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Caregiver-infant interactions shape infants’ early visual experience; however,

there is limited work from low-and middle-income countries (LMIC) in

characterizing the visual cognitive dynamics of these interactions. Here, we

present an innovative dyadic visual cognition pipeline using machine learning

methods which captures, processes, and analyses the visual dynamics of

caregiver-infant interactions across cultures. We undertake two studies to

examine its application in both low (rural India) and high (urban UK) resource

settings. Study 1 develops and validates the pipeline to process caregiver-infant

interaction data captured using head-mounted cameras and eye-trackers. We

use face detection and object recognition networks and validate these tools

using 12 caregiver-infant dyads (4 dyads from a 6-month-old UK cohort, 4 dyads

from a 6-month-old India cohort, and 4 dyads from a 9-month-old India cohort).

Results show robust and accurate face and toy detection, as well as a high

percent agreement between processed andmanually coded dyadic interactions.

Study 2 applied the pipeline to a larger data set (25 6-month-olds from the

UK, 31 6-month-olds from India, and 37 9-month-olds from India) with the

aim of comparing the visual dynamics of caregiver-infant interaction across

the two cultural settings. Results show remarkable correspondence between

key measures of visual exploration across cultures, including longer mean

look durations during infant-led joint attention episodes. In addition, we found

several di�erences across cultures. Most notably, infants in the UK had a higher

proportion of infant-led joint attention episodes consistent with a child-centered

view of parenting common in western middle-class families. In summary, the

pipeline we report provides an objective assessment tool to quantify the visual

dynamics of caregiver-infant interaction across high- and low-resource settings.

KEYWORDS

caregiver-infant dyads, cognitive development, infancy, eye-tracking, low-and middle-
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1 Introduction

Visual exploration is one of the early building blocks for

learning in infancy. In real-world settings, infants’ visual experience

is complex with often cluttered environments. Infants typically

explore these environments with social partners who have their

own visual attention abilities and preferences. Critically, early

interactions between infants and their caregivers influence early

learning and are important for shaping developmental outcomes

(Tamis-LeMonda et al., 2004; Evans and Porter, 2009; Yu et al.,

2019). Therefore, understanding the nature of social interactions

and developing objective measures to assess these interactions is

critical.

Previous anthropological and psychological research on parent-

infant interaction has used a third-person view to capture

interactions in low-resource settings. These observations have been

traditionally coded in real-time by a trained observer. However, as

technologies have advanced, videotaping interactions has become

the norm with analyses annotating the videos frame by frame

(Abels, 2020; Schmidt et al., 2023). There are two main issues with

human coding of interactions: (1) a limited amount of participants’

data can be collected because of the time and effort that goes

into frame-by-frame coding, and (2) the third-person perspective

offers only limited insight into parents’ and infants’ own visual

experiences. The current study uses technological advances to

create a pipeline to collect, process, and analyse parent-infant

interaction data using open-source and freely accessible algorithms.

This paper builds on recent work that has quantified parent-

infant interactions using innovative technologies (Yoshida and

Smith, 2008; Aslin, 2009; Smith et al., 2011, 2015; Yu and Smith,

2012). One such technology is the head-mounted eye-tracker.

Unlike older technologies such as hand-held cameras, head-

mounted cameras and eye trackers provide a closer approximation

of what individuals see and how they deploy their attention. Using

these technologies, researchers have found that the visual dynamics

of parent and infant are very different compared to a third-person’s

view. For example, Smith et al. (2011) recorded a ten-minute toy

play session between parents and their 17- to 19- month-old infants

using head-mounted cameras and eye-trackers. Results suggested

that the infants’ first-person view was highly selective with one

dominating object (toy) in view. Critically, this object blocked the

view of other objects around the infant. In contrast, the parents’

first-person view was broader and more stable. Parents tended to

shift their gaze between visual targets (toys, hands, and infant’s

face) rapidly with all objects equally in view. Interestingly, infants’

momentary visual experience included more hands manipulating

objects—their own and the parents—than parents’ momentary

visual experience (see also Yoshida and Smith, 2008).

A key explanation for the difference in infants’ visual experience

comes from the fact that infants’ bodily movements such as turning

heads or reaching for a toy both have a major influence on visual

dynamics (Schneiberg et al., 2002; Yoshida and Smith, 2008; Smith

et al., 2011). Parents also played a role in selecting targets for

the infant’s view (Xu et al., 2011). Franchak et al. (2011) noted

that 14-month-old infants frequently fixated on caregivers’ hands

and bodies instead of caregivers’ faces. Moreover, infants were

more likely to look at the mother’s face if the mother was sitting

down at the infant’s eye level versus standing upright. In summary,

head-mounted eye trackers and cameras enable one to capture

first-person visual experiences which can systematically differ from

a third-person perspective (Aslin, 2009) yielding insights which

are not always intuitive relative to the adult third-person view

(Yurovsky et al., 2013).

The goal of the present study was to assess whether head-

mounted eye trackers could be used to meaningfully examine

dyadic infant-caregiver interactions within global, low-resource

settings, and generate objective and quantifiable measures. Much

of the research in psychology comes from Western, high resource

societies. In principle, however, portable eye-tracking technologies

should be useable even in rural low- and middle-income

countries (LMIC) where research infrastructure is minimal. To our

knowledge, no study has deployed head-mounted eye-trackers and

head cameras in low-resource settings. Thus, here we used this

technology to extract measures of visual exploration and visual

cognition during parent-infant interaction in Norwich, UK (urban

UK) and Shivgarh, India (rural India). This allowed us to develop

a processing pipeline that generalized across data sets, extracting

common measures across socio-cultural contexts.

We focused on using open-source machine learning algorithms

with the goal of avoiding laborious frame-by-frame hand coding.

This enabled us to process large data sets in an objective manner

that was fully transferable across cultures. In particular, we used

machine learning algorithms to quantify how long each member

of a dyad looked at each object and how often they looked at the

face of the social partner. From these data, we then calculated key

measures such as how long they sustained attention on objects and

faces, and who is leading and who is following each attentional

episode.

The paper proceeds as follows. In Study 1, we describe how

we developed and validated a new pipeline for processing dyadic

data from caregivers and infants. To probe the effectiveness of this

pipeline, we applied it to a subset of data from two parallel studies—

one conducted in an urban UK setting and one from rural India. In

Study 2, we then applied this pipeline to the full samples from both

studies, revealing novel insights into how visual dynamics unfold

across two socio-cultural contexts.

2 Study 1: developing a pipeline for
the analysis of dyadic visual cognition
across cultures

The goal of this initial study was to develop a pipeline for

the analysis of real-world dyadic interactions between a caregiver

and infant that generalizes across cultures. In the sections that

follow, we introduce the data collection methods used in both

the urban UK and rural India settings. Next, we discuss the

machine learning tools used to process the data set, including a

face-detection network and an object recognition network. For

each machine learning approach, we discuss how the networks

were trained, validated, and optimized. We then describe the full

processing pipeline, including a discussion of a toolkit for analyzing

the resultant time series data. Next, we apply this pipeline to a

subset of 12 infant-caregiver dyads: 4 from a 6-month-old UK
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cohort, 4 from a 6-month-old India cohort, and 4 from a 9-month-

old India cohort. Here, we validate the pipeline performance by

quantifying the accuracy of the resultant data set relative to hand-

coded data. This work sets the stage for a larger cross-cultural

comparison of dyadic interactions which is presented in Study 2.

3 Data collection methods

3.1 Participants

We present data from four parent-infant dyads from the

UK: infants aged 6 months ±15 days (3 females, M = 5.46

months, SD = 0.84 months). All families were recruited by the

Developmental Dynamics Lab at the University of East Anglia for a

longitudinal project on early brain development. Inclusion criteria

for dyads included (1) normal or corrected-to-normal vision; (2)

uncomplicated single birth between 37 and 42 weeks; (3) no reports

of alcohol or drug illicit use during pregnancy; (4) no pre-existing

neurological conditions ormajor head injury; (5) no familial history

of major depressive or psychiatric illness confirmed during the

parental interview during enrolment. Parents were informed of the

experiment’s aim and procedure, and written consent was obtained.

Remuneration comprised of 20 pounds, travel expenses, a t-shirt

and a toy for each participant.

The Indian sample was recruited with the help of the

Community Empowerment Lab (CEL) which works in the rural

area of Shivgarh in the state of Uttar Pradesh. Uttar Pradesh has

one of the highest infant mortality rates in India with 60 deaths

per 1000 live births for children under five years of age (see

National Family Health Survey report 2019–2021). The current

study reports data from eight dyads: four infants were aged 6

months±15 days (3 females,M = 6.06 months, SD = 0.23 months)

and four infants were aged 9-month ±15 days (3 females, M =

9.02 months, SD = 0.42 months). All the infants were full-term and

typically developing.

3.2 Materials

3.2.1 Mobile eye-tracking
Caregivers’ eye movements and caregivers’ and infants’ visual

fields were recorded using light-weight (36gms) mobile eye-

trackers developed by Pupil Labs (Kassner et al., 2014). The eye

tracker was used with the software Pupil Capture (versions 0.09 to

0.9.15). The eye-tracker has an infrared eye camera, placed close

to the eye, that recorded monocular pupil and corneal reflections

at a resolution of 640 × 480 pixels and a sampling rate of 120

Hz. The world camera was captured at 30 Hz at a resolution of

1,280 × 720 pixels. The eye-tracker and head-mounted cameras

were connected to mobile phones. For data collection in Shivgarh,

we used Nexus 5XN4F2T mobile phones. For the UK, we used

Google Pixel 2 mobile phones. The mobile phones captured data

using the Pupil Mobile app. These mobile phones were in turn

connected to a laptop (HP laptop in India and Mac laptop in

the UK) through a WiFi network to enable the simultaneous

streaming of the video. This allowed the experimenter to monitor

the session remotely. The parent wore the head-mounted eye-

trackers like glasses with a nose-piece placed on the nose. The

infant’s head-mounted camera was embedded into a headband for

comfort as well as to avoid slippage. In line with previous research

using head-mounted cameras, we placed the camera low on the

infant’s forehead (Smith et al., 2011). We did not use the eye

camera with infants as they did not like the camera placed close to

their eyes.

3.3 Stimuli

Ten toys were organized into two sets with each set containing

five toys in the UK. The toys include utensils, animals, and/or

different shaped blocks of single main color (see Figure 1A). If and

when the toys broke during data collection, they were replaced by

another toy. For example, a toy apple in the UK was replaced with

a toy pear.

Similarly, ten toys were used in India including objects used

as toys in the local community (e.g., plate, spoon), familiar

toys (e.g., rattle, ball) and novel toys (see Figure 1B). If the

toys broke during data collection, we either replaced them with

another toy or repaired them with the exception of one toy

(GLOW) as parents and infants continued to play with the

dismantled toy.

It is important to acknowledge that our decision to use

different toys across contexts was motivated by two factors.

First, in India, preliminary discussions with families revealed

that most infants played with common household objects (e.g.,

plate, spoon) rather than store-bought toys. Thus, we included

a subset of these items to make the toys culturally relevant.

Second, the study in India began prior to the study in the

UK. At that time, machine learning networks were particularly

sensitive to color. Consequently, our collaborators suggested we

use novel toys with a homogeneous color. By the time the

UK study started, it was clear that newer machine learning

methods did not require homogeneous color. Thus, we relaxed

this criterion when selecting culturally-relevant toys for the

UK sample.

3.4 Setup UK

Trained researchers visited the participant’s home at a time

when the parents confirmed that the infants were usually awake and

fed. After obtaining consent from the parent, the eye trackers and

tripod cameras were set up in an area where the parents typically

played with the infant. Infants wore a vest to which the mobiles

were attached at the back for freedom of movement. If the infant

was on a boppy pillow, then the cable and phone were left on the

side. Parents were briefed that they were free to pick up their infants

and move the phone/cable as desired. The experimenter adjusted

the scene and eye cameras when necessary. Parents wore a lab coat

with a pocket or velcro at the back of the lab coat to attach the phone

for freedom of movement. Two tripod-mounted cameras captured

the play session from a third-person view.
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FIGURE 1

Set of toys used in the UK (A) and India (B). (A) Top (left to right) Train, Elephant, Kettle, Apple, Butterfly. Bottom (left to right) Gira�e, Rattle, Cup,

Camera, Duck. (B) For some objects, we made up names to create labels to train them in the YOLO algorithm. Top (left to right) Blue ball, Candy,

Plate, Glow, Spoon. Bottom (left to right) Yellow ball, Man, Green, Rattle, Puzzle.

3.5 Setup India

Due to infrastructural and technological constraints (e.g., lack

of electricity), the parent-infant interaction study took place in

several rooms set up as an open laboratory space in a palace where

we could bring in a generator for power cuts. Before the sessions

began, families toured the laboratory while all procedures were

explained to them. Families were shown the equipment, explained

its function and were given the opportunity to ask any questions.

They were, then, seated in a common playroom where consent

was given.

The parent-infant interaction room consisted of a mattress on

the floor as a play area. Two cameras were placed on opposite

walls to record parent-infant interaction from a third-person view.

Figure 2 shows an example of the setup for the head-mounted

eye-trackers and cameras in India. The set-up for eye-trackers

was the same as in the UK with the exception that caregivers in

India did not wear lab coats and hence mobile phones were placed

next to them. Mothers felt uncomfortable wearing white lab coats

because white is associated with widowhood, and mothers’ felt

uncomfortable wearing a lab coat that was very different from their

usual attire. Caregivers were briefed that they were free to move

around while holding their mobile phones if needed. Culturally,

sitting on the floor, cross-legged or in a squatting position is

an everyday practice. The caregivers hardly ever moved around

the room or expressed a desire to move around the room with

their infants.

3.6 Procedure

There were two experimenters in the room. In India, one

of the experimenters was a staff member from the Community

Empowerment Lab (CEL) and one was from the local community.

Experimenter 1 helped the caregiver wear the head-mounted eye-

tracker. Prior to calibrating the eye-tracker, Experimenter 1 would

ask the parent to follow their finger (left, right, top, bottom) to

make sure that the pupil was captured properly and to ensure that

it was visible in the world camera. We used a minimum of nine

calibration points to calibrate the eye-tracker using Pupil Capture

software (for more information see https://docs.pupil-labs.com/

core/). During calibration, the caregiver fixated on the calibration

marker while keeping the head stationary, and the experimenter

moved the marker around while staying within the participant’s

visual field (about 1.5–2 m away). The experimenter moved the

calibration marker in such a way that it covered the 2D screen

that was monitored by experimenter 2. Following the calibration,

one of the two experimenters distracted the infant with a toy while

the other experimenter placed the headband on the child’s head.

Experimenter 1 moved the toy in different directions (top, down,

left, right) while Experimenter 2 adjusted the angle of the camera to

ensure that the toy was in the infant’s field of view when theymoved

their heads in different directions.

Once the cameras were set up, we started the infants’ head

camera. The experimenter placed the toys near the dyads within

reach. Caregivers were instructed to play as they usually would
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FIGURE 2

Caregiver-Infant interaction setup in Shivgarh, India. Caregiver-infant dyads played together with a set of toys in a naturalistic setting. Each wore

head-mounted cameras to collect egocentric video and the caregivers also wore eye-tracker to track gaze positions (left). A stationary camera is

recorded from a third-person perspective (right).

with their infants. The experimenter placed a movie clapperboard

between the parent and the infants’ head camera such that it

was visible on both the recordings and clapped it three times to

synchronize the onset of the play session. Both the experimenters

left the room (India) or moved to a corner of the room (UK)

and checked the play session as it streamed live on the laptop for

any issues (such as removing the head camera, technical issues,

software errors, and so on). The play sessions were recorded for

approximately 10 minutes.

4 Machine learning methods

The use of CNNs (convolutional neural networks) has gained

popularity due to many successful vision-related applications

including face detection (Zhang et al., 2016), object recognition

(Redmon et al., 2016) and image-based diagnostic applications such

as detecting anomalies in X-ray and MRI images (Yu et al., 2018).

Here, we used several specific CNN tools to objectively detect the

presence of faces and toys in the video data collected from the

mothers’ eye-tracker and the infants’ head cameras.

4.1 Multi-cascade convolutional neural
network for face detection

We used a publicly available multi-cascade convolutional

neural network (MTCNN) focusing on the MTCNN face detection

network built by Zhang et al. (2016). MTCNN is a fast, efficient

and robust face detection algorithm (Zhang et al., 2020b) built

to account for various illuminations and occlusion in real-world

environments. MTCNN has recently been used by Long et al.

(2022) with developmental data and resulted in good accuracy for

face detection. Moreover, it can be used on both static images as

well as videos.

We set up the MTCNN environment using Anaconda

Navigator. We used the Tensorflow implementation of the

MTCNN algorithm available at https://github.com/ipazc/mtcnn.

To test the accuracy of the MTCNN algorithm, we extracted

10 images from 10 dyads (5 from the parent head camera and

5 from the infant head camera): 80 face images and 20 non-

face images. Half of the images were of infant faces and the

other half of caregivers’ faces. Images with various orientations,

lighting and distance were selected. All the images were hand-

labeled for faces using ImageJ, an open-source image processing

and analyzing software (Schneider et al., 2012) yielding a .ROI

file for each image containing the coordinates of the labeled

box containing the face [the “Ground Truth” (GT) data set].

Faces were classified as present if at least half of the face

was visible.

Sometimes, poor lighting conditions can affect

image contrast, reducing the accuracy of face or object

detection. We applied contrast limited adaptive histogram

equalization (CLAHE) to images prior to detection.

CLAHE increases image contrast, whilst avoiding the

over-amplification of noise that is sometimes associated

with adaptive histogram amplification (see Zuiderveld,

1994).
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To evaluate the performance of the MTCNN face detector

on our test data sets, we used Intersection Over Union (IoU)

(see Padilla et al., 2021). IoU quantifies the extent of overlap

between the GT and the prediction (the greater the overlap, the

greater the IoU). To evaluate the precision and recall of the

detections, it is necessary to establish an IoU threshold. The larger

the threshold, the larger the IoU, and therefore, the overlap required

for a “hit.” Using the threshold, the evaluation metric will classify

each detection as:

1. True Positive, if IoU between the GT and prediction is greater

than the IoU threshold;

2. False positive, if the IoU between GT and prediction is less than

the IoU threshold or if there is a prediction without an associated

GT;

3. False Negative, if the GT has a face yet there is no associated

prediction;

4. True Negative, if the frame has no GT and no prediction.

We ran two evaluation metrics for each cohort (India, UK), one

with CLAHE and another without CLAHE, using an IoU threshold

of 0.50. To assess the performance, we calculated precision and

recall. Precision, is the total number of true positives divided by

the total number of true positives and false positives, in other

words, it is the correctly identified faces out of all the identifications.

Recall is the ratio of true positives and total GT positives, i.e., true

positives divided by the sum of true positives and false negatives.

The trade-off between precision and recall performance can be

manipulated by adjusting the IoU threshold. Last, we calculated

the Average Precision (AP): the precision averaged across all

unique recalls.

For the UK cohort, without CLAHE, the detector retrieved

55.34% of the total ground truths. In contrast, with CLAHE,

the detector retrieved 62% of total ground truths. For the India

cohort, the detector retrieved 54.71% of total ground truths

both with and without CLAHE. Based on these evaluation

metrics, we decided to use CLAHE for both India and

UK cohorts.

To improve detection performance, we visualized the

MTCNN predictions using an open-source, video coding

software called BORIS—Behavioral Observation Research

Interactive Software (Friard and Gamba, 2016). After reviewing

the MTCNN predictions, we decided to filter the data through

different minimal bounding box sizes and confidence thresholds

(ranging from 60%–80%) until we found the best precision.

The best filter parameters that suited both cohorts were

a minimal bounding box size of 5% of the image size, a

confidence threshold of 70%, and an IOU threshold of 0.30.

Implementation of the filter parameters increased the average

precision for the UK cohort by 7.18% and for the India cohort

by 3.45%.

To increase the accuracy further, we also filtered by asymmetry,

that is, if an edge of the bounding box was five times longer than

the adjacent side. Finally, we removed duplicate predictions, that

is, if there were two bounding boxes for the same item (e.g., parent

face) on the same frame. Removal was prioritized based on the size

of the bounding box (i.e., the largest bounding box was kept) and

secondarily based on confidence.

4.2 You only look once for object
recognition

You Only Look Once (YOLO) is a state-of-the-art object

detection algorithm developed by Redmon et al. (2016). It uses

Convolutional Neural Networks (CNNs) to detect objects with

better than real-time performance, typically processing in excess

of 40 frames per second. Given the speed of detection, it is the

preferred approach for a number of real-life applications, including

identifying people and traffic signals on busy roads for autonomous

driving applications (Pouyanfar et al., 2019; Masmoudi et al., 2021;

Boukerche and Hou, 2022).

Here, we use YOLOv5 available at

https://github.com/ultralytics/yolov5 (see also Jocher et al.,

2022). The YOLO algorithm overlays a grid on the chosen image

and makes a prediction for each cell in the grid. Predictions,

bounding boxes, and confidence values are set for all cells,

regardless of whether there are any salient objects or specified

targets within them. Then, YOLO expands the bounding boxes

by an amount proportional to the confidence of each prediction.

Finaly, YOLO creates a map with multiple bounding boxes ranked

by their confidence value, which serves to identify where the

objects are located in the image.

To detect what the objects are, the algorithm predicts the

probability that the image contains an object of a given class

(e.g., plant) at each specific location. Predictions are conditional

at this stage because they do not specify the presence of an object.

Instead, they set the condition that “if ” there is an object within the

cell, that object will be of the given class. Next, YOLO multiplies

the conditional probability with the objects’ confidence value,

resulting in bounding boxes weighted by their actual probabilities

of containing the desired object(s). Then, it discards predictions

with lower confidence values.

We trained separate YOLOmodels for the UK and India dyads.

To train the models for the 11 UK toys and 10 India toys (and an

additional class for a mobile phone), we manually labeled 1,295

frames sampled from 28 UK dyads from our larger data set (see

Study 2), and 1238 frames sampled from 113 India dyads from our

larger data set (see Study 2). The frames were extracted from both

the parent and infants’ head-mounted cameras. The initial selection

of frames was random, however, we then inspected the selection

and added additional frames to make sure that the data contained a

good variety of different scales and orientations of each toy.

Frames were labeled by trained research assistants using a

software package called LabelImg (Tzutalin, 2015). From each

cohort’s training data set, we extracted 128 (UK) and 117 (India)

images to create a validation dataset, leaving us with 1,167 training

images for the UK model and 1,120 training images for the India

model. The accuracy of the models was assessed using precision,

recall and mean average precision (mAP). All models were run at a

threshold of 0.50 for Intersection Over Union (IoU).

The training, validation and testing was undertaken at the

University of East Anglia’s High-Performance Computing Cluster

(HPC) which allowed for the processing of multiple dyads in

parallel. The source code for YOLOv5 was downloaded from

GitHub. The YOLO toolbox contains separate Python scripts for

training and testing. We used a form of transfer learning, meaning
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that a pre-trained model is first loaded, and then the weights in

that model are fine-tuned for the specific task at hand. The pre-

trained model will already have been trained using many hundreds

of thousands of images, drastically reducing the amount of new data

required to adapt the model.

Training was conducted over a maximum of 250 epochs.

During each epoch, small quantities of data (batches) are passed

through the network and the weights and biases at each node of

the network are tuned to minimize the networkâĂŹs loss (the

difference between the predictions and the ground truth labels).

We used the default batch size of 12 images. YOLO uses an early

stopping criteria, causing the training to stop automatically if

the loss stops reducing significantly between epochs. The training

process produced two models: The model produced by the final

epoch and the best model, as identified by themodel with the lowest

loss. We use the best model for processing our validation and test

data.

4.2.1 YOLO model evaluation UK
In an initial model, we used 1,167 images in the training data set

and 128 images with 352 labels in the validation data set. A mAP of

0.832 was achieved across all toys.

Next, we incrementally increased the number of frames for the

poorly performing toys to see if this improved the accuracy. We

started by adding 20 toy elephant labels to the training dataset.

This improved performance with a mAP of 0.858. Our final model

included an updated training data set with 60 new labels (20

elephants, 20 giraffes and 20 cameras) as well as the updated

validation set with 364 labels. As shown in Table 1, the overall mAP

across toys was 0.856 with 96.2% precision and 75.2% recall.

4.2.2 YOLO model evaluation India
One of the toys in India broke during the study, and caregivers

and their infants started using them as novel toys so we decided not

to change them. Therefore, during labeling for the India training

dataset, we labeled the TOY_GLO as a whole and its dismantled

parts as TOY_RED and TOY_MIX. In our initial India model, we

achieved an overall mAP across toys of 0.839. However, labels such

as TOY_RED, TOY_MIX and TOY_GLO showed a relatively poor

performance. Therefore, to enhance the results for these labels, we

added CLHAE image processing to our training data set (previously

used in MTCNN), but this did not enhance performance.

For our next model, we decided to combine labels of

TOY_GLO, TOY_MIX and TOY_RED into one label, namely,

TOY_GLO, given that they were all dismantled parts of the same

toy. The final model showed an improved accuracy for object

detection with an overall mAP of 0.898 across all toys (see Table 1).

5 Implementation of the processing
pipeline

Now that the CNNs for faces and objects were trained and

validated, we moved on to create a full processing pipeline for the

data set. Figure 3 shows an overview of the pipeline. Below, we

discuss each of these pipeline steps in detail.

TABLE 1 Performance of object detector for UK and India, at IoU

threshold 0.50.

Model 4 UK

Class label Precision Recall mAP@.5

All 364 0.962 0.752 0.856

TOY_APP 24 1 0.762 0.841

TOY_BUT 35 1 0.667 0.748

TOY_CAM 27 1 0.739 0.841

TOY_CUP 35 1 0.785 0.933

TOY_ELE 32 0.999 0.688 0.789

TOY_GIR 37 0.797 0.568 0.684

TOY_DUC 35 1 0.841 0.925

TOY_GRE 27 0.993 0.815 0.92

TOY_KET 45 1 0.721 0.913

TOY_RAT 31 0.89 0.871 0.927

TOY_TRA 36 0.908 0.82 0.9

Model 3 India

Class Label Precision Recall mAP@.5

All 324 0.935 0.833 0.898

TOY_BBAL 21 0.942 1 0.95

TOY_CAN 38 0.969 0.835 0.943

TOY_GRE 5 0.927 0.8 0.8

TOY_MAN 46 0.918 0.87 0.91

TOY_PLA 49 0.949 0.767 0.81

TOY_PUZ 4 0.839 1 0.995

TOY_RAT 6 1 0.729 0.995

TOY_SPO 49 0.975 0.633 0.747

TOY_YEL 8 0.96 1 0.995

TOY_GLO 71 1 0.859 0.925

MOBILE 27 0.804 0.667 0.803

Final UK model included 1,227 images in the training dataset, and 128 images and 364 labels

in the validation dataset. Final India model included 1,120 images in the training dataset, and

117 images and 364 labels in the validation dataset. CLAHE histogram equalizer was added to

the India model. TOY_RED, TOY_MIX and TOY_GLO were combined into TOY_GLO.

For UK class, APP, Apple; BUT, Butterfly; CAM, Camera; CUP, Cup, ELE, Elephant, GIR,

Giraffe, DUC, Duck; GRE, Green; Ket, Kettle; RAT, Rattle; TRA, Train. For India class, BBAL,

Blue Ball; CAN, Candy; GRE, Green; MAN, Man; PLA, Plate; PUZ, Puzzle; RAT, Rattle; RED,

Red; SPO, Spoon; YEL, Yellow Ball; MIX, Mix; GLO, Glow.

5.1 Eye-tracker

We first pre-processed the eye-tracking recordings by mapping

gaze points onto the scene camera image. Here, we used post-

hoc pupil detection. This allowed us to enhance accuracy by

trimming any cases where the eye was obscured by dark eyelashes

by adjusting the Region of Interest (ROI) to be closer to the

edges of the eye. This was particularly useful for participants with

dark, long eyelashes and with caregivers wearing mascara. We

also used post-hoc pupil detection to ensure that the calibration

for each session was accurate. Here, we used the Vis Circle
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FIGURE 3

A flow diagram demonstrating the steps of the pipeline.

plugin from the pupil player software to visualize gaze positions,

mapping these positions onto the caregivers’ world camera view.

We could then verify that the gaze position overlapped the

calibration marker, removing any mis-matching entries. If the

number of calibration points dismissed by the software was

over 40%, the data were excluded. After post-hoc calibration,

we exported the following: (1) the play session video with

gaze position overlaid on the video, (2) a .csv file consisting

of the pupil and gaze coordinates and confidence, and (3)

timestamps in NumPy format (for complete documentation, see

Pupil Player documentation).

5.2 Annotation

We used the annotation plugin in the pupil player software to

synchronize the parent and infant head camera videos. The movie

clapperboard was used as a reference to annotate the synchronized

onset of the play session for both parent and infants’ head cameras.

The offset was synchronized either at the end of the ten-minute

play session or when the session ended (in case of infant fussiness).

Any crying event for more than a minute was annotated to

remove from the processing during the frame extraction phase

(see below).
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5.3 Frame extraction

The next step used the parent and infant raw .mp4 video, the

corresponding timestamp files, the annotation file, and the gaze

position file (for parents only). Synchronized frames were extracted

from the videos in MATLAB using FFmpeg (frame extraction code

available on GitHub). We compensated for any fluctuations in

time by downsampling, using the caregiver or infant video as the

referent signal, whichever had fewer frames. We also filtered any

crying epoch that lasted more than a minute. Once the frames

were synchronized, they were renamed with consecutive frame IDs.

Following this, we generated a new gaze data file with normalized X

and Y positions for each gaze point matching the frames from the

parent video.

5.4 Machine learning

The synchronized video frames were evaluated by both

MTCNN and YOLO on a high-performance computing cluster.

MTCNN included two additional filtering steps to further improve

the data quality:

1. When an item was detected for at least 3 frames (e.g., bounding

box on parent’s face), then detection ceased for a frame, and

the item was detected again for 3 frames, the filtering step filled

the missing frame. This reduced the number of false rejections

(misses);

2. When the identification of items lasted for only a single

frame, the filtering step discarded the detection. This served to

minimize false positives.

5.5 Visualization and validation using
BORIS

To verify MTCNN and YOLO performance, we manually

processed data for four dyads from the UK and eight dyads

from India. We visualized the MTCNN and YOLO predictions

by converting the synchronized frames for each dyad into a

video format at 90fps (to speed up manual coding). Each video

consisted of the predictions visualized using green bounding boxes

for toys and faces with the predicted accuracy (in %) and a blue

gaze position with a blue extended bounding box around it. The

gaze position for caregivers’ eye-tracker was based on the gaze

output from the pupil player. We created a gaze position for the

infants’ headcamera at the center of the frame because infants

tend to fixate large, centrally-positioned objects. The gaze box

was determined by the approximate central vision field of view

(FOV), the FOV of the camera, and the camera sensor resolution.

The camera FOV for pupil labs is 60 degrees and we assumed

that the central human FOV is approximately 15 degrees. We,

then, converted the raw gaze data obtained from pupil player

processing and converted it to pixel coordinates for the central

blue dot.

Figure 4 shows example frames from a dyad from the UK

(Figures 4A, B) and India (Figures 4C, D). Trained experimenters

coded hits (correct detections), misses (incorrect rejection), false-

positives, and true negatives for each video. For instance, in

Figure 4A, detection of a face on the infants’ onesize (label 0

with prediction confidence 79.3%) would be coded as a false

positive, missed detection of toys puzzle and glow in image C

would be labeled as a miss, and all other detections in all four

images would be labeled as a hit. For, YOLO, each toy was coded

twice, once from the parent’s headcamera and once from the

infant’s headcamera. Results from this validation step are presented

below.

5.6 Event detection

After validating our approach, we created event detection

files for each prediction (MTCNN, YOLO) for each member

of the dyad (parent, infant). The event detection script reads

in the gaze report and predictions and creates a new .csv file

that indicates which object each partner is looking at, outputting

three columns: (1) the onset frame of each label, (2) the offset

frame of that label, and (3) the corresponding label. An event

was defined as a continuous series of 3 or more frames (or

99msec) looking at the same label (toy, face). In case there

is more than one object in the dyad’s view (e.g., Figures 4A,

B), then the most central bounding box (within the blue gaze

box) with the largest confidence was considered as the main

object in view (e.g., toy elephant in Figure 4A and toy giraffe in

Figure 4B).

5.7 Time is Very imPortant toolkit (TimeVP)

The next step in processing was to analyse the behavioral

data to understand the dynamic interaction between parent and

infant. Here, we used the Time is Very important (TimeVP)

toolkit developed by the Developmental Intelligence Lab (Yu

and Smith, 2016, see also) available on GitHub (https://

github.com/devintel-lab/timevp). TimeVP uses the event files

and computes key variables of interest. The toolbox provides

visualization tools that can be crucial to checking data quality,

validating pre-processing as well as examining patterns in

the data (Yu et al., 2012). Next, it provides measures of

visual cognition: (1) Mean Look Duration (MLD) at the

target (toys, face), and (2) Switch Rate (SR) between targets

(toys, face). Lastly, it enables the user to extract coupled

behaviors to understand the temporal relations between two

events such as episodes of joint attention led by parents

vs. infants.

We ran three TimeVP scripts for each cohort (6 months

UK, 6 months India, and 9 months India). The first scripts

visualized the sequential temporal events. Next, we ran

two individual scripts for parents and infants to compute

individual and overall statistics such as proportion, duration

and frequency of looks on a target. Note that we also

used a final script in Study 2. This paired event script

computed joint attention events and who led each joint

attention episode.
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FIGURE 4

Example frames from machine learning visualization output for a dyad from the UK (A, B) and India (C, D). (A, B) Depict a frame from the parent’s and

infant’s view, respectively. The blue bounding box with a circle depicts the gaze. The red bounding boxes depict toys predicted by the algorithm that

does not overlap with the parent/infant’s gaze. Green bounding boxes depict toys and faces predicted by the algorithms that overlap the

parent/infant’s gaze. (C, D) Depict a frame from the parent’s and infant’s view, respectively from an Indian dyad. A blue bounding box with a circle

depicts the gaze. The cyan bounding boxes depict toys predicted by the algorithm that does not overlap with the parent/infant’s gaze. Green

bounding boxes depict toys and faces predicted by the algorithms that overlap the parent’s gaze. Each predicted bounding box consisted of the label

for the object or face (in numbers for the UK and in letters for the India dyad) and well its corresponding prediction confidence in percentage.

6 Results

6.1 Evaluation of MTCNN accuracy

Results from manual coding for MTCNN are shown

in Table 2. The mean accuracy across all dyads in the

UK was 95.41% (SD = 0.04). The mean accuracy across

dyads in India was 96.08% (SD = 0.04). Performance was

good with both infants’ head-cameras and with parents’

head-cameras. Thus, MTCNN performed very well on our

data sets.

6.2 Evaluation of YOLO accuracy

Table 3 show results from manual coding for YOLO object

recognition. The mean accuracy across all dyads in the UK

was 92.61% (SD = 0.07), and the mean accuracy across

dyads in India was 96.52% (SD = 0.06). YOLO performed

well with both data from infants’ head-cameras and parents’

head-cameras.

6.3 Quantifying the dyadic data using the
TimeVP toolkit

As a first step in evaluating the quality of our data, we

visualized the temporal data stream for parents and their

infants during toy play (see Supplementary Figure 1). A few

qualitative patterns were evident. Dyads with 6-month-old infants

in the UK tended to look more toward their social partner’s

faces relative to 6-month-olds in India. There also seemed to

be longer looking durations for the UK infants. For the 6-

month-old dyads in the India cohort, there seemed to be

fewer looks to social partners’ faces relative to 9-month-olds

in India.

Next, we looked at the overall Mean Look Duration for

caregivers and infants across cohorts (6months UK, 6months India

and 9 months India). Figure 5 indicates that 6-month-old infants

from the UK had the longest MLD (M = 0.70, SD = 0.25). Within

the Indian cohort, the 9-month-old infants (M = 0.50, SD = 0.07)

had slightly longer MLD than the 6-month-old infants (M = 0.49,

SD = 0.35) during the interaction. Caregivers’ in theUK also had the

longest MLD during the dyadic interaction (M = 0.38, SD = 0.16)

compared to the other groups. This was followed by the caregivers
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TABLE 2 The proportion of false positives, misses, hits, and true negatives for MTCNN UK (top) and India (bottom).

UK
participant

False positive (%) Miss (%) Hit (%) True negative (%) Overall percent
correct (%)

Child1 1.6 1.3 6.4 90.7 97.1

Parent1 0.5 3.1 23.3 73.0 96.3

Child2 0.2 0.8 59.7 39.3 99.0

Parent2 0.4 8.6 54.8 36.1 90.9

Child3 0.7 6.6 1.9 90.8 92.7

Parent3 0.7 9.1 17.9 72.3 90.2

Child4 0.5 0.5 5.6 93.3 98.9

Parent4 1.3 0.6 25.3 72.9 98.2

Mean 0.7 3.8 24.4 71.1 95.4

India participant False positive (%) Miss (%) Hit (%) True negative (%) Overall percent
correct (%)

Child1 1.1 0.9 1.8 96.1 97.9

Parent1 1.9 9.8 15.3 73.0 88.3

Child2 1.0 5.7 1.8 89.4 91.2

Parent2 0.8 3.3 19.4 76.5 95.9

Child3 1.1 2.0 0.8 96.1 96.9

Parent3 0.7 5.4 20.3 73.7 94.0

Child4 1.4 0 4.2 94.4 98.6

Parent4 0.9 0.5 14.7 83.8 98.5

Child5 0.4 0.1 3.8 95.7 99.5

Parent5 0.8 1.3 23.6 74.4 98.0

Child6 1.4 0 0.2 98.4 98.6

Parent6 9.1 0.6 3.5 86.8 90.3

Child7 0.6 0 13.3 86.1 99.4

Parent7 1.7 1.0 20.6 76.7 97.3

Child8 2.3 0.9 4.9 91.9 96.8

Parent8 2.4 1.6 20.9 75.1 96.0

Mean 1.7 2.1 10.6 85.5 96.1

of 6 month old infants (M = 0.36 SD = 0.01) and 9-month-old

infants (M = 0.34, SD = 0.05) in India.

In terms of switch rate, Figure 6 shows that the highest switch

rate per minute was for the 9-month-old infants (M= 8.75; SD =

0.50) and their caregivers (M = 8.25; SR = 0.50) from India. 6-

month-old infants (M = 7.0; SD = 1.83) and their caregivers (M =

8.0; SD = 0.82) had lower switch rates with 6-month-old UK dyads

showing the smallest number of switches per minute (M = 4.67; SD

= 0.58, for infants and M = 5.0; SD = 1.0, for caregivers).

7 Discussion

Study 1 aimed to create a single pipeline to process real-

world, dynamic, caregiver-infant interactions recorded using head-

mounted eye-trackers in both a high- and a low-resource setting.

In this process, we provided solutions to two key issues in

developmental science: (1) diversifying our participant pool by

going beyond a western, middle-class society and (2) processing

parent-infant interaction in a less laborious and more efficient way

that can be used on large data sets including long-duration videos.

The pipeline we developed processed the dynamic interaction

between caregivers and their infants in a non-biased way that was

transferable across cultural settings. We, first, demonstrated that

parent-infant interaction videos from a first-person perspective can

be obtained from both high (urban UK) and low (rural India)

resource settings. Next, we generated gaze reports for caregivers’

eye-trackers and synchronized caregiver-infants interaction videos.

Once the synchronized frames were extracted, we used machine

learning algorithms to detect faces and recognize toys in the videos.

Note, we focused on face detection and not face recognition

as there is only one other face (either infants or their caregivers)
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TABLE 3 Proportion of false positives, misses, hits, and true negatives for toys from dyads in UK (top) and India (bottom).

UK toys False positive (%) Miss (%) Hit (%) True negative (%) Overall percent
correct (%)

TOY_BUT Child 0 3.1 61.5 0.35 96.9

TOY_BUT Parent 0 05.0 73.6 21.4 95.0

TOY_RAT Child 0.2 0.8 33.0 66.0 99.0

TOY_RAT Parent 0 4.7 29.1 66.2 95.3

TOY_CAM Child 0 11.3 24.3 64.4 88.7

TOY_CAM Parent 0 12.5 31.7 55.9 87.6

TOY_ELE Child 0 4.2 47.3 48.4 95.7

TOY_ELE Parent 0 8.1 17.5 74.4 91.9

TOY_GIR Child 0 10.0 43.7 46.3 90.0

TOY_GIR Parent 0 8.0 48.7 43.3 92.0

TOY_KET Child 0 2.7 79.9 17.4 97.3

TOY_KET Parent 0 18.3 75.3 6.4 81.7

TOY_APP Child 0 1.0 42.4 56.6 99.0

TOY_APP Parent 0 6.8 68.1 25.1 93.2

TOY_CUP Child 0 17.1 28.4 54.5 82.9

TOY_CUP Parent 0.1 27.4 32.1 40.4 72.5

TOY_TRA Child 0 2.5 65.8 31.7 97.5

TOY_TRA Parent 0.1 3.3 75.1 21.5 96.6

TOY_DUC Child 0 0.6 52.8 46.6 99.4

TOY_DUC Parent 0 0 69.6 30.4 100.0

India toys False positive (%) Miss (%) Hit (%) True negative (%) Overall percent
correct (%)

TOY_RAT Child 0 1.7 32.4 65.9 98.3

TOY_RAT Parent 0 9.1 69.7 21.3 91.0

TOY_PUZ Child 0 1.6 10.3 88.1 98.4

TOY_PUZ Parent 0 0.7 47.7 51.6 99.3

TOY_MAN Child 0 2.2 40.9 56.9 97.8

TOY_MAN Parent 0 0 43.8 56.2 100.0

TOY_PLA Child 0.5 1.1 36.3 62.1 98.4

TOY_PLA Parent 0 5.5 30.2 64.3 94.5

TOY_CAN Child 0.1 0 17.6 82.3 99.9

TOY_CAN Parent 0.1 4.6 38.8 56.5 95.3

TOY_SPO Child 0 3.9 5.6 90.5 96.1

TOY_SPO Parent 0 15.6 6.7 77.8 84.5

TOY_YEL Child 0 0.1 9.7 90.2 99.9

TOY_YEL Parent 0 6.9 49.4 43.8 93.2

TOY_GLO Child 0.3 3.5 8.6 87.6 96.2

TOY_GLO Parent 6.8 3.5 37.9 51.8 89.7

in the videos. Additionally, we used pre-trained face detection

models (MTCNN) that have already been labeled on 32,203 images

with 393,703 faces labeled, making the process of face detection

less laborious. However, using a pre-trained model does not come

without limitations.The initial accuracy (pre-filtering stage) for

our UK and India cohort was 70% and 60% respectively. While
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A B

FIGURE 5

Mean Look Duration in seconds. (A) Infants’ Mean Look Duration for

all targets. (B) Caregivers’ Mean Look Duration for all targets. Cohort

6UK represents 6-month-old infants from the UK; 6IND represents

6-month-old infants from India; 9IND represents 9-month-old

infants in India. Dot in the boxplots represents the mean, and the

horizontal line represents the median with lower and upper hinges

showing the first and third quartiles, respectively.

A B

FIGURE 6

Switch rate between the target (toys, faces) per minute. (A) Infants

switch rates per minute. (B) Caregivers switch rate per minute.

Cohort 6UK represents infants and caregivers of 6-month-old

infants from the UK; 6IND represents infants and caregivers of

6-month-old infants from India; 9IND represents infants and

caregivers of 9-month-old infants in India. Boxplot details are same

as in Figure 5.

adding the filtering step increased the accuracy by 20%–28%, we

suspect that the WIDER face dataset used by MTCNN to create a

pre-trained model consists of fewer infant faces (i.e., mostly adult

and child faces). It would be useful for future work to explore

this by running two separate models of equal quality on caregiver

and infant faces and comparing the accuracy. Alternatively, the

MTCNN model can be updated by training infant faces (across

ethnicity) and adding the weights to the existing pre-trainedmodel.

Next, we showed that a YOLO object recognition algorithm

performed remarkably well across cohorts. We acknowledge that

the pipeline is not completely automated and requires the user

to make decisions, particularly at the filtering step, after making

a qualitative pass on the output obtained from the machine

learning algorithm. We expect, however, that the filtering steps

applied here will be applicable to other projects. Moreover, given

that training the network can be time-consuming as it requires

labeling and annotating a large dataset, setting up a larger database

could solve this issue. Training up a network with a large set of

commercially available standardized toys worldwide could enable

the same network to generalize across multiple studies. This would

enable researchers across borders to simply use a selection from the

standardized toy set and run the pipeline without any additional

training.

Future research could also expand the pipeline by looking at

other features such as detecting hands (Zhang et al., 2020a) or

facial expression of emotions. For instance, work by Yu and Smith

(2013) in western settings has noted that the infants’ and toddlers’

visual field often consists of hands and hands manipulating toys.

Similarly, a study by Jayaraman et al. (2017) noted an age-related

increase in the input of hands in infants’ visual view. Thus, adding

hand detection would enable us to possibly replicate these findings

in a low-resource setting. Such work would also enable researchers

to understand how deaf infants and their caregivers use sign

language (Brooks et al., 2020).

In terms of data analyses, the TimeVP toolbox successfully

enabled us to compute measures of interest such as MLD and

switch rate. Given that the aim of this study was to construct

a methodological pipeline yielding key measures of interest, we

chose to report only the descriptive statistics from a small number

of participants. Interestingly, however, this small sample revealed

several similarities and differences across cohorts. For instance,

infants in the UK tend to show longer MLD to targets with lower

switch rates. Mean look durations and switch rates are typically

negatively correlated in western samples, so this is a good validation

check on the data set (Rose et al., 2002; Yu and Smith, 2017). To

further evaluate the utility of this pipeline, Study 2 applied the

pipeline to a large data set (sample size >20) across the two resource

settings. This allowed us to statistically examine the similarities and

differences across the three cohorts.

8 Study 2: applying the dyadic visual
cognition pipeline across cultures

The goal of the present study was to explore and understand

the similarities and differences between measures of dyadic visual

cognition across cultures. This is important as key visual cognitive

measures such as joint attention havebeen conceptualized and

operationalised in different manners across studies, time and socio-

cultural contexts (Siposova and Carpenter, 2019; Bard et al., 2021).

While there is a general consensus that the infant’s ability to

engage in joint attention lays the groundwork for developmental

advances such as language learning (Carpenter et al., 1998; Mundy

and Gomes, 1998), social cognition (Mundy and Newell, 2007),

and theory of mind (Nelson et al., 2008), characteristics of joint

attention in social interaction are complex and can emerge via
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many pathways. These include initiating and responding to joint

attention, maintaining attention to the common target of interest,

ending the joint attention bout as well as shifting to or disengaging

from an object. These instances of coordinated joint attention, in

turn, predict infants’ engagement in sustained attention (Yu and

Smith, 2016) and vocabulary development (Abney et al., 2017). For

instance, a study by Yu and Smith (2016) explored the influence

of social context on parent-infant interaction during a free-flowing

play session. They found that when the parent visually attended to

the same object to which the infant was attending, infants attended

to that object for longer than in the case when the parent was

attending to a different object. Caregivers’ labeling an object in such

instances also predicted infants’ later vocabulary.

The current study examines dyadic visual cognition in a

large sample of infants in high- and low-resource settings. This

comparison is important as most of our knowledge about joint

attention comes from research conducted with infants from what

Henrich et al. (2010) described as the WEIRD (i.e., Western,

Educated, Industrialized, Rich, and Democratic) setting (Bard et al.,

2021, also see). Here, we use the objective measures of visual

cognition extracted using the machine learning pipeline developed

in Study 1 and examined them through the lens of the eco-cultural

model of parenting (Keller et al., 2005; Keller, 2007).

In the eco-cultural model of parenting, Keller (2007)

identified two key parenting styles, distal and proximal. Distal

parenting style involves exclusive focus on face-to-face interaction,

object simulation, and child-centered responsiveness as well as

emphasizing “positive” affect during caregiver-infant interaction.

This parenting style has typically been characteristic of the urban,

middle-class families from western cultures. The approach entails

a pedagogical way of playing with the child, that is, with the

aim of teaching the child (Lancy, 2010). On the other hand, the

proximal parenting style uses modalities such as body contact,

tactile simulation, focus on calming and soothing the infant as well

as a directive, adult-centered interaction. In their extensive work

on understanding caregiver-infant interaction in different social

contexts, this has been typically characteristic of rural, subsistence

farming families of traditional villages (e.g., work in rural Gujarat

in India Abels et al., 2017). Proximal parenting style takes on the

approach of responding to their infant’s distress signals, almost

always by breast-feeding or doing something to calm down the

infant, that is, “a quiet baby is a healthy baby” (Lancy, 2007, p. 275).

Other research examining the cultural similarities and

differences in maternal parenting have also looked at parenting

style and conversational patterns between mothers and their

3-month-old infants in Delhi and Berlin using cultural models

of autonomy and relatedness. This work found that mothers in

Delhi shaped the interactions with their 3-month-old infants by

leading and defining the structure of the play (Keller et al., 2010).

By contrast, infants in Berlin tended to take on an active role in

leading the interaction by directing their mothers’ attention to,

for instance, a toy. The autonomous model, an extension of the

distal parenting style, involves caregivers addressing their infants

as someone with agency and emphasizing the development of

autonomy, wherein, infants actively direct and initiate interactions.

On the other hand, parenting style in urban Delhi consisted of a

combination of autonomous-relatedness, that is, mothers having

higher formal education (linked to the autonomous style) as well

as a bias toward traditional family ties and kinship (linked to

relatedness). This was further indicated in the maternal parenting

style. That is, while the mothers’ showed a bias for proximal

caregiving style (i.e., more body contact), they did not significantly

differ in the use of both proximal and distal parenting style during

play. Thus, they used body contact, tactical stimulation as well as

playing with the object. By contrast, mothers in Berlin showed a

clear bias toward distal (and autonomous) parenting style.

Given these differences in social interaction across cultural

settings, we expected to find differences in our measures of interest

across cultures. It is important to note, however, that the goal of this

study is not to make inferences regarding which interaction style is

better or worse. Instead, we focus on evaluating the similarities as

well the differences in how parents and infants deploy their visual

attention during instances of social interactive play. In line with the

work by Yu and Smith (2016), we use the term “joint attention” to

refer to a process in which caregiver and their infants focus their

visual attention, together, on a common object or each others’ faces

at the same time (also see Yu and Smith, 2013).

9 Method

9.1 Participants

For the UK sample, we present data from 25 dyads of 6-

month-old infants (15 females) recruited by the Developmental

Dynamics Lab at the University of East Anglia in the UK through

the same procedure as in Study 1. Parents were informed of the

experiment’s aim and procedure, and written consent was obtained.

Remuneration comprised of 20 pounds, travel expenses, a t-shirt

and a toy for each participant.

For the Indian sample, we report data from 32 3-month-old

infants ±15 days (17 females) and 37 9-month-old ±15 days (15

females) infants and their caregivers. Characteristics of the sample

from both India and the UK are summarized in Table 4. The

procedure and protocol for the recruitment of participants were the

same as in Study 1.

9.2 Materials and procedure

The materials and procedure for capturing caregiver-infant

interactions were the same as in Study 1.

9.3 Data processing

We processed the data through the pipeline developed in

Study 1. The event files were then processed using the TimeVP

toolbox (Yu and Smith, 2016, also see). The data were visualized as

an initial data quality check (see Supplementary Figure 2). Here we

discovered that there were more gaps in the 6UK time series (i.e.,

more white space in the figure reflecting looking to non-targets).

This may reflect differences in the context of the interactions. Recall

that UK dyads were tested in the home, while Indian dyads were
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tested in a lab with few objects in the surroundings. Thus, it is

likely that UK infants and caregivers looked at other objects in their

surroundings more often—objects which were not captured by the

machine learning approach. In the next analysis step, we computed

measures of Mean Look Duration (MLD), Switch Rate (SR) and

episodes of caregiver-led and infant-led joint attention.

9.4 Analytic strategy

The analyses are divided into three sections. In the first section,

we look at scores of the overall mean look duration and switch

rate per minute, including a focus on both faces and toys for both

caregivers and their infants across the three cohorts (6 UK, 6 IND, 9

IND). In Section 2, we shift the focus to exploring episodes of joint

attention, addressing differences between the three groups in terms

of the total number of episodes of joint attention, the proportion of

the total in which the joint attention was led by the infants, and the

proportion which were terminated by the infants. Across the first

two sections, we performed Welch two-sample t-tests to compare

the means across cohorts. We use Welch’s t-test because it is more

robust than Students’ t-test when sample sizes are unequal and

does not rely on the assumption of equal variance between groups

(Delacre et al., 2017). Additionally, effect sizes are calculated using

Cohen’s d (Sullivan and Feinn, 2012).

In Section 3, we analyse differences in infants’ mean look

duration toward toys and faces across three conditions: when

the infant was looking at toys or caregivers’ faces by themselves

(i.e., without the caregiver looking at the same target), when

the infant initiated the joint attention episode, and when

the caregiver initiated the joint attention episode. The same

analyses on mean look duration toward toys and faces were

then repeated for the caregivers. As with natural behavior, the

mean-looking duration for participants was such that most

were very brief and some very long. Therefore, to compare

the MLD between cohorts, we used the Mann-Whitney U-

test due to the skewed distribution of looking behavior rather

than Welch’s two-sample t-tests that assume normality (Gibbons

and Chakraborti, 2011; Yuan et al., 2019). Here, the effect size

was determined using the Rank-Biseral Correlation (Kerby, 2014)

.

10 Results

10.1 Overall mean look duration and
switch rate

Scores of the overall mean look duration and switch rate per

minute for infants and caregivers across the three cohorts are

shown in Figures 7A, B. Welch two sample t-tests on the the

MLD of infants across the three cohorts found no significant

differences (t6IND,9IND(42.79) = –1.38, p = 0.18, d = –0.35, 95%

CI [-0.84, 0.13]; t9IND,6UK (30.53) = 1.46, p = 0.15, d = –0.44,

95% CI [–0.96, 0.09]; t6IND,6UK (49.08) = 0.20, p = 0.84, d = 0.05,

95% CI [–0.48, 0.59]). On the other hand, the switch rate between

targets (e.g., between toys, or between toys and faces) differed

significantly across cohorts. Infants in the 9-month-old cohort

A B

C D

FIGURE 7

Overall Mean Look Duration in seconds and Switch Rate per minute

across cohort for infants (A, B) and caregivers (C, D). Cohort 6UK

represents caregivers of 6-month-old infants from the UK; 6IND

represents caregivers of 6-month-old infants from India; 9IND

represents caregivers of 9-month-old infants in India. Dot in

boxplots represent mean and horizontal line represents represent

median with the lower and upper hinges showing first and third

quartiles, respectively.

from India had higher switch rate compared to the 6-month old

infants in India (t6IND,9IND(54.09) = –2.94, p < 0.01, d = –0.74,

95% CI [-1.23, –0.24]). In turn, the 6-month-old infants from

India displayed a significantly higher switch rate compared to those

from the UK(t6IND,6UK(52.98) = 8.46, p < 0.001, d = 2.22, 95% CI

[1.53, 2.89]). Note that the low switch rate for the 6UK infants

is consistent with the observation that the UK cohort had more

periods of looking to non-targets. Looks to non-targets would

create longer gaps between events, thereby lowering the shift rate

per minute.

Analyses for caregivers’ MLD revealed that the caregivers’ of

6-month-old infants in India tended to have longer MLD than

caregivers of 6-month-old infants in the UK (t6UK,6IND(34.74) =

2.85, p < 0.01, d = 0.83, 95% CI [0.27, 1.37]). However, there were

no differences between the two Indian cohorts (t6IND,9IND(56.94)

= 1.82, p = 0.074, d = 0.45, 95% CI [–0.03, 0.93]; also see

Figure 7C) nor between the MLD of caregivers from the 6-

month cohort in the UK and 9-month old cohort in India

(t6UK,9IND(28.88) = –1.95, p = 0.061, d = –0.59, 95% CI [–1.12,

–0.07]).
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TABLE 4 Summary of key demographic features of our participants from UK and India in percentage.

6UK 6IND 9IND

N 25 (15 females) N 31 (17 females) 34 (15 females)

Mother education (%) Mother education (%)

Left school 4 Primary pass 48.4 47.1

Up to A levels 16 Secondary and higher education 51.6 52.9

Bachelor’s degree 36 Father education (%)

Masters degree 28 Primary pass 48.4 47.1

Doctorate or professional degree 16 Secondary and higher pass 51.6 52.9

Father education (%) Caste (%)

Left school 0 General 6.5 2.9

Up to A levels 24 Other backward class (OBC) 29 41.2

Bachelor’s degree 44 Schedule caste/ tribe (SC/ST) 64.5 55.9

Masters degree 20 Family income in INR (%)

Doctorate or professional degree 3 <100,000 77.4 73.5

Ethnic group (%) >= 100,000 22.6 26.5

African 0

Asian 4

Mixed 8

White 88

Family income median in GBP (%)

<20,000 12

>= 20,000 & <40,000 20

<= 40,000 68

6UK denotes dyads with 6-month-old infants from the UK, 6IND denotes dyads with 6-month-old infants from India and 9IND denotes dyads with 9-month-old infants from India.

In term of switch rate, caregivers of 9-month old infants in

India switched at a significantly higher rate than caregivers in

the UK (t6UK,9IND(42.04) = –15.56, p < 0.001, d = –4.26, 95%

CI [–5.18, –3.33]; see Figure 7D). Caregivers in the 6-month-old

infant cohort also differed in their switch rate (t6UK, 6IND(50.65)

= 12.49, p < 0.001, d = 3.36, 95% CI [2.52, 4.17]) such that

caregivers of the Indian cohort showed significantly higher switch

rate. However, there was no difference between the two cohorts

in India (t6IND,9IND(58.49) = –1.63, p = 0.11, d = –0.40, 95%

CI [–0.88, 0.08]). Again, this is consistent with the observation

of greater white space in the raw data visualization in the

UK cohort which would lead to lower switch rates in the

UK caregivers.

10.2 Proportion of joint attention episodes

Results revealed no significant differences between the cohorts

in regards to the overall number of joint attention episodes

(t6IND,9IND(50.05) = 1.84, p = 0.07, d = 0.50, 95% CI [–0.05, 1.05];

t9IND,6UK (33.91) = 1.91, p = 0.07, d = 0.59, 95% CI [–0.02, 1.20];

t6IND,6UK (29.89)= 0.50, p = .62, d = 0.16, 95% CI [–0.44, 0.76];

Figure 8A). However, the proportion of infant-led joint attention

episodes differed significantly across the three cohorts, with 6-

months-old infants from India having a significantly smaller

proportion of infant-led joint attention episodes than their 9-

month-old counterparts (t6IND,9IND(40.99) = –2.24, p <0.05, d

= –0.57, 95% CI [–1.05, –0.08]). In turn, 9-month-old infants

from India led a significantly smaller proportion of joint attention

episodes compared to the UK cohort (t6UK,9IND(30.70) = 2.53, p

<0.05, d = 0.75, 95% CI [0.22, 1.29]; also see Figure 8B). Lastly, the

proportion of joint attention bouts terminated by infants did not

differ by cohort (t6UK,6IND(44.84) = –0.23, p = 0.82, d = –0.06, 95%

CI [–0.59, 0.47]; t6IND,9IND(44.41) = 0.97, p = 0.34, d = 0.25, 95%

CI [–0.23, 0.72]; t6UK,9IND(28.60) = 0.47, p = 0.64, d = 0.14, 95% CI

[–0.37, 0.66]; Figure 8C ).

10.3 Infants’ mean look durations for faces
and toys across contexts

Mann-Whitney-U test was carried out for assessing differences

between the groups and effect size were calculated using rank-

biseral correlation to indicate the strength of the effect (CI

95%). As shown in Figure 9A, infants’ MLD when looking

to toys differed significantly across cohorts in the “looking
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alone” context (i.e., when visually exploring objects outside

of a joint attention bout). In particular, 9-month-old infants

from India showed the longest MLD directed at toys, and 6-

month-old infants from India showed the shortest MLD when

looking at toys, with the UK sample falling between both.

Differences between all groups were significant (W6UK, 9IND =

26,890,464, p < 0.001, r = –0.11, CI [–0.13, –0.09]; W6IND, 9IND

= 39,453,528, p < 0.001, r = –0.14, CI [–0.16, –0.12]; W6UK,6IND

= 22,110,480, p < 0.001, r = 0.03, CI [0.01, 0.05]). When

infants initiated the joint attention episodes, 9-month-old infants

in India once again showed significantly longer MLD to the

toys compared to 6-month-old infants in both India and the

UK (W6UK,9IND = 1,540,473, p < 0.001, r = –0.05, CI [–0.09,

–0.01]; W6IND,9IND = 1,340,464, p < 0.001, r = –0.19, CI [–

0.23, –0.15]) . Among the 6-month-old infants, those from India

showed significantly shorter MLD than their UK counterparts

(W6UK,6IND = 902,622, p < 0.001, r = –0.13, CI [–0.17, –

0.09]; see Figure 9B). Finally, in caregiver-led joint attention

episodes, as shown in Figure 9C, the 9-month-old infants once

again displayed longer MLD than the two 6-month-old cohorts

(W6UK,9IND = 573,432, p < 0.001, r = –0.07, CI [–0.12, –0.02];

W6IND,9IND = 1,069,280, p < 0.001, r = –0.18, CI [–0.22, –0.14]).

Moreover, the 6-month-old infants in India displayed shorter

MLDs than the UK group (W6UK,6IND = 551,068, p < 0.001, r

= –0.11, CI [–0.15, –0.06]). Thus, across all three contexts we

found similar patterns. Note, however, that MLDs overall were

shortest in the “looking alone” context, longer during caregiver-

led joint attention episodes, and longer still during infant-led

joint attention episodes (see scale changes along the y-axes in

Figure 9).

When looking at the caregiver’s faces in the “looking alone”

context, the 6-month-old infants from India showed significantly

longer MLD compared to the 6-month-old infants in the UK

(W6UK,6IND = 616,443, p < 0.001, r = 0.09, CI [0.04, 0.14]) and the

9-month-old infants in India (W6IND,9IND = 646,965, p < 0.001, r

= 0.13, CI [0.08, 0.18]). Results indicated no significant difference

in the MLD between the latter two cohorts (W6UK,9IND = 269,108,

p = 0.112, r = 0.05, CI [–0.01, 0.11]; see Figure 9D). As shown

in Figure 9E, during episodes of joint attention initiated by the

infants, 6-month-old infants from India spent a significantly longer

time looking at their caregiver’s faces compared to the two other

groups (W6IND,9IND = 182,134, p < 0.001, r = 0.35, CI [0.28, 0.42];

W6IND,6UK = 349,597, p < 0.001, r = 0.19, CI [0.13, 0.25]). Moreover,

6-month-old infants from the UK had significantly longer MLDs

focused on their caregivers’ faces compared to the 9-month Indian

infants (W6UK,9IND = 79,600, p < 0.001, r = 0.12, CI [0.04, 0.21]).

Finally, as in the other contexts, when caregivers led the joint

attention bouts, 6-month-old infants from India tended to look

for longer at their caregivers’ faces than infants in the other two

cohorts ((W6IND,9IND = 1,069,280, p < 0.001, r = –0.18, CI [–

0.22, –0.14]; W6IND,6UK = 551,068, p < 0.001, r = –0.11, CI [–

0.15, –0.06]; see Figure 9F). In contrast to the analysis of infant-

led joint attention, the MLD of 6-month-old infants from the

UK was significantly shorter than that of 9-month-old infants

in India (W6UK,9IND = 573432, p < .001, r = -0.07, CI [-0.12, -

0.02]). Once again, we note that although some of these patterns

were consistent across contexts (e.g., 6-month-old infants from

India showed longer looking to faces than the other groups),

the MLD varied across contexts in a manner similar to looking

at toys with the shortest looking in the “looking alone” context,

longer looking during caregiver-led joint attention episodes, and

the longest looking during infant-led joint attention episodes.

10.4 Caregivers mean look durations for
faces and toys across contexts

As with infants’ looking, we examined how caregivers’ look

durations varied across contexts when looking at toys and faces.

Results showed that caregivers’ of 6-month-old infants in the UK

had significantly shorter MLDs to toys in the “looking alone”

context, compared to caregivers of Indian cohorts (W6UK,9IND =

54,636,505, p < 0.001, r = –0.14, CI [–0.15, –0.12]; W6UK,6IND =

59,633,668, p < 0.001, r = 0.13, CI [0.11, 0.14]; see Figure 10A).

However, no significant difference in MLD to toys was found

between the two Indian cohorts (W6IND,9IND = 89,748,771, p =

0.724, r = –0.002, CI [–0.02, –0.01]). With regards to caregivers’

MLD to toys in joint attention episodes led by infants, as shown

in Figure 10B, caregivers in the UK cohort once again displayed

significantly shorter MLD than those in both Indian cohorts

(W6UK, 9IND = 1,288,370, p < 0.001, r = –0.21, CI [–0.24, –0.17];

W6UK,6IND = 1,251,856, p < 0.001, r = 0.21, CI [0.17, 0.25]).

There were also no significant difference in the MLD of caregivers

between the two Indian cohorts (W6IND,9IND = 1,665,140, p = 0.741,

r = 6,400, CI [–0.03, 0.04]). Finally, in the case of caregiver-led

joint attention episodes, the MLD of caregivers’ from the UK was

significantly shorter than the MLD of 6- and 9-month caregivers in

India (W6UK,9IND = 435,876, p < 0.001, r = -0.21, CI [–0.24, –0.17];

W6UK,6IND = 824,171, p < 0.001, r = 0.34, CI [0.29, 0.38]). However,

unlike in the previous results, caregivers of 6-month-old infants

in India displayed longer MLD than those in the 9-month cohort

(W6IND,9IND = 1,392,248, p < 0.001, r = 0.06, CI [0.02, 0.10]; see

Figure 10C). As with infants’ looking to toys, we found variation in

looking across contexts; here, however, look durations were longest

in the case of caregiver-led joint attention episodes.

No significant differences were found on caregivers’ MLD

toward their infants’ faces in the “looking alone” context

(W6UK,9IND = 3,309,872, p = 0.556, r = 9,500, CI [–0.02, 0.04];

W6IND,9IND = 4,144,754, p = 0.329, r = 0.02, CI [–0.02, 0.05];

W6UK,6IND = 4,666,964, p = 0.706, r = 5590, CI [–0.02, 0.03]; see

Figure 10D). Within joint attention episodes initiated by infants,

caregivers of the UK group showed significantly shorter MLD

to their infants’ faces compared to caregivers in the two Indian

groups(W6UK,9IND = 50,328, p < 0.001, r = –0.29, CI [–0.37, –0.21];

W6UK,6IND = 360,532, p < 0.001, r = 0.23, CI [0.17, 0.28]). Caregiver

MLD to their infants’ faces did not differ between the two Indian

cohorts (W6IND,9IND = 127464, p = 0.193, r = –0.05, CI [–0.13, 0.03];

see Figure 10E). As shown in Figure 10F, during caregiver-led joint

attention, caregivers’ from the UK displayed shorter MLD toward

their infants’ faces compared to the Indian caregivers (W6UK,9IND

= 34,462, p < 0.001, r = –0.16, CI [–0.25, –0.06]; W6UK,6IND =

133,494, p < 0.001, r = 0.16, CI [0.09, 0.23]). Once again, caregivers

from the two Indian cohorts did not significantly differ (W6IND,9IND

Frontiers in Psychology 17 frontiersin.org

https://doi.org/10.3389/fpsyg.2024.1376552
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Aneja et al. 10.3389/fpsyg.2024.1376552

A B C

FIGURE 8

Box plots indicate (A) the total number of joint attention episodes in each cohort, (B) the proportion of joint attention episodes imitated by infants in

each cohort (in percentage) and (C) the proportion of joint attention episodes terminated by infants in each cohort (in percentage). Cohort 6UK

represents caregivers of 6-month-old infants from the UK; 6IND represents caregivers of 6-month-old infants from India; 9IND represents caregivers

of 9-month-old infants in India. Boxplot details are same as in Figure 7. Ns indicates p > 0.05, ∗ indicates p < 0.05, ∗∗ indicates p < 0.01, ∗∗∗ indicates p

< 0.001.

A B C

D E F

FIGURE 9

Comparing infants MLD using Mann-Whitney-U test across the three cohorts. The top row depicts infants’ Mean Look Duration (MLD) to toys when

(A) looking alone (B) looking with a caregiver in an infant-led joint attention episode (C) looking with a caregiver in a caregiver-led joint attention

episode. The bottom row depicts infants’ Mean look Duration to caregivers’ faces when (D) looking alone (E) looking at each others’ faces in

infant-led joint attention episodes (F) looking at each others’ faces in caregiver-led joint attention episodes. Boxplot details are same as in Figure 7.

Blank indicates p > 0.05, ∗ indicates p < 0.05, ∗∗ indicates p < 0.01, ∗∗∗ indicates p < 0.001.
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D E F

FIGURE 10

Comparing caregivers’ MLD using Mann-Whitney-U test across the three cohorts. The top row depicts Caregivers’ Mean Look Duration (MLD) to toys

when (A) looking alone, (B) looking with caregiver in infant-led joint attention episode, and (C) looking with caregiver in caregiver lead joint attention

episode. The bottom row depicts infants’ Mean look Duration to caregivers’ faces when, (D) looking alone, (E) looking at each others’ faces in

infant-led joint attention episodes, and (F) looking at each others’ faces in caregiver-led joint attention episodes. Boxplot details are same as in

Figure 7. Blank indicates p >0.05, ∗ indicates p < 0.05, ∗∗ indicates p < 0.01, ∗∗∗ indicates p < 0.001.

= 67,010, p = 0.654, r = 0.02, CI [–0.07, 0.11]). We note that,

once again, caregiver MLDs were longest in the caregiver-led joint

attentional context.

11 Discussion

Study 2 yielded a rich array of findings using the pipeline

developed in Study 1. These findings help us to (1) validate the

visual dyadic pipeline with a larger data set and (2) explore how

infants and their caregivers deploy visual attention during dyadic

play across cultures (urban UK and rural India) and cohorts

(6-month-old infants, 9-month old infants). Overall, findings

indicated consistent trends in the deployment of visual attention

by caregivers and their infants that reveal a complex interplay of

influences on caregiver-infant interaction.

In regards to overall MLD which quantifies sustained looking

toward the target of fixation, we found no overall differences for

infants across groups suggesting that they deployed their visual

attention similarly. At face value, this is remarkable given the many

differences in cultural context that exist between the urban UK and

rural India settings. On the other hand, analyses of caregiver MLD

showed no differences between the two Indian cohorts but shorter

MLDs in the UK compared to the 6-month-old India cohort. In

the visual cognition literature, MLD has been interpreted in at

least two ways: as indicative of the duration of sustained attention

bouts (e.g., Yu and Smith, 2016) or as an index of speed of visual

processing (e.g., Rose et al., 2002). In this context, UK caregivers

may either have shorter bouts of sustained attention or they engage

in faster visual processing. Few studies have examined the role

of caregivers’ visual processing and how this might shape infant-

caregiver interactions. Thus, this is an important area requiring a

more detailed look at adult visual cognitive processing.

When looking at the overall switch rate, caregivers and infants

displayed a similar pattern where the Indian cohorts switched more

between targets of fixation than the UK cohort. These apparent

cultural differences in the deployment of visual attention need to

be interpreted with caution, however. Typically, MLD and switch

rate are negatively correlated such that longer MLD is related to

fewer switches (or slower disengagement) (Colombo et al., 1991).

In contrast, we found that caregivers with higher MLD also tended

to have a higher switch rate. A key point to consider here is that

the play sessions occurred in different contexts in India vs. the

UK. Both Indian groups completed the play session in the same

controlled environment, while British families carried out the study

in their own homes. Thismatters because themeasure of switch rate

only takes into account switches between targets defined a priori in

the TimeVP toolbox. Thus, if participants switched between targets

of interest, the switch was computed. However, if participants

shifted from a target of interest to an undefined target, no shift was

recorded. Given that the rooms in which British families completed

the study had many more objects (e.g., TV, sofa, photographs)

which were not included in TimeVP as targets of interest, multiple

instances of switches of attention are likely to have been missed.
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When looking at differences between switch rates for the

Indian groups, older infants displayed higher switch rates but

no difference was found for caregivers. The higher switch rates

for 9-month-old infants in India suggests that there are changes

in looking dynamics as infants develop. For instance, studies

with Western samples show that older infants typically show a

faster rate of switching between objects (Rose et al., 2001, 2002).

There are also likely to be improvements in motor development

which enhances the exploratory capabilities and field of vision of

older infants.

The next key issue we examined was to quantify joint

attention episodes across cohorts. Such episodes help shape infant

development (Carpenter et al., 1998; Mundy and Newell, 2007;

Nelson et al., 2008). We found a similar number of total episodes

of joint attention in all cohorts. Again, this consistency across

cohorts is remarkable given the differences in cultural contexts.

Similarities extended to the proportion of joint attention bouts

which were terminated by infants, but not to the episodes initiated

by them. UK infants led a greater proportion of joint attention

episodes during caregiver-infant interaction relative to the two

Indian groups. Nine-month-old Indian infants also led a greater

proportion of joint attention episodes than their 6-month-old

counterparts. These data may reflect differences in parenting styles

across cultures. That is, UK parents are more likely to follow child-

centered distal parenting styles and be less directive (Keller, 2007),

thus providing greater opportunities for their infants to lead the

interactions (Keller et al., 2010). In contrast, the proximal parenting

style, which is more common in rural India, is more directive;

this is consistent with parents leading a greater proportion of

joint attention bouts (Keller et al., 2010). These apparent cultural

differences are further nuanced by the infants’ age. Perhaps, greater

mobility and cognitive skills allow the 9-month-old infants in

India to create more opportunities for them to lead joint attention

episodes.

After quantifying joint attention episodes, we could then

examine infant MLDs across three key contexts: when infants were

exploring objects “alone” vs. when they were exploring objects

during infant-led and caregiver-led joint attention episodes. Here

we found large overall differences in infant MLDs across contexts

with shorter MLDs during “looking alone” episodes, longer MLDs

in caregiver-led episodes, and even longer MLDs in infant-led

episodes. Again, the consistency in this effect across cohorts was

striking. One could imagine, for instance, that a more directive

parenting style in India might foster longer MLDs in the more

“typical” context. This was not the case; rather, all infants showed

longer MLDs in infant-led joint attention episodes. These data

are consistent with proposals that joint attention episodes are

effective at lengthening bouts of visual attention (Yu and Smith,

2017) as parents highlight objects by holding them, labeling objects,

and so on. Infant-led bouts may be particularly long because

such bouts do not require infants to shift their current focus of

attention. Critically, increasing MLDs through joint attention may

have important consequences for cognition. For instance, Perone

and Spencer (2013) used a neural process model to show how

joint attention episodes could lengthen bouts of sustained attention

on objects leading to stronger working memory and long-term

memory representations of object features. Thus, a key future

question is whether infants who experience more joint attention

episodes have better visual working memory.

Considering the context of attention (i.e., joint attention vs.

“looking alone”) also revealed group differences. When infants

directed their attention at toys, 9-month-old infants consistently

showed longer MLD than the other two groups regardless of

whether they were attending on their own, during infant-led joint

attention, or during caregiver-led joint attention. This fits long-

standing research on the developmental trajectory of infant visual

cognition in the context of coordinated attention in interactions

with objects (Bakeman and Adamson, 1984). Among the 6-month-

old cohorts, MLD across all contexts was greater for the British

infants. This may suggest more advanced visual cognitive dynamics

in these infants with longer bouts of sustained attention to toys.

Regarding attention toward the caregiver’s face, the 6-month-

old infants from India consistently had longer MLD regardless

of whether they were attending to the target on their own or in

joint attention episodes. This may be partly explained by how

they were positioned and by their mobility (Soska and Adolph,

2014; Fausey et al., 2016). Previous research has indicated that the

infant-perspective field of view changes with development due to

changes in their motor abilities, skills, as well as caretaking needs

(Fausey et al., 2016; Jayaraman et al., 2017). Not only do younger

infants have more input from faces in their daily lives (Fausey

et al., 2016), but they also have fewer opportunities to manually

and visually explore objects when in supine and prone positions

(Soska and Adolph, 2014). In the case of our findings, the younger

Indian infants tended to be placed on their backs, directly in front

of their parents. Furthermore, caregivers directed the interaction,

moving the toys in and out of the infants’ field of view. For the

older Indian infants, by contrast, their greater motor and cognitive

abilities allowed them to explore their surroundings in a more

proactive way.

The UK infants and the older Indian infants displayed similar

MLD toward their caregiver’s face when looking on their own but

displayed interesting differences during bouts of joint attention.

When joint attention was led by infants, British infants sustained

their attention on their caregivers’ faces for longer; however,

when joint attention was led by caregivers, the older Indian

infants sustained looks toward their caregiver’s face for longer

than the British infants. These findings may be consistent with

cultural differences in parenting styles. In particular, the 9-month-

old Indian infants are likely to have experienced more directive

parenting whereas the British infants may be more accustomed

to child-centered interactions (Lancy, 2014). Each group, thus,

engages with their parents differently, with Indian infants being

more responsive to faces during caregiver-led attention and British

infants being more responsive to faces during infant-led episodes.

Regarding the caregiver’s deployment of visual attention, UK

caregivers displayed shorter MLD toward toys across all contexts of

attention and toward the face of their infant in both joint attention

contexts. As mentioned previously, this may reflect either shorter

bouts of sustained attention or faster visual processing speed.When

looking at the Indian groups, differences in MLD only appeared

when the targets were toys and during joint attention episodes led

by the caregiver. That is, caregivers of the 9-month cohort displayed

shorter MLD directed at toys when they led the joint attention
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episodes but deployed their visual attention comparatively to the

caregivers of the younger cohort in all other cases.

One key limitation in this study was in the differential settings

across cultures which may have impacted the switch rate measure.

As noted, British dyads completed the play session in their

own homes, while Indian dyads completed the play session in

a controlled environment. This difference was a consequence of

the limited access to the home environment for participants in

rural India. Future research could go into homes in rural India.

While an attractive option, this would create logistic hurdles as

all devices would need battery power and have to be charged in-

between sessions. We also suspect the availability of consistent

lighting might impact the video recordings.

Another limitation was the lack of information about toy

preferences across cultures. It is possible that infants had

differential interest in the toys. Although steps were taken to use

objects/toys that were appropriate for each culture, including a

controlled measure of toy preferences would be valuable for future

research. We also note that interactions were being recorded with

participants consistently viewing the head-mounted cameras. This

might have influenced participants behaviors. As Schmidt et al.

(2023) note, patterns of social desirability in behavior should be

aligned with the social and cultural norms of the settings. When

they are not, this could enhance cultural differences.

In conclusion, the present study developed and deployed a new

visual cognition pipeline to reveal insights into visual exploration

during dyadic interactions in infancy across socio-cultural settings.

Results indicate consistent patterns in caregiver and infants’ visual

exploratory behavior such that infants from the UK tend to initiate

a higher proportion of joint attention episodes compared to the

other groups. This fits the eco-cultural model of parenting wherein

caregivers in western middle-class families tend to take a child-

centric approach (Keller et al., 2005; Keller, 2017). In comparison,

infants in India, particularly the younger cohort, tend to lead fewer

joint attention episodes. Despite these cultural differences, we also

found remarkable consistency in visual exploratory patterns across

cultures with, for instance, longer mean look durations during

infant-led joint attention episodes relative to caregiver-led episodes

and relative to the “looking alone” context. We have demonstrated

how the pipeline can be deployed across cultural contexts and with

a large number of dyads without the need for time-consuming

detailed video coding. Thus, we contend that this pipeline opens

up new avenues for exploring how dyadic interactions in infancy

help shape development in both high and low resource contexts.
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