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A B S T R A C T   

Automating identification of benthic habitats from imagery, with Machine Learning (ML), is necessary to 
contribute efficiently and effectively to marine spatial planning. A promising method is to adapt pre-trained 
general convolutional neural networks (CNNs) to a new classification task (transfer learning). However, this is 
often inaccessible to a non-specialist, requiring large investments in computational resources and time (for user 
comprehension and model training). In this paper, we demonstrate a simpler transfer learning framework for 
classifying broad deep-sea benthic habitats. Specifically, we take an ‘off-the-shelf’ CNN (VGG16) and use it to 
extract features (pixel patterns) from benthic images (without further training). The default outputs of VGG16 
are then fed in to a Support Vector Machine (SVM), a classical and simpler method than deep networks. For 
comparison, we also train the remaining classification layers of VGG16 using stochastic gradient descent. The 
discriminative power of these approaches is demonstrated on three benthic datasets (574–8353 images) from 
Norwegian waters; each using a unique imaging platform. Benthic habitats are broadly classified as Soft Sub-
strate (sands, muds), Hard Substrate (gravels, cobbles and boulders) and Reef (Desmophyllum pertusum). We 
found that the relatively simplicity of the SVM classifier did not compromise performance. Results were 
competitive with the CNN classifier and consistently high, with test accuracy ranging from 0.87 to 0.95 (average 
= 0.9 (±0.04)) across datasets, somewhat increasing with dataset size. Impressively, these results were achieved 
2.4–5× faster than CNN training and had significantly less dependency on high-specification hardware. Our 
suggested approach maximises conceptual and practical simplicity, representing a realistic baseline for novice 
users when approaching benthic habitat classification. This method has wide potential. It allows automated 
image grouping to aid annotation or further model selection, as well as screening of old-datasets. It is especially 
suited to offshore scenarios as it can provide quick, albeit crude, insights into habitat presence, allowing 
adaptation of sampling protocols in near real-time.   

1. Introduction 

Benthic habitats may consist of multiple components: substrate, 
species and/or communities, their environmental tolerances and pref-
erences (Davies et al., 2004; Diaz et al., 2004). They often act as 
simplified but powerful proxies of biodiversity, by allowing inference of 
occurring organisms through known ecological associations. Thus cre-
ation of extensive and accurate benthic habitat maps (Baker and Harris, 
2020; Cogan et al., 2009; Harris and Baker, 2020) is a crucial component 
of marine spatial planning and conservation goals (European Parlia-
ment, 2008; Howell et al., 2020; Sala et al., 2018; United Nations, 2018; 

United Nations General Assembly, 2015) to mitigate anthropogenic 
impacts on the marine environment. Such maps establish baselines and 
support monitoring of impacts and recovery, which can allow proactive 
decision making. Data to support such endeavours requires processing of 
optical imagery which has a number of issues (1) annotation of resulting 
imagery is often inconsistent and error prone due to observer bias, fa-
tigue, distraction and short-term memory limitations (Culverhouse 
et al., 2014; Durden et al., 2016), (2) it is costly (in the absence of 
volunteers) and (3) labour-intensive. This reality is particularly realised 
with Autonomous Underwater Vehicle (AUV) usage, in which one sur-
vey (∼50 h) can produce over 170,000 images (Wynn et al., 2014) for 
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example. Machine learning (ML) solutions, to automate the identifica-
tion and enumeration of image features (objects, pixel patterns), are 
therefore generally believed to be essential to alleviating this problem. 
Their use has become increasing popular in ecology over the last few 
decades (Christin and Hervet, 2019; Rubbens et al., 2023; Weinstein, 
2018), with Convolutional Neural Networks (CNNs), a deep ML algo-
rithm, showing particular promise (Alzubaidi et al., 2021; Goodfellow 
et al., 2016; He et al., 2016; Huang et al., 2017; Krizhevsky et al., 2012; 
Lecun et al., 1998; LeCun et al., 2015; Simonyan and Zisserman, 2015). 
There have been a number of studies that have successfully used deep 
learning to localise (detection) and determine the spatial extent (seg-
mentation) of objects in benthic imagery (Katija et al., 2022; Liu et al., 
2023; Liu and Wang, 2021; Piechaud and Howell, 2022; Song et al., 
2019; Zhang et al., 2022). However, in this work we focus on the 
foundation of each of these ML tasks, classification. 

Image classification is simply the assignment of a label, text or nu-
merical category, to an image based on visual patterns. Whether un-
dertaken by a human or a computer, the task is broadly the same. In 
marine applications, many studies have demonstrated the possibility of 
using CNNs to classify benthic taxa or substratum in optical imagery 
(Abad-Uribarren et al., 2022; Downie et al., 2022; Durden et al., 2021; 
Jackett et al., 2023; Kandimalla et al., 2022; Langenkämper et al., 
2019a; Langenkämper et al., 2020; Marburg and Bigham, 2016; Pie-
chaud et al., 2019; Piechaud and Howell, 2022; Vega et al., 2024). 

However, there is currently less literature employing them at the 
habitat level (Jackett et al., 2023; Mahmood et al., 2020a; Mahmood 
et al., 2020b; Mohamed et al., 2020; Rao et al., 2017; Vega et al., 2024; 
Yamada et al., 2022; Yamada et al., 2023) with many focusing on the 
same benchmark datasets, Benthoz15 (Bewley et al., 2015) and Tas-
mania (Williams et al., 2012), in shallow waters. Shallow-water corals 
are a particularly common benthic target for CNN classification (Beij-
bom et al., 2016; Gómez-Ríos et al., 2019a; Gómez-Ríos et al., 2019b; 
Mahmood et al., 2016; Mahmood et al., 2019), largely thanks to the 
availability of open-source datasets such as MLC (Beijbom et al., 2012), 
EILAT and RSMAS. In some cases, reef-forming corals can be considered 
to occur as both a species and a habitat (Howell et al., 2011). However, 
the examples in these datasets are typically highly-zoomed images of 
coral texture and thus do not represent well the broader structure and 
contextual appearance of the habitat at the captured image resolution. 

Without close collaboration with experts, training a CNN is highly 
intimidating, and often inaccessible, to a non-specialist such as marine 
ecologists (Crosby et al., 2023; Tuia et al., 2022). To use them requires a 
large investment in time both to understand the underlying theory and 
to learn how they are implemented and deployed in the field. If nothing 
else they require a knowledge of programming in languages such as 
Python and Matlab. Additionally, to deploy CNNs efficiently there is a 
need to use significant computing resources (often very high specifica-
tion machines) and a need for’Big Data’ (large numbers of annotated 
images). High compute power and expensive data collection may indi-
vidually or together present barriers to using CNNs. Effort has been 
made to incorporate automatic classification tools into annotation 
softwares such as BIIGLE (Langenkämper et al., 2017), VIAME (Dawkins 
et al., 2017) and CoralNet (Chen et al., 2021). However these may be 
unsuitable for those requiring more flexibility in ML approaches or those 
wishing to integrate ML functionality into their custom annotation 
programs. They are also tailored for certain automation tasks. 

For these reasons, in this paper, we propose a simpler approach that 
will be more easily understood and used by novice end-users. Specif-
ically, we use an open-source ‘off-the-shelf’ pre-trained CNN to extract 
features (pixel patterns) from contextually-representative benthic im-
ages. We then train a shallow (non deep-net) ML classifier to classify 
these deep features. There are a range of classifiers that could be used for 
this task such as Random Forests (Breiman, 2001), K-Nearest Neighbour 
(KNN), Logistic Regression and Naive Bayes, however in this work we 
focus on Support Vector Machines (SVM) (Cortes and Vapnik, 1995; 
Cristianini and Shawe-Taylor, 2000). SVMs have been shown to pair 

well with ‘off-the-shelf’ CNN features in benthic image applications 
(Mahmood et al., 2016; Mahmood et al., 2019; Mahmood et al., 2020a; 
Mahmood et al., 2020b; Mohamed et al., 2020), as well as more 
generally (Azizpour et al., 2015; Razavian et al., 2014; Salman et al., 
2016). They are a classical method, well documented and offer a good 
trade-off in terms of complexity, performance, computational demand 
and time. SVMs are boundary classifiers; separating data points, either 
linearly or non-linearly, into groups for classification. As a result, they 
can be used with some flexibility to choose the best classification for 
your data. Many studies using an SVM present only one method (e.g. 
linear), thus in the interest of comprehensiveness we compare multiple. 

The hybrid CNN & SVM approach is only really of interest if it pro-
vides good and competitive results to deep-learning (CNN). Thus, for 
comparison we also retrain the CNN on our habitat classification task 
(transfer learning). For our CNN, we use VGG16 (Simonyan and Zis-
serman, 2015), pre-trained on a large and unrelated dataset, ImageNet 
(Deng et al., 2009). This allows us to extract more general features for 
classification such as edges, lines, corners and simple textures in our 
own images (Mahmood et al., 2016; Mahmood et al., 2019; Razavian 
et al., 2014; Yosinski et al., 2014). It may also extract more complex 
geometric and textural qualities of seabed features, due to the presence 
of underwater classes in the ImageNet dataset that share similarities to 
our benthic habitat classes i.e. corals and sandbar. There are several 
reasons for choosing VGG16 as a basis for transfer learning. VGG is one 
of the most implemented algorithms for image classification and 
although several years old remains highly popular, with high perfor-
mance across diverse image applications applications (Abosaq et al., 
2023; Althubiti et al., 2022; Kaur and Gandhi, 2019; Krishnaswamy 
Rangarajan and Purushothaman, 2020; Yang et al., 2021a; Yang et al., 
2021b). More importantly, it also has a record of good performance 
across marine classification tasks (González-Rivero et al., 2020; Kloster 
et al., 2020; Lumini and Nanni, 2019; Mahmood et al., 2019; Mahmood 
et al., 2020a; Zhang et al., 2019). Preliminary comparisons of VGG16 to 
other models (AlexNet (Krizhevsky et al., 2012), ResNet18 & ResNet50 
(He et al., 2016) and VGG19 (Simonyan and Zisserman, 2015)) found 
VGG16 to produce deep features that were more accurately classified by 
an SVM. For inexperienced users, our target audience in this application, 
a model architecture such as VGG16 may be preferential over newer 
state-of-the-art model architectures. This is due to its inclusion in more 
accessible platforms/frameworks such as PyTorch (PyTorch, 2023) and 
TensorFlow (Abadi et al., 2016), its extensive guidance materials for 
implementation and well-documented high performance. 

This paper provides both a quick primer for novice users, facilitating 
comprehension and implementation of these approaches, and serves as 
proof of concept. We make the following contributions:  

• We show that both deep and shallow learning can lessen the image 
analysis bottleneck of a highly important classification task, benthic 
(deep-sea) habitats, which is poorly represented in machine learning 
studies.  

• We demonstrate an automation pipeline that leverages the power of 
deep learning (VGG16) and transfer learning but is made simpler and 
more accessible for inexperienced users with the use of a shallow 
SVM classifier.  

• We compare both linear and non-linear SVM classifiers and show the 
benefit of hyperparameter tuning on performance. 

• Our selected hybrid CNN & SVM approach is shown to be competi-
tive with deep learning in terms of performance, time and ease of 
implementation.  

• We validate the generality of the method across multiple datasets 
that vary in size, imaging platform and geographic region.  

• A visual analysis demonstrated that inconsistent appearance of 
habitats (including novel features) and overlapping class character-
istics can present challenges for automated classification.  

• Lastly we provide recommendations for improving performance, 
albeit at the expense of complexity. 
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2. Materials and methods 

2.1. Image datasets 

Three datasets were used to explore the generality of the pipeline 
presented. Datasets span two types of imaging platform; ROVs and Drop 
Cameras, the specifications of which are listed in Table 1. Note that each 
platform has a unique camera and lighting configuration. Additionally, 
the datasets cover multiple geographic regions; 3 unique locations 
within the Norwegian Sea. Further geographic information cannot be 
reported due to commercial sensitivity. 

Benthic images were collected and manually annotated by Gardline 
Ltd. The primary habitat of each image was categorized according to an 
in-house seabed classification guide, simplified in Table 2. For better 
contextualization of seabed classes, we also present the equivalent Eu-
ropean Nature Information System (EUNIS) 2022 classification (Euro-
pean Environment Agency, 2022; Evans et al., 2016). For the purpose of 
this study, habitats have been grouped at a broad-scale (Table 2). We 
focus on three that are typically recorded in deep-water surveys: 1) Soft 
Substrate, 2) Hard Substrate and 3) Reef. For brevity, we refer to these as 
Soft Sub., Hard Sub. and Reef. Sub-habitats included in each of these 
broad categories can also be found in Table 2. Example images of the 
benthic habitats encountered are presented in Fig. 1. 

The variety of habitats, multitude of imaging platforms and 
geographic separation of these datasets ensure that associated analyses 
and findings will have a great analytical relevance for both the wider 
marine ecology and computer science communities. 

2.2. Machine learning pipeline 

In this section we present two approaches to automate classification 
of benthic habitats from optical imagery. Each approach consists of two 
main phases: feature extraction and classification. Simply put, feature 
extraction learns to find and highlight patterns in pixel information 
(features). The classification phase then learns to link these features to 
one of the three habitat classes. The most complex of these methods uses 
the full CNN (VGG16) model (architecture) for both feature extraction 
and classification. The alternative, and our recommended process, uses 
only the feature extraction components of VGG16 paired with an SVM 

classifier. Thus the two approaches in this work differ only with respect 
to classification. For brevity, these methods are henceforth referred to as 
CNN and CNN þ SVM, respectively. 

How these model architectures explicitly work is beyond the scope of 
this paper. However, please refer to Section 2.2.1 for a brief background 
on the two models. Specific methodological details and the full pipeline 
are provided in Sections 2.2.2 to 2.2.6 and in Table 3, to guide their 
implementation. We also present a graphical representation of our work 
flow in Fig. 2. 

All analysis was conducted in Python, largely using the libraries 
scikit-learn for machine learning (i.e. SVMs) and torch, the basis of the 

Table 2 
A comparison of the habitat classification system used to EUNIS (Level 2) habitats (European Environment Agency, 2022; Evans et al., 2016).  

Broad habitat Abbreviation EUNIS (Level 2) Included Sub-habitats 

Soft Substrate Soft Sub. ME5: Upper bathyal sand, 
ME6: Upper bathyal mud 

Heavily bioturbated Soft Sub., 
Single sea pen, 
Sea pen community, 
Soft Sub. sponge community 

Hard substrate Hard Sub. ME1: Upper bathyal rock Gravel area, 
Scattered cobbles, 
Cobble and boulder area, 
Boulder area, 
Hard Sub. sponge community 

Reef Reef ME2: Upper bathyal biogenic habitat Coral rubble zone, 
Dead Desmophyllum pertusum reef framework, 
Live Desmophyllum pertusum reef  

Table 1 
Benthic image datasets used in this study.  

ID Platform Components Image Specifications Location 

1 ROV Imenco Tiger Shark 14mpx with external flash (Lantern Shark), 10 × ROS (MV-4000) and 4 × Innova Gas lights. 8353 RGB images 
(4320× 3240, .jpeg) 

Norwegian Sea 

2 ROV Konsberg/Simrad (OE14–208) 5.0mpx, 1 × forward-facing strobe, 2 × fixed & 2 × mobile LED lamps. 1240 RGB images 
(2592× 1944, .jpeg) 

Norwegian Sea 

3 Drop camera Konsberg/Simrad (OE14–208) 5.0mpx, 1 × forward-facing strobe, 2 × fixed & 2 × mobile LED lamps. 574 RGB images 
(2592× 1944, .jpeg) 

Norwegian Sea  

Fig. 1. Examples of the benthic habitats encountered within this study: (A) & 
(B) depict Soft Sub., (C) & (D) Hard Sub. and (E) & (F) Reef. 
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Pytorch (Paszke et al., 2019) ML framework for deep learning (CNNs). 
These libraries also include tools for data pre-processing, model selec-
tion and evaluation. To keep our model training and analysis pipelines 
comparable, we use skorch, a scikit-learn compatible neural network li-
brary that wraps PyTorch. This allows the same scikit-learn training and 
evaluation procedure to be used for both models. Skorch is also helpful 
for end-users in CNN training, as it has a clear and simple interface. It 
only requires end-users to add the prepared datasets, model and specify 
the associated hyperparameters (Table 4). Documentation for the entire 
machine learning pipeline can be found at (PyTorch, 2023) for Pytorch 
(Paszke et al., 2019; scikit-learn, 2023) for scikit-learn and (skorch, 
2022) for skorch. Commercial restrictions apply to the availability of 
data used in this work. However, links to public code examples of 
workflow stages (Table 3) can be found in Supplementary Table 1. This 
work was supported by an NVIDIA GeForce RTX 2080 SUPER Graphical 
Processing Unit (GPU) with 8GB VRAM and an Intel Core i7–9700 CPU. 

2.2.1. Background 
CNNs extract features from imagery primarily using a process known 

as convolution (Alzubaidi et al., 2021; Goodfellow et al., 2016; LeCun 
et al., 2015); a sort of sliding filter (matrix) that transforms pixel values, 
see Fig. 2. These image features may correspond to low-level objects 
such as edges, circles and lines up to high-level features such as sponge 
branches for example. Features extracted by the convolutional layers are 
then ‘connected’ (mapped) to a specified number of outputs. We refer to 
these layers as fully connected (FC). Similar to regression, FC layers are 
merely approximating functions, that best map every input value 
(feature) to each output. These functions can be thought of as complex 
fitted curves or hypersurfaces that are created by (1) linear trans-
formations, multiplying features by weights and adding biases and (2) 
non-linear transformations, adjusting features with an activation 
function. 

CNNs typically house multiple (>2) FC layers in succession. 
Although each of them perform the same function in a technical sense, it 

is helpful to think of the first FC layers as downsampling the convolved 
features to fewer outputs, or further clarifying feature patterns. Whereas 
the last FC layer can be thought of as the true classification or output 
layer, in which the number of outputs corresponds to the number of 
classes, in our case the 3 habitats. Here the output values (logits) are 
interpreted like a probability (their sum may be >1), showing which 
class the image features best correspond to. This is decided by taking the 
maximum output value, known as the argmax. Training the CNN will 
help to better match these mapped (predicted) outputs to the true classes 
of imagery passed through the network, ready for prediction on a novel 
test dataset. 

SVMs do not possess any feature extraction capabilities. Instead 
feature data, associated with each class, can be provided as inputs to an 
SVM. It will then find the best boundary, or hyperplane, between these 
data points that enables class distinction. This separation occurs in a 
feature space of n-dimensions, where n=number of image features, and 
can be both linear and non-linear, depending on the kernel (function) 
used. SVMs classify data points simply by observing where they lie with 
respect to the hyperplane, see Fig. 3. Unlike a CNN, the output is 
therefore a predicted class rather than a probability that it is either of the 
classes. The SVM uses the data points closest to the hyperplane, known 
as support vectors, to guide hyperplane placement. The support vectors 
are the hardest points to classify, given the potentially close proximity of 
support vectors of each class. Optimal placement is therefore found by 
maximizing the distance between the support vectors of each class and 
the hyperplane (known as the margin) such that the misclassification 
rate is minimized. This is why SVMs are referred to as maximum-margin 
classifier; they find the hyperplane that is equidistant between the two 
classes. Using only the support vectors, and thus a subset of the data, to 
learn where to place the hyperplane is very memory efficient, compared 
to a CNN which uses all data in training. 

As SVMs were created for binary classification problems, strategies 
exist that enable use of an SVM with multi-class problems (>2 classes), 
as is the case with our data. We use a typical approach called One-Vs- 
One. This splits the dataset into multiple binary classification prob-
lems that are assessed per each pair of classes. Compiling the classifi-
cations of all binary SVMs allows a final classification to be made for 
each data point, based on the class that received the most votes, see 
Figs. 2 & 4. 

2.2.2. Data preparation 
Pre-trained CNNs are designed to expect images in a certain format 

before feature extraction (or classification). For VGG16 (and other net-
works trained on ImageNet (He et al., 2016; Howard et al., 2017; Rus-
sakovsky et al., 2015)), RGB images must be 224× 224 pixels. We 
therefore resize images to 224 pixels along the x-axis, preserving their 
aspect ratio. We then crop the center of images such that they are square. 
Following standard practice, RGB values were also normalized (centered 
and scaled) to the training dataset (ImageNet), see Table 3. The images 
in each dataset were split into 80% training (including 5-fold cross- 
validation) and 20% testing subsets. Splits were stratified to preserve 
the class-ratio. 

2.2.3. Model preparation 
The VGG16 network was sourced from the torch library and all layers 

frozen, preventing any further training (updates to model parameters), 
see Table 3. We then duplicated this network to provide a foundation for 
each modelling approach. For our CNN þ SVM modelling approach we 
kept the architecture up to the first FC layer (FC1), creating a feature 
extractor (Fig. 2). We then paired it with an SVM, sourced from the scikit- 
learn library. We evaluate two types of SVM: a linear SVM and a non- 
linear SVM, known as a Radial Basis Function (RBF) (Fig. 3). An RBF 
SVM is a good default choice, as it can find both a linear and non-linear 
hyperplanes at high dimensions. 

For the CNN approach however, we use the full VGG16 network, 
leaving the feature extractor and classifier intact. In its frozen state the 

Table 3 
Required steps in our ML workflows. 

aNote that the order of steps may vary with ML frameworks (i.e. pytorch, 
tensorflow) or may be achievable simultaneously. 
bGrey shading denotes model-specific steps. 
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VGG16 network cannot be trained, we therefore unfroze (replaced) the 
final FC layers (FC2 & FC3) to re-initialize the weights for training. 
Training only these FC layers enables comparison to the CNN þ SVM 
approach in which they have been replaced with an SVM classifier. We 
also reduced the number of output nodes in FC3 from 1000 (number of 
ImageNet classes) to 3, to prepare the CNN to classify the 3 habitat 
classes. 

2.2.4. Feature extraction & visualisation 
In each of our ML pipelines, every image that passes through the 

VGG16 feature extractor (Fig. 2) results in a matrix of 1× 4096 features. 
These are then passed as inputs to the classifier. This happens auto-
matically in the CNN approach, as the classification (FC) layers are still 
present in the architecture. 

These extracted ‘deep’ features are numerous and difficult to inter-
pret. Therefore, before undertaking any classification of the extracted 

Fig. 2. Infographic of the ML workflows (CNN & CNN þ SVM) used in this study.  
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high-dimensional feature space, we reduced the number of features (or 
dimensions) to ≤3 for visualisation purposes only. Although the features 
themselves remained cryptic, this allowed us to visually assess any 
structure or clustering in the data that would enable good separation of 
classes and thus a high performing model. For this task we use a Pairwise 
Controlled Manifold Approximation (PaCMAP) (Wang et al., 2021) from 
the library pacmap. This technique uses euclidean distance to quickly, 
and simply, find a low-dimensional representation of the complex 
feature space (that is structurally most-similar). It is straightforward to 
use and has proven to accurately capture data distributions (Wang et al., 
2021). 

2.2.5. Classification 
Each ML approach requires hyperparameters to classify imagery, 

which when optimized during training can increase model performance, 
see Table 4 for a hyperparameter glossary. Given the computational 
efficiency of the SVMs and the few hyperparameters required, each of 
these can be optimized simply and relatively quickly (subject to dataset 
size) during a k-fold (k = 5) cross-validated fine grid-search on the 
training data. For our CNN þ SVM method, we followed hyper-
parameter recommendations by (Hsu et al., 2016), authors of the 
LIBSVM library (Chang and Lin, 2011). For our non-linear RBF SVM we 
searched hyperparameters C = 23, 23.25,…,27 and γ = 2− 15,2− 13 & 
2− 11. For the linear SVM, we used the same hyperparameter search for 
its sole parameter C. We also looked at the RBF and linear SVM with 

Table 4 
Model hyperparameter glossary for CNN & SVM training.  

CNN: 
Batch size The number of images you send to the model in each iteration. 

Model parameters are updated after each batch during training. 
Epochs How many times you pass the full image dataset through the model. 
Loss 

function 
The error metric that you wish to minimize. 
e.g. Cross entropy loss for multi-class classification. 

Learning 
rate 

A small number (0, 1] that determines the amount to alter parameters 
during training with respect to the loss. 
Also known as the step size. 

Optimizer An algorithm that modifies CNN parameters according to a particular 
strategy to minimize the loss. 
e.g. the Adam optimizer sets the learning rate adaptively for faster and 
more efficient training.  

SVM: 
C A regularization parameter that offers a trade-off between the 

maximum-margin and misclassification rate. 
e.g. A large C enforces a small margin hyper-plane maximizing 
classification accuracy. 

γ A value to determine the distance over which support vectors 
influence the hyperplane. 
e.g. A high γ considers only points that are close to each other and causes 
the decision-boundary to be highly curved. 

N.B. This list of hyperparameters is not exhaustive. It simply covers hyper-
parameters relevant to our approaches. 

Fig. 3. A diagram of various support vector machines.  

Fig. 4. Multi-class support vector machines: a diagram of the one vs. one strategy.  
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default scikit-learn values, C = 1 and γ = 1/(f × Var(F) ), where f is the 
number of features, F the features and Var the variance. Each fold in the 
training dataset is used once as a validation set, while the k − 1 
remaining folds form the new training set. Hyperparameter combina-
tions that received the highest average accuracy (proportion of correct 
classifications), across validation folds were selected. 

For the CNN, The large number of hyperparameters (Table 4) and 
high computational demand, mean that an exhaustive grid-search is 
inappropriate. Instead our preliminary work showed that common 
default parameters, were suitable for our data. These include a batch- 
size of 32 images and a cross-entropy loss function. We also used the 
Adam learning rate optimizer (Kingma and Ba, 2015), which automat-
ically adjusted our initial learning rate of 1e-03 during training in a way 
that improved performance. Adam is computationally efficient and 
straight-forward to use. In preliminary work, each model was set to train 
for 100 epochs maximum. However for later time-saving and better 
automation, we enabled early stopping if the validation error (loss) did 
not reduce for 10 epochs. This identified a suitable number of epochs for 
each dataset: 14, 14 and 23 epochs for Datasets 1, 2 and 3, respectively. 
As with SVM training, we conducted the CNN training protocol using 5- 
fold cross-validation of the training set; the same k-folds as the SVM 
training. 

Following cross-validation of each modelling approach, mean vali-
dation accuracy across k-folds was determined. We then undertook final 
training on the entire training dataset. In the case of the SVM, final 
training was undertaken with the best performing hyperparameter 
combinations. 

2.2.6. Performance evaluation 
We used a number of metrics to evaluate model performance. Each 

are scored between 0 & 1, with optimal performance reached at 1. 
Perhaps the simplest of these measures is accuracy, which indicates the 
proportion of images that the model classifies correctly. However, to 
account for performance within classes we also calculated the recall, 
precision and F1 score for each class. Recall, or sensitivity, refers to the 
proportion of images of each class that were correctly classified. Preci-
sion however determines the accuracy of the predictions themselves; it 
measures the proportion of images that were assigned a correct class 
when classified. For each habitat class c, recall and precision are 
calculated as: 

Recallc =
TPc

TPc + FNc
(1)  

Precisionc =
TPc

TPc + FPc
(2)  

where TP refers to the number of true positives (those correctly classified 
as class c), FP the false positives (those that are incorrectly classified as 
class c) and FN the false negatives (those of class c that are incorrectly 
classified). For a balanced view of model performance we also calculated 
the F1 score, a harmonic mean of the precision and recall. This gives an 
idea of how well the model recognises images of each class and distin-
guishes between images of other classes. For each class, F1 is calculated 
as: 

F1c =
2*(Recallc*Precisionc)

(Recallc + Precisionc)
(3) 

For each of the class metrics used (recall, precision and F1), we 
present an average across classes, also known as the macro-average, 
alongside their 95% confidence intervals (CI). The macro-average for 
each metric m is calculated simply by: 

Macro − averagem =

∑C
c=1mc

C
(4)  

where C is the total number of classes. The macro-average weights class 
importance equally, irrespective of the number of images associated 
(instances of each class), and therefore represents model performance 
more reliably. This is particularly useful for our application, given that 
the deep seafloor is largely a soft-sediment habitat with intermittent 
hard-substrate and reef and thus a class imbalance is typically present in 
image surveys. 

3. Results 

3.1. Interpretability of feature space 

The VGG16 network activations resulted in a feature space with 
conspicuous clustering of each habitat, see Fig. 5. This suggests the 
general features provided by the VGG16 network are suitable for clas-
sifying benthic habitats, though the extent to which may be variable 
across the Datasets used and classes encountered. Across all datasets, the 
PaCMAP dimensionality reduction showed the strongest partition of Soft 
Sub. & Hard Sub. Features associated with Reef habitat were also clearly 
separable from Soft Sub. habitats. However, they do exhibit a degree of 
overlap with Hard Sub., in 3 dimensions. This may indicate higher 
similarity with this habitat, with respect to the general features 
extracted. 

Of the datasets, habitat clusters were particularly notable within 
Dataset 1, at both a higher (3D) in Fig. 5 and lower (2D) dimension in 6a. 
In Fig. 6b, image thumbnails demonstrate the visual transition between 
image characteristics of each class for better comprehension of the 

Fig. 5. 2-Dimensional visualisation of each datasets 3-Dimensional feature space created using PaCMAP.  
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feature space. A gradient of seabed complexity is clearly evident from 
the bottom left to the top right of the frame. The proximity of images, 
within and between classes, can be seen to not only correlate well with 
seabed characteristics but also shows some clustering based on 

illumination patterns. 

3.2. Classification performance 

We find that general features automatically extracted by the VGG16 
network enabled automatic classification of benthic habitats with few 
errors. Of the SVMs compared, we found a non-linear RBF kernel was 
best suited across datasets, factoring in both validation and test accu-
racies. Performance was also improved with the optimisation of 
hyperparameters. In Table 5 we list final training accuracy and mean 
accuracy across the 5-fold cross-validation (following hyperparameter 
tuning), for each dataset and SVM approach. Training accuracy was 
always highest for the linear SVMs, regardless of whether the hyper-
parameters were tuned, however the comparative performance across 
validation sets was almost always lower, on average by 2.4%, than when 
employing a non-linear SVM. With the addition of hyperparameter 
tuning, mean validation accuracy was always highest with an RBF SVM. 

In Table 6 we show the final test accuracy as well as the class- 
averaged Recall, Precision and F1 scores. Overall accuracy on the test 
set was similar to the mean validation accuracy. In each dataset, best 
performance was found with a hyperparameter-tuned RBF SVM, with an 
average improvement of 3.3% over Linear SVMs and 1.6% over default 
RBF parameters. Performance was more variable across the class- 
averaged metrics. Linear SVM performance was fairly balanced across 
metrics. RBFs were found to be more precise in their predictions by 
comparison, sometimes at the expense of recall. For interpreting marine 
imagery, it is more important that predictions are correct (i.e. high 

Fig. 6. PaCMAP 2-Dimensional visualisation of the Dataset 1 (Table 1) feature space: (A) 2D point cloud and (B) zoomed region in which points are replaced by 
image thumbnails for better conceptualization of feature variance. 

Table 5 
Classifier training performance: with tuned hyperparameters, mean cross- 
validation (CV) and final training accuracy.      

Accuracy 

Set Images Classifier Hyperparameters Mean CV Train 

1 6682 SVM:Lineard − 0.93 (± 0.003) 1.00 
SVM:Linear C = 23.0 0.93 (± 0.003) 1.00 
SVM:RBFd – 0.95 (± 0.003) 0.97 
SVM:RBF C = 23.0 , γ = 2− 15.0 0.96 (± 0.003) 0.98 
CNN lr = 0.001 0.92 (± 0.023) 0.98 

2 992 SVM:Lineard – 0.87 (± 0.010) 1.00 
SVM:Linear C = 23.0 0.87 (± 0.010) 1.00 
SVM:RBFd – 0.87 (± 0.018) 0.91 
SVM:RBF C = 23.75, γ = 2− 15.0 0.91 (± 0.016) 0.97 
CNN lr = 0.001 0.90 (± 0.015) 0.97 

3 459 SVM:Lineard – 0.83 (± 0.021) 1.00 
SVM:Linear C = 23.0 0.83 (± 0.021) 1.00 
SVM:RBFd – 0.78 (± 0.016) 0.84 
SVM:RBF C = 25.25, γ = 2− 15.0 0.86 (± 0.020) 0.95 
CNN lr = 0.001 0.82 (± 0.020) 0.95 

1Subscript d denotes SVM with default hyperparameters. 
295% confidence intervals are shown in brackets. Bold font dictates best results. 

Table 6 
Classifier testing performance: with overall test accuracy and class-averaged metrics (Recall, Precision and F1 Score).  

Set Images Classifier Accuracy Recall Precision F1 Score 

1 1671 

SVM:Lineard 0.93 0.93 (± 0.025) 0.93 (± 0.022) 0.93 (± 0.023) 
SVM:Linear 0.93 0.93 (± 0.025) 0.93 (± 0.022) 0.93 (± 0.023) 
SVM:RBFd 0.95 0.92 (± 0.055) 0.97 (± 0.026) 0.94 (± 0.017) 
SVM:RBF 0.95 0.93 (± 0.040) 0.96 (± 0.016) 0.95 (± 0.014) 
CNN 0.95 0.94 (± 0.018) 0.93 (± 0.029) 0.93 (± 0.023) 

2 248 

SVM:Lineard 0.86 0.75 (± 0.140) 0.76 (± 0.123) 0.75 (± 0.130) 
SVM:Linear 0.86 0.75 (± 0.140) 0.76 (± 0.123) 0.75 (± 0.130) 
SVM:RBFd 0.88 0.63 (± 0.370) 0.90 (± 0.098) 0.67 (± 0.297) 
SVM:RBF 0.89 0.80 (± 0.106) 0.83 (± 0.070) 0.82 (± 0.088) 
CNN 0.88 0.87 (± 0.039) 0.78 (± 0.145) 0.82 (± 0.085) 

3 115 

SVM:Lineard 0.82 0.82 (± 0.041) 0.82 (± 0.127) 0.82 (± 0.085) 
SVM:Linear 0.82 0.82 (± 0.041) 0.82 (± 0.127) 0.82 (± 0.085) 
SVM:RBFd 0.83 0.67 (± 0.315) 0.86 (± 0.126) 0.70 (± 0.207) 
SVM:RBF 0.87 0.80 (± 0.138) 0.84 (± 0.049) 0.82 (± 0.095) 
CNN 0.84 0.83 (± 0.168) 0.80 (± 0.085) 0.80 (± 0.099) 

1Subscript d denotes SVM with default hyperparameters. 
295% confidence intervals are shown in brackets. Bold font dictates best results. 
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precision) than identifying all images of a class (i.e. high recall). These 
results therefore suggest that a good SVM approach for our datasets is a 
non-linear RBF kernel. We note that highest RBF precision across data-
sets is found using default hyperparameters, however the recall (for 
dataset 2 & 3) is extremely low by comparison. By tuning RBF hyper-
parameters we yield higher performance than a Linear SVM and do not 
compromise the recall as much. For the remainder of this section, we 
compare the SVM classification performance to the CNN. Note that when 
referring to the CNN þ SVM henceforth, we refer explicitly to this best 
SVM case, the hyperparameter-tuned RBF. 

As with the SVM, the CNN classified general deep features well. 
Across both classification methods, training and validation accuracy 
were high, ranging from 0.95 to 0.98 (μ = 0.97 ± 0.01) and 0.82–0.96 
(μ = 0.9 ± 0.04) respectively, see Table 5. Here, μ indicates the mean 
and ± the 95% CI. Final test accuracy, detailed in Table 6, was com-
parable to mean validation accuracy. Test accuracy even marginally 
exceeded validation performance (by 2–3%) in Datasets 1 & 2 when 
using a CNN and by 1% in Dataset 3 when using an SVM classifier. 
Across all datasets, classifier test accuracy ranged between 0.84 and 0.95 
(μ = 0.9 ± 0.03). We find that in general the simpler classification 
approach, CNN þ SVM, competes well with its complex counterpart, 
CNN, increasing accuracy up to 4% across all test and validation sets. 

Compared to test accuracy, mean F1 score was more varied across 
datasets, ranging between 0.8 and 0.95 (μ = 0.86 ± 0.05) across both 
methods. The lowest values were associated with CNN classification (in 
Dataset 3). SVM mean F1 score was always >0.82; either matching or 
exceeded CNN performance between up to 2%. Of the components that 
contributed to the mean F1 score, namely recall and precision, precision 
was always greatest for the SVM classifiers, and higher than their scores 
for recall. By comparison recall was always highest for CNN classifiers 
and lower than their scores for precision. This indicates the different 
priorities of each classification approach. The SVM is more conservative 
in its predictions whereas the CNN favours over-estimation - ensuring 
that more of each class is captured. Across both methods, mean precision 
scored between 0.78 and 0.96 (μ = 0.86 ± 0.05). Use of an SVM 
increased mean precision by between 3 and 5%. Whereas mean recall 
ranged between 0.8 and 0.94 (μ = 0.86 ± 0.05), with SVM decreasing 
performance by between 1 and 7%. 

Considering the habitats individually, dataset-averaged performance 
metrics were relatively consistent across habitats and between classifiers 
(CNN or SVM) for each habitat, see Fig. 7. Regarding the consistency of 
performance scores across metrics, for each habitat and classifier, more 
variation was present in the classification of reef. Average performance 
metrics for Reef varied between 0.77 and 0.89 (μ = 0.84 ± 0.05) when 
using the CNN classifier and 0.77–0.87 (μ = 0.81 ± 0.04) with an SVM 
classifier. Soft Sub. and Hard Sub. performance was more consistent 
across metrics by comparison. For Soft Sub., average performance 
metrics ranging from 0.85 to 0.93 (μ = 0.9 ± 0.03) for CNN classifica-
tion compared to 0.88–0.9 (μ = 0.89 ± 0.01) when using an SVM. Hard 
Sub. scored between 0.81 and 0.89 (μ = 0.84 ± 0.03) with a CNN and 
0.86–0.9 (μ = 0.87 ± 0.01) with an SVM. These figures indicate that 
regardless of class, dataset-averaged performance metrics are more 

similar to each other (and thus more stable) when using an SVM. 
However, the average of these performance metrics do not vary signif-
icantly between the two classifiers or between classes. 

Comparing datasets, we see that the variability in performance 
metrics is somewhat reflective of the number of training images. In Fig. 8 
we show the overall and class-averaged metric scores on the test datasets 
(as detailed in Table 6) and the corresponding number of training im-
ages. Note that the size of training sets in Fig. 8 have been square root 
transformed for easier visual interpretation. Across datasets there is 
typically a general trend of decreasing performance with shrinking 
training set size, with Dataset 1 (the largest) scoring best followed by 
smaller datasets, 2 & 3. However, when focusing on individual classes 
we see that the number of training images is not always sufficient alone 
to explain variation in performance. Training sets were typically 
dominated by Soft Sub. followed by Hard Sub. & Reef, however for each 
of these, performance often declined significantly between the smaller 
datasets in which class representation was roughly equivalent. This was 
particularly pronounced for Soft Sub. and Reef and common to both 
classifiers. 

To uncover any patterns that may explain imperfect model accuracy 
and identify classifications that were perhaps more challenging, we 
visually inspected model decisions across the datasets. Interrogation of 
the misclassified images found that Hard Sub. was most prevalent fol-
lowed by Soft Sub. and then Reef. Soft and Hard Sub. were largely 
mistaken for each other, whilst Reef was typically classified as Hard Sub. 
Analysis of these images first highlighted that the classifiers had cor-
rected erroneous annotations. In the remaining images, unfamiliar ob-
jects and characteristics, as well as features associated with another 
class, could be confusing the classifiers. In Fig. 9(A-C) for example, we 
show Soft Sub. images that have been mislabelled as Hard Sub. In (A) we 
see anthropogenic debris, rare and unique in appearance and in (B) and 
(C) sponges that occur in Hard Sub. communities such as Phakellia stet. 
and Geodiidae, which appear vaguely boulder-like. Overlap of habitat 
features may also be causing some difficulty in the remaining habitats, 
for example in (D) we see a Hard Sub. image with some gravel, but 
largely sediment with evidence of bioturbation, features typical of Soft 
Sub. images. Additionally, in (H) a Reef image is colonised by Hard Sub. 
sponges. Obscured views and augmented feature appearance as shown 
in (E,F,G & I) could also be another cause of the misclassified images. 
This is caused by sediment disturbance and blurring, as well as incon-
sistent altitude and angle of the imaging platform, which subsequently 
affects illumination patterns and the size and perspective of habitat 
features. 

3.3. Time considerations 

Aside from variation with respect to classification performance, the 
two modelling approaches yielded notable differences in training time. 
In Fig. 10 we demonstrate final training, and testing time, for each 
approach. For visual clarity, time (minutes) has been natural log trans-
formed. However, to facilitate better comprehension we discuss time in 
minutes throughout this section. Training was consistently faster across 

Fig. 7. Mean performance across test datasets for each habitat. Error bars demonstrate 95% confidence intervals.  
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datasets when using an SVM. With a GPU, SVM training took between 
0.58 and 16.21 (μ = 6 ± 8.17) minutes, 2.4–5× faster than training a 
CNN, which took 2.89–38.78 (μ = 15.37 ± 18.74) minutes. In Fig. 10, 
we also demonstrate the increased training speed when relying solely on 
a CPU. On average, training time took 3.6 ( ± 3.92) minutes longer for 
the CNN þ SVM when utilising a CPU, ranging between 1.35 and 24.69 

(μ = 9.6 ± 12.09) minutes. However, CNN training required, on 
average, 387.09 ( ± 472.32) minutes more, ranging between 67.78 and 
1015.3 (μ = 402.46 ± 491.07) minutes; a significant deterioration in 
training time. In addition, this was approximately 40–50× slower than 
the CNN þ SVM. Notably, training each CNN þ SVM with only a CPU 
was still faster than training each CNN with a GPU. 

Fig. 8. Overall, class-averaged and individual class performance across test datasets in relation to training set size.  

Fig. 9. Examples of misclassified images: (A-C) depict Soft Sub. mislabelled as Hard Sub., (D–F) show Hard Sub. classified as Soft Sub. and lastly Reef in (G-I) 
predicted as Hard Sub. 
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Testing time was found to be equivalent between the two classifi-
cation approaches, but vary with hardware. Using a GPU completed the 
testing phase, on average, 0.87 ( ± 0.7) minutes faster across both 
methods. GPU-enabled testing time ranged between 0.1 and 3.88 (μ =

1.43 ± 1.38) minutes compared to 0.28–5.87 (μ = 2.26 ± 2.9) minutes 
using just the CPU. 

4. Discussion 

In this work we have demonstrated that automatic classification of 
habitats from benthic imagery is possible with high accuracy. We use 
multiple datasets (of varying sizes) to confirm this, captured by a range 
of imaging platforms in varying geographic regions. 

In line with other research (Mahmood et al., 2016; Mahmood et al., 
2019; Mahmood et al., 2020a; Mahmood et al., 2020b; Mohamed et al., 
2020), we find that general features extracted from imagery by ‘off-the- 
shelf’ convolutional neural networks are suitable for classifying benthic 
imagery. They also exhibit relatively clear associations with the broad 
habitat classes. Most notably, the general feature spaces enabled the 
distinction of soft and hard substrate habitats, aligning with the distinct 
visual contrast of these habitat classes. The overlap of Hard Sub. and 
Reef feature spaces following dimension reduction, particularly within 
Datasets 2 & 3, is unsurprising given the ecological association of Reef 
and hard substrates (Howell et al., 2011; Roberts et al., 2009). Larvae of 
coral species such as Desmophyllum pertusum, responsible for creating the 
reef framework in the featured datasets, require hard substrate to settle 
and build their communities (Roberts et al., 2009; Wilson, 1979). Reef is 
also more commonly associated with topographic highs (created by 
boulders and bedrock for example) that enable elevation into currents 
for enhanced filter feeding (Mienis et al., 2007; Roberts et al., 2009; 
Thiem et al., 2006). Imagery classified as Reef will thus likely contain 
evidence of hard substrates. Some images would also have featured the 
sub-class coral rubble, as described in Table 2. In a technical sense, the 
texture and edge distributions of coral rubble in imagery, may exhibit 
more visual similarity to seabed areas dominated by gravel. 

Although useful as a broad survey tool, the discrete portrayal of 
habitats in this work thus strays somewhat from a realistic representa-
tion. In actuality, there is a transition between these benthic habitats 
and they can co-occur. It is in these ‘grey’ areas, and subsequent overlap 
of class feature spaces, that the classifiers may be more subject to error, 
as seen in our visual analysis and other benthic habitat applications 
(Gómez-Ríos et al., 2019a; Jackett et al., 2023). The means by which 
these images are annotated only exacerbates this challenge. For practical 

and environmentally protective purposes, the habitats in these datasets 
are annotated hierarchically rather than by dominance i.e. presence of 
any Hard Sub. or Reef characteristics categorizes it as such, even if small. 
Using a pre-trained feature extractor, that is not optimized to the 
training data, already risks the importance of these characteristics not 
being recognized. However, this may be impeded further if these non- 
dominant characteristics are obscured by natural factors (sediment, 
fauna) and poor image quality or missed due to placement i.e. if they 
occur at the edge of images and are reduced or excluded due to the 
reshaping of images during feature extraction. For example if a small 
cobble and associated sponges are not captured in the feature space, 
then the image is likely to be classified as Soft Sub. A finer-scale clas-
sification with image patches would better account for spatial hetero-
geneity in an image, however the classification errors associated with 
mixed habitat characteristics do still occur (Jackett et al., 2023). 

Working with image patches has the benefit of generating large 
training datasets, with potentially clearer class distributions. Their use 
in training can also be used to classify a full-sized image (Vega et al., 
2024). Despite the comparatively small size of some of our datasets and 
our broad structure-based classification, we find that our performances 
compare and compete well with those that classify benthic imagery from 
a textural perspective, featuring highly-zoomed image patches (Beijbom 
et al., 2012; Gómez-Ríos et al., 2019a; Gómez-Ríos et al., 2019b; Jackett 
et al., 2023; Mahmood et al., 2020a; Mahmood et al., 2020b; Yamada 
et al., 2021; Yamada et al., 2022; Yamada et al., 2023). We also find this 
extends to full-image classification of benthic habitats, by various 
automated methods (Mohamed et al., 2020; Rao et al., 2017; Seiler 
et al., 2012; Vega et al., 2024). Across these benthic classification 
studies, overall performances average around 90% accuracy in the best- 
case scenarios, though this can significantly fluctuate within classes and 
according to the dataset used. These methodologies are comparatively 
complex and although optimized for more classes, the baseline approach 
in this study achieves performances within the same magnitudes, of-
fering a viable solution for simpler classification tasks. 

Inconsistent appearance of classes is widely understood to affect 
performance in machine learning and this work is no exception. 
Whether variation is naturally occurring (morphology) or a result of the 
imaging process, the classifiers must make a decision and will thus make 
errors. There is no unknown category when the uncertainty level reaches 
a specific threshold. In fact, classifying images as unknown is a ML 
problem in itself, as you must train a model to recognize what it doesn’t 
know (Blair et al., 2022; Eerola et al., 2024; Gawlikowski et al., 2023). 
Regardless of the cause, it is difficult to put an exact value on what an 
acceptable level of error is in classification tasks. Ideally, ML should, at a 
minimum, match the current performance baselines set by manual 
analysis. However, manual accuracies will vary with respect to the 
annotation task and individual (both intra- & interpersonally) (Beijbom 
et al., 2015; Culverhouse et al., 2003; Culverhouse et al., 2014; Durden 
et al., 2016; Schoening et al., 2012) and do not necessarily conform to a 
‘gold standard’ (Schoening et al., 2016). We note that performance of 
our habitat recognition pipelines was found comparable or better than 
accuracies following manual annotation of marine imagery (43–95%) 
(Culverhouse et al., 2003; Durden et al., 2016; Schoening et al., 2012). 
These studies focus on tasks dissimilar to our own, such as phyto-
plankton or benthic megafauna classification and they possess a higher 
number of classes. However they highlight that whilst there is room for 
improvement, our results meets reported standards in marine image 
analysis pipelines. Additionally, the fact that the trained models in this 
work identified some manual annotation errors demonstrates that even 
an imperfect model, with <100% accuracy, could provide a useful 
screening tool to improve quality of the ground-truth. Here although the 
task is a simple one, its time-consuming nature means that for many 
large datasets it would be impossible to complete this task fully due to 
manual analysis constraints. Thus there is a suitable trade-off with the 
error-rate and efficiency of the approaches used. Regardless, the accu-
racy and reliability of annotations should always be interrogated, 

Fig. 10. Time required for training and testing phase, in order of decreasing 
dataset size. 
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whether manual or automatically generated and judged against the 
annotation purpose. 

4.1. Simplicity vs. complexity 

In this application, we note that SVM classifiers offer a good 
advantage over the more complex CNN classifier, for the following 
reasons: 1) performance, 2) time constraints and 3) ease of 
implementation. 

SVM classifiers performed well, competing with CNN classifiers 
across datasets. They were also more conservative in their predictions, 
and thus more suited to this application in which prediction accuracy is 
more important than capturing all instances of a habitat. Performance 
was also not particularly sensitive to alterations in training set size, 
handling poorly represented classes such as Reef reasonably well. SVMs 
always converge to an optimum, thus irrespective of training set size, if 
class distinction is possible in the underlying data they are likely to 
perform well. Although the sensitivity of the CNN classifier to training 
set size appeared similar to the SVM, typically they require larger 
quantities of data to achieve higher performance. This is due to their 
iterative training approach in which they gradually improving their 
ability to fit complex relationships to the high-dimensional feature data 
to enable class prediction. 

We find that SVM classifiers train much faster than CNN classifiers 
and demand fewer computational resources. Considering that much of 
the heavy computation in the CNN þ SVM approach is within the CNN 
feature extraction phase, this accounts for the less pronounced increase 
in training time across datasets when using a CPU. Likely training time 
could be further improved if the GPU was employed for SVM training. 
Classifying images in the testing phase is computationally inexpensive 
and thus no advantage was found between the two models. Although 
these CPU/GPU comparisons are an extreme example and time demands 
will vary with hardware specifications, they emphasize well the 
importance of hardware in selecting appropriate models in image clas-
sification. For example, GPUs are an expected requirement for CNN 
training given the success of CNNs in image classification is partially 
linked to the development and availability of GPUs (LeCun et al., 2015). 

From a coding perspective, training an SVM is extremely straight-
forward, with training, optimisation and testing executed within only a 
few simple lines of code. The relative complexity with the CNN þ SVM 
approach, and by extension the CNN approach, rather lies in data 
management and feature extraction. The complexity of these steps is not 
so much related to the actions required, but navigating the extensive 
literature and knowing “where to start”. As one of the contributions of 
this paper we hope to better guide the user with clear and detailed de-
scriptions of these steps, that are applicable across ML frameworks 
(Table 3). Aside from these preparations, training the CNN classifier is 
further complicated since an optimal is not automatically found. Instead 
performance metrics must be monitored across epochs and decisions 
made on when to stop training - typically the point at which training and 
test accuracy are near equivalent, to minimize over- and under- fitting. 
In addition, with each application, time-consuming tuning and explo-
ration of hyperparameters is essential to maximise their performance. 

4.2. Improving performance 

The approaches presented in this study were designed to minimize 
complexity and reflect a realistic performance baseline that the reader 
could expect when attempting a similar classification task on their own 
data. That being said, enhancing the suitability of the underlying dataset 
and features could improve model performance. 

Classifiers highlighted both inaccuracies in the ground-truth and the 
difficulty of overlapping habitats and generalizing to unseen charac-
teristics in the training data. Verifying the accuracy of manual annota-
tions and removing images that are not clear examples of habitat could 
thus improve performance. Dataset cleaning such as this has been shown 

to increase model accuracy by ∼12% in benthic habitat classification, 
but risks impeding performance on novel uncleaned data (Jackett et al., 
2023). Increasing the amount of training data, as echoed in our own 
work, could also increase performance metrics, both traditional (Durden 
et al., 2021; Piechaud et al., 2019; Yamada et al., 2021) and ecological 
(Durden et al., 2021). In the absence of additional suitable data, data 
augmentation to re-sample and transform existing training data, such 
that it generalizes to datasets more widely, is also commonly undertaken 
(Jackett et al., 2023; Vega et al., 2024). However, care must be taken 
since many common augmentations may not in fact be applicable to 
marine datasets (Tan et al., 2022). Data augmentation can also be used 
to solve class imbalance (Langenkämper et al., 2019b), which encour-
ages models, particularly CNNs, to develop biases such as over- 
predicting common classes. Class imbalance can alternatively be 
handled by down-weighting common classes or up-sampling rare classes 
(Durden et al., 2021; Langenkämper et al., 2019b). Increasing avail-
ability, and quality, of the ground-truth would also allow for further 
tuning or scratch-based learning of the CNN perhaps creating feature 
representations even more suitable for automatic classification of 
benthic habitats. Whereas reducing the size of feature spaces could aid 
classification by lessening noise within the feature space and reducing 
the sparsity of data points, which makes finding groups with similar 
properties challenging (curse of dimensionality). This can be achieved 
through feature importance selection, dimensionality reduction or 
employing a network which outputs less features, such as GoogleNet 
(Szegedy et al., 2015) and Inception V3 (Szegedy et al., 2015). 

4.3. Future work & concluding remarks 

Although these techniques have been around a long time, and there 
seems to be a willingness to conduct more AI among non-specialists, its 
usage within marine science is lagging. Studies such as this, which focus 
on methods conceptually and practically targeted at non-specialists, will 
encourage further uptake and development. In addition, research needs 
to move past ‘proof of concept’ studies on singular datasets alone (where 
possible), excluding those comparing benchmark datasets. 

It is important to have realistic expectations when designing and 
employing machine learning pipelines. Not all tasks will be suitable for 
automation and human interaction will always be required at some 
stage. Equally, the task at hand will govern the complexity of the ma-
chine learning approach required. In this study we focused on a rela-
tively simple but time-consuming manual task that would benefit 
marine scientists, promoting efficient broad-scale monitoring. We also 
prioritised simplicity of the modelling approach over any potential gain 
in habitat resolution. We have presented one of a few cases of automatic 
habitat classification from imagery and demonstrated that SVM (tuned 
RBF) classifiers paired with a VGG16 feature extractor offer a simple, 
fast and consistent framework. There may be desire to implement state 
of the art Deep Learning approaches in the ecological community, such 
as CNNs, or even Vision Transformers (Dosovitskiy et al., 2020; Vaswani 
et al., 2017) where feasible. However, given our results, we believe it is 
useful to first employ the CNN þ SVM approach, for tasks of a similar 
complexity or application, as it may prove sufficient. For example, an 
exploratory application of the CNN þ SVM approach to compiled image 
datasets from the North Sea yielded 90% accuracy. Although this was a 
large dataset (∼19k training images), it was highly imbalanced and 
uncleaned, with annotations often made per station rather then per 
image. It also contained several EUNIS habitat classes (MC12, MC2211, 
MD32, MC/D42, MC/D52, MC/D62) (European Environment Agency, 
2022) and a class for poor quality imagery i.e. where the seabed was 
obscured due to sediment disturbance. Though it should be noted that 
more sophisticated methods exist to handle unknown classes (Blair 
et al., 2022; Eerola et al., 2024; Gawlikowski et al., 2023). 

Despite the resolution of the broad habitats used in this study, the 
CNN þ SVM approach can be seen as a good option for ecologists 
seeking classification methods that yield a high return on minimal 
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investment, with classes that have clear characteristics. It forms an 
important component in developing a hierarchical, or ensemble, anal-
ysis tool for benthic imagery. A ‘first-pass’ method which can identify 
the next suitable analysis steps and automatic tools to use, such as 
classifiers for the next node in an hierarchy (Gómez-Ríos et al., 2019a; 
Mahmood et al., 2020a; Vega et al., 2024) or object detectors for specific 
taxa found within each habitat. This could then support higher resolu-
tion habitat classifications through recognizing sea pens, boulders or 
reef status for example. 

The approach presented is suited to offshore use; offering near real- 
time decision making in the field and the development of sampling 
protocols. Data collection can be triaged and quick, albeit crude, insights 
into habitat presence provided. It can be used to screen old-datasets and 
support manual annotation by grouping similar imagery. The reduced 
manual constraints may also support monitoring at a higher resolution, 
by allowing image analysts to instead focus manual efforts on quality 
control and more challenging annotation tasks. 

Future work could look at model transferability (domain adaptation) 
between datasets and testing the CNN þ SVM approach as a fine-scale 
monitoring tool, classifying habitat patches within an image. Another 
interesting progression would be to look at better integration of acous-
tic, optical and environmental data to support contextual-based auto-
mation (Ellen et al., 2019; Rao et al., 2017; Shields et al., 2020; Yamada 
et al., 2021). 

Funding 

This work was supported by NERC and EPSRC grants: NE/N012070/ 
1 and EP/S028730/1, respectively. 

CRediT authorship contribution statement 

Chloe A. Game: Writing – review & editing, Writing – original draft, 
Visualization, Validation, Software, Project administration, Methodol-
ogy, Investigation, Formal analysis, Data curation, Conceptualization. 
Michael B. Thompson: Writing – review & editing, Supervision, Re-
sources, Conceptualization. Graham D. Finlayson: Writing – review & 
editing, Supervision, Resources, Funding acquisition, 
Conceptualization. 

Data availability 

The authors do not have permission to share data. 

Acknowledgments 

The authors thank Gardline Ltd. and their environmental reporting 
team for providing annotated imagery used within this project. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ecoinf.2024.102619. 

References 

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., 
Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D.G., 
Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X., 
2016. TensorFlow: A system for large-scale machine learning. In: 12th USENIX 
Symposium on Operating Systems Design and Implementation (OSDI 16), 
pp. 265–283. URL. https://www.usenix.org/conference/osdi16/technical-sessions/ 
presentation/abadi?ref=https://githubhelp.com. 

Abad-Uribarren, A., Prado, E., Sierra, S., Cobo, A., Rodríguez-Basalo, A., Gómez- 
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plankton image recognition: challenges, existing solutions and future perspectives. 
Artif. Intell. Rev. 57 (5), 114. https://doi.org/10.1007/s10462-024-10745-y. 

Ellen, J.S., Graff, C.A., Ohman, M.D., 2019. Improving plankton image classification 
using context metadata. Limnol. Oceanogr. Methods 17 (8), 439–461. https://doi. 
org/10.1002/lom3.10324. https://onlinelibrary.wiley.com/doi/abs/10.1002/lo 
m3.10324. 

European Environment Agency, 2022. EUNIS habitat classification. Available at: https 
://www.eea.europa.eu/data-and-maps/data/eunis-habitatclassification-1 [Accessed 
19 Dec. 2022]. URL. https://www.eea.europa.eu/data-and-maps/data/eunis-habitat 
-classification-1. 

European Parliament, 2008. Directive 2008/56/EC of the European Parliament and of 
the Council of 17 June 2008 Establishing a Framework for Community Action in the 
Field of Marine Environmental Policy (Marine Strategy Framework Directive). 
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Gómez-Ríos, A., Tabik, S., Luengo, J., Shihavuddin, A.S.M., Herrera, F., 2019a. Coral 
species identification with texture or structure images using a two-level classifier 
based on convolutional neural networks. Knowl.-Based Syst. 184, 104891 https:// 
doi.org/10.1016/j.knosys.2019.104891. 
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Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S., 2019. PyTorch: 
an imperative style, highperformance deep learning library. In: Proceedings of the 
33rd International Conference on Neural Information Processing Systems. Curran 
Associates Inc p. Article 721.  

Piechaud, N., Howell, K.L., 2022. Fast and accurate mapping of fine scale abundance of a 
VME in the deep sea with computer vision. Eco. Inform., 101786 https://doi.org/ 
10.1016/j.ecoinf.2022.101786. URL. https://www.sciencedirect.com/science/artic 
le/pii/S1574954122002369. 

Piechaud, N., Hunt, C., Culverhouse, P.F., Foster, N.L., Howell, K.L., 2019. Automated 
identification of benthic epifauna with computer vision. Mar. Ecol. Prog. Ser. 615, 
15–30. https://doi.org/10.3354/meps12925. URL. https://www.int-res.com/abst 
racts/meps/v615/p15-30/. 

PyTorch, 2023. PyTorch. Available at: https://pytorch.org/ [Accessed 02 Mar. 2023]. 
URL. https://www.pytorch.org. 

Rao, D., De Deuge, M., Nourani-Vatani, N., Williams, S.B., Pizarro, O., 2017. Multimodal 
learning and inference from visual and remotely sensed data. Intern. J. Robot. Res. 
36 (1), 24–43. https://doi.org/10.1177/0278364916679892. 

Razavian, S., Ali, H. Azizpour, Sullivan, J., Carlsson, S., 2014. CNN Features off-the-shelf: 
An astounding baseline for recognition. In: Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition Workshops, pp. 806–813. 

Roberts, J.M., Wheeler, A., Freiwald, A., Cairns, S., 2009. Cold-Water Corals: The Biology 
and Geology of Deep-Sea Coral Habitats. Cambridge University Press, Cambridge.  

Rubbens, P., Brodie, S., Cordier, T., Destro Barcellos, D., Devos, P., Fernandes- 
Salvador, J.A., Fincham, J.I., Gomes, A., Handegard, N.O., Howell, K., Jamet, C., 
Kartveit, K.H., Moustahfid, H., Parcerisas, C., Politikos, D., Sauzède, R., 
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