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Metal ions such as zinc and copper play important roles in host–microbe interactions and
their availability can drastically affect the survival of pathogenic bacteria in a host niche.
Mechanisms of metal homeostasis protect bacteria from starvation, or intoxication,
defined as when metals are limiting, or in excess, respectively. In this mini-review, we
summarise current knowledge on the mechanisms of resistance to metal stress in bac-
teria, focussing specifically on the homeostasis of cellular copper and zinc. This includes
a summary of the factors that subvert metal stress in bacteria, which are independent of
metal efflux systems, and commentary on the role of small molecules and metabolic
systems as important mediators of metal resistance.

Introduction
Pathogenic bacteria are subjected to several host antimicrobial effectors within the human body and
must employ multiple mechanisms to resist these cellular stresses to survive, colonise and cause
disease. Such stresses include antimicrobial peptides, reactive oxygen and nitrogen species, pH
changes and nutrient availability which are reviewed in detail elsewhere [1]. Another important anti-
microbial effector axis is the manipulation of metal ion availability during host–pathogen interactions
[2]. Transition metal ions, including zinc (Zn), copper (Cu), iron (Fe) and manganese (Mn) are indis-
pensable elements required for the correct function of numerous biological systems, functioning
primarily as cofactors in catalytic sites of enzymes with important roles in a variety of processes,
including electron and oxygen transport and detoxification of reactive species [3,4]. Metal ions
can also be toxic due to their reactivity [5] and ability to displace other metals in catalytic sites of
proteins [6–8].
The importance and toxicity of metals in biological functions makes it unsurprising that bacteria

can sense and respond to changes in the availability of free metals in their external environment [9].
In turn, the host can respond to microbial infection by altering metal bioavailability either through
sequestration, which can result in metal starvation, or by proactively mobilising and concentrating
metals to intoxicate potential pathogens. Nutritional immunity is a form of host defence that exploits
the relative bioavailability of trace elements to counteract infectious microbes and eliminate pathogens
[2,10]. Metal homeostasis is the cellular management of metal levels to maintain bioavailability inside
the cell whilst also minimising any damaging, cytotoxic effects of excessive metal build-up. This
review primarily focusses on the mechanisms used by gram-positive bacteria to counteract metal tox-
icity in order to tolerate conditions of excess metal, such as those encountered following phagocytosis
by macrophages or other immune cells [11,12]. We focus on the metals Cu and Zn due to their high
reactivity as described in the Irving–Williams series [5] and their ability to form stable complexes
with proteins that can disrupt function, either by displacing a preferred metal, leading to mismetalla-
tion [7,8], or by causing dysfunction by other means [13–18]. We also discuss resisting metal starva-
tion and the ways through which bacterial pathogens subvert this important element of nutritional
immunity.
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Transport-independent mediators of resistance to Cu
intoxication
Although efflux systems are considered the primary means of metal ion detoxification [2,9,10,16,18–28],
numerous transport-independent metal resistance effectors are reported to confer survival advantages during
metal intoxication and these are described in detail below, including discussion of small molecules that directly
affect metal availability, and those that subvert poisoning by metal intoxication.

Glutathione buffering protects from Cu toxicity
Glutathione is a small, non-protein, low molecular mass thiol synthesised from the amino acids glutamate, cyst-
eine and glycine. Glutathione participates in numerous processes in bacteria including redox cycling, protection
from oxidant damage [29], resistance to acid stress [30] and detoxification of Cu [29,31]. Glutathione complexes
with Cu in aqueous solutions [32,33] and likely does so by assembling stable tetranuclear Cu4GS6 clusters,
although the stoichiometry of Cu–glutathione complexes changes under different Cu concentrations [34].
Stewart et al. [35] demonstrate that glutathione also acts to buffer free Cu ions in Streptococcus pyogenes. Cu
stress was studied in ΔcopA S. pyogenes (defective for the primary Cu efflux system, CopA) and analysis of
culture media demonstrates that a reduction in cellular glutathione levels was concurrent with the onset of Cu
intoxication in cells growing at late-exponential phase. This was manifested in S. pyogenes by metabolic arrest
due to reduction in both the consumption of glucose and production of lactic acid during fermentation, reduced
activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH; EC 1.2.1.12: D-glyceraldehyde 3-phosphate +
phosphate + NAD+→ 1,3-bisphospho-D-glycerate + NADH+H+; encoded by gapA), and dysregulation of Zn
and Mn management, resulting in bacterial death [35]. The authors postulate that Cu-dependent growth inhib-
ition in S. pyogenes likely occurs due to mismetallation of GapA (Figure 1A) and subsequent reduction in
GAPDH activity, as was demonstrated in studies of Cu intoxication with Staphylococcus aureus GapA [36].
Supplementation assays showed that exogenous glutathione restored the growth of S. pyogenes in high Cu condi-
tions, but the addition of other nutrients that were also limiting at late-exponential phase, including alanine/
lysine, glycine/serine, isoleucine/leucine/valine, vitamins and nucleobases had no effect [35]. These authors con-
clude that cytoplasmic glutathione serves as an additional mode of metal intoxication resistance, likely through
binding and chelating free Cu ions inside the cell, thus limiting the inhibition of core metabolic pathways.

Amino acid supplementation subverts Cu intoxication
In another study of Cu intoxication in S. pyogenes, Dao et al. showed a reduction in viability during stationary
phase in planktonic cultures undergoing Cu stress. The authors attributed this observation to nutritional defi-
ciency since supplementation with a mixture of exogenous amino acids rescued this defect in survival at sta-
tionary phase. Supplementation with cysteine (Figure 1A), which forms Cu-binding ligands in proteins [37],
enhanced survival in conditions of high Cu stress in S. pyogenes [38], consistent with prior studies of Cu intoxi-
cation in Escherichia coli [31]. Dao et al. [38] suggest that cysteine may rescue S. pyogenes from Cu toxicity due
to this thiol-containing amino acid acting as a low-affinity pool for buffering free Cu. In comparing the work
of Stewart et al. [35] and Dao et al. [38], which both analysed ΔcopA mutants to study Cu intoxication in S.
pyogenes, it is noteworthy that the two studies used distinctly different growth media. Such differences would
affect the buffering capacity of small molecules in the medium for free Cu. This may explain the considerably
higher concentration of Cu used by Dao et al. [38] (100–1000 μM) to induce Cu poisoning in ΔcopA
S. pyogenes, compared with Stewart et al. study (1–5 μM). Dao et al. [38] used Todd-Hewitt broth supplemen-
ted with yeast extract, a complex nutritionally rich media, replete with amino acids, whereas Stewart et al. [35]
used a chemically defined medium based on RPMI, which would likely be replete with carbon sources but lim-
iting in amino acid content. Striking differences in Cu stress phenotypes are reported in other studies of
streptococci which have compared nutrient-rich and nutrient-limiting growth media of similar composition to
the studies above [25], underscoring the crucial influence media composition has on measuring phenotypes
relating to Cu intoxication.

Branched-chain amino acids bypass Cu poisoning
In studies of E. coli, Macomber and Imlay [39] showed that Cu exerts toxicity by inducing branched-chain
amino acid (BCAA) auxotrophy through poisoning of leucine synthesis pathways. In a series of experiments
using wild-type (WT) and mutant E. coli defective for Cu export (copA− cueO− cusCFBA−) and a defined
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glucose medium, authors observed extreme sensitivity of E. coli to excess Cu, compared with similar assays per-
formed using complex media [39]. Subsequent experiments showed Cu intoxication inactivated BCAA synthe-
sis due to loss-of-function of dehydratase enzymes containing iron–sulfur (Fe–S) clusters such as
isopropylmalate isomerase (IPMI; EC 4.2.1.33) involved in leucine biosynthesis. Supplementation with exogen-
ous BCAAs (isoleucine, valine and leucine; Figure 1B) only partially restored growth during Cu intoxication
[39], and consistent with this partial restoration, Macomber and Imlay [39] showed that growth-limiting pro-
cesses linked to Cu poisoning occur outside of BCAA synthesis, likely due to direct damage of Fe–S clusters of
other enzymes. For example, Cu poisoning resulted in the destruction of the Fe–S cluster of fumarase A
(Figure 1B). The inhibitory effect of Cu on the purified fumarase A protein could be prevented by the addition
of glutathione as a Cu-chelator, or enhanced, by the addition of histidine as a Cu-solubilisation agent, which
likely prevented, or aided Cu delivery to the Fe–S cluster, respectively [39]. Importantly, work from the Imlay
group also revealed that Cu toxicity proceeds in the absence of oxygen, suggesting that damage to Fe–
S-containing enzymes such as IPMI and fumarase by Cu is unrelated to reactive oxygen species [39].

Bypassing glutamate synthesis protects from Cu toxicity at low pH
In studies of Cu stress in E. coli exposed to acidic conditions, Djoko et al. [31] showed that excess Cu impaired
glutamate biosynthesis through inactivation of glutamine oxoglutarate aminotransferase (GOGAT), which con-
tains a solvent-exposed 4Fe–4S cluster. Loss of GOGAT function during Cu stress (Figure 1C) resulted in a

Figure 1. Cu intoxication in bacteria and molecular rescue by small molecules.

(A) Cu intoxication causes a reduction (red arrows) in cellular glutathione, metal management [35] and reduction in viability at

late stationary phase [38] in S. pyogenes. Cu-binding to histidine and cysteine residues in the catalytic site of GapA likely leads

to a reduction in activity and subsequent flux through the fermentative pathway [35]. Growth inhibition in S. pyogenes

undergoing Cu intoxication can be rescued by supplementation with the small molecules glutathione [35] or cysteine [38], likely

due to chelation of excess Cu. (B) Cu binds to and destroys solvent-accessible Fe–S clusters in enzymes such as in IPMI and

fumarase. This leads to growth inhibition of E. coli by a reduction in BCAA synthesis and reduced activity of multiple Fe–S

enzymes [31,39], which can be partially restored by supplementing with BCAAs valine, leucine and isoleucine to bypass the

BCAA synthesis block [39]. (C) Cu inactivates Fe–S cluster-containing GOGAT, impairing glutamate synthesis, which can be

rescued by supplying exogenous glutamate or glutamine [31]. GAPDH/GapA, glyceraldehyde 3-phosphate dehydrogenase;

G3P, glyceraldehyde-3-phosphate; Pi, inorganic phosphate; 1,3-BP, 1,3-bisphospho-D-glycerate; NAD+/NADH/NADP+/NADPH,

nicotinamide adenine dinucleotide cofactors; SH, thiol group; 2-IPM, 2-isopropylmalate; 3-IPM, 3-isopropylmalate; IPMI,

isopropylmalate isomerase; BCAA, branched-chain amino acid; GOGAT, glutamine oxoglutarate aminotransferase; 2-OG,

2-oxoglutarate; Cys, cysteine; Gly, glycine; Val, valine; Ile, isoleucine; Leu, leucine; Glu, glutamate; Gln, glutamine.
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reduction in the cellular glutamate pool [31]. Acidic conditions (in the absence of Cu) also triggered a reduc-
tion in cellular glutamate, likely due to consumption by glutamate decarboxylases (GadAB; H+ + glutamate→
γ-aminobutyric acid + CO2) that support acid tolerance to maintain intracellular pH [31]. Interestingly, in E.
coli, ybaS and ybaT are divergently transcribed from copA and expression of ybaST is up-regulated in response
to excess Cu, although regulation of these genes is not directly associated with the Cu-sensing CueR [31]. The
ybaST locus encodes a putative glutamine permease (YbaT) and a glutaminase (YbaS; glutamine + H2O→ glu-
tamate + NH3) that, together, comprise a system for glutamine-dependent acid resistance [31].
YbaS catalyses the breakdown of glutamine, forming glutamate and ammonia. Glutamate is subsequently

decarboxylated by GadAB, consuming H+ and supporting acid stress resistance [40]. Djoko et al. [31] showed
that high Cu stress could be subverted by supplementation with exogenous glutamine, and this rescue depends
on functional YbaST. Glutamate supplementation also rescued growth during Cu intoxication, with this restor-
ation likely due to a bypass of the Cu-impaired GOGAT enzyme [31]. Further studies by Djoko et al. showed
that supplementation with other amino acids also subverted Cu stress in E. coli, including BCAAs, which par-
tially restored growth at pH 7, consistent with the work of Macomber and Imlay [39]. Notably, though, restor-
ation of growth by BCAAs did not occur at pH 5, suggesting there is a high requirement for glutamate/
glutamine during acid tolerance under Cu stress [31]. Supplementation with asparagine and aspartate also sub-
verted Cu stress in E. coli [31], consistent with their roles as substrates for an alternative pathway for synthesis-
ing glutamate via AspC and AnsAB that do not require Fe–S clusters as cofactors [31]. Exogenous glutathione
and cysteine also conferred a survival advantage (Figure 1C), presumably due to buffering of Cu by these thiol
compounds, but arginine did not protect E. coli from Cu in acidic conditions [31], despite its role as substrate
for arginine deiminase (ADI), an alternative acid resistance pathway that is described in section ‘Ornithine sup-
plementation disrupts Zn intoxication’.

Histidine transport subverts Cu intoxication
Histidine is the only amino acid that contains an imidazole group (Figure 2) and has long been known for its
ability to bind metals, including Zn and Cu ions, either within catalytic sites of proteins, or in solution [41,42].
Recently, a putative histidine ABC-type transporter was identified in a transposon screen of Cu intoxication as
required for resistance to Cu stress in Streptococcus agalactiae [43]. A three-gene operon comprising hisM
(encoding a permease), hisJ (ATP-binding protein) and hisP (substrate binding protein) was identified as part
of the Cu-‘resistome’ by Goh et al. [43]. S. agalactiae is a histidine-auxotroph and must acquire this amino acid
from the external environment directly, or by importing and degrading peptides containing histidine. HisMJP
likely imports histidine, and analysis of a mutant defective for hisMJP revealed some interesting phenotypes.
For example, in nutritionally replete Todd-Hewitt broth supplemented with high Cu, the ΔhisMJP mutant
exhibited delayed entry into exponential phase, but no difference in stationary phase viability compared with
WT [43]. Intracellular accumulation of Cu was significantly reduced in the ΔhisMJP strain compared with WT

Figure 2. Chemical structures of small molecules that influence metal homeostasis.

Certain molecules including glutathione, cysteine, histidine and ornithine can act to rescue bacteria from metal toxicity, whereas others can enhance

metal toxicity, including disulfiram, N,N-dimethyldithiocarbamate (DMDC), PBT2 and staphylopine. ChEBI [99] structures: glutathione 16 856;

cysteine 17 561; histidine 15 971; ornithine 15 729; disulfiram 4659; N0N0-dimethyldithiocarbamate 84 293; staphylopine 141 669.
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S. agalactiae during Cu intoxication, but the significance of this finding is unknown [43]. Goh et al. [43]
suggest the extended lag phase in the ΔhisMJP strain could be explained by a period of metabolic reprogram-
ming in order to obtain alternate sources of histidine, such as from peptides. In support of this theory, using a
chemically defined medium devoid of peptides, the ΔhisMJP strain was hyper-sensitive to Cu stress [43]. Taken
together, the work of Goh et al. suggests a novel role for the histidine transporter encoded by hisMJP in sup-
porting Cu resistance. Interestingly, in vitro work by Macomber and Imlay [39] showed that histidine can act
as a solubilising agent for Cu to promote interactions with fumarase A in an opposing fashion to the chelating
activity of glutathione. Future work to decipher a mechanism for histidine transport in contributing to Cu
resistance is now warranted.

Transport-independent mediators of resistance to Zn
intoxication
In addition to the mechanisms that subvert Cu poisoning described above that are independent from Cu efflux
(section ‘Transport-independent mediators of resistance to Cu intoxication’), there are some factors involved in
resisting Zn toxicity that are independent of Zn efflux and these are discussed below:

Mn supplementation overcomes Zn intoxication
High concentrations of Zn can outcompete other metals, such as Mn, for binding sites in proteins [8,44],
target exposed Fe–S clusters in enzymes [45] or disrupt Fe–S cluster biogenesis [46]. In Streptococcus pneumo-
niae, Zn displaces Mn in the solute-binding protein PsaA of the Mn-importing ABC-transporter PsaBCA [47].
In doing so, Zn-bound PsaA prevents internalisation, starving the cell of essential Mn [47] and leads to
up-regulation of Mn-related genes including psaBCA. Mn is required for superoxide dismutase (SOD; SodA)
and expression of sodA is down-regulated during Mn starvation, which can lead to susceptibility to oxidative
stress [48]. Using assays incorporating Mn supplementation, McDevitt and colleagues showed that the ratio of
Zn to Mn dictates the degree to which S. pneumoniae experiences Zn intoxication [47], and this is reflected in
vivo in a mouse model of S. pneumoniae infection that exploits altered dietary Zn levels [14]. In the latter,
Eijkelkamp et al. [14] show that although Mn levels do not change, Zn increases in the lungs following infec-
tion with S. pneumoniae, concurrent with up-regulation of genes associated with Zn intoxication (czcD) and
Mn starvation (psaA). In other streptococci, it is likely that the Zn:Mn ratio is important for surviving Zn
intoxication, since high Zn caused a significant reduction in total cellular Mn, and supplementation of
Zn-intoxicated cells with exogenous Mn rescued growth under high Zn conditions [18,49].

Ornithine supplementation disrupts Zn intoxication
Arginine catabolism was recently reported to be involved in Zn intoxication resistance in streptococci [18,50].
The ADI pathway converts arginine to ornithine and releases ATP and ammonia. The pathway commences
with the ADI enzyme (encoded by arcA) and supports resistance to acid stress [51–53], biofilm formation and
antibiotic tolerance [54] and host colonisation and virulence [55–59]. ADI of S. pyogenes is an anchorless,
surface-displayed protein with potential as a vaccine antigen [60] and competes for the turnover of arginine in
the host, thereby reducing host-production of the potent antimicrobial nitric oxide (NO) by the inducible NO
synthase (iNOS) system [56]. Interestingly, the arcABDC locus in S. agalactiae was amongst the most strongly
up-regulated transcripts in response to high Zn conditions [18]. Mutational analyses revealed a novel role for
ADI in Zn homeostasis, since arcA-deficient S. agalactiae were significantly more sensitive to Zn intoxication
than WT bacteria [18]. Supplementation assays showed that ornithine, the product of the ADI pathway, could
rescue S. agalactiae from the toxicity of Zn, but notably, supplementation with arginine had no such effect
[18]. This suggests that rescue of S. agalactiae is specific to ornithine, but the mechanism by which ornithine
subverts Zn intoxication is yet to be elucidated.
In a separate study of Zn intoxication in S. agalactiae, the arc locus was recently highlighted in a transposon

screen to identify members of the Zn-‘resistome’. Insertion-sequencing in high Zn conditions showed an over-
representation of ISS1 insertions in arcR and argR (∼10-fold enrichment), encoding putative regulators of the
ADI pathway. Interestingly arcA (∼10-fold), arcD and arcC (∼2.5-fold) were also significantly over-represented
in the Tn-sequencing dataset [50]. These data suggest that mutation in the putative argR-arcR and arcABDC
operons is beneficial for surviving Zn intoxication, noting that ISS1 insertion is likely polar on downstream or
adjacent genes due to insertion of the entire pGh9:ISS1 element. Consistent with the Tn-sequencing
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experiment, isogenic mutation in arcR, encoding a CRP-family repressor that likely regulates arcABDC, results
in hyper-resistance to Zn stress [50]. Taken together, these observations collectively hint at a role for the
arcABDC locus (encoding the ADI pathway) in supporting survival during Zn stress in streptococci and future
work should seek to elucidate the mechanism involved.

Small molecules that enhance the toxicity of Cu and Zn
Several compounds have been identified from studies of metal intoxication in bacteria, which work synergistic-
ally to significantly enhance the toxicity of metal ions towards bacterial pathogens. Some of these small
molecules are emerging as promising antimicrobial agents and examples are described below and shown in
Figure 2.

Cu-bisthiosemicarbazones
Cu-bisthiosemicarbazones (Cu(btsc)) are lipophilic ionophore molecules that co-ordinate Cu(II) and were ori-
ginally developed as anti-cancer therapeutics and for Alzheimer’s disease [61]. Cu(btsc) compounds exhibit sig-
nificantly enhanced toxicity towards Neisseria gonorrhoeae, compared with Cu-salts [62]. Cu(btsc) complexes
are likely membrane permeable and enhance delivery of Cu into the cell, disrupting respiratory dehydrogenases
[62,63]. Notably, though, susceptibility to Cu(btsc) complexes in bacteria depends on the organism’s intrinsic
efficiency of Cu efflux systems and/or reliance on Cu-sensitive, solvent-exposed Fe–S centres in core metabolic
pathways [63].

Disulfiram and dimethyldithiocarbamate
Other compounds that act synergistically with Cu to enhance bacterial killing include disulfiram [64] and
N0N0-dimethyldithiocarbamate (DMDC). Disulfiram is an FDA-approved dithiol compound (Figure 2) that
complexes with Cu and penetrates the cell envelope in a porin-independent manner. Disulfiram effectively
killed Mycobacterium tuberculosis [64] and S. aureus [65] and does so by potentiating intracellular Cu stress
but without increasing the intracellular concentrations of Cu, leading authors to suggest a model in which dis-
ulfiram protects Cu ions from the intracellular homeostatic mechanisms that would otherwise lead to Cu
export [64]. DMDC is a related thiol that co-ordinates Cu and works synergistically to kill S. pneumoniae and
S. aureus amongst other respiratory pathogens [66–68].

PBT2
Another ionophore with potent antimicrobial activity is the hydroxyquinoline analogue PBT2, which facilitates
the transport of metals such as Zn across biological membranes. PBT2 (Figure 2) has been shown to act syner-
gistically with Zn to disrupt cellular homeostasis and enhance intracellular Zn concentrations in important
drug-resistant pathogens including S. pyogenes, S. aureus and Enterococcus faecalis [69]. Strikingly, PBT2 also
enhanced the efficacy of antibiotic treatment of these organisms, because combinatorial administration of anti-
biotics (erythromycin, methicillin or vancomycin) plus Zn and PBT2 re-sensitised these antibiotic-resistant
bacteria and reduced the minimum bactericidal concentrations of the antibiotics that were required to kill the
pathogen [69]. PBT2 was also shown to inhibit peptidoglycan synthesis and cell structure [70] through inacti-
vation of N-acetylglucosamine-1-phosphate uridyltransferase (GlmU). PBT2 in combination with Zn and anti-
biotics has broad antimicrobial activity and can ‘break’ antibiotic resistance in both gram-negative and
gram-positive pathogens [49,70–73]. Given the broad efficacy of PBT2 against a range of bacteria, and its
safe-for-human use status [74–76], PBT2 is a promising candidate for combatting antimicrobial resistance in
bacterial pathogens.

Small molecules that enhance survival during metal
starvation
Some small molecules can promote survival in conditions of metal starvation, such as when the host induces
calprotectin-mediated metal sequestration [77], by enhancing the uptake of metals when at low concentrations.
These are discussed in detail below and shown in Figure 2.
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Staphylopine is a scavenger of Zn
Staphylococcus aureus produces a range of small-molecule secondary metabolites that enable host colonisation
during infection and provide a selective advantage over other microorganisms in nutrient-poor niches such as
within a host. Among the secondary metabolites produced by S. aureus, staphylopine (StP) is a small molecule
(Figure 2) broad-spectrum metallophore [78] that can chelate a range of divalent metals including Zn, Cu and
Fe. StP is secreted by CntE and the metal-bound StP is recovered by CntABCDF [79]. Regulation of StP func-
tion via the cnt locus is tightly controlled by Zn (and to a lesser extent, Fe) at the transcriptional level [80] to
enable the capture of Zn and promote resistance to Zn starvation [81]. Fine-tuning of StP production may also
be mediated by activation or inhibition of CntM, which catalyses the final step in StP synthesis. CntM activity
is highly sensitive to different metals and their concentrations; Zn and Cu are activators at low concentrations
but completely inhibit CntM at high concentrations. Mn only activates CntM, and cobalt (Co) and nickel (Ni)
are only inhibitors of CntM function [82], although metal selectivity of purified CntM in vitro may not reflect
physiological function in vivo. Thus, control of StP synthesis is multifactorial and encompasses transcriptional
and post-transcriptional signalling cues involving Fe, Cu and Zn. Interestingly, homologues of the genes
required for StP biosynthesis are also found in Yersinia pestis [83] and Pseudomonas aeruginosa [84] with the
analogous metallophore pseudopaline contributing to pathogenesis [85], suggesting a conserved strategy for
metal acquisition during infection. Surprisingly, the synthesis of molecules like StP can be detrimental to the
producing-bacteria, since the loss of StP efflux (CntE) attenuates growth and virulence [86], likely due to the
accumulation of StP or a synthesis intermediate [87]. It is also noteworthy that StP can be a major driver of Cu
intoxication in S. aureus. This metallophore usually functions to sequester Zn but can facilitate Cu uptake and
lead to susceptibility in host niches with altered elemental abundances [88]. Although evidence supports an
import role for StP in capturing Zn, it is now clear that the import of non-Zn metals by StP and the
CntABCDF system can be toxic to S. aureus.

Histidine catabolism protects from Zn starvation
Aside from a role for histidine in overcoming Cu intoxication described in section ‘Histidine transport subverts
Cu intoxication’, histidine (Figure 2) also has a role in the subversion of host-induced Zn starvation. The gram-
negative pathogen Acinetobacter baumannii exploits the properties of this amino acid in complexing free Zn
ions to form histidine–Zn complexes (hereafter referred to as His–Zn). Nairn and colleagues show that the his-
tidine utilisation (hut) genes [89], required for transport and catabolism of His–Zn into the cell, are
up-regulated in response to calprotectin-induced Zn starvation [90]. During Zn-limitation, HutT imports His–
Zn and histidine-ammonia lyase (HAL; encoded by hutH) catabolises histidine to yield urocanate and
ammonia. Collectively, these products serve as carbon and nitrogen sources, and the pathway is essential for
lung colonisation and pneumonia [91]. HAL-mediated destabilisation of the His–Zn complex also releases free
intracellular Zn, and thus, His–Zn serves as a HAL-dependent source of labile Zn [90] that the bacterium can
use to overcome host-induced Zn starvation.

Conclusions and research gaps
The roles of metabolic processes and small molecules in contributing to metal resistance in bacteria is a rapidly
emerging area and underscores a need for further development of a broader view of what constitutes a patho-
gen’s metal ion ‘resistance repertoire’. There are many questions that highlight areas for further study and these
will require multipronged approaches to make new discoveries. For example, recent work on S. agalactiae using
a forward-facing transposon screen identified many new targets that contribute to resisting Cu intoxication
[43], including hisMJP as mentioned above. None of the genes identified in the Tn-sequencing study (except
copA) were detected as differentially expressed in a transcriptomic analysis of high Cu conditions of the same
organism [25]; suggesting that certain metabolic processes within the cell (such as histidine transport), which
are key to survival, may not themselves change in response to a given stress (in this instance, Cu intoxication).
Further work is required to examine potential mechanisms involved, including a closer examination of meta-
bolic pathways and secondary metabolites, or the role of small molecules in influencing bacterial survival
during metal stress. Integrating a combination of transcriptomic, metabolomic, proteomic and genomic
approaches (such as those used in [22,92–94]) will be important for making new fundamental discoveries. In
addition, it will be interesting to learn why related pathogens with host-adapted lifestyles have retained or dis-
carded certain metabolic pathways during the course of their evolution. For example, S. pyogenes contains a
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recognisable pathway for degrading histidine (via HAL), whereas S. agalactiae does not. It may be that discrete
differences in what could be considered core metabolic pathways, contribute to the survival of different patho-
gens in niches within the body. Indeed, compared with S. agalactiae [25], it is surprising that S. pyogenes is far
more sensitive to Cu [95]; both pathogens have been examined in studies of Cu intoxication, yet the latter
seems unable to tolerate concentrations above 100 μM Cu in defined/standardized in vitro assays. Consistent
with these observations, S. agalactiae has a bifunctional γ-glutamylcysteine synthetase-glutathione synthetase
(GshAB) for glutathione synthesis [96], whereas S. pyogenes must rely solely on import [29]. The significance
of glutathione synthesis versus uptake in the context of metal resistance should be explored further.
Metals such as Cu and Zn are only part of a mammalian host’s arsenal of antimicrobial processes that

immune cells use to destroy invading pathogens. What is unclear is precisely why some pathogens possess
complex biosynthesis machinery to make certain small molecules (such as glutathione, histidine, arginine)
whereas others must acquire them from the host. We propose there exists a molecular trade-off between the
bioenergetic demands of biosynthesis pathways versus the likelihood of being ‘caught short’ in a host niche
[97], where a particular metabolic pathway [98] can make the difference between survival and successful colon-
isation. Integrating metabolic, physiologic and pathogenesis studies are key challenges for the field ahead.

Summary
• Efflux systems are well-studied effectors of metal resistance in bacteria.

• Cu intoxication inhibits function of numerous important enzymes by interactions with
solvent-exposed Fe–S cofactors.

• Amino acid supplementation can subvert Cu toxicity, likely due to metabolic bypass as exem-
plified by BCAA synthesis.

• Glutathione as a small molecule supports bacterial survival during Cu intoxication by buffering
of free Cu.

• Other small molecules can enhance an organism’s ability to resist metal stress, including histi-
dine, cysteine and ornithine, enabling growth in otherwise toxic concentrations of Cu or Zn.
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