W) Check for updates

Received: 23 January 2024 Revised: 24 May 2024 Accepted: 4 June 2024

DOI: 10.1112/jlms.12965

Journal of the London
RESEARCH ARTICLE Mathematical Society

Applying projective functors to arbitrary
holonomic simple modules

Marco Mackaay'? | Volodymyr Mazorchuk® | Vanessa Miemietz*

LCenter for Mathematical Analysis,
Geometry, and Dynamical Systems, Abstract

Departamento de Matematica, Instituto We prove that applying a projective functor to a

Superior Técnico, Lisboa, Portugal . . . . . .
P & holonomic simple module over a semisimple finite-

2Departamento de Matematica, FCT,
Universidade do Algarve, Campus de
Gambelas, Faro, Portugal that has an essential semisimple submodule of finite

dimensional complex Lie algebra produces a module

3Department of Mathematics, Uppsala length. This implies that holonomic simple supermod-

University, Uppsala, Sweden ules over certain Lie superalgebras are quotients of

4School of Mathematics, University of

. . modules that are induced from simple modules over the
East Anglia, Norwich, UK

even part. We also provide some further insight into the
Correspondence structure of Lie algebra modules that are obtained by
Volodymyr Mazorchuk, Department of
Mathematics, Uppsala University, Box.
480, SE-75106, Uppsala, Sweden.
Email: mazor@math.uu.se

applying projective functors to simple modules.

MSC 2020
17B10 (primary), 16G99, 18N10 (secondary)

Funding information

Fundagcio para a Ciéncia e a Tecnologia,
Grant/Award Number:
UID/MAT/04459/2013; Swedish Research
Council

1 | MOTIVATION AND DESCRIPTION OF THE RESULTS
1.1 | Motivation from Lie superalgebras

Let g be a semisimple (or reductive) finite-dimensional Lie algebra over C. Let $ = 8, @ 8, be a
finite-dimensional complex Lie superalgebra such that 8, = g. One of the basic representation-
theoretic problems for 8 is the classification of simple 8-supermodules, see, for example, [9, 10,
33]. A natural way to address this problem is to look for some connection between simple 3-
supermodules and simple g-modules. In [9, 10, 33], this approach was successfully applied to
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reduce the problem of classification of simple 3-supermodules to that of simple g-modules. The
latter problem is very difficult, the only known case in which it is “solved” (in the sense that it
is reduced to the problem of classification of equivalence classes of irreducible elements over a
certain noncommutative principal ideal domain) is 31,, see [6].

The module categories 3-Mod and g-Mod are connected by the usual induction and restriction
functors. Moreover, the latter two functors are not only adjoint in the obvious way (i.e., induction
is left adjoint to restriction), but they are also biadjoint, up to parity shift (i.e., induction is right
adjoint to restriction, up to parity shift that depends on the parity of the dimension of 3,). This
is equivalent to saying that induction is isomorphic to coinduction, up to parity shift. Since the
universal enveloping algebra U(g) is noetherian and the universal enveloping algebra U(8) is
finite over U(g), every simple U(8)-supermodule S has a simple quotient, say L, when considered
as a U(g)-module. By adjunction, it follows that S is a submodule of a module that is coinduced
from a simple U(g)-module. That is a very natural fact.

Now we recall that induction and coinduction coincide, up to a parity shift. It follows that S is
a submodule of a module that is induced from a simple U(g)-module. It would be more natural to
expect S to be a quotient of a module induced from a simple U(g)-module. However, it seems that
there is no easy argument for why that should be the case. This property is an essential ingredient
in [10] where the claim is proved in type A using very specific type A properties established in [37,
38].

The idea is that, in order to use the correct adjunction, we need to show that S, when restricted
to U(g), has a simple submodule. Note that we already know that S is a submodule of an induced
simple module. Therefore, it is enough to show that any U(8)-supermodule that is induced from a
simple U(g)-module, when restricted back to U(g), has finite type socle, that is, it has an essential
semisimple submodule of finite length.

At the level of U(g)-modules, the composition of induction to U(8) followed by restriction back
to U(g) can be described as tensoring with a finite-dimensional U(g)-module, namely, with A 8,.
This naturally leads to the formulation of our main result in Theorem 22 below.

1.2 | Main result

Recall that a simple module over a finitely generated associative algebra of finite Gelfand-
Kirillov dimension is called holonomic, provided that it has the minimal possible Gelfand-Kirillov
dimension among all simple modules with the same annihilator.

The main result of this paper is the following statement.

Theorem 22. Let g be a semisimple finite-dimensional Lie algebra over C. Let L be a holonomic
simple g-module and let V' be a finite-dimensional g-module. Then, the g-module V @ L has an
essential semisimple submodule of finite length.

As an immediate corollary, it follows that any holonomic simple 3-supermodule is, indeed, a
quotient of a module that is induced from a simple g-module.

In type A, the assertion of Theorem 22 is true for all simple g-modules, not necessarily holo-
nomic ones, see [10, Theorem 23]. Of course, we expect the assertion of Theorem 22 to be true
for all simple g-modules in all types. However, at the moment, we do not see how to prove
that.
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1.3 | Structureof V ® L

The main difficulty in proving the main result lies in the fact that the module V' ® L, in general,
while being noetherian, does not have to be artinian, see [43] for an example. At the same time, in
all known “natural” examples, for instance, if we assume that L belongs to the BGG category O,
see [4, 19], or to the category of weight modules with finite-dimensional weight spaces, see [32],
or to the category of Gelfand-Zeitlin modules, see [16, 18], the module V' ® L has finite length.
Therefore, in our approach, we cannot really rely on the intuition developed during the study
of these classical categories of modules. We need to understand the structure of V ®¢ L in very
abstract terms and in a situation where we lack easy computable examples.
Possible subquotients of interest in V' ® L split naturally into three categories:

* simple subquotients whose Gelfand-Kirillov dimension equals GKdim(L);

* simple subquotients whose Gelfand-Kirillov dimension is strictly smaller than GKdim(L);

* nonsimple subquotients that we call strange, see Subsection 4.5 for details, and which are
defined by the property that they have Gelfand-Kirillov dimension GKdim(L) but they do not
have any simple subquotient of Gelfand-Kirillov dimension GKdim(L).

Our proof of the main result essentially reduces to the statement that V ®. L cannot have
strange submodules.

A major part of the paper is devoted to taking a closer look at the general structure of V& L. As
mentioned above, this module might fail to have finite length. However, one can define a natural
Serre subquotient of the category of all g-module in which V' ® L does have finite length, see
Subsection 7.3. The structure of V ® L as an object of this Serre subquotient is similar in spirit
to what was called the rough structure of generalized Verma modules in [38].

The correct setup for the study of modules of the form V @ L is to combine them all into a
certain birepresentation of the bicategory of projective functors associated to the algebra g. In the
case when L is a simple highest weight module, these birepresentations appear frequently and
were studied extensively in many papers, see [29, 34, 38] and references therein. In the general
case, it is natural to expect that the corresponding birepresentations behave similarly to the case of
highest weight modules. One possible direction of this expectation is formulated, in precise terms,
in Conjecture 5 in Subsection 3.2. This conjecture asserts that the birepresentation in question is
simple transitive in the terminology of [37].

In type A, the conjecture is proved in Subsection 4.4. In fact, in type A, we establish an equiva-
lence between a birepresentation in the general case and a birepresentation in the highest weight
case. We do not expect such an equivalence for other types, in general, as we know from [29] that,
outside type A, not all simple transitive birepresentations of projective functors can be modeled
naively using highest weight modules (a modeling via highest weight modules is possible, but it
requires an upgrade to the level of (co)algebra 1-morphisms and the corresponding categories of
(co)modules). It would be really interesting if, in general type, each simple transitive birepresen-
tation of projective functors turned out to be constructible directly starting from some simple (but
not necessarily highest weight) module. At the moment, we do not know whether this is true or
not and where to look for such simple modules.

Another interesting aspect of the structure of V' @ L which we analyze is the following: There
is a natural preorder I> on the set of isomorphism classes of simple g-modules given by L > L/,
provided that L' is a quotient of V ®. L, for some V. In Conjecture 9, we predict that i s, in fact,
an equivalence relation. Again, in type A, we can prove this conjecture, see Subsection 4.3. We
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find it very surprising that this, intuitively very natural expectation, seems to be very nontrivial
in reality and even in type A its proof requires quite heavy machinery. At the moment we do not
know how to prove this conjecture in general.

1.4 | Structure of the paper

The paper is organized as follows: in Section 2, we collect all necessary preliminaries. In Sections 3,
4, and 7, we study the general structure of modules of the form V' @ L in more detail. Section 3
contains all necessary preliminaries in order to formulate Conjecture 5 (in Subsection 3.2) and
Conjecture 9 (in Subsection 3.3). The two conjectures are compared in Subsection 3.4. Section 4
contains proofs of Conjecture 5 and Conjecture 9 in type A. The main result is proved in Section 5
and is extended beyond the holonomic case to some further special cases outside type A in Sec-
tion 6. Section 7 is devoted to the study of strange subquotients of modules of the form V ® L
as well as Serre subquotients of the category of g-modules in which modules of the form V ®. L
have finite length.

2 | PRELIMINARIES
2.1 | Category O

Fix a triangular decomposition g = n_ @ § @ n_ of g. Associated to this decomposition, we have
the corresponding BGG category O, see [4, 19]. Simple objects in @ are the simple highest weight
modules L(4), where 4 € §*. The module L(A) is the unique simple quotient of the Verma module
AQL).

Let Z(g) be the center of the universal enveloping algebra U(g) of g. Then, 6 decomposes into
a direct sum of 0, where y : Z(g) — C is a central character of U(g). The category O, is a full
subcategory of O consisting of all modules on which the kernel of y acts locally nilpotently. An
important fact about O, is that it is always nonzero. In other words, any character of Z(g) is real-
izable as the central character of some L(1), see [14, Section 7]. For a fixed y, the set of all A such
that L(4) has central character y is an orbit of the Weyl group W of (g, §) on §* with respect to the
so-called dot-action, which is the shift of the natural action by half the sum of all positive roots.

If L is some simple g-module (not necessarily in category 0), then the annihilator Anng ) (L)
of L in U(g) is a primitive ideal and it is realizable as the annihilator of some L(1), see [15].

For A € h*, we have the indecomposable projective cover P(1) of L(4) in O and the
indecomposable injective envelope I(1) of L(4) in O.

We denote by R C §* the root system of g with respect to §. Our choice of triangular decom-
position above gives rise to the decomposition of R into a disjoint union of positive roots R, and
negative roots R_. We denote by 7 the corresponding basis of R. We also denote by E the root
lattice Z[R].

By definition, a weight in §* is integral if it is a weight of some finite-dimensional g-module.
We denote by A the lattice of all integral weights. Note that Z C A is a subgroup of finite index.
This index is the determinant of the Cartan matrix for g, in particular, E = A only in types Eg, F,,
and G,.

For a weight 1, we denote by W the integral Weyl group of 4, that is the subgroup of W gen-
erated by all reflections s for which s - 4 — 4 is an integral multiple of a root. We also denote by

UONIPUOD PUe SWd | 8U} 39S *[7202/L0/6T] U0 A1 auiuo A1 ellbuy 1se3 JO AisieAun Ag G962T SWI/ZTTT OT/10p/u0d A |IM A Ul |UO"0SUTRLLPUO |/ SANY LWO1j papeo|umod ‘Z ¥20Z ‘0SLL69%T

0 I A,

85UB0|1 SUOWILLOD) BAa1D) 3 jceat|dde au) Aq pausenoh afe sepie O ‘asn Jo sanJ 1o} AriqiT auluo A3|IM uo



PROJECTIVE FUNCTORS ON HOLONOMIC SIMPLE MODULES | 50f29

W/’1 the stabilizer of A in W. We call 1 € §*regular if W/’1 = {e}. If 1 € h* is not regular, it is called
singular. We call 1 dominantifw -1 < 4, forallw € W;.

We note that the categories 0, are usually decomposable. For 1 € §*, we denote by 0, the
indecomposable direct summand (block) of © containing L(1). Let y = X, be the central character
of L(1). Consider W - 4 and define on this finite set the equivalence relation = as follows: for i, v €
W - 4, set u = v provided that W, - u =W, -v. If {4,, ..., 4} is any cross-section of equivalence
classes, then @x decomposes into the direct sum @,11 DD @lk‘

2.2 | Projective functors

In this subsection, we recall the definition and basic properties of projective functors, as
introduced in [5].

Let .# denote the category of all g-modules on which the action of Z(g) is locally finite. Note
that © C . Similarly to 0, the category .4 decomposes into a product of the full subcategories
M ¥ where y is a central character, defined as follows: .# ¥ consists of all objects on which the
kernel of y acts locally nilpotently. Clearly, 0, C ./, .

For any finite-dimensional g-module V, tensoring with V preserves both .# and 0. A projec-
tive functor is an endofunctor of .# (or ©) that is isomorphic to a direct summand of tensoring
with some V. The functor V ® _ is biadjoint to V* @ _, for any finite-dimensional g-module V,
and hence, each projective functor has a biadjoint projective functor. Consequently, any projective
functor is exact. Furthermore, each projective functor is isomorphic to a direct sum of indecom-
posable projective functors. Indecomposable projective functors are classified by their restriction
to O.

Let 6’ and 6" be two indecomposable blocks of @. Let L(,), L(4,),...,L(4,) and L(y,),
L(1y), ..., L(u,) be complete and irredundant lists of simples in 6’ and 6", respectively. Assume
that 4, and y, are the weights in the above lists that are dominant with respect to the
corresponding integral Weyl groups (each list contains a unique such dominant weight).

Nonzero projective functors from ¢’ to 6" exist if and only if 4; — y; is an integral weight.
Indecomposable projective functors from 6’ to ©” are in bijection with those y; that are
W/’11 -antidominant with respect to the dot action. In fact, for each such y;, there is a unique

indecomposable projective functor, denoted as 9, ,, from 0’ to 0" that sends P(4,) = A(4,) to
P(uy).

Letnow y’ and y”’ be two central characters. The above can be used to classify indecomposable
projective functors from .#,, to .. Let 1 and v be some weights such that L(1) and L(v) have
the central characters y’ and y”, respectively. Without loss of generality, we may assume that A
is dominant with respect to its integral Weyl group.

Projective functors from .# o Yo M, exist if and only if (W - v) n (4 + A) is not empty. If this
condition is satisfied, we may assume v € 1 + A without loss of generality. Let

W -v)NnA+A)={,vy,..,0}

Then, indecomposable projective functors from .# . to ./, are exactly the functors §; ,, , where
v; is W/’l-antidominant. We note that the Serre subcategory of O generated by L(v;), L(v,),..., L(v,)
does not have to be indecomposable, and hence, our indecomposable projective functors from
M to M i are not classified, in the general case, by projective functors from an indecomposable
block of @ to an indecomposable block of O.
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2.3 | Harish-Chandra bimodules

An alternative way to look at projective functors is using Harish-Chandra bimodules. A g-g-
bimodule B is called a Harish-Chandra bimodule, provided that it is finitely generated as a
bimodule and the adjoint action of g on it is locally finite with finite multiplicities. A typical exam-
ple of a Harish-Chandra bimodule is the quotient of U(g) by the ideal generated by the kernel of
some central character. The category of all Harish-Chandra bimodules is denoted as 7.

The category 7 is, naturally, a monoidal category, where the monoidal structure is given by
tensoring over U(g). As a monoidal category, # is naturally A/E-graded. Namely, for a coset
¢ € A/Z, the corresponding homogeneous component % consists of all bimodules B such that,
for any finite-dimensional simple g-module V, the fact that the multiplicity [B2¢ : V] > 1 implies
that the support of V belongs to £. For a Harish-Chandra bimodule B, we will denote by B? its
projection onto F%.

Let us explain how this grading works. Given a U(g)-U(g)-bimodule B, the left action of U(g) on
B is given by a map U(g) ®. B — B, which is a homomorphism of both left and right g-modules
and hence also of adjoint g-modules. As U(g), considered as an adjoint g-module, is a direct sum of
simple finite-dimensional g-modules whose support belongs to E, the above action map restricts
to U(g) ®¢ B¢ — B, for every &. Similarly, we have a restriction of the right action map, which
implies that B¢ is, indeed, a U(g)-U(g)-subbimodule of B.

The above grading is motivated by the fact that the action of projective functors on category
O behaves “slightly better” than on other natural categories of g-modules. As was mentioned in
Subsection 2.2, projective functors are uniquely determined (up to isomorphism) by the image
of dominant Verma modules in category ©. Outside category O, it might happen that analogs
of dominant Verma modules do not exist and two nonisomorphic projective functors map some
module which we want to understand to isomorphic modules (see [8, Theorem B], [21, Section 2.3]
and also the connection of this phenomenon to Kostant’s problem, as was observed by Johan
Kéhrstrom and explained in [27]). In such situation, one could try to consider the action of the
“smaller” category = and, essentially, use similar arguments as in the case of category @. For
example, this was done in [23] in the context of the study of generalized Verma modules. We are
going to use this kind of trick in Section 4.

Tensoring with finite-dimensional g-modules both on the left and on the right preserves
Harish-Chandra bimodules. Therefore, indecomposable projective functors can be viewed as
summands of the Harish-Chandra bimodules V ® (U(g)/(ker(x))), where y is a central char-
acter. In fact, the indecomposable projective functors with domain .#, correspond exactly to the
indecomposable summands of V ®. (U(g)/(ker(x))).

For two g-modules M and N, we can consider the g-g-bimodule Hom (M, N) and its subbimod-
ule £(M, N) that consists of all elements of Hom (M, N) on which the adjoint action of g is locally
finite. If Homy(V ®c M, N) is finite dimensional, for any simple finite-dimensional g-module V',
and both quotients Z(g)/Anny (M) and Z(g)/Anny4(N) are finite dimensional, then £(M, N)
is a Harish-Chandra bimodule, see [20, Satz 6.30]. For example, this is the case if both modules
M and N belong to category O.

If M = N, we have a natural embedding of U(g)/Anny,,(M) into £(M, M). A module M is
called Kostant positive, provided that this embedding is an isomorphism. A module M is called
weakly Kostant positive, provided that the natural embedding of U(g)/Anny (M) into L(M, M )=
is an isomorphism.
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2.4 | Soergel’s combinatorial description and the integral part

Denote by 0, the full subcategory of © that consists of all modules with integral support. It is
a direct summand of O. If a central character y is such that 0, N 0, is nonzero, then 0, C Oy,
and O, is an indecomposable block of @. For such a y, let 1 be the unique dominant weight such
that L(1) € O,. Note that W = W as 4 is integral. Soergel’s combinatorial description of 0, see
[40], determines O, uniquely, up to equivalence, in terms of the algebra of W/’l-invariants in the
coinvariant algebra for W. Projective endofunctors between different blocks of 0;,; can then be
described in terms of induction and restriction functors between the coinvariant algebra for W
and its corresponding invariant subalgebras, see [41].

For a (not necessarily integral) weight A, the category 0, is equivalent to an integral block
of O for a semisimple complex Lie algebra corresponding to the Weyl group W;. Due to
Soergel’s combinatorial description of projective functors mentioned above (see [41]), this equiv-
alence is compatible with the action of those projective functors that are homogeneous of
degree E.

2.5 | Gelfand-Kirillov dimension

In this subsection, we recall basic facts about the Gelfand—Kirillovdimension (denoted as GKdim).
We refer to [26] for all details.

To each finitely generated g-module M, we can associate its Gelfand-Kirillov dimension
GKdim(M) € Z,, (which is the degree of the polynomial that describes the growth of M)
and its Bernstein number BN(M) € Z,, (which is the coefficient of the leading term of
that polynomial). Contrary to the Gelfand-Kirillov dimension, the Bernstein number might
depend on the choice of generators in U(g), so we fix such a choice for the remainder of the
paper.

The algebra U(g) is a noetherian algebra of finite Gelfand-Kirillov dimension, namely,
GKdim(U(g)) = dim(g). Therefore, every simple g module has Gelfand-Kirillov dimension at
most dim(g) (in reality, at most dim(g) — rank(g) — 1 as Z(g) is a polynomial algebra in rank(g)
variables). If 7 is a primitive ideal of U(g) and L a simple module with annihilator 7, which min-
imizes the Gelfand-Kirillov dimension in the class of all simple g-modules with annihilator Z,
then L is called holonomic. For example, all simple modules in category © are holonomic, see
[20, Subsection 10.9]. Nonholonomic modules do certainly exist, see [13, 43]. As a matter of fact,
almost all (in some sense) simple modules are nonholonomic.

For a finite-dimensional g-module V, we have

GKdim(V) =0,  GKdim(V ®: M) = GKdim(M)

and BN(V ®: M) = dim(V) - BN(M). If 0 > X - Y — Z — 0 is a short exact sequence, then
GKdim(Y) = max{GKdim(X), GKdim(Z)}. Moreover, BN(Y) = BN(X) + BN(Z) provided that
GKdim(X) = GKdim(Z). If the latter condition is not satisfied, then BN(Y’) coincides with BN(X)
if GKdim(X) > GKdim(Z) and BN(Y) coincides with BN(Z) if GKdim(X) < GKdim(Z).

Lemma 1. Let L and L' be two simple g-modules such that Homy(V ®c L,.L'Y#0 or
Homg(L’ ,V ®c L) # 0, for some finite-dimensional g-module V. Then, GKdim(L) = GKdim(L).
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Proof. We prove the first claim. From Hom,(V ® L, L") # 0, we have GKdim(L') < GKdim(L). At
the same time, by adjunction, we have Homg(L, V* ®c L") # 0. Hence, GKdim(L) < GKdim(L')
and thus GKdim(L) = GKdim(L'). O

Due to the additivity of the Bernstein number, V ® L has a maximal semisimple quotient
and this quotient has finite length (and is always nonzero). This maximal semisimple quo-
tient is usually called the top of V @ L. It further follows that the module V ®: L has a
maximal semisimple submodule and this submodule has finite length (but, potentially, may
be zero). Theorem 22, in fact, shows that this maximal semisimple submodule is essential and
hence is the socle of V ®. L. Note that, in general, V @, L is not of finite length, see [43].
However, we will show in Subsection 7.3 that V ®. L has finite rough length in the sense
of [38].

2.6 | Kazhdan-Lusztig combinatorics

To each pair (W', S’), where W’ is a Weyl group and S’ a fixed set of simple reflections in
W', we have the associated Hecke algebra H = H(W’,S’), which is an algebra over Z[v,v™!],
defined by substituting the relation (s —e)(s +¢) =0, for s € S/, in the Coxeter presentation
of W', by the relation (H, + v)(H; — v~!) = 0 and keeping the braid relations, see, for exam-
ple, [42]. Tt has the standard basis {H, : w € W} and the Kazhdan-Lusztig basis {H  :
we Wi

For x,y € W, wesetx >; y provided that there is z € W’ such that H - appears with a nonzero
coefficientin H H ) This defines a preorder on W’ called the KL-left preorder. Equivalence classes
with respect to it are called KL-left cells. The KL-right preorder > and the corresponding KL-
right cells are defined similarly using multiplication on the right. The KL-two-sided preorder
>; and the corresponding KL-two-sided cells are defined similarly using multiplication on both
sides.

If A € h* is regular and dominant, then the results of [2, 3] imply that sending w € W to the
annihilator of L(w - 4) gives rise to a bijection between the KL-left cells in W and the primitive
ideals in U(g) containing Ker( )(A).

The function that assigns to w € W the Gelfand—Kirillov dimension of L(w - 1) is constant on
KL-two-sided cell. Indeed, that this function is constant on KL-left cells follows from [20, Satz 10.9]
combined with the fact mentioned above that annihilators of simple modules are constant on KL-
left cells. That the function is constant on KL-right cells follows from Lemma 1 combined with
the fact that simple modules inside the same KL-right cell can be obtained from each other by
applying projective functors and taking subquotients.

If W' is a parabolic subgroup of W, wy/ the longest element in W’ and wé the longest element
in W, then GKdim(L(w! wé - 1)) can be computed by a very easy formula in [20, Lemma 9.15(a)].
Namely, GKdim(L(w(’)’ wy - 1)) equals the number of positive roots for W (note that it is really W
and not W ;) minus the number of positive roots for W”'. In fact, if W is of type A, then any KL-
two-sided cell of W, contains some element of the form w(’)/ wg and hence the above applies. For
a singular weight u, the Gelfand-Kirillov dimension of the corresponding simple highest weight
module equals the Gelfand—Kirillov dimension of the simple highest weight module for a regular
correspondent of u.
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PROJECTIVE FUNCTORS ON HOLONOMIC SIMPLE MODULES 9 of 29

3 | STRUCTURE OF 6L
3.1 | Quick recap of birepresentation theory

Let € be a finitary bicategory with involution and adjunctions (fiab bicategory), see [28]. Recall
that a finitary birepresentation M of € is called transitive, provided that any nonzero object of M
generates M, as a birepresentation of €. Furthermore, M is called simple transitive provided that
it does not have any proper nontrivial €-invariant ideals.

Recall the cell theory for bicategories, see [28, 35]. For two indecomposable 1-morphisms 6, 6’
in €, we write 6 >; 6’ provided that there is 6" in & such that 6 is isomorphic to a summand
of 68”06’. Equivalence classes with respect to the preorder >; are called left cells. Right and two-
sided cells are defined similarly. This is similar to the combinatorics of KL-cells that was recalled
in Subsection 2.6. Each transitive birepresentation has an apex, which is the maximum two-sided
cell whose 1-morphisms do not annihilate this birepresentation, see [7, Subsection 3.2]. For two
simple transitive birepresentations M and N of €, we denote by Dext(M, N) the set of discrete
extensions from M to N, see [7, Subsection 5.2]. The set Dext(M, N) is defined as the set of all
nonempty subsets © of the set of isomorphism classes of indecomposable 1-morphisms in €, for
which there exists a short exact sequence

0-N-K->M-0 @

of birepresentations of & (in the sense of [7, Subsection 5.2]) such that

« N is transitive with simple transitive quotient N;

+ M is transitive with simple transitive quotient M;

* the set ® consists of all 1I-morphisms F € &, for which there is a nonzero object X € M such
that FX has a nonzero summand from N.

Here, the fact that (1) is a short exact sequence means that N is a full subcategory of K closed with
respect to isomorphisms and, additionally, with respect to taking direct sums and direct sum-
mands. Furthermore, M is isomorphic to the quotient of K by the ideal generated by N. More
generally, discrete extensions between transitive representations are defined as discrete extensions
between the corresponding simple transitive quotients.

Note that, in the above definition, the birepresentation K has exactly two weak Jordan-Holder
constituents. The fact that Dext(M, N) = @ means that, in any K as above, the additive closure of
all indecomposable objects that are not killed by projecting onto M is invariant under the action of
€. In particular, for any 1-morphism F € &, the action of the Grothendieck class [F] on the split
Grothendieck group of K is given by a block diagonal matrix with two blocks, one corresponding
to the action on the split Grothendieck group of N and the other one corresponding to the action
on the split Grothendieck group of M.

Lemma 2. Let € be a fiab bicategory and M and N two transitive birepresentations of € with the
same apex J. Then, Dext(M,N) = @&.

Proof. We use the idea in the proofs of [24, Corollary 20] and [7, Corollary 14]. Let e be the
idempotent in the real algebra A; from [24, Subsection 9.3], whose existence was proved in
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10 of 29 | MACKAAY ET AL.

[24, Proposition 18]. Let
0O--N->K->-M-0

be a short exact sequence of birepresentations, see [7, Subsection 5.2].
The algebra A ; acts on the split Grothendieck group of K with coefficients in R. The matrix of
e, written in the basis of indecomposable objects in N and M, has the form

A B ,
o c) @

where A and C are real idempotent matrices with positive entries and B has nonnegative
real entries.

Recall that [17, Formula (2)] provides the following normal form for idempotent matrices with
nonnegative coefficients:

J JX 00
0 0 0 0
YJ YIX 0 of
0 0 0 0

where J is a block diagonal matrix with diagonal blocks J,, J,, ..., J;, with each J; being an idempo-
tent matrix of rank 1 with nonnegative coefficients. In this normal form, any nonzero off-diagonal
entry for which both diagonal correspondents are nonzero belongs to one of the blocks J;. If we
assume that B has a nonzero entry, we thus obtain that the whole matrix (2) must be one block
J;, which contradicts the fact that J; has rank 1. Therefore, B = 0.
2
A B A B

Alternatively, one can note that < 0 C> = ( 0 C) is equivalent to A2 = A, C?> = C and
AB + BC = B. Multiplying the last equation by A on the left, gives AAB + ABC = AB, which
implies that ABC = 0, since A% = A. As all entries in both A and C are positive and in B are
nonnegative, the equality ABC = 0 is equivalent to B = 0. 1

Corollary 3. Let G bea fiab bicategory and M a finitary birepresentation of € such that all transitive
subquotients of M have the same apex. Then, the objects of each transitive subquotient of M form
a subbirepresentation.

Proof. By the weak Jordan-Holder theorem, see [37, Theorem 8], there is a short exact sequence
of birepresentations

0--K->M->N->0,

such that N is transitive and the number of transitive subquotients of K is one less than the
number of transitive subquotients of M. By induction, the transitive subquotients of K are all
subbirepresentations. We need to prove that the additive closure N’ in M of all indecomposables
whose image in N is nonzero is a subbirepresentation.

11pUeD PUe SLLB L U1 89S *[7202/20/6T] U0 ARiqITauliuo Ao|im e1ibuy 1se3 JO AsieAuN Ag S962T SWII/ZTTT 0T/I0p/L00"A8 | IM ARiq U UO"20SUTeLUpUO|//SANY Wo1y papeo|umoa 2 *#20Z ‘05.L697T

0 I A,

85UB0|1 SUOWILLOD) BAa1D) 3 jceat|dde au) Aq pausenoh afe sepie O ‘asn Jo sanJ 1o} AriqiT auluo A3|IM uo



PROJECTIVE FUNCTORS ON HOLONOMIC SIMPLE MODULES | 11 of 29

Assume that this is not the case. Consider the additive closure M’ of #N’ in M. By our assump-
tion, M’ # N’. Let K’ be the additive closure in M’ of all indecomposable objects outside N’. Let
K’ be some transitive quotient of K’ and let I be the corresponding kernel. This gives rise to a
short exact sequence of birepresentations

0—-K’'—-M /I - N/I-o.

By construction, this gives a nontrivial discrete extension between the simple transitive quotients
of N’ /(I) and K", which contradicts Lemma 2. The claim follows. O

3.2 | The bicategory of projective functors

Denote by & the locally finitary (in the sense of [30, 31]) bicategory defined as follows:

* the objects of & are 1,, where y is a central character of U(g);
* 1-morphisms in (i, 1,,) are all projective functors from 0, to 0,;
* 2-morphisms in #(1i,, 1,/) are natural transformations of functors,

where all identities and compositions are defined in the obvious way.

Since projective functors can be viewed as Harish-Chandra bimodules, the bicategory & inher-
its from # a A/E-grading. For £ € A/E, we denote by P¢ the corresponding homogeneous
component. In particular, 2= is a subbicategory of .

Now let L be a simple g-module with central character y. For a central character y’, denote by
Xf(, the additive closure in g-mod of all objects of the form 6L, where 6 € (i ol x’)' Then, the
collection of all these Xf( , carries a natural action of &. In other words, we get a birepresentation

of %, which we denote by X’. This birepresentation is locally finitary (cf. [30, 31]) in the sense
that it has the properties described by the following proposition.

Proposition 4. Each Xf{, is an idempotent split additive category with finite-dimensional morphism
spaces and finitely many isomorphism classes of indecomposable objects.

Proof. Let6,0’ € (i 4»1,)- Then, by adjunction,
Hom, (6L, 6'L) = Hom,((6')*6L, L),

where (6')* is the biadjoint of 6’. As explained in Subsection 2.2, the right-hand side is finite
dimensional. The rest now follows from the definitions. O

For a fixed ', we have the bicategory Py 1= P(iy,1,). Thisbicategory is finitary in the sense
of [28] and Xf(, is a finitary birepresentation of this bicategory. For y’ = X,» the central character
of the trivial g-module, the bicategory 9’%0 is biequivalent to the bicategory of Soergel bimodules
over the coinvariant algebra of W, cf. [29].

Combinatorics of the action of projective functors on category O is governed by the Kazhdan-
Lusztig basis of the Hecke algebra. Therefore, the cell structure of the latter, which was recalled
in Subsection 2.6, is just a special case of the cell structure of &, . We also note that the action of
projective functors on category O is a right action. With this in mlnd the properties recalled in
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12 of 29 | MACKAAY ET AL.

Subsection 2.6 can now be reformulated in the setup of projective functors as follows: The anni-
hilator Anny; (L) corresponds to a right cell in &, say R. Let J be the two-sided cell containing
R. Then, for any indecomposable 8, the inequality L # 0 implies 6 <; J.

For any central character y’, we denote by Yf(, the additive closure of all 6L, where we take
6 € P>i,,1,)NJ. Then, Yf{, is a full subcategory of X?{,, and the collection of all these Yf{, is

closed under the action of 2. We denote the corresponding birepresentation of % by Y.

Conjecture 5. The birepresentation Y" is simple transitive.

3.3 | A partial preorder

Consider the set Irr(g) of isomorphism classes of simple g-modules. For X,Y € Irr(g), write X >
Y provided that there is a finite-dimensional g-module V such that V ®: X - Y. Note that the
relation X > Y implies the equality GKdim(X) = GKdim(Y'), see Lemma 1.

Lemma 6. The relation 1> is reflexive and transitive (and hence is a partial preorder).

Proof. To prove reflexivity, we can take V' to be the trivial module. To prove transitivity, assume
thatV @ X » Y and V/ ®. Y » Z. Then, by exactness of projective functors,

V'R V)R X2V Q:(VR:X)»V Q.Y » Z.
This completes the proof. [

By adjunction, it follows that the relation opposite to > is given by the requirement that X <
V* QY.

For a central character y, let Irr(g), denote the set of all simple g-modules with central
character y. Then, we have

Irr(g) = HIrr(g)X.
X

For a fixed L € Irr(g), denote by Q; the set of all L’ € Irr(g) for which there exists a finite set of
elementsL = L, L,,...,L, = L’ € Irr(g) such that, for each i, we eitherhave L; > L;  ; or L; ., > L;.
In other words, Q; is the equivalence class of L in the minimal equivalence relation generated
by .

Proposition 7. Let L € Irr(g) and y be a central character. Then Q; N Irr(g),, is finite.

Proof. Without loss of generality, we may assume L € Irr(g),. Let V be a finite-dimensional g-
module such that all indecomposable projective endofunctors of .#, are direct summands of
V @ _. In order to prove our proposition, it is enough to show that any element of Q; N Irr(g),
is a subquotient of V' ® L, since all elements of Q; N Irr(g), have the same Gelfand-Kirillov
dimension as L and there can only be finitely many of them by the additivity of the Bernstein
number, see Subsection 2.5. In fact, since V' @ _ already contains all projective endofunctors of
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PROJECTIVE FUNCTORS ON HOLONOMIC SIMPLE MODULES | 13 of 29

M o it is enough to show that any element of Q; N Irr(g) ¥ is a subquotient of V’ ® L, for some
finite-dimensional g-module V’.

Let L' € 9; nlrr(g) - Then, by definition, there exists a finite set of elements L =
L,,L,,.., L, = L' € Irr(g) such that, for each i, we either have L; > L;,, or L;,, > L;. We prove
the above claim by induction on k, with the case k = 1 being obvious.

For the induction step, we assume that L,_; is a subquotient of V' ®. L, for some
finite-dimensional g-module V".

Suppose L,,_, &> L, = L', thatis, V"' ®: L,_; - Ly, for some finite-dimensional g-module V"'.
Then, by exactness, L, is a subquotient of V"’ ® (V' ® L) and the latter is isomorphic to (V" &
V) Q¢ L.

Suppose now L' = L, > L, _,, thatis, V" ®¢ L, » L;_;, for some finite-dimensional g-module
V"', Then, by adjunction, L, & (V")* ®. L,_; and again, by exactness, L, is a subquotient of
V")* ®c (V! ®c L), and hence of (V"")* ®c V') ® L. The claim follows. O

Note that Q; N Irr(g), is often empty. Indeed, by [25, Theorem 5.1], if x' is the central character
of L and Q; N Irr(g), is not empty, then there exist dominant weights 4 and u with the following
properties: y = x, and x' = X, such that the difference 1 — u is an integral weight.

Theorem 8. Let L € Irr(g) and x be a central character. Assume that Q; N Irx(g) , is nonempty and
the restriction of I> to it is an equivalence relation. Then, for any central character y', the restriction
of > to Qp N 1Irr(g),+ is also an equivalence relation. In fact, > is an equivalence relation on Q.

Proof. Let x’ be a central character such that Q; n Irr(g) % isnotempty. Let L, ..., L, be the list of
all simples in Q; N Irr(g),; in particular, they all are >-equivalent (and hence are also equivalent
with respect to the relation that is opposite to ). Let L’ € Q; n Irr(g),s. Then, all L; (and only
they) appear both in the tops and in the socles of modules in (1, 1 X)L’ . In particular, L’ > L;,
for all i. By adjunction, we also have Homg(Li, 6L = Homg(G*Li,L’ ) that implies that L; > L/, for
all i. The claim follows. Cl

Conjecture 9. The relation > is an equivalence relation.

Remark10. Itis also natural to consider the partial preorder — on Irr(g) defined as follows: L — L/,
provided that L’ is a subquotient of V ® L, for some finite-dimensional V. It would be interest-
ing to understand certain properties, in particular, the equivalence classes of this preorder. For
example, for simple highest weight modules in category O, the corresponding equivalence classes
are given by the KL-right cells. Also, the restriction of > to simple highest weight modules is an
equivalence relation and the corresponding equivalence classes are given by the KL-right cells (so
they coincide with the equivalence classes for the preorder —).

3.4 | Conjecture 5 versus Conjecture 9
Theorem 11. Let L be a simple g-module such that the restriction of > to Q; is an equivalence

relation. Then, the birepresentation YL is transitive. Moreover, we have Y- = YL,, for any L' such
thatL>L'.
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14 of 29 | MACKAAY ET AL.

Proof. Let y be the central character of L and let ¥’ be some central character such that Y)L( , isnot

zero. Denote by & the 1-full and 2-full subbicategory of & on the objects i , and i,,. Also denote
by Y’ the birepresentation of & restricted from Y. To prove the first part of the theorem, it is
enough to show that Y is transitive.

Being a finitary birepresentation of 9, the birepresentation Y has a weak Jordan-H®older series
with transitive subquotients.

Let us now assume that Y’ is not transitive and let the additive closure M of some
M,,M,,...,M, be a transitive subbirepresentation of Y'. Let L’ be a simple module which
appears in the top of M;. Consider the corresponding YL and let the additive closure N of some
N,,N,, ..., N, be a transitive subbirepresentation of Y~'. By Corollary 3, any transitive subquotient
of YL gives, in fact, a subbirepresentation, and similarly for ‘' Hence, to prove our theorem, it
is enough to show that M = N,

Indeed, as N is arbitrary, M = N implies that YL = W is transitive. Since the restriction of
to Q; is an equivalence relation, swapping the roles of L and L', we obtain that Y’ is transitive, a
contradiction. Also, from M = N, we obtain Y. = YZ'.

The remainder of the proof is dedicated to showing that M = N. Applying projective functors
to M; » L', we obtain that every object in Y isa quotient of an object in M. In particular, every
object in N is a quotient of an object in M.

Now recall that we have assumed that the restriction of > to Q; is an equivalence relation. This
implies that L is a quotient of some object in N, say N;. Applying projective functors to N; - L,
we obtain that every object in Y” is a quotient of an object in . In particular, every object in M
is a quotient of an object in V.

This implies the existence of an infinite sequence of surjections

->»Y,»X,»Y, » X, »N; » L, 3)

where all X; € M and all Y IS N.Now, in each Y j» We can pick an indecomposable summand
N, such that the restricted map from N, to L is a surjection. Since the number of indices for
Nj’s is finite, we can pick an infinite subsequence of the form --- - N, - N, - N, — L. Again,
here, at each position, the map from N, to L is a surjection, in particular, all maps between all
components of this sequence are nonzero.

The endomorphism algebra of N, is a local finite-dimensional algebra, see Proposition 4, and
hence, its Jacobson radical is nilpotent of a fixed finite nilpotency degree. Since the above sequence
is infinite and all compositions are nonzero, at least one morphism in this sequence does not
belong to the Jacobson radical and hence is invertible. This means that in the original sequence
(3), we have a fragment of the form N, - X; — N, such that the composition from the left to the
right is invertible. Hence, N, is isomorphic to a summand of X;. In other words, M and N have
a nonzero intersection and thus must coincide since both carry a transitive birepresentations of
9. This completes the proof. O

Remark12. If YL = YL/, forany L' € Q;, then the restriction of > to Q; is an equivalence relation.
Indeed, in this case, we claim that L & L’ implies L’ > L. To see this, we first claim that YL contains
a module with top L.

Consider the Duflo involution 6 in the right cell that corresponds to the annihilator of L. This is
a coalgebra 1-morphism in &, see [29, Section 4.4], and hence, the evaluation of the counit 8 — 1,
when applied to L, is nonzero.
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Similarly, Y contains a module with top L’. Therefore, Y = Y.’ together with L 1> L’ implies
L'>L.

4 | PROOF OF THE TWO CONJECTURES IN TYPE A

In this section, we show that the statements of both Conjectures 5 and 9 are true in type A. So, we
assume that g and hence also W are of type A.

4.1 | Reduction to nice blocks

Let A be a dominant weight and y, the corresponding central character. We will call both 4 and
X nice, provided that thereis u € A + E such that W, = W,z/x' For example, in the set Z of all inte-
gral weights for 81,, we have E = 27 and all odd weights are nice (since —1 is the only integral
singular weight), while all even weights are not nice. Note that W; = {e} implies that A is nice as
we can take u = A.

Lemma 13. For any dominant weight A, there is a nice dominant weight 1 € 1 + A such that

(@) W =Wy,
(b) W/’1 = W/,I’
(¢) A — Aisintegral and dominant with respect to W .

Note that W, = W} is satisfied for any 2 € 1 + A, so Condition (a) above is automatic. How-
ever, the equality W; = W is necessary for Condition (b) to make sense. This is the reason why
Condition (a) appears in the formulation.

Proof. We first prove the claim under the assumption that 4 is integral. The weight —p is the only
integral fully singular weight, so we need to look for 1 inside —p + E. Let D be the absolute value
of the determinant of the Cartan matrix of g. Set L = D(1 + p) — p. Since the D-multiples of the
fundamental weights belong to Z, it follows that 1 € —p + E.

Then, A — A = (D — 1)(4 + p) that is dominant. Both A and 1 are integral and hence, for both
of them, the integral Weyl group is just the whole Weyl group. Finally, the stabilizers of 2 and 4 in
W with respect to the dot action coincide because, after the shift by p, the dot-action becomes
the usual action and this commutes with multiplication by scalars. This proves the claim for
integral weights.

Take now any 4 and assume W # {e}, for otherwise the claim is clear. Let R; be the root sub-
system of R corresponding to W ;. Let g(4) be the corresponding Lie subalgebra of g. Let A(1) be
the set of all integral weights for g(1) and E(4) the set of all integral linear combinations of roots
for g(4). Choose some representatives (; = 0, U,, ..., 4y of the cosets in A(1)/E(1). Also, denote by
h, the intersection of ) with g(4). Define I)j as the set of all 1 € § such that a(h) = 0, for any root
aof g(1). Then,h = h,; & f)j. The inclusion §; < B induces the restriction map Res; : §* — f);'

The restriction of the natural g-module (i.e., the module C" for 81,) to any simple summand a
of g(1) gives the direct sum of the natural module for a with a summand on which a acts trivially.
Recall that the natural module generates the category of all finite-dimensional modules as an
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idempotent split monoidal category. This implies that
Res; (A + o+ A) = Res; (1) + AQD) + py, 4)

where p; is the half of the sum of all positive roots for g(4). We note that both p and p; are integral
weights, so they can be removed from (4). In particular, we can pick some representatives v, =
A, V5, ...,V in 1 + Asuch that Res;(v; + p — 1) = i; + p;.

We can now apply the already proved assertion of the lemma in the integral case to Res; (1)
to obtain the corresponding nice dominant integral weight R’e_s,T(/lD for g(4) that satisfies (a)-(c)
(withrespect to Res; (4 + p) — p; for g(4)). By (4), there is1 € 1 + Asuch that Resl(/T +p0)—p; =
stm). The fact that 1 is nice dominant and satisfies (a)-(c) follows from the fact that R?s}ﬁ) is
nice dominant and satisfies (a)-(c). O

Example 14. Consider g = 3[; with R = {+a, +, +(a + 8)}. With respect to the standard basis,

we then have
_ 2 B -1 o 1
a= 1) B = , ) a+p=p= L)

Consider the weight 1 = (_XX__ll/ /22), for some irrational x. Then, we have R; = {+(a + f)}and p; =

(1). This yields Res; (1 + p) — p; = 0, which is not a nice 3,-weight. Therefore, 4 is not nice.

To get a nice weight, we add to A the integral weight 1 = ((1)) resulting in the weight 4 = _xx+_11//22).

We have Res;(1+ p) — p, = 1, which is a nice 8[,-weight. Clearly, the conditions (a)-(c) of
Lemma 13 are satisfied for this 4.

One can also easily find a singular weight in 1 + E. For example, the weight 1 — (a + f8) =
( _Xx—_13{/22) is singular. One checks that Res;(_ + p) — p; maps this weight to —1, namely, to the
unique singular 31,-weight.

Remark 15. It is easy to see that, if A is nice, then 4 + E contains dominant weights of arbitrary
singularity in W,.

If 2 and 1 are as above, then 6, ; and 6; ; are mutually inverse equivalences of categories, both at
the level of category O and at the level of category . . In particular, these equivalences send simple
objects to simple objects. Consequently, for any simple g-module L in M, , the categories add(SL)
and add(90, ;(L)) coincide (in the sense that they have the same objects and morphisms).

Since both Conjectures 5 and 9 are formulated in terms of add(ZL), it follows that it is enough
to prove them for simple modules with nice central characters.

4.2 | Reduction to singular blocks

Let L be a simple g-module, y be the central character of L, which we assume to be nice, and
A € bh* be some weight such that AnnU(g)(L) = AnnU(g)(L(/l)). We have the bicategory &, of all
projective endofunctors of ./ .

Consider the integral Weyl group W of A. Then, W), is a product of symmetric groups. Let
us start by recalling special features of Kazhdan-Lusztig combinatorics in type A. Thanks to [22,
Theorem 1.4], in type A, left and right cells of = can be described using the Robinson-Schensted
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correspondence that associates to a permutation w € S,, a pair of standard Young tableaux of the
same shape (which is a partition of n). The latter shape determines the two-sided cell. One special
type A feature is that each two-sided cell .J of %% in type A contains the longest element ngy/
in some parabolic subgroup W’ of W;. Another special feature is that the intersection of any left
and any right cell in .7 is a singleton. This means that J contains the identity functor Qf , on some
M, (a singular block for which W’ is the dot-stabilizer of the dominant weight for that block)
and this functor is the only projective endofunctor of .Z ,, belonging to the intersection of the cell
J with the homogeneous component 9’){5. From Lemma 16 below, it follows that inclusion gives
rise to a bijection between the left (right, two-sided) cells of = and the corresponding cells of 2.

The elements in J that do not annihilate L are exactly the elements of the left cell that is adjoint
to the right cell that corresponds to the annihilator of L, see [35, Lemma 12]. Each of these left cells
contains an element with target .# oz We choose one of those, call it 6. Then 6L # 0 and we can
let L' € . # ,» be any simple quotient of L. Since y is assumed to be nice, 6 is homogeneous of
degree E.

We note that, by construction, the identity projective functor 67 " on M, is the only
indecomposable projective endofunctor of .Z ,, that belongs to 9’){5 and does not annihilate L'.

Consider the annihilator I := AnnU(g)(L’ )of L' in U(g). Let /%)I(, denote the full subcategory

of / ,, that consists of all objects on which I acts locally nilpotently. Then 95 ' is still the identity
endofunctor of ./# )I{, and it does not annihilate L’.

We want to answer the following question: What are the other projective endofunctors of .# ; ,

that do not annihilate L’?

Choose some A’ such that Anny;(, (L") = Anny,)(L(1)), which is possible due to Duflo’s the-
orem, see [15]. Consider W - 1’ and its intersections with all E-cosets in A’ + A. Those cosets in
A/E for which the intersection is nontrivial form a subgroup of the cyclic group A/E. Let u,,
Uyye--> M De the dominant weights in all the corresponding nonempty intersections (of W - A/
with the E-cosets in 1’ + A). Without loss of generality, we may assume 1’ € W, - 1. We have,
eé{, = 6#1’.‘41'

The integral Weyl groups W, are all conjugate and so are the stabilizers of the correspond-
ing dominant weights in these W, see also [19, Remark 3.5]. In particular, from Soergel’s
combinatorial description, it follows that all the corresponding indecomposable blocks Oy, (see
Subsection 2.1) of category O are equivalent, see also [32, Lemma A.3] for an alternative argument.
In particular, all L(y;) have the same Gelfand-Kirillov dimension, see Subsection 2.6.

Since our y; might be singular, the category 6, might contain some other simple highest weight
modules L(v) with the same Gelfand-Kirillov dimension as L(y;). In this case, we will write

VN“i.

Lemma 16. Each indecomposable projective functor that does not annihilate L' is of the form 6 v
where v ~ u;, for some i, and v is antidominant with respect to the dot-stabilizer of u,. Moreover,
each such 6, ,, is a self-equivalence of M }I(/ (but not necessarily of M ,,1).

Proof. We have 0, L’ # 0ifand onlyif6, ,L(1") # 0, by our choice of ". Since projective func-
tors cannot increase the Gelfand-Kirillov dimension and all L(x;) have the same Gelfand-Kirillov
dimension, 6, »L' # 0implies v ~ y;, for some i, by our definition of ~. From the classification of
projective functors, we may also assume that v is antidominant with respect to the dot-stabilizer

of u,. It remains to argue that any such 6 1, v 1S an equivalence.
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Let 6* denote the biadjoint of 6, ,. We have 6, 2P(uy) = ,A(uy) = P(v), by the

c1a551f1cat10n of projective functors. In partlcular

Ml

dim Homy(8,, ,A(k;),L(v)) = 1.
By adjunction, we thus have
dim Hom(A(u,), GZI,VL(V)) =1

Note that L(u; ) is the simple top of A(u,) and it appears in A(u;) with multiplicity one.

Assume that the image of a unique (up to scalar) nonzero map from A(u;) to GZI’VL(V) is not
isomorphic to L(y, ). Then, the socle of this image contains some L(v"), where v/ ~ u; and v’ # u;.
As GZML(V) is self-dual (since projective functors commute with the duality on ©), L(v') also
appears in its top. This means that the composition 921,v°9u1,v applied to A(y,) has P(v') as a
summand. However, this is not possible as v' ~ y; and 6,, , is the only projective endofunctor
of Oy, that does not kill L(u, ).

From the previous paragraph, we have that the image of a unique (up to scalar) nonzero map
from A(u,) to 9* ,L(v)isisomorphic to L(y, ), in particular, L(u, ) appears in the socle of 6;1 ’VL(v).
As 6*] L(v)is self dual, L(u,) appears in the top of 6* ,L(v) as well. Since A(y, ) is projective and
the map from it to 6* ,L(v) is unique, the mult1p11c1ty of L(u;) in 6;1 ’VL(V) is one. Consequently,
L(u,)isadirect summand of QZWL(V)' As, by the previous paragraph, no other L(v') with v/ ~ 1
are allowed to appear in the top or socle of QZML(V), we have GZI,VL(V) = L(u;). By adjunction,
e/zl,vL(/"l) =L(v).

This implies that
* * —
9/11 v6M1 9/‘1,7’9#1,1/ - 6#1 My
as endofunctors of /%)I(, and completes the proof. O

Example 17. For g = 3[,, consider 4 = (—1/2). Then W - A = {—1/2, —3/2}. Both latter weights
are dominant with respect to their integral Weyl group, which is trivial. However, the difference
between these two weights is an integral weight. Therefore, we have two indecomposable pro-
Jective functors that do not annihilate L(—1/2), namely, the identity functor 6_,, _;/, and the
equivalence 6_, ;, _3/, between O_, , and O_3 ;.

4.3 | Proof of Conjecture 9 in type A

From the construction in the previous subsection, it follows that Q; N Irr(g) % consists of modules
of the form GM’#/(L’ ), Where 6##, are equivalences. This set is, clearly, one equivalence class with
respect to I>. Therefore, the claim of Conjecture 9 follows from Theorem 8.

4.4 | Proof of Conjecture 5 in type A

We now establish a crucial property of the module L’ constructed in Subsection 4.2, namely, its
weak Kostant positivity (see Subsection 2.3):

Lemma 18. The module L' is weakly Kostant positive.
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Proof. Since we are discussing only the weak Kostant positivity of L’ in this lemma, in the proof
below, we restrict our attention to indecomposable projective functors that are homogeneous
of degree E. Recall that 67 " is the only indecomposable projective endofunctor of ./, that is
homogeneous of degree Z and does not annihilate L', see Section 2.

We start with the claim that 2’ may be assumed to be dominant (i.e., we may assume 1’ = ;).
In other words, we claim that AnnU(g)(L’ )= AnnU(g)(L(,u1 )). To prove this, we need to show that
L(2") is annihilated by all indecomposable projective endofunctors of 0, that are not isomorphic
to the identity functor.

Let 0 be an indecomposable projective endofunctor of ./, homogeneous of degree E, which is
not isomorphic to the identity functor. Then, 6P(u,) = P(v), for some v # ;. Since 6 is strictly big-
ger than 7 in the two-sided order, the Gelfand-Kirillov dimension of L(v) is strictly greater than
that of L(u, ), see [20, Subsection 10.11]. From [20, Subsection 10.9], it then follows that 6L(y;) = 0.
Therefore, the annihilator of L(i,) corresponds to a right cell inside .J and since the right cell of

’
67 is the only right cell that contains a representative from projective endofunctors of 0,inJ,

we obtain that the annihilator of L(u; ) corresponds to the right cell of Gf,. This is the same right
cell that describes the annihilator of L/, and we obtain our claim.

Now, assuming A’ is dominant, L(1’) is the quotient of a projective Verma module in @x’ .Hence,
it is Kostant positive, see [20, Subsection 6.9]. For a simple finite-dimensional V, the multiplicity
of V in L(L(1"), L(1")) equals the dimension of Homy(V ®¢ L(1), L(1)). We can write V ® _
as a direct sum of indecomposable projective functors. The summands which go from 0,, to 0,

are either 0F " or kill L(A"). Therefore, the above multiplicity equals the multiplicity of 62{’ as a
summand of V @ _.

The same computation works for L/, under the assumption that 0 is a weight of V' (which is
equivalent to saying that all indecomposable projective functors that appear as summands of V' ®
_ are homogeneous of degree E), which is equivalent to saying that all indecomposable projective
functors that are summands of _ ®. V' are homogeneous of degree =. Therefore, combining

U(g)/ (Anny (L") = U(g)/ (Anny g (L(2)))
with
U(g)/ (Anny (L)) = LA, LA")),
then with
U(8)/ (Anny (L)) < LI, L"),
and, finally, with
[LL@A), L) : V] =W/, L))" 2 V],
we obtain
U(g)/ (Anny ) (L") = £(L', L)%

This completes the proof. O
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Denote by X" and YL the %=-analogs of X' and Y, respectively.
!
Since L’ is weakly Kostant positive and the identity projective functor 67 on .# ' is the only
indecomposable projective endofunctor of .Z ,, that belongs to @XE and does not annihilate L', we

can apply the adaptation [23, Theorem 5] of [39, Theorem 5.1] and conclude that EXL s equivalent
to a certain category of Harish-Chandra bimodules. This equivalence is, in fact, a homomorphism
of birepresentations of %=,

We can also apply [23, Theorem 5] to L(1) and conclude that EXX) is equivalent to the same
category of Harish-Chandra bimodules, as birepresentations of <. In other words, EXL" and
EXLA) are equivalent as birepresentations of 9=, This means that such an equivalence induces
an equivalence between YL’ and EYL@,

Since we already established in Subsection 4.3 that the statement of Conjecture 9 holds for Q;,
Theorem 11 implies that Y- = YZ'. This means that £Y and £YL@ are equivalent as birepresen-
tations of 9%, It is easy to see that both Y/ and Y4 are simple transitive by combining [35,
Theorem 22], [36, Proposition 22], and [37, Theorem 18]. Hence, Y is simple transitive.

The elements of % inside J are obtained from the elements of 9% inside J by composing
with the autoequivalences given by Lemma 16. Hence, Y’ is obtained from Y’ by applying some
equivalences. Since Y’ is transitive by construction, the fact that it is simple transitive follows
from the simple transitivity of Y”. This completes the proof.

We remark that some of the arguments in this subsection, in particular, the idea of reduction
to a singular block, are similar in spirit to the arguments given in the proof of [38, Theorem 67].

4.5 | Some corollaries

The equivalence between £YZ and EY @ established in the previous subsection has the following
consequence.

Corollary 19. Let 8 be an indecomposable projective functor from J and M a subquotient of V @ L
such that M # 0. Then, GKdim(M) = GKdim(L).

Proof. The point is that in Y- any simple subquotient M of any V ®. L(A) satisfying 6M # 0
appears in the top of some V’ ® L(1). We know this because we understand the action of projec-
tive functors on category O quite well. Applying to L(4) projective functors from J produces a cell
birepresentation of the bicategory of projective functors. In the abelianization of this birepresenta-
tion, the action of projective functors from .7 is given by tensoring with projective bimodules that
are explicitly described in [28, Proposition 4.15]. Applying such a projective module does exactly
what is claimed above: applied to a summand of V ® L(4) in which M appears as a subquotient,
it produces a module with a direct summand in which M appears in the top.

Due to the equivalence between £Y” and £YX@ and the fact that Y* is obtained from Y’ (resp.
YO from EYL) using some equivalences of categories given by projective functors, it follows
that M has a subquotient that appears in the top of some V"' ®. L. This implies GKdim(M) =
GKdim(L). O

Let L be a simple g-module and V' a finite-dimensional g-module. A subquotient M of V @ L
will be called strange, provided that the following conditions are satisfied:

 foranysubmodule N C M, exactly one of the modules N or M /N has GK-dimension GKdim(L),
* M does not have any simple subquotient of GK-dimension GKdim(L).
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This definition is inspired by the properties of the regular C[x]-module. This module and all
its nonzero submodules have GK-dimension 1, while any quotient of this module by a nonzero
submodule has GK-dimension 0. The module itself does not have any simple submodules.

Corollary 20. Let 6 be an indecomposable projective functor from J and M a strange subquotient
of V Q¢ L. Then, 6M = 0.

Proof. As explained in the proof of Corollary 19, the assumption 6M # 0 implies that M has a
subquotient that appears in the top of some V"’ @ L. In other words, M has a simple subquotient
M’ such that GKdim(M’") = GKdim(L). This contradicts our assumption that M is strange.  []

4.6 | The two conjectures in other type A situations

Let now g be of any type. Let L be a simple g-module and 4 € §* be such that the annihilators
of L and L(1) coincide. Combining the above results with Soergel’s combinatorial description, it
follows that both Conjecture 5 and Conjecture 9 are true for L under the assumption that W is of
type A. More precisely, we have:

Corollary 21. Assume that W is of type A. Then the birepresentation Y" is simple transitive and
the restriction of the relation > to Q; is the full relation (i.e., any two elements are related).

5 | SOCLES
5.1 | The main result
Let us start with repeating the formulation of the main result.

Theorem 22. Let g be a semisimple finite-dimensional Lie algebra over C. Let L be a holonomic
simple g-module and let V' be a finite-dimensional g-module. Then, the g-module V @ L has an
essential semisimple submodule of finite length.

5.2 | Reduction to a finite piece

Let L be a simple g-module and 4 € §* be such that Anny;,)(L) = Annyg)(L(4)). Consider the
set A + A and the set X(4) of all central characters of the form X, where u € 1 + A.

Aswe have seen in Subsection 2.4, the combinatorial datum that controls equivalences between
blocks of 0 is given by triples of the form W;,z c W, c W, for u € h* (see [11] for an explicit clas-

sification). Therefore, it is natural to consider the finite set of all triples of the form Wcwcw,
where W is the subgroup of W generated by some reflections (and hence is the Weyl group of
the root subsystem of R generated by the roots corresponding to those reflections) and W is a
parabolic subgroup of W (with respect to the choice of positive roots inherited from R, ).

Given two dominant weights ¢ and v in 1 + A, we have their respective integral Weyl groups
W, and W, and their respective dot-stabilizers W/,t and W). IfW, = W, and W,zlx = W/, then the
projective functors 6, , and 6, , are mutually inverse equivalences of categories.

IPUOD pUe SWB 1 33 385 *[202/20/6T] U0 Aig1T8uNUO AW "B1IBUY 123 JO AISPAIUN AQ G96ZT SW([ZTTT'OT/I0PAL0D" A3] 1M ARR1G 1 BUIUO"D0SUTRWPUO|//SUNY WOy papeo|umod ' ‘v20e ‘05LL69vT

0 I A,

85UB0|1 SUOWILLOD) BAa1D) 3 jceat|dde au) Aq pausenoh afe sepie O ‘asn Jo sanJ 1o} AriqiT auluo A3|IM uo



22 0f 29 | MACKAAY ET AL.

Now we can fix a finite set u;, U,,..., 4, of dominant weights in 4 + A such that y; € W -
A and, for any other dominant weight v in A + A, there is some y; such that we have both the
equality W, = W, of the corresponding integral Weyl groups and the equality W;i = W/ of the
corresponding dot-stabilizers. Let ./ be the direct sum of all the corresponding .# X

Proposition 23. In order to prove Theorem 22, it is enough to prove that, for any indecomposable
projective endofunctor 6 of /', the module 6L has an essential semisimple submodule of finite length.

Proof. Due to our construction of .4, any nonzero projective functor 6/ from .# x, tosome ./, fac-
4
tors through some .# %, via equivalences of categories given by projective functors. Equivalences

of categories, clearly, plreserve the module-theoretic property of having an essential semisimple
submodule of finite length. O

5.3 | Reduction to the maximal two-sided cell

Let L € 4 be a simple module and 6 a projective endofunctor of 4. Let J be the two-sided
KL-cell that contains the left KL-cell corresponding to the annihilator of L in U(g). Let 6; be
a multiplicity-free direct sum of all projective endofunctors of .4 that belong to J. Let 8 be the
Duflo element in the left KL-cell corresponding to the annihilator of L in U(g). Then, we have a
natural transformation from the identity to 8, whose evaluation at L is nonzero, see [35, Subsec-
tion 4.5]. Consequently, L appears as a submodule of L, and hence as a submodule of 6 7L, since
0 is a summand of 6 ;.

Applying 6 to the inclusion L < 6 ; L, we getan inclusion of OL into 66 ; L. The composition 60 ;
belongs to the additive closure of € 7, modulo projective functors from strictly higher two-sided
cells. The latter projective functors annihilate L because of our assumption on the annihilator of
L. This means that 8L is a submodule of 8’L, for some 9’ in the additive closure of 8 7. Therefore,
if we can prove Theorem 22 for 6 = 64, it follows that Theorem 22 is true for all 6.

5.4 | Proof of Theorem 22

Unfortunately, .# does not have arbitrary products, which is a technical obstacle for our coming
arguments that we need to deal with.

For k € Z., and a central character y, denote by .# ;I; the full subcategory of ., that consists
of all modules annihilated by the kth power of the kernel of y. Let ./ be the product of all ..
Then, by [25, Theorem 5.1], for a projective functor 6 and k € Z,, there is m € Z, such that 6
maps ¥ to ./4™. Note that ./£* has arbitrary limits, for all k.

Now let L € ./ be asimple module and 8 a projective endofunctor of 4" that belongs to J. As we
only have finitely many indecomposable projective endofunctors of .4, we can fix V such that all
indecomposable projective endofunctors of /4" are direct summands of the projective functor V @
_. In particular, by the additivity of the Bernstein number with respect to short exact sequences,
see Subsection 2.5, for any filtration

0=M,CM,C- - CM,=6L,
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the number of i such that GKdim(M,; /M;_,) = GKdim(L) cannot be greater than dim(V") - BN(L).

Let N be a maximal semisimple submodule of 6L. We know, see Subsection 2.5, that it has finite
length. Assume thatitis not essential and let K be a nonzero submodule of L such thatK N N = 0.
Then, K has no simple submodule. From the previous paragraph, we may further assume that
any quotient of K by a nonzero submodule has Gelfand-Kirillov dimension strictly smaller than
GKdim(L). Indeed, if K has a nonzero submodule K’ such that GKdim(K /K") = GKdim(L), we
can simply replace K by K’. After at most dim(V') - BN(L) replacements, we obtain a K with the
desired property. In particular, K is a strange submodule of 6L.

First of all, we note that, by adjunction,

0 # Homy(K,6L) = Homg(e*K,L),

in particular, 6*K # 0.

On the other hand, we want to show that 8*K = 0 and in this way get a contradiction. For exam-
ple, in type A, 6*K = 0 follows from Corollary 20. To prove 6*K = 0 in general (but, under the
additional, compared to Corollary 20, assumption that L is holonomic), consider the filtered dia-
gram P of quotients of K by nonzero submodules with respect to natural projections. The kernel
of the natural map from K to the limit lim_ P equals the intersection of all nonzero submod-
ules of K. That is zero, as K does not have simple submodules, in particular, it does not have a
simple socle.

As 0* has a biadjoint, we have 6* lim_ P = lim_ 6*P. At the same time, the Gelfand—Kirillov
dimension of any X € P is strictly smaller than GKdim(L), by our assumption on K. Since 8 € 7,
we have 6* € J and hence "X = 0 by our assumption that L is holonomic. This means that
lim_ 6*P = 0, which implies that 8*K = 0, a contradiction. This proves that such K cannot exist
and completes the proof of Theorem 22.

6 | BEYOND HOLONOMIC MODULES OUTSIDETYPE A
6.1 | Results

As already mentioned in the introduction, in type A, the assertion of Theorem 22 is true for all
simple modules L, not necessarily holonomic ones, see [10, Theorem 23]. The main reason why
this works is the combinatorial property of type A that each two-sided KL-cell contains the longest
element wg of the Weyl group of some parabolic subalgebra p. We can generalize [10, Theorem 23]
as follows.

Theorem 24. Let g be a semisimple classical finite-dimensional Lie algebra over C. Let L be a simple
g-module such that the two-sided KL-cell J that contains the left KL-cell corresponding to the anni-
hilator of L in U(g) contains some wg . Let V be a finite-dimensional g-module. Then, the g-module
V Q¢ L has an essential semisimple submodule of finite length.

In the same setup, we also prove both Conjectures 5 and 9.

Theorem 25. Let g be a semisimple classical finite-dimensional Lie algebra over C. Let L be a sim-
ple g-module such that the two-sided KL-cell J that contains the left KL-cell corresponding to the
annihilator of L in U(g) contains some wg . For such L, the assertions of both Conjectures 5 and 9
are true.
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6.2 | Proof of Theorem 24

We follow the idea of the proof of [10, Theorem 23], which is also utilized, in a slightly disguised
way, in Section 4. Here is a sketch of this idea.

* Due to our assumption on [J, we can translate L to a singular block whose singularity
corresponds to our longest element.

* The indecomposable projective endofunctors of that singular block that do not kill L form a
group (modulo projective functors that kill L), in particular, they are invertible. So, for all such
projective functors, the claim of Theorem 24 is straightforward.

» The assertion of Theorem 24 is equivalent to saying that V' ® L has no strange submodules.
If we assume that this is wrong, then we can translate a strange submodule of V ® L to the
singular block from above, which leads to a contradiction with the previous item.

The first item on the above list goes mutatis mutandis as in Subsection 4.2. We note that, out-
side type A, two-sided KL-cells do not have to contain any longest element for some parabolic
subgroup. However, we explicitly assume this for our .7, which allows us to use the approach of
Subsection 4.2. This approach leads to the following output: starting from L with some central
character y corresponding to a dominant weight 4, we find a singular weight A’ with the corre-
sponding central character ¥’ such that the singularity W’ of 2’ in W, is a parabolic subgroup
and is isomorphic to the Weyl group of our longest element in the formulation. We also find a
simple module L” with the same annihilator as L(A") and such that the additive closure of all 6L,
where 6 € J, coincides with the additive closure of all 6L’, where € J. Therefore, we can forget
about L and concentrate on L'.

For the second item on the above list, let us assume that A’ is a singular weight with singularity
W’ (which is a parabolic subgroup of W ). Let x’ be the central character of L(1"). Consider the
bicategory #(1,/,1,/) and the bi-ideal 7, in it generated by all indecomposable objects that are
not two-sided equivalent to the identity.

Lemma 26. Any indecomposable object of #(i,,1,/)/ ., is invertible.

Proof. Arguments similar to the ones used in the proof of Lemma 16 reduce the necessary
statement to the similar statement for P=(i ., 1,,)/(P=(1,/,1,) N Fp).

We can translate singular projective functors out of the wall all the way to the corresponding
regular blocks. We can also translate back. Translating out and then back gives |W’| copies of what
we started with, with one copy in degree zero and all other copies shifted in positive degrees, see
[12, Proposition 4.1]. Since the endomorphism algebra of the multiplicity-free direct sum of all
indecomposable objects of the bicategory of projective functors with tops concentrated in degree
zero is positively graded, see [1], it follows that 9=(i o)/ (PE(1 4 1y) N 7,) is biequivalent
to the asymptotic category associated with the H-cell of J = that contains our longest element (for
the definition of this asymptotic category, see, for example, [29, Subsection 3.2]).

As explained in [29, Section 8], since we assume g to be classical, all the asymptotic bicategories
that appear are biequivalent to the bicategory of finite-dimensional vector spaces graded by a finite
group. In the latter, all indecomposable objects are invertible. The claim of the lemma follows. []

Finally, to justify the last item on the above list, let M be a strange submodule of V @ L.
Then, for any projective functor 8, the module 6M cannot have simple submodules of the same
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GK-dimension as L. Indeed, if L were such a submodule, then, by adjunction,
0 # Hom,(L,6M) =~ Hom,(6"L, M)

and we would get a contradiction, since all quotients of 6*L have the same GK-dimension as L
while all quotients of M by nonzero submodules have strictly smaller GK-dimension.

Suppose that M’ is a nonzero submodule of 6M. By the additivity of the Bernstein number, M’
can only have finitely many simple subquotients of the same GK-dimension as L, say L,, L,,..., Lj
(counted with the respective multiplicities). Let I; be the indecomposable injective hull of L;. The
embeddings L; C I; give rise to a map from M’ toI, @ I, @ --- @ I;.. This map cannot be injective
since none of the L; is a submodule of M’ by the previous paragraph. The kernel of this map is
thus a strange submodule of M’.

Consequently, any nonzero submodule of 6M has a strange submodule. This means that we
can translate our M to our singularity y’ and obtain that 'L’ must have a strange submodule for
some 8’ € PE(i P2y x’)' At the same time, by Lemma 26, all indecomposable summands of 6’ are
invertible, which implies that 6’L’ is semisimple of finite length, a contradiction. This completes
the proof of Theorem 24.

6.3 | Proofof Theorem 25

In the setup of Theorem 25, the assertion of Conjecture 9 follows from Theorem 8. Indeed, if we
look at the proof of Theorem 24, the application of projective functors to L’ produces semisim-
ple modules of finite length, if we restrict to the central character y’. The simple constituents of
these semisimple modules, obviously, form an equivalence class with respect to t>. Hence, the
assumptions of Theorem 8 are satisfied, so this theorem applies.

To prove Conjecture 5 in the setup of Theorem 25, we note that Theorem 11 already guarantees
that Y is transitive. Since the underlying category Y- (i ,/) is semisimple, Yi(i ') is simple tran-
sitive as a birepresentation of &(i,/,1,/). Since we also have YL =y by Theorem 11, any socle
constituent of any object in Y can be translated, using adjunction, back to Y*(i /) In a nonzero
way. If YI were not simple transitive, the kernel of the projection from Y* onto its unique simple
transitive quotient would kill some socle constituent of some object in Y. Translating to Y (i o)
we would be forced to kill a nonzero object of this category, contradicting its simple transitivity.
This implies that already Y’ is simple transitive.

We note that the result proved in the previous paragraph can also be obtained using the results
of [28, Subsection 4.8].

7 | STRANGE SUBQUOTIENTS, SERRE QUOTIENTS, AND ROUGH
STRUCTURE

7.1 | Strange subquotients

Let L be a simple g-module and V a finite-dimensional g-module. The module V @ L, clearly,

does not have any strange quotients. Furthermore, Theorem 22 essentially says that V @ L does
not have any strange submodules, provided that L is holonomic. A priori, we cannot rule out
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existence of strange subquotients. However, inspired by Theorem 22, we propose the following
conjecture.

Conjecture 27. Strange subquotients of V ®¢ L do not exist.

Let M be a strange subquotient of V @, L. Let N denote the sum of all submodules of M
whose GK-dimension is strictly smaller than GKdim(L). Since V ® L and hence also M are
noetherian, N is finitely generated. Since each of the finitely many generators of N belongs
to a submodule of M whose GK-dimension is strictly smaller than GKdim(L), it follows that
GKdim(N) < GKdim(L). Therefore, the subquotient M /N is also strange and has the property
that any submodule of M /N has GK-dimension GKdim(L). We will say that M /N is a strange
subquotient in normal form. Note that strange subquotients in normal form do not have simple
submodules at all.

Proposition 28. Let L be holonomic, M a strange subquotient of V @ L, and 6 an indecomposable
projective functor from the J -cell corresponding to Annyq)(L). Then 6M = 0.

Proof. This is proved using the same argument as at the end of Subsection 5.4. O

7.2 | Serre quotients

Let L be a simple g-module. In general, the module V ®. L need not have finite length in g-mod.
In this subsection, we introduce a natural subquotient of g-mod where V' ® L always has finite
length and a well-defined notion of composition multiplicities.

Let of = @/(L) denote the full subcategory of g-mod whose objects are all finitely generated
g-modules isomorphic to subquotients of modules of the form V @ L, where V is a finite-
dimensional g-module. This is an abelian subcategory of g-mod with the abelian structure (e.g.,
C-linearity, kernels, and cokernels) being inherited from g-mod. Thanks to exactness of projective
functors, the category &/ comes equipped with the natural action of projective functors.

Let % = AB(L) denote the full subcategory of of consisting of all modules of Gelfand-Kirillov
dimension strictly smaller than GKdim(L). From Subsection 2.5, it follows that & is a Serre sub-
category of of as well as that & is stable under the action of projective functors. Therefore, of /%
is an abelian category that has a natural action of projective functors.

Let ¥ = €(L) denote the full subcategory of &/ consisting of all objects M of o that have the
property that 6M = 0, for any indecomposable projective functor 6 from the two-sided cell .7
corresponding to Anny;,)(L). Since projective functors are exact, € is a Serre subcategory of <.

Lemma 29. The category € is stable under the action of projective functors.
Proof. Let 6’ be a projective functor and 9 be a projective functor from J. Then, any indecompos-
able summand in both 66’ and 6’6 is either in J or annihilates L. This implies the claim of the

lemma. O

Due to Lemma 29, the category &/ /% is an abelian category that has a natural action of
projective functors.
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Conjecture 30. % = 6.

Note that, if L is holonomic, we have & C €.

7.3 | Rough structure of modules in &

Theorem 31. Assume that L is holonomic.

(a) The category of /€ is an abelian length category.

(b) Simple objects in of /€ are in bijection with isomorphism classes of simple subquotients with
GK-dimension GKdim(L) in modules of the form V @ L, where V is a finite-dimensional g-
module.

(c) Every objectin of /€ has well-defined composition multiplicities.

As suggested in [38], for X € o, the part of the structure of X that can be seen in &/ /% (includ-
ing the multiplicities in X of simple g-modules with GK-dimension GKdim(L)) is called the rough
structure of X.

Proof of Theorem 31. A subquotient X of some V @ L will be called primitive provided that, for
any submodule Y C X, at most one of the modules Y or X /Y has GK-dimension GKdim(L).

Given a primitive subquotient X of some V ® L, the definitions of o/, ¥ and the Serre quotient
give us three options.

* The GK-dimension of X is strictly smaller than GKdim(L). In this case, X = 0in &/ /%.

* The module X is strange. In this case, X = 0in &/ /%.

+ The module X has a unique simple subquotient X’ of GK-dimension GKdim(L). In this case,
X=X"ind/¥.

This implies Claim (b).

The category o/ /€ is abelian by construction. That every object in ¢/ /€ has finite length fol-
lows from the additivity of the Bernstein number, since it is a positive integer and the Bernstein
number of V ®¢ L is finite. This implies Claim (a).

Let X and Y be in & such that Y is a simple g-module of GK-dimension GKdim(L). Let Iy be
the injective envelope of Y in g-Mod. Let

be a filtration of X such that all subquotients are primitive (since the number of possible subquo-
tient of GK-dimension GKdim(L) is bounded, such a filtration exists). Then X;/X;_; hasY asa
subquotient if and only if there is homomorphism from X;/X;_; to Iy. As X;/X;_; is assumed to
be primitive, the dimension of Homy(X;/X;_;,Iy) equals one (since the endomorphism algebra
of Y has dimension one by Dixmier-Schur’s lemma). Therefore, the composition multiplicity of
Y in X is finite and equals the dimension of Homg(X JIy). O
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