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Abstract

Droughts can cause enormous damages and are changing under anthropogenic climate

change. In this thesis, climate and hydrological models were used to investigate

projected future droughts in Great Britain, emphasising the contributions of

methodological and modelling choices to the resulting projections and their

uncertainty. First, non-negligible biases were found in the regional climate model

projections of UKCP18, the latest set of regional climate projections for the UK

(UKCP18-RCM), and therefore, two bias adjustment methods were applied

successfully. The ensemble projects wetter, warmer winters and hotter, drier summers,

but with more complex changes for different temperature and precipitation indices,

including different changes in the extreme ends of their ranges. These changes are

well-preserved after bias-adjustment, but the change factor approach failed to capture

changes in some precipitation metrics. From these data, projected changes in drought

characteristics were derived using two contrasting drought indicators, the Standardised

Precipitation Index (SPI) and the Standardised Precipitation Evapotranspiration

Index (SPEI). Projected increases in drought frequency and extent, and the dominant

contribution of future summer droughts to annual-scale deficits, are far greater based

on the SPEI than based on the SPI, highlighting the important role of increased

evaporative demand for future droughts. The largest changes were found for extreme

droughts. Finally, an ensemble of hydroclimatic impact model chains was calibrated for

the Wensum catchment. Detailed evaluation using multiple criteria strongly reduced

the uncertainty in the streamflow drought frequency projections, especially the

contribution from hydrological modelling choices. Increasing streamflow drought

frequency was projected for the Wensum, with greater increases for more severe

droughts and higher levels of global warming. This resulted from both a lengthening of

individual drought events (especially for moderate droughts) and an increase in the

number of events (primarily for more severe droughts). This work concludes with

recommendations for future hydrological climate change impact studies.
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Introduction

This introduction provides the overarching motivation for this thesis, as well as

key literature that gives common background for the upcoming chapters. Further

literature, especially that which is relevant to a specific chapter, is reviewed in

the discussion and introduction sections of the individual chapters.

1.1 Water management and its challenges in the UK

Climate change is an important threat to future water supply in the UK (Watts

et al., 2015), however it needs to be seen in the wider context of multi-faceted

pressures facing the UK water industry in upcoming decades. To improve the

reliability and sustainability of water resources systems, water companies in

England and Wales are required to submit a Water Resources Management

Plan (WRMP) every five years, as per the Water Industry Act of 1991

(Environment Agency et al., 2022). In the WRMP, water companies forecast

supply and demand for their water resources, and develop supply- and

demand-side options to meet any potential forecast deficits. Water resources

management plans of several UK water companies show that, without

additional measures, future water supply may not be able to satisfy demand

within the next few decades, a phenomenon known as the ‘jaws of death’

(Bevan, 2019). This is also the case for Anglian Water, the industrial partner of

this doctoral project. As the water company with the largest area of coverage in

England, Anglian Water is responsible for the water supply and water recycling

for over 6 million customers. On average, abstraction for storage and treatment

amounts to around 1100 Ml of water daily, which can climb up to about 1400

Ml/day during periods of high demand such as summer 2018. About half of

their water supply comes from groundwater abstraction, with eight water

reservoirs and eight direct supply river intakes making up the other half

(Anglian Water, 2019).
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The projected supply-demand imbalance is evidently a major concern to UK

water companies, managers and consumers, and is attributed to four main

categories of cause in their recent water resources management plans (the

consultation phase is still ongoing for the 2024 water resources management

plans, however, drafts are available on water companies’ websites):

1. Demand increase. This is not limited to the effects of population growth

(e.g. Thames Water, 2022; Anglian Water, 2022a; Severn Trent Water,

2022), but can also be influenced by e.g. new development plans and

cultural shifts such as changed work-life habits after the COVID-19

lockdowns (e.g. Anglian Water, 2022a; Severn Trent Water, 2022).

2. Environmental and sustainability reductions in abstraction. Water

companies are required to plan for improving, protecting, and especially

not causing deterioration of, the environment (Environment Agency et al.,

2022). For WRMP24, water companies are asked set out how to achieve

sustainable abstractions by 2050, taking into account the effects of future

demand and climate change (Environment Agency et al., 2022).

Abstraction reductions required for avoiding or reversing damage to the

environment arising from the exploitation of water resources pose a

significant challenge for some water companies (e.g. Severn Trent Water,

2022), and makes up the largest portion of the projected baseline

supply-demand imbalance in the draft WRMP24 of Anglian Water (e.g.

Anglian Water, 2022a).

3. Climate change. Both historical and projected future impacts of climate

change need to be taken into account, with emphasis on the treatment of

the associated uncertainty (e.g. Anglian Water, 2022a). The uncertainty

surrounding the future impact of climate change on water resources is

multifold. First and foremost, there is the inherent uncertainty related to

the trajectories of anthropogenic greenhouse gas emissions in the coming

years and decades on which future climatic changes (and the consequences

on water resources and drought impacts) depend. However, even for a

fixed emissions scenario, there is uncertainty associated with the response

of the global climate system and indeed local water resources impacts, due

multiple factors including incomplete process understanding and

limitations of climate and impact models and analysis methods (including

those relied on by water companies for projected climate change impacts).

4. Drought resilience. Since WRMP 2019, the drought resilience aim set by

the Environment Agency has changed from a 1/200 year drought (yearly

probability of occurrence of 0.005) to a 1/500 year drought (yearly
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probability of 0.002) (Environment Agency et al., 2022). In this context,

drought resilience means that for droughts of these return periods, there

should be no need for ‘exceptional demand restrictions on customers’ (for

example standpipes) associated with a drought order (Environment

Agency et al., 2022).

The uncertainties in the expected impacts of these factors are taken into

account as headroom, which is added to the expected impacts taken into account

(Environment Agency et al., 2022). Due to the inherently uncertain nature of

important factors influencing future water supply (e.g. climate change) and

demand (e.g. population growth), the WRMP guidelines recommend adaptive

planning (Environment Agency et al., 2022). To complement the WRMP in

tackling the challenge of drought resilience, water companies also have to

submit a Drought Plan, which details the more short-term operational actions

that the companies plans to take in the case of a drought in order to maintain

water supply (Environment Agency, 2021). This covers a range of measures on

the demand and supply side, from customer communications to (temporary)

supply increases, and crucially needs to aim at minimising environmental

drought impacts. As part of the drought plan, water companies also determine

a set of drought triggers based on precipitation, soil moisture, river flow and/or

groundwater metrics. These are used to define phases of drought development

which are linked to specific sets of responses and actions in the drought response

framework (e.g. Table 2.1 in Anglian Water, 2022b). Better understanding of

the influence of climate change on the nature and characteristics of future

droughts, at spatial and temporal scales relevant to water companies, and

understanding and constraining the associated uncertainties, is invaluable to

help support water companies in planning for future droughts.

1.2 What is drought? Definition, classification and

quantification

No single satisfactory universally applicable definition for drought exists

(Wilhite and Glantz, 1985; Mishra and Singh, 2010; Lloyd-Hughes, 2014; Ault,

2020). In the most general sense, a drought can be defined as a deficit of water

compared to normal conditions. Depending on the context and the hydrological

flux or reservoir in which this deficit takes place, the following conventional

drought types can be defined (Mishra and Singh, 2010; Dai, 2011). A

meteorological drought is a deficit of precipitation relative to values normally

expected based on the local climatology. A soil moisture drought, defined by a
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deficit in soil moisture, is also often called agricultural drought because of the

importance of root zone soil moisture for crop growth. In Seneviratne et al.

(2021), the consideration of agricultural and ecological droughts focuses on crop

yield reductions and plant water stress, which are strongly linked to soil

moisture but also allow for the effects of other meteorological and biophysical

factors. Soil moisture droughts can then propagate further to hydrological

droughts, which encompass anomalously low levels of streamflow, lake storage or

groundwater levels (groundwater drought). A socio-economic drought occurs

when one or more of these drought types leads to societal impacts (Mishra and

Singh, 2010; Van Loon and Laaha, 2015).

Drought is distinct from aridity and water scarcity and should not be confused

with these terms (e.g. Van Loon and Laaha, 2015). Aridity reflects the baseline

climatic moisture availability of a region under normal circumstances (Mishra

and Singh, 2010). Droughts can therefore occur in climates with different aridity

levels, as they are temporary deviations relative to normal moisture availability.

Water scarcity is also defined as a long-term condition and refers explicitly to

imbalances between water demand and supply, i.e. it can also indicate over-

exploitation of available resources (Loon and Van Lanen, 2013).

Many drought indicators (DI) have been developed over time to quantify these

different types of droughts. A wide range of DIs can be found in the literature

(e.g. Dracup et al., 1980; Keyantash and Dracup, 2002; Pedro-Monzońıs et al.,

2015) describing droughts of different types, from purely precipitation-based

(e.g. McKee et al., 1993) to indicators considering the effects of human

influences (Marcuello and Lallana, 2003). Keyantash and Dracup (2002) outline

the following criteria for selecting a suitable drought indicator: robustness (is

the DI useful in a range of conditions?), tractability (how easy is it to calculate

the DI and acquire the data to do so?) and transparency (how understandable

is the DI?), sophistication (which can present a trade-off with transparency),

extendability (in time, depending on data availability) and dimensionality

(units of the index values). Drought indicators are further discussed in the

introduction, methods and discussion (sections 4.6.2 and 4.6.4) of Chapter 4,

with a focus on the indicators used there and their role as a source of

uncertainty.

Using one or more hydroclimatic variables or drought indicators, another key

decision to make in drought research is to identify the drought characteristics of

interest. Key characteristics which are often the focus of drought research are

the frequency (how often do drought conditions occur?), duration (for how long

does a drought event persist?), spatial extent, peak intensity (the maximum

deviation from normal conditions as identified using the indicator of choice) and
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total severity (typically defined by aggregating the drought intensity values over

the duration of the drought event). As droughts are complex events evolving

through space and time throughout their duration, methods have been

developed to perform joint analyses of spatial and temporal drought

characteristics (e.g. Sheffield et al., 2009; Shiau and Modarres, 2009; Halwatura

et al., 2015) or even to fully characterise the evolution of individual drought

events in space and time (Haslinger and Bloeschl, 2017; Vernieuwe et al., 2020).

Other drought characteristics have also been derived from time series of drought

indicators to investigate specific research questions, such as drought termination

(Parry et al., 2016).

Furthermore, it is worth briefly noting the distinction between drought as a

hazard and drought risk, as these terms can sometimes be conflated. In a

climate change context, risks can result from the interactions between

climate-related hazard(s), exposure to these hazards and the vulnerability of the

systems exposed to these hazards (Ara Begum et al., 2022). When a drought

occurs and people or ecosystems are exposed to it, the vulnerability of the

affected agents regulates the associated levels of risk. Of these three factors

constituting risk, the present work is primarily concerned the nature and

changes of drought hazards and exposure of water resources to those hazards,

and does not explicitly consider vulnerability. However, a major aim of the

work is to contribute to reducing vulnerability to future droughts by providing

information which can be helpful for adaptation planning.

1.3 Causes and consequences of drought

1.3.1 Drought development and propagation

Large-scale atmospheric conditions provide the starting point for developing a

drought signal in terms of meteorological variables (precipitation, temperature,

and variables contributing to atmospheric moisture demand). For the UK, these

atmospheric conditions are strongly coupled to the surface energy budget over

the Atlantic Ocean (Wilby et al., 1997). One of the most important important

modes of climatic variability linked to UK weather and drought conditions, with

substantial spatial variations in how it explains precipitation variability and

hydrological droughts, is the North Atlantic Oscillation (NAO) (Wilby et al.,

1997; Kingston et al., 2013; Rust et al., 2021). The NAO is defined by the

variation in the meridional atmospheric pressure gradient across the North

Atlantic, i.e. the difference in strength between the high pressure system over

the Azores and the low pressure system over Iceland. Positive NAO winters are



Chapter 1: Introduction 6

associated with a strengthened westerly atmospheric flow into the UK, bringing

moist Atlantic air masses and increased precipitation – especially over the

western parts of the UK where it is enhanced orographically (Seager et al.,

2020). Conversely, therefore, it is the negative NAO winters – where these

anomalous conditions are approximately reversed – that are associated with

drier than usual conditions over the UK (again, especially for the western

regions). The NAO in other seasons also has some influence on rainfall in parts

of the UK, though to a lesser extent than in winter. In the south east of GB,

winter precipitation is strongly affected by the East Atlantic pattern (Hall and

Hanna, 2018).

In addition to the NAO-related variations in westerly circulation, the atmospheric

circulation patterns that give rise to precipitation deficits (especially in the east

of the UK) are typically anticyclonic (high pressure) conditions, which deflect

storm systems and cause low cloud formation and precipitation rates. Richardson

et al. (2018) linked droughts in different parts of the UK to a novel set of 30

weather patterns developed by Neal et al. (2016), and found 6 patterns which

occur more frequently during droughts in all parts of the UK plus some specific

patterns which are only associated with droughts in particular regions - generally

consistent with drought occurring under conditions of high atmospheric pressure

(similar to the findings of Fleig et al., 2011), or in the downwind areas of the

different weather patterns. In the analysis by Fleig et al. (2011), weather patterns

with airflow from the south and south-east were linked to droughts in Great

Britain, likely due to the low moisture content and higher temperatures of these

continental winds. Atmospheric high-pressure blocking systems, which remain

quasi-stationary for a period of time and generally divert storm tracks around

centres of high atmospheric pressure, are often associated with droughts, drought-

heatwaves, and other hydrometeorological extremes (Kautz et al., 2022). Under

these blocking conditions, precipitation is largely reduced under the high pressure

blocking centres (Sousa et al., 2017). Going in more detail, Sousa et al. (2017)

analysed changes in the distribution of precipitation over the UK and Ireland for

blocking circulation over the Atlantic, and showed a very strong reduction in the

number of days with more precipitation than the median, paired with an increase

in the number of light rainfall days (which do not contribute much to the total

precipitation), together resulting in decreased mean precipitation.

Moving one stage further in the hydrological cycle, land-atmosphere

interactions play an important role in the evolution of droughts. A lack of

moisture on land can in turn feed back to precipitation decreases locally or

downwind: when less water is available for evaporation, less moisture can be

taken up by the atmosphere over land, which reduces the amount of
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atmospheric moisture available for precipitation. At the same time, air

temperature increases with the larger fraction of the available energy being

converted to sensible heat due to the decrease in evaporation. Due to

Clausius-Clapeyron, this then increases the saturation humidity level and

thereby atmospheric moisture demand, leading to a self-intensifying feedback

mechanism. The role of atmospheric evaporative demand in drought processes

in GB is discussed in Chapter 4 (Reyniers et al., 2023).

The transformation of the drought signal from anomalous meteorological

conditions through the terrestrial components of the hydrological cycle is

termed drought propagation (Van Loon and Laaha, 2015). As precipitation

deficits propagate to streamflow and groundwater levels, there is a general

evolution from many short periods of deficit to fewer, longer, less intense

periods of low streamflow and groundwater levels, which somewhat lag behind

the rainfall deficits (Van Loon and Laaha, 2015). Drought propagation is

heavily influenced by climate and catchment characteristics. Different processes

govern hydrological drought development in arid regions, monsoon climates,

warm seasonal climates, cold seasonal climates with a significant snow

accumulation and snow-melt cycle, or climates with little seasonal variation

(Van Loon and Laaha, 2015). As such, different climate types can be associated

with different types of hydrological droughts, as classified by Van Loon and

Van Lanen (2012). The time scale of propagation from precipitation deficits to

streamflow drought is also significantly different between climate types, and is

seasonally variable depending on the climate type (Gevaert et al., 2018; Ding

et al., 2021). Furthermore, Apurv et al. (2017) was able to link three modes of

drought propagation (based on the seasonal groundwater recharge cycle) to

aridity, the degree of seasonal variation of precipitation, and most importantly

the phase-shift between precipitation and potential evapotranspiration levels.

Catchment storage (including aquifers, but also surface water bodies) has a

crucial influence on the propagation of the meteorological drought signal to

streamflow droughts (Van Loon and Laaha, 2015). Barker et al. (2016) showed

for UK catchments that the influence of climate on drought propagation is

regulated by catchment characteristics. System recovery after drought is also

influenced strongly by aquifer hydrogeology and responsiveness (Stoelzle et al.,

2014; Parry et al., 2016). Aquifer responsiveness also influences streamflow

drought severity and duration (Van Lanen et al., 2013; Barker et al., 2016;

Tijdeman et al., 2018). Even for given catchment characteristics and a given

climate type, hydrological droughts tend to develop through multiple

mechanisms: over 85% of the European catchments studied by Brunner et al.

(2022) experienced 5 or 6 of the process-based drought types developed by

Van Loon and Van Lanen (2012) and Van Loon et al. (2015). Moreover,
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catchment characteristics might be a less important influence for abrupt

drought terminations than for gradual, prolonged drought termination. Finally,

Brunner et al. (2022) showed that the dominant drivers vary between moderate

and more severe droughts.

Last but not least, human impacts on hydrological systems also shape

hydrological drought development and propagation (Van Loon et al., 2016a),

through abstraction, inter-basin transfers, reservoir construction and operation,

sewage return and pipe leakage, and land use (Van Loon et al., 2022). In UK

aquifers, for example, Wendt et al. (2020) identified two distinct typologies of

ground water drought modifications caused by human water use, depending on

the balance between groundwater abstraction and groundwater recharge.

Tijdeman et al. (2018) investigated human influences on hydrological drought

(propagation) characteristics in England and Wales, focusing primarily on

abstractions and reservoir effects. They demonstrated a reduced correlation

between precipitation and streamflow due to different human influences, and

generally found varying (catchment-specific) degrees of impacts of human

influences on drought characteristics. Land use changes have already affected

streamflow and evaporation in various locations across the UK, not limited to

urbanised areas (Teuling et al., 2019).

1.3.2 How does climate change affect droughts?

Drought is a major natural hazard linked to devastating socio-economic, health

and ecological impacts, already getting worse in many parts of the world due to

anthropogenic climate change (Seneviratne et al., 2021). Climate change affects

droughts through different thermodynamic, dynamic and biophysical

mechanisms taking place at multiple spatial and temporal scales (Douville

et al., 2021; Seneviratne et al., 2021). Thermodynamic effects were identified as

the main way in which human-induced global warming affects droughts with

high confidence (Seneviratne et al., 2021). Following the Clausius-Clapeyron

relation, a parcel of air at standard sea level pressure can hold about 7% more

moisture for every temperature increase of 1 ◦C. While atmospheric water

vapour content is expected to closely follow this, global mean precipitation

increases at a much lower rate with increasing global temperatures (Douville

et al., 2021). Beyond the global mean, changes to the water balance over land

are region- and season- dependent, and are influenced by atmosphere dynamical

changes and land surface interactions. These regionally variable changes over

land are now understood to be too complex to be adequately described by the

‘wet gets wetter / dry gets drier’-paradigm (Greve et al., 2014; Feng and Zhang,



Chapter 1: Introduction 9

2016; Yang et al., 2019; Xiong et al., 2022), though an amplification of the

seasonal contrast between wet and dry periods is often found (Douville et al.,

2021). Changes to dynamic circulation processes resulting from the increase in

energy in the climate system tend to be more uncertain than direct

thermodynamic effects (Shepherd, 2014).

The influence of climate change on mid-latitude precipitation results from a

combination of a number of processes, whose relative contributions and

interactions are still uncertain (Doblas-Reyes et al., 2021; Douville et al., 2021).

Atmospheric evaporative demand is strongly affected by climate change. An

increase in atmospheric evaporative demand leads to increasing evaporation

from surface water, vegetation and soils, subject to moisture availability.

Changes in transpiration from vegetation are crucial and complex, as they result

from the combination of increasing atmospheric evaporative demand, increasing

water use efficiency of plants due to increasing CO2 concentration, increases in

plant growth, and other plant physiological responses to temperature, vapour

pressure deficit, soil moisture changes and CO2 concentrations (Canadell et al.,

2021). Land-atmosphere feedbacks play a key role in determining the impact of

increasing temperatures on drought (Seneviratne et al., 2010; Miralles et al.,

2019). Amplified evaporation rates directly lead to depletion of soil moisture,

which can have a self-amplifying effect on atmospheric evaporative demand as

the sensible heat flux increases when moisture availability becomes limiting for

evaporation. Depending on the region, these feedbacks can also contribute

significantly to precipitation deficits (e.g. Schumacher et al., 2022a).

While this work looks at impacts of climate change on the water supply side,

it must be noted that climate change may also affect UK water demand, as

households tend to consume more water as temperatures increase (Parker and

Wilby, 2013; Xenochristou et al., 2020).

1.3.3 Impacts of drought

Droughts impacts can be observed in all sectors, including (aquatic) ecological

harm, threats to domestic water supply, agricultural impacts, energy production

disturbances, and economic losses in water-dependent industry sectors (Stahl

et al., 2016). These different drought impacts can have complex interactions,

which can be identified as co-occurring or cascading behaviour (de Brito, 2021).

Importantly, the nature and severity of drought impacts depend not only on

physical characteristics of the drought hazard, but are crucially dependent on

vulnerability and depend on the local and global socioeconomic situation and

governance (Savelli et al., 2021).
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Public water supply is one of the most crucial sectors which can be impacted by

streamflow and/or groundwater droughts (e.g. Stahl et al., 2016). In the UK,

an extreme example of this is the implementation of standpipes and rota cuts

during the extremely dry conditions of 1976 (Rodda and March, 2011). Potable

water supply can be affected not only through a reduction in available water

quantity in water resources, but also by water quality deterioration associated

with drought or drought termination, such as algal blooms, increased pollutant

concentrations, microbial contamination linked to waterborne diseases, or saline

intrusions (Wright et al., 2013; Khan et al., 2015).

Hydrological droughts can also threaten energy production in the UK and

globally, due to low flows disrupting the operation of hydro-power plants

(Dallison et al., 2021) or thermal plants which rely on cooling water from rivers

(Byers et al., 2020). Impacts on aquatic ecosystems arise not only due to

reduced and slower flows, but also indirectly through the resulting higher water

temperatures and deteriorated water quality (Lennox et al., 2019). Droughts

lead to ecosystem and crop productivity reductions worldwide (Gampe et al.,

2021), due to insufficient soil moisture availability (Anderegg et al., 2012),

irrigation water shortages (Stahl et al., 2016) and/or high

temperatures/potential evapotranspiration levels (Gampe et al., 2021) and

especially high vapour pressure deficit (Schönbeck et al., 2022; Lu et al., 2022)

(see also Section 4.6.3).

Droughts do not just affect ecosystems in the short term, but can also bring about

long-lasting changes (Müller and Bahn, 2022). Moreover, while climate change

affects the development and propagation of droughts, drought in turn reduces the

effectiveness of the land carbon sink globally and regionally (Canadell et al., 2021,

Cross-Chapter Box 5.1 and references therein). Globally, the effects of drought

on crops have led to food insecurity and threats to the livelihoods of people that

depend on agricultural production (Caretta et al., 2022), and in some parts of

the world drought is a significant driver of migration (mostly short-distance from

rural to urban areas; Cissé et al., 2022). In addition, the pressures associated

with drought can significantly aggravate political tensions and conflict in different

regions of the world, depending on the prevailing context and vulnerabilities

(Kelley et al., 2015; von Uexkull et al., 2016). Drought can lead to a range of

impacts on human health, which are heavily determined by vulnerability factors

at the individual and population level. These include malnutrition (which can

increase susceptibility to other mental and physical health problems), water-borne

diseases, and death (Stanke et al., 2013). Finally, studies have shown that mental

health impacts of drought and water scarcity exist and are complex, depending

on many factors including source of income and its dependence on water (e.g.
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farmers) and cultural aspects (e.g. Stanke et al., 2013; Bryan et al., 2020; Wutich

et al., 2020).

Given the diverse and context-dependent range of potentially devastating drought

impacts, understanding how droughts can be expected to change at the local scale

depending on continued climate-relevant emissions, as well as the uncertainty

associated with these projections is crucial.

1.4 Drought in the UK: past and future

1.4.1 Historic droughts

While the UK is not typically seen as a particularly drought-prone area, droughts

have been a recurring concern in the past (e.g. Rodda and March, 2011; Kendon

et al., 2013; Turner et al., 2021), including in very recent years (Schumacher

et al., 2022b). The Drought Inventory (https://www.ceh.ac.uk/our-science/

projects/drought-inventory, created by CEH as part of the Historic Droughts

project) gives an overview of the major droughts and their impacts affecting

the UK between 1890 and 2012, while Lister et al. (2018) provides an overview

of the hydroclimatic context of 7 major historic droughts affecting East Anglia

from 1920 to 2012. A number of studies have reconstructed historic droughts

in (parts of) the UK, focusing on different hydroclimatic variables (e.g. Spraggs

et al., 2015; Smith et al., 2018a; Murphy et al., 2020). A reconstruction by

Murphy et al. (2020) revealed a number of extreme droughts in the 18th and

19th centuries, including an especially extreme event in 1765-1768. Spraggs et al.

(2015) reconstructed historic streamflow and reservoir droughts during 1798–2010

specifically for the East Anglian region, with a specific focus on water resources.

They showed that, in terms of reservoir droughts in the East Anglian region,

the longest and most severe events since 1798 generally occurred after 1920, and

the ranking of the worst droughts differs among East Anglian reservoirs due to

natural and human factors. In what follows, an overview is given of notable

historic droughts in light of their diversity and consequences for water supply,

with emphasis on the East Anglian region (see Fig. 2.1.1 for a map of Anglian

Water’s water resources).

The 1920-1922 drought is one of the benchmark droughts of the 20th century and

had severe impacts in among others the East Anglian region (Marsh et al., 2007).

In the 1940s, multiple droughts took place across the UK, including groundwater

droughts in different parts of the Chalk in the mid-1940s (UK Centre for Ecology

and Hydrology, nd). A notable year was 1944, which is used as the reference

https://www.ceh.ac.uk/our-science/projects/drought-inventory
https://www.ceh.ac.uk/our-science/projects/drought-inventory
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drought year for the River Nar in Anglian Water’s WRMP19 (estimated return

period greater than 200 years) (Anglian Water, 2019). In 1959, a short (February

to September) but very intense drought led to severe impacts on water supply

depending on gravity-fed reservoirs, while groundwater supply was only modestly

affected even in regions with large precipitation deficits (Marsh and Turton, 1996;

UK Centre for Ecology and Hydrology, nd).

The drought of 1975-1976, combined with the extremely hot summer of 1976, is

used as a benchmark event in many places in the UK and elsewhere in western

Europe due to its severity and widespread impacts (Rodda and March, 2011).

While UK reservoirs and groundwater levels were generally in good condition

before the start of the drought (early summer 1975), the combination of extremely

low winter recharge and high water use and demand resulted in extremely low

levels being reached throughout 1976. Many rivers reached record low flows,

often with return periods over 100 years. In groundwater-dominated rivers, flow

reductions started later, but recovery in autumn 1976 was also slower (Rodda

and March, 2011). The drought had severe consequences for water supply and

even led to failures and the use of standpipes for water supply, especially in the

summer and autumn of 1976. The lasting impact of this extreme event on water

management in the UK includes new legislation introduced in 1976 and 1977 (UK

Centre for Ecology and Hydrology, nd).

In contrast to e.g. the short but intense 1959 drought, the 1988-1993 drought

was marked by persistent, prolonged rainfall deficits and multiple weak

groundwater recharge seasons, exacerbated by exceptionally high temperatures

and evaporative losses. Low river flows were recorded in many catchments,

including some of the lowest flows on record in eastern, southern and central

English rivers by 1991-1992 (Marsh et al., 1994; UK Centre for Ecology and

Hydrology, nd). This drought was particularly severe for the east English

lowlands (Marsh et al., 1994), and 1988-1992 is also noted as the reference

drought for the Wensum catchment in Anglian Water’s WRMP19 (Anglian

Water, 2019) with an estimated return period close to 200 years. The drought

of 2010-2012 was characterised by two dry hydrological winters and very strong

spatial contrasts in rainfall amounts, first between the east and west of GB and

especially later between the north west and south east of GB (Kendon et al.,

2013). In the spring of 2012, large declines in reservoir stocks across English

and Wales led to the lowest stocks on record for some major reservoirs,

including Anglian Water’s Rutland reservoir. Hosepipe bans were issued in

different parts of England during different phases of the drought (Kendon et al.,

2013). This event has served as the observed baseline to explore storylines of

factors that could have made this drought even more severe, assuming physical
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plausibility of the modified factors (Chan et al., 2022).

The drought of 2018-2019, including the hot summer of 2018, had widespread

impacts across the UK. After 2018, the drought was particularly significant in

the south-east and east of England in groundwater-dominated catchments due

to multi-year sustained precipitation deficits, with streamflow deficits persisting

into late 2019 or even 2020 (Turner et al., 2021). At the time of writing, the

2022 drought is the most recent significant drought to affect the UK, and some

areas (including parts of East Anglia) were still in drought status. In an

attribution study focusing on the 2022 soil moisture drought in the Northern

Hemisphere, Schumacher et al. (2022b) showed that climate change made the

2022 drought in western Europe far more likely, and that temperature increases

made an important contribution to the soil moisture deficits.

1.4.2 Projections of future droughts in the UK

Many studies have been done on climate change impact on droughts in the UK.

There is general agreement that climate change is expected to change drought

frequency, duration and severity across the UK.

Multiple studies have used atmospheric variables simulated by different sets of

climate models to assess projections of future droughts in the UK. Using change

factors derived from the probabilistic (Strand 1) UKCP18 simulations based on

a high emissions scenario (RCP8.5, see Section 2.4), Arnell and Freeman (2021)

found projected increases in the frequency of 3-month aggregated precipitation

deficits and 6-month aggregated climatic moisture balance deficits, primarily in

England, which are largely avoided in an emissions scenario with stronger

mitigation (RCP2.6). Hanlon et al. (2021) derived a range of extreme weather

indicators from the regional UKCP18 projections (Strand 3 of the latest set of

national climate projections for the UK; see Section 2.3), and found projected

increases in 3- to 36-month aggregated rainfall deficits, with hot spots in the

rain shadows of high elevation regions and the English lowlands (especially for

longer aggregation levels). These projected changes are dependent on the level

of global warming and are almost entirely avoided by limiting global warming to

no more than 1.5 ◦C above pre-industrial levels.

Based on regional simulations from the previous generation of national climate

projections for the UK (UKCP09), Rahiz and New (2013) found projected

increases in drought frequency and intensity, as well as an evolution toward

more spatially coherent droughts. An analysis of the PRUDENCE ensemble of

regional climate projections shows changes in the frequency of 3-month
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aggregated precipitation deficits over the UK, with ensemble agreement on

increases in the south and south-east but decreases projected in the north

and/or west in some ensemble members (Blenkinsop and Fowler, 2007). For

6-month deficits, their projections are more uncertain in sign, leading to

decreases in drought frequency for most simulations for large parts of the UK

(but most ensemble members project increases in drought frequency for the

Anglian Water region). In most regions, they also find decreasing maximum

severity of the 6-month deficits, although there is some disagreement in the sign

of changes in all regions except along the south coast.

Moving beyond atmospheric variables, several hydrological impact modelling

studies (see Section 1.5) for the UK have produced projections of possible

future soil moisture availability and low flows. Kay et al. (2022) investigated

changes in soil moisture droughts using the hydrological model Grid-to-Grid

(G2G), driven by regional UKCP18 projections downscaled to a resolution of

1km. To mitigate the effect of errors in the regional UKCP18 projections (see

Chapter 3), they chose to apply monthly mean correction factors on the

precipitation simulations (using CEH-GEAR data as reference), prioritising

simplicity over improving the representation of higher order moments of the

precipitation distribution. Their estimates for potential evapotranspiration were

not bias adjusted, and were modified with a representation of the effect of

increased CO2 on stomatal resistance (Kay et al., 2022). Given this approach,

they found an increasing area for which the minimum monthly mean soil

moisture content is lower than the estimated residual soil moisture content, a

lengthening of the average duration of seasonal dry soil conditions, and

decreasing average soil moisture content across Great Britain (especially in

summer and autumn but with year-round reductions in some locations). This is

broadly in agreement with earlier work by Rudd et al. (2019) using regional

climate projections from the weather@home2 project to force G2G (after the

same simple multiplicative bias adjustment of precipitation). They found

increases in the severity of soil moisture droughts throughout Great Britain,

alongside intensification of peak soil moisture deficits in the east of Scotland

and south-central England (including East Anglia) and increases in the spatial

extent of soil moisture drought.

Considering streamflow projections, Kay et al. (2021a) and Lane and Kay

(2021) used the UKCP18 projections to assess projected changes in low flows

with different return periods, simulated by the G2G model (also used by Kay

et al. (2022) for soil moisture projections, see previous paragraph). However,

while Lane and Kay (2021) forced the hydrological model with the downscaled

climate projections themselves (after a simple bias adjustment consisting of
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applying multiplicative correction factors based on monthly means to

precipitation only), Kay et al. (2021a) applied mean change factors to historic

time series of precipitation, potential evapotranspiration and temperature. The

potential implications of this approach are discussed in Chapter 3. Both studies

are in agreement on projected decreases in 7- and/or 30-day low flows with

return periods between 1 and 25 years, and found larger decreases toward the

south and east of Great Britain. Lane and Kay (2021) also found a delay of the

7-day minimum flow.

Cammalleri et al. (2020) used 11 different G/RCM combinations from the

EURO-CORDEX ensemble to force (after bias adjustment with quantile

mapping) the LISFLOOD model over Europe, and found projected increases in

the severity of 10-year streamflow droughts with global warming for the UK

(along with most of the Atlantic and Mediterranean regions). Kay et al. (2020)

compared projections between the probabilistic projections of UKCP18 and its

predecessor, UKCP09, using lumped and semi-distributed hydrological models

(unavoidably using the change factor approach due to limits of the probabilistic

projection data). They found a consistent decrease in low flows in the sample of

UK catchments studied based on both generations of climate projections, and

fairly similar results between UKCP18 and UKCP09, although the spread of the

UKCP18-based projections tended to be larger and less dry than those based on

UKCP09 (see also Prudhomme et al., 2012; Charlton and Arnell, 2014).

Rudd et al. (2019) and Kay et al. (2018) assessed projections of future droughts

and low flows based on the weather@home2 simulations, both using the G2G

hydrological model and applying the simple multiplicative mean bias adjustment

to precipitation only. Kay et al. (2018) found projected reductions in 30- and

7-day low flows with return periods of 2 and 20 years, with greater decreases in

the south and for the longer return period. They also showed that everywhere

except along the west coast an adjustment of climate model-derived projected

potential evapotranspiration for stomatal closure due to increasing CO2 curbed

the projected low flow reductions. This adjustment was also applied in Rudd

et al. (2019), Lane and Kay (2021) and Kay et al. (2021a).

Rudd et al. (2019) focused on drought characteristics instead of low flows. They

found projected increases in the total severity of drought events, with greater

increases in the south and east Scotland, and the greatest range of projections in

the south and east of the UK. The projected changes in peak drought intensity

were spatially variable, while increasing drought durations were found in the

southern and eastern regions, and finally the spatial extent (as a portion of GB

in drought) of soil moisture and streamflow droughts was projected to increase.
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1.5 Modelling hydrological impacts of climate change

Decision makers in different sectors need information on how climate change is

most likely to affect their activities. Modelling the potential impacts of climate

change resulting from a certain assumed emissions scenario is a key approach for

providing such information. While impact modelling is done for a wide range of

systems (see e.g. Rosenzweig et al., 2017), only modelling stages relevant within

the scope of this thesis study are discussed below.

Climate models have been indispensable to further our understanding of the

many ways in which greenhouse gas emissions and other forcing factors are

affecting different components of the climate system, and they have made up an

essential part of every IPCC report since the first one in 1990 for that reason

(Cubasch and Cess, 1990; Chen et al., 2021). There exists an enormous variety

of climate models covering a large range of complexity, from simple energy

balance models to complex earth system models which represent a vast range of

processes in the atmosphere, ocean, cryosphere, biosphere, carbon cycle and on

land, on three-dimensional global grids (Flato et al., 2013). Climate models of

different complexity (and indeed the hierarchy of climate model complexity

itself, e.g. Vallis et al., 2018) can be used to answer different research questions

or solve different problems. For example, the computationally cheap

one-dimensional model used by Manabe and Wetherald (1967) would not get

very far with projections of future droughts in the UK, but it was able to show

that the vertical pattern of warming in the atmosphere corresponds to a

greenhouse gas effect rather than to changes in solar irradiation, and managed

to make an estimate of climate sensitivity that still falls within the very likely

range (although on the lower side) of the climate sensitivity estimates given in

the most recent IPCC assessment cycle (Forster et al., 2021).

While climate change is a global problem, its various impacts are generally

more localised, and so detailed spatial information is required to support

regional and local adaptation to the consequences of climate change. Global

climate models (abbreviated here as GCMs - which is also used to abbreviate

General Circulation Models, but technically those do not include the more

complex class of earth system models) can provide important spatial

information to some extent, but although great progress is regularly being made

in refining their horizontal resolution, the vast majority still operates on a grid

with a resolution of the order of 100 km, which falls short of the high resolution

demanded for many scientific and practical purposes. Therefore, different

downscaling techniques have been developed to provide more detailed spatial

information based on global climate model simulations (e.g. Prein et al., 2015,
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and references therein). A widely used downscaling strategy is to nest a higher

resolution regional climate model (RCM) inside a coarser global climate model,

with improved spatial detail and possibly more explicit representations of finer

scale processes. With one-way nesting, the GCM provides boundary conditions

for the regional climate model over a limited area of the globe, with a buffer

zone along the boundary to smooth the transition from coarser boundary

conditions to the desired resolution.

Potential future changes to hydrological variables such as streamflow are of

crucial interest to many stakeholders. Typically, to investigate projected

changes in hydrological hazards from climate change, precipitation and other

meteorological variables simulated by a climate model are used as input for an

off-line hydrological model, resulting in an impact modelling chain (Hakala

et al., 2019). Despite continuous improvements, climate models still tend to

contain non-negligible biases, which complicates (but does not necessarily

inhibit) their direct or indirect use for climate change impact studies. Generally,

climate models tend to perform better for simulations of temperature than for

simulations of precipitation (Flato et al., 2013). Using the raw RCM

simulations of precipitation and other variables such as temperature as input for

hydrological models can lead to large errors in the resulting streamflow

simulations. Bias correction tends to considerably improve the resulting

streamflow simulations, and the choice of bias correction method can have a

considerable (intended and unintended) impact on the resulting streamflow

simulations (e.g. Rojas et al., 2011; Teutschbein and Seibert, 2012; Teng et al.,

2015; Pastén-Zapata et al., 2020), as input biases are propagated through

non-linear processes in the hydrological rainfall-runoff model (Wigley and

Jones, 1985), so a careful consideration of the changes introduced by the

bias-correction is necessary.

Note that statistical bias correction does not solve climate model problems at

the source (i.e. imperfect process representations), and inherently assumes that

biases are stationary in time, and that the simulations can be trusted to some

degree, while needing correction of the mean and possibly several higher order

moments. Bias correction is further discussed in Chapter 3.

Different types of hydrological models can be used to simulate streamflow (and

groundwater, however this is not the focus of the present work) from

meteorological observations or (bias adjusted) climate projections. A first

distinction can be made between land surface models and hydrological models.

Land surface models are generally physics-based, aim to realistically simulate

different fluxes of energy and moisture on land and between atmosphere and

land, and are used in particular to simulate the terrestrial component of the



Chapter 1: Introduction 18

water cycle in climate models. On the other hand, hydrological models are

primarily developed to simulate streamflow, and the representation in these

models of other water fluxes primarily serves this objective. Hydrological

models can be classified based on their level of process and spatial complexity

(Hrachowitz and Clark, 2017). In terms of spatial complexity, the main

distinction made is between lumped and distributed models. Distributed

models simulate streamflow over a large number of spatial hydrological units

(such as the cells of a square grid or hydrological response units), which are

associated with spatially variable parameters and are driven by spatially

variable atmospheric forcing (Beven, 2012). In contrast, lumped hydrological

models represent the catchment as a single homogeneous hydrological unit, they

are run for a single value per parameter at a time and using atmospheric forcing

averaged over the whole catchment. There exist hybrid configurations, often

referred to as semi-distributed, which often consist of a lumped model relying

on a number of elevation bands to simulate the influence of topography within

the catchment. In terms of complexity, simple models that represent processes

between rainfall and runoff by a combination of water buckets are typically

called conceptual and rely on calibration for parameter estimation. At the other

end of the complexity continuum lie models that leverage physics to represent

water dynamics and whose parameters are typically estimated using geophysical

datasets (e.g. high resolution soil product). The hydrological models used in

this work (Section 2.5) to simulate the relatively flat Wensum catchment are

lumped conceptual models.

In the last decades, modular modelling frameworks have been developed for

better understanding structural uncertainty (e.g. Clark et al., 2008, 2015;

Knoben et al., 2019; Craig et al., 2020; Dal Molin et al., 2021). What sets

modular modelling frameworks apart from model inter-comparisons is that they

allow to trace back structural uncertainty to the representation of specific

processes or specific structural differences, as well as their ability to recombine

structural elements into new models. Another aim for the development of

modular frameworks is to select the model structure based on known physical

characteristics of the catchments to model (Pomeroy et al., 2007). The work in

Chapter 5 makes use of the widely used rainfall-runoff model GR6j

(Pushpalatha et al., 2011) described in Section 2.5.1 and which is used by

Anglian Water, combined with the modular modelling framework FUSE (Clark

et al., 2008), described in Section 2.5.2.

When chaining multiple models (and, where necessary, the calibration of these

models to estimate optimal parameter sets) and processing steps after each

other, the uncertainty associated with each modelling choice propagates through
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the next. This results in a cascade of uncertainty (Wilby and Dessai, 2010;

Smith et al., 2018b). The literature on the contributions of different sources of

uncertainty to the overall uncertainty in hydrological impact modelling studies

(especially those focusing on droughts or low flows) is discussed in Chapter 5.

1.6 Thesis objectives and outline

This chapter provided the necessary background for understanding the broader

context of the work presented here. The overarching aim of this thesis is to

better characterise the projected impacts due to climate change on droughts over

GB and East Anglia, with a specific focus on how methodological choices can

affect the projected impacts and the associated uncertainty. Hereby, this thesis

aims to develop valuable insights for future climate change impact studies, aside

from generating the future drought projections themselves. The overall structure

of this thesis follows consecutive steps along a hydroclimatic model chain, and

moves from atmospheric variables over atmosphere-based drought indicators to

streamflow drought characteristics. Within this narrative, the overall aim of this

thesis can be split into the following specific objectives (and within each chapter,

these objectives are refined further):

Chapter 3 evaluates and bias adjusts the state of the art climate model

simulations used, and investigates projected trends in precipitation and

temperature indices.

Chapter 4 investigates projected drought characteristics for the whole of GB

based on two atmosphere-based drought indicators, and closely examines their

differences.

Chapter 5 zooms in on the Wensum catchment to investigate projected changes

in streamflow drought frequency, and explores model evaluation approaches to

constrain the associated uncertainty.

Chapter 6 uses the ensemble of streamflow projections produced in Chapter 5 to

explore novel indicators to characterise the distribution of durations of individual

streamflow drought events, and investigates how the resulting metrics change over

time for the Wensum.

Preceding this, Chapter 2 provides an overarching introduction of the study

areas, observation datasets, climate model simulations, scenario selection

method and hydrological models used in the results Chapters 3, 4, 5 and 6.

Finally, Chapter 7 provides overarching conclusions and forms
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recommendations to researchers and practitioners based on the work presented

in the previous chapters, and outlines potential avenues for future research. The

literature review is not concentrated into a single chapter, but instead

distributed over the current Chapter, parts of Chapter 2, and the introduction

and discussion sections of Chapters 3-6.



2

Study area, data and models

2.1 Study area

Great Britain (GB) is home to a variety in hydroclimatic regimes, land features,

hydrogeology and human influences, which influence how anomalous

meteorological conditions propagate to drought impacts (e.g. Barker et al.,

2016). This is also influenced by, and influences in turn, water management and

related infrastructure across the region. An overview of Great Britain’s

hydrology and gaps in the current state of its scientific understanding is

provided by Wagener et al. (2021).

In the Köppen-Geiger climate classification system, Great Britain has a humid

temperate oceanic climate (Peel et al., 2007). There is almost an order of

magnitude difference in annual rainfall totals across GB, from the wet regions in

the north and west to the less humid climate in the east and south east. The

prevailing south-westerly winds bring in mild, humid air from the Atlantic,

resulting in large rainfall amounts along the west coast. High elevation areas

along the (north-)west of GB orographically enhance this rainfall, while

projecting a rain shadow on the lowlands towards the east and south-east.

Weather in GB is strongly influenced by variations in the position and strength

of the polar jet stream, leading to wet, stormy winters (jet stream over UK) and

warm, drier summers (jet stream north of UK) on average (Davies et al., 1997),

but also plays an important role in extreme events, e.g. in blocking patterns.

The North Atlantic Oscillation (NAO) is an important metric of interannual

variability of (especially winter) weather in GB (e.g. Wilby et al., 1997). During

a positive phase of the NAO, defined by a stronger atmospheric pressure gradient

between the Azores High and the Icelandic Low, the UK experiences wetter,

milder winters. The magnitude (and even sign) of the influence of the NAO on

precipitation varies spatially across GB, generally strongest in the north-west

and weakest in the south-east (e.g. Wilby et al., 1997; Folland et al., 2015; West
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et al., 2019), depending on the season (West et al., 2019). In fact, the East

Atlantic Pattern has a stronger influence on winter precipitation in southeast

GB (Hall and Hanna, 2018) and climatic variability has also been linked to the

Scandinavian Pattern (Bueh and Nakamura, 2007; Comas-Bru and McDermott,

2014). Positive phases of the Summer North Atlantic Oscillation (SNAO) are

correlated with higher temperatures and lower summer rainfall in GB, associated

with anticyclonic conditions (Folland et al., 2009).

Moving from the atmosphere to the land surface, the difference in water

availability across GB is also reflected in the spatial variability of evaporation

controls across GB. Based on annual averages of MORECS data, Kay et al.

(2013) show there is a north-west to south-east gradient from energy-limited to

more moisture-limited evaporation. In the south-east, potential evaporation

exceeds precipitation for several months from late spring to early autumn, while

in parts of the north-west, monthly averaged potential evaporation doesn’t

exceed precipitation even in summer. Therefore, there are larger gaps between

actual and potential summer evaporation in the south east compared to the

north west (Kay et al., 2013). In an analysis of the correlation between annual

evapotranspiration and incident solar radiation or precipitation for North

America and Europe, Teuling et al. (2009) present a more complicated spatial

pattern of evaporation controls over GB. In their analysis, which is limited to

evaporation and radiation data on rain-free days in May-September, GB grid

cells show any combinations of a weak to strong positive correlation with

precipitation and a weak to strong positive correlation with radiation, showing

GB in a transition region from energy-limited northern Europe to

moisture-limited southern Europe.

Finally, the propagation of meteorological conditions to hydrological hazards in

GB is strongly influenced by hydrogeology and by human-built water

infrastructure. Groundwater and groundwater-influenced catchments respond to

precipitation deficits aggregated over longer scales than other catchments, and

these time scales show significant variation among individual catchments and

sites (Bloomfield and Marchant, 2013; Barker et al., 2016). In addition, human

interventions have modified the natural hydrological cycle in a continuous effort

to fulfil the water-related needs of an evolving society, and in turn this

(purposefully or not) modifies the propagation of anomalous meteorological

conditions to drought impacts (Van Loon et al., 2016a). For example, the

spatial dynamics of drought propagation over England are influenced by an

expansive network of transfers and reservoirs (Dobson et al., 2020). In the

region managed by Anglian Water, eight reservoirs of varying sizes store surplus

water from wet periods for use during drier periods, five of which are connected
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Figure 2.1.1: Map of Anglian Water’s ground- and surface water resources.
Reproduced from Fig. 1.3 in Anglian Water (2022b).

into one partially integrated system (Anglian Water, 2021).

The region managed by Anglian Water is located in the East of England, which

is one of the driest (and warmer) regions of the UK characterised by relatively

low precipitation (generally under 700 mm year-1) and high atmospheric

moisture demand. The locations of Anglian Water’s water resources, including

reservoirs and direct abstraction intakes (e.g. the Wensum, see below), are

shown in Fig. 2.1.1 which was reproduced from Anglian Water’s most recent

draft drought plan (Anglian Water, 2022b). Agricultural land makes up three

quarters of the region of East Anglia, described by the National Farmers Union

as ‘Britain’s breadbasket’ (National Farmers Union, 2016). In 2021, the East of

England was responsible for about two thirds of England’s sugar beat crop, one

third of its potato crop, 28% of its wheat crops, 30% of its field vegetables and a

quarter of its barley and oilseed rape crops (DEFRA, 2023). Aside from its

crops, East Anglia is also a large supplier of eggs, chicken and pigs (National

Farmers Union, 2016). As these agricultural activities result in a high water

demand, it is important to note that AW generally does not supply water for

agriculture.

The Wensum catchment, gauged at Costessey Mill (nrfa ID = 34004) spans

570.9 km2 and is relatively flat, with altitudes between 5.3 and 96.1 mAOD.

The catchment is a primarily agricultural area, with land cover consisting for

74.02% of arable and horticultural land, 13.59% of grassland, 8.98% of

woodland and 3.06% of urban area (UKCEH, 2023). The River Wensum is

groundwater-dominated, influenced by the chalk aquifer underlying the

catchment. The River Wensum makes up Anglian Water’s main water resource
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for the public water supply of Norwich, a city with an estimated population of

144,000 people (2021 Census, Office for National Statistics, 2022). The bulk of

the surface water abstraction took place at Costessey Mill from 1988 until 2019,

when it was moved downstream to the Heigham intake in Norwich (Jones et al.,

2004; Mott MacDonald, 2020, personal communication, 2021). Streamflow in

the River Wensum is also significantly influenced by groundwater abstraction

(e.g. Jones et al., 2004). These abstractions make the river particularly

challenging for hydrological modelling studies (Jones et al., 2004). Similarly, in

a benchmarking study, Lane et al. (2019) found that catchments in the

south-east of England were generally challenging to model (as measured by the

Nash Sutcliffe Efficiency, Nash and Sutcliffe, 1970). Low rainfall amounts,

human influences and missing representation of groundwater processes in

catchments underlain by the Chalk aquifer were all mentioned as possible

explanations for this poor performance. Finally, the Wensum catchment is also

of significant ecological importance, as recognised by its classification as a Site

of Specific Scientific Interest and as a Special Area of Conservation (Wood

et al., 2022). In fact, most of the world’s chalk streams are in southern and

eastern England and these catchments therefore have particular ecological

significance (Rangeley-Wilson and CaBA CSRG Panel, 2021). These ecological

aspects impact on management of, and abstraction from, rivers such as the

Wensum (e.g. in the specification of ‘hands-off’ flows, below which abstraction

of water can only take place under a specific temporary permit).

2.2 Gridded observation datasets

2.2.1 HadUK-Grid

The Met Office’s HadUK-Grid dataset (Hollis et al., 2019) provided

observations for daily precipitation used in Chapters 3, 4 and 5. It also

provided the daily temperature observations used in Chapter 3. The in situ

data interpolated to create this gridded dataset are mainly from the Met Office

Integrated Data Archive System (MIDAS). Following the same gridding

approach of HadUK-Grid’s predecessors, Hollis et al. (2019) used inverse

distance weighting to transform the in situ time series of climate variables to

gridded datasets (reflecting point estimates for a 1 km-spaced regular grid, not

grid cell averages). This was preceded by a transformation of the data to

account for spatial variations. First, the variables were transformed to

differences with (minimum and maximum temperature) or percentages of

(rainfall) the long term average. Second, topography-dependent variations were



Chapter 2: Study area, data and models 25

accounted for through regression with topographic variables (not applied for

daily rainfall anomalies, but the influence of terrain elevation and aspect are

included in the baseline climatology). Specifically, the topographic variables

used to inform the transformation are elevation and aspect for rainfall and

temperature variables, proximity to the coast for minimum and maximum

temperatures, and proximity to urban areas for minimum temperatures (Hollis

et al., 2019, Tables S3 and S4 in the Supplementary Information).

The base version of HadUK-Grid is provided on a 1 km grid, but it is also provided

on coarser grids including a 12 km grid intended to facilitate comparison with

UKCP18-RCM (Hollis et al., 2019). However, on inspection, a mismatch was

found between the coordinates of the HadUK-Grid and UKCP18-RCM grid, with

HadUK-Grid being offset by 1.5 km Easting and 2.5 km Northing of the OSGB36

projection relative to the UKCP18-RCM grid. The OSGB36 / British National

Grid projection (Ordnance Survey of Great Britain 1936), a transverse Mercator

type projection, is a coordinate reference system widely used over the British Isles

which defines coordinates with eastings and northings. At the time the work in

Chapter 3 was carried out, an updated version of HadUK-Grid was planned, with

the 12 km grid to be modified to match the UKCP18-RCM grid (CEDA, personal

communication, 25 March 2020), but timing was uncertain due to the COVID-19

pandemic (this update has since become available). As a workaround, a new

12 km dataset was constructed here from the 1 km HadUK-Grid data for daily

precipitation, and minimum and maximum temperature to match the UKCP18-

RCM 12 km grid. The 12 km dataset derived here was used throughout the thesis

and is called HadUK-Grid. Consistent with Hollis et al. (2019), this was done by

averaging all 1 km grid points that lay in each 12 km UKCP18-RCM grid cell.

For the evaluation, bias adjustment and analysis of daily average temperature

in Chapter 3, HadUK-Grid daily average temperature was derived by taking the

average of daily minimum and daily maximum temperatures.

2.2.2 CHESS-PE

The CHESS-PE dataset provided by the Centre for Ecology and Hydrology

(Robinson et al., 2020) was used as observational reference for PET in Chapters

3 and 4. Like for HadUK-Grid, this dataset was regridded from its native 1 km

resolution to the 12 km resolution grid of UKCP18-RCM through averaging.

The computation of PET relies on daily observations of air temperature (mean

and range), specific humidity, wind speed, downward longwave and shortwave

radiation, precipitation and air pressure. These variables were derived primarily

from the MORECS dataset (horizontal resolution of 40 km), except for air
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pressure and the daily temperature range which were derived from WFD, CRU

TS 3.12 (both with a horizontal resolution of 0.5◦) and CEH-GEAR (horizontal

resolution of 1 km), respectively.

The method used to obtain PET in the production of CHESS-PE is an

implementation of Penman-Monteith PET (Monteith, 1965) for a reference crop

(Allen et al., 1998), which assumes a crop height of 0.12 m, a constant stomatal

resistance of 70.0 s m-1, an albedo of 0.23 and an emissivity of 0.92. For the

calculation of vapour pressure deficit from temperature, Robinson et al. (2017)

used a formulation based on Richards (1971). The equations and detailed

explanations of the computation of PET for the CHESS-PE dataset can be

found in Robinson et al. (2017).

2.3 The UKCP18 regional climate projections

UKCP18 is the most recent set of national climate projections for the UK. The

research presented in this thesis makes use of its third strand, a perturbed

physics ensemble (PPE) of regional climate model projections (UKCP18-RCM;

Met Office Hadley Centre (2018)), available from the Centre for Environmental

Data Analysis (CEDA). The RCM simulations were run over the

EURO-CORDEX rotated pole grid with a horizontal resolution of 0.11◦, which

results in quasi-uniform 12 km spacing over the European domain (Murphy

et al., 2018), and made available for the UK region with these coordinates as

well as the OSGB36 projection which was used for the work presented in this

thesis. The horizontal resolution of the RCM simulations over the UK region is

12 km, which for drought research presents a good trade-off between practicality

and spatial detail compared to the UKCP18 high-resolution convective

permitting simulations. Simulations of different variables are available from 1

December 1980 to 30 November 2080 on a daily time step (for practical reasons,

December 1980 was left out of our analyses). The UKCP18-RCM simulations

are a PPE, obtained by running the global climate model (GCM)

HadGEM3-GC3.05 with perturbations in 47 parameters, which was then

downscaled by one-way nesting with a regional configuration of this model using

the same perturbed parameter sets as its driving GCM ensemble member.

The HadGEM3-GC3.05 parameter sets chosen for the global (Strand 2) and

regional (Strand 3) UKCP18 PPE ensembles were selected in multiple stages

based on different criteria, as summarised briefly below and explained in

Murphy et al. (2018) and references therein. Following expert judgement, 47

parameters were selected to perturb in the convection, gravity wave drag,
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boundary layer, cloud, large-scale precipitation, aerosols, and land surface

interaction schemes (the ocean component was excluded from perturbations

from the outset). From 2800 parameter sets sampled from their prior

distributions, 442 survived a first selection based on 5-day hindcasts. These,

plus an additional 115 parameter sets (so 557 in total), were further filtered

based on 5-year atmosphere-only simulations, from which 39 were retained

based on a wide range of performance metrics. Due to computational

constraints, the 25 most diverse ensemble members were selected from these 39

to run coupled ocean-atmosphere projections. Based on historical runs, two

ensemble members were excluded due to numerical instabilities, and three more

were excluded because they simulated a spin-down of the Atlantic Meridional

Overturning Circulation (AMOC) inconsistent with observations and large

negative sea surface temperature biases in the North Atlantic.

The 20 remaining ensemble members were run to 2100. For the global

projections (UKCP18 Strand 2), these 20 were reduced to the final 15 ensemble

members after eliminating 5 more ensemble members due to unsatisfactory

representations of the AMOC, the simulated historical trend in Northern

Hemisphere surface temperatures, and European climatology. For the regional

projections (UKCP18 Strand 3), 16 of the 20 parameter sets were selected first,

aiming to maximise the spread in the 47-dimensional parameter space within

the limitations of computational resources. These 16 ensemble members still

contained 4 of the ensemble members eliminated for the global projections,

which were therefore also eliminated, resulting in the final 12 ensemble members

chosen to drive the regional projections (numbers 1, 4, 5, 6, 7, 8, 9, 10, 12, 13

and 15). These include the standard parameter set (number 1) as well as the

weakest and strongest estimates of global aerosol forcing and climate feedback

strength found in the 15 member global PPE, and maximises the spread of 47

parameter values (Murphy et al., 2018).

A limitation of this modelling setup relying on a single climate model structure

is that it causes UKCP18-RCM to sample a narrower range of potential future

outcomes than the UKCP18 global projections, which combine the 15 member

global PPE with an ensemble of 13 other CMIP5 GCMs. However,

complementing the analysis with extra ensemble members produced with

different climate model structures (e.g. from the EURO-CORDEX projections

Giorgi et al., 2009) was considered practically outside the feasible scope of this

study. Furthermore, restricting this study to the use of UKCP18 makes the

results more comparable to other work using UKCP18 for the UK (e.g. Arnell

et al., 2021; Kay et al., 2021b; Hanlon et al., 2021), thereby resulting in a

deeper understanding of the implications of these climate projections. It is also
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important to note that in the end, the UKCP18 datasets were specifically

developed for the UK, and that these sets of projections have been intended and

recommended for use by decision makers in the UK to support adaptation to

future climate change impacts (Met Office, 2019).

2.4 Warming scenarios

The work in Chapters 4 and 5 makes use of time slices representing warming

levels of +2◦C and +4◦C above pre-industrial levels, consistent with the derived

projections made available within the UKCP18 set of projections (Gohar et al.,

2018). The rationale for this choice is explained below, as well as a framing of

the realism of these two warming levels.

Importantly, HadGEM-GC3.1, to which HadGEM-GC3.05 is closely related

(Lowe et al., 2018), has a high equilibrium climate sensitivity (ECS, the

warming resulting from a doubling of CO2) of 5.4
◦C (Meehl et al., 2020). This

lies substantially above the likely upper range of 4.5 ◦C from the IPCC’s 6th

Assessment Report (Arias et al., 2021), but cannot be ruled out. It samples the

upper end of the UKCP18 probabilistic projections of global mean surface

temperature change, and projects larger temperature increases than almost all

of the CMIP5 models included in the UKCP18 global ensemble (see Fig. 2.13 in

Lowe et al. (2018)). UKCP18-RCM presents a comparatively warm set of

climate projections for the UK, notably tending toward a drier and hotter

summer response than the UKCP18 selection of CMIP5 projections.

UKCP18-RCM and its driving global PPE mostly cover the upper quartile of

summer warming of the UKCP18 probabilistic projections, and the majority of

the ensemble projects greater drying than the median summer precipitation

change in the probabilistic projections. For winter, there is more overlap

between the CMIP5 selection and the global and regional HadGEM-GC3.05

PPE, and a greater portion of the range of the probabilistic projections is

sampled (see Fig. 5.2 in Murphy et al. (2018)).

Secondly, the UKCP18-RCM simulations were only produced using the RCP8.5

emissions pathway, a very high emissions scenario characterised by high

population growth and energy demand (Riahi et al., 2011). It is sometimes

interpreted as the ‘business as usual’ scenario but this interpretation has been

criticised (Hausfather and Peters, 2020; Riahi et al., 2022). Instead, RCP8.5

should be viewed as a high-end, high-risk scenario which has become

considerably less likely due to developments in energy technologies and policy

during the last decade (Riahi et al., 2022) but which cannot yet be completely
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ruled out. Exploring such possible worst case scenarios is relevant, especially

given the extremely high stakes of impacts of climate change on vital sectors

such as water supply and food production. While all HadGEM-GC3.05 PPE

simulations in UKCP18 follow the RCP8.5 emissions scenario, the exact CO2

concentration pathways were designed to differ among the ensemble members to

represent uncertainty in the carbon cycle processes converting carbon emissions

to atmospheric CO2 concentrations (Murphy et al., 2018). For UKCP18-RCM

PPE, the regional downscaling HadGEM-GC3.05 configurations use the same

CO2 concentration pathways as their driving global simulations.

To reduce the influence of some of the assumptions described above and provide

quasi-scenario-neutral projections of future drought, a time slice approach was

used to represent different global warming levels (James et al., 2017) rather

than using a specific future time period under a particular scenario. The two

warming levels investigated, +2 and +4 ◦C above pre-industrial levels, are

based on the same warming levels for which UKCP18 derived projections were

produced and makes use of the years in which a 25-year running mean of

global-mean temperature from the driving global model reaches the warming

level of interest presented in Gohar et al. (2018). Warming levels are specified

relative to pre-industrial conditions, defined as the 1850-1900 climate. As

opposed to the CMIP5 part of the global UKCP18-ensemble, all 12 driving

global PPE members reach +4 ◦C of global mean warming at some point

(Gohar et al., 2018).

Importantly, the time slice approach would result in an accurate assessment of

changes in GB drought projected at these warming levels if these changes would

scale directly with global temperature increase (independent of the speed of

change), and if the regional model has the same climate sensitivity as its driving

global model. Neither of these requirements are likely to be fully met.

UKCP18-RCM projects slightly weaker UK temperature responses towards the

end of the simulated period than their driving global simulations (Fig. 5.2 in

Murphy et al. (2018)). Additionally, midlatitude atmospheric circulation

patterns in the selected time slices (which influence UK weather and therefore

drought events) might be related more directly to the radiative forcing rather

than to the global temperature increase projected under that radiative forcing

by a particular GCM (Ceppi et al., 2018). Nevertheless, the applied time slice

approach is a reasonable approximation and is frequently used for investigating

impacts at different levels of global warming (e.g. James et al., 2017; Naumann

et al., 2018; Samaniego et al., 2018).

As the time slices representing +2◦C and +4◦C of warming above pre-industrial

levels are used for many of the results presented in this thesis, some context is
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required for understanding their realism and implications. In the 2015 Paris

agreement, 196 Parties (covering most of the world’s nations, population and

emissions) agreed to ‘holding the increase in the global average temperature to

well below 2 ◦C above pre-industrial levels and pursuing efforts to limit the

temperature increase to 1.5 ◦C above pre-industrial levels, recognizing that this

would significantly reduce the risks and impacts of climate change’ (United

Nations, 2015). The latest IPCC Working Group III report on mitigation states

that not strengthening national policies beyond those implemented by the end

of 2020 would lead to a very likely projected global warming between 2.2 and

3.5 ◦C above pre-industrial levels by 2100 (IPCC, 2022). Including updated

pledges and policy after COP27 in Sharm-el-Sheikh, the 2022 warming

projections report by Climate Action Tracker gives a similar estimated warming

range based on current policies and actions (2.2-3.4 ◦C) (Climate Action

Tracker, 2022). They further report a substantial gap between projected 2100

warming based on 2030 NDC targets (1.9-2.9 ◦C, central estimate of 2.4 ◦C)

and their ‘best case’ scenario where all announced targets are fully implemented

(1.5-2.3 ◦C, central estimate of 1.8 ◦C). Indeed, multiple recent studies show

that the optimistic scenario with full implementation of all pledges and

announced targets could suffice to limit global warming to +2 ◦C, but would

fall short for the +1.5 ◦C target (Meinshausen et al., 2022; United Nations

Environment Programme, 2022; Climate Action Tracker, 2022).

The time slice representing two degrees of warming above pre-industrial levels

thus represents an achievable future with improved policy and action compared

to the current situation. The other time slice, with four degrees of warming, can

be regarded as a possible higher-end warming scenario and falls within the very

likely (5%-95%) ranges of high-emissions scenarios which can be considered either

about as pessimistic as, or more pessimistic than, pathways based on current

policies (Lee et al., 2021; Riahi et al., 2022, e.g. SSP3-7.0, SSP5-8.5 or C7-C8).

Furthermore, multiple climate tipping points could be crossed which would result

in irreversible state changes of elements in the climate system. Several of these

could be reached even below +1.5 or +2 ◦C of warming above pre-industrial

levels, and for some tipping points even at current global temperatures, although

the number of possible tipping points and the risk of crossing them increases

depending on global warming levels (Armstrong McKay et al., 2022). The high

degree of uncertainty associated with these tipping points and their potential

interactions (Ripple et al., 2023) further motivate the consideration of seemingly

pessimistic scenarios or global mean warming levels for climate change impact

studies.
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2.5 Hydrological models

In this section, the hydrological rainfall-runoff models used in Chapter 5 are

explained.

2.5.1 GR6j

GR6j (modèle du Génie Rural à 6 paramètres Journalier) is a widely used

parsimonious lumped rainfall-runoff model with only 6 free parameters (see

Table 2.1). The widely known four-parameter version (GR4j), proposed by

Perrin et al. (2003) as an improvement of the GR3j model (Edijatno et al.,

1999), was later modified to GR5j by Le Moine (2008) who implemented a

groundwater exchange function in which the direction of the exchange is not

fixed but depends on the water level in the routing store. This finally became

GR6j with the addition of a new exponential routing store in parallel with the

existing linear one, aimed at improving low-flow simulation without adversely

impacting the simulation of high flows (Pushpalatha et al., 2011). This final

addition was the result of a structural sensitivity analysis, in which different

formulations were tested for the groundwater exchange term F, for an

additional store in parallel or in series with the existing routing store, and for

the parameterisation of the input flux split between the existing and new store.

Based on this analysis, the existing groundwater exchange term from GR5j was

kept, a fixed (instead of catchment-specific) split between the stores was

deemed suitable, and an extra parallel store proved more advantageous than

adding an extra store in series (Pushpalatha et al., 2011). Finally, an

exponential store was found as the best option for this additional parallel store

in GR6j (Pushpalatha et al., 2011). Besides its widespread usage, GR6j is

primarily included in this study because it was recently adopted for operational

(and strategic planning) use by Anglian Water. The model is used first to

naturalise flows for FUSE calibration (section 5.5.1), and second to produce

streamflow drought frequency (Chapter 5) and duration (Chapter 6) projections

driven by UKCP18-RCM, which will be compared to a larger ensemble of

projections generated with FUSE.

An overview of the GR6j model structure is given in Fig. 2.5.1 and its

components are discussed briefly below. For more details and the equations, the

reader is referred to Perrin et al. (2003). The soil architecture consists of three

reservoirs: a soil moisture accounting production reservoir (S) and two parallel

routing stores (R1 and R2). GR6j assumes that precipitation at a given time

step will evaporate until either the PET is satisfied or no precipitation remains



Chapter 2: Study area, data and models 32

Table 2.1: Free parameters in GR6j (adapted from Pushpalatha et al. (2011) and
Perrin et al. (2003)).

Parameter Units Explanation

X1 mm Maximum capacity of the production store

X2 mm Groundwater exchange coefficient

X3 mm Maximum capacity of linear routing store

X4 day Time base of unit hydrograph

X5 - Threshold for change in direction of groundwater exchange (introduced in version GR5j)

X6 mm Maximum capacity of the exponential routing store (introduced in version GR6j)

(‘as if there were an interception storage of zero capacity’ (Perrin et al., 2003),

which can be seen as a way to represent vegetation). From the remaining part

of the precipitation (if any), the production store is recharged by an amount

determined by a non-linear function of the production store state variable and

the precipitation reduced by potential evapotranspiration. Only when potential

evapotranspiration exceeds precipitation, evaporation from the production store

is enabled, which is represented by a non-linear function of the production store

state variable and potential evapotranspiration reduced by precipitation

(analogous to the production store recharge function). Percolation is

represented as a power function of the production store level, and while there is

no division between free and tension storage implemented, the formulation

implies only a (fixed) fraction of the production store level contributes to

percolation. The percolated water, together with the precipitation remainder

after production store recharge (i.e. surface runoff), is then split into two flow

components for routing. The smallest portion is directly routed through a single

hydrograph, while the larger portion is routed through a hydrograph toward

two parallel routing stores with different non-linear behaviours. A catchment

exchange term (F, depending on X2 and X5 (Table 2.1)) is applied to the linear

routing store and the direct flow component.

2.5.2 FUSE

The modular rainfall-runoff modelling framework FUSE (Framework for

Understanding Structural Errors) was developed by Clark et al. (2008) and has

since been further developed by the community (Addor, 2020), for example with

the addition of a snow module ((not needed in this study) Henn et al., 2015).

The rationale behind FUSE is to better understand and diagnose differences

between hydrological models of comparable complexity by systematically

comparing model structures with controlled differences and similarities. FUSE

is a framework enabling the user to set up and run different hydrological model
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Figure 2.5.1: Wiring diagram of GR6j. Reproduced from Pushpalatha et al.
(2011).

structures, i.e. to generate an ensemble of models without having to set up and

run each model individually. This is made possible by the recombination of

elements from four parent structures, which are based on existing hydrological

models, and are referred to as follows in this thesis:

1. ARVI: based on versions of the Variable Infiltration Capacity Model (VIC)

(Zhao, 1977, 1984; Wood et al., 1992; Liang et al., 1994) and borrowing

from the ARNO model (Todini, 1996).

2. PRMS: based on the Precipitation-Runoff Modelling System (Leavesley
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et al., 1983, 1996).

3. SACR: based on the SACRAMENTOmodel (Burnash et al., 1973; Burnash,

1995; Koren et al., 2004).

4. TOPM: based on TOPMODEL (Beven and Kirkby, 1979; Ambroise et al.,

1996; Beven, 1997; Duan and Miller, 1997; Iorgulescu and Musy, 1997).

As illustrated in Fig. 2.5.2, the four parent structures follow a common

architectural framework, with different formulations for each model component.

The available choices and differences between the parent structures are briefly

described below. The reader is referred to Clark et al. (2008) for more details

and equations of the model choices. The soil is represented in two layers: an

upper soil layer representing the unsaturated zone (S1) and a lower soil layer

representing the saturated zone (S2). The unsaturated zone is implemented as

a single reservoir in ARVI and TOPM. For SACR and PRMS, it is separated

into one or two tension storage reservoirs and a free storage reservoir which is

recharged when the tension storage is above capacity (i.e. when field capacity is

exceeded), with a logistic function smoothing the transition around the capacity

threshold (Kavetski and Kuczera, 2007). For these architectures, surface runoff

and evaporation are generated from the (upper) tension reservoir, while

percolation and interflow are generated from the free-flowing reservoir. The

lower soil layer is implemented as a single reservoir in TOPM, PRMS, and

ARVI, of which only ARVI has a fixed, finite size and allows evaporation to take

place (see Fig. 2.5.2). In SACR, the architecture of the lower soil layer is more

complex, represented as a tension storage reservoir (with evaporation) which

overflows into two parallel free storage reservoirs (where baseflow is generated).

FUSE also provides different options for the representation of some major fluxes

from these reservoirs, which interact with the soil architecture choices.

The four options for base flow parameterisation are tied to the choice of lower

zone architecture. Baseflow is represented as a linear function of the states of

the infinite single store of PRMS and the two parallel free storages of the SACR

lower zone, or as a non-linear function of the ARVI and TOPM single

reservoirs. For TOPM, baseflow depends on the mean of the power-transformed

topographic index, which is derived from a three-parameter Gamma

distribution used to represent the distribution of the topographic index (which

is thus not calculated directly from topographic data). Percolation from the

unsaturated upper zone to the saturated lower zone is controlled by total upper

zone storage (ARVI), upper zone free storage (PRMS, also used in the TOPM

parent structure) or a combination of the upper zone free storage (linear) and

total lower zone storage (non-linear) (SACR). For upper soil layer
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Figure 2.5.2: Wiring diagram of the four FUSE parent structures. Reproduced
from Clark et al. (2008).

representations with a free storage reservoir (PRMS and SACR), interflow can

be parameterised as a linear function of upper zone free storage or turned off (in

this study, interflow is computed for PRMS and SACR and turned off for

TOPM and ARVI).

Evaporation depends on PET and is limited by the state(s) of the source

storage(s). There are two options provided for how to distribute the

evaporation flux between two sources (which doesn’t apply in the case of the

TOPM soil architecture, where evaporation only comes from the single reservoir

representing the upper soil layer). In the sequential option (parent structures

PRMS, TOPM and SACR), evaporation from the lower soil layer (or lower

tension reservoir of the upper soil layer for PRMS, see Fig. 2.5.2) only occurs

when moisture availability of the upper soil layer is limiting, while in the root

weighting option (parent structure ARVI) the relative contributions to

evaporation of the upper and lower reservoirs depends on their relative root

fractions.

Surface runoff is represented as a linear function of the saturated area and

precipitation, with three available parameterisations of the saturated area: a

linear function of the upper layer tension storage with a set maximum saturated

area (PRMS, also used in SACR parent structure), a nonlinear function of the
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saturation deficit of the upper soil layer (ARVI) and a function of the

topographic index distribution beyond a critical topographic index which

depends on the state of the total lower zone storage (TOPM). Infiltration excess

runoff (also called Horton overland flow) is neglected in all structures. There is

no explicit representation of vegetation stores or fluxes in the FUSE models,

although (as for other missing processes) this is implicitly taken into account in

the calibration. Finally, FUSE allows to represent the runoff time delay

(routing) using a two-parameter Gamma distribution, which was enabled for all

four structures used in this study.

The parameters for these different FUSE models are shown in Table 2.2. During

the calibration with SCE (see Section 5.5.2), for some structures, some optimised

parameter values closely approached the previously fixed boundaries for one or

more structures. Therefore, for the parameters S1,max, S2,max, ku, α, ψ, ks, the

feasible upper value limits from Clark et al. (2008) were increased, for λ the lower

limit was decreased, and for the parameters ϕtens, v, vA, vB, χ and µτ the value

range was expanded on both ends. It is possible that in some cases expanding

the feasible range may lead to unrealistic parameter values in an attempt to

solve fundamental issues with the model structures through calibration, however

some adjustments can also be necessary to represent e.g. the long memory of the

Wensum catchment.
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Table 2.2: Free parameters in the FUSE models (adapted from Clark et al.,
2008). Bracketed parent structure names give the source or inspiration for the
expressions using the parameters.

Parameter Units Explanation

S1,max mm Maximum storage in the upper layer (ALL)

S2,max mm Maximum storage in the lower layer (ALL)

ϕtens - Fraction total storage as tension storage (PRMS, SACR)

ϕrchr - Fraction of tension storage in primary zone (upper layer; PRMS)

ϕbase - Fraction of free storage in primary reservoir (lower layer; SACR)

r1 - Fraction of roots in the upper layer

ku mm day-1 Percolation rate (ARVI, PRMS)

c - Percolation exponent (ARVI, PRMS)

α - Percolation multiplier for the lower layer (SACR)

ψ - Percolation exponent for the lower layer (SACR)

κ - Fraction of percolation to tension storage in the lower layer (SACR)

ki mm day-1 Interflow rate

ks mm day-1 Base flow rate (ARVI, TOPM)

n - Base flow exponent (ARVI, TOPM)

v day-1 Base flow depletion rate for single reservoir (PRMS)

vA day-1 Base flow depletion rate for primary reservoir (SACR)

vB day-1 Base flow depletion rate for secondary reservoir (SACR)

Ac,max - Maximum saturated area (fraction; PRMS)

b - Exponent for saturated area (ARVI)

λ m Mean of the log-transformed topographic index distribution (TOPM)

χ - Shape parameter defining the topographic index distribution (TOPM)

µτ days Time delay in runoff (ALL)



3

Evaluation, analysis and bias

correction of the UKCP18 regional

climate projections.

Synopsis

The UKCP18 12km regional perturbed physics ensemble

(UKCP18-RCM) is one of the three strands of the latest set of

national climate projections produced for the UK by the Met Office,

and is already widely being adopted in climate impact studies (the

two other strands are global projections and local 2.2km

projections). In this study, we report biases in the raw

UKCP18-RCM simulations that are significant and are likely to

deteriorate impact assessments if they are not adjusted. Two

methods were used to bias correct UKCP18-RCM: quantile mapping

and a variant developed for the 3rd phase of the Inter-Sectoral

Impact Model Intercomparison Project (ISIMIP) designed to

preserve the climate change signal. Specifically, daily temperature

and precipitation simulations for 1981 to 2080 were adjusted for the

12 ensemble members. Potential evapotranspiration was also

estimated over the same period using the Penman-Monteith

formulation and then bias corrected. Both methods successfully

corrected biases in a range of daily temperature, precipitation and

potential evapotranspiration metrics, and reduced biases in

multi-day precipitation metrics to a lesser degree. An exploratory

analysis of the projected future changes confirms the expectation of

wetter, warmer winters and hotter, drier summers, and shows

uneven changes in different parts of the distributions of both

temperature and precipitation. Both bias correction methods

preserved the climate change signal almost equally well, as well as
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the spread among the projected changes. The change factor method

was used as a benchmark for precipitation, and we show that it fails

to capture changes in a range of variables, making it inadequate for

most impact assessments. By comparing the difference between the

two bias correction methods with the differences between the 12

ensemble members, we show that the uncertainty in future

precipitation and temperature changes stemming from the climate

model parameterisation far outweighs the uncertainty introduced by

selecting one of these two bias correction methods. We conclude by

providing guidance on the use of the bias-corrected data sets. The

data sets bias adjusted with ISIMIP3BA are publicly available in

the following Zenodo repositories:

https://doi.org/10.5281/zenodo.6337381 (precipitation and

temperature), https://doi.org/10.5281/zenodo.6320707

(potential evapotranspiration).

Note: This chapter is based partly on a co-authored paper in

preparation for submission to the journal Earth System Science Data

(ESSD). That paper presents results only for precipitation and

temperature, whereas this chapter substantially extends the paper by

inclusion of the calculation, evaluation and bias correction of

potential evapotranspiration. There are further significant differences

between this chapter and the paper in the writing throughout, in

terms of wording, emphasis, some restructuring, additional

discussion and references.

Inclusion of research from the co-authored paper in this chapter

of my thesis correctly represents my contributions to the overall

work, namely co-design of the work; execution of data processing and

analysis; evaluating and interpreting the results; making figures; and

a large part of the writing and revising of the text. The work

therefore clearly meets the requirements to be presented in this

chapter as my original work, while noting and acknowledging

contributions from the other authors of the manuscript: Qianyu Zha

(quantile mapping, seasonal cycle (Fig.3.3.4) and bias and change

maps (Figures 3.3.1, 3.3.2, 3.3.9 and 3.3.10)), Nicole

Forstenhaeusler (bias and change maps (Figures 3.3.1, 3.3.2, 3.3.9

and 3.3.10)), Nans Addor (study design, writing, revision and

supervision), Tim Osborn (writing, revision and supervision), Yi He

(writing, revision and supervision), and Geoff Darch (revision,

supervision).

https://doi.org/10.5281/zenodo.6337381
https://doi.org/10.5281/zenodo.6320707
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3.1 Introduction

Climate model projections are essential to anticipate and adapt to future

climate change impacts. Continuous efforts by the climate modelling

community have led to major improvements in the realism of climate model

simulations, yet significant discrepancies (biases) between observations and

simulations of simulated variables remain (e.g. Kotlarski et al., 2014; Vautard

et al., 2021). Biases in climate projections require particular attention when the

projections are used to force impact models, for instance to assess future

impacts on river streamflow, ecosystems or agricultural yields. Capturing the

whole distribution of rainfall amounts is an essential prerequisite for

hydrological modelling but is still notoriously challenging for many climate

models. The response of impact models to forcing errors can be non-linear and

amplify the bias’s severity, hence biases are typically adjusted before the

climate projections are used in impact models.

To this effect, a range of bias-correction (BC) methods have been developed

and compared (Teutschbein and Seibert, 2012; Gutmann et al., 2014; Maraun

et al., 2019). These methods essentially transform the simulations so that some

of their statistical properties match those of the observations. This efficiently

reduces biases and, as a result, can considerably improve impact simulations

(Rojas et al., 2011; Hakala et al., 2018; Pastén-Zapata et al., 2020). We note,

however, that residual biases remain after the correction, and can deteriorate the

impact simulations (Teng et al., 2015). This highlights that these biases are not

corrected and removed, but rather, adjusted - as such, the term ‘bias adjustment’

is more accurate and becoming more widely used, but here we use BC to match

how these methods are more commonly described in the literature. In addition,

the statistical nature of BC methods means they only address the symptoms and

not the origin of model errors, i.e. they do not identify the causes of model biases

nor account for them (Addor et al., 2016; Maraun et al., 2017).

Furthermore, the reliability of BC can be questioned because of its reliance on

the assumption that climate model biases are stationary in time or under a

changing climate state (Maraun, 2012; Ehret et al., 2012; Teutschbein and

Seibert, 2012; Chen et al., 2015; Hui et al., 2020). A related issue is that BC

can modify the simulated climate change trends. This poses an issue if the

origin of model errors in daily variability in an evaluation period (to which BC

is often calibrated) differs from the origin of potential errors in the model’s

climate change response (Maraun et al., 2017). These challenges are difficult to

overcome. However, when following the alternative approach of using

unadjusted climate model output, propagation of biases through impact models
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can severely bias the resulting simulations and sometimes render them unusable

(Hakala et al., 2020). As such, BC is currently necessary and widely used to

assess climate change impacts, despite its imperfections.

In this chapter, the UKCP18 regional climate projections (UKCP18-RCM, Met

Office Hadley Centre (2018), see Chapter 2) are evaluated and bias corrected, as

these projections are used further in this thesis to investigate projected changes

in atmospheric-based drought indicators (Chapter 4 and hydrological droughts

(Chapter 5)). Specifically, the following questions are investigated:

1. How biased are the UKCP18-RCM projections, and does this require bias

correction?

2. Can existing bias correction methods successfully correct errors in simple

and more challenging metrics?

3. What climatic changes do the UKCP18-RCM ensemble members broadly

project for the UK, and do the chosen bias correction techniques affect

them?

An exploratory analysis of the changes projected by UKCP18-RCM is discussed

in section 3.3.2, using metrics based on daily precipitation and daily average

temperature.

3.2 Data and methods

3.2.1 Data

The UKCP18 regional climate projections

The UK Climate Projections 2018 (UKCP18) are the current generation of

national climate projections for the UK, developed by the Met Office Hadley

Centre as part of their Climate Programme (Met Office Hadley Centre, 2018)

(see also Section 2.3). The UKCP18 regional projections (referred to as

UKCP18-RCM here) were selected due to their unique suitability for impact

modelling focusing on droughts in the UK. Droughts generally play out over a

much longer time scale than floods, so the hourly resolution of the

convection-permitting local projections is not required for investigating

processes characterised by deficits accumulating over the span of weeks, months

or years. The 12 km resolution over the UK of the UKCP18-RCM data provides
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improved spatial detail compared to the global projections (60 km over the

UK), while being more practical to handle than the larger files of the local

projections (2.2 km over the UK). The UKCP18-RCM simulations were forced

with the high-emissions RCP8.5 scenario (see also Section 2.4).

Potential evapotranspiration (PET) is not provided by UKCP18-RCM but it is

a necessary input variable for some impact models (such as the rainfall-runoff

models used in Chapter 5) and drought indicators (e.g. Chapter 4), so it was

calculated off-line here. While rising temperatures lead to PET increases,

changes in humidity, net radiation and wind speed can also play a significant

role. Therefore, PET was calculated using the Penman-Monteith method, which

includes the effect of all these variables and is recommended over simpler

temperature-based methods (e.g. Dewes et al., 2017), although it is still subject

to significant limitations (Milly and Dunne, 2016; Greve et al., 2019). The

calculation of PET for the UKCP18-RCM used here relies on the same variant

of the Penman-Monteith method used by Robinson et al. (2017), to ensure

consistency with the CHESS-PE dataset. Specifically, the following variables

simulated by the UKCP18-RCM ensemble were used: specific humidity,

pressure at sea level, net downwelling longwave radiation, net downwelling

shortwave radiation, wind speed at 10m and daily average surface air

temperature. PET was set to zero wherever a calculated value was negative

(which occurred for less than 1% of the values overall and, when split by

ensemble member and month, also less than 1% for all cases except December

in ensemble member 1 with 1.2% of negative values).

Observation data

As observational reference for the evaluation and bias correction of UKCP18-

RCM precipitation and temperature, the Met Office’s 1 km HadUK-Grid dataset

(Hollis et al., 2019) was used after regridding to the UKCP18-RCM 12 km grid

(consistent with Hollis et al. (2019), all 1 km grid points that lay in each UKCP18-

RCM grid cell were averaged; see Section 2.2.1). For the bias correction and

evaluation of PET, the CHESS-PE dataset provided by the Centre for Ecology

and Hydrology was used (Robinson et al., 2020), also after regridding to the

UKCP18-RCM 12 km grid (see Section 2.2.2). Daily data from 1981 to 2010

were used here.
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3.2.2 Evaluation and trend analysis

Biases in UKCP18-RCM precipitation and temperature metrics were assessed

over the reference period 1981-2010 (REF), using the 30-year temporal averages

of a range of metrics computed for each grid cell. For analysing projected changes,

the final 30-year period of the simulations was chosen as the future period (2051-

2080; FUT) for each ensemble member.

Climate model errors are not necessarily homogeneous across the range of the

precipitation and temperature distributions. Therefore, the initial model

evaluation metrics shown consist of the errors in the mean, in a lower tail

metric (Q05 for temperature and PET, dry day frequency for precipitation),

and in Q95 as an upper tail metric. This is based on the results of a preliminary

analysis.

Changes in temperature and precipitation extremes are generally of greater

societal interest than changes in the mean (although extreme impacts do not

always need extreme meteorological conditions to arise; see van der Wiel et al.,

2020). Therefore, a set of moderate and extreme climate indicators was used to

further evaluate the model error and analyse projected changes of simulated

precipitation and temperature. These metrics were drawn from or inspired by

the list of indices compiled by the Expert Team on Climate Change Detection

and Indices (ETCCDI;

http://etccdi.pacificclimate.org/list_27_indices.shtml), which have

been extensively used in the literature, including in IPCC reports (IPCC, 2021).

Daily mean temperature was used in this study, so the ETCCDI temperature

indicators (which typically use daily minimum and maximum temperatures)

were modified to use mean temperature. Table 3.1 gives an overview of all

indices used and their definitions.

3.2.3 Bias correction

Comparison to observations revealed significant biases in the simulations of

precipitation, temperature and PET, so these variables were statistically

post-processed. Two closely related BC methods (quantile mapping and the

ISIMIP3b approach, see below) were used to bias adjust UKCP18-RCM, to

allow exploring the sensitivity of the results to the differences between the BC

methods, including but not limited to whether or not the BC method explicitly

aims to preserve the climate changes. Both BC methods were applied to each

grid cell, ensemble member and calendar month combination separately, and

were calibrated using simulated and observed data for 1981–2010. For

http://etccdi.pacificclimate.org/list_27_indices.shtml
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Table 3.1: Climatic indices used to evaluate and examine trends in precipitation,
temperature and PET simulated by UKCP18 and derived PET.

Index Description

Temperature

yMEAN Average annual (seasonal) mean daily-mean temperature (◦C)

yMIN Average annual (seasonal) minimum daily-mean temperature (◦C)

yMAX Average annual (seasonal) maximum daily-mean temperature (◦C)

Qn Daily-mean temperature exceeded on average n% of days in a year (season) (◦C)

Precipitation

prTOT Average annual (seasonal) total precipitation (mm)

SDII Simple precipitation intensity index: average annual (seasonal) mean wet-day precipitation intensity (mm)

DF Average annual (seasonal) dry-day fraction (%)

Qn Daily precipitation exceeded on average n% of days in a year (season) (mm)

Rx5day Average annual (seasonal) maximum five-day total precipitation (mm)

CDD Average annual (seasonal) maximum number of consecutive dry days (days)

CWD Average annual (seasonal) maximum number of consecutive wet days (days)

Potential Evapotranspiration

Qn Daily PET exceeded on average n% of days in a year (season) (mm)

mean Mean annual (seasonal) PET (mm)

precipitation, we also compared future projections from these BC methods with

the change factor method, which is not a bias correction method but consists of

applying projected changes in mean climate to observed time series. The change

factor method was applied using the same period as the BC methods.

Quantile Mapping

Method used by Qianyu Zha. A description of this method is included here

as it shares some principles with the second bias correction method and to help

interpret the differences between both BC methods later.

Quantile mapping (QM; e.g. Piani et al., 2010) is a statistical transformation

of the distribution of a modelled variable such that it matches the distribution

of the observed variable. By construction, the resulting distributions of the

simulations and observations match closely, removing deviations from the

observed data in the mean, variance and higher order moments. The mapping

may be applied to the quantiles of either the empirical cumulative distribution

function (CDF) or to an assumed parametric CDF. Switanek et al. (2017)

demonstrated that, where the parametric distribution is known to be a perfect

fit to the observed and simulated data (because, e.g., it is synthetic data drawn

from that distribution), then parametric QM reduces the influence of sample

size-induced noise that degrades the empirical CDFs of observed and simulated
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time series. However, Gudmundsson et al. (2012) found that empirical BC

methods were more successful at bias correcting different precipitation quantiles

than fitted distributions or simpler parametric methods.

Here, the choice was made to use QM with an empirical distribution, to

complement the second BC method for which a parametric distribution is used.

The resulting dataset will be refered to as BCQM. To implement QM, the R

package qmap (Gudmundsson et al., 2012) was used, with QM applied to 1000

empirical quantiles. Note that using this large number of quantiles might lead

to overfitting. However, our analysis shows that the differences between this

non-parametric method and the parametric method introduced below are

overall minor, implying that in this case the climate signal is not particularly

sensitive to any overfitting that may have resulted from this, especially when

compared to other decisions such as the climate model selection. QM was not

used to bias adjust PET.

ISIMIP3b bias correction method

The second method used in this study is the univariate change preserving bias

correction method developed for phase 3b of the Inter-Sectorial Impact Model

Intercomparison Project (BCI3, Lange (2019)). A parametric quantile mapping

method which approximately preserves the climate change signal in each quantile

was applied to each variable independently, with a different distribution used for

each variable. Here, we corrected daily average temperature, precipitation and

potential evapotranspiration using the normal, gamma and Weibull distributions,

respectively. The choices for temperature and precipitation here were motivated

by their use in the literature and by Lange (2019), combined with verifying the

results. For PET, the Weibull, gamma and beta distributions were fitted to

sample grid cells representative of different climates across the UK. While all

three would have been adequate, the Weibull distribution was used in the end

due to slightly better performance in the sample cells, and, using the Kolmogorov-

Smirnov test statistic, it showed a better fit than the beta distribution in most

regions of the UK in most months.

For precipitation and potential evapotranspiration, the BCI3-option to apply a

separate correction to the probability of occurrence of events beyond thresholds

was used to adjust bias and preserve the projected change in the frequency of

dry days / no PET (< 0.1 mm/day). For each combination of ensemble

member, month and location, the change in the distributions of precipitation,

PET and temperature between present-day (calibration) and future periods was

preserved by computing the change for 50 quantiles and applying it to the
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observed quantiles. This was done multiplicatively (but additively if there are

large negative biases in the model data, to avoid obtaining unrealistically large

values; Lange, 2019) for precipitation and PET, and purely additively for

temperature. For PET and temperature , the transient trend was preserved by

removing it before bias correction and adding it back afterwards, as described in

Lange (2019).

The code used for this bias correction is version 2.4.1 of the Python code made

available in a Zenodo repository by Lange (2020). Version 2.4.1 differs from the

originally published method (version 1.0; Lange, 2019) in the equation used for

the correction of the frequency of events beyond thresholds (in this case dry days)

and code error fixes. The code was modified for this study in minor ways: to

allow it to be used when simulations and observations have different calendars

(360-day and Gregorian, respectively) and to suit the format of the data used.

The BCI3 method was applied to, and preserves changes between, two 30-year

periods (the 1981-2010 reference period and future application periods). This

can introduce artefacts such as step changes between adjacent future 30-year

application periods and imperfect preservation of the trend within each 30-year

application period. In order to produce a continuous, bias corrected 100-year

sequence (1981-2080), the algorithm was applied to overlapping periods of 30

years (same length as the reference time period), with the starting point of the

application period increasing in decadal steps. Then, the central 10 years (as

well as the first and last 10 for the first and last 30-year period, respectively)

of each run was extracted and concatenated to obtain the final semi-transient

bias corrected time series. Note that the climate change signal in the very first

and last decades of the resulting concatenated bias-corrected time series may be

slightly stronger or weaker, respectively, because here the beginning and end of

the application periods were used instead of the central decade. To estimate the

magnitude of the effect of this strategy, the 10-year overlaps of pairs of 30-year

bias corrected periods separated by 20 years were used to examine differences

in the resulting distributions. The decades 2001-2010 and 2051-2060 (i.e. the

earliest and latest of the six decades that were part of three 30-year chunks,

respectively) were chosen for making scatter plots and QQ-plots for precipitation

and temperature in two grid cells representing different UK climates. For each

decade, the three sets of BC data are called ‘tail’, ‘middle’ and ‘head’, depending

on whether they are the first, middle or last decade of the 30-year bias correction

period, respectively.
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Change factor method

The change factor method is commonly used in impact studies (e.g. Prudhomme

et al., 2012; Kay et al., 2020). It is included here as a benchmark, for the purpose

of demonstrating the limitations of basing impact studies on an observed time

series perturbed only by a change in mean climate, and thus show the added value

of assessing changes based instead on the RCM output itself. A multiplicative

change factor (CF ) was computed and applied to the simulated precipitation

time series for each month m as follows:

CFm,p =
P̄raw,FUT,m,p

P̄raw,REF,m,p

where P̄ is the mean precipitation from the raw UKCP18-RCM data over the

future (FUT ) or calibration (REF , i.e. reference) period for month m and

ensemble member p. Each monthly CF is then applied to the observed calibration

period time series to generate the CF precipitation values for each timestep i

within month m:

PCF,i,p = CFm,pPobs,i

3.3 Results and discussion

3.3.1 Evaluation

Bias of raw simulations

The maps in figure 3.3.1 show the ensemble mean errors of the raw UKCP18-

RCM projections in the dry-day frequency, mean daily precipitation and the Q95

of precipitation in the reference period, expressed as a percentage of the observed

value. In general, the frequency of dry days in UKCP18-RCM is too low (and

therefore the wet-day frequency is too high), particularly in the winter and in

regions of higher elevation. In summer, the dry-day frequency bias is very small

for most of England. The precipitation mean and Q95 are strongly overestimated

across the UK in winter, although in highly elevated areas this bias is smaller

or even reversed in sign (especially for Q95). In summer, however, the mean

and Q95 biases show a strong spatial variability, with underestimations toward

the south and at high elevation levels, and a wet bias in the north of the UK.
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These seasonal bias differences result in an annual bias of too few dry days almost

everywhere, too wet mean precipitation in most regions, and more mixed wet and

dry Q95 relative biases.

Figure 3.3.1: Precipitation biases in UKCP18-RCM for 1981-2010, expressed as
a percentage of the observed values. The percentage bias for each ensemble
member was computed and the mean across the ensemble is shown. Dry-day
frequency is the percentage of days with P < 1 mm; mean daily precipitation is
the precipitation averaged over all days; q95 is the 0.95 quantile of precipitation
across all days. Top, middle and bottom rows are for annual, DJF (December,
January, February) and JJA (June, July, August), respectively.

The maps in figure 3.3.2 show the ensemble mean errors of the raw

UKCP18-RCM projections in the mean daily temperature as well as the cold
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(Q05) and hot (Q95) tails of the distribution. At the annual scale, temperature

tends to be underestimated in UKCP18 across its distribution, as reflected by

the mean, Q05 and Q95. Temperature biases in winter show a north-south

gradient, with generally cold biases in the north and warm in the south. Along

this gradient, biases are generally colder in the lower tail and warmer in the

upper tail of the distribution, indicating an overestimation of temperature

variability in winter. In the middle regions along the north-south axis, the

biases in the cold and hot tails of the distribution have opposite signs.

UKCP18-RCM underestimates temperature on cold days (Q05) in the north

especially strongly. In summer, temperature is typically too low across the UK

in all three indices considered. One particular deviation from this is the

overestimation (or smaller cold bias) in (especially summer) Q95 in major built

up areas (e.g. London in South East England). Biases in the representation of

urban heat islands were previously documented by Lo et al. (2020), who found

that UKCP18-RCM tends to overestimate the intensity of urban heat islands in

summer, more so for nighttime than daytime.

The maps in Fig. 3.3.3 show the absolute UKCP18-derived PET biases in mm.

Note that these maps do not show Northern Ireland, as this region is not

included in the CHESS-PE dataset which served as the observational reference.

The predominantly cool bias in the UKCP18-RCM ensemble mean (Fig. 3.3.2)

contributes to the low PET bias in some regions and seasons (Fig. 3.3.3).

Interestingly, however, the regional and seasonal variations in the PET biases

do not closely follow the temperature bias patterns, implying that the bias in

PET is not solely caused by errors in the daily average temperature. Note that

the strong positive temperature biases shown by some grid cells along the coast

in winter come from the use of the regridded 1km HadUK-Grid, which covers

the land only, and contrary to UKCP18-RCM does not account for the warmer

sea temperature in winter, leading to ”observed” grid cell averages that are too

low. The opposite but smaller effect occurs in summer, and a similar effect can

be observed in the PET bias maps.

Figure 3.3.4 shows the UK average seasonal cycle of the raw and bias corrected

precipitation and temperature. For precipitation, the raw UCKP18-RCM

ensemble is too wet from November to June, and its range does not encompass

the observations during these months. The seasonal timing also appears to be

shifted: the driest and wettest months are delayed in the simulations (June and

January) compared to the observations (May and October). The ensemble

averaged daily mean temperature generally matches observations far more

closely than precipitation (although individual members can contain biases of

either sign). The largest mean temperature biases over the UK occur from
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Figure 3.3.2: Temperature biases (◦C) in UKCP18-RCM for 1981-2010. The bias
for each ensemble member was computed and the mean across the ensemble is
shown here. Q05 and Q95 are the 0.05 quantile and the 0.95 quantile across all
days, respectively.

March to May, a period during which almost all members are too cold.
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Figure 3.3.3: As Fig. 3.3.2 but for PET (mm/day).
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Evaluation of bias correction

The biases of monthly mean temperature and precipitation are effectively

corrected by both BCQM and BCI3, with observations very closely matching

the processed ensemble members (Fig. 3.3.4). The remaining error in the

statistics shown on the maps in Figures 3.3.1, 3.3.2 and 3.3.3 are small (and

therefore not shown here, as they take up much space for little information).

Figure 3.3.4: Comparison between observations and UKCP18-RCM simulations
before and after bias correction for monthly precipitation (left, mm/day) and
temperature (right, ◦C) averaged over the UK for 1980-2010. The grey shading
shows the spread of the 12-member ensemble, prior to bias correction. The blue
line lies underneath the red line in the temperature panel).

Figures 3.3.5 and 3.3.6 show heatmaps of the spatially averaged errors in

precipitation and daily mean temperature respectively, before and after bias

correction. The value of each metric was calculated for each RCM ensemble

member and for the observations, at each grid cell for each year and then

averaged over 1981-2010. The heatmaps show the spatial average of the

absolute values of the difference between observation and simulation (as a

percentage of the observed value for precipitation). For the metrics which are

also shown on the maps in Figures 3.3.1 and 3.3.2, the UK-averaged errors are

strongly reduced for the full year as well as winter and summer for all ensemble

members, resulting in a large decrease in the ensemble mean errors. The

standard deviation (sd, bottom rows) of the errors decreases largely as well, as

the statistics of the ensemble members converge toward those of the

observations for the reference period.

A close look at the figures in Fig. 3.3.5 and 3.3.6 reveals that biases may be smaller

in BCQM than in BCI3, but this is not surprising, since empirical quantiles were

fitted for BCQM while BCI3 relied on parametric distribution. This should not

be interpreted as an advantage of BCQM over BCI3, as the slight edge conferred
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Full year

DJF

JJA

Figure 3.3.5: Mean absolute relative error (MARE, %) for calibration period
precipitation, for the UKCP18 RCM simulations before (RAW) and after bias
correction (BCQM and BCI3). Values shown are UK-wide averages for 1981-
2010. prTOT = annual total precipitation, DF = fraction of days that are dry
(P < 1 mm), SDII = mean wet-day precipitation, Q95 = 0.95 quantile of daily
precipitation, Rx5day = maximum 5 consecutive-day precipitation, CDD (CWD)
= maximum number of consecutive dry (wet) days. The mean and standard
deviation across the 12-member RCM ensemble are included at the bottom of
each panel.
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Annual

DJF

JJA

Figure 3.3.6: As Fig. 3.3.5 but for temperature, showing the bias (mean absolute
error; MAE; ◦C) of the mean (MEAN), minimum (MIN), maximum (MAX),
0.05 quantile (Q05) and 0.95 quantile (Q95) of daily temperatures over each year
(top), winter (middle) or summer (bottom).
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by the non-parametric fit is likely to be lost when the bias-correction is applied

to a period not used for calibration (Chen et al., 2019).

For precipitation, BCQM outperforms BCI3 for reducing the bias in the total

precipitation (prTOT) (Fig. 3.3.5). Since both methods perform very well for

correcting the DF and Q95 bias, the difference in skill for prTOT may be

related to the wet end (> Q95) of the precipitation distribution: BCQM (with

1000 quantiles) adjusts the simulated extremes more precisely to fit the

observed extremes, while the fit of the gamma distribution used in BCI3 can

deviate more from the observations for those extremes. Note that this is not

necessarily a flaw in BCI3: BCQM may be undesirably sensitive to the most

extreme events occurring in the 30-year observations due to overfitting

(Switanek et al., 2017). Due to the strongly skewed nature of precipitation

distributions, its extremes (in this case, the tail beyond Q95) make a large

contribution to the mean (Pendergrass and Knutti, 2018). Evaluation based on

the mean may thus be influenced by how well these extreme quantiles are

reproduced. In reverse, this reasoning implies that bias correction relying solely

on errors and projected changes in the precipitation mean could be sensitive to

the variability in observed and projected extreme events, including relatively

rare events that might be included or excluded depending on the choice of

calibration period.

Although biases in daily precipitation statistics (TOT, DF, SDII) are largely

removed, biases in multi-day metrics (CWD, CDD and Rx5day) are reduced but

persist. This is expected (Addor and Seibert, 2014), as both BC methods are

designed to correct biases in daily values, but not the temporal structure of the

time series. For instance, although the dry day frequency is well corrected by both

BC methods, these methods fail to correct errors in the sequences of consecutive

wet days in winter and on an annual basis. Figure A.0.1 reveals that this is

due to an over-correction, from mostly overestimated toward the east to mostly

underestimated toward the west, where the observed CWD is longer. On the

contrary, both methods reduced the summer CWD and the CDD in each time

period by about half on average.

For temperature, the biases in the mean are almost entirely removed by both

methods (Fig. 3.3.6). The ensemble mean Q05 and Q95 biases are strongly

reduced, by a factor 7 to 18 for the year and by a factor 3 to 7 for winter and

summer. The most persistent biases are found in the winter (and annual)

minimum daily temperature (computed for each season and then averaged over

the whole period). The remaining winter maximum temperature bias is also

markedly higher using BCI3 (about half the raw bias on average) than using

BCQM (less than a quarter).



Chapter 3: Evaluation, analysis and bias correction of the UKCP18 regional
climate projections. 56

Importantly, across the metrics in Figures 3.3.5 and 3.3.6, the differences between

BCQM and BCI3 are generally relatively modest during the reference period.

Both methods efficiently reduce biases in single-day metrics, and they mostly

struggle with the same metrics, and to some extent, with the same ensemble

members.

To conclude this evaluation, Figures 3.3.7 and 3.3.8 assess whether errors were

induced by concatenating the centre period of 30-year time series to make BCI3.

These figures only show the results for ensemble member 1, as the results were

similar across the ensemble. The ‘middle’ daily values (and quantiles for the QQ-

plots) are plotted on the x-axis, and the corresponding ‘tail’ and ‘head’ values

(quantiles) are plotted on the y-axis. For temperature, the uncertainty introduced

by using different periods for change preservation is very small. For precipitation,

the match between the quantiles is good (dark circles), although there is some

uncertainty introduced for the most intense precipitation events (light circles).

The precipitation range covered by these dots in the upper-right corner of the

panels highlights the variability within the wettest quantiles, highlighting that

when fitting the upper tail of a 30-year period distribution, it is unlikely to

perfectly match the upper tail from another period, in particular in presence of

climate change. Since some large differences in extreme rainfall can be introduced

depending on the period used, the concatenated time series or the data from each

30y period can be used when the focus is on these events, in order to capture

the influence of the bias correction. Overall, the differences appear to be small

enough to justify concatenation.
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Figure 3.3.7: Quantile-quantile plot (dark colours) and scatter plot (light colours)
of precipitation (pr) in two overlapping decades (top row: 2001-2010, bottom
row: 2051-2060) for UKCP18-RCM ensemble member 1 for two example grid
cells (columns). Tail, middle and head respectively refer to the first, middle and
end 10 years of each 30-year period that overlaps in these decades. The line y=x
is shown for reference.

Figure 3.3.8: As Fig. 3.3.7 but for temperature.
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3.3.2 Projected changes before and after bias correction

This section analyses the climate change signal (CCS) projected by

UKCP18-RCM in the evaluation metrics used above (Section 3.3.1), and

particularly considers whether BCQM and the change-preserving BCI3 alter the

CSS compared to the raw simulations. Furthermore, for precipitation, these

changes are compared to those simulated using the change factor approach. The

CCS is defined as the relative or absolute difference between metrics computed

over 1981-2010 and 2051-2080. Maps of projected changes in the mean

precipitation and temperature (Figures 3.3.9 and 3.3.10) show the spatial

variability of the CCS in UKCP18-RCM mean, while the CCS aggregated over

the whole domain is summarised for each member and index in heat maps

(Figures 3.3.11 and 3.3.12).

The CCS of mean precipitation and temperature in the raw projections (left

columns in Figures 3.3.9 and 3.3.10) confirms the conclusions of the UKCP18

headline findings: warmer, wetter winters and hotter, drier summers. The

precipitation CCS shows substantial regional variation in all seasons, influenced

by topography. The summer drying signal is strongest toward South West

England, while the winter wetting signal is weakest in the north-east of

Scotland and strongest along the west and south coasts. The seasonally

contrasting changes result in an overall precipitation decrease over most of the

UK, except along the west coast of north England and Scotland. For

temperature, the annual and winter projections are more spatially homogeneous

than the summer projections, which show an increasing gradient from the

north-west toward the south and south-east.

Overall, these regional variations in the projected changes in mean annual,

winter and summer precipitation and temperature over the UK are well

preserved in both BCQM and BCI3. In BCQM, the summer temperature

increase contains more local variation and is somewhat exacerbated over the

regions of higher elevation, and the winter precipitation increase is slightly

greater than in the original projections. Spatial patterns in the local variations

in the BCQM projected summer temperature changes resemble those in the

summer temperature errors (Fig. 3.3.2). The raw changes are better preserved

in BCI3, although the added value of this method in terms of change

preservation is limited.
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Figure 3.3.9: Projected changes in annual or seasonal mean precipitation from
the ensemble mean of UKCP18-RCM simulations before (RAW) and after bias
correction (BCQM and BCI3). Values shown are the percentage change from
1981-2010 to 2051-2080 under RCP8.5.
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Figure 3.3.10: As Fig. 3.3.9, but for the change in temperature expressed in ◦C.
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The heatmaps in Figures 3.3.11 and 3.3.12 summarize the UK-averaged

projected changes in precipitation and temperature metrics, and allow to

compare the contributions of i) the different ensemble members and ii) the two

bias correction techniques to the uncertainty in the projected changes. Before

proceeding to a discussion of the effects of the different bias correction

techniques, the projected changes are briefly discussed below (based on the

columns labelled ‘RAW ...’ in the heatmaps).

More so than the mean, precipitation variability has a profound influence on

society, and how it is influenced by climate change is thus of great interest. In

general, the ‘wet’ precipitation metrics show wetter (or less dry) projected

changes than the total precipitation. The projected total precipitation decrease

for summer is the combined effect of an increasing proportion of dry days (DF),

and slightly decreasing precipitation falling on wet days, marked by greater

relative decreases in the Q95 than in the SDII. The longest summer dry spell is

projected to lengthen by a third on average (with wide variation across the

ensemble). In winter, the relative increases in prTOT can be attributed to

similar increases in SDII Q95 and Rx5day, rather than changes in the fraction

of wet days. Interestingly, this is paired with a slight shortening of the longest

wet day streak on average. Annually, these seasonal changes combine into a

slight projected prTOT decrease and a modest increase in the fraction of dry

days, combined with wetter wet days, including in the wet end of the

precipitation distribution. The increases in intense 5-day maximum

accumulated rainfall could lead to increasing river flooding. This is in

agreement with increases in moderate- and high-impact 1-day rainfall threshold

exceedances found by Hanlon et al. (2021).

The projected average temperature increases in the UK are greater in summer

than in winter. Projected changes in the range of daily mean temperatures are

opposite between winter and summer: in summer the Q95 and maximum daily

mean temperatures increase more than the Q05 and minimum daily mean

temperature, whereas in winter the colder end of the tail is projected to warm

more than the warmer end of the tail. There exists a partial overlap between

the ensemble members with high summer CDD increases (6, 9, 11 and 13), and

the ensemble members with the highest maximum daily-mean temperature

increases (5, 8, 9, 11, 13). This might point to limited soil moisture availability

during dry spells in members 9, 11 and 13 exacerbating heatwaves during

possible compound hot-dry events; however as only average statistics are shown

here, further research would be needed to confirm this. In line with the

projected increases in minimum temperatures, Hanlon et al. (2021) found a

continued decreasing number of days with minimum and maximum
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temperatures below 0◦C (frost and icing days respectively). On the warm end

of the distribution, the larger increases in the expected maximum mean daily

temperatures match their findings of increasing days with maximum

temperatures exceeding 25◦C, and increasing nights with minimum

temperatures over 20◦C. Similarly, Arnell et al. (2021) found increases in the

annual probability of experiencing at least one heat wave (based on regionally

varying thresholds). Concerning adaption, the findings from these studies and

ours thus imply a potential shift in health care and housing concerns from

heating in winter toward cooling in summer (Hanlon et al., 2021; Arnell et al.,

2021).

The differences between the rows for the different metrics and columns for bias

correction methods in the heatmaps (Figures 3.3.11 and 3.3.12) show a wide

range of projected changes among the ensemble members, which usually exceeds

the differences from BC method. In other words, at least when aggregated over

the UK, the differences between the ensemble members are much greater than

between the two bias-correction methods. This is also summarised well by two last

rows of each heat map panel for each metric: the standard deviation (summarised

by the ‘sd’ row) across the ensemble is typically much larger than the difference

between the BC methods in the ‘mean’ row. While over the reference period the

BC significantly reduces the spread of the biases among the ensemble members

(see row ‘sd’ in Figures 3.3.5 and 3.3.6), the spread in the projected changes is

quite well retained by both BC methods (same row in Figures 3.3.11 and 3.3.12).

Although the differences in CCS between the two BC methods are relatively

minor when compared to the differences between ensemble members for the

same metric, there is a subtle added value of BCI3 over BCQM for preserving

the changes, which is generally more visible looking at the individual ensemble

members than in the ensemble means. It is worth noting that BCQM already

largely preserves the projected changes, even though it was not explicitly

designed to do so, which limits the potential benefit of even a perfect change

preservation over this method. For temperature, the heatmaps in Fig. 3.3.12

show a limited added value of BCI3 compared to BCQM. This is in part due to

the spatial averaging that took place in order to produce the heatmaps. Maps

of the climate change signal for each month and ensemble member for different

quantiles (not shown) and Fig. 3.3.10 show that BCQM modifies the projected

temperature climate change signal differently in different regions of the UK, in

particular over significant topography; this is not the case for BCI3, which

better preserves the raw CCS spatial patterns. Finally, the differences in

climate change signal between both BC methods are largest for several

precipitation indices in winter, where BCI3 slightly improves the preservation of
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the projected change. Interestingly, for many of the temperature indices and

the winter precipitation indices, the spread of projected changes is also better

preserved in BCI3 than in BCQM (compare the ensemble ‘sd’ values).

Lastly, the heatmaps in Fig. 3.3.11 highlight the pitfalls of the change factor

(CF) approach for UKCP18-RCM. There are large differences between the CF

approach and the raw (or bias corrected) projections when looking at the CCS

in precipitation metrics beyond the seasonal or annual totals. The projected

lengthening of the longest annual or summer dry day sequences and shortening

of the longest annual, winter or summer wet day sequences in all ensemble

members, which is well preserved by both BC methods, is largely or almost

entirely disregarded using the CF approach. Most of the projected change in

CDD and CWD can thus not simply be attributed to changes in the mean. The

smaller projected decrease in the summer maximum 5-day accumulated

precipitation (Rx5day) compared to the total precipitation decrease is not

captured by the CF approach. Worse, at the annual scale the CF approach

projects a decrease in the Q95 (similar to the prTOT changes), whereas the raw

UKCP18-RCM projects an increase on average. At the annual scale, the CF

approach is unable to capture the simulated change towards fewer (DF increase)

but wetter (SDII increase) wet days, the combined effect of which is an overall

decrease in total precipitation. This inability of the CF approach to account for

changes in the variability of precipitation severely narrows its suitability for

climate impact modelling studies on e.g. floods or droughts, for which the

temporal variability and changes to the precipitation distribution are highly

relevant.
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Figure 3.3.11: Projected changes (climate change signal; CCS) in precipitation
characteristics in the ensemble of UKCP18-RCM simulations before (RAW) and
after bias correction (BCQM and BCI3) and after applying a change factor
(CF) to the observed time series. Each indicator shows the spatially average
(UK-mean) of the changes by 2051-2080 compared to 1981-2010, expressed as a
percentage of the observed values for 1981-2010. Statistics shown are the same
as in Fig. 3.3.5.
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Figure 3.3.12: As Fig. 3.3.11 but for temperature characteristics and actual (◦C)
rather than percentage changes are shown. Statistics shown are the same as in
Fig. 3.3.6.
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3.4 Conclusions

3.4.1 General conclusions

Substantial biases in temperature, potential evapotranspiration and

precipitation statistics were found in the UKCP-RCM simulations. To improve

their usability for impact modelling, two bias correction methods were applied

to all ensemble members of the UKCP-RCM perturbed physics ensemble: the

widely used quantile mapping (BCQM) and the bias correction method

developed for phase 3 of the ISIMIP project (BCI3), which is designed to

preserve the climate change signal. Both methods successfully reduced errors in

daily temperature and precipitation metrics, and reduced errors in multi-day

precipitation metrics to a lesser degree. Both methods also satisfactorily

conserved the climate change signal as well as the spread among the projections,

with a minor improvement in BCI3 compared to BCQM. For potential

evapotranspiration, similar analyses (figures not included here) show that BCI3

successfully reduced errors and conserved the climate change signal. Analysis of

projected changes in temperature and precipitation metrics suggests a higher

likelihood of extreme weather (hot, dry or wet), and confirms the headline

findings of projected hotter, drier summers and warmer, wetter winters.

3.4.2 Recommendations for users of the bias corrected datasets

Potential users of these bias-corrected simulations are encouraged to consider the

following points.

1. Both bias-corrected datasets may be of interest for users whose impact

model is affected by the biases in the UKCP18-RCM simulations and whose

application requires changes in the precipitation distribution and temporal

variability to be captured as well as the mean.

2. Caution is needed with coastal grid cells, as the 1km data set used as

reference for the bias correction only covers the land, which results in biases

in grid cell averages along the coast (especially for temperature). This

should not be an issue for users only interested in land temperature, but

we recommend that users consider the fraction of each grid cell covered by

land before using the data.

3. At the regional scale, the climate change signal is slightly better preserved

by BCI3 (especially for temperature), so for this it is recommended above

BCQM. Although the differences between BCI3 and BCQM are small, they
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might grow or shrink after propagation in impact models, so it may be

valuable to use both, as a limited way of sampling the uncertainty due

to statistical postprocessing. However, the difference between BCQM and

BCI3 is unlikely to be the greatest source of uncertainty.

4. Using the change factor method for precipitation is discouraged for

applications where changes to the temporal variability and full

distribution is important.

5. Potential users of these bias-corrected datasets are urged to consult the

UKCP18 user guidance published by the Met Office, in particular guidance

on bias correction (e.g. Fung et al., 2018). Since the uncertainty among the

UCKP18-RCM ensemble members is large for changes in precipitation and

temperature metrics studied here, it is recommended to employ multiple

ensemble members to sample this uncertainty.

6. Users are encouraged to perform their own evaluation of these datasets to

ensure that they are adequate for their planned use.

7. As discussed in the introduction, all bias-correction methods rely on

strong assumptions about climate projections, which users of any

bias-corrected climate projections should keep in mind when using the

data and interpreting the resulting impacts.



4

Projected changes in droughts and

extreme droughts in Great Britain

strongly influenced by the choice of

drought index

Synopsis

This work was published in HESS as a first-author paper (Reyniers

et al., 2023).

Droughts cause enormous ecological, economical and societal

damage, and are already undergoing changes due to anthropogenic

climate change. The issue of defining and quantifying droughts has

long been a substantial source of uncertainty in understanding

observed and projected trends. Atmospheric-based drought

indicators, such as the Standardised Precipitation Index (SPI) and

the Standardised Precipitation Evapotranspiration Index (SPEI),

are often used to quantify drought characteristics and their changes,

sometimes as the sole metric representing drought. This study

presents a detailed systematic analysis of SPI- and SPEI-based

drought projections and their differences for Great Britain, derived

from the most recent set of regional climate projections for the UK.

We show that the choice of drought indicator has a decisive influence

on the resulting projected changes in drought frequency, extent,

duration and seasonality by 2 ◦C and 4 ◦C above pre-industrial

levels. The increases projected in drought frequency and extent are

far greater based on the SPEI than based on the SPI. Importantly,

compared to droughts of all intensities, isolated extreme droughts

are projected to increase far more in frequency and extent, and show

more pronounced changes in the distribution of their event
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durations. Further, projected intensification of the seasonal cycle is

reflected in an increasing occurrence of years with (extremely) dry

summers combined with wetter than average winters. Increasing

summer droughts also form the main contribution to increases in

annual droughts, especially using SPEI. These results show that the

choice of atmospheric drought index strongly influences the drought

characteristics inferred from climate change projections, comparable

to the uncertainty from the climate model parameters or the

warming level, and therefore potential users of these indices should

carefully consider the importance of potential evapotranspiration in

their intended context. The stark differences between SPI- and

SPEI-based projections highlight the need to better understand the

interplay between increasing atmospheric evaporative demand,

moisture availability and drought impacts under a changing climate.

The region-dependent projected changes in drought characteristics

by two warming levels have important implications for adaptation

efforts in GB, and further stress the need for rapid mitigation.

4.1 Introduction

Anthropogenic climate change is already affecting the frequency and intensity of

droughts on all continents, through increases in atmospheric evaporative

demand and in some regions, also through precipitation (Seneviratne et al.,

2021). How much larger these changes become depends on current and future

emissions, and understanding the impact of climate change on droughts is

crucial importance given the serious ecological and socio-economic damage

these events can inflict. However, quantitatively assessing changes to droughts

is complicated by the difficulty of defining and quantifying droughts (Yevjevich,

1967). Distilled to its most simple form, a drought can be defined as a deficit of

water relative to normal conditions (Sheffield et al., 2012). As this generalised

definition is not very helpful for assessing drought hazards (Lloyd-Hughes,

2014), different types of drought are typically recognised, based on the context

and the moisture quantity in which the deficit takes place (Wilhite and Glantz,

1985). A meteorological drought, indicating a period of below-normal

precipitation, can develop into a soil moisture drought, also called agricultural

drought due to its relevance for crop growth. These conditions can develop into

low flows in rivers or low water levels in lakes, called hydrological drought (of

which groundwater drought can be considered a sub-type).

Drought indices, of which a large number can be found in the literature (e.g.
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Keyantash and Dracup, 2002), are frequently used to quantify different types of

drought conditions. While indicators exist for variables relevant to different

drought types, drought indices that only rely on atmospheric data are a popular

choice due to (historical) data availability and due to their ease of use (they do

not require the deployment of an impact model, such as a hydrological model).

The Drought Severity Index (DSI; Phillips and McGregor, 1998), for example,

uses precipitation only and has been used in previous studies on the impact of

climate change on drought in the UK (e.g. Blenkinsop and Fowler, 2007; Rahiz

and New, 2013; Hanlon et al., 2021). One of the most widely used drought

indicators is the Standardised Precipitation Index or SPI (McKee et al., 1993),

a precipitation-based index recommended by the World Meteorological

Organisation (WMO and GWP, 2016). It is one of the indicators shown in the

UK Water Resources Portal (https://eip.ceh.ac.uk/hydrology/water-resources),

and has been used in earlier work on drought under climate change in the UK

(e.g. Vidal and Wade, 2009; Arnell and Freeman, 2021). Since the introduction

of the SPI, other standardised indicators have been developed that apply the

standardisation principle of SPI to different (combinations of) drought-relevant

variables. This includes the Standardised Precipitation Evapotranspiration

Index (SPEI; Vicente-Serrano et al., 2009), which gives the anomaly in a

simple climatic water balance, computed as the difference between precipitation

and potential evapotranspiration (PET). This indicator was developed to be

sensitive to the effect of global warming induced increases in atmospheric

evaporative demand (AED), the potential of the atmosphere to evaporate water

(depending on radiation, temperature, humidity and wind speed; Robinson

et al., 2017). High AED can aggravate the effects of sustained precipitation

deficits and accelerate drought development (e.g. Manning et al., 2018;

Bloomfield et al., 2019; Pendergrass et al., 2020). Contrary to the SPI, SPEI is

thus not purely an indicator of meteorological drought, but instead an

atmospheric-based index that is ”mostly related to the actual water balance in

humid regions”, reflects ”an upper bound for overall water-balance deficits”

during dry periods and in water-limited regions, and is also linked to vegetation

stress (Seneviratne et al., 2021). These atmospheric-based indicators are widely

used in climate change impact studies, although the consequences of their

implicit assumptions with regards to evaporative stress are not always expressly

considered. Along similar lines, a study by Satoh et al. (2021) found that, if the

drought type is considered as a source of uncertainty for projections of future

droughts, it constitutes a major one in many parts of the world.

This study focuses on Great Britain (GB) to compare projected drought changes

as quantified using the SPI and SPEI. Despite not typically being thought of as a

particularly drought-prone area, GB has experienced several droughts in the past
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which lead to widespread impacts, including impacts on ecosystems (including

algal blooms and fish kills), agriculture and domestic water supply (Rodda and

March, 2011; Kendon et al., 2013; Turner et al., 2021). The impacts of climate

change on future droughts in the UK is therefore a key concern for stakeholders

including water managers and farmers (e.g. Watts et al., 2015). In this study, we

aim to answer the following questions.

1. Based on atmospheric-based standardised drought indices, how are

drought and extreme drought frequency, duration, extent and seasonal

timing expected to change under different global warming levels?

2. What is the potential contribution of changes in PET and precipitation to

the changes in these drought characteristics?

3. How sensitive are the quantified projected changes in drought

characteristics to the choice of atmosphere-based drought indicator, and

how does it compare to other sources of uncertainty?

To this end, we identify and characterise droughts and their projected changes

in the most recent ensemble of regional climate projections for GB, using both

SPI and SPEI (hereafter, SI for standardised indicators). We compare projected

drought characteristics for both indices, to identify the potential role of

changing PET. Although previous studies have compared historical and

projected changes using these SI in different regions of the world (e.g. Stagge

et al., 2017; Chiang et al., 2021), this study adds a new level of detail by an

in-depth analysis of different drought characteristics and attention to within-GB

regional differences, and is the first to use UKCP18 with these SI to assess

projected changes in drought characteristics for GB. This helps further

understand the potential future changes in the nature of GB droughts

depending on global warming, and demonstrates the importance of the drought

index choice for climate change impact studies and stakeholder usage.

4.2 Data

4.2.1 Observations

Datasets of PET and precipitation observations were needed for evaluation, bias

correction of the UKCP18-RCM, calibration of SI and calculation of historical

SI. The CHESS-PE (Robinson et al., 2020) and HadUK-Grid (Hollis et al., 2019)

datasets were used for PET and precipitation respectively, using the following
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time periods: 1961-2010 for the SI calibration (see Section 4.3.4), 1981-2010

for the bias correction, and 1981-2005 for comparison to the reference period

UKCP18-data in this study. Both datasets were first regridded from their native

1km resolution to the 12km resolution grid of the UKCP18-RCM, by averaging of

the 1km grid cells falling in each 12km cell. A land fraction was obtained based

on the proportion of 1km grid cells with observations on land within each 12km

grid cell, and used to exclude grid cells with a land fraction lower than 50% from

the analysis. As no observation-based PET was available for Northern Ireland in

CHESS-PE, this region was excluded from our study. The method used to obtain

PET in the production of CHESS-PE is an implementation of Penman-Monteith

PET for a reference grass crop (Allen et al., 1998), in which the calculation of

vapour pressure deficit from temperature is based on Richards (1971) (Robinson

et al., 2017).

4.2.2 UKCP18 regional climate projections

UKCP18 is the most recent set of national climate projections for the UK and

has been produced by the Met Office Hadley Centre (Murphy et al., 2018). This

study makes use of its third strand, produced with the aim of providing a range

of storylines to support adaptation efforts in the UK: a perturbed physics

ensemble (PPE) of regional climate projections (UKCP18-RCM; Met Office

Hadley Centre, 2018), available from the Centre for Environmental Data

Analysis. This ensemble of 12 simulations was constructed by dynamically

downscaling global HadGEM3-GC3.05 simulations through one-way nesting

with the same model at finer resolution. At both resolutions,

HadGEM3-GC3.05 was perturbed in 47 parameters spread over model

representations of convection, gravity wave drag, boundary layer, cloud,

large-scale precipitation, aerosols, and land surface interactions (Murphy et al.,

2018). The ensemble thus does not sample GCM-RCM structural uncertainty,

only parameter uncertainty, and was designed to cover a range of possible

futures. While multiple GCM-RCM structures would add another interesting

dimension to the study, expanding the ensemble was outside the scope and

capacity of the study. The horizontal resolution of the RCM simulations is

12km over GB (available on OSGB36 grid projection). As droughts tend to be

more spread out in space and time, we judged that the 12km daily resolution of

the UKCP18 RCM poses a better trade-off between practicality and

spatiotemporal detail than the higher-resolution convective permitting

simulations for this study. Simulations of different variables are available from 1

December 1980 to 30 November 2080 on a daily time step (for practical reasons,

December 1980 was left out of our analysis).
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4.3 Methods

4.3.1 Calculation of potential evapotranspiration

While AED increases with rising temperatures, changes in humidity, net

radiation and wind speed can also play a significant role. Therefore, we

represented AED by PET calculated using Penman-Monteith, which includes

the effect of all these variables. This method leads to a more robust correlation

between the resulting SPEI and soil moisture under a warming climate

compared to using the temperature-only Thornthwaite method (Feng et al.,

2017) and is recommended over simpler temperature-based methods (e.g. Dewes

et al., 2017), however it is still subject to significant limitations (Milly and

Dunne, 2016; Greve et al., 2019). The calculation of PET for the

UKCP18-RCM follows the same variant of the Penman-Monteith method used

by Robinson et al. (2017), to ensure consistency with CHESS-PE. It uses these

variables simulated by the UKCP18-RCM ensemble: specific humidity, pressure

at sea level, net downwelling longwave radiation, net downwelling shortwave

radiation, wind speed at 10m and daily average surface air temperature. PET

was set to zero wherever a calculated value was negative (which occurred for

less than 1% of the values overall and, when split by ensemble member and

month, also less than 1% for all cases except December in ensemble member 1

with 1.2% of negative values).

Detrending temperature

To investigate the influence of the projected temperature trend on changes in

SPEI-based droughts and the deviation of SPEI from SPI, we also computed an

alternate version of SPEI projections (SPEIdtr−tas) using a detrended version of

UKCP18-RCM temperature. For this, a linear trend was fitted to, and

subsequently subtracted from, the simulated temperature time series for each

grid cell and month separately. This detrended temperature dataset was used to

compute PET as described above, resulting in a PETdtr−tas variable in which

any trend left is due to trends in other variables (specific humidity, radiation,

wind speed and pressure) or in interactions between variables. As these

variables are closely intertwined in the climate models, this unavoidably

introduces a physical discrepancy between temperature and the other variables

used in the PET calculation. This is taken into account in the interpretation.
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4.3.2 Bias adjustment

As comparison to observations revealed significant bias in the simulation of

both precipitation and PET (see Figs. B.0.1 and B.0.2), these variables were

statistically post-processed using the ISIMIP3b change preserving bias

adjustment method (Lange, 2019) version 2.4.1 (Lange, 2020). The biases we

observed for different quantiles were not equal to the biases observed in the

mean, which is why we selected a bias adjustment method that took this into

account. Similarly, biases also varied between months and locations, so the bias

adjustment needed to be specific for each month and grid cell. The ISIMIP3b

bias adjustment method is based on quantile mapping, but also preserves

projected changes in the variables being corrected, and enables separate

adjustment of the frequency of dry days – a desirable feature for drought

research. For precipitation, the gamma distribution and mixed

additive/multiplicative per-quantile change preservation were used. For PET

and PETdtr−tas, the Weibull distribution, detrending and mixed

additive/multiplicative per-quantile change preservation were used. A dry

threshold of 0.1 mm day-1 was selected below which there is considered to be no

precipitation or PET. In what follows, UKCP18-RCM indicates the bias

adjusted data.

4.3.3 Time slice selection

The UKCP18-RCM simulations used in this study are available for the RCP8.5

emissions scenario, and the models used have high global climate sensitivity

compared to the CMIP5-ensemble and the probabilistic projections (Murphy

et al., 2018). Therefore, to assess the impact of climate change on drought

characteristics in scenarios with lower climate sensitivity and more mitigation

(resulting in lower warming levels above pre-industrial times), a time slice

approach was implemented to investigate changes at two specific global mean

warming levels. A common fixed reference period (1981-2005) was used for all

ensemble members to compare to these future time slices and observations. For

each ensemble member, a time slice was selected from 12 years before to 12

years after the year in which the centred 25-year rolling mean global

temperature exceeds + 2 ◦C and + 4 ◦C above pre-industrial levels (defined as

1850-1900) in the driving global model (see Table 2 in Gohar et al. (2018)). As

opposed to the fixed reference period, the time periods used to represent

different levels of warming are thus different for each ensemble member,

depending on when their global driving models reach +2 and +4 ◦C above

pre-industrial levels. Both warming levels are reached in all 12 ensemble
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members, however for ensemble member 8 the time slice representing +4 ◦C is

cut short 2 years by the end of the simulated period.

This approach would result in an accurate assessment of changes in GB drought

projected at these warming levels if these changes would scale directly with

global temperature increase (independent of the speed of change), and if the

regional model has the same climate sensitivity as its driving global model.

Neither of these requirements are likely to be fully met. UKCP18-RCM projects

slightly weaker UK temperature responses towards the end of the simulated

period than the driving global simulations (Fig. 5.2 in Murphy et al. (2018)).

Also, midlatitude atmospheric circulation patterns in the selected time slices

(which influence UK weather and therefore drought events) may respond to a

higher level of radiative forcing than the global temperature increase levels used

to select them (Ceppi et al., 2018). Nevertheless, the applied time slice

approach is a reasonable approximation, and frequently used for investigating

impacts at different levels of global warming.

4.3.4 Drought and aridity indicators

While drought refers to a period of below-normal water availability for a given

context, aridity refers to the climatic average moisture availability (Dai, 2011).

This is included in this study in order to help establish an understanding of the

mean climatic changes projected for precipitation and PET in UKCP18-RCM,

before proceeding to assessing projected changes in drought characteristics. To

this end, the aridity index (AI) was calculated as the annual average ratio of

precipitation to PET (e.g. United Nations Environment Programme, 1992; Feng

and Fu, 2013; Greve et al., 2019), which is more intuitive to interpret than the

standardised indicators. For time slices of 25 years, this gives:

AI =
1

25

25∑
y=1

Precipitationy
PETy

The drought indices compared in this study are SPI and SPEI. Both are widely

used in the literature to quantify droughts, and they imply contrasting

assumptions of the surface water balance: for SPI, no evaporation takes place,

while for SPEI, evaporation takes place and is not limited by moisture

availability. Multi-scalar standardised climate indicators such as these allow for

comparison of unusually dry (or wet) periods across locations with different

climates. The SI are calculated as follows. First, the time series of a variable D

(precipitation for SPI, precipitation minus PET for SPEI) is aggregated using a
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specified accumulation period length of n months, such that the value for each

month in the resulting time series is the average of that month and the n

preceding months. Then, a suitable distribution FD for that variable is fitted to

the aggregated time series, for each month and location. The SI value for an

accumulation period length n at a time step t is then defined as follows:

SInt = ϕ−1(FD(Dn,t))

with Dn,t indicating D accumulated over the n time steps preceding t

(inclusive), and ϕ the standard normal distribution. Monthly values of SPI and

SPEI are calculated using n of 3 to 24 months. Following recommendations

provided by Stagge et al. (2015b), the two-parameter gamma distribution was

used for calculating SPI and the generalised extreme value (GEV) distribution

was used for calculating SPEI. For shorter SPI accumulation periods (1-3

months) and further into the future in the UKCP18-RCM simulations (with

drying summers), there may be occurrences of zero accumulated precipitation

for grid cells in drier regions. To take this possibility into account, the SPI

values corresponding to the probability of zero accumulated precipitation were

calculated separately following the method proposed by Stagge et al. (2015b),

which avoids the mean SPI becoming larger than 0. A 50-year period

(1961-2010) of observation-based data (regridded HadUK-Grid and CHESS-PE)

was used to fit the distributions for the SPI and SPEI calculation. This

observation-based calibration was also applied to the UKCP18-RCM data to

allow a direct comparison of the results between climate model ensemble

members and observations. This is appropriate because the bias adjustment

brings the distributions of the reference period climate model data close to the

observed distributions.

4.3.5 Drought characteristics

In order to compare changes in overall drought conditions to changes in more

extremely dry conditions, we consider a category of ”all/total drought” covering

all SI of -1 and lower, and a category of ”extreme” drought covering SI values of

-2 and lower. These threshold values are a subset of the classification originally

introduced by McKee et al. (1993), which has been extensively used in studies

using standardised drought indicators. As in Stagge et al. (2015b), SI values

were capped at -3 to limit the uncertainty induced by extrapolating into the very

extreme tails of a distribution fitted to the relatively short time series available

(see Section 4.3.4).

Given the importance of both space (e.g. extent, spatial connectivity, local
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vulnerability) and time (e.g. seasonal timing, duration) for drought impacts,

the spatiotemporal characterisation of droughts is an important element of any

drought study. It is approached here in three ways. First, the frequency

(fraction of the time in drought) of dry and extremely dry conditions was

computed for each individual grid cell of GB separately, for each ensemble

member and the observations. Second, the drought area extent was quantified

as the fraction of the total GB area simultaneously in (extreme) drought. We

then compute the frequency with which different drought extents are exceeded

(fraction of time). Third, regionally averaged SI values were used to investigate

drought seasonality and duration. For computing these regional averages, we

used the UKCP18 administrative regions (ukcp18, 2021) shown in Fig. 4.3.1, as

they represented a decent trade-off between the sizes of the regions, number of

regions to compare and relevant differences in climatology, projected changes

and societal relevance.

East
Scotland
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Scotland

West
Scotland

North East England

South West England

West
Midlands East of

England

South East England

London

East Midlands

Yorkshire and
Humber

North West
England

Wales

Figure 4.3.1: Map of administrative UKCP18 regions used for regional drought
characterisation. Regions for which results are shown in the main text are
highlighted in yellow.

For investigating the seasonal contributions to longer-term deficits (seasonality),

we compared the 6-month aggregated regionally averaged SI (SI6) for March

and September for each year to represent the winter and summer contributions

to that year’s overall dryness (SI12). Durations of individual drought events are

defined as periods of continuously negative regionally averaged SI values reaching
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a threshold value of -1 or lower, following the theory of runs (Yevjevich, 1967).

Each event is then assigned to the time slice (reference period, +2 ◦C or +4 ◦C)

that contains its central time step, and the number of occurrences of droughts

with different duration categories is assessed. Extreme droughts are identified as

events that have a peak (i.e. minimum) SI value below -2. To assess changes

in drought duration and the occurrence of multi-year droughts, SI computed

with an aggregation period of 6 months was used. This sub-yearly aggregation

period is frequently used and linked to impacts (e.g. Stagge et al., 2017; Parsons

et al., 2019), and ensures any resulting drought durations of a year or longer

were sustained throughout all seasons. For seasonality, duration as well as the

seasonal cycles of precipitation and PET, four regions are shown in the main text

to represent the main results found across all regions, while results for the other

regions are included in Appendix B.

4.4 Projected climatic changes

Regionally averaged seasonal cycles of precipitation (blue) and PET (yellow)

are shown in Fig. 4.4.1 for North Scotland, North East England, South West

England and East of England, and in Fig. B.0.3 for all regions. The four regions

shown in Fig. 4.4.1 were selected to represent the spread of climatic regions and

projected changes in climate and drought indicators of all 12 regions, and will

be used throughout this chapter to discuss the spatial variability in projected

changes. The observations plotted in the reference period column show a very

close match with the UKCP18-RCM ensemble, which is the result of successful

bias adjustment for each season. In all regions, existing seasonal patterns become

more pronounced under a warming climate, and in most regions there is a shift

in rainfall seasonality delaying the driest months (clearly visible in South West

England). In summer, especially in the South and in the East, the combination

of increasing PET and decreasing precipitation lead to an increasing gap between

the two, and an increasing period where atmospheric demand for moisture exceeds

supply (light yellow area). In some areas (e.g. North Scotland), the reference

period precipitation exceeds PET year-round (light blue area), but a warming

climate causes this gap to diminish or even crossed in late spring to summer.

The ensemble spread in the simulated changes of precipitation, which is driven

more by dynamical processes, is greater than that of PET. However, the ensemble

broadly agrees on the pattern of projected changes.

Considering the annual average ratio of precipitation and PET, parts of GB are

projected to become more arid in most ensemble members (Fig. 4.4.2). This is

mostly the case in the (south-) east and the English Midlands, where in the
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Figure 4.4.1: Seasonal cycle of precipitation (P; blue lines) and potential
evapotranspiration (PET; orange lines) for the 12 bias-adjusted UKCP18-RCM
ensemble members, for four selected regions. The different lines represent
different ensemble members, while the observations are plotted in the first column
in darker, dashed lines. See Fig. B.0.3 seasonal cycles for all 13 regions.

reference period the AI was already closer to 1 (annual PET roughly equal to

annual precipitation), and PET starts to exceed precipitation on an annual basis

under a +2 ◦C warming scenario. While the ensemble agrees very well on the

spatial patterns of aridity changes, there is significant ensemble spread in the

magnitude of change. In the +4 ◦C scenario, widespread AI decreases in the

(south-) east and the Midlands are projected by all ensemble members, but only

three ensemble members simulate small isolated areas in the South East crossing

the threshold from humid to a dry sub-humid climate (aridity index < 0.65). The

strong similarity of the reference period simulations to the observations (top row

maps) is showing successful bias adjustment of daily precipitation and PET in

the ratio of annual averages.

4.5 Projected changes in drought characteristics

4.5.1 Drought frequency

Figure 4.5.1 shows the spatially averaged frequency of dry and extremely dry

conditions based on SPI6 and SPEI6 for three time slices representing different

warming levels. The scatter plots show the relationship between GB-averaged

drought frequencies using SPI6 and SPEI6, as projected at different global

mean warming level (GMWL) in the 12 ensemble members and the
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Figure 4.4.2: Aridity index (average annual P/PE) for the 12 bias-adjusted
UKCP18-RCM ensemble members. The contours shown in black are powers
of 2 and the level of 0.65 (below which a climate is classified as dry sub-humid).

observations. Considering a GB average, the UKCP18-RCM ensemble generally

projects an increased frequency of moderate to extreme drought conditions with

each warming level using both indicators. In the scatter plots, all points move

upwards (more frequent SPEI6 events) with increasing global warming level,

and most move to the right (more frequent SPI6 events), except for a few

ensemble members for +2 ◦C. However, the GB-averaged drought frequency

increases and future projections are, for each ensemble member and warming

level, greater when quantified using SPEI6 than using SPI6. For those 3

ensemble members that project a slight decrease in total drought frequency

based on SPI6 for +2 ◦C, including PET in the drought indicator (SPEI6)

changes the sign of the projected change. To compare the differences between

SI and GMWL, the SPEI6-based GB-average drought frequency projected at

+2 ◦C is equal to or greater than the SPI6-based frequency projected at +4 ◦C

for at least half the ensemble members in each drought category. For drought

frequency quantified with SPI6, by +4 ◦C, the projected increases range from a

few percent points to more than double the reference frequency, and between

two- and eightfold for the extreme droughts.

At the same high warming level, the ensemble projects SPEI6-based drought

almost half of the time (ensemble average: 46%), about half of which (ensemble

average: 23%) are classed as extremely dry conditions. The ensemble spread

(scatter) of future projections is substantial and grows with increasing warming

level. Importantly, the projected relative increase for extreme drought

frequency is far greater than for the total drought frequency. By +4 ◦C, the

ensemble mean spatially averaged total drought frequency increases by a factor

1.7 for SPI6 and by a factor 3.1 for SPEI. For extreme droughts, however, these

multiplication factors are 3.7 and 11.5, respectively. This disproportionate

increase in the extreme drought category, which shows in projections based on

both indicators, has potentially important implications for drought impacts,
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Figure 4.5.1: Spatially averaged projections of drought frequency, expressed as
the fraction of months SI is below the threshold, for each ensemble member (rows)
and the ensemble mean (bottom row), for three time slices (subcolumns) that
correspond to the reference period and two different levels of global mean surface
warming compared to pre-industrial levels, using both drought indices (columns).
Frequencies are shown for all droughts (left), extreme droughts (middle), and as
scatter plots (one point per ensemble member) comparing SPI6- and SPEI6-based
frequencies of all droughts (top-right) and of extreme droughts (bottom-right).
Spatial averages are across the whole of Great Britain.

such as stakeholders or ecosystems vulnerable only to extremely dry conditions

(e.g. Parsons et al., 2019).

The maps in Fig. 4.5.2 show the spatial patterns of these drought frequency

changes (for the ensemble average) and their differences between SPI6 and

SPEI6. For the reference period, the ensemble-averaged GB mean total and

extreme drought frequencies are 0.15 and 0.023 respectively, which are close to

the theoretically expected values of 0.16 and 0.022. There is some variation

around these values in space (Fig. 4.5.2) and among ensemble members

(Fig. 4.5.1), which is not unexpected. Imperfections of the distribution fits in

the calculation of SPI and SPEI, differences between the climates of the

1961-2010 and 1981-2005 periods (black markers in Fig. 4.5.1), any model errors

remaining after bias adjustment and internal climate variability can all result in

differences between the simulated drought frequency in the reference period and

the theoretical frequencies that would be expected for the calibration data.

There is significant regional variability in projected drought frequency across GB

inferred with either drought indicator, especially for extreme drought (Fig. 4.5.2).
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Figure 4.5.2: Ensemble averaged projected frequency of all (left) and extreme
(right) dry conditions, expressed as the fraction of time SI falls below -1 or -2
respectively. Top: SPI6, middle: SPEI6 with projected temperature changes,
bottom: SPEI6 with detrended temperature.

Both SI show a similar pattern, with the mildest increases or even decreases

along the west coast, most notably in north-west Scotland. However, the areas

projected to experience the greatest increase in frequency of dry conditions differ

between the drought indices. In the SPI6-based projections, the greatest increases

are projected in the rain shadows of highly elevated areas. For SPEI6, the largest

increases are seen in these areas plus a larger area covering most of England

(except near the west coast), including the East Midlands and East England

where SPEI6-based drought conditions are projected around 60% of the time

under +4 ◦C. These are already the least humid regions of GB (Fig. 4.4.2). For

both indices, these regional patterns of change are amplified when looking at the

higher warming level and when isolating extreme droughts.

The bottom row of Fig. 4.5.2 shows SPEI6dtr-tas, which is the SPEI6 using PET

calculated with detrended temperature simulations. With the projected

temperature increase removed, SPEI6 shows only minor changes in drought

frequency. Furthermore, at +4 ◦C, the projected drought frequencies using

SPEI6dtr-tas are much less than those found for the precipitation-only SPI6. On

the face of it, that suggests non-temperature influences may reduce PET
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(offsetting some of the temperature-driven increase) and that PET calculation

methods which only rely on temperature (e.g. Thornthwaite) may overestimate

drought risk based on the UKCP18-RCM simulations. However, the effects of

physically inter-dependent variables (especially temperature and humidity)

cannot be truly separated. Crucially, here we use simulated specific, not

relative, humidity to compute PET (Robinson et al., 2017). Whereas specific

humidity is projected to increase over GB, relative humidity is projected to

decrease as the saturated humidity increases faster with rising temperatures

(not shown), contributing to the increased future PET. However, by detrending

the temperature, the saturation humidity level computed in the PET

calculation was reduced for future simulations, which, combined with the

unadjusted specific humidity projections, resulted in artificially increased

relative humidity and thus a decreased vapour pressure deficit term. The

temperature effect shown by the SPEI6 - SPEI6dtr-tas difference (Fig. 4.5.2)

therefore implies a far greater effect of temperature than if a PET formulation

using the relative humidity projections would have been used (Fu and Feng,

2014; Robinson et al., 2017).

4.5.2 Spatial extent

Figure 4.5.3 and Fig. 4.5.4 show the observed and simulated extent-frequency

curves of drought conditions for SPI and SPEI respectively, for different global

warming levels (i.e. time slices) and using different aggregation levels. Moving

upwards in this plot means an increase in the frequency of drought conditions

with at least the spatial extent given by the horizontal axis (not necessarily in

the same locations). Moving to the right in this plot means an increase in the

spatial extent of drought conditions that is exceeded with a particular frequency

(given by the vertical axis).

The relationship between frequency and drought extent for the reference period

simulations generally match well with the observations. However, as the

aggregation period increases, the frequencies of smaller drought extents are

increasingly overestimated in the simulations, while the frequencies of larger

drought extents are on average well represented (SPI) or become slightly

underestimated (primarily SPEI), especially for the 12 and 24 month

aggregation periods. The ensemble spread for the reference period simulations

also increases with the aggregation level, enveloping the observations in all

cases. The bias adjustment was done on the distributions of daily values of

individual grid cells, not considering the spatial coherence in longer-term

statistics, and without considering correlations between precipitation and PET.
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Figure 4.5.4: As Fig. 4.5.3 but for SPEI rather than SPI

These might be the reasons for these minor mismatches.

For a given drought extent, the relative change in frequency as global temperature

increases is far greater for extreme droughts than for all droughts (for both SPI

and SPEI). For instance, based on SPI6, the frequency that at least 20% of GB
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simultaneously experiences a drought is 26% currently, and 44% with +4 ◦C

of warming (mean of the ensemble). In contrast, SPI6-based extreme droughts

covering 20% GB have a frequency of occurrence currently less than 4% of the

time, but this frequency is projected to jump to 16% for a +4 ◦C warming

(mean of the ensemble). Climate change-induced changes in the relationship

between frequency and extent of droughts depend strongly on the drought metric

used. SPI and SPEI both show increasing frequency of droughts of most extents,

however the increase is much greater for SPEI. Moreover, different frequency

changes are projected for droughts with different extents, e.g. greater changes

for smaller drought extents using SPI. Using longer aggregation periods, the

future projections move toward higher frequencies and extents, the ensemble

spread increases, the difference between GMWL grows, and differences between

drought indicators become more pronounced. For the extreme drought class,

the maximum extent is projected to increase greatly with global warming, based

on both SPI and SPEI. The ensemble mean maximum SPI6 area fraction in

drought increases from just over 51.2% (an underestimation of observation-based

maximum extent) to just over 71.1% by +2 ◦C and to 80.0% by +4 ◦C. For SPEI6,

the ensemble-averaged simulated maximum extent and the overall frequency-

extent relationship matches observations very closely, and the maximum extent

is projected to increase from just over 51.8% to 86.5% by +2 ◦C, and to 95.4%

(i.e. almost all of GB simultaneously in extreme drought) at +4 ◦C. The relative

increase of maximum extreme drought extent projected due to global warming is

greater for longer aggregation periods, for both indicators. Finally, the drought-

free frequency, given by the difference between 100% and the intercept on the

y-axis, is generally projected to decrease under climate change, again far more

strongly for the extreme drought category and for SPEI-based drought.

4.5.3 Seasonal timing

Figure 4.5.5 shows the contributions that summer and winter deficits make to

annual droughts according to SPI and SPEI for three global warming levels for

the selected GB regions. Results for the other regions can be found in Figs. B.0.4

and B.0.5. The horizontal and vertical axis show SI6 for March and September

respectively, indicating how dry or wet the hydrological winter and summer were

in a given year. The September SI12, indicating the dryness of the corresponding

hydrological year, is represented by the colours of the dots. For example, a grey

dot with coordinates (1.1, -2.2) represents a normal annual value consisting of a

wet winter and an extremely dry summer.

The increasing summer dryness is reflected by a general downwards shift of the
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Figure 4.5.5: Values of September SI12 (hydrological year) plotted against the
September SI6 (hydrological summer) and March SI6 (hydrological winter) from
the same year used to compute SI12 for SPI (left) and SPEI (right). All years
are shown for each time slice and ensemble member. SI6 values that exceed -3 or
+3 are plotted at -3 or +3. The larger, transparent markers show the centroids
of 5 SI12 classes: extremely dry, dry but not extremely dry, normal, wet but
not etremely wet, extremely wet. See Figs. B.0.4 and B.0.5 for results for all 13
regions.

point cloud, while a rightward shift reflects wetter winters in some regions.

Increases in the proportion of dry years are projected in most regions and can

be attributed mainly to the summers of those dry years, especially for

SPEI-based droughts. In several regions, such as the East of England, most

summers in the ensemble are classified as dry by +4 ◦C, leading to their

respective years to be classified as dry in about half (SPI +4 ◦C and SPEI +2
◦) or almost all (SPEI +4 ◦C) cases. With increasing global warming levels, a

growing number of years consist of a wet winter followed by a dry summer

(bottom right corner beyond the (1, -1) coordinate), which is rare in the

reference period simulations. In South West England, this even becomes the

norm under +4 ◦C in these simulations (grey centroid dots). Using the SPEI, in

all except the Scottish regions, an increasing number of these ”contrasting”

years is categorised as dry (or even extremely dry, in some regions under +4 ◦),

which is not observed at all for the SPI. Using the SPI, in most of the western

regions the number of ”contrasting” years classified as wet based on their SI12

increases, which is observed to a lesser extent in SPEI. The implicit assumptions
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on evapotranspiration in these indicators thus have a decisive influence on

seasonal droughts and how they tip the annual water balance, demonstrating

the importance of understanding the influence of these PET increases.

4.5.4 Duration

Figure 4.5.6 shows the number of simulated drought events within 6 drought

duration categories (horizontal axis), based on SPI6 and SPEI6. Results for the

other regions as well as droughts that reach extreme levels are shown in Figs.

B.0.6 and B.0.7.

Overall, the drought indicator makes a large difference in the projected changes

in the distribution of drought durations. The ensemble spread of the number of

events in each drought category is large, for both indicators, and there is often a

strong overlap between GMWL which is diminished when isolating droughts that

reach extreme levels. In most regions, the SPI6-based projections show increases

in droughts shorter than 6 months, while the SPEI6-based projections for this

category are divided between decreases in the drier region (south and central to

east), and increases or little change in the other regions. In almost all regions,

however, there is an increase in 6-11 month droughts using both indicators. The

decreases projected in the shortest SPEI6-drought category in half of the regions

are generally paired with increases in longer droughts, suggesting that the larger

projected drought frequency in these regions (see Fig. 4.5.2) is concentrated in

fewer consecutive dry periods, with seasonal droughts getting pooled together

into longer events.

Sustained multi-year droughts are a major concern for water managers (e.g.

Marsh et al., 2007). They can also have less occurrences in a 25 year time slice

by definition, and a larger share of the ensemble members contains zero

multi-year events for a given time slice and region. Droughts lasting at least 2

years rarely occur more than once in a given time slice in our analysis, and

never more than twice for a given duration bin. Therefore, for these events we

discuss the total number of ensemble members that project at least 1 such event

in any given time slice. Based on the SPI6, the number of ensemble members

projecting at least one drought lasting from 2 to 3 years is not projected to

change for most regions, although an increasing share of events reaching

extreme levels is found in about half of the regions. Using the SPEI6, the

number of ensemble members projecting at least one 2-3 year event increases

with GMWL in the southern and central to eastern regions, and for events

reaching extreme levels this increases in almost all regions. The number of these

events simulated in a single time slice by a single ensemble member also
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Figure 4.5.6: Number of drought events of all severities by duration for three
25-year periods corresponding to progressive warming scenarios in the selected
regions, based on SPI6. White circles indicate the ensemble mean, boxes show
the interquartile range, whiskers show the ensemble range except for members
exceeding 5 x the interquartile range (diamonds). See Fig. B.0.6 for other regions.

increases in several regions using the SPEI6. Droughts lasting three years or

longer in the reference period are simulated in either none or one of the

ensemble members depending on the region, irrespective of the SI (with

exception of the West Midlands for SPEI6: 2 ensemble members). A drought of

four years or longer in the reference period is only simulated by one ensemble

member in one region for each indicator. With increasing warming levels, more

ensemble members simulated at least one +3 year SPEI6-drought event in the

English regions and Wales, most of which reaching extreme levels at some point.

This is in contrast with SPI6, where little change can be found in the number of

ensemble members simulating such events (max. 2 ensemble members in any

time slice and region). As increasing multi-year droughts across the ensemble

are almost exclusively seen using SPEI, any indication toward a possible

increased likelihood of these events depends on the influence of AED.
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4.6 Discussion

4.6.1 Projected changes in atmospheric droughts

This section discusses the results presented above in the context of previous

studies that have used meteorological and atmospheric based drought indices to

investigate climate change impacts on droughts in the GB.

The spatial pattern of drought frequency changes in Fig. 4.5.2 is very broadly in

agreement with the spatial patterns of drought intensity found by Hanlon et al.

(2021) using UKCP18-RCM and the DSI, and increases in drought event

occurrence found by Spinoni et al. (2018) using EURO-CORDEX and a

combined atmosphere-based drought indicator. Nevertheless, the differences

between our SPI6 drought frequency maps and the DSI6 drought severity maps

in Hanlon et al. (2021) reveal how drought projections can be sensitive to the

exact method used for drought quantification and characterisation, even

considering the same variable (precipitation) and aggregation time scale (6

months). For example, the hot spots of the SPI6 drought frequency increase in

Fig. 4.5.2 are further west than the DSI6 drought severity increases along the

east of GB found by Hanlon et al. (2021). Moreover, by discriminating between

all and extreme drought, we showed how the spatial patterns of drought

frequency projections are similar but amplified in the extreme drought class.

Furthermore, this study analysed for the first time the projected changes in

drought extent as a function of its frequency. The difference in the shape of the

observation-based extent-frequency curves between extreme and all drought

conditions (Fig. 4.5.3 and Fig. 4.5.4) confirms the finding by Tanguy et al.

(2021) that the most extreme droughts tend to be more localised than when all

droughts are considered, and shows that this is also true using a drought

definition including PET. Rahiz and New (2013) found a projected increase in

drought spatial coherence using UKCP09 and the DSI6. Here, we not only

showed increased drought extent and frequency, but notably a larger relative

increase in the frequency of widespread extreme drought conditions, as well as

strong increases in more localised extreme droughts. This is the case for SPI,

but greatly amplified when including PET. Moreover, we showed that the

observed and projected drought extent-frequency relationship is time

scale-dependent. As discussed in Section 4.6.4, widespread dry and extremely

dry conditions identified using a SI with one specific aggregation period, would

likely lead to differential agricultural and water resources impacts depending on

the relevant time scales in the affected regions.

Previous studies have often assessed changes in drought duration through the
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mean and/or median duration or overall trends (e.g. Touma et al., 2015;

Garćıa-Valdecasas Ojeda et al., 2021; Vicente-Serrano et al., 2021). Instead,

here we isolated changes in events of different duration categories, which

revealed a possibility of increasing multiyear droughts in some regions based on

the SPEI6, but not the SPI6. Multi-year droughts were also assessed by Lehner

et al. (2017), who found that for some studied regions (including Central

Europe and the Mediterranean), progressive climate change is projected to

increase the risk of 4 consecutive drought years (based on the PDSI, which is

also sensitive to projected increases in PET). Rahiz and New (2013) considered

changes in drought events lasting at least 3, 6, 10 and 12 months based on the

DSI6 using the previous generation of UKCP regional projections (UKCP09),

and found widespread increases in the number of events of at least 3 months,

generally with stronger increases and ensemble agreement toward the south

west. Seasonal timing and contributions of drought were assessed by

investigating changes in the combination of March SI6, September SI6 and

September SI12 for a given year. By visualising the relationship between annual

conditions and the summer and winter half-years, this approach goes beyond

assessing changes in seasonal and annual SI independently (e.g. Spinoni et al.,

2018; Vicente-Serrano et al., 2021) in making use of the multiscalar property of

these indices. In this way, it was shown that the dominant contribution to

increasing deficits in the annual SI in many regions consists of increasing deficits

in the hydrological summer SI6 (especially for SPEI), and that more years

consisting of a dry summer preceded by a wet winter are projected in many

regions. With an accumulation period of 3 months, Spinoni et al. (2018) found

decreasing occurrence of drought events in winter and increasing occurrence in

the other seasons, with the strongest increases in summer, with a spatial

pattern dependent on the scenario and drought intensity considered. These and

our results are in disagreement with Rahiz and New (2013), who found larger

and more widespread drought frequency and intensity in the hydrological wet

season, most likely due to a methodological difference in delineating seasons.

4.6.2 Differences between SPI and SPEI projections

We show that the magnitude of the difference between SPI- and SPEI-inferred

projected changes is substantial for all considered drought characteristics. For

drought frequency, using the 6 month aggregation period, it is comparable to

the difference between +2 ◦C and +4 ◦C of warming above pre-industrial levels

for the extent and frequency of drought and extreme drought. Within both

warming scenarios, the difference in GB-averaged projected total drought

frequency between SPI and SPEI is similar to the ensemble range, for either SI.
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For extreme drought, the difference between SPI6 and SPEI6 is similar in size

to the ensemble range according to SPI at +2 ◦C, and lies between the

ensemble ranges of SPI and SPEI at +4 ◦C.

Previous studies found divergence in trends of drought characteristics between

SPI and SPEI in observations (Stagge et al., 2017; Karimi et al., 2020; Ionita

and Nagavciuc, 2021), historical climate simulations (Chiang et al., 2021) and

future climate projections (e.g. Arnell and Freeman, 2021; Garćıa-Valdecasas

Ojeda et al., 2021; Wang et al., 2021), with SPEI indicating increased drying

compared to SPI. Increases in PET under a changing climate, combined with

the high sensitivity of SPEI to PET changes, cause amplified projections of

climatological drying and even a reversal of wetting trends in some parts of the

world compared to when only changes in precipitation are considered (Cook

et al., 2014). For the UK, Arnell and Freeman (2021) found that projected

increases in drought frequency based on SPEI6 exceeded those based on SPI3,

which is attributed to the inclusion of the effect of PET in SPEI, although the

difference in aggregation period should also have contributed. Ionita and

Nagavciuc (2021) found a divergence of observed SPI12 and SPEI12 trends over

Europe for 1901-2019, with the strongest drying trends located over the

Mediterranean and Central Europe regions. For GB, they found mostly

non-significant SPEI12 trends from wetting in the north-west to drying in the

south-east (mostly due to a summer drying trend), alongside (also mostly

non-significant) wetting SPI12 trends, especially toward the north. For

1958-2014, Stagge et al. (2017) found a decreasing SPI6-based drought extent

not being reflected in SPEI6-based drought extent trends over Europe. For GB,

they found a non-significant difference between SPI6- and SPEI6-based drought

frequency trends, with both SI6 showing significant wetting in the north.

Through a detailed analysis, the present study showed substantial differences

between SPI- and SPEI-based projections for drought frequency, the

distribution of drought spatial extents (using different temporal aggregations),

the distribution of drought event durations and the seasonal contributions to

12-month deficits. The stark differences between SI in projections of all these

drought characteristics, combined with their emerging divergence in

observations documented in the literature, invites more critical consideration

before using one of these indicators in drought studies or monitoring, based on

an understanding of the likely impacts of increasing PET.
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4.6.3 The role of AED

The strong sensitivity to global warming of drought projections based on

drought indicators relying on PET has been discussed before (e.g. Seneviratne,

2012; Dewes et al., 2017; Berg and Sheffield, 2018; Manning et al., 2018; Scheff

et al., 2021), considering the following aspects. First, overly warming-sensitive

PET formulations can lead to overestimating increases in drought. This is not

only true for temperature-based methods such as Thornthwaite (Sheffield et al.,

2012), but also for the FAO56 reference crop Penman-Monteith method used in

this study and many others. Assuming a fixed stomatal resistance of the

reference crop neglects the effects of increasing CO2 on plant growth and

stomatal conductivity, which has been identified as an important source (Milly

and Dunne, 2016; Greve et al., 2019), but not the full explanation (Scheff et al.,

2021), of off-line PET overestimation in climate change studies. The impact of

the representation of influences of CO2, temperature and vapour pressure deficit

(Grossiord et al., 2020) on transpiration is likely highly relevant for the results

presented in this study, as transpiration and bare soil evaporation respectively

make up the largest and smallest fractions of total evapotranspiration in GB,

with transpiration constituting the majority of AET in the English Lowlands

(Blyth et al., 2019). Second, when looking at the variables standardised in SPI

and SPEI as proxies for the surface water balance, the assumptions are

respectively that no AET occurs, or that AET always occurs at its maximum

rate (PET), neglecting possible limitations from moisture supply. In reality, the

response of AET to increasing AED is complex, and the land-atmosphere

interactions contributing to drought development and propagation, including

the role of evapotranspiration under high AED, are active areas of ongoing

research (e.g. Miralles et al., 2019; Vicente-Serrano et al., 2020; Gampe et al.,

2021; Denissen et al., 2022; Massari et al., 2022; Zhao et al., 2022). Intuitively,

enhanced AED leads to enhanced AET until moisture availability becomes

limiting, after which the effect of AED on AET reduces. This implies a

temporally variable response of AET to AED during drought development,

evolution and recovery, dependent on moisture availability (e.g. Zhao et al.,

2022), and different responses based on the regional climate (e.g.

Vicente-Serrano et al., 2020). The sensitivity of SPEI to AED also varies

between climates (Tomas-Burguera et al., 2020). Moreover, the behaviour of

AET under drought crucially depends on land cover and plant physiology (e.g.

Teuling et al., 2010; Grossiord et al., 2020), soil structure (e.g. Massari et al.,

2022; Zhao et al., 2022), and geology (e.g. Bloomfield et al., 2019). Finally, due

to equal aggregation periods used for precipitation and PET in SPEI, it is

inherently implied that the drought development contributions of low

precipitation and high PET anomalies are influential over the same time scales,
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which is not always the case (Manning et al., 2018).

Interestingly, GB sits in the transition between humid, radiation-controlled

Northern and Central Europe and more arid, precipitation-controlled Southern

Europe (Teuling et al., 2009). Evaporation is generally more water-limited and

negatively correlated with temperature in summer toward the south and east,

and more energy-limited and positively correlated with temperature in summer

in the north and west of GB on an annual basis (Seneviratne et al., 2006; Kay

et al., 2013). This has important implications for the expected impacts of

increasing AED on future droughts across GB, as the influence of AED varies

between energy- and water-limited evaporation regimes, and the effect of AED

increases can be more complicated in transitional regions (Vicente-Serrano

et al., 2020). Indeed, Kay et al. (2013) found that observed trends in PET

between 1961 and 2012 are greater than those for AET for England and Wales,

while in energy-limited Scotland PET and AET trends are very similar. This is

in contrast to Blyth et al. (2019), who found that modelled AET increased at a

greater rate than PET in GB between 1961 and 2015, due to increases in

precipitation and the large contribution of interception to total AET. Enhanced

AED has already been shown to enhance streamflow droughts in GB, with a

stronger effect in some regions than in others (Vicente-Serrano et al., 2019;

Massari et al., 2022), as well as groundwater droughts in the major aquifer in

south-east GB (Bloomfield et al., 2019).

The importance of the range of evaporation regimes for explaining drought

propagation and drought impacts across GB has not received much attention in

existing literature, but presents a valuable direction for further research. For

example, the currently least humid areas of GB are projected to experience

large increases in SPEI-drought, increases in aridity, and on average longer and

more intense seasons where PET exceeds precipitation. The effect of extreme

SPEI-drought conditions on soil moisture and streamflow droughts in these

areas could be smaller than suggested by the magnitude of the PET

contribution due to moisture availability becoming limited. In such conditions,

vegetation may still be significantly impacted due to high AED and its

components (Schönbeck et al., 2022). Understanding potential shifts in these

evaporation regimes under climate change could help inform climate change

adaptation strategies related to land and water use. To better understand the

PET component of the projected SPEI-based drought projections for GB, we

detrended temperature (which affected the vapour pressure deficit term and the

slope of the Clausius-Clapeyron relation), after which no increases in SPEIdtr-tas

drought frequency were projected in most regions of GB. Further research into

projected changes for the different variables influencing PET (radiation,
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temperature, relative and specific humidity, wind speed) is needed to better

understand the strong contribution of PET to SPEI-based drought projections,

and to help understand possible shifts in evaporative regimes over GB.

Based on the discussion above, and depending on the drought type or impact

of interest, the SPEI-based results in this work may present a (conservative)

upper limit of future drought risk, while using the SPI (and other precipitation-

only indicators) is expected to underestimate these increases. Future changes in

other drought types may thus end up in the range between SPI- or SPEI-based

projections depending on the region (Touma et al., 2015; Lee et al., 2019). Thus,

these results highlight the importance of understanding (changes in) the role

AED plays in GB droughts and overall hydroclimatic changes under a changing

climate.

4.6.4 From atmospheric indicators to impacts

Many studies have used a range of drought impact-related data to investigate

the relationships of SI with different aggregation periods in GB and beyond

(Stagge et al., 2015a; Folland et al., 2015; Barker et al., 2016; Bachmair et al.,

2016, 2018; Haro-Monteagudo et al., 2018; Parsons et al., 2019; Gampe et al.,

2021). This is not straightforward, as impact variables and reports of past

droughts (based for instance on observed flow) are also influenced by water

fluxes driven by the land surface (e.g. evaporation limited by soil moisture) and

human actions (e.g. irrigation and water abstractions), which are not accounted

for by SPI or SPEI. While studies linking SI to impacts agree in some aspects

(e.g. longer SI aggregation periods for predicting streamflow drought in the

south east than the north west; Bachmair et al., 2016; Barker et al., 2016),

there is a lot of uncertainty left. In the UK, due to regional differences in

climatology, hydrogeology and agricultural practice, the links between SI and

various impacts are more meaningful at regional or local levels than at the

national scale (Barker et al., 2016; Parsons et al., 2019). Socio-economic and

physical vulnerability factors also influence the impacts resulting from droughts

characterised by certain SPEI or SPI values (Blauhut et al., 2016).

Additionally, previously established relationships between drought indicators

and impacts may change under a changing climate (Feng et al., 2017).

Therefore, despite established links between SI and impacts, it is difficult to

quantitatively infer changes in agricultural, ecological and hydrological drought

from drought projections based on SPI and SPEI alone. For example,

agricultural drought impacts may be expected to increase due to the projected

increase in summer drought frequency and intensity (Stagge et al., 2015a;
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Haro-Monteagudo et al., 2018; Parsons et al., 2019), which is found for both

indicators in most of GB, including in agriculturally important regions

(Fig. 4.5.5). However, as the projections based on SPI are much milder than

those based on SPEI, the magnitude of this increase depends on the importance

of increasing AED and temperature for root zone accessible soil moisture and

crop growth, as well as crop response to components of AED itself. The greater

frequency and intensity of dry years (SI12), as well as the increasing extent and

frequency of drought and extreme drought with longer aggregation periods, may

indicate greatly increased risk of drought impacts on water resources in the

southeast and east, and by extension irrigated agriculture in these regions.

Smaller projected increases in drought frequency based on SI3 may indicate

similarly smaller increases in streamflow drought in the northwest (Barker

et al., 2016; Bachmair et al., 2016).

4.6.5 Study limitations

The set of regional climate projections in UKCP18, which this study relies

upon, is not intended to represent a comprehensive, probabilistic view of

possible changes, but rather to sample a broad range of possible futures and

provide storylines suited for analysis of impacts (Murphy et al., 2018). The

UKCP18-RCM projections were produced using the same GCM and RCM

structure with perturbed parameter values, meaning that the climate model

structural uncertainty has not been sampled. Finally, as opposed to an

ensemble where only the initial conditions differ, the projections of such a

perturbed physics ensemble cannot be combined in order to obtain longer time

series for each level of global warming. This primarily limits our analysis of

multi-year droughts. For those events, the length of the time slices used is also

a limiting factor for investigating projected changes in the occurrence of such

events.

The drought indices this study uses are among the most widely used ones.

However, other indices exist that rely on precipitation or some combination of

precipitation and AED. Choosing a different drought index that includes both

moisture supply and demand, with a different degree of sensitivity to each

component, could lead to slightly different results (Vicente-Serrano et al., 2015).

Indeed, as emphasised in this study, the drought index choice itself can be a

substantial source of uncertainty, due to the use of different variables

representing different drought types (Satoh et al., 2021), but also between

different drought quantifications based on the same variable (Sutanto and

Van Lanen, 2021).
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Aside from the vegetation assumptions in the PET calculation (see Section

4.6.3), vegetation assumptions in the UKCP18-RCM projections themselves

present another potentially important limitation. In the UKCP18 ”Soil

Moisture and the Water Balance” fact sheet, Pirret et al. (2020a) write that

”the models use prescribed vegetation, which means that the model does not

represent how increasing atmospheric carbon or reduced soil moisture would

affect vegetation, or any feedbacks that this may have on the atmosphere or

land surface”. This may lead to unrealistic changes in AET under a warming

atmosphere with increasing CO2, and thereby introduce errors in the simulated

temperature and humidity, affecting PET.

Finally, using a different observation-based dataset for bias adjustment of PET

such as the recently produced Hydro-PE dataset (Robinson et al., 2022), may

also lead to quantitative differences in the results.

4.7 Conclusions

We used the regional climate model perturbed parameter ensemble from the

latest set of national climate projections for the UK, UKCP18, to quantify

projected changes in drought characteristics. For this, two related but

contrasting atmospheric-based standardised drought indices were used and their

results compared: the Standardised Precipitation Index (SPI) and the

Standardised Precipitation Evapotranspiration Index (SPEI). The SPI gives the

standardised anomaly of n-month aggregated precipitation. The SPEI is

similar, except the variable being standardised is a climatological moisture

balance given by precipitation minus potential evapotranspiration. When

regarding these indicators as standardised proxies of the surface water balance,

their implied assumptions are either that no evapotranspiration occurs (SPI) or

that evapotranspiration is never limited by moisture availability (SPEI). We

assess in detail the difference between these indices for investigating the impact

of climate change on drought frequency, extent, seasonality and duration, for

two categories of drought intensity. This is the first detailed systematic analysis

of SPI- and SPEI-based drought projections and their differences for Great

Britain.

Drought risk over Great Britain increases almost everywhere with increasing

global mean surface temperature, including extreme drought risk. We find

projected increases in drought frequency and extent with increasing global

warming levels. These changes are far more pronounced for extremely dry

conditions than for all drought conditions. The projected changes in drought
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frequency, seasonality and duration show large regional differences across GB,

with the greatest increases generally found in English regions and Wales,

notably including some of the already least humid regions toward the south

east, and little change (or even decreases) in drought in North and West

Scotland. By assessing the relationship between drought spatial extents and

their frequency in observations, reference period simulations and future

projections, we showed that the reference period simulations capture the

observed extent-frequency relationship quite well for both extreme and all

droughts, and all (extreme) drought extents are projected to increase in

frequency. Moreover, extreme droughts with extents greater than the most

widespread drought in the reference period are projected to occur more often,

depending on the warming level and especially for SPEI. Linking shorter-term

contributions to longer-term deficits is an under-utilised possibility of

(standardised) drought indicators that are applied over different time scales. By

exploiting the multi-scalar nature of the standardised drought indicators, we

found that increasing summer droughts are found to be the main contributor of

increasing frequency of increasing longer-term dry conditions. Additionally,

contrasting years, consisting of a wet winter combined with a dry summer, are

also projected to increase in occurrence. However, the combined result of

contrasting seasonal changes is a projected increase in dry years for most

regions. Finally, the distribution of drought event durations is also projected to

change. For both indicators (but especially for the SPI), the changes are far

greater by +4 ◦C than by +2 ◦C, supporting the consensus that every

additional degree translates into increasing extreme events.

The choice of atmosphere-based drought indicator can have a great impact on

the derived drought characteristics, and thus great care should be taken when

selecting a drought index for climate change studies. This study clearly showed

this for drought frequency, the distribution of drought extents, drought event

durations, and the seasonal character of annual deficits. The difference between

the six-month aggregation period based SPI and SPEI is similar in magnitude

to the UKCP18-RCM ensemble range of GB-averaged total and extreme

drought frequency, and the +2 ◦C SPEI projections better resemble the

SPI-based projections under +4 ◦C than under +2 ◦C for drought and extreme

drought frequency, spatial extent and seasonality. The spatial pattern of

simulated drought frequency is similar between the indicators, although there

are differences in the regions with the strongest projected changes. Projected

changes in the distribution of drought durations also differ between the

indicators. Droughts shorter than 6 months are projected to increase in

occurrence in most regions based on the SPI, but projected to decrease based

on the SPEI in about half of these regions. On the other end, multi-year
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droughts lasting over 3 years (based on 6-month aggregated indicators) only

occur in some of the SPEI-based projections.

With the sizeable divide between projections based on both indicators, it

becomes increasingly important to understand how atmospheric evaporative

demand and temperature affect droughts and their propagation to impacts in

GB. The large difference between SPI and SPEI in our results calls attention to

the need to understand the influence of atmospheric evaporative demand

changes on GB drought through land-atmosphere interactions, and its adequate

representation in models. In particular, further research is needed to

understand the effects of the contribution of PET to projected drought

conditions across the range of climatological evaporation regimes in GB (from

energy-limited to transitional and water-limited), and likely changes in these

regimes. Moreover, analysing the contributions of changes in radiation, relative

and specific humidity, temperature and wind speed can shed light on the PET

component itself. Different modelling approaches can help understand how

changes in atmospheric moisture demand and precipitation can affect future

droughts. This can include making use of the simulated soil moisture,

evaporation and runoff calculated in the UKCP18-RCM itself (Pirret et al.,

2020a), as well as land surface modelling and hydrological modelling approaches

which are valuable to shed light on projected changes in different components of

the hydrological system (e.g. Lane and Kay, 2021; Kay et al., 2022). More

generally, this work raises the question of how these changing drought

characteristics translate into impacts for agriculture, water resources and

ecosystems in GB. Under the current climate, according to the reviewed

literature there is little difference between SPI and SPEI in their ability to

predict different drought impacts. However, this is likely to change as SPI and

SPEI diverge due to increasing PET. Understanding how the projected

increases in atmospheric evaporative demand can be expected to affect different

drought types through land-atmosphere interactions is therefore of paramount

importance for understanding future drought risk in GB.



5

Evaluation and filtering approaches

to increase confidence in streamflow

drought projections from an

ensemble of hydrological impact

model-chains.

Synopsis

Despite continual improvement in our understanding of the

consequences of anthropogenic greenhouse gas emissions on

hydrological hazards such as droughts, decision makers are faced

with much uncertainty for the future. This uncertainty is not only

due to unknown future socio-economic developments affecting future

greenhouse gas emissions, but also due to uncertainties in the

climate response to those greenhouse gas emissions and interactions

between catchments and those climatic changes. Hydroclimatic

impact modelling chains, in which a hydrological model is driven by

(post-processed) climate model simulations, are important tools to

support adaptation efforts in essential sectors such as water supply.

Therefore, it is important to understand how the individual links in

these hydroclimatic impact modelling chains contribute to the

uncertainty in projected impacts. In this study, an ensemble of

model chains consisting of 12 UKCP18 regional climate

model(RCM) simulations (same climate model structures with

perturbed parameters) and 4 conceptual hydrological model

structures with similar complexity, each with hundreds of parameter

sets is used to simulate naturalised future streamflow drought

frequency for the Wensum, a groundwater dominated catchment in

one of the driest regions of Great Britain, for time slices representing



Chapter 5: Evaluation and filtering approaches to increase confidence in
streamflow drought projections from an ensemble of hydrological impact
model-chains. 100

two levels of global mean warming: 2 ◦C and 4 ◦C above

pre-industrial levels. The ensemble of model chains is evaluated

based on six objective functions over a dry period, the robustness of

the hydrological models’ performance under a drying climate, and

their drought frequency biases due to the hydrological model and

the driving RCM. Finally, the sources of uncertainty and the

distributions of projected drought frequency are compared before

and after rejecting ensemble members based on all these criteria. In

addition, the projections are compared to those produced using

GR6j (with one parameter set), a hydrological model used by the

company managing water for this region (Anglian Water). The

detailed evaluation managed to reduce all sources of uncertainty,

with the greatest decrease obtained for the contribution of the

hydrological model structure and parameter set. The uncertainty

due to the hydrological model structures was generally found to be

smaller than that due to their parameter sets, yet this might be

underestimated due to the relative similarity of the conceptual

model structures used. Using the ensemble members that met all

evaluation criteria, it was found that drought frequency in the

Wensum catchment is projected to increase depending on future

global warming, with far greater relative increases for more severe

droughts. This could lead to important impacts due to the

importance of the Wensum for ecology and as a water resource with

direct abstraction. Importantly, this study shows that using an

ensemble of hydrological model structures and/or parameter sets for

climate change impact modelling can yield a wider spread of

plausible future changes compared to when (as in many

applications) only one hydrological model is used.

5.1 Introduction

Hydrological impact modelling is of immense value in informing climate change

adaptation efforts, and is widely used and relied on by decision makers in

government bodies and companies. With high stakes resting on their outcomes,

it is especially relevant to understand the uncertainty in their simulations. A

typical hydrological impact modelling study is constituted by different

modelling stages, e.g. a hydrological model might be driven by a bias-adjusted

regional climate model simulation, downscaled from a global simulation forced

with a particular emissions scenario. Each link in such a hydrological impact
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modelling ‘chain’ introduces a measure of uncertainty to the resulting

projections, leading to a ‘cascade of uncertainty’ (Smith et al., 2018b).

Many studies have looked at attributing the total uncertainty of the projections

to these different sources. The driving climate model is often understood to be

the largest contributor of uncertainty in hydrological climate change impact

studies, with a smaller but non-negligible contribution from the hydrological

model (Wilby and Harris, 2006; Arnell, 2011; Gosling et al., 2011; Addor et al.,

2014; Vetter et al., 2017; Krysanova and Hattermann, 2017; Samaniego et al.,

2017). However, there is great variability in the relative importance of

uncertainty sources between regions (Hagemann et al., 2013) or individual

catchments (Arnell, 2011; Gosling et al., 2011; Addor et al., 2014; Vetter et al.,

2017; Hattermann et al., 2018; Melsen et al., 2018; Visser-Quinn et al., 2019),

seasons (Wilby, 2005; Arnell, 2011; Bae et al., 2011; Gosling et al., 2011; Addor

et al., 2014; Bosshard et al., 2013; Hattermann et al., 2018), projected changes

of precipitation, temperature and/or PET (Gosling et al., 2011; Melsen et al.,

2018), streamflow regimes (Gosling et al., 2011; Bosshard et al., 2013; Vetter

et al., 2017; Hattermann et al., 2018; De Niel et al., 2019; Visser-Quinn et al.,

2019) and even hydrological hazard characteristics of interest (Visser-Quinn

et al., 2019). Specifically, the hydrological model has previously been found to

be more influential (or even dominant) for streamflow projections focusing on

droughts or low-flows (Vansteenkiste et al., 2014; Vetter et al., 2017;

Hattermann et al., 2018; Chegwidden et al., 2019; De Niel et al., 2019;

Visser-Quinn et al., 2019), in groundwater-dominated (Visser-Quinn et al.,

2019) or glacier-dominated (Addor et al., 2014) catchments, in more

water-limited regions (Melsen et al., 2018; Chegwidden et al., 2019) (although

Hagemann et al. (2013) concluded the contrary), and in regions with large

projected increases in temperature (Melsen et al., 2018). This means that the

hydrological model structure and/or parameter set can be expected to have a

substantial influence on resulting projections of hydrological drought in

groundwater-dominated catchments in the comparatively dry area of the East

of England. Indeed, Lane et al. (2022) showed that hydrological model

parameter uncertainty was associated with substantial uncertainty in this region

compared to the rest of GB, and related this to difficulties in calibrating

catchments in this region.

Calibrating and evaluating hydrological models and hydrological impact

modelling chains comes with several key methodological considerations which

can potentially affect the uncertainty in the resulting projections. First, climate

model errors propagating through the (simulated) hydrological system can

induce errors in projections of streamflow statistics (Teutschbein and Seibert,
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2012). This is commonly addressed by post-processing climate model outputs to

reduce errors in statistics of precipitation and other variables before using them

to drive hydrological models, in a process called bias correction or bias

adjustment (see Chapter 3). However, even if bias adjustment methods are able

to almost fully remove biases in statistics of daily values, they can still leave

substantial errors in multi-day precipitation metrics (Addor and Seibert, 2014).

This is indicative of errors in the modelled temporal variability, which, after

non-linear propagation through (simulated) hydrological processes, may result

in simulated streamflow errors even if the distributions of the hydrological

model input variables would perfectly match observations. In order to evaluate

the quality of (bias-adjusted) climate model output for representing non-linear

and multi-variate hydrological processes, climate models can be evaluated based

on offline streamflow simulations (Hakala et al., 2018; Dakhlaoui and Djebbi,

2021). Hakala et al. (2018) showed that even though quantile mapping generally

improved streamflow simulation in most cases, errors in some streamflow

metrics may indeed persist, and low flows were relatively less improved than

high flows.

Second, the limited transferability of hydrological models and their parameter

values to different climatic conditions poses an important challenge to the

calibration and evaluation of hydrological models for climate change impact

studies. In particular, some previous studies indicate that an evolution toward

substantially drier climatic conditions compared to the period used for model

calibration could be particularly challenging for many lumped conceptual

rainfall-runoff models (Vaze et al., 2010; Coron et al., 2012; Motavita et al.,

2019; Bai et al., 2021). Moreover, the evolution and termination of multi-year

droughts is difficult to represent well in some hydrological models (Trotter

et al., 2022; Fowler et al., 2020), and Fowler et al. (2020) hypothesise that this

might especially lead to problems for runoff projections in low-relief catchments

with large storage capacities (which is the case for East English chalk

catchments) and hydrogeology that enables a non-linear feedback between

storage and runoff generation, such as saturation excess runoff.

Multiple studies have proposed ways to improve model calibration strategies to

help tackle the issue of uncertainty arising from non-stationarities in catchment

behaviour (and thus in optimal hydrological model parameter sets) as a result

of climate change. This includes selecting calibration data (e.g. Motavita et al.,

2019), choosing objective functions (e.g. Fowler et al., 2018) and developing

targeted novel evaluation approaches. Indeed, several recent studies have

proposed tests that hydrological models need to pass before applying them in

climate change impact studies (e.g. Krysanova et al., 2018; Fowler et al., 2020;
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Nicolle et al., 2021; Todorović et al., 2022). For example, the Robustness

Assessment Test (RAT; Nicolle et al., 2021) aims to identify dependencies of

model skill on interannual variations of climatic variables.

Third, model calibration strategies can also be informed by the specific variables

of interest (Pushpalatha et al., 2012). For example, Smith et al. (2019) used a set

of six objective functions selected to evaluate low- to high-flows for calibrating

an ensemble of hydrological models, resulting in generally skilful reconstructions

of streamflow drought for the UK.

This study brings together research on the partitioning of impact model chain

uncertainty and hydrological model (HM) evaluation strategies for impact

modelling. It quantifies the contributions of different modelling steps to the

variability in ensembles whose members pass different evaluation criteria.

Specifically, our work contributes to answering the following research questions:

1. Which modelling decisions (climate model parameterisation, hydrological

model structure and hydrological model parameters) explain most of the

uncertainty in the projected streamflow drought frequency?

2. Can the projection spread be reduced/constrained using a more stringent

model evaluation?

3. How is streamflow drought frequency expected to change under climate

change in a groundwater dominated catchment in a humid climate where

annual evaporation rates are controlled by both moisture and energy

availability?

5.2 Study area

The present study investigates drought frequency projections for the Wensum

catchment in the East of England, United Kingdom (UK). The East of England

is one of the driest regions of the UK, and water supply is facing increasing

pressures from a changing climate, stricter requirements for avoiding harm to

valuable ecological systems, as well as water demand increases (although these

can be addressed through demand management measures) (Anglian Water,

2022a). The work presented in Chapter 4 showed that this region is projected

to become more arid and face increasing meteorological drought frequency,

particularly for extreme droughts, exacerbated by increasing PET. The

relatively large contribution of PET and temperature in increasing

atmospheric-based drought frequency in the East of England raises the



Chapter 5: Evaluation and filtering approaches to increase confidence in
streamflow drought projections from an ensemble of hydrological impact
model-chains. 104
expectation that the hydrological model may contribute substantial uncertainty

to hydrological impact projections (Gosling et al., 2011; Melsen et al., 2018). In

a benchmarking study, Lane et al. (2019) found that catchments in the

south-east of England were generally challenging to model (as measured by the

NSE (Table 5.1)). Low rainfall amounts, human influences and missing

representation of groundwater processes in catchments underlain by the chalk

aquifer were all mentioned as possible explanations for this poor performance.

The Wensum catchment is underlain by a highly productive chalk aquifer. The

catchment gauged at Costessey Mill (national river flow archive (NRFA) ID:

34004) spans 570.9 km2 and is relatively flat, with altitudes between 5.3 and

96.1 mAOD. A map showing the location of the catchment and its intermediary

gauges is shown in Fig. 5.2.1. The Wensum is the main water resource for

Norwich, an urban area with a population of 220 thousand (144 thousand in the

City of Norwich; Office for National Statistics, 2022). The bulk of the surface

water abstraction took place at Costessey Mill until 2019 and subsequently

moved to the downstream Heigham intake. Wensum streamflow is also

influenced by groundwater abstraction. The Wensum catchment is of significant

ecological importance, and it is classified as a Site of Specific Scientific Interest

and as a Special Area of Conservation.

Figure 5.2.1: Map of the Wensum catchment to gauge 34004 (with its
two intermediary gauges 34014 and 34011) and its situation in the Anglian
Water region. Spatial data sources: National River Flow Archive (catchment
boundaries, gauge locations), Anglian Water Ltd. (Anglian Water region), Office
for National Statistics (GB boundary*) and Ordnance Survey (rivers*). *licensed
under the Open Government Licence v.3.0. Contains Ordnance Survey data
©Crown copyright and database right 2023.



Chapter 5: Evaluation and filtering approaches to increase confidence in
streamflow drought projections from an ensemble of hydrological impact
model-chains. 105
5.3 Data

5.3.1 Observations

Daily precipitation and temperature data were used from the HadUK-Grid

dataset (Hollis et al., 2019) for 1966 to 2017. Daily average temperature was

computed as the average of daily maximum and minimum temperatures. For

observation-based PET, the CHESS-PE dataset was used (Robinson et al.,

2020). For both the HadUK-Grid and CHESS-PE variables, the 1 km gridded

datasets were resampled by averaging to a 12 km grid matching that of the

UKCP18 regional climate projections (Section 5.3.2). Catchment averaged time

series of daily precipitation, PET and temperature were then extracted from the

resulting regridded datasets using the catchment area shape files available from

NRFA.

The significant volumes of groundwater and surface water abstraction in the

Wensum and other nearby catchments can make it more challenging to model.

Time series of groundwater and surface water abstractions for the Wensum at

34004 and the two intermediary stations, 34011 (Fakenham) and 34014

(Swanton Morley Total) were provided by Anglian Water. These were used to

produce the naturalised streamflow time series (see Section 5.5.1) which stood

in as observations in this study for deriving observation-based streamflow

drought characteristics and for calibrating and evaluating the hydrological

models (see Section 5.4).

5.3.2 Climate projections

For producing streamflow projections, input data was used from the regional

perturbed-parameter ensemble of the latest set of national climate projections

for the UK (UKCP18-RCM; Met Office Hadley Centre, 2018). The 12 ensemble

members have a spatial resolution of 12 km over the UK. The projections were

produced by the Met Office Hadley Centre using the GCM HadGEM3-GC3.05,

with perturbations in 47 different parameters, and then downscaling it with a

regional configuration of the same model with matching parameter

perturbations. As they were developed specifically for the UK, the

UKCP18-RCM projections have already been used for a range of impact

modelling studies focusing on the UK. The bias adjusted

UKCP18-RCM-derived precipitation and potential evapotranspiration datasets

produced in Chapter 3 were used here. Future projections were assessed for

22-year time slices representing two global mean warming levels (+2 ◦C and +4
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◦C), see Section 2.4.

5.4 Hydrological models

This study makes use of four models constructed with FUSE, a modular

framework for rainfall-runoff modelling (Framework for Understanding

Structural Errors; Clark et al., 2008). With FUSE, a large ensemble of

hydrological model structures can be generated by recombining modular

elements from four ‘parent structures’, which are each inspired by widely known

existing hydrological models:

1. ARVI, based on versions of the Variable Infiltration Capacity Model (VIC)

(Zhao, 1977, 1984; Wood et al., 1992; Liang et al., 1994) and borrowing

from the ARNO model (Todini, 1996).

2. PRMS, based on the Precipitation-Runoff Modelling System (Leavesley

et al., 1983, 1996).

3. SACR, based on the SACRAMENTOmodel (Burnash et al., 1973; Burnash,

1995; Koren et al., 2004).

4. TOPM, based on TOPMODEL (Beven and Kirkby, 1979; Ambroise et al.,

1996; Beven, 1997; Duan and Miller, 1997; Iorgulescu and Musy, 1997).

See Chapter 2 and Clark et al. (2008) for a more detailed explanation of the

FUSE models.

To constrain computational demands and to keep the members of our set of

hydrological model structures as diverse as possible, this study only made use

of these four parent models. These models were set up to run in lumped mode

(i.e. the catchment is not divided into hydrological sub-units) for the Wensum

catchment.

In addition, the lumped rainfall-runoff model GR6j (Perrin et al., 2003; Le Moine,

2008; Pushpalatha et al., 2011) was used to naturalize the Wensum streamflow

time series and also to produce an additional set of streamflow projections (see

Section 5.5.1 and Chapter 2). Since GR6j was included because it is used by

Anglian Water (and their consultants), parameter sets for GR6j were obtained

from Mott MacDonald through Anglian Water.
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5.5 Methods

A large ensemble of hydrological simulations for the Wensum was generated

using four hydrological model structures from the Framework for Understanding

Structural Errors (FUSE; Clark et al., 2008), each with hundreds of possible

parameter sets (Section 5.5.2), forced by each of the 12 UKCP18 RCM

projections (Met Office Hadley Centre, 2018) for 2 global warming levels, with a

time-slice approach based on the years when the centered 25-year mean reach

+2 ◦C and +4 ◦C above pre-industrial levels (see Section 2.4). PET was derived

using Penman-Monteith, and projections were bias adjusted using ISIMIP-3b

change-preserving quantile mapping (Lange (2019), see Chapter 3). The

ensemble of simulations was reduced by eliminating hydrological models and

model chains based on four evaluation criteria (Section 5.5.3). Finally, drought

frequency was derived from the simulated streamflow time series (Section 5.5.4),

and the uncertainty in the projected drought frequency changes was assessed

(Section 5.5.5).

5.5.1 Streamflow naturalisation

There is no standard way of naturalising streamflow, and little guidance is

available (Terrier et al., 2021). However, the magnitude of streamflow and

groundwater abstractions in the Wensum catchment warrants naturalisation

(Jones et al., 2004). To account for the different effects of both groundwater

and surface water abstractions and in different (upstream) subcatchments, the

reconstitution method (Terrier et al., 2021) was used, in which a hydrological

model is used to remove the abstractions (which requires the hydrological model

to be able to represent (sub-)surface water abstraction fluxes, e.g. Rameshwaran

et al., 2022). For this, the GR6j model was used, which has been calibrated for

catchments in the region managed by Anglian Water, including the Wensum.

As this model was calibrated in a semi-distributed setup with kinematic wave

routing between subcatchments, the same setup and routing scheme was used,

obtained from Anglian Water’s consultants, Mott Macdonald. To simulate the

naturalised streamflow, at each time step in the calibrated GR6j model, the

surface water abstraction of that time step is removed from the simulated

discharge, and the groundwater abstraction of that time step is removed from

the lower soil reservoir. The resulting flow series is used as the naturalised flows.
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Table 5.1: Definitions of the objective functions used for hydrological model
evaluation and selection. Subscripts: R: observational reference flows, i.e. the
naturalised flows; S: simulated flows. n is the number of time steps of the period
over which the metrics are calculated. *:flows exceeded 95% of the time

Name (abbreviation) Definition

Nash-Sutcliffe Efficiency (NSE; Nash and Sutcliffe, 1970) 1−
∑n

i=1(Si−Ri)
2∑n

i=1(Ri−R)2

NSE of the logartihmically transformed flows (logNSE) as above but for log(S) and log(R)

Kling-Gupta Efficiency

(KGE; Gupta et al., 2009; Kling et al., 2012)

1−
√
(r − 1)2 + (β − 1)2 + (γ − 1)2

with β = µS
µR

and γ = CVS
CVR

= σS/µS

σR/µR

Volume Percent Error (VPE)
∑n

i=1 Si−
∑n

i=1 Ri∑n
i=1 Ri

∗ 100%

Mean Absolute Percent Error (MAPE) 1
n

∑n
i=1

|Si−Ri|
Ri

∗ 100%

Absolute Percent Error of the Q95* (APE95) |Q95(S)−Q95(R)|
Q95(R) ∗ 100%

Spearman correlation coefficient (rs)
cov(rank(S),rank(R))

σrank(S)σrank(R)

5.5.2 Calibration approaches: ensemble generation

Two parameter set generation approaches were used and their resulting

parameter sets pooled together: (1) calibration against naturalised flows using

shuffled complex evolution (SCE; Duan et al., 1993); and (2) Monte Carlo runs

with randomly sampled parameter sets. Performance metrics and their

abbreviations used in various steps below are listed in Table 5.1.

First, an ensemble of parameters was derived for each structure using Shuffled

Complex Evolution (SCE; Duan et al., 1993), a stochastic optimisation

algorithm widely used for optimising hydrological (and other) models, thanks to

its efficiency and robustness to local optima. Code for this optimisation method

is integrated with the FUSE codebase, and as such SCE has been a frequent

choice to calibrate FUSE models in previous studies (Clark et al., 2008;

Staudinger et al., 2011; Konapala et al., 2020; Newman et al., 2021; Saavedra

et al., 2022). SCE balances exploration and exploitation of the parameter space

by letting multiple ‘subpopulations’ of points in the parameter space evolve

towards better performance in their own neighbourhoods, before mixing them

so that the information gained by each subpopulation is exchanged. Points in

subpopulations can also be replaced by a randomly generated point in the

allowed parameter space, potentially discovering promising unsampled areas of

the parameter space (reflecting the role of mutation in natural evolution). The

default objective function used in SCE implemented in the FUSE source code is

the root mean square error (RMSE) between simulated and naturalised flows.

However, as least squares optimisation without prior transformation can lead to
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poor performance for simulating drying climates (Fowler et al., 2018), FUSE

was modified to instead use the RMSE of the logarithmically transformed flows

(logRMSE) as the objective function. The log-transformation increases the

relative importance of reproducing low and medium flows compared to high

flows, which is desirable when the ultimate application is to investigate

streamflow droughts. The calibration period used is 1/10/1994 to 30/09/2012.

This period includes drier (e.g. 1996 and 2010-2012) and wetter (e.g.

2007-2008) periods, starts after the multi-year drought of 1988-1992 used for

evaluation (see Section 5.5.3), and is more than sufficiently long with 17 years

(e.g. Motavita et al., 2019). For each FUSE model structure, 5 SCE calibrations

were performed, each with a different random seed. In each case, the final

optimal set of parameters was kept, plus 24 additional parameter sets sampled

from the SCE iterations according to the following procedure:

1. Pre-select parameter set iterations passing all the following criteria for the

calibration period: logNSE > 0.75, NSE > 0.5, VPE < 15% and error in

coefficient of variation < 15%.

2. Identify groups of similar parameter sets among these pre-selected

parameter sets. This step was deemed necessary because parameter sets in

later iterations become very similar as the optimal solution is approached,

and a wider range of parameter values is desirable for quantifying

parameter uncertainty. The BIRCH (Balanced Iterative Reducing and

Clustering using Hierarchies; Zhang et al., 1997) cluster algorithm was

applied to first create a tree-based summary of the parameter sets,

resulting in a large number of clusters with highly uneven sizes. Although

selecting parameter sets through clustering of the values passed in

iteration is not standard, it has also been done by Mendoza et al. (2016)

in a different setting, using iterations of the same SCE algorithm.

3. The parameter set with the highest logNSE was then drawn from each of

the 25 largest clusters of the BIRCH data summary (everything was done

separately for each of the SCE runs and for each structure). When these

25 parameters sets include the final result of the SCE run that has already

been identified as the optimal solution (highest logNSE in the final cluster),

this procedure generates only an additional 24 parameter sets.

Second, to capture a wider range of parameter sets in the uncertainty analysis,

the SCE-derived ensemble was complemented with a fully random-generated

ensemble. For this, 100,000 values for each adjustable parameter were drawn

from an uniform distribution between plausible parameter value ranges (which

were extended in range for the Wensum compared to the default limits
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implemented; Clark et al., 2008). The FUSE structures were then run with

each of these parameter sets. From the resulting simulations, parameter sets

leading to logNSE < 0.4, NSE < 0.25 and VPE > 35% for the calibration

period were discarded outright. For one structure (PRMSE), only 29 parameter

sets remained after this step, so they were all used. For the other three

structures, the 125 best parameter sets were selected from the remaining ones

based on 5 objective functions. This was done by combining the top 25

according to each individual objective function, consecutively selecting from the

parameter sets that were not yet in the top 25 according to a previously used

objective function. This effectively increases the influence of metrics later in the

order of selection. The top 25 selections were done in the following order: 1.

NSE; 2. KGE; 3. MAPE; 4. APE95; 5. logNSE. The overall ensemble size thus

amounts to 12 x (4 x 5 x (25 + 1 ) + ( 3 x 5 x 25 + 29 )) or 11100 simulations.

5.5.3 Evaluation approaches: ensemble filtering

Four criteria (‘filters’) were used to evaluate and reduce the initial ensemble: (1)

performance scores; (2) robustness; (3) drought frequency bias in the

observation-driven flows; (4) drought frequency bias in the reference period

RCM-driven flows. Good model performance during the historical period is

valuable for improving the quality of impact modelling experiments (van

Huijgevoort et al., 2014; Krysanova et al., 2018). First, a multi-objective

evaluation was performed over the comparably dry period preceding the

calibration period (KLEMEŠ, 1986). In this first filter (‘Scores’), HM parameter

sets are rejected or accepted based on their performance for observation-driven

simulations during the period of 1 October 1988 to 30 September 1994, an

intermittent long-term drought period which includes the lowest flow measured

in the Wensum. Model performance was measured by a set of six objective

functions: logNSE, NSE, KGE, rs, MAPE and APE95 (see Table 5.1). Simple

pass/fail thresholds were used for each score separately to keep this scores-based

filter straightforward: logNSE > 0.80, NSE > 0.60, KGE > 0.75, rS > 0.85,

MAPE < 25% and APE95 < 20%.

Second, a variant of the Robustness Assessment Test developed by Nicolle et al.

(2021) was used to evaluate the applicability of each hydrological model

parameter set in a drying climate. A HM ensemble member is eliminated if the

HM shows a significantly decreased performance in drier years for any one of the

metrics in the ‘scores’. Specifically, for streamflow simulations from 1 October

1966 to 30 September 2017, the spearman rank correlation coefficient between

the scores and precipitation minus PET for each hydrological year (so the
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annual means for October - September) should not be significantly positive (for

logNSE, NSE, KGE and rs) or negative (for MAPE and APE95) (alpha = 0.05).

The final two filters are based on the absolute value of biases in drought

frequency. Third, the difference in drought frequency in observation-driven

streamflow simulations and the drought frequency in the streamflow

observations is used to evaluate the ability of the hydrological model to capture

the frequency of drought (given meteorological conditions of the real world).

Fourth, the difference in drought frequency in observation-driven streamflow

simulations and the drought frequency in UKCP18-driven streamflow

simulations for the reference period is used. This evaluates the ability of the

climate model with each of its 12 different parameterisations to simulate

meteorology that results in the right frequency of resulting streamflow drought,

after temporal propagation and aggregation through hydrological processes as

given by a hydrological model structure and parameter set. For both types of

drought frequency bias, the thresholds used to exclude a RCM-HM-parameter

combination are if its frequency bias exceeds 2% for the Q99 drought, 3% for

the Q95 drought, 4% for the Q90 drought and 5% for the Q80 drought. Finally,

all evaluation criteria are combined so that all ensemble members need to pass

all four evaluation criteria, resulting in the fully filtered ensemble.

5.5.4 Drought definition

As the choice of indicator can significantly influence results (Sutanto and

Van Lanen, 2021), it is important to choose indicators and metrics that best

reflect the motivation of a drought study. In this case, the drought definition

was driven from a water supply perspective, with a seasonally invariant fixed

threshold indicating whether or not abstraction is allowed. Thus, a fixed

threshold method was used to quantify droughts defined by four different

quantiles of the observed daily streamflow time series (1 October 1983 - 30

September 2005) used as drought thresholds: Q99, Q95, Q90, Q80, with Qn

indicating the streamflow exceeded n% of the time. Using this definition of

drought, the drought frequency was computed as the fraction of drought days in

a given time slice.

5.5.5 Uncertainty partitioning

In this work, two time slices were employed representing warming levels and

have max. 12 RCM parameterisations, max. 4 hydrological model structures,

and max. hundreds of parameter sets for each hydrological model structure,
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depending on the surviving members in each filter stage (Section 5.5.3). Each

response (defined as the difference in drought frequency between the reference

period and a warming level time slice) is thus the combined effect of the RCM

parameterisation, HM structure and the specific parameter set used for that HM

structure, and their interactions. The following model equation follows:

Yc,s,p|s = Yo,o,o + Yc,o,o + Yo,s,o + Yc,s,o + Yo,o,p|s

Let the variance components of the RCM parameters combined with internal

climate variability, HM structure and HM parameters (conditioned on a given HM

structure) be represented by C, S and P, respectively (and indicated by subscript

positions 1, 2 and 3 in the equation above). Then, for a balanced design, the total

variance V for drought frequency changes projected by a specific global warming

level could be partitioned as follows:

V = C + S + CS + P |S

The parameter contribution is noted as P |S because the number and meaning of

hydrological model parameters depend on the hydrological model structure. Two

of the filter steps described in Section 5.5.3 (RCM PPE-driven drought frequency

bias and all filters combined) can lead to missing combinations of RCM PPE

ensemble members and hydrological model structures, resulting in an unbalanced

design in which the factors are not independent. As a result, in these cases a

small part of the variance (< 10%) cannot be attributed. To avoid wrongfully

attributing this portion of the variance to one of the terms, Type I ANOVA was

applied twice for each ensemble: once with RCM PPE as the first factor in the

model, and once with the hydrological model structure as the first factor in the

model. The sum of squares contributions of the RCM PPE and hydrological

model structure main effects are then taken from the ANOVA where that factor

was first in the model. The interaction terms and residuals (= parameter set

contributions) are equal between these two ANOVA runs.

5.6 Results

5.6.1 Model chain evaluation and ensemble filtering

This section shows the evaluation of the RCM-HM modelling chain and

subsequently gives an overview of the ensemble composition after applying each

filter.
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The first evaluation is to assess the performance of the hydrological model

ensemble (structure and parameters) at reproducing the naturalised ‘observed’

streamflow and whether this performance deteriorates significantly during dry

years. Figure 5.6.1 shows the dry period performance of the hydrological model

ensemble according to the six objective functions, combined with their

robustness to drier years. The relationship between objective function values

and their correlation with dryness is different between the hydrological model

structures and parameter generation strategies, although non-robustness to

drying is found for a number of models for each objective function. The

SCE-sampled parameter sets can be recognised as they are generally more

clustered together, and tend towards the better-performing end of the ranges,

although especially for TOPM this includes a range of non-robust parameter

sets in logNSE, KGE and rs. However, the randomly generated parameter sets

also add a number of well-performing and robust parameter sets. The link

between the objective function values and its robustness is generally weak, but

varies between the individual metrics. Correlation coefficients between the

objective function and the absolute value of its rs with P-PET range from -0.65

(logNSE) to 0.15 (MAPE), and the weakest correlation was found for the

low-flow-focused metric, APE95 (0.10). The correlation coefficients for NSE,

KGE and rs were -0.20, -0.32 and -0.24 respectively. While the signs of these

correlation coefficients consistently indicates more robust models for better

objective function values, the magnitudes mostly indicate a weak relationship.

In other words, a model that performs well according to a standard objective

function is not necessarily reliable in a changing climate. For the logNSE, the

non-robust parameter sets tend to score worse than the robust ones, whereas for

the NSE and the rs spread of the scores of the non-robust parameter sets is

similar to that of the robust parameter sets. For the KGE, the parameter sets

that are not robust to drier years tend to have good KGE values, that is, KGE

is of limited value to discriminate between hydrological models that perform

well and poorly under climate change. Note that models that perform

(significantly) worse in wetter years are not eliminated, as only robustness to

drier years is deemed important here.

Figure 5.6.2 shows two sources of bias in the drought frequency simulations by

hydrological model and RCM. For each combination of RCM parameter and

hydrological model (structure and parameters), the x-coordinate is the absolute

drought frequency bias in the observation-driven simulation, attributable to the

hydrological model, while the y-coordinate is the drought frequency bias of the

reference period RCM-driven simulations relative to the observation-driven

simulation with the same hydrological model. The latter gives the streamflow

drought frequency error component attributable to the bias-adjusted RCM, as
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Figure 5.6.1: Objective functions (y axis) and their dependence on climatological
dryness (x axis) which represents robustness, for each member of the hydrological
model ensemble (driven by observations). Colours indicate the FUSE model
structure. Robustness is shown by the Spearman correlation coefficient rs
between the objective function value and P-PE of the different hydrological
years. rs = 0 is the most robust, while deviations from zero indicate a lack of
robustness. Semi-transparent ‘x’ markers indicate statistically significant drops
in performance for drier years (α = 0.05).

mediated through the hydrological processes of a specific hydrological model.

The wide hydrological model drought frequency bias spread varies with the

quantile threshold used for defining droughts, with a minimum value of minus

the observed frequency itself (when the simulated drought frequency is zero).

For the Q80, Q90 and Q95 droughts, SACR tends more towards an

overestimation of the observed drought frequency, while most substantial

underestimations are found in the ARVI and TOPM simulations. The

evaluation of RCM-driven streamflow drought frequency reveals errors in the

representation of hydrological drought for different RCM PPE members sets. In

particular, ensemble member 15 (which projected the weakest increases in SPI-

and SPEI-based drought frequency in Chapter 4) consistently overestimates

present-day streamflow drought compared to the observation-driven streamflow

drought frequency simulations, for most hydrological model structures and

parameter sets. In the rest of the ensemble, underestimation of the drought

frequency in the RCM-driven flows (compared to the observation-driven flows

simulated by the same hydrological model) is more common.

As biases in the distributions of daily precipitation and potential evaporation
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Figure 5.6.2: Comparison of drought frequency biases for all drought thresholds
(columns), highlighted by HM structure (top row) and RCM PPE ensemble
member with a reduced y axis range (bottom row). Drought frequency bias of
the observation-driven streamflow simulations relative to the observed streamflow
is plotted on the x axis. Drought frequency bias of the reference period PPE-
driven simulations relative to the observation-driven evaluation runs (with the
same hydrological model) is plotted on the y axis. The y axis on the bottom row
is limited compared to the top row to show more detail on the bulk of the points,
excluding outliers.

were successfully adjusted for different months and locations (see Chapter 3),

the RCM component of the drought frequency bias can point to errors in

aspects which were not (fully) corrected, including the temporal sequence of the

precipitation and PET time series, and the relationship between precipitation

and PET. However, the RCM contribution to the frequency bias of a given

ensemble member can also differ depending on the hydrological model used to

transform the RCM data into streamflow time series. This can be seen by

variations in the changing vertical spread of the RCM ensemble members along

the horizontal axis and among the hydrological model structures. In the second

and fourth quadrants of Fig. 5.6.2, the drought frequency error contributions of

the hydrological model and the RCM are opposite and therefore partially cancel

each other out. For our ensemble applied to the Wensum, this is the case for

many ensemble members, primarily with drought frequency underestimations

due to the RCM being partly cancelled out by over-estimations due to the HM

(fourth quadrant) especially for the more extreme droughts (Q95 and Q99). If

the drought frequency bias would be evaluated by comparing the RCM-driven

simulations directly with the observations, a number of models would be

retained where errors in the hydrological model cancel out errors in the driving

RCM data for the reference period, which could lead to biased future

projections if the error sources no longer cancelled out under a changing

climate. This means it can be important to evaluate the bias contributions of

the hydrological model and the RCM separately to reveal opposing model
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errors.

Ensemble members are eliminated based on applying different model evaluation

criteria (‘filters’). Figure 5.6.3 shows how many ensemble members remain after

applying each filter individually (performance scores, robustness to dry years,

drought-frequency of the HM when driven by observations, or when driven by

each RCM ensemble member) or applying all filters together.
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Figure 5.6.3: Overview of the number of ensemble members passing each filter
stage. For the two filters based on drought frequency bias, the top row displays
the number of passing ensemble members for each drought severity threshold
separately, and the bottom row displays the resulting filter requiring that the
bias is sufficiently small for all thresholds.

The first two filters (blue in Fig. 5.6.3) respectively show the number of

ensemble members with acceptable values (‘Scores’) which do not deteriorate

significantly in a drying climate (‘Robustness’) for all 6 performance criteria

(Table 5.1). The number of remaining parameter sets per hydrological model

again shows the added value of evaluating not only the model performance, but

also the robustness of model performance to a drying climate. In particular, for

the TOPM HM structure, most ensemble members perform significantly worse

in drier years (‘Robustness’) even though a slight majority of the ensemble

members shows good values of all 6 objective functions in the dry evaluation

period (‘Scores’). The opposite is true for the ARVI structure. For the

drought-frequency criteria, ensemble counts are given separately for each
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drought severity, as well as the number of members that meet the criteria for all

four severities. For the two drought frequency-based filters, as the

quantile-based thresholds for the more severe droughts (Q99, Q95) become

more sensitive to the time period from which they are derived, the acceptability

thresholds were chosen to be more lenient (relative to the optimal value) for

more severe drought categories. The majority of the hydrological models lead to

an unsatisfactory reproduction of the drought frequency in the naturalised

observations, despite many more ensemble members performing well over the

dry evaluation period as measured by the 6 objective functions (‘Scores’). The

breakdown of ensemble sizes after filtering for hydrological model drought

frequency biases based on the individual drought frequency thresholds show

that, for all structures, the most severe drought threshold rejected the most

parameter sets. For ARVI and TOPM ensemble members were rejected based

on multiple drought thresholds, while for SACR and PRMS most ensemble

members with good Q99-drought representation were retained (few SACR

models met the Q99 criteria in the first place). Generally, more ensemble

members are retained based on the RCM component compared to the HM

component of the drought frequency bias. Similar to the HM component, the

requirement that the Q99 drought frequency should not deviate from 1% of the

time by more than 2% of the time (i.e. Q99 or lower flows should occur between

0 and 3% of the time) eliminates the most ensemble members. The number of

ensemble members eliminated for a given RCM PPE member can differ strongly

among the hydrological model structures, although for ensemble members 15, 6

and 12 the majority of the parameter sets are ruled out for each hydrological

model structure. For RCM PPE member 15, all of the remaining simulations

are eliminated based on the other hydrological model evaluation criteria. This

ensemble member interacts particularly poorly with TOPM for representing

drought frequency, not just for Q99 but also for the less extreme drought

thresholds. RCM PPE member 10 retains more than 83% of each HM

structure’s ensemble, possibly indicating a more realistic representation of

precipitation and PET time series leading to hydrological drought. Note that

for the two drought frequency bias filters, good performance in all four drought

severity thresholds was required for consistency, i.e. to make sure that the same

ensemble of model chains was retained for projections of drought frequency for

each severity level. For other applications, a more targeted filtering focusing on

a specific threshold (e.g. requiring a good representation of Q80 droughts but

not necessarily Q99) may be prioritised.

The ensemble remaining after applying all filters (scores, robustness, and both

frequency bias sources) consists mostly of SACR simulations, with a smaller

number of TOPM ensemble members (most likely due to less robust ensemble
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members) and one ARVI parameter set forced by 6 out of 12 RCM PPE

members.

5.6.2 Drought frequency projections

This section discusses the projections of drought frequency change using the

remaining model chains before and after filtering the ensemble based on

different criteria. In particular, we discuss how the projections (best estimate

and uncertainty range) are affected by the application of the model evaluation

filters to the ensemble. Figure 5.6.4 shows the distributions of drought

frequency projections resulting from ensembles passing various filters, while

Table 5.2 shows the minimum, median and maximum drought frequency change

of the fully filtered ensemble (‘All’, gold violin plots). The lumpy shapes of the

distributions reflect similar, related projections based on the same driving RCM

PPE members or groups of similar hydrological model parameters (from the

SCE-sampling). Generally, most individual filters do not substantially change

either the ensemble median drought frequency change or the quartiles of the

distribution of outcomes. Only the filter evaluating observation-driven

hydrological model drought frequency bias tends to slightly lower the median

and quartiles of the drought frequency change projections, primarily for +4◦C

and the more severe droughts. Applying all filters combined leads to a slightly

larger reduction in the median (and quartiles) of the drought frequency change

projections, with the largest difference found in the Q99 projections by +4 ◦C,

from a median increase of 0.16 to one of 0.10 after applying all filters. Both

extreme tails of the drought frequency change projections are reduced by the

combination of multiple evaluation criteria. Of course, the degree to which the

various filters affect the number of remaining parameter sets and the range of

the projections depends on the thresholds chosen to eliminate poorly behaving

parameter sets in each filter.

Figure 5.6.5 explores further the unfiltered ensemble (filters: ‘None’, grey) and

the fully filtered ensemble (filters: ‘All’, gold) violin plots of Fig. 5.6.4 for each

hydrological model structure separately and in comparison with the GR6j-based

projections. The distributions of the drought-frequency projections by different

hydrological models mostly overlap. Nevertheless, there are some potentially

important differences, which are generally larger (in relative terms) for the more

extreme drought thresholds and for the higher warming scenario. Among the

FUSE ensembles, the ARVI models generally project the greatest, and the TOPM

models the smallest, increases in drought frequency. Notably, GR6j (which was

used to produce the naturalised flows serving as the observational reference)
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Figure 5.6.4: Violin plots of the change in drought frequency in the different
filtered ensembles, for two global mean warming levels and four drought frequency
thresholds. The median is given by the dashed lines, quartiles by the dotted
lines, and the violin plots are capped at the range of the data shown, without
extrapolating. The violin plots are scaled to have the same width to improve
readability, while the number of simulations making up each violin is shown
between brackets in the legend.

Table 5.2: Minimum, median and maximum of the changes projected by the fully
filtered ensemble of model chains (FUSE hydrological models only) for drought
frequency (expressed as a fraction of the days in drought) by two global mean
warming levels, for streamflow droughts of four severity levels.

+2 ◦C +4 ◦C

Drought severity min median max min median max

Q80 -0.051 0.063 0.23 0.13 0.20 0.44

Q90 -0.048 0.050 0.20 0.10 0.17 0.42

Q95 -0.040 0.039 0.18 0.069 0.14 0.39

Q99 -0.025 0.027 0.13 0.032 0.10 0.33
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Figure 5.6.5: Violin plots per hydrological model structure for the two warming
levels, for the initial full ensemble (top row) and the most strictly filtered ensemble
(bottom row). The median is given by the dashed lines, quartiles by the dotted
lines, and the violin plots are capped at the range of the data shown, without
extrapolating. The violin plots are scaled to have the same width to improve
readability, while the number of simulations making up each violin is shown
between brackets in the legend.

generally projects relatively small changes, compared to the full FUSE ensemble,

in the frequency of the most extreme drought threshold.

In Fig. 5.6.6, the projected drought frequency based on the fully filtered ensemble

is shown in more detail, for the reference period and both warming scenarios.

They are ranked by Q99 drought frequency so that indicators depicting HM

structure and RCM PPE member can show any systematic dependence of drought

frequency on those modelling chain choices. Due to their (by definition) more

rare occurrence in the reference period, the relative increases in the frequency

of more extreme streamflow droughts are far greater than the relative changes

in the more moderate droughts 5.6.6. They are also associated with a greater

spread in the projections of relative changes. For example, for +2◦C, the relative

changes in the Q99 drought frequencies range between a 64% decrease and a

6200% increase, and the relative changes in the Q95% drought frequency range

between a 61% decrease and an 541% increase.

Figure 5.6.6 further demonstrates the value of using multiple HM structures or

parameter sets for projections of hydrological climate change impacts. While

the simulations with GR6j are clustered at the low end of the drought frequency

simulations for the reference period, they are more spread out through the

ensemble for the future time slices (see also Figs. 6.3.4-6.3.7 in Chapter 6), with
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Figure 5.6.6: Projected drought frequency (fraction of days experiencing drought)
in the fully filtered ensemble of streamflow drought projections, plus the GR6j-
based projections. The projections are ranked from low to high simulated Q99
drought frequency for each scenario. The RCM PPE member and hydrological
model structure used for each projection is given by the colour coded stripes
below the projections bar plot.

the notable exception of the most severe drought threshold, for which GR6j

gives weaker projected increases in drought frequency compared to the rest of

the ensemble and compared to other simulations based on the same driving

RCM PPE members (11 and 13). For the one surviving ARVI parameterset, all

6 remaining simulations are towards the high end of the projected drought

drought frequencies and of the projections driven by a given RCM PPE

member, especially for +4 ◦C and consistently for the different drought

thresholds. The simulations with SACR and TOPM, both of which have

multiple remaining parameter sets and driving RCM PPE members, both span
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about the full range of drought frequency projections (see also Figs. 6.3.4-6.3.7

in Chapter 6). In the Q99 ranking, RCM PPE number 11 projects the strongest

drought frequency levels for all time slices. Finally, the reference period

simulations on the top row reveal that, while the FUSE ensemble was evaluated

for the hydrological model structure and RCM parameter contributions

separately, in the combined modelling chain some of the reference drought

frequencies deviate substantially from their theoretical frequencies due to the

combination of remaining errors in both sources of the same sign.

5.6.3 Quantifying contributions to projection uncertainty

Figure 5.6.7 shows the quantified contributions of the different uncertainty

sources to the total variance for unfiltered and filtered ensembles, drought

thresholds and both global mean warming levels. Note that the blue bars

represent not only the uncertainty from the RCM parameters but also internal

variability, as these two sources cannot be separated using the available RCM

ensemble. The combination of the regional climate model parameter set and

internal variability explains the largest part of the variance for each time slice,

drought threshold and filtering stage. The variability in the projected drought

frequency changes increases drastically between +2 ◦C and +4 ◦C. The

combination of hydrological model structure and parameter set generally

explains a substantial portion of the total variance in the projected drought

frequency changes. Importantly, their relative influence is greater for more

extreme drought thresholds and for the stronger warming level. The interaction

term of hydrological model structure and the RCM parameter set tends to be

small. When eliminating ensemble members with unsatisfactory performance

based on the ‘scores’ filter, their robustness, drought frequency bias sources or

all combined, the total variance and the magnitude of the contributions of the

individual uncertainty sources generally change, but some filters have a larger

effect than others (e.g. the robustness filter has little influence on the variance

or individual contributions despite removing a large number of ensemble

members). For all drought thresholds, the scores filter led to the greatest

reduction in the hydrological model parameter uncertainty contributions,

whereas the robustness filter barely affected the relative uncertainty

contributions. Eliminating hydrological models with unacceptable drought

frequency biases in the observation-driven runs also led to a reduction in the

contribution of the hydrological model choices, except for a possible increase in

the model structure contribution for the Q99 and Q95 drought frequencies.

Evaluating the RCM-driven drought frequency bias led to reductions in the

total variance for both warming levels, and in the relative contributions of the
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Figure 5.6.7: Quantitative variance partitioning for all ensembles of projected
drought frequency changes. Left: absolute variance of the change in drought
frequency (day/day). Right: relative contributions of each uncertainty source
(i.e. left plots divided by total variance). Each pair of bars gives results for +2◦C
(dark) or +4◦C (pale).

RCM parameters for Q99 and possibly Q95 in the highest warming level. For

the ‘All’ filter, there is a small portion of the variance that cannot be attributed

to a single source or interaction due to dependencies introduced by the

unbalanced dataset. The ‘All’ filter, which leaves only ensemble members that

did not get eliminated based on any of the four filters, strongly shrinks the

relative contribution of the hydrological model components, especially the

contribution from HM parameter uncertainties.

5.7 Discussion

5.7.1 Drought projections

This section compares our results for the fixed threshold-based drought frequency

projections to previous work on drought and low-flow projections for the East of

England and in GB. Previous studies have projected a GB-wide decrease in low

flows (Kay et al., 2018, 2021b; Lane and Kay, 2021) or increases in hydrological

drought event occurrence (Arnell et al., 2021), peak intensity or severity (Rudd



Chapter 5: Evaluation and filtering approaches to increase confidence in
streamflow drought projections from an ensemble of hydrological impact
model-chains. 124
et al., 2019), with the Anglian region and the south east among the areas with

the largest projected drying (Rudd et al., 2019; Kay et al., 2021b; Lane and

Kay, 2021; Arnell et al., 2021). Rudd et al. (2019) also found that the Anglian

region and the south east were characterised by a greater range of projected

drought event peak intensity, total severity and duration relative to the rest of

GB. Moreover, Arnell et al. (2021) showed that the projections based on the global

HadGEM3.05 PPE resulted in stronger increases in drought frequency and far

more uncertainty compared to the ensemble members sampled from CMIP5, for

most GB regions including the East of England. Since they used fixed time slices

to represent future changes (instead of the warming-based time slices used in this

study, see Section 2.4), this is likely due to a combination of stronger warming

in the HadGEM3.05 PPE and a stronger drought response for a given warming

level. The UKCP18 regional projections used in this study were produced using

12 of these 15 global HadGEM3.05 PPE members, and thus can be expected

to simulate similarly strong drying relative to the CMIP5 models. Although

their study used only one hydrological model while here multiple hydrological

models are used to produce a range of drought frequency projections from each

driving RCM PPE member, the behaviour of the driving RCM PPE means the

hydrological drought frequency projections produced in this study can also be

expected to be relatively dry (though still plausible) compared to if e.g. CMIP5

was used to drive the hydrological models.

The present study focused on one groundwater-dominated catchment in the

Anglian region, the Wensum, and found that, after rigorous evaluation, the

ensemble of RCM and hydrological model combinations projects drought

frequency changes of -0.025 to +0.13 by +2 ◦C and +0.032 to +0.33 by +4 ◦C

for the Q99 drought threshold. Larger absolute (but smaller relative) changes in

drought frequency were found for more moderate drought thresholds. The

uncertainty of the magnitude of these changes is large, but this study shows

that it can be partially constrained by multi-criteria evaluation of the

hydrological models and the RCM-driven streamflow simulations. The large

range in plausible projections of future drought frequency (see Figs. 5.6.4 and

5.6.6), especially for the Q99 droughts, highlights the need for robust adaptation

resilient to a range of possible (drier) futures – although multi-objective model

chain filtering reduced this range substantially, especially discarding the most

extreme models due to lack of skill in one or more areas. Finally, the relatively

small increases in drought frequency projected with the GR6j model structure

compared to the FUSE models is notable. This could be specific to the single

parameter set used for GR6j – possibly, a different parameter set might lead to

different changes. Another possible contributing factor might be the different

treatment of evaporation between GR6j and (some of) the FUSE models, given
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that large increases in PET are projected (in SACR and ARVI, evaporation can

take place from the lower soil layer, which is not possible in GR6j; and in the

FUSE models evaporation is limited by water contents of the soil stores, while

in GR6j evaporation is first controlled by concurrent precipitation (representing

interception) and then by the content of the production reservoir). However,

further research would be needed to understand the causes of the weaker drying

projected by GR6j, for example looking at the realism of internal stores and

whether these could represent more extreme droughts than the reference period

(Fowler et al., 2020, , see also Chapter 7), and to sample GR6j parameter

uncertainty (which could be substantial).

5.7.2 Model chain uncertainty quantification: context from the

literature

The consistently larger total uncertainty under +4 ◦C compared to the +2 ◦C

scenario is expected and in agreement with previous studies (e.g. Wilby, 2005;

Bosshard et al., 2013; Vetter et al., 2017). While for each time slice the

contribution from hydrological model decisions was non-negligible, the

combination of climate model uncertainty and internal variability contributed

the largest portion of the total uncertainty. Internal variability has previously

been shown to make up a potentially substantial source of uncertainty in

hydrological impact modelling studies (Vidal et al., 2016; Chawla and

Mujumdar, 2018; Chegwidden et al., 2019). The influence of internal variability

on projected changes is also expected to be more important for near-future time

slices, relative to the strength of the forced climate change (Hawkins and

Sutton, 2009; Gao et al., 2020). As such, our finding that the choice of driving

RCM ensemble member explains a larger majority of the variance for the lower

warming level than for the higher warming level is likely associated with this

relatively larger contribution of internal variability rather than due to the

GCM-RCM parameter set alone.

In this study, the importance of the hydrological model was found to be

generally greater for changes in more extreme droughts. However, for a very

different catchment, Bosshard et al. (2013) found that over the full streamflow

range, the relationship between contributions of uncertainty sources and

streamflow quantiles is non-monotonic, depending on the underlying

hydrological processes linked to streamflow quantile ranges. The larger

contribution of hydrological model structure and parameter uncertainty for the

+4◦C scenario is in agreement with previous work showing that the low flow

changes become more dependent on the hydrological model under stronger
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warming scenarios (Bosshard et al., 2013) and further in the future (Bae et al.,

2011; Addor et al., 2014; Vidal et al., 2016).

In the present study, the uncertainty contribution from the hydrological model

parameter set was generally larger than that from the hydrological model

structure, but was also more substantially reduced after filtering the ensemble.

The contribution of the hydrological model parameter choice to the resulting

uncertainty is influenced by the methods used for generating the parameter sets

and defining which parameter sets behave satisfactorily. In agreement with our

results, the few studies which attempted to study separately the uncertainty

sources of the hydrological model structure and the parameter set found that

both decisions contributed to the spread in resulting projections (Wilby and

Harris, 2006; Bastola et al., 2011; Vansteenkiste et al., 2014; Mendoza et al.,

2016), although in the setup of De Niel et al. (2019) the choice of parameter set

made little difference. Although our results could suggest sampling hydrological

model parameter uncertainty might be more important but also easier to reduce

than using different hydrological models, generalisations based on one

catchment or streamflow metric should be treated with great care (Mendoza

et al., 2016). Moreover, the FUSE models used in this study are relatively

similar in structure compared to the wider spectrum of existing hydrological

models and land surface models – the FUSE models are all lumped conceptual

rainfall-runoff models with architectures of comparable complexity following a

common framework, which for example doesn’t include an explicit

representation of vegetation. As such, the contribution found here of the

hydrological model structure may be conservative compared to an ensemble of

more diverse models (Vansteenkiste et al., 2014). It is worth noting however

that even among these fairly similar model structures, large differences in their

ability to simulate low flows exist, as illustrated by the much larger number of

SACR than PRMS models (144 vs 0) that passed all the tests.

Finally, the interaction terms between the hydrological model structure and the

RCM parameter set in our study are consistently small. However, the two- and

three-way interactions involving the hydrological parameter sets were not

separated from the main parameter effect in this study. Given the substantial

contributions of interaction terms found for some catchments in previous

studies (Bosshard et al., 2013; Addor et al., 2014; Vetter et al., 2017; Chawla

and Mujumdar, 2018), it is likely that the bulk parameter contribution reported

here includes interactions between parameter sets (for a given model structure)

and the driving RCM PPE member.
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5.7.3 Constraining model chain uncertainty sources

This study illustrated that hydrological impact model chain evaluation is an

essential tool for constraining uncertainty of projected changes in drought

frequency under a changing climate. After requiring that all models have (1)

good performance in six objective functions for a dry historical period, (2) are

robust in these six objective functions, and have acceptable (3) hydrological

model and (4) climate model contributions to the drought frequency bias in the

reference period simulations, the contribution of the hydrological model

ensemble to the spread in drought frequency change projections becomes minor,

even for the highest global mean warming level and for the most severe drought

frequency. The reduction in the uncertainty contribution of the hydrological

model structure and parameter sets is relatively greater compared to that of the

combination of internal variability and climate model parameter sets. This is

partly expected due to the fundamentally different approach in dealing with

biases in the consecutive modelling stages: while the simulations of atmospheric

variables from the regional climate models were bias adjusted (Chapter 3), the

biases in streamflow simulations were not corrected but rather served as a basis

for ensemble member elimination. The regional climate models also already

resulted from an extensive selection process (Section 2.3, Murphy et al. (2018)).

Moreover, the filter approach is unlikely to strongly constrain the uncertainty

contribution of natural variability. For the TOPM and PRMS structures,

different model chains were eliminated based on different evaluation criteria.

For the SACR structure, the Q99 drought frequency bias due to the

hydrological model component was the most stringent requirement: most model

chains passing this evaluation criterion also performed well on all other tests

and when driven by 8 out of 12 driving UKCP18 RCM PPE members.

Similarly, for ARVI, the single parameter set with an acceptable hydrological

model component of the drought frequency bias at all four thresholds also

passes the scores and robustness filters, and produces satisfactory drought

frequency when forced by half of the RCM PPE members. Furthermore, this

study demonstrated that both the hydrological model performance and its

robustness to drier (or wetter, depending on projected changes) years need to

be evaluated and can serve as a basis to exclude ensemble members. While for

the purpose of this study it was considered that model chains failing one or

more of the evaluation criteria should not be used, and show their exclusion

reduces uncertainty in drought frequency projections (van Huijgevoort et al.,

2014), it is possible that some remaining models still contain important errors

or that some eliminated models would have added valuable information to the

range of projections.



Chapter 5: Evaluation and filtering approaches to increase confidence in
streamflow drought projections from an ensemble of hydrological impact
model-chains. 128
However, investigating the process representation reasons behind model failure

points and to the ranges of drought frequency projections was beyond the scope

of this study. Previous work has identified baseflow processes (Vansteenkiste

et al., 2014; Zheng et al., 2021), evapotranspiration (Vidal et al., 2016) and,

where relevant, snow processes (Vidal et al., 2016) as crucial model components

leading to differences in projections of low-flows and drought by different

hydrological models. Many model chains were rejected in this study due to

biases in their simulated Q99 streamflow frequency, a criterion which likely

(implicitly) rejected those hydrological models with poor baseflow simulation

and RCMs whose meteorological time series, after temporal aggregation, do not

lead to the right storage conditions. As this statistic applies to the tail of a

distribution of relatively strongly autocorrelated daily streamflow values,

deviations from the observed Q99 drought frequency are also more dependent

on natural climate variability (which is why the threshold for satisfactorily

performing model chains was chosen to be relatively forgiving). The FUSE

structure SACR is the FUSE parent structure with the most complex baseflow

reservoir representation, consisting of a tension reservoir and two parallel

free-flowing reservoirs as opposed to a single state variable (see also Section

2.5.2). This might have been beneficial for simulating streamflow over the

baseflow-dominated Wensum catchment, however, several (more different)

parameter sets also remained for the simpler TOPM structure (and one for

ARVI for some RCM PPE members). The importance of representing

evaporation from the lower soil layer is unclear: neither of PRMS and TOPM

represent this, and the former was entirely eliminated while the latter was not.

To identify the importance of individual model components (such as the

architecture of the upper and lower storage reservoirs) for simulating droughts

in the Wensum and other catchments, future research could use FUSE to

perform controlled experiments where only one of the model components is

varied (see also Chapter 7). Moreover, other studies have proposed promising

approaches to evaluate and select hydrological models based explicitly on

realistic internal model fluxes and states (e.g. Fowler et al., 2020; Saavedra

et al., 2022). Finally, although Dakhlaoui et al. (2017) concluded that the

hydrological model makes little difference for the evaluation of climate

simulations for a range of streamflow metrics, our work shows that using

different hydrological models forced with the same bias-adjusted UKCP18-RCM

PPE-member can lead to differences in streamflow drought frequency bias, due

to the propagation of remaining errors in the time series of precipitation and

PET through different simulated hydrological processes.
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5.7.4 Study limitations and potential developments to address

them

For evaluating model robustness, streamflow simulation skill was compared

between years based on the overall precipitation minus potential

evapotranspiration of those years. However, for a relatively long-memory

catchment such as the Wensum, the performance of a non-robust model might

vary with the atmospheric dryness aggregated over more than one year, which is

neglected in our approach. Future applications of the robustness assessment

test could consider adapting the length of the aggregation period for the

hydrometeorological variable which is being compared to a performance variable

to the responsiveness of the catchment to that variable.

To constrain the ensemble of streamflow projections, a threshold-based cutoff was

used to either keep or eliminate each ensemble member based on each criterion.

This method is intentionally kept simple, but has the limitation that there is no

consideration of the model performance beyond a pass/fail classification, and so

this information is lost. Along similar lines, our simple multi-objective evaluation

criterion of simply passing all threshold-based tests does not further take into

account the strengths and weaknesses of different ensemble members. Future

work could modify the approach to treat differently those ensemble members that

only marginally fail on one criterion from those with substantial shortcomings

across multiple criteria.

In our analysis of the contributions of different links in the hydrological model

chain to the variance of projected changes, some but not all sources of

uncertainty were comprehensively considered. First, climate model parameter

uncertainty was sampled by using a perturbed-physics ensemble, but did not

sample climate model structural uncertainty as only one climate model was

used (HadGEM3-GC3.05) (see also Section 5.7.1). Second, as discussed in

Section 5.7.2, the influence of internal variability was not quantitatively

separated from the influence of the RCM parameter, and instead only looked at

their combined effect in the ‘RCMpar + IV’ term. Third, for other steps in the

impact modelling chain only one method was used, and thus the associated

uncertainty was not sampled. In particular, only one post-processing or

bias-adjustment method was used (ISIMIP3-BA), as well as only one

representation of potential evapotranspiration (Penman-Monteith for FAO56

reference crop). The bias adjustment step is not expected to be a dominant

source of uncertainty, although its uncertainty contribution may be significant

(Addor et al., 2014). Studies looking at uncertainty from different PET

formulations used in hydrological climate change impact modelling chains found
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it can be a significant source of uncertainty (Kay and Davies, 2008; Bae et al.,

2011; Seiller and Anctil, 2016; Thompson et al., 2014). Despite not

investigating the influence of these other methodological choices, this study

provides improved insight into the variability stemming from hydrological

model structure and parameter sets compared to the RCM parameter set, and

how this is affected by constraining the ensemble based on multiple criteria.

This study suffers from the usual drawbacks of offline hydrological impact

modelling studies where there is no dynamic feedback between the hydrological

model and the climate model providing meteorological inputs. Assumptions

related to land-atmosphere interactions form another limitation of this study.

Namely, the stomatal resistance coefficient used to compute PET in this study

was not adjusted for CO2 fertilising effects or physiological responses to high

temperatures or vapour pressure deficit. Future work could including the effect

of increasing atmospheric CO2 concentrations in the PET calculation and this

may reduce the projected increase of drought frequency, especially for the

higher warming level (Kay et al., 2018).

Finally it is important to stress that the simulations and drought frequency

analyses produced in this study are based on naturalised flows, in order to avoid

making assumptions about future water use and to work with the limitations of

process representation in the FUSE models. However, changes in ground- and

surface-water abstraction, such as due to population increase or water saving

measures, are also expected to have a major influence on future drought risk.

5.8 Conclusions

Model evaluation approaches were investigated to improve confidence in

projected streamflow drought changes for the Wensum catchment in the east of

England. To this end, the UKCP18 RCM data were used to drive an ensemble

of parameterisations for the four parent hydrological models of the modular

modelling framework FUSE.

With increasing global warming, a strong increase in streamflow drought

frequency is projected for the Wensum. Increases in the most severe drought

class considered, defined by the flow exceeded 99% of the time in the

observations, are responsible for a dominant part of the increases, especially for

the +4◦C scenario. The variability from the RCM PPE plus internal variability

is responsible for the largest portion of uncertainty in the projections by +2◦C,

and remains important or even dominant by +4◦C. The hydrological model
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structure, parameter and interactions are a larger source of uncertainty for more

extreme droughts, and their combined contribution is not negligible in either

scenario or for any drought severity class.

The ensemble of projections was constrained based on a set of 6 objective

functions applied to measure model performance specifically during dry years,

on their robustness to a drying climate and on the representation of streamflow

drought frequency by the hydrological model and driving RCM. The ensemble

resulting from filtering by all of these criteria projects a reduced range of

plausible drought frequency changes. Filtering by 6 objective function values

eliminated outlying projected changes of both signs, and substantially decreased

the contribution of the hydrological model parameter sets to the total variance

of the projections. Filtering on the robustness of these objective functions for a

drying climate eliminated a larger number of ensemble members, while leaving

the proportional contributions to the variance of future projections relatively

unaffected. Evaluating the quality of the drought frequency representation due

to the hydrological model changed the distribution shape of the drought

frequency projections and changed the relative variance contribution of the

hydrological model choices, primarily reducing the parameter set contribution.

Finally, the combinations of RCM and hydrological model were evaluated for

their ability to represent streamflow drought frequency, i.e. realistic sequences

of precipitation and PET inputs that result in streamflow drought through

non-linear hydrological propagation of moisture deficits. This revealed likely

shortcomings in some individual ensemble members for accurately representing

streamflow drought, in some cases only by some hydrological models.

Importantly, separately evaluating the quality of the drought frequency

representation by the hydrological model and the regional climate model (as

temporally aggregated into streamflow by a particular hydrological model)

prevented the inclusion of model chains in which one of these error sources

(partly) cancel out the other.

For future studies and applications using similar hydrological impact model

chains, this study recommends a rigorous ensemble evaluation approach

considering multiple aspects of streamflow simulation and projection quality.

Despite recent progress, more research is needed to understand which process

representations (model components) are the main reasons behind differences

between projections by different hydrological models, and how this knowledge

can help cope with uncertainty in projections of hydrological hazards. Previous

work has identified snow accumulation/snowmelt, evaporation and baseflow

processes as important for determining hydrological model uncertainty

contributions. Modular modelling framework such as FUSE present
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opportunities to systematically quantify the effects of e.g. different evaporation

or saturated layer and baseflow representations on the range of low flow or

drought frequency projections.



6

Quantifying streamflow drought

durations and their projected

changes

Synopsis

Drought duration is one of the most important characteristics of

streamflow drought and as such is often quantified in drought

research. In this chapter, alternative approaches are explored for

better understanding the temporal structure (alongside the total

occurrence of drought days), and applied to the rigorously-filtered

ensemble of streamflow projections for the River Wensum resulting

from Chapter 5. The analysis shows that both a lengthening of

drought events and an increase in the number of events contribute

to the projected increase in drought frequency, although lengthening

is relatively more important for the more moderate drought

threshold considered. Furthermore, the contributions of droughts

with different fixed categories of duration are assessed. While this

study uses a fixed threshold on a daily time scale for defining

drought conditions, the proposed approach can also be applied to

other drought indicators (including with other time scales).

6.1 Introduction

The drought duration is one of the main hydrological drought characteristics and

is commonly the focus of research (e.g. Van Loon and Laaha, 2015; Rudd et al.,

2017; Cammalleri et al., 2020; Baran-Gurgul, 2022; Gebrechorkos et al., 2022).

The duration of an event has significant relevance for drought impacts and their

management. For example, given the same frequency of drought days, a single
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long sustained drought presents a different challenge than if the same drought

frequency would be made up of multiple short and intermittent droughts. For

example, Wu et al. (2022) showed that dissolved organic carbon (an important

measure of water quality) in rivers is strongly correlated with drought duration,

and might depend more strongly on event duration than severity. In a changing

climate, it is therefore relevant to not only have information on projected changes

in drought frequency, but also on projected changes in the temporal structure of

droughts.

Different approaches exist for describing the duration distribution of droughts

(given a certain total number of drought days). In previous work looking at this

characteristic, drought duration has mainly been defined as the length of a

consecutive period of drought conditions (Yevjevich, 1967), based on monthly or

daily time scales (Sutanto and Van Lanen, 2021). Studies using the

Standardised Streamflow Index (SSI) as an indicator for streamflow drought

tend to define duration on a monthly time scale since SSI is typically calculated

on monthly flow data (e.g. Barker et al., 2016; Wang et al., 2020), whereas

previous studies using variable (e.g. Van Lanen et al., 2013; Van Loon et al.,

2022) or fixed (e.g. Zelenhasić and Salvai, 1987; Fleig et al., 2006) flow

threshold approaches have computed drought duration on either a monthly or

daily basis. Streamflow drought duration and its changes have been described

in the literature by using different statistics, often looking at the mean duration

(e.g. van Huijgevoort et al., 2014; Wanders and Wada, 2015; Tijdeman et al.,

2018; Konapala and Mishra, 2019; Rudd et al., 2019; Sutanto and Van Lanen,

2021; Gebrechorkos et al., 2022; Van Loon et al., 2022), but also considering the

longest duration (e.g. Barker et al., 2016; Baran-Gurgul, 2022) and/or the

distribution and variability of drought durations (e.g. Van Lanen et al., 2013;

Gebrechorkos et al., 2022). A targeted closer investigation of the drought

duration distribution can yield additional interesting insights. For example,

Sutanto and Van Lanen (2021) showed that, for large parts of Europe, the

majority of streamflow droughts have a duration of under 30 days (based on a

variable threshold method with daily resolution).

Hydrometeorological extremes related to either too much or too little water

(and multi-hazards involving both, e.g. Matanó et al., 2022) can have both

enormous socio-economic and ecological impacts. While there are large

differences in the processes, impacts and spatiotemporal scales involved with

droughts compared to precipitation extremes or floods (Van Loon and Laaha,

2015), it can be enriching for drought research to draw parallels and connect

with methods and concepts from research on floods and precipitation extremes

(e.g. Van Loon and Van Lanen, 2012; Van Loon et al., 2016b; Brunner and
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Stahl, 2023). For example, in a study illustrating the severe unevenness of

precipitation distributions globally, Pendergrass and Knutti (2018) calculated

the number of wettest days during which half of the annual precipitation falls.

Although the distribution of drought durations in the Wensum is far less

uneven, the present study takes inspiration from their analysis, replacing

precipitation intensity with drought duration to investigate for the first time the

relative contribution of the most persistent streamflow droughts to the total

streamflow drought frequency.

This study follows on the work presented in Chapter 5, and has the following

objectives:

1. To develop useful indicators of the distribution of drought durations and of

how drought days are dispersed over time.

2. To explore the relative contribution of the longest individual drought events

to the overall number of drought days.

3. To explore the influence of the hydrological model structure on these

metrics.

4. To better understand the contributions to the projected increase in drought

frequency for the Wensum simulated in Chapter 5.

6.2 Methods and Data

6.2.1 Streamflow drought simulations

This chapter uses the filtered ensemble of UKCP18 RCM-driven streamflow

simulations from Chapter 5.

6.2.2 Drought duration quantification

As in Chapter 5, droughts are defined using the fixed threshold approach based

on four different quantiles (Q99, Q95, Q90, Q80) of the naturalised flows, see

Section 5.5.4).

Drought event duration is defined as the length of a period of consecutive

drought days. In some cases, droughts can have minor interruptions of only one

or a few days where streamflow values lie above the threshold, leading to

consecutive dependent droughts which can be considered as part of the same
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event for practical purposes (Zelenhasić and Salvai, 1987). Therefore, for

droughts with an inter-event time shorter than a critical inter-event time

(Zelenhasić and Salvai, 1987), we consider them as the same event and pool

their durations together. Sensitivity analyses by Fleig et al. (2006) and

Tallaksen et al. (1997) testing critical inter-event time values between zero and

infinity in multiple catchments showed little change to the mean drought

duration if this critical inter-event time is increased beyond 10 days. Although

they recommend a value of 5 days, here, we apply a critical inter-event time of

10 days, as in Van Loon and Van Lanen (2012) and Loon and Van Lanen

(2013). As in Zelenhasić and Salvai (1987) but unlike Tallaksen et al. (1997),

the inter-event time is not added to the drought duration, so that the sum of

drought durations does not become inflated compared to the drought frequency

analysed in Chapter 5. Individual minor droughts are not neglected (Zelenhasić

and Salvai, 1987; Tallaksen et al., 1997; Fleig et al., 2006), as this would also

lead to a mismatch between the total sum of drought durations and the drought

frequency (i.e. total number of drought days) in Chapter 5, so the contributions

from droughts with any duration are investigated.

6.3 Results

6.3.1 Developing metrics of temporal clustering and expected

duration of drought conditions

Figure 6.3.1 shows the distribution of durations of individual streamflow

drought events for 1983-2005, ranked from longest to shortest events, using the

four different drought severity thresholds. The brighter colours shows the

longest drought events that together make up at least half of the total number

of drought days (i.e. the frequency multiplied by the length of the time series),

while the muted colours show the shortest drought events making up the other

half. We class (arbitrarily, but inspired by Pendergrass and Knutti, 2018) the

first group as the ’long duration’ events, and the minimum duration of these

events is annotated on Fig. 6.3.1. The proportion of events with durations

exceeding this minimum long duration is larger for more severe drought

thresholds. As expected, the number of events is smaller for more severe

drought thresholds, and for Q95 and Q99 there are fewer events than the

number of years in the analysed time slice, i.e. there are fewer than one event

per year on average. Because the Wensum streamflow has an average seasonal

cycle with miminum flows in summer, recharge in autumn and maximum flows

in winter and a fixed threshold is used, the moderate droughts can be assumed
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Figure 6.3.1: Distribution of drought durations for the naturalised flows
(1/10/1983 - 30/9/2005). The colours indicate the half of the drought days made
up by the longest droughts (brighter colours) vs. the half of the drought frequency
made up by the shortest droughts (muted colours). The shortest drought that
lies in the longer-duration group is annotated with its length in days.

to coincide mostly with summer seasons.

As a measure of expected drought duration, the ‘minimum long duration’ is

defined as the length of the shortest drought in the category of longest events that

together make up at least half of the total drought number of drought days (i.e.

the rightmost brightly coloured bars in Fig. 6.3.1). This is the smallest duration

for which, on a given drought day, there is at least a 50% chance of being in a

drought lasting at least this long. Equivalently, if each drought day is assigned

the value of the duration of the event to which it belongs, the minimum long

duration is the median of those values (within rounding error). For example, at

least half of the Q80 total drought frequency is covered by droughts longer than

102 days (almost 3.5 months), which make up less than a fifth of the events.

For the Q99 drought, only three separate drought events were found (consisting

of consecutive drought days interrupted by fewer than 10 days with streamflow

greater than Q99), the longest of which lasted longer than the others combined

with a duration of 47 days. The number of droughts shorter (muted colours) and

longer (bright colours) than the minimum long duration will also be considered

further.

6.3.2 Projected changes in drought duration and temporal

clustering of drought days

Having defined our metric for drought duration in the previous section, we can

now apply it to the future projections. Figure 6.3.2 shows the ‘minimum long

duration’ for the projections using the fully filtered FUSE-ensemble plus the

GR6j-based projections, plotted against the total duration for each of the three

time slices. The total drought duration (i.e. drought days) divided by the total

days in the time slice would give the drought frequency. For a given total

drought duration value, there is a large range in the minimum long drought
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Figure 6.3.2: The minimum duration of the longest droughts that make up
at least 50% of the total drought duration (y axis) plotted against the total
drought duration (x axis), for the simulations using the fully filtered ensemble of
projections plus the GR6j-based projections. Markers give the first character of
the name of the hydrological model structures (ARVI, SACR, TOPM and GR6j).
Colours and sub-plots indicate global mean warming levels (yellow: 1983-2005;
orange: +2 ◦C; red: +4 ◦C) and drought severity thresholds, respectively.

duration. This means that different ensemble members projecting the same

drought day frequency simulate these drought days as more or less aggregated

in time, i.e. in fewer longer events or in more shorter events. This is the case for

all time slices, although the spread of potential outcomes increases slightly with

global warming level. As the total number of drought days per time slice

increases with global mean warming level, the minimum long duration generally

also lengthens, indicating an increased risk of long drought events occurring.

The increase in minimum long drought duration is more pronounced for less

severe drought thresholds. This can likely be linked to prolonged seasonal

summer low flows.

The temporal aggregation of the projected drought frequency is further

investigated in Fig. 6.3.3, where for each ensemble member the number of

individual events longer and shorter than the ‘minimum long duration’ is

plotted against the value of the minimum long drought duration. The

increasing number of both shorter and longer drought events, alongside the

increasing minimum long duration, indicates that the projected drought



Chapter 6: Quantifying streamflow drought durations and their projected
changes 139

0 30 60 90 120 150 180
50.0

37.5

25.0

12.5

0.0

2.5

5.0

7.5

10.0

12.5

# 
sh

or
te

r d
ro

ug
ht

s 
 #

 lo
ng

er
 d

ro
ug

ht
s  

   

Q99 drought

0 30 60 90 120 150 180
50.0

37.5

25.0

12.5

0.0

2.5

5.0

7.5

10.0

12.5
Q95 drought

0 30 60 90 120 150 180
Minimum long duration (days)

75.0

50.0

25.0

0.0

5.0

10.0

15.0

# 
sh

or
te

r d
ro

ug
ht

s 
 #

 lo
ng

er
 d

ro
ug

ht
s  

   

Q90 drought

0 60 120 180
Minimum long duration (days)

75.0

50.0

25.0

0.0

5.0

10.0

15.0
Q80 drought

Figure 6.3.3: The number of drought events longer (positive black y axis) and
shorter (negative grey y axis) than the minimum duration of the longest droughts
that make up at least 50% of the total drought duration, i.e. the number of
shortest and longest events contributing to half of the total drought duration.
Markers give the first character of the name of the hydrological model structures
(ARVI, SACR, TOPM and GR6j). Colours and sub-plots indicate global mean
warming levels (yellow: 1983-2005; orange: +2 ◦C; red: +4 ◦C) and drought
severity thresholds, respectively. Two outliers for Q99 and one for Q95 lie outside
the axis ranges.

frequency is driven by a combination of a higher number of droughts and

lengthening of the drought events. For the more severe drought thresholds (Q95

and especially Q99), the increasing number of events seems to play a greater

role than the lengthening of the events, which plays a greater role for Q80. This

can be expected: with longer Q80-based droughts, more of these events can be

expected to reach Q99-drought levels at some point, thereby increasing the

number of Q99 events. For Q80 (and Q90 to a lesser degree), the relative

increase projected in the number of droughts longer than the minimum long

drought duration is smaller than the relative increase in the number of shorter

droughts, indicating the distribution becoming more symmetrical as these

moderate-severity droughts lengthen with global warming.



Chapter 6: Quantifying streamflow drought durations and their projected
changes 140

Looking at the hydrological model structures, there is a stratification in the

number of drought events, which is clearer for the number of shorter droughts

than the number of longer droughts. For the reference period, TOPM simulates

fewer drought events than SACR, with the ARVI simulations falling in between,

especially for the shorter droughts, and the GR6j-simulations tend toward fewer

and shorter droughts. Under the +2 ◦C and +4 ◦C global warming levels, the

number of drought events simulated by ARVI (driven by 6 out of 12

UKCP18-RCM PPE members) increases more than for the other model

structures, although the events are not necessarily shorter (especially for +4
◦C), thereby resulting in a higher total number of drought days (see also

Fig. 5.6.5). In the +2 ◦C scenario and for the severe drought thresholds in the

+4 ◦C scenario, the TOPM-ensemble generally simulates fewer, but longer

droughts than SACR (and ARVI for +2 ◦C). GR6j mostly falls between TOPM

and SACR for Q90 and Q80, but simulates fewer and shorter severe droughts

(Q99 and Q95).

Up to this point, the projected changes in the drought durations and temporal

clustering of droughts were investigated without focusing on the occurrence of

droughts with specific durations. However, assessing changes in droughts longer

than a set period of time can also be informative. In Figures 6.3.4 to 6.3.7, the

drought frequencies shown in 5.6.6 are split into the contributions of drought

events of different durations, for the three warming scenarios and four different

drought thresholds. The ensemble of model chains is ranked by the total

drought duration (and thus by the drought frequency) for each severity level,

and the hydrological structure and climate model parameter set are given by

the double colour-coded x-axis. For each combination of UKCP18-RCM PPE

ensemble member, hydrological model structure and hydrological model

parameter set, the combined height of the stacked bars shows the total number

of drought days (black) and frequency of drought days (grey) within each time

slice. The colours in the bar chart display how many of these drought days are

grouped into runs of different lengths, i.e. the contribution of droughts with

different durations to the total drought duration or frequency.

Some model chains give very similar projections, as seen by the horizontal lines

formed by (almost) equal-height bar plots. These generally occur for model chains

using the SACR model structure combined with the same UKCP18-RCM PPE

member, and reflect the similarity of the SACR hydrological model parameter

sets leading to very similar drought projections. Sudden jumps in the bar heights

reflecting different durations, even for similar total durations, can be related

on one hand to different hydrological models tending toward more persistent

or more numerous droughts, and on the other hand to the internal variability
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Figure 6.3.4: Projected Q80 drought event durations in the fully filtered ensemble
of streamflow drought projections, plus the GR6j-based projections. The stacked
bar plot colours indicate the duration of the drought events to which that
proportion of drought days belongs: shorter than 30 days, 30 to 90 days, 90
to 180 days or over 180 days. The projections are ranked from low to high
simulated total Q80 drought duration for each scenario. The RCM PPE member
and hydrological model structure used for each projection are given by the colour
coded stripes below the projections bar plot. The figure heights are scaled so
that the y-axes are visually comparable. The grey secondary labels of the y-axis
ticks show the frequency-equivalent of the total drought duration value, i.e. the
total drought duration divided by 22 * 360 days.

and climate model parameter uncertainty reflected by the UKCP18-RCM PPE

member, where durations of individual drought events within a given time slice

vary significantly. Two initial observations can be made looking at the two ends of

the model chain ranking. First, the GR6j-simulations are concentrated toward the

left of these figures (projecting lower total drought frequency). This is the case for

the reference period, and for more severe drought thresholds also for the future
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Figure 6.3.5: As Fig. 6.3.4 but for Q90 droughts.

time slices. The implications of this are discussed further below. Second, the

‘cliffs’ found towards the right of these figures show model chains which project

the highest drought frequencies, deviating more substantially from most of the

ensemble of projections and the next-in-rank. These cliffs are most obvious for

the +4 ◦C-scenario, and notably involve UKCP18-RCM PPE member 11 driving

SACR (with a parameter set leading to drier projections), TOPM and ARVI

(with its only remaining parameter set). These model chains passed all filter

steps in Chapter 5, and provide valuable information about the range of possible

future drought scenarios.

In the reference period for Q90, Q95 and Q99, only one ensemble member

(RCM PPE 9 + TOPM) simulates a streamflow drought longer than 6 months

(one yellow bar in the top panel of each figure), whereas a wider range of

ensemble members do so for Q80 droughts (mostly with SACR, though all
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Figure 6.3.6: As Fig. 6.3.4 but for Q95 droughts.

hydrological model structures simulate some droughts of this length). For the

more moderate drought thresholds, the increase in drought frequency is driven

by an increasing contribution of long sustained dry periods (over 3 and 6

months), while the contribution of shorter droughts is steady or decreases. For

Q99, there is an important increasing contribution of droughts sustained for

30-90 days (< 30 days) under progressively increasing global warming levels,

combined with increases in droughts longer than 3 months for some ensemble

members by +2 ◦C and for almost all ensemble members by +4 ◦C. For the

high +4 ◦C warming scenario, streamflow droughts sustained for longer than 6

months are projected to occur in almost all model chains using the Q80

threshold, and even occur for the Q99 threshold in about one quarter of the

ensemble, driven by UKCP18-RCM PPE members 7 and 8 (only with TOPM),

or 1, 9, 10 and 11 (with ARVI, SACR or TOPM). These long-lasting streamflow

droughts are found far less in the +2◦C scenario, with minority contributions in
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Figure 6.3.7: As Fig. 6.3.4 but for Q99 droughts.

about half of the Q80 ensemble members and occurrences in only a few

ensemble members for the more extreme thresholds (UKCP18-RCM PPE

members 6 and 12 with TOPM). Periods with stream flow below the Q95 or

Q99 that last for at least 3 months (green or yellow in these figures) are quite

commonly simulated even with only +2◦C of warming.

Depending on the hydrological model and the meteorological forcing from the

driving PPE, similar levels of total drought durations can occur but that are

more distributed or more aggregated in time (i.e. larger contributions from

shorter or longer droughts), as was also reflected in the range in minimum long

drought duration for ensemble members with similar drought frequencies

(Fig. 6.3.2). Interestingly, the model chains with GR6j consistently

underestimate the total number of drought days in the reference period,

whereas the rest of the ensemble (which has been filtered to require an

acceptably small bias in drought frequency for each hydrological model and
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regional climate model combination) simulates higher drought frequency levels,

closer to the theoretically expected numbers of drought days matching the

drought frequencies of 0.2, 0.1, 0.05 and 0.01 (but still mostly underestimating

moderate droughts). Whereas the rest of the ensemble was selected specifically

to have a low drought frequency bias (relative to GR6j-derived naturalised

flows) from both the hydrological model when driven by observational data and

the combination of regional climate model and hydrological model, the

GR6j-driven projections were not, and used the same hydrological model as was

used for the naturalised ‘observed’ flows from which the four quantile-based

drought thresholds were derived. The low reference period drought frequency

simulated by GR6j could possibly point to problems in the UKCP18-RCM

ensemble, but not necessarily so: as shown in Fig. 5.6.2, the drought frequency

bias in RCM-driven streamflow simulations can vary significantly with the

hydrological model used. For the +2 ◦C and +4 ◦C global warming levels, the

GR6j simulations are more spread throughout the ensemble of hydrological

model chains, although for Q99 (and less so for Q95) they are still mostly

clustered at the low end of the range (except for the simulations forced by

UKCP18-RCM PPE members 11 and 13).

6.4 Discussion

6.4.1 Projected changes for the Wensum: comparison to the

literature

The filtered ensemble simulates events with a wide range of durations,

depending on hydrological model and regional climate model. The occurrence of

Q99 droughts lasting at least 3 months, which for the reference period are

present in only a minority of the ensemble members, greatly increases under +4
◦C of warming above pre-industrial levels, and even contributes over half of the

total number of drought days in ensemble members with stronger projected

increases in Q99 drought frequency. The ensemble also simulates very notable

increases in what is defined here as the ‘minimum long duration’ (i.e. the

minimum duration of the longest droughts that make up 50% of the total

drought days, or equivalently, there is at least a 50% chance of a drought day

being part of a drought of this duration), with e.g. 68 days (ensemble median;

full ensemble range: 22 to 163 days) under +4 ◦C of warming for the Q99

drought conditions compared with 30 days (full ensemble range: 5 to 265) in

the UKCP18 RCM-driven simulation of present-day conditions 6.3.2.

The projected changes in the temporal aggregation of streamflow drought days
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for the Wensum has not been assessed in previous studies. Although Rudd

et al. (2019) did not find a projected lengthening of drought event durations for

the Anglian region (using an alternative, monthly drought definition), the

uncertainty range of the simulated drought durations was projected to increase,

and a potential lengthening of drought events was found for the southern

English regions. The present study found clear lengthening of projected

streamflow drought events under climate change for the Wensum basin, for

different seasonally fixed thresholds using a daily resolution. Because seasonally

fixed streamflow thresholds were used for identifying drought days, the

simulated droughts (i.e. periods with low flow) generally occur outside the

recharge season. However, the seasonal timing of these events might also shift:

Lane and Kay (2021) found projected delays in the annual 7-day minimum

flows across GB, which were significant for the Wensum for some UKCP18

RCM PPE members.

6.4.2 Quantification of drought and its temporal structure

In the work presented here and in Chapter 5, the fixed threshold method is used

to identify droughts. This choice was made to reflect the seasonally invariant

nature of the environmental flow limits (or ‘Hands-Off Flow’) below which UK

water companies are not allowed to abstract (e.g. Anglian Water, 2022b).

Although recent decades saw a paradigm shift towards quantifying droughts as

anomalies relative to seasonally varying thresholds, these may be further

removed from impacts, and practitioners tend to rely on fixed thresholds to

trigger drought responses (Stahl et al., 2020) (although seasonally variable

thresholds are also used in practice, e.g. Anglian Water (2022b)). The results

for projected changes in the distribution of drought durations presented here for

the Wensum would likely be different if a different drought indicator were

chosen, for example deficits relative to a seasonally variable threshold (Sutanto

and Van Lanen, 2021). However, the proposed approach for assessing the

distribution of streamflow drought duration and how it is projected to change

can be applied to droughts identified using any indicator, as long as the

indicator can make a sharp distinction between drought and non-drought status

for a streamflow time series.

By comparing the total drought duration (which is equivalent to the drought

frequency (Chapter 5) multiplied by the time slice length) to the minimum long-

event duration, this study revealed substantial variability across the ensemble in

the temporal connectedness of a given simulated number of drought days. This

could be expected to lead to differences in drought impacts and management
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implications, although research is needed to establish links between the temporal

structure of drought events (given the same long-term drought frequency) and

their impacts. With increasing global warming, the ‘minimum long duration’

generally also lengthens. This means the length of the drought events that will

be experienced in at least 50% of the drought days is projected to increase,

which is much more interpretable than the often-used mean value of the duration.

Furthermore, we showed that the increase in the frequency of more severe (Q95

and Q99) drought days can be attributed relatively more to an increasing number

of events than to a lengthening of events, although increasing frequencies for all

drought severity levels were due to a combination of both factors.

6.5 Conclusion

Drought duration is an important characteristic with relevance to drought

impacts and management. Here, different quantification approaches were

proposed to gain further insights into the expected duration of droughts and the

temporal structure of a given frequency of drought days. This analysis revealed

novel insights for the Wensum case study catchment. The projected increasing

frequency of (fixed threshold-based) droughts of different severities (see Chapter

5) can be attributed to both an increase in the number of events and the

lengthening of drought events. For the more moderate droughts, lengthening of

drought events was more important, while for the most severe drought

threshold, the increasing number of events had an important contribution to the

increasing number of drought days, alongside lengthening of the drought events.

Furthermore, the contributions of streamflow droughts of different set durations

to the total number of drought days was also analysed and a remarkable

contrast was found between the outcomes from GR6j with a single parameter

set and those from the FUSE-based ensemble of model structures and

parameter sets. The proposed approach for analysing the temporal

connectedness of a given drought day frequency and the distribution of drought

durations could be applied to streamflow droughts identified based on different

indicators (e.g. variable versus fixed threshold).
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Conclusions and future research

7.1 Summary

This thesis investigated projected climate change impacts on droughts and

explored the sources of uncertainty involved, including modelling choices and

drought indicator choices.

First, the UKCP18-RCM simulations of precipitation, temperature and

potential evapotranspiration used in this work were evaluated and bias

adjusted. This resulted in a substantial improvement in most statistics

considered, although biases remained in metrics related to the temporal

structure of precipitation time series. The bias-adjusted simulations were used

to derive projected changes in atmospheric-based drought characteristics using

the SPI and SPEI, two complementary drought indicators. This work showed

regionally varying projected increases in drought frequency and extent, which

were greater for the more extreme drought category. It also showed projected

changes in the distribution of drought durations, which are region- and

indicator-dependent but generally include a lengthening of expected drought

durations, and for SPEI include a possible increase in multi-year droughts

across the RCM ensemble. Moreover, in many GB regions, projected increases

in annual-scale SPI and SPEI droughts were driven by projected increasing

hydrological summer deficits. Importantly, the projected changes depend

strongly on the drought indicator choice, as increases in drought conditions

were far greater for SPEI-based projections than SPI-based projections, leading

to significant uncertainty in the projections depending on the inclusion or

exclusion of PET. Therefore, this work emphasised the importance of improving

our understanding of the role of atmospheric moisture demand and evaporation

in the propagation of droughts across the diverse range of climatic regimes and

hydrogeology found in GB.

Going further, the 12-member ensemble of bias adjusted UKCP-18 projections
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was combined with an ensemble of hydrological models to project changes in

drought for the Wensum, an East England catchment with great importance as

a water resource as well as a site of ecological interest. The ensemble of

streamflow simulations was evaluated and filtered based on multiple skill and

robustness metrics, which enabled us to constrain (i.e. reduce the uncertainty

in) the projected changes in streamflow drought frequency at different severity

levels (based on a fixed rather than seasonally-varying drought threshold). The

resulting ensemble agreed well on projected increases of streamflow drought

frequency, again with far greater increases projected in the frequency of the

most extreme category of drought conditions considered. However, there was

still a large spread in the magnitude of projected changes, primarily from the

combined contribution of internal variability and climate model parameter

uncertainty. Finally, the filtered ensemble of streamflow projections was used to

explore changes in the temporal structure of these projected drought

frequencies. To this end, a novel approach to assess the distribution of drought

durations was developed based on an analysis of drought duration distributions

in the naturalised historic flows. This revealed that both an increase in the

number of drought events and the lengthening of the most often experienced

drought events contributed to the projected increase in drought frequency.

7.2 Recommendations

The influence of methodological choices for the simulation, quantification and

analysis of droughts was a major focus of this thesis, and as such, several

recommendations can be made for both researchers and practitioners.

1. Significant biases were found in UKCP18-RCM simulations of

precipitation, temperature and derived potential evapotranspiration.

These biases were especially large for precipitation. Because projected

changes were found to differ between the lower and higher parts of the

distributions, it is recommended to use a bias adjustment method that

accounts for different changes along the precipitation and temperature

distributions. This seems especially important for applications with a

focus on extremes. Following from this work, it is recommended to avoid

using the change factor approach if a good representation of

meteorological extremes is important, and to preferably make use of the

climate simulations themselves.

2. The choice of (atmospheric-based) drought indicator can have a decisive

influence on the resulting conclusions regarding projections of future
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drought. Researchers (and other data analysts) should, depending on data

availability, resources, spatio-temporal resolution and relevant impact

driver information, select the drought quantification method best suited

to the underlying goal pertaining to impact modelling or process

understanding. In particular, given the large role of atmospheric

evaporative demand in how climate change influences droughts, take into

account that drought projections based on metrics calculated from

precipitation alone would likely underestimate projected changes in the

frequency and intensity in many impact-related drought variables,

whereas SPEI might overestimate future impacts.

3. If sufficient time and resources are available, hydrological modellers working

on drought projections should consider using more than one hydrological

model structure and parameter set, so that they can sample from a wider

range of plausible modelled futures. A targeted evaluation of (calibrated)

hydrological models based on their performance under a changing climate

is necessary for impact modelling studies, as good performance under the

reference climate does not necessarily imply good performance under, for

example, a drier climate. In general, a rigorous ensemble evaluation tailored

to the hydrological hazards of interest can be undertaken to constrain and

improve confidence in an ensemble of hydroclimatic climate change impact

projections.

4. As duration can be an important drought characteristic for impacts and

management of drought, and this thesis has shown that the distribution of

drought durations can change in multi-faceted ways, the concluding

recommendations are to (a) consider assessing changes to specific relevant

aspects of the temporal distribution of droughts, and (b) use metrics that

capture more features than simply the mean event duration. The

‘minimum long drought duration’ was suggested here as an alternative

metric to provide complementary insights into projected changes of

drought frequency. Practitioners can consider potential implications of

different changes in the length versus the number of droughts contributing

to increasing drought frequency depending on their purposes.
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7.3 Further remarks

7.3.1 Implications of the implementation of vegetation in the

UKCP18-RCM models

The JULES land surface model which provided the land surface component in

HadGEM-GC3.05 does not simulate vegetation interactively, and instead makes

use of a time-varying prescribed vegetation distribution (Murphy et al., 2018).

According to (Pirret et al., 2020b), this prescribed vegetation does not represent

increases in LAI and stomatal closure (with their counteracting effects on

transpiration) due to increasing CO2 levels. The prescribed changes in

vegetation composition are based on the land use scenarios developed by (Hurtt

et al., 2011), implemented as changes in C3- and C4-grass cover compared to

broadleaf and needleleaf tree and shrub cover, with constant proportions of

plant functional types within both vegetation cover categories (Murphy et al.,

2018). There is thus no feedback mechanism in this model configuration

through which changes in climate affect vegetation cover and physiological

responses, which in turn influences climatic changes.

In reality, vegetation structure and physiology both play an important role in

determining land-atmosphere energy and moisture fluxes, and therefore (spatial

patterns of) temperature (e.g. Alo and Anagnostou, 2017; Arora et al., 2020) as

well as precipitation (e.g. Alo and Anagnostou, 2017; Skinner et al., 2017; Cui

et al., 2022). Increasing atmospheric CO2 concentrations lead to increased

water use efficiency and thus lower transpiration by plants due to decreased

stomatal conductance (e.g. Field et al., 1995), which is counteracted or

tempered by increases in transpiration due to increasing leaf area (e.g. Mankin

et al., 2017). The net effect of plant physiological responses to changes in CO2

is uncertain and varies depending on the region, vegetation type and climate

(variability) (e.g. Mankin et al., 2017, 2019; Liu et al., 2020, ; see also Section

4.6.3). Moreover, in addition to the influence of direct anthropogenic land use

changes, observed and expected future changes in vegetation cover (Franklin

et al., 2016) can further influence regional climatic changes. Of course,

vegetation also influences climate change through carbon storage and the

uptake and release of CO2. However, this aspect of vegetation-climate

interactions is not further discussed here, because the HadGEM-GC3.05

configuration used to produce the UKCP18-G/RCM simulations did not feature

an interactive carbon cycle, and instead the carbon cycle uncertainty was

represented by a range of CO2 concentration scenarios based on those used in

the UKCP18 probabilistic projections (Murphy et al., 2018).
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Shifts in vegetation properties taking into account these vegetation-CO2 and

vegetation-climate interactions may thus differ from the prescribed vegetation

scenario, and therefore lead to differences in the resulting climate projections

and derived impact projections, such as streamflow and drought projections for

the Wensum. The net effects of the lack of dynamic representation of vegetation

on low flow simulations depends on projected changes in vegetation structure,

the balance of transpiration changes due to the (opposing) plant physiological

responses to CO2, and vegetation-climate feedback effects emerging from plant

physiological responses to climatic changes influenced by vegetation. For future

modelling studies, it would be beneficial to include dynamic vegetation in order to

better estimate the regional effects of vegetation-climate interactions (Yu et al.,

2016).

7.3.2 Bias adjustment

In this work, the climate model simulations were statistically bias-adjusted

before they were used for analysis of projected meteorological droughts and

driving an ensemble of hydrological models. The use of bias correction is

motivated by the aim to improve the usability of the resulting projections,

through reducing error in the simulated drought-related variables. This rests on

the assumption that, even though the climate models are an imperfect

representation of the physical, biological and chemical processes of the climate

system and can therefore produce biased simulations, the representation of the

climate system is nevertheless of sufficient quality to provide enormously

valuable information about potential future developments of this very complex

system when forced by different scenarios. Previous studies have shown that

bias adjusting climate model output can significantly improve the resulting

projections of derived hydrological impact indicators (e.g. Teutschbein and

Seibert, 2012; Hakala et al., 2018; Pastén-Zapata et al., 2020). However, no

statistical bias adjustment technique is able to correct all error arising from

imperfections in complex physics-based models. Consequentially, challenges for

bias adjustment include the robust correction of multi-variate relations

(Zscheischler et al., 2019) and the temporal structure of simulated variables

(Addor and Seibert, 2014). In recent years, novel approaches have been

developed to account for the correction (or avoiding deterioration) of, among

others, multivariate statistics (e.g. Cannon, 2016) and temporal structures (e.g.

Nguyen et al., 2016). There is still discussion concerning the (case

study-specific) added value of more complex bias adjustment methods (e.g.

François et al., 2020; Tootoonchi et al., 2022), and evidently none of these

techniques correct the underlying climate model errors giving rise to the
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statistical discrepancies between simulations and observations which are being

corrected. Additionally, impact modellers can also bias adjust the climate

model-driven simulated impact variables (e.g. streamflow), which is not usually

done at present. This would put the (final) statistical correction step closer to

the research questions at hand, and may alleviate the effect of propagating

(remaining) biases between (bias adjusted) climate model simulation and

impact variable of interest. However, this should not replace critical model

evaluation, calibration and selection. Further research is needed to assess the

potential benefits and pitfalls of impact model bias adjustment approaches.

7.3.3 Naturalised flows

The hydrological modelling work in this thesis was based on naturalised flow

time series. This does not fully represent the reality of the Wensum catchment,

which is strongly influenced by human influences such as groundwater and

surface water abstraction. Basing the projections on naturalised flows was

nevertheless identified as an appropriate approach for several reasons. First,

given the large influence of water demand on future projections of drought

water scarcity, the impact of any water demand assumption was expected to

have a substantial influence on the results of the work. The use of naturalised

flows neglects the influence of water demand on the hydrological system, rather

than assuming a specific constant or changing water demand profile. The

substantial uncertainty surrounding future development of water demand

depends on socio-economic factors and technological developments, and

developing appropriate demand development scenarios was considered outside

the scope of this work. Rather, the focus was put on the uncertainty due to

model representations of physical processes in the hydroclimatic system, which

is the main value of this chapter for informing decision-making. Second, the set

of hydrological models used in this work contains simplified representations of

physical processes in the hydrological systems, but would require modifications

in order to adequately represent the influence of (changing) water demand.

Calibrating the FUSE models to non-naturalised flows would lead to an

undesirable compensation effect, where the values of parameters describing a

(simplified) physical system would also have to account for the effect of human

water abstractions. While this approach may still lead to acceptable objective

function values, it is very unlikely that the resulting parameter sets would have

been suitable for application under a changing climate. However, the influence

of (changes in) water demand and management actions is important, and

definitely deserves closer consideration in future (interdisciplinary) hydrological

impact projection studies.
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7.4 Potential directions for future research

This thesis contributed to a better understanding of projected changes in

drought characteristics over GB, associated uncertainty sources related to

different methodological, modelling and analysis decisions, and the quality of

the UKCP18 projections, but many (new and old) questions remain at the end

of this work. Below, some outstanding directions for potential future research

are outlined.

To start back in the atmosphere, one potential avenue for future work could be

to establish links between the atmospheric-based and hydrological drought

projections found in this study and the larger-scale atmospheric drivers giving

rise to these conditions. This could potentially help understand the nature of

the substantial climate model uncertainty found for both meteorological,

climatic water balance-based and hydrological droughts (see e.g. Figures 4.5.1

and 5.6.7), as well as help improve streamflow drought forecasting if linked to

shorter-term weather forecasts. The responses of thermodynamically controlled

variables to climate change are typically more robust than indirect changes in

dynamic processes (Shepherd, 2014). Previous studies have established

regionally varying relationships between 30 fixed weather types and

meteorological drought risk for the UK (Richardson et al., 2018), and gave an

overview of biases and projected changes in the occurrence of these weather

types in the UKCP18 projections (Pope et al., 2022). In Fig. C.0.1, a

preliminary exploratory analysis is shown of the relative occurrence of drought

in months with each of these weather types (for all 30 plus the 8 ‘summary’

weather types), for the first UKCP18 RCM ensemble member. For many

weather types, the relative occurrence of drought conditions changes between

the time slices representing different warming levels, and for some of the 30

weather types there are noticeable differences between SPI and SPEI in this

(e.g. WT7, WT27). Future work could look at the changes in weather types

plus changes in the (concurrent or lagged) relationship between these weather

types and (atmospheric, soil moisture or hydrological) drought variables of

interest, possibly after aggregating temporally over a moving window or

seasonally, and split by GB regions (see e.g. Richardson et al., 2018; Pope et al.,

2022), as well as the implications of these biases for impact studies relying on

these climate projections (e.g. Addor et al., 2016). Isolating components of

projected changes by thermodynamics or dynamical processes in the projected

drought changes may help contextualise, understand and reduce the associated

uncertainty.

The findings in Chapter 4 emphasise the importance of understanding how
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increasing temperature and atmospheric evaporative demand impact drought

risk across GB. Further work on drought propagation processes across the range

of hydrogeological properties and climatic regimes of GB would be valuable to

better understand how climate change can be expected to impact water

resources and other drought-affected sectors in GB. For example, an

outstanding research question with high relevance for drought forecasting and

water management in GB is how the relevant response time scales of

hydrological drought development might change under a changing climate with

higher potential evapotranspiration rates. Another key research area not

explicitly addressed in the present study is the potential changes in vegetation

controls on the propagation of meteorological deficits to streamflow and

groundwater droughts, such as the plant physiological effects of rising CO2

concentrations and of increasingly high levels of vapour pressure deficit on

transpiration fluxes (Vicente-Serrano et al., 2022). In future modelling studies

addressing these questions, the effects of climatic changes could be considered in

tandem with the effects of (historic, planned or hypothetical) human-caused

land use changes on the surface water balance. Moreover, observation-based

studies are invaluable for understanding drought processes (e.g. Bloomfield

et al., 2019), and can help verify and improve models and modelling approaches

relied on by decision makers. Crucially, given the urgency of adaptation efforts,

translation into practical improvements to the (modelling) tools and guidance

relied on by decision makers should be prioritised (for example, by investigating

the implications of improved process understanding of drought propagation

changes under increasing AED for parameter uncertainty in hydrological models

relied on by practitioners, or by assessing how potential propagation response

time changes affect water resource systems).

In this work, only the four FUSE parent models were used, and significant

differences between these structures were found in Chapters 5 and 6, including

for evaluating RCM-driven streamflow drought frequency simulations and the

temporal structure of simulated drought days as quantified through drought

duration statistics. A next step could dig deeper into understanding the reasons

behind these differences by exchanging individual model structural components

in a controlled way, thereby fully exploiting the potential of FUSE. Examining

not only the resulting statistics but also hydrological model state variables and

fluxes could further illuminate the causes of differences in model behaviours

(e.g. Fowler et al., 2020; Saavedra et al., 2022). Given the strong projected rise

in PET, the sensitivity of projected changes in streamflow (and groundwater)

droughts to the adequate representation of its effect in hydrological models, as

well as the formulation of potential evapotranspiration (e.g. related to

assumptions about vegetation responses to increased CO2 concentrations and
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warming Kay et al., 2018), deserves specific attention. FUSE has already

proven an interesting tool in this work and other studies (e.g. Saavedra et al.,

2022). However, investing in its software development and documentation

(including a publicly shared system of FUSE model naming conventions) would

have the potential to significantly benefit the hydrological modelling community

in academia and in practice. One possible option could be to write a wrapper

for FUSE in higher-level languages such as Python or R, which are generally

more widely known by likely potential users than FORTRAN (in which FUSE

is written).

In Chapter 5 streamflow drought projections were made for only one catchment,

chosen due to its importance as one of Anglian Water’s water resources with

direct river abstraction. Future work could expand the ensemble modelling and

evaluation approach to other catchments, including catchments feeding into

reservoirs (e.g. the Nene, Bedford Ouse and Welland). A next step could then

be to drive water resources simulations with industry models such as

AQUATOR or PyWR, and investigate the propagation of uncertainty sources

into projections of drought impacts on reservoir levels.

The simulations from Chapter 5 present an ensemble of specific plausible futures.

In a next step, extreme events and streamflow time series could be extracted from

this rigorously evaluated set of streamflow simulations, to represent a range of

events that would challenge water resources systems. Working with such derived

narratives or ‘storylines’ to crystallise (Smith et al., 2018b) the potential changes

can help develop adaptation strategies by developing tangible ‘what if’ scenarios

(Shepherd et al., 2018; Shepherd and Lloyd, 2021). Although storylines can be

composed by perturbing historic events via applying changes to some climatic

variables (e.g. Chan et al., 2022), selecting events produced from simulations

by a full hydroclimatic impact modelling chain could potentially lend increased

plausibility to the resulting scenarios, and ensures that important information on

changing variability provided by the climate models is taken into account.
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Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy,



Chapter 8: Bibliography 163

J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B.
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Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (Eds.)]., pages

1041–1170. Cambridge University Press.

Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods,

R. A., Freer, J. E., Gutmann, E. D., Wood, A. W., Brekke, L. D., Arnold, J. R.,

Gochis, D. J., and Rasmussen, R. M. (2015). A unified approach for process-

based hydrologic modeling: 1. Modeling concept. Water Resources Research,

51(4):2498–2514.

Clark, M. P., Slater, A. G., Rupp, D. E., Woods, R. A., Vrugt, J. A., Gupta,

H. V., Wagener, T., and Hay, L. E. (2008). Framework for Understanding

Structural Errors (FUSE): A modular framework to diagnose differences

between hydrological models. Water Resources Research, 44(12).

Climate Action Tracker (2022). Warming Projections Global Update. Technical

report.

Comas-Bru, L. and McDermott, F. (2014). Impacts of the EA and SCA

patterns on the European twentieth century NAO–winter climate relationship.

Quarterly Journal of the Royal Meteorological Society, 140(679):354–363.

Cook, B. I., Smerdon, J. E., Seager, R., and Coats, S. (2014). Global warming

and 21st century drying. Climate Dynamics, 43(9):2607–2627.



Chapter 8: Bibliography 164
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of efficiency criteria suitable for evaluating low-flow simulations. Journal of

Hydrology, 420–421:171–182.

Rahiz, M. and New, M. (2013). 21st Century Drought Scenarios for the UK.

Water Resources Management, 27(4):1039–1061.

Rameshwaran, P., Bell, V. A., Brown, M. J., Davies, H. N., Kay, A. L., Rudd,

A. C., and Sefton, C. (2022). Use of Abstraction and Discharge Data to Improve

the Performance of a National-Scale Hydrological Model. Water Resources

Research, 58(1):e2021WR029787.

Rangeley-Wilson, C. and CaBA CSRG Panel (2021). Chalk Stream Restoration

Strategy 2021 Main Report. CaBA Chalk Stream Restoration Group. Available

at https://catchmentbasedapproach.org/wp-content/uploads/2021/10/

CaBA-CSRG-Strategy-MAIN-REPORT-FINAL-12.10.21-Low-Res.pdf.

Reyniers, N., Osborn, T. J., Addor, N., and Darch, G. (2023). Projected changes

in droughts and extreme droughts in Great Britain strongly influenced by the

choice of drought index. Hydrology and Earth System Sciences, 27(5):1151–

1171.

Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G.,

Nakicenovic, N., and Rafaj, P. (2011). RCP 8.5—A scenario of comparatively

high greenhouse gas emissions. Climatic Change, 109(1):33.

https://catchmentbasedapproach.org/wp-content/uploads/2021/10/CaBA-CSRG-Strategy-MAIN-REPORT-FINAL-12.10.21-Low-Res.pdf
https://catchmentbasedapproach.org/wp-content/uploads/2021/10/CaBA-CSRG-Strategy-MAIN-REPORT-FINAL-12.10.21-Low-Res.pdf


Chapter 8: Bibliography 182

Riahi, K., Schaeffer, R., Arango, J., Calvin, K., Hasegawa, T., Jiang, K., Kriegler,

E., Matthews, R., Robertson, S., Sebbit, A. M., Steinberger, J., Khourdajie,

A. A., Brutschin, E., Byers, E., Carleton, T., Clarke, L., Chaturvedi, V.,

Chen, W., and Mart́ınez, J. T. (2022). Mitigation Pathways Compatible

with Long-term Goals. In IPCC, 2022: Climate Change 2022: Mitigation of

Climate Change. Contribution of Working Group III to the Sixth Assessment

Report of the Intergovernmental Panel on Climate Change [P.R. Shukla, J.

Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S.

Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J.

Malley, (Eds.)]. Cambridge University Press, Cambridge, UK and New York,

NY, USA.

Richards, J. M. (1971). A simple expression for the saturation vapour pressure

of water in the range -50 to 140◦c. Journal of Physics D: Applied Physics,

4(4):L15–L18.

Richardson, D., Fowler, H. J., Kilsby, C. G., and Neal, R. (2018). A new

precipitation and drought climatology based on weather patterns. International

Journal of Climatology, 38(2):630–648.

Ripple, W. J., Wolf, C., Lenton, T. M., Gregg, J. W., Natali, S. M., Duffy, P. B.,

Rockström, J., and Schellnhuber, H. J. (2023). Many risky feedback loops

amplify the need for climate action. One Earth, 6(2):86–91.

Robinson, E., Blyth, E., Clark, D., Comyn-Platt, E., and Rudd, A.

(2020). Climate hydrology and ecology research support system potential

evapotranspiration dataset for Great Britain (1961-2017) [CHESS-PE]. NERC

Environmental Information Data Centre.

Robinson, E. L., Blyth, E. M., Clark, D. B., Finch, J., and Rudd, A. C.

(2017). Trends in atmospheric evaporative demand in Great Britain using

high-resolution meteorological data. Hydrology and Earth System Sciences,

21(2):1189–1224.

Robinson, E. L., Brown, M. J., Kay, A. L., Lane, R. A., Chapman, R., Bell,

V. A., and Blyth, E. M. (2022). Hydro-PE: Gridded datasets of historical and

future Penman-Monteith potential evaporation for the United Kingdom. Earth

System Science Data Discussions, pages 1–44.

Rodda, J. and March, T. (2011). The 1975/76 Drought – a contemporary

and retrospective view. Centre for Ecology & Hydrology. Available at

http://nora.nerc.ac.uk/id/eprint/15011/1/CEH_1975-76_Drought_

Report_Rodda_and_Marsh.pdf.

http://nora.nerc.ac.uk/id/eprint/15011/1/CEH_1975-76_Drought_Report_Rodda_and_Marsh.pdf
http://nora.nerc.ac.uk/id/eprint/15011/1/CEH_1975-76_Drought_Report_Rodda_and_Marsh.pdf


Chapter 8: Bibliography 183

Rojas, R., Feyen, L., Dosio, A., and Bavera, D. (2011). Improving pan-European

hydrological simulation of extreme events through statistical bias correction

of RCM-driven climate simulations. Hydrology and Earth System Sciences,

15(8):2599–2620.

Rosenzweig, C., Arnell, N. W., Ebi, K. L., Lotze-Campen, H., Raes, F., Rapley,

C., Smith, M. S., Cramer, W., Frieler, K., Reyer, C. P. O., Schewe, J., van

Vuuren, D., and Warszawski, L. (2017). Assessing inter-sectoral climate change

risks: The role of ISIMIP. Environmental Research Letters, 12(1):010301.

Rudd, A. C., Bell, V. A., and Kay, A. L. (2017). National-scale analysis of

simulated hydrological droughts (1891-2015). Journal of Hydrology, 550:368–

385.

Rudd, A. C., Kay, A. L., and Bell, V. A. (2019). National-scale analysis of

future river flow and soil moisture droughts: Potential changes in drought

characteristics. Climatic Change, 156(3):323–340.

Rust, W., Cuthbert, M., Bloomfield, J., Corstanje, R., Howden, N., and Holman,

I. (2021). Exploring the role of hydrological pathways in modulating multi-

annual climate teleconnection periodicities from UK rainfall to streamflow.

Hydrology and Earth System Sciences, 25(4):2223–2237.

Saavedra, D., Mendoza, P. A., Addor, N., Llauca, H., and Vargas, X. (2022).

A multi-objective approach to select hydrological models and constrain

structural uncertainties for climate impact assessments. Hydrological Processes,

36(1):e14446.

Samaniego, L., Kumar, R., Breuer, L., Chamorro, A., Flörke, M., Pechlivanidis,
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Figure A.0.1: Maps of observed values of precipitation metrics (left column) and
their biases in UKCP18-RCM (all other columns, headed by ensemble member
number) for the reference period (1981-2010). Odd rows show the observed values
and the bias before bias adjustment, even rows show the remaining bias after bias
adjustment by BCI3.
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Figure B.0.1: Mean precipitation biases in UKCP18-RCM for 1981-2010,
expressed as a percentage of the observed values. The bias for each ensemble
member was computed and the mean across the ensemble is shown here. Dry-
day frequency is the percentage of days with P ¡ 1 mm; q95 is the 0.95 quantile
of precipitation. Created by Nicole Forstenhäusler.
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Figure B.0.2: Mean PET biases (mm) in UKCP18-RCM for 1981-2010. The bias
for each ensemble member was computed and the mean across the ensemble
is shown here. Q05 and Q95 are the biases in the 0.05 and 0.95 quantiles
respectively.
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Figure B.0.3: Seasonal cycle of precipitation (P; blue lines) and potential
evapotranspiration (PET; orange lines) for the 12 bias-adjusted UKCP18-RCM
ensemble members, for all UKCP18 administrative regions. The different lines
represent different ensemble members. Observations are shown in darker, dashed
lines.
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Figure B.0.4: As Figure 4.5.5 but for all GB regions (continued in Fig. B.0.5).
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Figure B.0.5: As Figure 4.5.5 but for all GB regions (continuation of Fig. S4).
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Figure B.0.6: As Figure 4.5.6 but for the other regions.
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Figure B.0.7: As Figure 4.5.6 but for all regions and isolating drought events that
reach extreme levels at some point.
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Figure C.0.1: The relative occurrence (percent anomaly; PA) of weather patterns
during droughts in the East of England as defined by (a), (c) SPI1; (b), (d)
SPEI1, for UKCP18-RCM ensemble member 1. (a),(b): all 30 weather patterns;
(c),(d): 8 summary weather patterns As in Chapter 4, the drought indicators are
computed based on bias adjusted data, whereas the weather patterns are derived
from raw simulations of atmospheric pressure patterns.
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