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Abstract
Multiheme cytochromes (MHCs) are bacterial electron-transfer
proteins. We show from optical spectra and calculations that
some of these cytochromes probably contain occupied and un-
occupiedbands formed fromhemepandp* orbitals that span the
protein. In the fully oxidised proteins, the unoccupied p*-bands
are energetically above the redox-active frontier orbitals, which
according to NMR data and calculations, are formed of Fe3+ t2g
and porphyrin p-orbitals. These orbitals on different hemes are
electronically coupled according to EPR data and calculations,
but only weakly so. We suggest a role for the heme bands in the
electronic conductivity of single MHCs in bioelectronic junctions
that is distinct from the role of the redox-active Fe3+ t2g and
porphyrin p-orbitals in physiological electron transfer.
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Introduction
Extracellular respiration is a process employed by some
bacteria to thrive under anaerobic conditions [1e4]. A
general feature of this process is that electrons inside
the cell are transported to substrates outside the cell,
such as solid metal oxides. Proteins containing heme, a
derivative of the porphin ring (Figure 1a) with Fe2þ/
Fe3þ bound to the four pyrrole nitrogens are central to
this. Such proteins, termed cytochromes, act as elec-

tron transfer agents both inside and outside the cell as
well as across the outer membrane [1e5]. In this article
we review spectroscopic data (Figure 1) for cyto-
chromes involved in extracellular respiration that
contain more than one heme to address the issue of how
orbitals of the heme groups interact with each other
and with the redox-active orbitals of the Fe3þ ions,
report initial molecular orbital calculations for how the
heme groups may interact, and consider the implica-
tions our findings have for the functions of the proteins.
In doing this we draw on a considerable body of work

involving small molecules and monoheme proteins,
both theoretical and experimental, some going back
more than 60 years.
Classification and structures of multiheme
cytochromes
Cytochromes c (cyts) contain at least one heme formed
from a protoporphyrin IX (Figure 1a). Usually a Cys-X-X-
Cys-His motif is the heme-binding site: the Cys residues
make thioether linkages with the vinyl substituents of
the protoporphyrin, and the His coordinates to the iron

[6]. In some cyts the iron is 5-coordinate and in others it
is 6-coordinate, generally with an additional His orMet as
an axial ligand. While many cyts contain only one heme-
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Figure 1

(a) The Fischer structure of porphin. Protoporphyrin IX has four –CH3

substituents (at positions 3, 8. 13 and 17), two –CH]CH2 substituents (at
positions 7 and 12), and two –CH2-CH2-CO2H substituents (at positions 2
and 18). In c-type cytochromes the vinyl groups react with the thiol side
chains of Cys residues to form thioether links to the protein. (b)
UV–visible absorbance spectra of fully oxidised (solid lines) and fully
reduced (dotted lines) STC (red, upper panel) and MtrCAB (black, lower
panel) using a bandwidth and data interval of 0.1 nm, 200 nm/min and
0.06 s response time (JASCO V-770 spectrophotometer). The peak
widths at half peak height for the Soret bands of the tetraheme STC and
icosaheme MtrCAB are the same. (c) The four-orbital model by Gouter-
man shows the porphyrin HOMOs and LUMOs. The orange and blue
spheres represent different phases of the orbitals with the size of the
spheres indicating the relative electron densities (picture licensed under
CreativeCommons, cc by-nc-sa 3.0) [7]. The HOMOs, a1u and a2u orbitals,
are non-degenerate, but close in energy, and the LUMOs are a degen-
erate pair of eg orbitals. (d) UV–visible absorbance spectra for the gradual
reduction of MtrC from oxidised (black solid line) to fully reduced (red solid
line), slit width and sampling interval both 1 nm. All experiments
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binding motif, multiheme cytochromes c (MHCs) are
common in bacteria [8e11]. Nomenclature for mono-
heme cyts is well established [6], but there is not an
accepted classification scheme for MHCs. The InterPro
database [12] has 31 entries in its MHC superfamily
(IPRO36280). In this review we are concerned with
members of the IPRO12286 and IPRO20014 families
(Table 1), for which the hemes are 6-coordinate.

In the small tetraheme cytochrome STC from Shewanella
oneidensis [13e15] the central pair of hemes are
approximately parallel to each other and in van der Waals
contact but are displaced relative to each other, so they
are not completely co-planar (Figure 2a). Each of the
other hemes is roughly orthogonal to one of the parallel
hemes, creating a T-shaped motif. These two packing
motifs, the displaced parallel and T-shaped, first
described for cytochrome c554 from Nitrosomonas europaea
[16], are present in other proteins listed in Table 1. For

example, the 10 hemes of MtrC (Figure 2b and c) form a
central core of four almost co-planar hemes (hemes 1, 2,
6 and 7) with the remaining six hemes forming T-shaped
motifs with themselves and for two of them (hemes 3
and 8), with the four almost parallel hemes [17].

Aromatic amino acids in proteins adopt preferential
packing interactions with other aromatic residues
[18e20] in agreement with theoretical studies that
suggests the preferred orientation of a benzene dimer is
the parallel staggered orientation with the T-shaped

orientation having a higher energy [21]. The reason these
motifs are common is the presence of p-orbitals, which
enhances the attraction one aromatic group has for
another at relatively long distances [22], a factor which
should also influence the packing of heme groups, which
is why the displaced parallel and T-shaped motifs
are prevalent.
performed with 0.7 mM protein in 100 mM HEPES buffer pH8 with 5 mM
LDAO, 150 mM NaCl. Chemical reductions were performed anaerobically
using sodium dithionite (2 mg/mL). Note the isosbestic points, consistent
with the oxidised hemes within a protein having the same wavelength
maxima and similarly the reduced hemes within a protein. (e) Ru-
MtrC:MtrAB (0.14 mM) in anaerobic 50 mM Tris, 10 mM KCl, 100 mM
EDTA, 0.2% (v/v) Triton X-100, pH 8.5. Irradiation at 450 nm, intensity 110
Wm-2. Replotted from Ref. [23] with oxidised MtrCAB (solid black line),
photo-reduced MtrCAB over time (grey lines) and fully reduced MtrCAB
(solid red line). Spectra were recorded using a Biochrom WPA Biowave II
Diode-array UV/Vis spectrophotometer under N2 with an Omega Optical
475RB Notch filter to prevent photoexcitation of RuMe by the spectro-
photometer. The band width was 10 nm. (f) High frequency region of the
1D-1H NMR spectra of oxidised STC at pH 7.0 and 25 �C [24] 1H NMR
signals of diamagnetic proteins generally fall in the chemical shift range of
0–10 ppm. The STC peaks from 15 to 40 ppm come from groups affected
by the paramagnetism of the Fe3+-hemes. Many of the signals are from
heme methyl groups that experience a contact shift resulting from spin
density of the Fe3+ entering porphyrin orbitals. Reproduced with
permission.
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Table 1

Multiheme cytochromes c.

Cytochrome Number of
hemes

Subcellular location Oxidised Soret
maximum/nm

Reduced Soret
maximum/nm

Reduced
a maximum/nm

References

STC 4 Periplasmic 407.2 417.5 551.7 [14]
MtrA 10 Periplasmica 407.5 419.3 552.9 [25,26]
MtrC 10 Extracellular 410.0 420.1 551.6 [17]
OmcA 10 Extracellular 409.4 419.6 550.9 [27]
UndA 11 Extracellular 410.5 420.1 551.2 [28]
MtrAB 10 Integral OM complex 408.1 418.9 552.6 [25,26]
MtrCAB 20 Integral OM complex with

extracellular domain
410.1 420.0 551.3 [25]

Oxidised and reduced Soret maximum and a maximum from UV–visible absorbance of cyts using a bandwidth and data interval of 0.1 nm, 200 nm/min and
0.06 s response time (JASCO V-770 spectrophotometer). All experiments performed with 0.7 mM protein in 100 mM HEPES, pH7, 100 mM NaCl, and with
5 mM LDAO at 20 �C. Chemical reductions were performed anaerobically with aliquots of anaerobic sodium dithionite (2 mg/mL).
a Engineered periplasmic form expressed in Shewanella oneidensis (PhD thesis, Matthew Lawes, University of East Anglia, 2015).
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Spectroscopy of multiheme cytochromes
UV-visible spectroscopy
UV-visible spectroscopy has been invaluable in charac-
terising cytochromes, as the spectra of reduced and
oxidised STC [13,15] and MtrCAB [25] illustrate
(Figure 1b). The absorption bands arise from electronic
transitions involving the protoporphyrin p and p* or-

bitals. Gouterman [29e31] developed a molecular
orbital scheme to account for these involving two
HOMOs and two LUMOs (Figure 1c). He showed that
the two transitions, a1u / eg and a2u / eg, mixed to
give an intense band, the Soret band at ca. 407e420 nm,
and a weaker set of bands, the a and b bands at ca.
500e560 nm (Table 1). The a and b bands arise from
the same electronic transition but different CeC
stretching mode vibrational transitions: a is a (0,0) and
b a (0,1) transition. This scheme is still the accepted
theoretical explanation for the UVevisible spectra of

hemes [32e34].
Figure 2

X-ray crystal structures of (a) STC (pdb: 1M1Q) and (b) MtrC (pdb: 4LM8) wit
with the hemes numbered (grey italics) and the heme-to-edge distances show

www.sciencedirect.com
A striking feature for all the proteins listed in Table 1 is
that the heme groups within each protein have the same
spectra in terms of the wavelengths of their Soret, a and

b bands. This is shown by UVevisible spectra of the
proteins as they are gradually reduced from their fully
oxidised states (Figure 1d and e show examples). Note
that this identity in spectra is independent of the
method of reduction since, for example, spectral iden-
tity exists for proteins reduced electrochemically [35],
by photoreduction in the presence of photosensitisers
[36], and with dithionite in the presence of redox me-
diators [37]. The spectral identity of the heme groups in
these proteins is not because they are all bis-His coor-
dinated because the proteins we are considering have

different spectra from each other (Table 1). For
example, the Soret band for the 10 hemes of MtrA shifts
to longer wavelengths in MtrCAB and have the same
wavelength maximum as the 10 hemes of the bound
MtrC (Table 1).
h the hemes depicted in red. (c) Staggered-cross heme structure of MtrC
n.
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We suggest that the spectral identity of the heme groups
within a single protein is a consequence of the formation
of bands of molecular orbitals involving all the heme
groups within the protein so that the energies of the
Soret p / p* transitions are the same, as are the en-
ergies of the a/b p / p* transitions. Figure 2 shows
that the heme groups of STC and MtrC are close
enough for their four Gouterman molecular orbitals to

interact. A full MO treatment of such interactions is
beyond the scope of this paper, though we find from
calculated molecular orbitals for a monomer and a dimer
of bis-His coordinated Fe3þ-porphin that the a1u orbitals
on each monomer combine symmetrically and anti-
symmetrically, and similarly for a2u and eg orbitals
(Figure 3). In longer heme chains these combinations
would give rise to the formation of narrow occupied and
unoccupied bands.

The electronic coupling between the hemes to create

the occupied and unoccupied bands is relatively weak.
We know this because the electronic transition energies
in the UVevisible spectra are like those of monoheme
Figure 3

Calculated molecular orbital energy level diagram for a monomer and a dimer
are shown in orange (blue). The energy levels of the occupied Gouterman or
orbitals are indicated. In the dimer, the Gouterman orbitals form symmetric an
which in the case of a linear heme chain would result in band formation. The e
inaccuracies of the calculations. Notice that in the oxidized state the occupied
Fe3+ t2g orbitals, thus forming the HOMO, whilst the unoccupied Fe3+ t2g orbital
thus forming the LUMO. Notice also that the degeneracy of the unoccupied G
breaking. In the dimer, the porphin planes are parallel and the Fe–Fe distance
The heme orientation is such that one heme is the mirror image of the other w
carried out with the PBE0 density functional in the doublet spin state for the bis
porphin dimer using a TZVP-MOLOPT-SR basis set for Fe3+ and TZV2P-MOLO
GTH pseudopotentials (16 electron valence for Fe, 1 for H, 4 for C and 5 for N
minority spin electrons in the given energy range are shown. The calculation
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cytochromes. Furthermore, Posligua et al. [38] calcu-
lated that fused porphyrin polymers without a linking
group had a metallic band structure, while porphyrins
linked by ethyne or butadiyne had small band gaps that
increased with the number of carbons, demonstrating
that the coupling between hemes is the key determi-
nant of band gap.

It will be interesting to discover when a transition from
individual heme HOMOs and LUMOs, to a manifold of
heme HOMOs and LUMOs, and then, perhaps, onto a
valence band and conduction band occurs. It is not just
the number of hemes that will be relevant for this as the
tetraheme STC seems to have a band structure, as we
have shown, while published optical spectra of tetra-
heme cytochromes c3 [6,39], which have a different
packing of hemes [39], show no evidence of a
band structure.

NMR spectroscopy
1H NMR spectra of ferricytochromes, including STC
[24,40] (Figure 1f), OmcA [41] and triheme and
of bis-His coordinated Fe3+ porphin. Occupied (unoccupied) energy levels
bitals a1u, a2u, unoccupied Gouterman orbitals egx, egy and the Fe3+ t2g
d antisymmetric combinations (orbitals depicted to the right of the figure)

gy orbital is not equally delocalized over both monomers due to numerical
Gouterman orbitals are predicted to be higher in energy than the occupied
is predicted to be lower in energy than the unoccupied Gouterman orbitals,
outerman eg orbitals appears to be lifted, possibly due to symmetry
is 11 Å corresponding to a heme-edge to heme-edge distance of 4.02 Å.
ith the dN of the axial histidines facing one another. The calculations were
-His Fe3+-porphin monomer and in the triplet spin state for the bis-His Fe3+-
PT basis set for H, N, C, ADMM basis cFIT13 for Fe and cFIT3 for H, C, N,
) and a 350 Ry cutoff for the reciprocal grid. Only the energy levels for the
s were carried out with the CP2K programme package [42].

www.sciencedirect.com
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hexaheme domains of the periplasmic dodecaheme cyt
GSU1996 from Geobacter sulfurreducens [43], show that
unpaired electron spin density from the Fe3þ creates
large chemical shift perturbations via scalar (contact)
and dipolar (pseudocontact) interactions [44e47].
Contact shifts result from spin density being delocalised
into the porphyrin and the axial ligands. Note that the
spin delocalisation we are considering is the transfer of

small fractions of an unpaired electron from the metal to
the porphyrin and not the complete transfer of
an electron.

Fe3þ d-orbitals can mix with porphyrin p and p* or-
bitals, and how they do this depends on the electron
occupancy of the d-orbitals and on the energies and
symmetries of the relevant orbitals, which in turn de-
pends on issues such as whether the heme is distorted
and the identity of the axial ligands [46e50]. In a
tetragonal crystal field, the t2g set of three d-orbitals split
further, and for low-spin monoheme cytochromes that
have been characterised the unpaired electron is in the
dxz/dyz pair of orbitals, which lie perpendicular to the
plane of the heme and interact with the porphyrin p-
orbitals [48,50,51]. For heme compounds containing
low-spin Fe3þ X-ray absorption spectroscopy suggests
the electron delocalisation into the porphyrin occurs by
what Solomon and his colleagues call a ‘hole super-
exchange pathway’ [52].

EPR spectroscopy
EPR studies reported additional surprising results in
that spinespin coupling between Fe3þ ions in some of
the heme groups of MtrC is observed [37]. In principle,

such spinespin coupling could be scalar or dipolar in
origin. However, EPR studies of other close-packed
MHCs, such as the tetraheme cytochrome c3 and the
tri-heme cytochrome c7, do not exhibit spinespin
coupling between the heme Fe3þ ions [53,54], so we
think that it is most likely such coupling is scalar. Scalar
coupling requires the coupled heme groups to share
electron density, and this requires electron delocalisa-
tion between hemes that could arise when Fe3þ d-or-
bitals mix with heme p-orbitals to form narrow bands.

In this respect, it is important to note that while we
propose that hemes have lost their individual identities
as far as their p and p* orbitals are concerned, they have
not lost their identities as far as the Fe2þ/Fe3þ ions and
the substituents to the hemes are concerned. This is
shown by the multitude of signals in EPR spectra of
ferric MtrC [37] and the 1H NMR spectra of STC and
GSU1996 [24,40,43], and by the observation of different
redox potentials for different hemes [8,13,37,24,40,55]
This is an important observation because the d-orbitals
of the Fe2þ/Fe3þ ions are the primary redox orbitals of

the proteins.
www.sciencedirect.com
Mechanistic implications of a band
structure in multiheme cytochromes
Long-range electron transfer in proteins is generally
discussed in terms of hopping and tunnelling mecha-
nisms [56e58] but without a full MO description of the
band structure in our MHCs, it is not possible to be
certain about mechanistic implications. However, we
can make pertinent observations. Firstly, we note that
though the proposed bands explain the electronic
spectral identity of the hemes within a protein we have
no evidence that they are involved in electron transfer.
For this reason, we term the band formed from p-or-
bitals the occupied band and the band involving the p*-
orbitals the unoccupied band. Secondly, we note that
the proteins of Table 1 have some of the fastest inter-
heme electron transfer rates reported [59], and, so far,
are the only proteins suggested to have a band structure
formed by porphyrin orbitals, as described in Section
UV-visible spectroscopy. Of course, this could be a
coincidence, but this is a matter that should be
explored further.

The bands formed by heme orbitals could also play a
pivotal role in the electronic conduction of MHCs

[38,55,60]. Recent measurements on junctions of STC
and MtrF have shown that the electronic conductance
of the proteins was temperature independent from room
temperature down to below 100 K [38]. This observa-
tion could only be explained by a coherent tunnelling
model where conductance is mediated by delocalized
“band-like” states [55,60]. Notice that during the
tunnelling process the protein does not get oxidized or
reduced. The transferring electron resides on the pro-
tein only on the electronic time scale (femtosecond or
lower), not on the time scale of nuclear vibrations.

Calculations on Au-STC-Au junctions showed that the
“band-like” states mediating tunnelling were typically
delocalized over 2e3 heme cofactors, bridging the gap
between the two electrodes, and over protein amino
acids interacting with the electrodes [61], suggesting
that these “band-like” states involve our proposed
heme bands.

It is important to note that the biological roles of the
MHCs are to transfer electrons between proteins and
from proteins to electron-accepting substrates, and

many in vitro experiments with these proteins are aimed
at determining how they carry out their physiological
functions e.g. Ref. [59]. We would like to emphasize
that the physics of biological electron transfer involving
molecular donors and acceptors is very different from
the electronic conduction scenario involving metal
electrodes as donors and acceptors described above. In
biological electron transfer the redox potentials of
physiological electron donors and acceptors are well
matched with the redox potentials of the hemes so that
Current Opinion in Electrochemistry 2024, 47:101556
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electron injection into the heme chain is energetically
feasible. Calculations have shown that the dielectric
response of surrounding protein and water (reorganiza-
tion free energy typically 0.7e1.0 eV) [62] is much
larger than the electronic coupling between the redox-
active Fe-d t2g-porphyrin p-orbitals on neighbouring
heme cofactors (typically only a few meV and <10 meV
[62]). This causes the electron to localize on single

heme cofactors and heme-to-heme hopping to be the
transport mechanism. The electron transfer rates
predicted by calculations [62] were subsequently found
to be in good agreement with values obtained by pump
probe transient absorption spectroscopy [61]. Notably,
the same calculations predict that the electron hopping
flux through MHCs under physiological conditions do
not exceed 106e107 s�1 [62], which is more than two
orders of magnitude lower than the currents measured
in junctions made of the same MHC proteins [38,55],
again suggesting that the conduction mechanism in

protein junctions [38,55] (band-like) differs from the
one in the native environment (hopping).

In the heme-to-heme hopping model, when thermal
excitations bring the redox-active frontier orbitals (Fe d-
heme/porphyrin p-orbital) of neighbouring hemes to
energetic degeneracy, delocalization of these electronic
states occurs temporarily over both hemes, and the
electron transfers happens. In previous work we also
investigated the flickering resonance mechanism [63],
that is the possibility that several hemes get simulta-

neously into degeneracy such that delocalization of the
Fe-d t2g-porphyrin p-orbitals would be greater and
longer -range hops would occur. However, we concluded
that electronic coupling between the hemes is not large
enough compared to their site energy fluctuations to
allow such a mechanism to be feasible [64].

Finally, we draw attention to polypyrrole, which is a
linear polymer with pyrrole rings linked via the C-2
carbon of one pyrrole attached to the C-5 carbon of
another pyrrole [65,66]. Valence bands are formed from
the p orbitals and conduction bands from the p* or-

bitals. With a band gap of 3.16 eV, polypyrrole is an
insulator, though p-type doped polypyrrole is a
conductor [66e68]. The bands we envisage in the
multiheme cytochromes come from pyrrole rings fused
into a porphyrin via methine linkages between C-2 and
C-5 carbons of neighbouring pyrroles, with band for-
mation requiring both through-bond and through-space
orbital overlap. It is no surprise then that the polypyrrole
band gap is like the Soret and a band gaps of our MHCs:
3.0 (at 410 nm) and 2.5 (at 550 nm) eV, respectively. It is
beyond the scope of this article to pursue the compari-

son of polypyrrole and MHCs further, but we suggest it
is a topic for investigation.
Current Opinion in Electrochemistry 2024, 47:101556
Concluding remarks
We have revisited spectroscopic data on MHCs involved

in extracellular respiration, some dating back almost 20
years, and have interpreted the data in the light of
theoretical and experimental studies of model com-
plexes and monoheme cytochromes, some dating back
more than 60 years. Our conclusion is that the proteins
we have considered contain bands of molecular orbitals
that span the protein. These bands are composed of the
p and p* orbitals of the hemes and are the first such
bands to be described in a protein. We went on to argue
that these bands may play a role in electronic conduc-
tion of single MHCs, i.e., in bioelectronics, but are likely

to be less important for physiological electron transfer
functions of proteins. Future work should be directed at
obtaining more evidence for the involvement of the
bands in electronic conduction and in looking for
possible roles for them in physiological reactions.
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