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BOGDAN-VASILE MATIOC AND EMILIAN I. PĂRĂU

Abstract. We construct two-dimensional steady periodic hydroelastic waves with vortic-
ity that propagate on water of finite depth under a deformable floating elastic plate which
is modeled by using the special Cosserat theory of hyperelastic shells satisfying Kirchhoff’s
hypothesis. This is achieved by providing a necessary and sufficient condition for local
bifurcation from the trivial branch of laminar flow solutions.

1. Introduction

Hydroelastic waves propagate in polar regions at the surface of water covered by a de-
formable ice sheet. The water is modeled as an inviscid and incompressible fluid with
constant density (set to be 1). Assuming that the flow is two-dimensional, the equations of
motion are the Euler equations

ut + uux + vuy = −Px,
vt + uvx + vvy = −Py − g,

ux + vy = 0,

 − d < y < η(t, x), (1.1a)

where u is the horizontal velocity, v is the vertical velocity, P is the pressure, and g is the
gravitational acceleration. The fluid domain is bounded from below by a flat impermeable
bed located at y = −d, where d > 0 is a constant, and the free wave surface {y = η(t, x)} is
assumed to be a thin ice sheet which is modeled as a thin elastic plate by using the Cosserat
theory of hyperelastic shells satisfying Kirchhoff’s hypothesis [21, 31]. The inertia of this
thin elastic plate is neglected, we assume that the plate is not pre-stressed, and consider
only the effect of bending, neglecting the stretching of the plate. Therefore we impose the
following boundary conditions

P = αH(η) on y = η(t, x),

v = ηt + uηx on y = η(t, x),

v = 0 on y = −d,

 (1.1b)

where α > 0 is a constant,

H(η) := ω(η)−1
[
ω(η)−1

(
ω(η)−3ηxx

)
x

]
x
+

1

2

(
ω(η)−3ηxx

)3
,

and
ω(η) := (1 + η2x)

1/2. (1.1c)
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We investigate herein the existence of periodic steady water wave solutions to (1.1a)-(1.1c)
for which the unknowns u, v, P, η satisfy

(u, v, P )(t, x, y) = (u, v, P )(x− ct, y) and η(t, x) = η(x− ct),

where c > 0 is the speed of the wave. Moreover, letting λ > 0 denote the period of the wave,
we restrict to solutions which fulfill ∫ λ

0
η(x) dx = 0. (1.1d)

Setting
Ωη := {(x, y) ∈ R2 : −d < y < η(x)},

we thus look for functions u, v, P : Ωη → R and η : R → R which are λ-periodic in x and
solve (after replacing u− c by u) 1 the coupled system of equations

uux + vuy = −Px in Ωη,

uvx + vvy = −Py − g in Ωη,

ux + vy = 0 in Ωη,

P = αH(η) on y = η(x),

v = uη′ on y = η(x),

v = 0 on y = −d,∫ λ

0
η(x) dx = 0.


(1.2a)

We also exclude the presence of stagnation pointy by requiring that

u < 0 in Ωη. (1.2b)

A similar setting has been considered in [20] where, using a variational approach, the
authors establish the existence of hydroelastic solitary waves for sufficiently large values of
the dimensionless parameter α under the assumption that the vorticity is zero. Within the
same irrotational scenario, the authors of [2] establish the existence of symmetric envelope
hydroelastic solitary waves by using spatial dynamics techniques. Moreover, in [3, 4], the
existence of periodic hydroelastic waves which may posses a multi-valued height between
two superposed irrotational fluid layers with positive densities separated by an elastic plate
was shown via global bifurcation theorem, the analysis being based on the reformulation of
the problem as a vortex sheet problem.

We also mention the paper [10] where, in the rotational setting, weak periodic solutions
to a related problem which accounts also for surface tension effects at the free boundary are
constructed via a variational approach. These weak solutions are minimizers of the total
energy per period functional among flows subject to three constraints – the volume of fluid
per period, the circulation per period on the water surface, and the rearrangement class
of the vorticity field – and are subsequently shown to have the property that the vorticity
is a decreasing function of the stream function. The approach in [10] is different from the
one we choose where we fix from the start the vorticity function, which is not assumed

1Note that if (u, v, P, η) is a solution to (1.2), then for each c > 0 the tupel (ũ, ṽ, P̃ , η̃) := (u− c, v, P, η)
is a hydroelastic wave solution traveling with wave speed constant c.
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to be monotonic, together with the volume of fluid for period and the relative mass flux
to construct classical solutions to the hydroelastic wave problem (1.2) via local bifurcation
theory.

Hydroelastic wave models which allow for both bending and stretching of the elastic wave
surface have been studied in the context of flows without vorticity in [8, 32].

The initial-value problem for flexural-gravity waves has been investigated in [6] by de-
veloping a well-posedness theory based on a vortex sheet formulation. Related local well-
posedness results art established in [25] where also inertial effects for the floating elastic plate
are included and in [36] in the setting of hydroelastic waves with vorticity in dimension n ≥ 2.

For numerical studies of hydroelastic waves, in the setting of constant vorticity, we refer
to the recent works [17,18,35].

In the present paper we extend the existence theory for (1.2) by allowing for a general
vorticity

ω := uy − vx.

The vorticity is a very important aspect of ocean flows also in polar regions, a non-zero
vorticity characterizing waves that interact with non-uniform currents such as the Antarctic
Circumpolar Current or near-surface currents in the Arctic Ocean, see e.g. [1,12,28,33]. An
essential tool in our analysis is the availability of two equivalent formulations of (1.2), the
stream function formulation (2.2) and the height function formulation (2.3), see Proposi-
tion 2.1. In particular, the condition (1.2b) enables us to introduce the so-called vorticity
function γ : [p0, 0] → R, where the constant p0 < 0 is the relative mass flux, which deter-
mines, via the stream function formulation (2.2), the vorticity ω of the flow, see Section 2.
While we consider a general Hölder continuous vorticity function γ, in order to establish
the existence (and uniqueness) of a laminar flow solution to (1.2) (with a flat wave profile
located at y = 0 and x-independent velocity and pressure) the restriction (1.3) is required
on γ and the physical parameters. This laminar flow solution is a solution to (1.2) for each
value of the wavelength λ. We will then use λ as a bifurcation parameter in order to deter-
mine other nonlaminar symmetric (with respect to the horizontal line x = 0) hydroelastic
waves. It turns out that bifurcation can occur if and only if a second condition, see (1.4), is
satisfied. In the setting of irrotational waves these conditions are explicit, see Remark 1.3.
In order to prove our main result in Theorem 1.1, we cannot directly use the aforementioned
formulations (2.2) or (2.3) of the problem because the boundary condition in these formu-
lations that corresponds to the dynamic boundary condition (1.2a)4 involves fourth order
derivatives of the unknown, whereas the elliptic equation posed in the (fluid) domain is of
second order. However, inspired by an idea used also in other steady water wave problems,
see [7, 16, 23, 27, 29, 30, 34], we may reformulate (2.3), after rescaling the horizontal variable
by λ, as a quasilinear elliptic equation subject to a boundary condition which may be viewed
as a compact, but at the same time nonlocal and nonlinear, perturbation of the trace oper-
ator, see (3.8). The wavelength λ appears as a free parameter in (3.8) and we show that the
local bifurcation theorem of Crandall and Rabinowitz, cf. [14, Theorem 1.7], can be applied
in the context of (3.8) to prove our main result and establish in this way the existence of
solutions to (1.2) within the regularity class introduced in Proposition 2.1.
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Theorem 1.1. Let α > 0, d > 0, p0 < 0, and g > 0 be fixed and choose β ∈ (0, 1). Assume
that the vorticity function γ belongs to Cβ([p0, 0]) and set

Γ(p) :=

∫ p

p0

γ(s) ds, p ∈ [p0, 0].

Then we have:
(i) The problem (1.2) has laminar solutions (u, v, P, η) = (u∗, v∗, P∗, 0), with u∗, v∗, P∗

independent of the x-variable, iff

lim
ϑ↘2max

[p0,0]
Γ

∫ 0

p0

(ϑ− 2Γ(s))−1/2ds > d. (1.3)

If (1.3) is satisfied, there exists exactly one laminar solution (u∗, v∗, P∗, 0) to (1.2).
(ii) Assume that the condition (1.3) holds true and set a := (ϑ− 2Γ)1/2 ∈ C1+β([p0, 0]),

where ϑ > 2max
[p0,0]

Γ is the unique constant which satisfies∫ 0

p0

(ϑ− 2Γ(s))−1/2ds = d.

Then:
(iia) If

g

∫ 0

p0

1

a3(p)
dp < 1 (1.4)

does not hold, there exist no solutions to (1.2) which bifurcate from the trivial
branch of laminar flow solutions {(λ, u∗, v∗, P∗, 0) : λ > 0};

(iib) If (1.4) is satisfied, there exists a unique minimal wavelength λ∗ > 0 with the
property that (λ∗, u∗, v∗, P∗, 0) is a local bifurcation point (of the trivial branch)
of solutions to (1.2). More precisely, there exists a local bifurcation curve

C = {(λ(s), u(s), v(s), P (s), η(s)) : s ∈ (−ε, ε)},
where ε > 0 is a small constant, having the following properties:

• [s 7→ λ(s)] is smooth, λ(s) > 0 for s > 0, and λ(s) = λ∗+O(s) for s→ 0;
• (u(0), v(0), P (0), η(0)) = (u∗, v∗, P∗, 0);
• For s ̸= 0, the tupel (u(s), v(s), P (s), η(s)) is a solution to (1.2) with

minimal wavelength λ(s) and vorticity function γ. Moreover, the wave
profile has one crest (located on the vertical line x = 0) and one trough
per period, is symmetric with respect to crest and trough lines, and strictly
monotone between crest and trough.

Concerning Theorem 1.1, we add the following remarks.

Remark 1.2.
(i) If 0 ̸= |s| < ε, then (u(s), v(s), P (s), η(s)) is also of solution to (1.2) having (not min-

imal) period kλ(s) for all 1 ≤ k ∈ N. In particular, for each k ≥ 1, (kλ∗, u∗, v∗, P∗, 0)
is also a local bifurcation point of the trivial branch of solutions to (1.2). In The-
orem 1.1 we prove that these are the only points on the trivial branch of solutions
from where other symmetric solutions bifurcate.
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(ii) Our analysis discloses, under the assumption (1.4), that bifurcation from double (ac-
tually multiple) eigenvalues of symmetric waves is excluded along the trivial branch
of laminar solutions to the hydroelastic waves problem (1.2).

We now illustrate the conditions for bifurcation from Theorem 1.1 in the particular case
of irrotational waves (with γ = 0).

Remark 1.3. If γ = 0, then (1.3) is automatically fulfilled and the inequality (1.4) is equiv-
alent to

gd3

p20
< 1.

Moreover, the wavelength λ∗ > 0 can be determined as the unique solution to the equation[
g + α

(2π
λ∗

)4]
tanh

(2πd
λ∗

)
=
p20
d2

2π

λ∗
. (1.5)

Equation (1.5) is the dispersion relation for irrotational hydroelastic waves.

In our analysis we exclude stagnation points, which enables us to use the height function
formulation (2.3) and to consider general vorticity functions. However, if stagnation points
are present, the stream function formulation (2.2) is still available and for certain classes
of vorticity functions (2.2) may be used to construct hydroelastic waves with stagnation
points, see e.g. [15,23,26,30,34] for different approaches to the classical water wave problem.
The global bifurcation problem for (1.2), which could be considered by using analytic global
bifurcation theory [9], is beyond the goals of this paper.

Outline: In Section 2 we present two further equivalent formulations of (1.2): the stream
function formulation (2.2) and the height function formulation (2.3). Then, in Section 3, we
reformulate (2.3) by reexpressing the boundary condition in (2.3) obtained from the dynamic
boundary condition as a compact, but nonlinear and nonlocal, perturbation of a Dirichlet
boundary condition, see (3.8). Finally, in Section 4, we recast (3.8) as a bifurcation problem
and prove Theorem 1.1.

2. Equivalent formulations of the hydroelastic waves problem

In this section we introduce two further equivalent formulations of the hydroelastic waves
problem (1.2) which have been useful also when constructing rotational water waves in other
physical scenarios, cf. e.g. [11,22,24].

2.1. The velocity formulation. The stream function ψ : Ωη → R is defined by the equa-
tions

ψ = 0 on y = η(x) and ∇ψ = (−v, u) in Ωη.

Since ψy < 0, cf. (1.2b), the constant p0 := −ψ|y=−d, called relative mass flux (see [13]) is
negative.

Let further H : Ωη → Ω, where Ω := R× (p0, 0), be defined by the formula

H(x, y) := (q(x, y), p(x, y)) := (x,−ψ(x, y)).
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As a consequence of (1.2b), the function H is a bijection. For smooth solutions to (1.2) we
then compute

∂q(ω ◦ H−1) =
(
ωx +

v

u
ωy

)
◦ H−1 = 0 in Ω,

since (1.2a)1-(1.2a)3 yield
uωx + vωy = 0 in Ωη.

Hence, there exists a function γ : [p0, 0] → R, the so-called vorticity function, with the
property that ω ◦ H−1(q, p) = γ(p) for all (q, p) ∈ Ω, or equivalently

ω(x, y) = γ(−ψ(x, y)) for all (x, y) ∈ Ωη.

This relation together with (1.2a)1-(1.2a)2 implies that the energy

E := P +
u2 + v2

2
+ gy −

∫ ψ

0
γ(−s) ds

is constant in Ωη. Evaluating this expression at the wave surface, we deduce together with
the relation (1.2a)4, that

|∇ψ|2 + 2gη + 2αH(η) = Q on y = η(x), (2.1)

where Q is a constant. Integration by parts further leads to∫ λ

0
H(η) dx = 0,

and, since also η has zero integral mean, we infer from (2.1), after integrating over one
period, that

Q =
1

λ

∫ λ

0
|∇ψ|2(x, η(x)) dx.

Consequently, ψ solves the boundary value problem

∆ψ = γ(−ψ) in Ωη,

ψ = 0 on y = η(x),

ψ = −p0 on y = −d,

|∇ψ|2 + 2gη + 2αH(η) =
1

λ

∫ λ

0
|∇ψ|2(x, η(x) dx on y = η(x)


(2.2a)

and satisfies
ψy < 0 in Ωη. (2.2b)

2.2. The height function formulation. We define the height function h : Ω → R by

h(q, p) = y,

which associates to a point (q, p) ∈ Ω the vertical coordinate of the fluid particle located
at (x, y) = H−1(q, p) ∈ Ωη. Then, since η = h(·, 0), the function h solves the following
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boundary value problem

(1 + h2q)hpp − 2hphqhpq + h2phqq − γh3p = 0 in Ω,

h = −d on p = p0,

1 + h2q
h2p

+ 2gh+ 2αH(h) =
1

λ

∫ λ

0

1 + h2q
h2p

(q, 0) dq on p = 0,

 (2.3a)

together with
hp > 0 in Ω. (2.3b)

Proposition 2.1 (Equivalence of formulations). Let β ∈ (0, 1). Then, the following formu-
lations are equivalent:

(i) The velocity formulation (1.2) for

u, v, P ∈ C1+β(Ωη) and η ∈ C4+β(R);

(ii) The stream function formulation (2.2) for

ψ ∈ C2+β(Ωη), η ∈ C4+β(R), and γ ∈ Cβ([p0, 0]);

(iii) The height function formulation (2.3) for

h ∈ C2+β(Ω) with tr0 h ∈ C4+β(R), and γ ∈ Cβ([p0, 0]).

Proof. The proof is similar to that of [13, Lemma 2.1]. □

3. An equivalent formulation of (2.3)

In our analysis we will take advantage of the height function formulation (2.3) to establish
the existence of steady periodic hydroelastic waves. The main tool used to achieve this goal
is the local bifurcation theorem of Crandall and Rabinowitz, cf. [14, Theorem 1.7]. The
appropriate parameter for bifurcation is the wavelength λ > 0. Since h is λ-periodic with
respect to q it is therefore suitable to rescale h according to

h̃(q, p) := h(λq, p), (q, p) ∈ Ω. (3.1)

The function h̃ is 1-periodic and solves (after dropping tildes) the equations

(λ2 + h2q)hpp − 2hphqhpq + h2phqq − λ2γh3p = 0 in Ω,

h = −d on p = p0,

λ2 + h2q
h2p

+ 2gλ2h+
2α

λ
H
(h
λ

)
=

∫ 1

0
tr0

λ2 + h2q
h2p

dq on p = 0

 (3.2a)

and
hp > 0 in Ω. (3.2b)

In the following tr0 is the trace operator with respect to the boundary component {p = 0}
of Ω, that is, given f : Ω → R, the function tr0 f : R → R is defined by tr0 f(q) = f(q, 0)
for q ∈ R.
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Let β ∈ (0, 1) be fixed. We will assume that h ∈ X, where the Banach spaces X is defined
as follows

X :=
{
h ∈ C2+β(Ω) : h is even and 1-periodic with repect to q and

∫ 1

0
tr0 hdq = 0

}
.

Similarly, given k ∈ N, the space Ck+βe (R) consists of the even and 1-periodic functions
with uniformly β-Hölder continuous kth derivative. Moreover, Ck+βe,0 (R) is the subspace
of Ck+βe (R) which contains only functions with zero integral mean. We note that the bound-
ary condition (3.2a)3 is not well-defined for h ∈ X as fourth order derivatives of h appear in
this equation. However, since of H(h/λ) involves only derivatives of h with respect to the
horizontal variable q, we may reformulate the boundary condition (3.2a)3 as a nonlocal and
nonlinear compact perturbation of the trace operator tr0.

To this end we set ζ := tr0 h/λ and note that, if h ∈ X satisfies tr0 h ∈ C4+β
e (R), (3.2b),

and the boundary condition (3.2a)3, then

H(ζ) = B(λ, h),

where B : (0,∞)× {h ∈ X : hp > 0 in Ω} → C1+β
e,0 (R) is the smooth mapping defined by

B(λ, h) :=
λ

2α

[ ∫ 1

0
tr0

λ2 + h2q
h2p

dq − tr0

(λ2 + h2q
h2p

+ 2gλ2h
)]
. (3.3)

Integration leads to ∫ x

0
H(ζ) ds =

∫ x

0
B(λ, h) ds for all x ∈ R.

In view of the fact that tr0 h is an even function we obtain that∫ x

0
H(ζ) ds =

[
ω−2(ζ)(ω−3(ζ)ζ ′′)′ +

1

2
ζ ′ζ ′′2ω−7(ζ)

]
(x), x ∈ R,

where ω(·) is the nonlinear operator defined in (1.1c), hence[
ω−2(ζ)(ω−3(ζ)ζ ′′)′ +

1

2
ζ ′ζ ′′2ω−7(ζ)

]
(x) =

∫ x

0
B(λ, h) ds for all x ∈ R. (3.4)

Integrating the last relation once more we arrive at

ζ ′′(q) = ω5(ζ)(q)
(
C +

∫ q

0

∫ x

0
B(λ, h) ds dx− 5

2

∫ q

0
ζ ′ζ ′′2ω−7(ζ) dx

)
(3.5)

for all q ∈ R, where C := ζ ′′(0). Letting Φ : (0,∞)× {h ∈ X : hp > 0 in Ω} → C1+α
e (R) be

defined by

Φ(λ, h)(q) :=

∫ q

0

∫ x

0
B(λ, h) ds dx− 5

2

∫ q

0

(tr0 h
λ

)′[(tr0 h
λ

)′′]2
ω−7

(tr0 h
λ

)
dx (3.6)

for q ∈ R, the previous equality identifies, since ζ ′′ has zero integral mean, the constant C
as

C = −
(∫ 1

0
ω5(ζ)dq

)−1
∫ 1

0
ω5(ζ)Φ(λ, h) dq,
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and therefore we have

(1− ∂2q )ζ = ζ + ω5(ζ)
(∫ 1

0
ω5(ζ)dq

)−1
∫ 1

0
ω5(ζ)Φ(λ, h)dq − ω5(ζ)Φ(λ, h) ∈ C1+α

e,0 (R).

Since 1− ∂2q : C3+α
e,0 (R) → C1+α

e,0 (R) is an isomorphism, we get

ζ = (1− ∂2q )
−1
[
ζ + ω5(ζ)

(∫ 1

0
ω5(ζ) dq

)−1
∫ 1

0
ω5(ζ)Φ(λ, h) dq − ω5(ζ)Φ(λ, h)

]
∈ C3+α

e,0 (R).

This proves that tr0 h satisfies (3.7) and therewith the first implication in Lemma 3.1 below.

Lemma 3.1. Let h ∈ X satisfy (3.2b). Then the following are equivalent:
(i) tr0 h ∈ C4+β

e (R) and h satisfies (3.2a)3;
(ii) With Φ defined in (3.6) we have

tr0 h = (1− ∂2q )
−1
[
λω5(tr0 h/λ)

(∫ 1

0
ω5(tr0 h/λ) dq

)−1
∫ 1

0
ω5(tr0 h/λ)Φ(λ, h) dq

+ tr0 h− λω5(tr0 h/λ)Φ(λ, h)
]
.

(3.7)

Proof. It remains to prove that (ii) implies (i). Let thus Lemma 3.1 (ii) be satisfied. Then,
since the argument of (1− ∂2q )

−1 in (3.7) lies in C1+β
e,0 (R), the function ζ := tr0 h/λ belongs

to C3+α
e,0 (R) and satisfies (3.5). Multiplying now (3.5) by ω−5(ζ) and differentiating the

resulting equation once, we deduce that ζ satisfies the equation (3.4), hence ζ ∈ C4+β
e (R).

Differentiating (3.4), we deduce that indeed H(ζ) = B(λ, h), thus (3.2a)3 holds true. □

In view of Lemma 3.1 we have formulated the problem (3.2) as the following system

(λ2 + h2q)hpp − 2hphqhpq + h2phqq − λ2γh3p = 0 in Ω,

h = −d on p = p0,

h = Ψ(λ, h) on p = 0,

 (3.8a)

and
hp > 0 in Ω, (3.8b)

where Ψ : (0,∞)× {h ∈ X : hp > 0 in Ω} → C3+α
e,0 (R) is the smooth mapping given by

Ψ(λ, h) := (1− ∂2q )
−1
[
λω5(tr0 h/λ)

(∫ 1

0
ω5(tr0 h/λ) dq

)−1
∫ 1

0
ω5(tr0 h/λ)Φ(λ, h) dq

+ tr0 h− λω5(tr0 h/λ)Φ(λ, h)
]
.

(3.9)

4. Local bifurcation analysis

In this section we consider the equivalent formulation (3.8) of the hydroelastic waves
problem (1.2) and study its solutions set. In a first step we investigate in Section 4.1 the
existence of laminar flow solutions to (3.8). Then, in Section 4.2 we formulate (3.8) as a
bifurcation problem, see (4.5), and determine a sufficient and necessary condition, see (4.16),
for bifurcation from the set of laminar flow solutions. We conclude this section with the proof
of the main result.
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4.1. Laminar flow solutions for (3.8). We next investigate the existence of laminar flow
solutions to (3.8), that is, given λ > 0, we look for solutions H = H(λ) ∈ X to (3.8) that
depend only on the variable p. Then, H ∈ C2+β([p0, 0]) solves the Sturm–Liouville problem

H ′′ = γH ′3 in (p0, 0),

H(p0) = −d, H(0) = 0

}
(4.1)

together with the inequality that H ′ > 0 in [p0, 0]. The next result shows that (1.3) is a
sufficient and necessary condition for the existence of a (unique) laminar flow solution.

Lemma 4.1. The boundary value problem (4.1) has a solution H ∈ C2+β([p0, 0]) with H ′ > 0
in [p0, 0] iff (1.3) is satisfied. In this case the solution is unique and it is given by

H(p) = −
∫ 0

p
(ϑ− 2Γ(s))−1/2ds, p ∈ [p0, 0], (4.2)

where ϑ > 2max[p0,0] Γ is the unique solution to∫ 0

p0

(ϑ− 2Γ(s))−1/2ds = d. (4.3)

Proof. Since (4.1)1 is equivalent to ( 1

H ′2 + 2Γ
)′

= 0,

we obtain that
1

H ′2(p)
= ϑ− 2Γ(p), p ∈ [p0, 0],

where the constant ϑ needs to satisfy ϑ > 2max[p0,0] Γ. From the latter relation we infer
that H is given by (4.2) and solves (4.1) iff ϑ is the solution to (4.3). In view of the
monotonicity of the integrand in (4.3) with respect to ϑ, the existence of the (unique)
solution to (4.3) is equivalent to (1.3). □

4.2. Bifurcation analysis for (3.8). In the following we assume that (1.3) is satisfied
and we denote by H the laminar flow solution identified in Lemma 4.1. We next define the
Banach spaces Y and Z1×Z2 consisting of 1-periodic functions with respect to the variable q
by setting

Y := {h ∈ X : h = 0 on p = p0}, Z1 := {h ∈ Cβ(Ω) : h is even}, Z2 := C2+β
e,0 (R),

and we denote by O the open subset of Y defined by

O := {h ∈ Y : hp +H ′ > 0 in Ω}.
We further introduce the operator F := (F1,F2) : (0,∞)×O ⊂ R× Y → Z1 × Z2 by

F1(λ, h) := (λ2 + h2q)(H
′′ + hpp)− 2(H ′ + hp)hqhpq + (H ′2 + h2p)hqq − λ2γ(H ′ + hp)

3,

F2(λ, h) := tr0 h− ψ(λ, h+H).
(4.4)

Hence, the problem (3.8) is equivalent to the nonlinear and nonlocal equation

F(λ, h) = 0, (4.5)
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where
F ∈ C∞((0,∞)×O,Z1 × Z2) (4.6)

has the property that
F(λ, 0) = 0 for all λ > 0. (4.7)

Our goal is to apply the Crandall–Rabinowitz theorem [14, Theorem 1.7] on bifurcation
from simple eigenvalues in the context of (4.5) in order to determine new solutions to (4.5)
which are also q-dependent. For this reason we shall determine λ∗ > 0 with the property
that the partial Fréchet derivative ∂hF(λ∗, 0) is a Fredholm operator of index zero with a
one-dimensional kernel.

Given λ > 0, the partial Fréchet derivative ∂hF(λ, 0) := (L, T ) is given by

L[h] := λ2hpp +H ′2hqq − 3λ2γH ′2hp,

T [h] := tr0 h− (1− ∂2q )
−1
[
tr0 h− λ4

α

(
S[h]−

∫ 1

0
S[h] dq

)] (4.8)

for h ∈ Y, where

S[h](q) :=

∫ q

0

∫ x

0

[
tr0

( hp
H ′3 − gh

)
−
∫ 1

0
tr0

hp
H ′3 dq

]
ds dx, q ∈ R.

Lemma 4.2. Given λ > 0, the Fréchet derivative ∂hF(λ, 0) ∈ L(Y,Z1 × Z2) is a Fredholm
operator of index zero.

Proof. In view of [19, Theorem 6.14], the operator

(λ2∂2p +H ′2∂2q , tr) : C
2+β(Ω) → Cβ(Ω)× C2+β(R)2

is an isomorphism. We may infer from this property that (λ2∂2p +H ′2∂2q , tr0) : Y → Z1 ×Z2

is an isomorphism too. Since[
h 7→

(
− 3λ2γH ′2hp,−(1− ∂2q )

−1
[
tr0 h− λ4

α

(
S[h]−

∫ 1

0
S[h] dq

)])]
: Y → Z1 × Z2

is a compact operator, the desired claim for ∂hF(λ, 0) follows at once. □

The next lemma characterizes the functions that belong to the kernel of ∂hF(λ, 0).

Lemma 4.3. Assume that (1.3) is satisfied and set

a := 1/H ′, (4.9)

where H is the unique solution to (4.1). Then, given λ > 0, h ∈ Y satisfies ∂hF(λ, 0)[h] = 0
iff h0 = 0 and for all 1 ≤ k ∈ N we have

λ2(a3h′k)
′ − (2kπ)2ahk = 0 in Cβ([p0, 0]),(

gλ4 + α(2kπ)4
)
hk(0) = λ4a3(0)h′k(0),

hk(p0) = 0,


where the function hk ∈ C2+β([p0, 0]), k ∈ N, is defined by

hk(p) :=

∫ 1

0
h(q, p) cos(2kπq) dq, p ∈ [p0, 0]. (4.10)
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Proof. Let h ∈ Y satisfy ∂hF(λ, 0)[h] = 0. Then, the relation L[h] = 0 is equivalent to

λ2h′′k − 3λ2γH ′2h′k − (2kπ)2H ′2hk = 0 in Cβ([p0, 0]) for all k ∈ N.

The latter identity is obtained by multiplying the equation L[h] = 0 by cos(2kπq), followed
by integration on [p0, 0]. Since a is positive and γ = −aa′, cf. (4.1)1, we may reformulate
the latter equation as

λ2(a3h′k)
′ − (2kπ)2ahk = 0 in Cβ([p0, 0]) for all k ∈ N.

Furthermore, since h ∈ Y we have

h0(0) = 0,

while, arguing similarly as above, the relation T [h] = 0 is equivalent to(
gλ4 + α(2kπ)4

)
hk(0) = λ4a3(0)h′k(0) for all k ≥ 1.

Finally, since each h ∈ Y vanishes on the boundary p = p0, it holds that

hk(p0) = 0 for all k ∈ N.

Noticing that the function h0 ∈ C2+β([p0, 0]) solves the boundary value problem

(a3h′0)
′ = 0 in [p0, 0], h0(0) = h0(p0) = 0,

it is straightforward to conclude that actually h0 = 0. This proves the claim. □

In Lemma 4.3 we have shown that a function h ∈ Y with h0 = 0 solves ∂hF(λ, 0)[h] = 0
iff for all k ≥ 1 the function hk defined in (4.10) is a solution to the Sturm-Liouville problem

λ2(a3f ′)′ − µaf = 0 in [p0, 0],

(gλ4 + αµ2)f(0) = λ4a3(0)f ′(0),

f(p0) = 0

 (4.11)

with µ := (2kπ)2. We next determine λ∗ > 0 such that (4.11) has a nontrivial solution
for µ = (2π)2 and only the trivial solution f = 0 when µ > (2π)2. As a first step we show
that the solutions to (4.11) build a vector space of dimension less or equal to 1 for each
choice of the parameters λ > 0 and µ ∈ R. To this end we define the Sturm–Liouville type
operator Rλ,µ : C2+β

0 ([p0, 0]) → Cβ([p0, 0])× R by

Rλ,µ[f ] :=

(
λ2(a3f ′)′ − µaf

λ4a3(0)f ′(0)− (gλ4 + αµ2)f(0)

)
, (4.12)

where C2+β
0 ([p0, 0]) := {f ∈ C2+β([p0, 0]) : f(p0) = 0}. Let further f1, f2 ∈ C2+β

0 ([p0, 0])
denote the solutions to the initial value problems

λ2(a3f ′1)
′ − µaf1 = 0 in [p0, 0],

f1(p0) = 0, f ′1(p0) = 1,

}
(4.13)

and
λ2(a3f ′2)

′ − µaf2 = 0 in [p0, 0],

f2(0) = λ4a3(0), f ′2(0) = gλ4 + αµ2.

}
(4.14)
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Lemma 4.4. Given λ > 0 and µ ∈ R, the operator Rλ,µ is a Fredholm operator of index
zero with dimkerRλ,µ ≤ 1. Additionally, dimkerRλ,µ = 1 iff the functions f1 and f2 are
linearly dependent. In this case we have kerRλ,µ = span{f1}.

Proof. Since [f 7→ (λ2(a3f ′)′, λ4a3(0)f ′(0))] : C2+β
0 ([p0, 0]) → Cβ([p0, 0]) × R is obviously

an isomorphism and Rλ,µ is a compact perturbation of this operator, it follows that Rλ,µ
is indeed a Fredholm operator of index zero. Moreover, if f, f̃ ∈ kerRλ,µ, then f ′f̃ = ff̃ ′,
which shows that dimkerRλ,µ ≤ 1.

Let dimkerRλ,µ = 1 and let 0 ̸= f ∈ kerRλ,µ. Then, since a3(ff ′i − f ′fi), i = 1, 2, is a
constant function, the initial conditions in (4.13)-(4.14) ensure that this function is in fact
identically zero, hence f1 and f2 are linearly dependent. Viceversa, if f1 and f2 are linearly
dependent, then they both belong to kerRλ,µ, and this completes the proof. □

In view of Lemma 4.4 it remains to look for a value λ∗ > 0 with the property that the
Wronskian f1f

′
2 − f ′1f2 vanishes in [p0, 0] only for µ = (2π)2. Since a3(f1f ′2 − f ′1f2) is a

constant function in [p0, 0] and a ̸= 0, the Wronskian vanishes in [p0, 0] iff it vanishes at the
point p = 0. Therefore we consider the function W : (0,∞)× R → R given by

W (λ, µ) = f1(0)f
′
2(0)− f ′1(0)f2(0) = (gλ4 + αµ2)f1(0)− λ4a3(0)f ′1(0).

Observing that (4.13)1 depends smoothly on µ and λ, this property is inherited also by the
solution to (4.13), cf. e.g. [5], and therefore we have W ∈ C∞((0,∞)× R).

For the special value µ = 0 we have

W (λ, 0) = λ4(gf1(0)− a3(0)f ′1(0)).

In view of (4.13) we compute, in the particular case µ = 0, that

f ′1(0) =
a3(p0)

a3(0)
and f1(0) =

∫ 0

p0

a3(p0)

a3(p)
dp,

which leads to

W (λ, 0) = λ4a3(p0)
(
g

∫ 0

p0

1

a3(p)
dp− 1

)
. (4.15)

Hence, if

g

∫ 0

p0

1

a3(p)
dp < 1, (4.16)

then
W (λ, 0) < 0 for all λ > 0. (4.17)

We next investigate the behavior of W (λ, µ) when µ→ ∞ .

Lemma 4.5. Given λ > 0, it holds that lim
µ→∞

W (λ, µ) = ∞.

Proof. Let m, M ∈ (0,∞) be defined as m := min[p0,0] a and M := max[p0,0] a. We note
that, since f ′1(p0) = 1 and f1(p0) = 0, there exists p ∈ (0, p0] such that f1(p) > 0 in (p0, p).
This property together with (4.13)1 implies that a3f ′1 is a non-decreasing function in (p0, p)
and that f ′1(p) ≥ (m/M)3 for all p ∈ [p0, p]. Consequently, by the fundamental theorem of
calculus, f1(p) ≥ (p− p0)(m/M)3 > 0 and therefore we may actually chose p = 0. Thus, f1
is an increasing function in [p0, 0] and f1(0) ≥ |p0|(m/M)3.
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Integrating the first equation of (4.13) over [p0, 0], we have

a3(0)f ′1(0) = a3(p0) +
µ

λ2

∫ 0

p0

a(p)f1(p) dp ≤M3 +
M |p0|µ
λ2

f1(0) for all λ, µ ∈ (0,∞).

This estimate together with the definition of W (λ, µ) and the relation f1(0) ≥ |p0|(m/M)3

implies that
W (λ, µ) ≥ (αµ2 − λ2M |p0|µ)f1(0)− λ4M3 −→

µ→∞
∞,

and the desired claim follows. □

From now on, we assume that (4.16) is satisfied. In view of Lemma 4.5, for each
given λ > 0, the function W (λ, ·) has at least a positive zero. We next investigate the partial
derivatives Wλ(λ, µ) and Wµ(λ, µ) in all points (λ, µ) having the property that W (λ, µ) = 0.

Lemma 4.6. Let λ, µ ∈ (0,∞) be given such that W (λ, µ) = 0. We then have:
(i) Wλ(λ, µ) < 0;
(ii) Wµ(λ, µ) > 0 and

Wλ(λ, µ)

Wµ(λ, µ)
= −2µ

λ
. (4.18)

Proof. If W (λ, µ) = 0, the solutions f1 and f2 to (4.13) and (4.14) are linearly dependent,
hence f1 = Θf2 with Θ ∈ R. By Lemma 4.5, f1 is positive in (p0, 0]. Recalling that
also f2(0) > 0, it follows that actually Θ > 0.

Given (λ, µ)× R ∈ (0,∞), an application of the chain rule yields that

Wλ(λ, µ) = (gλ4 + αµ2)f1,λ(0)− λ4a3(0)f ′1,λ(0) + 4λ3gf1(0)− 4λ3a3(0)f ′1(0),

where f1,λ ∈ C2+β([p0, 0]) is the solution to

λ2(a3f ′1,λ)
′ − µaf1,λ = −2λ(a3f ′1)

′ in [p0, 0],

f1,λ(p0) = 0, f ′1,λ(p0) = 0.

}
(4.19)

We next multiply (4.19)1 by f1 and subtract from this relation the identity (4.13) multiplied
with f1,λ, to obtain, after integration on [p0, 0], that

λa3(0)f1(0)f
′
1,λ(0) = λa3(0)f ′1(0)f1,λ(0)− 2a3(0)f1(0)f

′
1(0) + 2

∫ 0

p0

a3(p)f ′21 (p) dp.

If W (λ, µ) = 0, the latter relation together with the identity f1 = Θf2, Θ > 0, leads us to

f1(0)Wλ(λ, µ) = 2λ3
(
2gf21 (0)− a3(0)f1(0)f

′
1(0)−

∫ 0

p0

a3(p)f ′21 (p) dp
)

= 2λ3
(
a3(0)f1(0)f

′
1(0)−

2αµ2

λ4
f1(0)

2 −
∫ 0

p0

a3(p)f ′21 (p) dp
)
.

We may now multiply (4.13)1 by f1 and integrate over [p0, 0] to obtain that

a3(0)f1(0)f
′
1(0) =

µ

λ2

∫ 0

p0

a(p)f21 (p) dp+

∫ 0

p0

a3(p)f ′21 (p) dp, (4.20)
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hence, on the one hand

f1(0)Wλ(λ, µ) = 2λ3
( µ
λ2

∫ 0

p0

a(p)f21 (p) dp−
2αµ2

λ4
f1(0)

2
)
, (4.21)

and, on the other hand

f1(0)Wλ(λ, µ) = 2λ3
(
2gf21 (0)− 2

∫ 0

p0

a3(p)f ′21 (p) dp− µ

λ2

∫ 0

p0

a(p)f21 (p) dp
)
. (4.22)

Hölder’s inequality now yields

gf21 (0) = g
(∫ 0

p0

f ′1(p) dp
)2

≤ g
(∫ 0

p0

1

a3(p)
dp
)(∫ 0

p0

a3(p)f ′21 (p) dp
)

(4.23)

and together with (4.22) and (4.16) we have

f1(0)Wλ(λ, µ)

4λ3
<
(
g

∫ 0

p0

1

a3(p)
dp− 1

)(∫ 0

p0

a3(p)f ′21 (p) dp
)
< 0,

which proves (i).
In order to prove (ii), we proceed similarly as above and compute, for given λ, µ ∈ (0,∞),

that
Wµ(λ, µ) = (2gλ4 − αµ2)f1,µ(0)− λ4a3(0)f ′1,µ(0)− 2αµf1(0),

where f1,µ ∈ C2+β([p0, 0]) is the solution to

λ2(a3f ′1,µ)
′ − µaf1,µ = af1 in [p0, 0],

f1,µ(p0) = 0, f ′1,µ(p0) = 0.

}
(4.24)

We next multiply (4.24)1 by f1 and subtract from this relation the identity (4.14) multiplied
with f1,µ, to obtain, after integration on [p0, 0], that

a3(0)f1(0)f
′
1,µ(0) = a3(0)f ′1(0)f1,µ(0) +

1

λ2

∫ 0

p0

a(p)f21 (p) dp.

Hence, if W (λ, µ) = 0, the latter identity combined with the relation f1 = Θf2, Θ > 0, leads
us to

µf1(0)Wµ(λ, µ)

λ4
= −

( µ
λ2

∫ 0

p0

a(p)f21 (p) dp−
2αµ2

λ4
f1(0)

2
)
,

and (ii) follows in view of (4.21) and (i). □

Given λ > 0, let
µ(λ) := inf{µ > 0 : W (λ, µ) > 0}. (4.25)

Since W is smooth, (4.17) and Lemma 4.5 imply that µ(λ) is well-defined for all λ > 0 and
moreover µ(λ) > 0. In fact, Lemma 4.6 implies that, for each λ > 0, µ(λ) is the unique
positive zero of the mapping W (λ, ·). Moreover, the implicit function theorem together with
Lemma 4.6 ensures that

[µ 7→ λ(µ)] : (0,∞) → (0,∞)

is smooth. We now use the chain rule together with (4.18) to compute that

µ′(λ) = −Wλ(λ, µ)

Wµ(λ, µ)
=

2µ(λ)

λ
, λ > 0,
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from where we infer that there exists a positive constant C0 such that

µ(λ) = C0λ
2, λ > 0. (4.26)

It is remarkable that exactly the same expression for µ (with a possibly different constant C0)
has been obtained in [16] in the analysis of the bifurcation problem for stratified capillary-
gravity waves. We arrive at the following result.

Lemma 4.7. Let

λ∗ :=
2π√
C0
, (4.27)

where C0 is the constant identified in (4.26). Then, ∂hF(λ∗, 0) is a Fredholm operator of
index zero and with a one-dimensional kernel spanned by

h∗(q, p) := f1,∗(p) cos(2πq), (q, p) ∈ Ω, (4.28)

where f1,∗ denotes the solution to (4.13) corresponding to the parameters (λ, µ) = (λ∗, (2π)
2).

Proof. Since µ(λ∗) = (2π)2 is the unique positive zero of W (λ∗, ·), see (4.25)-(4.27), the
claim follows from Lemma 4.2, Lemma 4.3, and Lemma 4.4. □

In order to apply [14, Theorem 1.7] in the context of the bifurcation problem (4.5), it
remains to prove that the transversality condition

∂λhF(λ∗, 0)[h∗] ̸∈ im ∂hF(λ∗, 0), (4.29)

with λ∗ and h∗ introduced in (4.27) and (4.28), is satisfied. Therefore, we first characterize
in Lemma 4.8 below the range of ∂hF(λ∗, 0).

Lemma 4.8. A pair (F,φ) ∈ Z1 × Z2 belongs to im ∂hF(λ∗, 0) iff∫
Ω
a3h∗F d(q, p) + αC0(1 + C0λ

2
∗)

∫ 1

0
φ tr0 h∗ dq = 0, (4.30)

where h∗ ∈ ker ∂hF(λ∗, 0) is defined in (4.28).

Proof. As a starting point we observe that for ∂hF(λ∗, 0) = (L, T ) we have

L[h] = λ2∗a
−3(a3hp)p + a−2hqq, h ∈ Y.

We now assume that (F,φ) ∈ im ∂hF(λ∗, 0) is the image of a function h ∈ Y. Multiplying
the identity L[h] = F by a3h∗ and integrating the resulting relation by parts, we find that∫

Ω
a3h∗F d(q, p) =

∫ 1

0
λ2∗ tr0(a

3hph∗) dq −
∫
Ω

[
λ2∗a

3hph∗,p + ahqh∗,q
]
d(q, p). (4.31)

Moreover, after multiplying the relation T [h] = φ by tr0 h∗ and integrating the resulting
relation by parts, we obtain, in view of the symmetry of the operator (1− ∂2q )

−1, that∫ 1

0
λ4∗ tr0(a

3hph∗) dq =

∫ 1

0
(α(2π)4 + gλ4∗) tr0(hh∗) dq − α(2π)2(1 + (2π)2)

∫ 1

0
φ tr0 h∗ dq.

In virtue of (4.26), (4.27), and (4.13) we have

(α(2π)4 + gλ4∗) tr0 h∗ = λ4∗ tr0(a
3h∗,p) (4.32)
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and the latter identity can thus be recast as∫ 1

0
λ2∗ tr0(a

3hph∗) dq =

∫ 1

0
λ2∗ tr0(a

3h∗,ph) dq − αC0(1 + (2π)2)

∫ 1

0
φ tr0 h∗ dq, (4.33)

where C0 is defined in (4.26). We now sum up (4.31) and (4.33) to conclude that∫
Ω
a3h∗F d(q, p) + αC0(1 + (2π)2)

∫ 1

0
φ tr0 h∗ dq

=

∫ 1

0
λ2∗ tr0(a

3h∗,ph) dq −
∫
Ω

[
λ2∗a

3hph∗,p + ahqh∗,q
]
d(q, p).

(4.34)

Moreover, arguing as above, but interchanging the roles of h and h∗, we arrive, in view
of ∂hF(λ∗, 0)[h∗] = 0, at∫ 1

0
λ2∗ tr0(a

3h∗,ph) dq −
∫
Ω

[
λ2∗a

3hph∗,p + ahqh∗,q
]
d(q, p) = 0.

This relation together with (4.34) immediately implies (4.30).
Noticing that (4.30) defines a closed subspace of Z1×Z2 of codimension 1 which contains

the range of ∂hF(λ∗, 0), the desired claim follows now from Lemma 4.2. □

We are now in a position to verify the transversality condition (4.29).

Lemma 4.9. We have ∂λhF(λ∗, 0)[h∗] ̸∈ im ∂hF(λ∗, 0).

Proof. Recalling (4.8), we have

∂λhF1(λ∗, 0)[h∗] := 2λ∗a
−3(a3h∗,p)p,

∂λhF2(λ∗, 0)[h∗] :=
4λ3∗
α

(1− ∂2q )
−1
[
S[h∗]−

∫ 1

0
S[h∗] dq

]
,

where, using the definition of the operator S and that of h∗ together with (4.32), we have

S[h∗]−
∫ 1

0
S[h∗] dq = − 1

(2π)2
tr0(a

3h∗,p − gh∗) = − αC2
0

(2π)2
tr0 h∗.

Appealing to (4.20), we compute∫
Ω
a3h∗∂λhF1(λ∗, 0)[h∗] d(q, p) = λ∗

(
a3(0)f1,∗(0)f

′
1,∗(0)−

∫ 0

p0

a3(p)f ′21,∗(p) dp
)

= λ∗

(
(g + αC2

0 )f
2
1,∗(0)−

∫ 0

p0

a3(p)f ′21,∗(p) dp
)

and

αC0(1 + C0λ
2
∗)

∫ 1

0
∂λhF2(λ∗, 0)[h∗] tr0 h∗ dq = 2λ∗f1,∗(0)(a

3(0)f ′1,∗(0)− 2gf1,∗(0))

= −2αλ∗C
2
0f

2
1,∗(0),
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hence, using also (4.23) and (4.16), we get∫
Ω
a3h∗∂λhF1(λ∗, 0)[h∗] d(q, p) + αC0(1 + C0λ

2
∗)

∫ 1

0
∂λhF2(λ∗, 0)[h∗] tr0 h∗ dq

= λ∗

(
(g − αC2

0 )f
2
1,∗(0)−

∫ 0

p0

a3(p)f ′21,∗(p) dp
)

< λ∗

(
gf21,∗(0)−

∫ 0

p0

a3(p)f ′21,∗(p) dp
)

≤ λ∗

(
g

∫ 0

p0

1

a3(p)
dp− 1

)∫ 0

p0

a3(p)f ′21,∗(p) dp < 0.

This proves the claim. □

We are now in a position to establish Theorem 1.1.

Proof of Theorem 1.1. In view of Lemma 3.1 and of Proposition 2.1, in the framework of
waves which are symmetric with respect to the vertical line x = 0, the Euler formula-
tion (1.2) of the steady hydroelastic waves problem is equivalent to the height function
formulation (3.8), hence also to the bifurcation problem (4.5). Therefore, the assertion (i)
is a straightforward consequence of Lemma 4.1.

Concerning (iia), if (1.4) is not satisfied, then W (λ, 0) ≥ 0 for all λ > 0, see (4.15), and
Lemma 4.5 and Lemma 4.6 (ii) then ensure that W (λ, µ) > 0 for all µ > 0. Lemma 4.2,
Lemma 4.3, and Lemma 4.4 then imply that ∂hF(λ, 0) is an isomorphism, hence (λ, 0) is
not a bifurcation point for (4.5), regardless of the value of λ > 0.

It remains to establish (iib). Therefore we note that (4.15), (4.16), Lemma 4.5, and
Lemma 4.6 (ii) imply that for each λ > 0, the nonlinear equation W (λ, ·) = 0 has a unique
solution µ = µ(λ) > 0, which is given by (4.26). Our previous requirements that the
boundary value problem (4.11) has a nontrivial solution for µ = (2π)2 and only the zero
solution for µ > (2π)2 identifies a unique value λ∗, see (4.27), with this property. The
smoothness property (4.6) together with Lemma 4.7 and Lemma 4.9 enable us now to use
the local bifurcation theorem due to Crandall and Rabinowitz, cf. [14, Theorem 1.7], in the
context of (4.5), to conclude, in view of the equivalence of the formulations (1.2) and (4.5),
the existence of the smooth local bifurcation curve

[s 7→ (λ(s), h(s))] : (−ε, ε) → (0,∞)×O, (4.35)

where ε > 0 is small, such that F(λ(s), h(s)) = 0 for all |s| < ε. Moreover, λ(0) = λ∗ and

h(s) = s(h∗ + χ(s)) (4.36)

where χ ∈ C∞((−ε, ε),Y) satisfies χ(0) = 0. Arguing similarly as in [13, Section 5], it is
not difficult to prove that, since the function h∗ satisfies h∗(q, 0) = f1,∗(0) cos(2πq), q ∈ R,
see (4.28), with f1,∗(0) > 0, also the waves profile η(s) has for s ̸= 0 exactly one maximum
(at x = 0) and minimum (at x = λ(s)/2) per period. This completes the proof. □
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