent flat zone with the lowest intensity level, in this case, the body of

our cat. At the next step, the front legs and whiskers merged with the body.

Table B.1: Sieve morphological operators. Adapted from [58].

Operator Symbol Extrema processing

Opening 𝛾 Maxima
Closing 𝜓 Minima
M-filter M Maxima-minima
N -filter N Minima-maxima
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1 Back legs

2 Front legs
   and whiskers

3 Ears

5 Nose and 
   mouth

6 Eyes

4 Irises

7 Body

8 Background

Sc
al

e

Figure B.3: Structure of a Sieve decomposition based on scale. Left:
the granules, in black, form a Sieve tree. Right: the result of applying a
Sieve at increasing scales on a reference image.
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All these elements merged at the same pass because they have the same area.

At the next scale, the ears merged with the body. Next, the irises of our cat

merged with the surrounding white area corresponding to its eyes. The nose

and mouth are just one connected area that merged with the body at the next

step. Finally, the eyes are the last areas to merge with the body, which merges

itself with the background at the final step.

The Sieve tree corresponds to the connection between the granules merged

at each scale. The back legs, front legs, whiskers, ears, nose and mouth are all

merged directly to the body. The irises are merged first with the eyes, which

merge with the body at a greater scale. The body and the background are the

latest areas to merge. In Figure B.3 we can see that the Sieve tree follows the

merging order and hierarchy.

This way of merging the granules from the leaves to the root is the low-pass

Sieve. Similarly, a high-pass merges the granules at the root of the tree first,

and a band-pass keeps the granules between two scales and merges granules

closer to both the leaves and the root of the tree.

The Sieve tree can be represented by a vector [58]

𝑇 = [𝑡1, 𝑡2, 𝑡3, . . . , 𝑡𝑛], (B.1)

where 𝑡𝑛 is the parent of the 𝑛th node. The index of each node is defined by

the order the granules appear, i.e. smaller granules are removed first, therefore

have lower indexes. Following this notation, the Sieve tree in our example may

be written as

𝑇Figure B.3 = [7, 7, 7, 6, 7, 7, 8] . (B.2)
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B.3 Properties

It has been demonstrated that the Sieve has the following properties [15, 17,

58]:

Idempotency When the Sieve is applied to a scale, all lower scales are filtered.

No smaller extreme features exist after applying the current scale filter.

Scale-space causality No new edge is introduced to the original image.

Invertibility It is possible to invert the Sieve transform and reconstruct the

original image.

𝒏 dimensions It works in any finite number of dimensions.

Manipulability The image can be manipulated in scale space, allowing the

development of pattern recognition systems.

Calibration by scale At a particular scale, feature regions of only that scale

may be measured.

Decomposition based on intensity extrema In two dimensions, the Sieve

produces a connected set that decomposes an image in terms of intensity

extrema of increasing area scale.

Semantically meaningful boundaries The sharp-edged region contours co-

incide with the semantically meaningful boundaries in the transformation

domain.
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Conclusion

In this appendix, we described the Sieve algorithm in terms of morphological

operations and exemplified how it gradually simplifies an image by removing

connected components at increasing scales. The differences between the output

at each scale are called granules, which can be hierarchically organised in a

Sieve tree. Some of the properties of the Sieve algorithm and the Sieve tree are

considered for developing a proxy to study the effects of illuminants on the

detection of local features.
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Examples of local feature
correspondences

It is unusual to see examples of local feature correspondences in companion

papers in this area. This is not a problem when there are enough local feature

matches to accomplish a specific task. However, not having access to such

information creates a problem in understanding the pitfalls of local feature

detection methods and makes it hard to have insights when methods do not

work as expected.

For the sake of completeness, in this appendix we show correspondences of

local features between a reference image (Figure C.1a) and two test images

(Figure C.1b and c) taken during the night and the day, respectively. Whereas

Chapter 6 reported quantitative results, here we show the corresponding areas

detected by MSER, SIFT-affine and SIFT algorithms on original and Self

Quotient Images. The segmentation by scale provided by the sieve algorithm

helps to further understand how these local features are affected by different

levels of detail. These images are organised as presented in Figure C.2.

In all images, the green ellipses represent local features from the test image

and pink ellipses represent features from the canonical image, projected onto the

175
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(a) Reference image

(b) Nighttime test image (c) Daytime test image

Figure C.1: Images used in this experimental test. (a) Reference image.
(b,c) Test images took during the night and the day, respectively.
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test image by applying a transformation matrix. Just the features considered

correspondents are shown. The criteria to consider a correspondence was

explained in detail in Section 6.3. In a nutshell, the detected areas must have

an overlap of at least 60% when normalised to a radius of 30 pixels. This

normalisation becomes more apparent when comparing small features. In some

cases, the overlap of non-normalised features is minimal, yet the intersection of

their normalised areas is great enough to be considered as a correspondence

and a potential match.

Night

MSER

Low
Orig. p. 178

SQI p. 179

High
Orig. p. 180

SQI p. 181

Band
Orig. p. 182

SQI p. 183

SIFT

affine

Low
Orig. p. 184

SQI p. 185

High
Orig. p. 186

SQI p. 187

Band
Orig. p. 188

SQI p. 189

SIFT

Low
Orig. p. 190

SQI p. 191

High
Orig. p. 192

SQI p. 193

Band
Orig. p. 194

SQI p. 195

Day

MSER

Low
Orig. p. 196

SQI p. 197

High
Orig. p. 198

SQI p. 199

Band
Orig. p. 200

SQI p. 201

SIFT

affine

Low
Orig. p. 202

SQI p. 203

High
Orig. p. 204
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SQI p. 207

SIFT

Low
Orig. p. 208

SQI p. 209

High
Orig. p. 210

SQI p. 211

Band
Orig. p. 212
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Figure C.2: Index of images presented in this appendix. Hierarchy from
left to right: time, detection algorithm, sieve pass, image type, page.
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Night, MSER, low-pass sieve, original image

Figure C.3: MSER correspondences on a sample image taken during
the night processed with a low-pass sieve. The image is sieved at scales
10𝑛, 𝑛 = 0 . . . 5 (shown left-to-right).
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Night, MSER, low-pass sieve, Self Quotient Image

Figure C.4: MSER correspondences on a sample Self Quotient Image
taken during the night processed with a low-pass sieve. The image is
sieved at scales 10𝑛, 𝑛 = 0 . . . 5 (shown left-to-right).
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Night, MSER, high-pass sieve, original image

Figure C.5: MSER correspondences on a sample image taken during
the night processed with a high-pass sieve. The image is sieved at scales
10𝑛, 𝑛 = 0 . . . 5 (shown left-to-right).
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Night, MSER, high-pass sieve, Self Quotient Image

Figure C.6: MSER correspondences on a sample Self Quotient Image
taken during the night processed with a high-pass sieve. The image is
sieved at scales 10𝑛, 𝑛 = 0 . . . 5 (shown left-to-right).
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Night, MSER, band-pass sieve, original image

Figure C.7: MSER correspondences on a sample image taken during
the night processed with a band-pass sieve. The image is sieved at bands
10𝑛 to 10𝑛+1, 𝑛 = 0 . . . 4 (shown left-to-right).
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Night, MSER, band-pass sieve, Self Quotient Image

Figure C.8: MSER correspondences on a sample Self Quotient Image
taken during the night processed with a band-pass sieve. The image is
sieved at bands 10𝑛 to 10𝑛+1, 𝑛 = 0 . . . 4 (shown left-to-right).
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Night, SIFT-affine, low-pass sieve, original image

Figure C.9: SIFT-affine correspondences on a sample image taken
during the night processed with a low-pass sieve. The image is sieved at
scales 10𝑛, 𝑛 = 0 . . . 5 (shown left-to-right).
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Night, SIFT-affine, low-pass sieve, Self Quotient Image

Figure C.10: SIFT-affine correspondences on a sample Self Quotient
Image taken during the night processed with a low-pass sieve. The image
is sieved at scales 10𝑛, 𝑛 = 0 . . . 5 (shown left-to-right).
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Night, SIFT-affine, high-pass sieve, original image

Figure C.11: SIFT-affine correspondences on a sample image taken
during the night processed with a high-pass sieve. The image is sieved at
scales 10𝑛, 𝑛 = 0 . . . 5 (shown left-to-right).
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Night, SIFT-affine, high-pass sieve, Self Quotient Image

Figure C.12: SIFT-affine correspondences on a sample Self Quotient
Image taken during the night processed with a high-pass sieve. The
image is sieved at scales 10𝑛, 𝑛 = 0 . . . 5 (shown left-to-right).
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Night, SIFT-affine, band-pass sieve, original image

Figure C.13: SIFT-affine correspondences on a sample image taken
during the night processed with a band-pass sieve. The image is sieved
at bands 10𝑛 to 10𝑛+1, 𝑛 = 0 . . . 4 (shown left-to-right).
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Night, SIFT-affine, band-pass sieve, Self Quotient Image

Figure C.14: SIFT-affine correspondences on a sample Self Quotient
Image taken during the night processed with a band-pass sieve. The
image is sieved at bands 10𝑛 to 10𝑛+1, 𝑛 = 0 . . . 4 (shown left-to-right).
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Night, SIFT, low-pass sieve, original image

Figure C.15: SIFT correspondences on a sample image taken during
the night processed with a low-pass sieve. The image is sieved at scales
10𝑛, 𝑛 = 0 . . . 5 (shown left-to-right).
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Night, SIFT, low-pass sieve, Self Quotient Image

Figure C.16: SIFT correspondences on a sample Self Quotient Image
taken during the night processed with a low-pass sieve. The image is
sieved at scales 10𝑛, 𝑛 = 0 . . . 5 (shown left-to-right).
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Night, SIFT, high-pass sieve, original image

Figure C.17: SIFT correspondences on a sample image taken during
the night processed with a high-pass sieve. The image is sieved at scales
10𝑛, 𝑛 = 0 . . . 5 (shown left-to-right).
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Night, SIFT, high-pass sieve, Self Quotient Image

Figure C.18: SIFT correspondences on a sample Self Quotient Image
taken during the night processed with a high-pass sieve. The image is
sieved at scales 10𝑛, 𝑛 = 0 . . . 5 (shown left-to-right).
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Night, SIFT, band-pass sieve, original image

Figure C.19: SIFT correspondences on a sample image taken during
the night processed with a band-pass sieve. The image is sieved at bands
10𝑛 to 10𝑛+1, 𝑛 = 0 . . . 4 (shown left-to-right).
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Night, SIFT, band-pass sieve, Self Quotient Image

Figure C.20: SIFT correspondences on a sample Self Quotient Image
taken during the night processed with a band-pass sieve. The image is
sieved at bands 10𝑛 to 10𝑛+1, 𝑛 = 0 . . . 4 (shown left-to-right).
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Day, MSER, low-pass sieve, original image

Figure C.21: MSER correspondences on a sample image taken during
the day processed with a low-pass sieve. The image is sieved at scales
10𝑛, 𝑛 = 0 . . . 5 (shown left-to-right).
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Day, MSER, low-pass sieve, Self Quotient Image

Figure C.22: MSER correspondences on a sample Self Quotient Image
taken during the day processed with a low-pass sieve. The image is sieved
at scales 10𝑛, 𝑛 = 0 . . . 5 (shown left-to-right).
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Day, MSER, high-pass sieve, original image

Figure C.23: MSER correspondences on a sample image taken during
the day processed with a high-pass sieve. The image is sieved at scales
10𝑛, 𝑛 = 0 . . . 5 (shown left-to-right).
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Day, MSER, high-pass sieve, Self Quotient Image

Figure C.24: MSER correspondences on a sample Self Quotient Image
taken during the day processed with a high-pass sieve. The image is
sieved at scales 10𝑛, 𝑛 = 0 . . . 5 (shown left-to-right).
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Day, MSER, band-pass sieve, original image

Figure C.25: MSER correspondences on a sample image taken during
the day processed with a band-pass sieve. The image is sieved at bands
10𝑛 to 10𝑛+1, 𝑛 = 0 . . . 4 (shown left-to-right).
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Day, MSER, band-pass sieve, Self Quotient Image

Figure C.26: MSER correspondences on a sample Self Quotient Image
taken during the day processed with a band-pass sieve. The image is
sieved at bands 10𝑛 to 10𝑛+1, 𝑛 = 0 . . . 4 (shown left-to-right).
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Day, SIFT-affine, low-pass sieve, original image

Figure C.27: SIFT-affine correspondences on a sample image taken
during the day processed with a low-pass sieve. The image is sieved at
scales 10𝑛, 𝑛 = 0 . . . 5 (shown left-to-right).
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Day, SIFT-affine, low-pass sieve, Self Quotient Image

Figure C.28: SIFT-affine correspondences on a sample Self Quotient
Image taken during the day processed with a low-pass sieve. The image
is sieved at scales 10𝑛, 𝑛 = 0 . . . 5 (shown left-to-right).
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Day, SIFT-affine, high-pass sieve, original image

Figure C.29: SIFT-affine correspondences on a sample image taken
during the day processed with a high-pass sieve. The image is sieved at
scales 10𝑛, 𝑛 = 0 . . . 5 (shown left-to-right).
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Day, SIFT-affine, high-pass sieve, Self Quotient Image

Figure C.30: SIFT-affine correspondences on a sample Self Quotient
Image taken during the day processed with a high-pass sieve. The image
is sieved at scales 10𝑛, 𝑛 = 0 . . . 5 (shown left-to-right).
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Day, SIFT-affine, band-pass sieve, original image

Figure C.31: SIFT-affine correspondences on a sample image taken
during the day processed with a band-pass sieve. The image is sieved at
bands 10𝑛 to 10𝑛+1, 𝑛 = 0 . . . 4 (shown left-to-right).



C Examples of local feature correspondences 207

Day, SIFT-affine, band-pass sieve, Self Quotient Image

Figure C.32: SIFT-affine correspondences on a sample Self Quotient
Image taken during the day processed with a band-pass sieve. The image
is sieved at bands 10𝑛 to 10𝑛+1, 𝑛 = 0 . . . 4 (shown left-to-right).
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Day, SIFT, low-pass sieve, original image

Figure C.33: SIFT correspondences on a sample image taken during
the day processed with a low-pass sieve. The image is sieved at scales
10𝑛, 𝑛 = 0 . . . 5 (shown left-to-right).
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Day, SIFT, low-pass sieve, Self Quotient Image

Figure C.34: SIFT correspondences on a sample Self Quotient Image
taken during the day processed with a low-pass sieve. The image is sieved
at scales 10𝑛, 𝑛 = 0 . . . 5 (shown left-to-right).
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Day, SIFT, high-pass sieve, original image

Figure C.35: SIFT correspondences on a sample image taken during
the day processed with a high-pass sieve. The image is sieved at scales
10𝑛, 𝑛 = 0 . . . 5 (shown left-to-right).
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Day, SIFT, high-pass sieve, Self Quotient Image

Figure C.36: SIFT correspondences on a sample Self Quotient Image
taken during the day processed with a high-pass sieve. The image is
sieved at scales 10𝑛, 𝑛 = 0 . . . 5 (shown left-to-right).
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Day, SIFT, band-pass sieve, original image

Figure C.37: SIFT correspondences on a sample image taken during
the day processed with a band-pass sieve. The image is sieved at bands
10𝑛 to 10𝑛+1, 𝑛 = 0 . . . 4 (shown left-to-right).
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Day, SIFT, band-pass sieve, Self Quotient Image

Figure C.38: SIFT correspondences on a sample Self Quotient Image
taken during the day processed with a band-pass sieve. The image is
sieved at bands 10𝑛 to 10𝑛+1, 𝑛 = 0 . . . 4 (shown left-to-right).
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