
Ensembles for multivariate

time series classification

Alejandro Pasos Ruiz

A thesis submitted for the degree of Doctor of

Philosophy

School of Computing Sciences

University of East Anglia

September 2023

c© This copy of the thesis has been supplied on condition that anyone who consults

it is understood to recognize that its copyright rests with the author and that

use of any information derived there from must be in accordance with current

UK Copyright Law. In addition, any quotation or extract must include full

attribution.

Abstract

Time Series Classification (TSC) involves learning predictive models for a

discrete target variable from ordered, real-valued, attributes. Over recent years,

a new set of TSC algorithms have been developed which have significantly

improved the previous state of the art. The main focus has been on univariate

TSC, i.e. the problem where each case has a single series and a class label. In

reality, it is more common to encounter multivariate TSC (MTSC) problems

where multiple series are associated with a single label. Despite this, much less

consideration has been given to MTSC than the univariate case. Therefore, this

work focuses on MTSC from different perspectives. First, by introducing a set

of 33 problems for MTSC in different areas called the UEA MTSC archive.

Second, by introducing the state-of-the-art algorithms and comparing on those

problems. That experimentation concluded that HIVE-COTE2 (HC2) is the

current state of the art. Third, because of that, the remainder of this work

focused on two ways to improve HC2: a) By improving one of the components

(Shapelet Transform Classifier) and b) by Adding a preprocessing phase for

dimension selection in order improve HC2 by removing the dimensions that do

not contribute. In the first case, we were able to improve HC2 significantly for

MTSC problems, and in the second case, there was no significant improvement

in accuracy. Still, there were gains in decreasing the number of dimensions

required and hence the run time.

Access Condition and Agreement

Each deposit in UEA Digital Repository is protected by copyright and other intellectual property rights,
and duplication or sale of all or part of any of the Data Collections is not permitted, except that material
may be duplicated by you for your research use or for educational purposes in electronic or print form.
You must obtain permission from the copyright holder, usually the author, for any other use. Exceptions
only apply where a deposit may be explicitly provided under a stated licence, such as a Creative
Commons licence or Open Government licence.

Electronic or print copies may not be offered, whether for sale or otherwise to anyone, unless explicitly
stated under a Creative Commons or Open Government license. Unauthorised reproduction, editing or
reformatting for resale purposes is explicitly prohibited (except where approved by the copyright holder
themselves) and UEA reserves the right to take immediate ‘take down’ action on behalf of the copyright
and/or rights holder if this Access condition of the UEA Digital Repository is breached. Any material in
this database has been supplied on the understanding that it is copyright material and that no quotation
from the material may be published without proper acknowledgement.

Acknowledgments

First, I would like to thank my supervisor Dr. Anthony Bagnall, who allowed

me to get into the Ph.D. program and his invaluable support guiding me in this

process. I want to thank all the UEA colleagues from whom I always received

the help and support I needed. Also, I want to thank my sponsor PRODEP

(Programa para el Desarrollo Profesional Docente).

I want to thank my dad who always encouraged me through this program and

without his support I won’t be able to finish it. Also, my mom who has been

here all my life listening and supporting me. To Alex and Leo who make me to

be a better father each day of my life. Finally, but not less importantly to my

beautiful wife Sandy for always being there and making me feel the most lucky

person for having her at my side.

Contents

Abstract 1

Aknowledments 2

List of Figures 10

List of Tables 15

1 Introduction 17

1.1 Introduction . 18

1.2 Thesis contributions . 18

1.3 Thesis structure . 19

2 Background 20

2.1 Introduction . 21

2.2 Distance-based . 22

2.2.1 Independent DTW (DTWI) 24

2.2.2 Dependent DTW (DTWD) 24

Contents 4

2.2.3 Adaptive (DTWA) . 25

2.3 Transformation based . 25

2.3.1 The Random Convolutional Kernel Transform (ROCKET) 26

2.3.2 Arsenal . 27

2.3.3 Shapelet based classifiers 27

2.3.4 The Multiple Representation Sequence Learner (MrSEQL) 32

2.4 Dictionary approaches . 34

2.4.1 CBOSS . 34

2.4.2 WEASEL+MUSE . 35

2.4.3 Temporal Dictionary Ensemble (TDE) 35

2.5 Deep learning . 37

2.5.1 The Multivariate Long Short Term Memory Fully

Convolutional Network (MLCN). 38

2.5.2 Residual Network (ResNet) 38

2.5.3 InceptionTime . 39

2.5.4 Time Series Attentional Prototype Network (TapNet) . . . 40

2.6 Interval based . 42

2.6.1 The Random Interval Spectral Ensemble (RISE) 42

2.6.2 Canonical Interval Forest (CIF) 42

2.6.3 Diverse Representation Canonical Interval Forest (DrCIF) . 43

2.7 Heterogeneous ensembles . 44

Contents 5

2.7.1 HIVE-COTE 1 . 45

2.7.2 HIVE-COTE 2 . 45

2.7.3 HIVE-COTE Independent 46

3 The UCR/UEA MTSC Archive 47

3.1 Introduction . 48

3.2 Accelerometer data . 50

3.2.1 Asphalt . 50

3.2.2 Basic Motions . 51

3.2.3 Epilepsy . 52

3.2.4 Cricket . 52

3.2.5 Racket sports . 52

3.3 Medical scan data . 53

3.3.1 Atrial fibrillation . 53

3.3.2 Face detection . 53

3.3.3 Finger movements . 54

3.3.4 Hand movement direction 54

3.3.5 Heart beat . 54

3.3.6 Motor imagery . 55

3.3.7 Stand walk jump . 55

3.3.8 Self regulations 1 and 2 . 55

Contents 6

3.4 Handwriting problems . 56

3.4.1 Character Trajectories . 56

3.4.2 Handwriting . 57

3.4.3 Pen digits . 57

3.5 Gesture recognition . 58

3.5.1 Ering . 58

3.5.2 NATOPS . 58

3.5.3 UWave gesture library . 59

3.5.4 Libras . 59

3.6 Sound data . 60

3.6.1 Duck duck gees . 60

3.6.2 Japanese vowels . 60

3.6.3 Insect wing beat . 61

3.6.4 Phoneme spectra . 61

3.6.5 Spoken Arabic digits . 61

3.7 Other sensors . 62

3.7.1 Articulary word recognition 62

3.7.2 Ethanol concentration . 63

3.7.3 Eigen worms . 63

3.7.4 LSST . 64

3.7.5 PEMS-SF . 64

Contents 7

4 MTSC bake-off 66

4.1 Introduction . 67

4.2 Methodology . 67

4.3 Evaluation . 69

4.4 Results . 70

4.4.1 Comparison of Eleven Classifiers on Twenty-Six Datasets . 71

4.4.2 Comparison of Sixteen Classifiers on Twenty Datasets . . . 77

4.5 HIVE-COTE 2 in MTSC . 84

4.6 Conclusion . 84

5 Multivariate Shapelet Classifiers 86

5.1 Introduction . 87

5.2 Quality criteria . 87

5.2.1 Information Gain . 88

5.2.2 Chi-squared (CHI) . 89

5.2.3 Pearson correlation (COR) 90

5.2.4 OneR (ONER) . 90

5.2.5 F-Stat . 90

5.2.6 Symmetrical uncertainty (SYM) 90

5.3 Independent / Dependent Shapelets 91

5.4 Experiment settings . 91

Contents 8

5.5 Results . 92

5.5.1 Shapelet quality variants 92

5.5.2 Ensemble shapelets using different quality measures 93

5.5.3 Adding to HC2 . 94

5.5.4 Compared with univariate TSC 94

5.6 Conclusions . 96

6 Dimension Selection Strategies 97

6.1 Introduction . 98

6.2 Dimension selection problem . 99

6.3 Related work . 99

6.4 Proposed method . 102

6.5 Evaluation . 104

6.5.1 Data . 104

6.5.2 Experiments . 106

6.6 Results . 107

6.7 Conclusion . 112

7 Conclusions / Future work 114

7.1 Discussion of contributions . 115

7.2 Reflection and Future work . 116

7.2.1 UCR/UEA Archive chapter 116

Contents 9

7.2.2 MTSC Bakeoff chapter . 117

7.2.3 Multivariate shapelet classifiers chapter 117

7.2.4 Dimension selection strategies 118

Appendices 119

A Appendix 119

List of Figures

2.1.1 Main approaches for MTSC . 22

2.2.1 Difference between DTWI and DTWD taken from [66] 24

2.3.1 Example of a convolution/kernel applied to a time series and

extracting the features used in ROCKET 25

2.3.2 Example of a shapelet (red area) extracted from a time series. In

this example, it is assumed that the shape of the subsequence can

be a good discriminator between classes. 27

2.3.3 A depiction of the MrSEQL classifier taken from [55]. 33

2.5.1 MLSTM-FCN architecture, figure from [32]. 38

2.5.2 An Inception module with example parameters, figure from [22].

Three of these are concatenated to form a block in InceptionTime. 39

2.5.3 TapNet architecture, figure from [79]. 40

2.7.1 An example of a HIVE-COTE 2 prediction taken from [53]. 45

3.2.1 Multivariate time series example for asphalt problems extracted

from [13] . 50

List of Figures 11

3.2.2 Multivariate time series example for basic motions extracted from

[1] . 51

3.2.3 Multivariate time series example for epilepsy extracted from [1] . . 51

3.2.4 Multivariate time series example for cricket extracted from [1] . . . 52

3.2.5 Multivariate time series example for racket sports extracted from [1] 52

3.3.1 Multivariate time series example for atrial fibrillation extracted

from [1] . 53

3.3.2 Multivariate time series example for face detection extracted from

[1] . 53

3.3.3 Multivariate time series example for finger movements extracted

from [1] . 54

3.3.4 Multivariate time series example for hand movement direction

extracted from [1] . 54

3.3.5 Multivariate time series example for heartbeat extracted from [1] . 55

3.3.6 Multivariate time series example for motor imagery extracted from

[1] . 55

3.3.7 Multivariate time series example for stand walk jump extracted

from [1] . 56

3.3.8 Multivariate time series example for self-regulations 1 extracted

from [1] . 56

3.3.9 Multivariate time series example for self-regulations 2 extracted

from [1] . 57

3.4.1 Multivariate time series example for character trajectories 1

extracted from [1] . 57

List of Figures 12

3.4.2 Multivariate time series example for handwriting extracted from [1] 58

3.4.3 Multivariate time series example for pen digits extracted from [1] . 58

3.5.1 Multivariate time series example for e-ring extracted from [1] . . . 59

3.5.2 Multivariate time series example for NATOPS extracted from [1] . 59

3.5.3 Multivariate time series example for uwave gesture library

extracted from [1] . 60

3.5.4 Multivariate time series example for libras extracted from [1] . . . 60

3.6.1 Multivariate time series example for duck duck geese extracted

from [1] . 61

3.6.2 Multivariate time series example for Japanese vowels extracted

from [1] . 61

3.6.3 Multivariate time series example for insect wing beat extracted

from [1] . 62

3.6.4 Multivariate time series example for phoneme spectra extracted

from [1] . 62

3.7.1 Multivariate time series example for articulary word recognition

extracted from [1] . 63

3.7.2 Multivariate time series example for ethanol concentration

extracted from [1] . 63

3.7.3 Multivariate time series example for eigen worms extracted from [1] 64

3.7.4 Multivariate time series example for LSST extracted from [1] . . . 64

3.7.5 Multivariate time series example for PEMS-SF extracted from [1] . 65

List of Figures 13

4.4.1 Critical difference diagrams for 11 classifiers on the 26 equal length

UEA datasets using pairwise Wilcoxon test to form cliques. 72

4.4.2 Box plots of the differences in accuracy relative to DTWD over

datasets. 74

4.4.3 Scatter plots of the accuracy of ROCKET, HC1, CIF, and ResNet

against DTWD. 75

4.4.4 Average difference in accuracy to DTWD vs train time for 9 MTSC

algorithms. 76

4.4.5 Scatter plots of accuracy on 26 UEA MTSC problems for

ROCKET against CIF and HC1. ROCKET beats CIF on 17

problems, with mean and median differences in accuracy are

-0.12% and 0.85%). ROCKET beats HC1 on 17 problems with

mean and median differences in accuracy are -0.66% and 0.66%. . . 77

4.4.6 Critical difference diagrams for the top 12 classifiers on the 20

equal-length UEA datasets all algorithms completed. 78

4.5.1 Critical difference diagrams for 26 equal-length UEA datasets all

algorithms compared with Hive Cote 2. 84

5.2.1 Orderline example . 88

5.3.1 Example of a multivariate time series of 4 dimensions. A

dependent shapelet (blue) covers a subset of all dimensions

whereas an independent (red) covers only one of them. 91

5.5.1 Comparing variants of shapelet quality and shapelet dependent

with STC and RSTC Ensemble on 26 MTSC problems. 92

5.5.2 Comparing variants of shapelet quality and shapelet dependent

with STC and RSTC Ensemble on 26 MTSC problems. 93

List of Figures 14

5.5.3 Comparing HC2 results with STC component against using RSTC

Ensemble on 26 MTSC problems. 94

5.5.4 Comparing variants of shapelet quality and shapelet dependent

with STC and RSTC Ensemble on 112 TSC problems. 95

5.5.5 Comparing HC2 results with STC component against using RSTC

Ensemble on 112 TSC problems. 95

6.6.1 Critical difference diagram for comparing ROCKET, full HC2 and

HC2 with random dimension selection. 108

6.6.2 Critical difference diagram for comparing all dimension selection

methods proposed. 108

List of Tables

2.1 Parameters of a shapelet. 28

2.2 List of STC parameters. 30

3.1 Summary of the 33 datasets in the 2018 version used in

experimentation. 49

4.1 Summary of the 26 datasets used in the benchmark. 68

4.2 Classifier availability in the two toolkits tsml and aeon. 69

4.3 P-values for pairwise tests between classifiers. The upper diagonal

values are found using the Wilcoxon sign-rank test. The lower

diagonal is found using a paired t-test. So, for example, the p-

value for STC vs CBOSS is 0.0074 using a sign rank test, but

0.0669 with a paired t-test. Classifiers are ordered by overall rank,

so a p-value below the critical value for STC vs CBOSS indicates

STC is significantly more accurate on these data. 73

4.4 Average accuracies with standard error over resamples for DTWD

and the three classifiers are significantly more accurate than DTWD. 80

4.5 Total run time for a single resample of all 26 problems and mean

difference in accuracy to DTWD for 9 classifiers. 81

4.6 Memory usage (in MB) for eight tsml classifiers. Max memory is

the maximum memory on any single problem, total memory is the

aggregated memory over all twenty-six problems. 81

4.7 Performance was relative to the baseline classifier DTWD. The

P-value is from the Wilcoxon sign rank test. 82

4.8 Accuracy of twelve algorithms averaged over thirty stratified

resample data sets for the UEA MTSC archive. Default accuracy

is for predicting the majority class. 83

5.1 The number of hours to complete all 30 resamples on 26 MTSC

problems. 93

6.1 Summary of different dimension selection ranking methods with

elbow method. 104

6.2 Summary of 15 data sets used in experimentation. (*) indicates

a padded series, and bold indicates a data set new to the UEA

archive. 105

6.3 P-values for pairwise Wilcoxon rank-sum test on 15 high

dimensional MTSC problems. 109

6.4 Accuracy of four classifiers averaged over 30 resamples of 15 high

dimensional datasets. 110

6.5 Percentage of dimensions used. 111

6.6 Train time in hours, including the time to filter. 112

A.1 Classifier Configuration . 120

1

Introduction

Chapter 1: Introduction 18

1.1 Introduction

Time series, i.e. real value-ordered observations, are ubiquitous. Recently, there

has been a huge increase in the prevalence of devices that can extract and store

data. With the increase in storage capability and reduction of the cost now

many data sources can be used to solve real-world problems that involve time

series classification.

TSC is a form of machine learning that uses real ordered values called time

series. This scenario adds a layer of complexity to the classification problems,

as important characteristics of the data can be missed by traditional algorithms.

Over recent years, a new set of TSC algorithms have been developed which have

made significant improvements over the previous state-of-the-art [4].

The focus of recent research has been on univariate TSC, i.e. the problem

where each case has a single series and a class label. In reality, it is more

common to encounter multivariate TSC (MTSC) problems where multiple series

are associated with a single label. Human activity recognition [50], diagnosis

based on ECG, EEG and MEG [58] [6] [7] [40] and system monitoring problems

are all inherently multivariate. Despite this, much less consideration has been

given to MTSC than the univariate case. Therefore, this thesis will focus on

MTSC problems.

1.2 Thesis contributions

The contributions described in this thesis can be summarised as follows:

• The evaluation and comparison of current state-of-the-art algorithms for

MTSC. [62]

• The evaluation of different quality metrics for a specific type of MTSC

algorithm which are based on shapelets.

Chapter 1: Introduction 19

• Development of novel dimension filtering techniques for high dimensional

MTSC problems and evaluate them based on accuracy and performance.

[59]

1.3 Thesis structure

In brief, we first define MTSC problems and the current state-of-the-art

algorithms in Chapter 2. In Chapter 3 we describe the UCR/UEA multivariate

archive version 2018 consisting of 33 problems categorized by type. Chapter 4

presents a set of benchmark experiments to compare the state-of-the-art

algorithms on the UCR/UEA archive. After an initial run where no single

algorithm was significantly better, another experiment introduced a new

algorithm named HIVE-COTE 2 (HC2) [53] which was significantly better than

the other algorithms and considered the most accurate in the UCR/UEA

archive at the time of writing. The final chapters of the thesis focused on two

ways to improve HC2, in Chapter 5, one component of HC2 called Shapelet

Transform Classifier (STC) [30] is improved by an ensemble based on different

shapelet qualities. In Chapter 6, dimension selection strategies were proposed as

a preprocessing step to HC2. Finally, in Chapter 7 a discussion of the main

conclusions and future work is presented.

2

Background

Chapter 2: Background 21

2.1 Introduction

Time series classification (TSC) is a subset of supervised machine learning dealing

with time-ordered classification problems. In this problems, we have a list of

vectors of m observations over n cases. We could use standard machine learning

algorithms directly given that we can consider each observation as a feature, but

in general cases, this approach does not work because of the time-ordered type

of data. There are specific algorithms dealing with this kind of data and detailed

in the state of the art.

This thesis focuses on Multivariate Time Series Classification (MTSC) problems

For MTSC problems, a dataset is a list of vectors of m observations, over d

channels (dimensions) and n cases. We define the scalar xi,j,k as the i example

(n), the j observation (m) that belongs to dimension k. This 3-dimensional

representation differs from the 2 dimensions used in time series and traditional

machine learning datasets where the first dimension denotes the examples (rows)

and the second represents the features (columns).

Because of that, MTSC requires specific approaches to handle this kind of data.

These approaches are specific to MTSC and others are adapted from univariate

time series problems (problems with 1 dimension) by adding specific handlers

to the dimensions. This chapter focuses on researching the main algorithms for

MTSC in the state of the art. The objective is to be a guide for the decision of

selecting algorithms in the following chapters.

On a general basis, an MTSC algorithm can be defined by how we treat

different dimensions. On one side, if we can assume that there are no important

correlations between dimensions then they can be handled separately. We call

this an independent-based approach [66]. This makes the classification process

easier because we can transform it into d different univariate problems and then

use an ensemble to give the final decision.

However, if there is a correlation between dimensions we must consider these

Chapter 2: Background 22

relations important information about the classification problem otherwise these

relations will be missed and this may affect the accuracy of the algorithm. We call

this scenario dependent. The problem is that we cannot handle the dependent

case as the independent because we have (2d) different combinations of dimensions

which makes it infeasible for high dimensional problems.

Figure 2.1.1: Main approaches for MTSC

(a) Distance based (b) Transform

(c) Ensemble (d) Deep learning

In this chapter, we present different algorithmic approaches to implement

MTSC classifiers regarding whether they are independent, dependent, or can be

implemented in both ways. In the next section, we will outline each of these

approaches and next, we will explain them in detail. A summary of the

approaches can be seen in figure 2.1.1

2.2 Distance-based

These approaches are based on calculating the distance between two time-series.

Usually, this is implemented using the function dynamic time warping (DTW).

In MTSC, DTW can be implemented as independent or dependent which will be

detailed in this section.

One of the most popular approaches for TSC is to use a 1-nearest neighborhood

classifier in conjunction with a bespoke distance function that compensates for

Chapter 2: Background 23

possible confounding offset by allowing some realignment of the series. Dynamic

time warping (DTW) is the most popular distance function for this purpose. In

DTW, the distance between series a = (a1, a2, ..., am) and b = (b1, b2, ..., bm) is

calculated following steps:

1. M is a m×m matrix where Mi,j = (ai − bj)2

2. A warping path P = ((e1, f1), (e2, f2), ..., (es, fs)) is a contiguous set of

matrix indexes from M , subject to the following constraints

• (e1, f1) = (1, 1)

• (es, fs) = (m,m)

• 0 ≤ ei+1 − ei ≤ 1 for all i < m

• 0 ≤ fi+1 − fi ≤ 1 for all i < m

3. Let pi = Mei,fi , be the distance for a path is Dp =
∑m

i=1 pi

4. There are many warping paths but we are interested in the one that

minimizes the accumulative distance P ∗ = minp∈P Dp(a, b)

5. The optimal distance is obtained by solving the following recurrence relation

DTW (i, j) = Mi,j +min

DTW (i− 1, j).

DTW (i, j − 1).

DTW (i− 1, j − 1).

(2.2.1)

and the final distance is DTW (m,m).

There are several improvements to DTW to make it faster, such as adding a

parameter r that limits deviation from the diagonal. Our interest lies primarily in

how best to use DTW for MTSC. There are two obvious strategies for using DTW

for multivariate problems, defined as the independent and dependent approaches.

Chapter 2: Background 24

Figure 2.2.1: Difference between DTWI and DTWD taken from [66]

2.2.1 Independent DTW (DTWI)

The independent strategy treats each dimension independently, has a different

pointwise distance matrix M for each dimension, and then sums the resulting

DTW distances.

DTWI(a,b) =

d∑
k=1

DTW (ak, bk) (2.2.2)

2.2.2 Dependent DTW (DTWD)

Respectively, this assumes some relation among the series on the multivariate time

series. For handling this case, the matrix Mi,j is redefined not as the distance

between 2 points on a single series but as the Euclidean distance between the 2

vectors that represent all the series.

Mi,j =
d∑

k=1

(ai,k − bj,k)2 (2.2.3)

Then, the DTW distance is calculated which leads to distance time wrapping

dependent(DTWD).

Chapter 2: Background 25

Figure 2.3.1: Example of a convolution/kernel applied to a time series and
extracting the features used in ROCKET

2.2.3 Adaptive (DTWA)

Shokoohi-Yekta et al. [66] discussed when a problem is independent or dependent.

This discussion led to the creation of the adaptive case which uses a combination

of the previous two and tries to define when it should be used. This method uses

the dependent or independent distance depending on a threshold. The threshold

is calculated in the training phase using cross-validation on training data and

verifying which method works better.

2.3 Transformation based

One way to adapt traditional supervised learning algorithms such as neural

networks, random forests, or linear classifiers to MTSC, is to convert from the

3-dimensional input data to a feature vector and then adapt any supervised

learning algorithm to classify. The most common transformation-based

algorithms for MTSC are: Shapelet based which will be introduced in sections

2.3.3 and 2.3.3, convolution kernels to transform data (ROCKET) 2.3.1 and

dictionary approaches (WEASEL-MUSE) 2.4.2

Chapter 2: Background 26

2.3.1 The Random Convolutional Kernel Transform (ROCKET)

The Random Convolutional Kernel Transform, ROCKET [14] is a

transformation-based approach that uses the concept of convolution/kernel as

used in the deep learning field. A convolution/kernel can be described as a

subseries used to derive discriminatory features. Each kernel is convolved with a

time series through a sliding dot product. This process can be seen in figure

2.3.1.

ROCKET is a two-step process that consists of first generating a large number

of random convolution kernels (10,000 by default) to be used as feature vectors.

The second step consists of using a linear classifier of the resulting feature vector.

For each of the kernels generated, the following parameters are selected from the

following spaces: The length, l, is selected such that, l ∈ {7, 9, 11}; the value of

each weight, wi, in the kernel is selected such that, wi ∼ N (µ, σ2), where µ = 0

and σ2 = 1; dilation, d, is sampled from an exponential scale up to input length

and the binary decision to pad the series is chosen with equal probability, if true

the series is zero-padded at the start and end equally such that middle element

of the kernel is applied to every point in the input series.

The convolution of an instance and kernel can be interpreted as the dot product

between two vectors. The resulting feature map is then used to generate two

features that will be used in the next stage: 1) the max value and 2) the

proportion of positive values(PPV). The PPV summarises the proportion of the

series correlated to the kernel. It was found to significantly improve

classification accuracy. Each series is subsequently transformed into a 20,000

attribute instance after all convolutions. This transformed dataset is then used

to train the ridge regression classifier.

For MTSC problems, kernels are randomly assigned to several dimensions

making this approach independent. Weights are then generated for each

dimension. Convolution in this case can be interpreted as the dot product

Chapter 2: Background 27

Figure 2.3.2: Example of a shapelet (red area) extracted from a time series. In
this example, it is assumed that the shape of the subsequence can be a good
discriminator between classes.

between two matrices as the kernel convolves horizontally across the series.

2.3.2 Arsenal

ROCKET is a very fast classifier that has state-of-the-art accuracy, and it is

probably the most important advance in recent development in the field. It

represents a different class of approach, but it has a drawback. It does not

generate a prediction probability but just indicates the class assigned. This makes

it difficult to be combined with other approaches such as in the case of ensembles.

To minimize this problem, a homogeneous ensemble of ROCKET classifiers was

proposed [53]. In this case, the probability of belonging to a class is the number

of ROCKET classifiers that are assigned to that class. This ensemble is named

Arsenal. Arsenal is slower to build than ROCKET, but its probabilities make

it a better approach when it is required to get the probability of belonging to a

class.

2.3.3 Shapelet based classifiers

This group of classifiers are transformation approaches and also can be

implemented as dependent or independent. They are based on the concept of a

shapelet that will is introduced in the following section.

Chapter 2: Background 28

Shapelet

A shapelet is a sub-sequence of time series data [78]. Figure 2.3.2 shows an

example of a shapelet. In addition to the sub-sequence data, the shapelet contains

other parameters which are defined in table 2.1. The shapelet can be used in

several ways such as a criteria for a tree split (Generalized random shapelet

forest) or as a feature vector (Shapelet transform classifier).

Parameter Description

class Class of the series that extracted the shapelet

series-index Index of the time series where the shapelet was extracted

start Position of the start of the shapelet within the series

start Class of the series that extracted the shapelet

length Size of the shapelet

dimension-index the dimension where the shapelet was extracted

data Depending of the nature is a vector or matrix

quality Numeric value that measure shapelet utility

Table 2.1: Parameters of a shapelet.

Generalized Random Shapelet Forest (gRFS)

In gRFS shapelets are used as split criteria for building decision trees. First, it

generates a group of p trees (forest), and based on those it uses an ensemble to

do the classification. To reduce the complexity, p trees are generated by sampling

the data as described in algorithm 1. Each tree is created by sampling randomly

several shapelets and selecting the ones that are better at splitting the data at a

decision tree node. This is shown on algorithm 2.

Shapelet transform classifier (STC)

STC is a three-step process which is described on algorithm 3. The first step is

the shapelet search. The result of this search is a group of quality shapelets. The

Chapter 2: Background 29

Algorithm 1 Random Shapelet Forest(Z, p, l, u, r)

Parameters: The training set, Z, the number of trees, p, the lower and upper
shapelet length, l & u, the number of shapelets, r.

Return: An ensemble of generalized shapelet trees, R = ST1 . . .STp
1: for i← 1 to p do
2: Ii ← sample(Z)
3: STi ← randomShapeletTree(ZIi, l, u, r)
4: R← R ∪ STi
5: return R

Algorithm 2 Random Shapelet Tree(Z, l, u, r)

Parameters: The training set, Z, the lower and upper shapelet length, l & u,
the number of shapelets, r.

Return: A random shapelet tree, ST
1: if isTerminal(Z) then
2: return makeLeaf(Z)
3: for i← 1 to r do
4: S ← S ∪ sampleShapelet(Z, l, u, rand(l, u))
5: [t, S, k] ← bestSplit(Z, y, S)
6: STL ← randomShapeletTree(ZL, l, u, r)
7: STR ← randomShapeletTree(ZR, l, u, r)
8: return [[t, S, k, STL], [t, S, k, STL]]

shapelets are ranked based on quality criteria which in STC is an information

gain factor. The second step consists of extracting features from the shapelets.

The value used as a feature vector is the minimum distance between the shapelet

and the time series. The third step consists of applying a supervised learning

algorithm to the feature vector dataset. In STC, the resulting feature vector

dataset is classified with a rotation forest [61].

Algorithm 3 STCTRAIN (X, y, params)

shapelets← ShapeletSearch(X, y, params)
XT ← transform(shapelets,X, y)
model← classifier.train(XT, y)
return model

Shapelet search

The shapelet search has several parameters to tune the search process. These

parameters are described in table 2.2.

Chapter 2: Background 30

Parameter Description Default value

k Maximum number of shapelets min(1000, 10 ∗ trainSize)

min Minimum size for a shapelet 3

max Maximum size for a shapelet series length

max iterations Number of maximum iterations 1 million

contract time Maximum time for shapelet search 24 hours

no improvement Maximum number of consecutive
iterations before stop

1000

Table 2.2: List of STC parameters.

Algorithm 4 ShapeletSearch(X,y,params)

shapelets← {}
repeat
shapelet← generateShapelet(X, y)
shapelet.quality ← shapeletQuality(shapelet,X, y)
shapelets← shapelets ∪ shapelet
if iteration%1000 = 0 then
shapelets← sortByQuality(shapelets)
shapelets← removeShapelets(params.k, shapelets)

until params.stopCriteria
return Shapelets

The shapelet search is described on algorithm 4. The generateShapelet function

guides the search by indicating how to get the next shapelet to consider, then the

shapelet quality is calculated and after some iterations, the shapelets are sorted

and kept to a maximum distance k.

In the original implementation of STC [45], the generateShapelet is processed

instance by instance by generating all possible shapelets on each instance and

retaining the best ones. This is infeasible on most problems based on the high

number of possible shapelets that need to be considered. To minimize this

problem some improvements were proposed in [9]. For example, add a contract

time and perform a random search of shapelets instead of searching for all

options.

Random shapelet generation

Chapter 2: Background 31

Algorithm 5 generateShapelet(X,y,params)

index← random(1, |X|)
dimension← random(1, dimension)
start← random(1, |xindex|)
size← random(params.min, params.max)
shapelet← {index, dimension, start, size, yindex}
shapelet.data← xindex[start, size]
shapeletDataset← Ø
for all xi ∈ X do
di ← sDist(s.data, xi)

ci ←

{
1, yi = s.class

0, o.w
{Binary}

shapeletDataset = shapeletDataset ∪ (di, ci)
shapelet.quality ← InformationGain(D)
return shapelet

To improve STC a completely random search process is used, on each iteration a

random time series, start, size, and dimension is selected, This process is described

on algorithm 5

The generate shapelet method is one of the key procedures that define the

accuracy of the Random Shapelet Transform Classifier (RSTC). First, a

shapelet is generated randomly (algorithm 5). Then, a new train set

shapeletDataset is created. This set contains one feature and the class. The

feature is the minimum distance between the shapelet and the current time

series. In the pseudo-code, the function is named sDist. The other parameter is

the class of the time series. For multi-class problems, this means that we have c

different values. However, in [8] it was shown that using binary values increases

accuracy, so the value of the class is 1 if the shapelet and the train data have

the same class or 0 otherwise.

The last element of this process is the measurement used to verify the quality

of the shapelet. It is possible to use several metrics such as correlation and chi-

squared but by default, information gain is used [8]. This measure has been used

on decision tree algorithms for many years to measure the quality of a feature.

Chapter 2: Background 32

Random Dilated Shapelet Transform (RDST)

RDST [27] is a shapelet-based algorithm that adopts many of the techniques

of convolution used in ROCKET. RDST randomly selects a large number of

shapelets from the train data and then trains a linear RIDGE classifier on features

derived from these shapelets.

RDST employs dilation with shapelets. Dilation is a form of down sampling, in

that it defines spaces between time points. Hence, a shapelet with dilation d is

compared to time points d steps apart when calculating the distance. RDST also

uses two features in addition to sDist(): it encodes the position of the minimum

distance and records a measure of the frequency of occurrences of the shapelet

based on a threshold. Hence the transformed data has 3 features for each shapelet.

RDST was not included in the experiments described in this thesis as they were

performed before it was created.

2.3.4 The Multiple Representation Sequence Learner (MrSEQL)

The Multiple Representation Sequence Learner, MrSEQL [56] extends previous

adaptations of the SEQL classifier [55] in two ways. Firstly, via the introduction of

ensembling and secondly, via the addition of integrating the SFA [64] transform.

In the resulting approach, shown in Figure 2.3.3, the data is transformed via

either Symbolic Aggregate Approximation (SAX) [43] or SFA before being used

to train a SEQL classifier. The window length, l, is adjusted before each addition

to the ensemble. During testing each instance is transformed accordingly before

being classified by the appropriate model. The output probability distribution is

then the per-class mean over all models.

The SEQL learner was developed for the classification of biological sequences such

as DNA and employs a tree-based approach coupled with a pruning strategy

to explore the feature space. As a result, the SFA and SAX approaches are

particularly well suited as tools for transformation into the symbolic space. The

Chapter 2: Background 33

Figure 2.3.3: A depiction of the MrSEQL classifier taken from [55].

SAX approach achieves this conversion by:

1. producing a piece-wise aggregated series;

2. creating a look-up table from the new series, in which the domain is divided

by alphabet length a; and

3. deriving the symbolic word, by looking up each aggregated value.

The process of aggregation and the creation of the look-up table is undertaken

before sliding a window of length l across the series. At each step, a word of

length w is derived and added to the symbolic representation. The SFA approach

achieves this conversion by:

1. Performing a discrete Fourier transform (DFT) on each window of the

instance;

2. creating an a×w look-up table in which the alphabet boundaries are distinct

for each letter index; and

3. deriving the symbolic word, by looking up each aggregated value.

Chapter 2: Background 34

The process of deriving the lookup table is undertaken after the DFT. The

alphabet boundaries are then calculated per word position index. As a result,

there are effective w alphabets of size a. MrSEQL can handle multivariate data

using the following strategy: During the prepossessing of data, dimensions are

processed sequentially and appended to one another creating n instances, each

one of size m× c.

MrSQM

MrSQM [57] is an extension of MrSEQL with added features. This includes 1)

The use of SFA and SAX to discretize time series subseries into words. 2) Uses

a trie to store and rank frequent substrings, 3) Applies either (a) a supervised

chi-squared test to identify discriminative words or (b) an unsupervised random

substring sampling method to prevent overestimating highly correlated substrings

that are likely to be redundant. As in the case of RDST, MrSQM was not included

in the experimentation.

2.4 Dictionary approaches

2.4.1 CBOSS

The Bag-of-SFA-Symbols (BOSS) [63] BOSS is an algorithm that compares

algorithms based on histograms of discretized words. The steps of BOSS are:

• Extracts substructures (patterns) from a time series. For multivariate data,

CBOSS extracts patterns from the different dimensions.

• Applies low pass filtering and quantization to the substructures, which

reduces noise and allows for string-matching algorithms to be applied

• Two time series are then compared based on the differences in the set of

noise-reduced patterns

Chapter 2: Background 35

CBOSS is an extension of BOSS that adds a contract time to limit the time for

extracting patterns.

2.4.2 WEASEL+MUSE

Originally a univariate time series classifier, Word Extraction for Time Series

Classification, WEASEL [65] was extended to include the Multivariate

Unsupervised Symbols and Derivatives, MUSE stage for MTSC. Words in the

form of unigrams and bigrams are extracted for all series and dimensions using

a sliding window for a range of window lengths. These words are extracted

using the Symbolic Fourier Approximation, SFA [64] with equi-depth or

equi-frequency binning. Words for the derivatives (differences between

neighboring points in the series) of each dimension are also taken and treated as

additional dimensions. The words for each dimension and window length are

concatenated into a single bag of words histogram for a series. Because the

histogram is specific to a series, we consider this an independent method. As

this process produces a lot of words with a presumed amount of redundancy

and to filter out unproductive dimensions, a χ2 test is used for feature selection.

The remaining words are used to build a logistic regression classifier.

A 10-fold cross-validation is performed to select parameters for the final

WEASEL+MUSE model. These are the word length l, the binning method b,

and whether to normalize each window p. The WEASEL+MUSE build process

is displayed in Algorithm 6.

2.4.3 Temporal Dictionary Ensemble (TDE)

Temporal Dictionary Ensemble (TDE) [52] is a dictionary classifier that includes

several novel features. This approach commonly adapts the bag-of-words model

used in other domains such as signal processing, computer vision, and audio

processing for time series data

Chapter 2: Background 36

Algorithm 6 WEASEL+MUSE(A list of n cases of length m with dimension d,
T = (X,y))

Parameters: the word length l, the alphabet size α, the maximal window length
wmax, mean normalisation parameter p, equi-depth or equi-frequency binning
b

1: Let H be a collection of n histograms h
2: Let B be a matrix of l by α breakpoints found using b
3: X′ ← addDerivativesAsDimensions(X)
4: for i← 1 to n do
5: for k ← 1 to 2d do
6: for w ← 2 to wmax do
7: for j ← 1 to m− w + 1 do
8: o← x′i,j,k . . . x

′
i,j+w−1,k

9: q← DFT(o, w, p) { q is a vector of the complex DFT coefficients}
10: r← SFAlookup(q,B)
11: pos←index(k,w, r)
12: hi,pos ← hi,pos + 1
13: h← χ2(h, y) { feature selection using the chi-squared test }
14: fitLogistic(h, y)

TDE is an ensemble of 1-NN classifiers that transforms each series into a

histogram of word counts. A sliding window of length w is run along each

series, and the subseries is discretized into a word of length l from an alphabet

of size α. TDE transforms the window using the Symbolic Fourier

Approximation (SFA). Distance between histograms is found using histogram

intersection. In addition to word frequencies, TDE also captures the frequencies

of bigrams found from non-overlapping windows. Thus a transformed instance

includes a histogram of word counts and bigram counts for a given trio of

parameters (w, l, α). TDE also includes some spatial information by the

utilization of spatial pyramids (Lazebnik et al., 2006). This involves splitting a

series into h levels each with 2v disjoint subseries, where v is the current

pyramid level. Word counts are found for each subseries independently, then the

resulting histograms are concatenated. The distance to histograms of deeper

levels with smaller spatial areas in the series is weighted higher than global

similarity. Bigrams are only recorded for the first level consisting of the full

series. The SFA transform requires a set of breakpoints when creating words.

The method of generating these breakpoints b is selected between Multiple

Coefficient Binning (MCB) and Information Gain Binning (IGB). Windows can

Chapter 2: Background 37

optionally be normalized during the transform with the p parameter. The TDE

ensemble is filtered into s total classifiers from k candidates. The accuracy of

each candidate is estimated using leave-one-out cross-validation (LOOCV), with

the highest s being retained. Diversity is achieved through altering the

parameters (w, l, h, b, p) for each new classifier and a 70% sampling of the train

data. The first 50 classifiers use randomly selected parameters, while those after

are selected using a Gaussian processes regressor. For unseen parameter sets, a

prediction of accuracy is made using the parameters of previously built

classifiers, with the highest predicted accuracy being chosen for the next

classifier build.

2.5 Deep learning

The 3-dimensional data is a natural fit as input for convolutional deep learning

approaches. Depending on how the convolutions are processed we can consider

these methods either independent or dependent. If the convolution extracts

features from all the dimensions we could consider it as a dependent case, if

only considering one dimension it can be considered as an independent method.

Deep learning methods have been one of the most successful methods in the last

years and it is a natural option for MTSC. Despite their strength and

popularity in handling 2D image data, a result of AlexNet’s performance on the

ImageNet dataset [38], deep learning approaches have only more recently been

heavily studied in the 1D time series domain. Knowledge gained from the

former can be utilised on the latter, and can now similarly be quickly

transferred to the multivariate time series case.

Chapter 2: Background 38

Figure 2.5.1: MLSTM-FCN architecture, figure from [32].

2.5.1 The Multivariate Long Short Term Memory Fully

Convolutional Network (MLCN).

This method combines two well-known deep learning architectures: long

short-term memory (LSTM) and convolutional networks (CN). LSTM are

recurrent networks, which work better on temporal data such as time series.

CN is an extension of the classical 3-layer feed-forward neural network but with

more layers, each learning some of the patterns. The learning algorithm back

propagates the error to each of the layers. Finally, both predictions are

combined. This is described in image 2.5.1. To adapt to MTSC a squeeze and

excitation block is added [33].

2.5.2 Residual Network (ResNet)

ResNet was first applied to time series classification in [71]. It is a network of

three consecutive blocks, each comprised of three convolutional layers, which are

connected by residual ‘shortcut’ connections that add the input of each block

to its output. Residual connections allow the flow of gradient directly through

the network, combating the vanishing gradient effect [29]. The residual blocks

are followed by global average pooling and softmax layers to form features and

Chapter 2: Background 39

Figure 2.5.2: An Inception module with example parameters, figure from [22].
Three of these are concatenated to form a block in InceptionTime.

subsequent predictions. We maintain all hyperparameter settings and optimizer

settings from the [21] evaluation.

2.5.3 InceptionTime

InceptionTime achieves high accuracy through a combination of building on

ResNet to incorporate Inception modules [67] and ensembling over five multiple

random-initial-weight instantiations of the network for greater stability [22]. A

single network out of the ensemble is composed of two blocks of three Inception

modules each, as opposed to the three blocks of three traditional convolutional

layers in ResNet. These blocks maintain residual connections and are followed

by global average pooling and softmax layers as before.

An Inception module is summarised in Figure 2.5.2. It takes an input

multivariate series of length m, dimensionality d, and first uses a bottleneck

layer with length and stride 1 to reduce the dimensionality to d′ < d while

maintaining output length m. This greatly reduces the number of parameters to

later learn. Convolutions of different lengths are applied to the output of the

bottleneck layer to find patterns of different sizes. The outputs of these

convolutions are combined with an additional source of diversity, a Max Pooling

followed by bottleneck (with the same value of d′) applied to the original time

series, and all stacked to form the dimensions of the output multivariate time

Chapter 2: Background 40

Figure 2.5.3: TapNet architecture, figure from [79].

series to be fed into the next layer.

2.5.4 Time Series Attentional Prototype Network (TapNet)

A novel approach aimed at tackling problems in the multivariate domain, the

TapNet architecture draws on the strengths of both traditional and deep

learning approaches. [79] notes that deep learning approaches excel at learning

low dimensional features without the need for embedded domain knowledge

whereas traditional approaches such as 1NN-DTW work well on comparatively

small datasets. TapNet combines these advantages to produce a network

architecture that can be broken down into three distinct modules: Random

Dimension Permutation, Multivariate Time Series Encoding, and Attentional

Prototype Learning.

Random Dimension Permutation is used to produce g groups of randomly selected

dimensions to increase the likelihood of learning how combinations of dimension

values affect class value. The group size is defined as ϕ = bm·αg c, where α is

the scale factor, controlling the number of dimensions used over m, where m is

the number of dimensions. This process is illustrated in Figure 2.5.3 where the

six input dimensions are reorganized into three groups of three. Experimentation

exploring the effect of this module found that in 22 out of 33 datasets in the UEA

Chapter 2: Background 41

multivariate archive, the accuracy was increased. However, it is unclear whether

it has a significant effect or whether the effect on accuracy is a function of dataset

characteristics.

Encoding in the TapNet architecture is undertaken in g + 1 stages before the

output features are concatenated and passed through two fully connected layers.

Each group produced in the dimension permutation module is passed through

three sets of one-dimensional convolutional layers followed by batch

normalization, Leaky Rectified Linear Units, and finally a global pooling layer.

For the first of these three sets the weights and bias are distinct for each group.

In addition to the group encoding process, the raw data is passed through an

LSTM and global pooling layer. The output from each of the global pooling

layers is then concatenated before being passed through two fully connected

layers. This process results in a low-dimensional feature representation of the

original series. The default filter values for the convolution layers are set as 256,

256, and 128 whilst the default kernel values are five, eight, and three. The

default value for the LSTM layer is 128. It is intended that interaction between

dimensions can be learned more effectively by the Random Dimension

Permutation process before the encoding is then combined, producing features

aligned with a dataset dimensions. Furthermore, the inclusion of the LSTM

layer is intended to learn longitudinal features.

Finally, for each class, a prototype candidate is produced. Although the

architecture does allow for unlabelled test data to be included in the prototype

derivation via Semi-supervised Attentional Prototype Learning. This feature

was not utilized. As a result, the class prototypes are defined solely by the

training data. The objective of the candidate production is to minimize the

distance to all members of the class which the prototype is produced for whilst

maximizing the distance between the prototypes. The probability of class

membership is then assigned to test instances as a function of their proximity to

each class prototype. In this case, the similarity is measured by way of

Euclidean distance.

Chapter 2: Background 42

2.6 Interval based

Interval-based approaches differ from previous approaches by extracting parts of

the time series that could be used to discriminate between classes in

combination with other techniques. This section focuses on Random Interval

Spectral Ensemble (RISE) 2.6.1, Canonical Interval Forest 2.6.2 and Diverse

Representation of Canonical Interval Forest 2.6.3

2.6.1 The Random Interval Spectral Ensemble (RISE)

RISE [23] is a tree-based ensemble time series classification algorithm, where

each tree is built on a distinct set of Fourier, autocorrelation, and partial

autocorrelation features.

RISE uses several forms of spectral features: the power spectrum, the

autocorrelation function, the partial autocorrelation, and the autoregressive

model. New classes are classified using a simple majority vote.

2.6.2 Canonical Interval Forest (CIF)

The Canonical Interval Forest, CIF [51] is an ensemble of time series tree [16]

classifiers built using the Canonical Time-Series Characteristics, Catch22 [49]

features and simple summary statistics extracted from phase dependant

intervals. The time series tree uses a simplistic tree structure, comparing all

attributes at each node and performing no pruning. However, the tree

introduces a novel tie-breaking measure in the form of entrance gain. Catch22 is

a set of 22 highly discriminative and low redundancy features extracted from

the 7000+ time series features available in the Highly Comparative Time Series

Analysis (hctsa) toolbox [24].

To create a diverse ensemble, a summary features of the 25 available are randomly

subsampled and k intervals of random length and start point are selected to build

Chapter 2: Background 43

each tree. CIF was extended for MTSC by randomly selecting the dimension each

interval extracted from. The build process for the CIF ensemble is described in

Algorithm 7.

Algorithm 7 Canonical Interval Forest(A list of n cases of length m with d
dimensions, T = (X,y))

Parameters: the number of trees, r, the number of intervals per tree, k, and the
number of attributes subsampled per tree, a (default r = 500, k =

√
d ·
√
m,

and a = 8)
1: Let F = (F1 . . .Fr) be the trees in the forest
2: for i← 1 to r do
3: Let S be a list of n cases (s1 . . . sn) with a · k attributes
4: Let U be a list of a randomly selected attribute indices (u1 . . . ua)
5: for j ← 1 to k do
6: b = rand(1,m− 3)
7: l = rand(b+ 3,m)
8: o = rand(1, d)
9: for t← 1 to n do

10: for c← 1 to a do
11: if uc <= 22 then
12: st,a(j−1)+c = c22Feature(uc,Xt,o,b, l)
13: else
14: st,a(j−1)+c = tsfFeature(uc,Xt,o,b, l)
15: Fi.buildT imeSeriesTree([S, y])

2.6.3 Diverse Representation Canonical Interval Forest (DrCIF)

The Diverse Representation Canonical Interval Forest (DrCIF) is an interval-

based ensemble and an extension of its prototype version, the Canonical Interval

Forest (CIF). Interval-based classifiers extract phase-dependent subseries, aiming

to find discriminatory features over different intervals. For time series of length

m there are m(m−1)
2 possible intervals that can be extracted.

The base classifier for DrCIF is a simple information gain-based tree used in TSF.

Features from the tree are derived from multiple intervals taken from the base

series, the first-order difference series and the periodograms of the whole series.

Intervals from each are randomly selected. Seven basic summary statistics are

part of a pool of possible features extracted from an interval of any one of the

three representations. These are: the mean; standard-deviation; slope; median;

Chapter 2: Background 44

inter-quartile range; min; and max. DrCIF adds the catch-22 features to this

selection of summary statistics to form a candidate pool of 29 features. out of

the 29 features available are randomly selected for each tree. For each of the

3 representations, k phase-dependent intervals with randomly selected positions

and lengths are extracted. The selected features are then calculated from each

interval. These features are concatenated into a 3 · k · a length vector for each

series, and the new dataset is used to build the tree. Diversity is achieved by

providing each base classifier with different intervals and a different subset of the

29 features.

Generally, we select k as a function of the representation series length rm. Each

representation will differ in its length, with the periodogram being half the size

of the base series and the differences having one less value. As such it is likely the

number of intervals selected for each representation will differ. For multivariate

data, DrCIF randomly selects the dimension used for each interval.

2.7 Heterogeneous ensembles

An ensemble uses several classifier predictions and makes a final prediction

based on the specific predictions on each component. The ensembles can be

homogeneous (versions of the same classifier) or heterogeneous (using different

classifiers). The ensembles are a natural way to extend the functionality of

current MTSC approaches by combining several classifiers into one. The final

decision can be based, for example, on a majority vote, or a weighted decision

based on component importance. Some of the algorithms presented in the

previous section are homogeneous. This section focuses on the most important

heterogeneous ensembles: HIVE-COTE version 1 2.7.1, version 2 2.7.2 and

independent 2.7.3.

Chapter 2: Background 45

Figure 2.7.1: An example of a HIVE-COTE 2 prediction taken from [53].

2.7.1 HIVE-COTE 1

HIVE-COTE version 1 [3] is a heterogeneous ensemble of four classifiers that

combine to improve the probability of an example belonging to a class. On all

HIVE-COTE variants, the probability is obtained using Cross-validation

Accuracy Weighted Probabilistic Ensemble (CAWPE) [42]. This version

includes as classifiers Shapelet Transform Classifier (STC) [30]; Time Series

Forest (TSF) [16]; Contracted Bag of Symbolic-Fourier Approximation Symbols

(CBOSS) [63] and Random Interval Spectral Ensemble (RISE)[46].

2.7.2 HIVE-COTE 2

The second version of HIVE-COTE modified three of four classifiers were replaced

and only STC remained, The classifiers added are Temporal Dictionary Ensemble

(TDE) 2.4.3, Diverse Representation Canonical Interval Forest (DrCIF) 2.6.3 and

Arsenal 2.3.2.

Chapter 2: Background 46

2.7.3 HIVE-COTE Independent

As mentioned earlier, one of the most straightforward techniques to adapt TSC

algorithms to multivariate is to consider independence over dimensions and ignore

relations among them. This approach can be a good baseline for assessing bespoke

MTSC.

In this approach, each component builds a separate classifier on every dimension,

then combines the predictions from each dimension to produce a single probability

distribution for each component using CAWPE [42].

3

The UCR/UEA MTSC Archive

Chapter 3: The UCR/UEA MTSC Archive 48

Contributing publications

• Alejandro Pasos Ruiz, Michael Flynn, and Anthony J. Bagnall.

Benchmarking multivariate time series classification algorithms. ArXiv

e-prints, ArXiv:2007.13156, 2020 [60]

3.1 Introduction

There has been an increase in data caused by the facility to obtain it from many

sensors such as mobile phone accelerometers, medical devices, sound waves, etc.

These are natural sources of data for MTSC given they are temporally ordered

data and usually, there are several different sensors used on the classification

problem. Therefore, it is important to have an archive that can include many

different types of problems and ease the process of testing and comparing the

newest algorithms.

There have been several efforts to generate an archive of problems. For example,

[5] presented a list of univariate and multivariate problems. The most important

is the UEA/UCR [12] archive for univariate problems. It contains data for several

problem types and includes over 100 problems from several domains.

In 2018, the researchers at UEA started a repository of problems to be used as

standard benchmarking MTSC algorithms. In this chapter, we will introduce a

list of 33 problems in this repository categorized by sensor type (accelerometer,

medical scan, handwriting, gesture recognition, sound, and others). This list of

problems is presented in table 6.2. Details can be found on the associated website

1.

This chapter and the contributing paper collaborate with the effort of creating a

reliable archive for MTSC problems to help researchers have comparable results

to improve the quality of the algorithms. Specifically, some of the datasets had

1https://www.timeseriesclassification.com

Chapter 3: The UCR/UEA MTSC Archive 49

Table 3.1: Summary of the 33 datasets in the 2018 version used in
experimentation.

Name Train size Test size Num Series Series length Classes

AWR ArticularyWordRecognition 275 300 9 144 25

AF AtrialFibrillation 15 15 2 640 3

AOC AsphaltObstaclesCoordinates 390 391 3 Variable 4

APTC AsphaltPavementTypeCoordinates 1054 1055 3 Variable 3

ARC AsphaltRegularityCoordinates 751 751 3 Variable 2

BM BasicMotions 40 40 6 100 4

CT CharacterTrajectories 1422 1436 3 Variable 20

CR Cricket 108 72 6 1197 12

DDG DuckDuckGeese 50 50 1345 270 5

EW EigenWorms 128 131 6 17984 5

EP Epilepsy 137 138 3 206 4

EC EthanolConcentration 261 263 3 1751 4

ER ERing 30 270 4 65 6

FD FaceDetection 5890 3524 144 62 2

FM FingerMovements 316 100 28 50 2

HMD HandMovementDirection 160 74 10 400 4

HW Handwriting 150 850 3 152 26

HB Heartbeat 204 205 61 405 2

IW InsectWingbeat 30000 20000 200 Variable 10

JV JapaneseVowels 270 370 12 Variable 9

LIB Libras 180 180 2 45 15

LSST LSST 2459 2466 6 36 14

MI MotorImagery 278 100 64 3000 2

NATO NATOPS 180 180 24 51 6

PD PenDigits 7494 3498 2 8 10

PEMS PEMS-SF 267 173 963 144 7

PS PhonemeSpectra 3315 3353 11 217 39

RS RacketSports 151 152 6 30 4

SRS1 SelfRegulationSCP1 268 293 6 896 2

SRS2 SelfRegulationSCP2 200 180 7 1152 2

SAD SpokenArabicDigits 6599 2199 13 Variable 10

SWJ StandWalkJump 12 15 4 2500 3

UW UWaveGestureLibrary 120 320 3 315 8

The UEA MTSC archive [1] released in 2018 contains multivariate datasets, of
which seven are not all equal in length.

inconsistencies and small errors that made them fail on some algorithms. Some

of the fixes involved removing outliers and incorrect values. In some cases, adjust

the data to have an equal length which helps some algorithms, Finally, convert the

data into different file formats while preserving the equality of the information.

Chapter 3: The UCR/UEA MTSC Archive 50

Figure 3.2.1: Multivariate time series example for asphalt problems extracted
from [13]

In addition, a new problem grouping based on the type of problem was added.

The purpose of this is to discover if some algorithms perform better in specific

types of problems. In the rest of the Chapter, we introduce this grouping and a

brief description of each problem.

3.2 Accelerometer data

The fast adoption of mobile devices that integrate accelerometers and gyroscopes

has made it easy to use this sensor on a variety of MTSC problems. Generally,

these problems gather the variation of movement on 3 axes (x, y, z).

3.2.1 Asphalt

This is a series of 3 problems [13] related to asphalt classification which can be

seen in figure 3.2.1. In this project, data from cellular phone’s accelerometers

were used to determine certain properties on asphalt which were:

• Regularity: Two class problem that determine if a pavement is regular or

deteriorated

• Pavement type: The idea is to detect if the street is made of pavement,

cobblestone, or dirty road

• Obstacles: In this case, the goal is to detect if the street contains a speed

Chapter 3: The UCR/UEA MTSC Archive 51

Figure 3.2.2: Multivariate time series example for basic motions extracted from
[1]

Figure 3.2.3: Multivariate time series example for epilepsy extracted from [1]

bump, vertical patch, pavement markers, or crosswalk.

This project used 1-NN combined with several distance-based functions such as

dynamic time wrapping, derivative time wrapping, derivative transform function,

and longest common sub-sequence. To get the amplitude invariant the same, a

complexity invariant correction factor was added to the distance function.

3.2.2 Basic Motions

This student project is shown in figure 3.2.2 which has the goal of predicting if a

person is walking, resting, running, or playing badminton using the accelerometer

sensors of a mobile device.

Chapter 3: The UCR/UEA MTSC Archive 52

Figure 3.2.4: Multivariate time series example for cricket extracted from [1]

Figure 3.2.5: Multivariate time series example for racket sports extracted from
[1]

3.2.3 Epilepsy

The main goal of this problem is to detect if a person is having an epilepsy

attack compared to performing another activity such as walking, sawing, etc.[69].

In figure 3.2.3 there are some signal examples extracted from this problem.

3.2.4 Cricket

The problem looks to automatically detect which signal is sent by a cricket

umpire. In figure 3.2.4 we can see some examples of these signals. The data was

collected by placing accelerometers on each wrist of cricket umpires [37].

3.2.5 Racket sports

This student problem aims to identify which stroke the players are making. An

example of this movement can be seen in figure 3.2.5. The data is obtained from

an accelerometer and gyroscope of a smartwatch.

Chapter 3: The UCR/UEA MTSC Archive 53

Figure 3.3.1: Multivariate time series example for atrial fibrillation extracted
from [1]

Figure 3.3.2: Multivariate time series example for face detection extracted from
[1]

3.3 Medical scan data

Many specialized medical devices generate data that can be considered as a

multivariate time series to help detect several health problems.

3.3.1 Atrial fibrillation

This problem looks to predict spontaneous termination of atrial fibrillation (AF)

[26] using electrocardiogram (ECG) signals. In figure 3.3.1 there is an example

of an ECG signal.

3.3.2 Face detection

This problem uses brain scans as shown in figure 3.3.2 to detect if it belongs to a

normal brain or a scrambled using Magnetoencephalography (MEG) device [58].

Chapter 3: The UCR/UEA MTSC Archive 54

Figure 3.3.3: Multivariate time series example for finger movements extracted
from [1]

Figure 3.3.4: Multivariate time series example for hand movement direction
extracted from [1]

3.3.3 Finger movements

This problem also uses scans to predict the finger movements of a person using

its index and little finger [6]. A series of different sensors are put in a person’s

head to scan the activity. This can be seen in figure 3.3.3.

3.3.4 Hand movement direction

This problem looks to predict which direction a hand is moved but in this case,

the sensors are obtained using a Magnetoencephalography (MEG) device [7].

3.3.5 Heart beat

This problem looks to classify a normal heartbeat from an abnormal [47]. The

data is obtained by recording the heartbeat from different parts of the body.

Chapter 3: The UCR/UEA MTSC Archive 55

Figure 3.3.5: Multivariate time series example for heartbeat extracted from [1]

Figure 3.3.6: Multivariate time series example for motor imagery extracted from
[1]

3.3.6 Motor imagery

In this problem, the goal is to detect different states concerning the motivation of

a person [40]. The data is obtained using Electrocorticography (ECoG) scanning

and this can be seen in figure 3.3.6.

3.3.7 Stand walk jump

This problem looks to detect if a person is standing, walking, or a jump. Instead

of using an accelerometer, this problem uses electrocardiogram (ECG) scans. The

sensors are aligned to the hearth as can be seen on figure 3.3.7

3.3.8 Self regulations 1 and 2

In this problem, a person was asked to move a cursor up and down on a computer

screen, while his cortical potentials were taken. During the recording, the subject

Chapter 3: The UCR/UEA MTSC Archive 56

Figure 3.3.7: Multivariate time series example for stand walk jump extracted
from [1]

Figure 3.3.8: Multivariate time series example for self-regulations 1 extracted
from [1]

received visual feedback on his slow cortical potentials (Cz-Mastoids). Cortical

positivity leads to a downward movement of the cursor on the screen. Cortical

negativity leads to an upward movement of the cursor [54].

3.4 Handwriting problems

Handwritten character detection has been one of the most studied problems in

machine learning. One way to solve this problem is to consider the way the

character is generated as a time series.

3.4.1 Character Trajectories

This dataset was obtained from the UCI repository and is used as a character

detection problem. The data obtained is the coordinates (x,y,z) trajectory of

handwriting characters. An example of this trajectory is shown in figure 3.4.1

Chapter 3: The UCR/UEA MTSC Archive 57

Figure 3.3.9: Multivariate time series example for self-regulations 2 extracted
from [1]

Figure 3.4.1: Multivariate time series example for character trajectories 1
extracted from [1]

In other work, this data has been used to solve the problem of character generation

[73] [74] [75] using Hidden Markov Models but that problem is not considered

here. This dataset is used to determine which character is being written based

on its trajectory.

3.4.2 Handwriting

A data set of motion taken from a smartwatch whilst the subject writes the 26

letters of the alphabet created at UCR [66]. An example of this data can be seen

in figure 3.4.2

3.4.3 Pen digits

Another handwritten problem but in this case are the digits that need to be

classified using the (x,y) position of the pen movement on the plane. [20]. Some

examples are shown in figure 3.4.3

Chapter 3: The UCR/UEA MTSC Archive 58

Figure 3.4.2: Multivariate time series example for handwriting extracted from [1]

Figure 3.4.3: Multivariate time series example for pen digits extracted from [1]

3.5 Gesture recognition

These types of problems are focused on detecting a type of movement made by

a person using a part of their body mostly by the hands.

3.5.1 Ering

This problem is about detecting hand and finger gestures [72]. The data is

obtained using electric field sensing on the hand movement. Examples of these

gestures are shown in figure 3.5.1

3.5.2 NATOPS

These problems classify distinct gestures [25] using the (x,y,z) trajectories of a

person on different parts of their body. Some of these gestures are shown in figure

Chapter 3: The UCR/UEA MTSC Archive 59

Figure 3.5.1: Multivariate time series example for e-ring extracted from [1]

Figure 3.5.2: Multivariate time series example for NATOPS extracted from [1]

3.5.2

3.5.3 UWave gesture library

In this problem, 8 gestures taken from mobile devices are required to be learned

[48]. Examples of these gestures can be seen in figure 3.5.3. This project uses the

DTW algorithm to classify the gestures and discretize the data to reduce float

calculations.

3.5.4 Libras

Again, this is another sign-detecting language problem that focuses on the

Portuguese sign language [11]. Information is processed using video of the

recording of the signals.

Chapter 3: The UCR/UEA MTSC Archive 60

Figure 3.5.3: Multivariate time series example for uwave gesture library extracted
from [1]

Figure 3.5.4: Multivariate time series example for libras extracted from [1]

3.6 Sound data

Recorded sound waves are considered time series problems. When there are

several channels of recording the problem becomes multivariate.

3.6.1 Duck duck gees

This problem looks to predict a specific wild bird based on their sound 2. The

data is obtained from recording the sounds of birds and is processed to convert

the sound wave as multivariate time series data.

3.6.2 Japanese vowels

This problem looks to classify which vowel is written by a person [39]. The data

is obtained by processing the sound made.

2https://xeno-canto.org/

Chapter 3: The UCR/UEA MTSC Archive 61

Figure 3.6.1: Multivariate time series example for duck duck geese extracted from
[1]

Figure 3.6.2: Multivariate time series example for Japanese vowels extracted from
[1]

3.6.3 Insect wing beat

This problem looks to classify an insect type based on the sound recorded by

passing through different sensors [76].

3.6.4 Phoneme spectra

Based on different recorded sounds, this problem looks to classify different

phonemes [31].

3.6.5 Spoken Arabic digits

This is a sound recognition problem that looks to detect Arabic spoken digits

[28]. The data is obtained by processing the sound waves from different speakers.

Chapter 3: The UCR/UEA MTSC Archive 62

Figure 3.6.3: Multivariate time series example for insect wing beat extracted from
[1]

Figure 3.6.4: Multivariate time series example for phoneme spectra extracted
from [1]

3.7 Other sensors

In addition to the mentioned categories, some problems use problem-specific

sensors that cannot be categorized. This section gives a general overview of

these problems and the sensors used.

3.7.1 Articulary word recognition

This problem consists of predicting a word based on the movement made by the

tongue and lips when a person pronounces the word. The data was collected on

sensors put in the tongue and lips of some participants [70] which can be seen in

figure 3.7.1. In that work, a supported vector machine algorithm was used and

the data was transformed using symbolic aggregation approximation to reduce

the dimension of the problem.

Chapter 3: The UCR/UEA MTSC Archive 63

Figure 3.7.1: Multivariate time series example for articulary word recognition
extracted from [1]

Figure 3.7.2: Multivariate time series example for ethanol concentration extracted
from [1]

3.7.2 Ethanol concentration

The goal of this problem is to determine the alcohol concentration of a sample

contained within an arbitrary bottle [41]. The data is obtained using sensors that

detect the ethanol level of a specific bottle. These sensors can be seen in figure

3.7.2

3.7.3 Eigen worms

The goal of this problem is to detect the type of a worm based on information

from its motion [18]. The data is obtained by recording the movements of the

worms.

Chapter 3: The UCR/UEA MTSC Archive 64

Figure 3.7.3: Multivariate time series example for eigen worms extracted from [1]

Figure 3.7.4: Multivariate time series example for LSST extracted from [1]

3.7.4 LSST

The project looks to classify astronomical simulated data to prepare when the

data from the Large Synoptic Survey Telescope (LSST).

3.7.5 PEMS-SF

This problem is classified as the correct day of the week based on the information

on the car occupancy lane rate in the San Francisco area [10]. An example of the

data can be seen in figure 3.7.5

Chapter 3: The UCR/UEA MTSC Archive 65

Figure 3.7.5: Multivariate time series example for PEMS-SF extracted from [1]

4

MTSC bake-off

Chapter 4: MTSC bake-off 67

Contributing publications

• Alejandro Pasos Ruiz, Michael Flynn, James Large, Matthew

Middlehurst, and Anthony J. Bagnall. The great multivariate time series

classification bake off: a review and experimental evaluation of recent

algorithmic advances. Data Mining and Knowledge Discovery, 35:401 –

449, 2021. [62]

4.1 Introduction

In the previous chapter, a list of MTSC problems was introduced to have a

standard way of testing MTSC algorithms. This chapter presents a benchmark

experiment conducted in 2018 that includes the most relevant algorithms in the

state of the art on MTSC.

The first contribution of this paper was to search for the main algorithms for

MTSC. The second contribution is the experiments developed on this group of

problems-algorithms. At the moment of the writing of the thesis, the univariate

bakeoff was the only similar experiment but applied to a different archive of

problems. The third contribution is to present a methodology that aims to

allow to replicate of the results of the experiments followed by an analysis by a

comparison of the results and an analysis by problem.

4.2 Methodology

This experiment uses 26 datasets with fixed series lengths. Each dataset is

provided with a default split of train and test datasets. Table 4.1 shows the

number of train and test instances for each of the datasets used.

Each experiment is limited to a maximum seven-day execution time and 500

GB of memory. Each dataset was resampled 30 seeded by sample index. Two

Chapter 4: MTSC bake-off 68

Table 4.1: Summary of the 26 datasets used in the benchmark.

Name Train size Test size Num Series Series length Classes

AWR ArticularyWordRecognition 275 300 9 144 25

AF AtrialFibrillation 15 15 2 640 3

BM BasicMotions 40 40 6 100 4

CR Cricket 108 72 6 1197 12

DDG DuckDuckGeese 50 50 1345 270 5

EW EigenWorms 128 131 6 17984 5

EP Epilepsy 137 138 3 206 4

EC EthanolConcentration 261 263 3 1751 4

ER ERing 30 270 4 65 6

FD FaceDetection 5890 3524 144 62 2

FM FingerMovements 316 100 28 50 2

HMD HandMovementDirection 160 74 10 400 4

HW Handwriting 150 850 3 152 26

HB Heartbeat 204 205 61 405 2

LIB Libras 180 180 2 45 15

LSST LSST 2459 2466 6 36 14

MI MotorImagery 278 100 64 3000 2

NATO NATOPS 180 180 24 51 6

PD PenDigits 7494 3498 2 8 10

PEMS PEMS-SF 267 173 963 144 7

PS PhonemeSpectra 3315 3353 11 217 39

RS RacketSports 151 152 6 30 4

SRS1 SelfRegulationSCP1 268 293 6 896 2

SRS2 SelfRegulationSCP2 200 180 7 1152 2

SWJ StandWalkJump 12 15 4 2500 3

UW UWaveGestureLibrary 120 320 3 315 8

.

toolkits were used: tsml 1 based on Java an aeon 2 based on Python. The list

of which algorithm is implemented in a toolkit is presented on the table‘4.2.

All algorithms presented in the background chapter were included. The default

parameters were used on each algorithm. The list of the algorithms and their

parameters are presented in table A.1. Some algorithms include as a parameter

the option of normalizing or not the data. On that consideration, early results

suggested that there is no improvement over normalizing data, therefore, the data

were not normalized in any experiment. Some algorithms internally normalize

the data. If this is the case we consider the normalization as part of the training

1https://github.com/time-series-machine-learning/tsml-java
2https://github.com/aeon-toolkit/aeon

Chapter 4: MTSC bake-off 69

Table 4.2: Classifier availability in the two toolkits tsml and aeon.

Algorithm tsml aeon

DTW D X X

DTW I X X

DTW A X

MUSE X

gRFS X

MrSEQL X

ROCKET X

CIF X X

TapNet

ResNet X

InceptionTime X

CBOSS X X

STC X X

RISE X X

TSF X X

HIVE-COTE X X

process.

4.3 Evaluation

For evaluation, the critical difference (CD) diagrams [15] based on different

metrics will be used as they are the standard approach to compare multiple

problems on multiple algorithms.

CD diagrams consist of two parts: 1) algorithm rank and 2) statistical significance

test. For the first step, CD calculates the algorithm performance on a specific

problem based on the position based on a metric. These positions are averaged

and given a score in the range (1,m) where m is the number of classifiers, the

lower the score the better. To verify if two classifiers have statistical significance,

Chapter 4: MTSC bake-off 70

the Wilcoxon-Signed test was used. In the diagram, there is a horizontal line for

each group of algorithms that does not have statistical significance.

The metrics to be considered in this work are the most commonly used in machine

learning literature:

• Accuracy: The proportion of correctly classified over the total test set

• Balanced accuracy: It is the same as the previous but adds a pondering the

proportion of the class over the complete test set

• Area Under the Receiving Operating Characteristic (AUROC): It is a

metric that aims to calculate the separation between classes.

• F1: This score aims to balance two other metrics: Precision (measures how

many of the positive predictions were correct) and recall (measures how

many of the positive class samples present in the dataset were correctly

identified).

4.4 Results

We could not obtain results for all algorithms on all datasets within our

constraints. DTWA did not complete Eigenworms within the seven-day limit,

and InceptionTime could not complete Eigenworms due to out-of-memory

errors on the GPU. MrSEQL failed to finish FaceDetection and

PhonemeSpectra in time. TapNet completed 23 datasets, but could not allocate

enough memory for PhonemeSpectra, EigenWorms and MotorImagery. The

bottleneck for MUSE is memory. It failed to complete six problems:

DuckDuckGeese; EigenWorms; FaceDetection; MotorImagery; PEMS-SF; and

PhonemeSpectra. We ran gRSF with default parameters on all datasets without

problems. However, tuning with the recommended parameter ranges [34] proved

infeasible. Only nine of the 26 experiments were completed in seven days.

Chapter 4: MTSC bake-off 71

It is possible we could have engineered these algorithms and their parameter

spaces to work on the problematic datasets. However, our goal is to test classifiers

based on the configuration recommended by the original authors. We do not

want to bias our results by optimizing algorithms for particular datasets. All 16

classifiers completed 20 problems, and 11 classifiers completed all 26 problems.

We could have given the algorithms more than seven days to run for the missing

problems. However, none of these problems are truly large by modern data

standards (the biggest train file is 500MB), and a seven-day run with no external

tuning seems a reasonable limit.

We selected DTWD as the baseline classifier for the benchmark given the

reliability of dynamic time warping applied to time series and the dependant

version to consider the value of all dimensions in MTSC.

4.4.1 Comparison of Eleven Classifiers on Twenty-Six Datasets

Figure 4.4.1 shows the critical difference diagrams for the 11 classifiers that

completed all 26 problems. The top clique is (ROCKET, HC1, CIF, ResNet)

and the top three classifiers are all significantly more accurate than the baseline

DTWD. The middle cliques indicate that there is no significant difference

between DTWD and any of the other classifiers except DTWI , which is

significantly worse. Balanced accuracy and F1 give a very similar pattern of

results, indicating class imbalance is not a factor. DTWD and DTWI cannot be

judged by AUROC, since they do not provide probabilities with which to order

the instances. AUROC demonstrates that the top three algorithms in terms of

accuracy are significantly better than all others at ordering the data. We also

compared all classifiers using a paired Student’s t-test. For α = 0.05, there

would only be two different decisions: STC is not significantly worse than

ROCKET with a t-test but is with a sign rank test, and CBOSS is significantly

worse than STC with a sign rank test, but not with a t-test. Critical difference

diagrams can sometimes mask differences between individual classifiers, because

Chapter 4: MTSC bake-off 72

(a) Accuracy

11 10 9 8 7 6 5 4 3 2 1

3.3269 ROCKET
3.9423 HIVE-COTE
4.2308 CIF
5.3269 ResNet
5.7115 STC
6.4038 DTW

D

6.4038gRSF
7.0577TSF
7.1538CBOSS
7.4808RISE
8.9615DTW

I

(b) AUROC

11 10 9 8 7 6 5 4 3 2 1

3.3077 HIVE-COTE
3.5 CIF

3.7885 ROCKET
4.8846 ResNet
4.8846 STC
5.8077 CBOSS

6.2308gRSF
6.6923TSF
6.9231RISE
9.6346DTW

D

10.3462DTW
I

(c) Balanced Accuracy

11 10 9 8 7 6 5 4 3 2 1

3.3654 ROCKET
4.1731 HIVE-COTE
4.3462 CIF
4.8269 ResNet
5.9615 STC
6.0577 DTW

D

6.4038gRSF
7.1923TSF
7.3846CBOSS
7.5962RISE
8.6923DTW

I

(d) F1

11 10 9 8 7 6 5 4 3 2 1

3.4038 ROCKET
4.0769 HIVE-COTE
4.4231 CIF
5.2115 ResNet
5.7308 STC
6.3269 DTW

D

6.4808gRSF
7.1731CBOSS
7.2308TSF
7.2885RISE
8.6538DTW

I

Figure 4.4.1: Critical difference diagrams for 11 classifiers on the 26 equal length
UEA datasets using pairwise Wilcoxon test to form cliques.

Chapter 4: MTSC bake-off 73

of the nature of forming cliques. It is worthwhile, therefore, presenting p-values

and summarising accuracy distributions. Table 4.3 presents the pairwise

p-values for all 11 combinations, with the upper diagonal being sign rank and

the lower diagonal the t-test. Note that in this table no adjustments for

multiple testing have been made. The top clique using t-test would now include

STC, but there are few practical differences.

RCKT HC CIF ResNet STC DTWD gRSF TSF CBOSS RISE DTWI

RCKT 0.0000 0.1742 0.5506 0.0619 0.0283 0.0004 0.0004 0.0039 0.0006 0.0024 0.0000

HC 0.9128 0.0000 0.5338 0.1285 0.0585 0.0092 0.0023 0.0004 0.0000 0.0003 0.0000

CIF 0.6660 0.6402 0.0000 0.2692 0.0520 0.0043 0.0009 0.0006 0.0017 0.0001 0.0001

ResNet 0.0759 0.1246 0.1184 0.0000 0.9899 0.3282 0.5812 0.5506 0.2277 0.1500 0.0092

STC 0.4282 0.0621 0.0580 0.4512 0.0000 0.1068 0.1513 0.0578 0.0074 0.0020 0.0004

DTWD 0.0005 0.0159 0.0166 0.2989 0.1630 0.0000 0.4091 0.8689 0.7509 0.6204 0.0022

gRSF 0.0003 0.0168 0.0041 0.7645 0.1532 0.5509 0.0000 0.5338 0.5338 0.1218 0.0010

TSF 0.0039 0.0044 0.0006 0.6544 0.0837 0.7847 0.7881 0.0000 0.6938 0.5338 0.0230

CBOSS 0.0008 0.0022 0.0037 0.3621 0.0669 0.9258 0.5020 0.7520 0.0000 0.3949 0.0054

RISE 0.0024 0.0008 0.0000 0.3258 0.0044 0.6638 0.1534 0.3549 0.4838 0.0000 0.1307

DTWI 0.0000 0.0001 0.0001 0.0036 0.0009 0.0074 0.0028 0.0096 0.0042 0.1013 0.0000

Table 4.3: P-values for pairwise tests between classifiers. The upper diagonal
values are found using the Wilcoxon sign-rank test. The lower diagonal is found
using a paired t-test. So, for example, the p-value for STC vs CBOSS is 0.0074
using a sign rank test, but 0.0669 with a paired t-test. Classifiers are ordered by
overall rank, so a p-value below the critical value for STC vs CBOSS indicates
STC is significantly more accurate on these data.

The differences in accuracy between the complete classifiers and DTWD are

summarised in Figure 4.4.2. Here we can see some of the widespread of relative

performances by classifiers over the datasets. STC has the widest distribution

of difference in accuracies which explains the fact that STC has the biggest

difference in test results between sign rank and t-test shown in Table 4.3.

Figure 4.4.3 demonstrates this further for the top clique of classifiers and shows

scatter plots of test accuracies against the DTWD baseline. ROCKET is better

on 22 and worse on 3, with a mean difference of 5.9% and a median difference of

3.3%. HC1 is better on 17 and worse on 9, with a mean difference of 5.8% and

a median difference of 3.28%. CIF is better on 19 and worse on 7 with a mean

difference of 6.5% and a median difference of 3.18%. ResNet is better on 14 and

Chapter 4: MTSC bake-off 74

RCKT HC CIF RsNet STC gRSF TSF CBOSS RISE DTW_I

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

D
iff

er
en

ce
 in

 a
cc

ur
ac

y
to

 D
T

W
D

Figure 4.4.2: Box plots of the differences in accuracy relative to DTWD over
datasets.

worse on 12 with a mean difference of 1.7% and a median difference of 0.45%.

Table 4.4 gives the detailed results for the three classifiers significantly better than

DTWD, including the standard error over resamples. This table demonstrates

that there will still be problems, such as HandWriting, where DTWD is the

best approach but that, lacking any extra information, the other algorithms will

generally give significantly more accurate classifiers. While ROCKET and HC1

lose by a relatively smaller margin when DTWD does outperform them, the

HandWriting case shows that CIF has a much clearer gap in the types of problems

it can effectively handle.

Run times are hard to compare because of both software and hardware differences.

Nevertheless, to get some idea of the relative performance, we recorded run time

for all experiments. Table 4.5 gives the summary run time information, and

Figure 4.4.4 plots accuracy against runtime.

ROCKET lives up to its name: it is by far the fastest algorithm and remarkably

Chapter 4: MTSC bake-off 75

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DTW_D ACC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
O

C
K

E
T

 A
C

C

ROCKET
is better here

DTW_D
is better here

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DTW_D ACC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
IV

E
-C

O
T

E
 A

C
C

HIVE-COTE
is better here

DTW_D
is better here

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CIF ACC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
T

W
_D

 A
C

C

DTW_D
is better here

CIF
is better here

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DTW_D ACC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
es

N
et

 A
C

C

ResNet
is better here

DTW_D
is better here

Figure 4.4.3: Scatter plots of the accuracy of ROCKET, HC1, CIF, and ResNet
against DTWD.

can build a model for all 26 data sets in just over an hour. If it is set to be

threaded, it completes 30 resamples of the 26 problems in less than two hours.

Given its accuracy, this seems strong evidence to support it as a new baseline.

CIF is much slower, requiring about 6 days for all the problems, but it averages

around 5 hours per problem. HC1 is by far the slowest and if run sequentially

would take over a year to complete all the problems. Strictly speaking, it would

violate our run time constraints if we ran it in this way. However, we included it

here because we did not run it sequentially. We ran each component/dimension

combination independently and in parallel. The nature of dimension-independent

ensembles makes this much easier to do than with algorithms such as MUSE and

TapNet. It is also noteworthy that STC is the slowest component, but that is due

to our parameter choice. STC is contracted and defaults to 24 hours of compute

time on each dimension. For high-dimensional problems, this would lead to huge

run times if completed sequentially. However, it is hardly ever necessary to search

for shapelets for 24 hours. Table 4.5 shows that, on average, STC is 4.06% more

Chapter 4: MTSC bake-off 76

accurate than DTW, but overall, it is not significantly better. This demonstrates

that there are problems where a specific representation is much better.

ROCKET

gRSF CBOSS

ResNet

CIF

RISE

TSF

STC

HIVE-COTE

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 10 100 1000 10000 100000

A
cc

u
ra

cy
 D

if
fe

re
n

ce

Train Time (Hours)

Figure 4.4.4: Average difference in accuracy to DTWD vs train time for 9 MTSC
algorithms.

Memory usage is even harder to determine, since we are concerned with the

maximum memory used during a run, not just the final memory footprint of

the classifier. We can record the maximum memory usage in tsml, but this

capability is not yet in aeon and its variants. Table 4.6 shows the maximum and

total memory usage of eight tsml classifiers. HC1 is the most memory-intensive

classifier, but even HC1 requires at most 3.5 GB (MotorImagery) and just 21GB

for all problems. Memory is not a significant constraint for these classifiers.

To summarise, only three of the ten classifiers able to complete all problems are

significantly more accurate than the baseline DTWD (ROCKET, CIF, and

HC1). Figure 4.4.5 shows the relative performance of ROCKET against CIF

and HC1. These figures show that ROCKET consistently beats the other two,

but that when it fails, it tends to fail badly. This is demonstrated by the fact it

is marginally worse on average than both when looking at the mean difference,

but better when the median is considered. It is also highlighted with the

p-values shown in Table 4.3. The non-parametric sign rank test p-values for

ROCKET against CIF and HC1 are much lower than the parametric t-test

Chapter 4: MTSC bake-off 77

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CIF ACC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
O

C
K

E
T

 A
C

C

ROCKET
is better here

CIF
is better here

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

HIVE-COTE ACC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
O

C
K

E
T

 A
C

C

ROCKET
is better here

HIVE-COTE
is better here

Figure 4.4.5: Scatter plots of accuracy on 26 UEA MTSC problems for ROCKET
against CIF and HC1. ROCKET beats CIF on 17 problems, with mean and
median differences in accuracy are -0.12% and 0.85%). ROCKET beats HC1 on
17 problems with mean and median differences in accuracy are -0.66% and 0.66%.

p-values. ROCKET performs at least as well as HC1 and CIF is by far the

fastest and would be our recommended starting point for an investigation of a

new MTSC problem. The evidence of the occasional large failure could help

drive future design improvements.

4.4.2 Comparison of Sixteen Classifiers on Twenty Datasets

DTWA, MUSE, MrSEQL, TapNet, and InceptionTime did not complete all

problems. Rather than a lengthy individual analysis, we present the results for

the twenty problems that all algorithms completed. For clarity, we remove the

four worst-performing classifiers (DTWI , RISE, TSF and CBOSS). Figure 6.6.2

shows the critical difference diagrams for the top twelve classifiers on the twenty

data sets that all algorithms completed within our constraints. MUSE is

memory intensive. On these 20 problems, it required an average of 8 GB,

compared to just 500 MB for HC1. Fewer datasets make it harder to detect

significant differences. The top clique is now (ROCKET, InceptionTime,

MUSE, CIF). However, these cliques do not reflect the differences to the

baseline. With a critical value of α = 0.05, only ROCKET and CIF are

significantly better than DTWD on these 20 problems. With 25 problems,

Chapter 4: MTSC bake-off 78

a) Accuracy

12 11 10 9 8 7 6 5 4 3 2 1

3.8 ROCKET
5.15 InceptionTime
5.25 MUSE
5.85 CIF

5.9 HIVE-COTE
5.9 mrseql6.55ResNet

7.3DTW
A

7.5DTW
D

7.85STC
8.45TapNet
8.5gRSF

b) AUROC

12 11 10 9 8 7 6 5 4 3 2 1

4.225 ROCKET
4.575 InceptionTime
4.675 mrseql

4.85 MUSE
4.975 CIF
5.025 HIVE-COTE5.525ResNet

6.775STC
7.65TapNet
7.875gRSF
10.875DTW

D

10.975DTW
A

c) Balanced Accuracy

12 11 10 9 8 7 6 5 4 3 2 1

4.15 ROCKET
4.7 InceptionTime
5.4 MUSE

6.05 ResNet
6.1 mrseql

6.15 CIF6.2HIVE-COTE
6.85DTW

A

7.1DTW
D

8.3TapNet
8.4STC
8.6gRSF

d) F1

12 11 10 9 8 7 6 5 4 3 2 1

4.1 ROCKET
4.85 InceptionTime
5.45 MUSE
5.85 HIVE-COTE

6 CIF
6.3 ResNet6.35mrseql

7.15DTW
D

7.15DTW
A

8.05STC
8.3TapNet
8.45gRSF

Figure 4.4.6: Critical difference diagrams for the top 12 classifiers on the 20
equal-length UEA datasets all algorithms completed.

Chapter 4: MTSC bake-off 79

InceptionTime is also significantly better than DTWD, as is HC1 with 26.

Table 4.7 gives the p-value for the pairwise test on the datasets completed by

each algorithm.

MUSE does well, but is so memory intensive it will be hard to use for many

problems. MrSEQL is also promising, although not significantly better than

DTW. It is not clear why it failed to complete the two problems. InceptionTime,

HC1, and CIF all beat the baseline and have potential. However, the stand-out

classifier is still ROCKET. It has the lowest average rank, beats the baseline on

most problems and it is incredibly quick, especially when parallelized. We think

it is the clear winner of this experimental study.

Chapter 4: MTSC bake-off 80

DTWD ROCKET CIF HC1

AWR 98.87%±0.05% 99.56%±0.13% 97.89%±0.15% 97.99%±0.10%

AF 23.56%±1.39% 24.89%±1.68% 25.11%±2.18% 29.33%±1.31%

BM 95.25%±0.23% 99.00%±0.00% 99.75%±0.14% 100.0%±0.84%

CR 100.0%±0.00% 100.0%±0.13% 98.38%±0.29% 99.26%±0.00%

DDG 49.20%±0.99% 46.13%±1.04% 56.00%±1.03% 47.60%±1.20%

EW 64.58%±0.53% 86.28%±1.21% 90.33%±0.54% 78.17%±0.62%

EP 96.30%±0.17% 99.08%±0.00% 98.38%±0.27% 100.0%±0.26%

EC 30.15%±0.54% 44.68%±0.43% 72.89%±0.56% 80.68%±0.50%

ER 92.91%±0.12% 98.05%±0.49% 95.65%±0.42% 94.26%±0.40%

FD 53.28%±0.23% 69.42%±0.30% 68.89%±0.27% 69.17%±0.14%

FM 54.17%±0.90% 55.27%±0.84% 53.90%±0.81% 53.77%±0.93%

HMD 30.32%±1.00% 44.59%±0.87% 52.21%±1.08% 37.79%±0.81%

HW 61.21%±0.42% 56.67%±0.42% 35.13%±0.40% 50.41%±0.42%

HB 68.88%±0.37% 71.76%±0.02% 76.52%±0.30% 72.18%±0.52%

LIB 88.04%±0.44% 90.61%±0.45% 91.67%±0.49% 90.28%±0.61%

LSST 54.76%±0.08% 63.15%±0.16% 56.17%±0.22% 53.84%±0.14%

MI 52.10%±0.73% 53.13%±0.78% 51.80%±1.03% 52.17%±0.74%

NATO 82.04%±0.32% 88.54%±0.44% 84.41%±0.32% 82.85%±0.32%

PD 99.28%±0.05% 99.56%±0.14% 98.97%±0.08% 97.19%±0.06%

PEMS 77.05%±0.58% 85.63%±0.38% 99.85%±0.09% 97.98%±0.59%

PS 15.39%±0.10% 28.35%±0.12% 26.56%±0.13% 32.87%±0.07%

RS 85.64%±0.26% 92.79%±0.45% 89.30%±0.51% 90.64%±0.37%

SRS1 81.81%±0.35% 86.55%±0.31% 85.94%±0.28% 86.02%±0.32%

SRS2 53.69%±0.49% 51.35%±0.59% 48.87%±0.56% 51.67%±0.67%

SWJ 22.00%±1.87% 45.56%±2.72% 45.11%±2.65% 40.67%±1.54%

UW 92.28%±0.21% 94.43%±0.35% 92.42%±0.32% 91.31%±0.23%

Table 4.4: Average accuracies with standard error over resamples for DTWD and
the three classifiers are significantly more accurate than DTWD.

Chapter 4: MTSC bake-off 81

Classifier Total time (hrs) Difference in accuracy to DTWD

ROCKET 1.26 5.86%

gRSF 9.27 1.0%

ResNet 13.38 1.72%

CIF 148.55 6.51%

CBOSS 181.60 0.13%

TSF 263.88 0.59%

RISE 279.64 -1.11%

STC 7019.69 4.06%

HC1 12172.44 5.98%

Table 4.5: Total run time for a single resample of all 26 problems and mean
difference in accuracy to DTWD for 9 classifiers.

Classifier Max memory Total memory

DTWI 1883 5587

DTWD 1845 5952

RISE 2624 10242

TSF 2670 10632

CBOSS 2675 10537

STC 2163 9778

CIF 2954 15900

HC1 3577 21217

Table 4.6: Memory usage (in MB) for eight tsml classifiers. Max memory is
the maximum memory on any single problem, total memory is the aggregated
memory over all twenty-six problems.

Chapter 4: MTSC bake-off 82

Algorithm Completed data P-value W/D/L

MUSE 20 0.1005 13/0/7

TapNet 23 0.9015 10/0/13

MrSEQL 24 0.0593 16/0/8

DTWA 25 0.6900 10/2/13

InceptionTime 25 0.0149 17/0/8

STC 26 0.1067 15/0/11

HC1 26 0.0043 17/0/9

CIF 26 0.0092 19/0/7

ROCKET 26 0.0004 22/1/3

Table 4.7: Performance was relative to the baseline classifier DTWD. The P-value
is from the Wilcoxon sign rank test.

C
h
a
p
ter

4
:

M
T

S
C

ba
ke-o

ff
83

Table 4.8: Accuracy of twelve algorithms averaged over thirty stratified resample data sets for the UEA MTSC archive. Default
accuracy is for predicting the majority class.

Problem Default ROCKET IT MUSE CIF HC mrseql ResNet DTWA STC DTWD TapNet gRSF TSF CBOSS RISE DTWI

AWR 4.00% 99.56% 99.10% 98.87% 97.89% 97.99% 98.98% 98.26% 98.94% 97.51% 98.87% 97.13% 98.21% 94.82% 97.56% 95.73% 94.31%

AF 33.3% 24.89% 22.00% 74.00% 25.11% 29.33% 36.89% 36.22% 22.44% 31.78% 23.56% 30.22% 27.56% 29.78% 30.44% 24.44% 34.67%

BM 25.0% 99.00% 100.0% 100.0% 99.75% 100.0% 94.83% 100.0% 99.92% 97.92% 95.25% 99.17% 100.00% 99.83% 98.75% 100.0% 72.17%

CR 8.33% 100.0% 99.44% 99.77% 98.38% 99.26% 99.21% 99.40% 100.0% 98.94% 100.0% 97.50% 97.41% 93.15% 97.55% 97.78% 95.74%

DDG 20.0% 46.13% 63.47% 56.00% 47.60% 39.27% 63.20% 56.67% 43.47% 49.20% 58.27% 44.47% 38.87% 43.07% 50.80% 29.27%

EW 42.0% 86.28% 90.33% 78.17% 72.16% 45.45% 74.68% 64.58% 83.00% 76.62% 62.80% 81.93% 44.20%

EP 26.8% 99.08% 98.65% 99.64% 98.38% 100.0% 99.93% 99.18% 97.37% 98.74% 96.30% 96.09% 96.01% 97.34% 99.83% 99.86% 67.03%

EC 25.1% 44.68% 27.92% 48.64% 72.89% 80.68% 60.18% 28.62% 29.57% 82.36% 30.15% 28.99% 34.06% 45.42% 39.62% 49.16% 30.68%

ER 16.7% 98.05% 92.10% 96.89% 95.65% 94.26% 93.19% 87.19% 92.89% 84.28% 92.91% 89.46% 91.98% 89.84% 84.48% 82.44% 91.42%

FD 50.0% 69.42% 77.24% 68.89% 69.17% 62.97% 53.13% 69.76% 53.28% 52.87% 55.36% 68.95% 52.32% 51.17% 51.53%

FM 49.0% 55.27% 56.13% 54.77% 53.90% 53.77% 55.53% 54.70% 54.93% 53.40% 54.17% 51.33% 54.43% 53.17% 51.03% 52.10% 55.50%

HMD 18.9% 44.59% 42.39% 38.02% 52.21% 37.79% 35.23% 35.32% 30.72% 34.95% 30.32% 32.34% 32.07% 48.51% 28.87% 28.24% 26.67%

HW 3.8% 56.67% 65.74% 51.85% 35.13% 50.41% 54.04% 59.78% 60.55% 28.77% 61.21% 32.95% 36.96% 36.42% 49.09% 18.27% 34.33%

HB 72.2% 71.76% 73.20% 73.59% 76.52% 72.18% 72.52% 63.89% 68.07% 72.15% 68.88% 73.97% 74.89% 72.28% 72.15% 73.22% 63.80%

LIB 6.7% 90.61% 88.72% 90.30% 91.67% 90.28% 86.57% 94.11% 87.85% 84.46% 88.04% 83.63% 75.56% 79.72% 85.26% 81.67% 78.63%

LSST 31.5% 63.15% 33.97% 63.62% 56.17% 53.84% 60.28% 42.94% 56.96% 57.82% 54.76% 46.33% 58.15% 34.31% 43.62% 50.58% 49.57%

MI 50.0% 53.13% 51.17% 51.80% 52.17% 53.00% 49.77% 50.37% 50.83% 52.10% 51.87% 53.80% 52.37% 49.83% 49.63%

NATO 16.7% 88.54% 96.63% 87.13% 84.41% 82.85% 86.43% 97.11% 81.48% 84.35% 82.04% 90.30% 82.37% 77.72% 82.48% 80.59% 76.07%

PD 10.4% 99.56% 99.68% 98.68% 98.97% 97.19% 97.14% 99.64% 99.27% 97.70% 99.28% 93.65% 96.12% 94.11% 95.61% 87.47% 99.22%

PEMS 11.6% 85.63% 82.83% 99.85% 97.98% 97.15% 81.95% 78.73% 98.40% 77.05% 79.21% 91.27% 96.76% 96.57% 98.98% 80.23%

PS 2.6% 28.35% 36.74% 26.56% 32.87% 30.86% 15.39% 30.62% 15.39% 22.71% 14.52% 19.43% 26.78% 10.18%

RS 28.3% 92.79% 91.69% 89.56% 89.30% 90.64% 88.73% 91.23% 85.79% 88.09% 85.64% 85.81% 87.79% 88.29% 88.90% 84.17% 81.69%

SRS1 50.2% 86.55% 84.69% 73.58% 85.94% 86.02% 82.86% 76.11% 81.34% 84.73% 81.81% 95.68% 79.74% 84.73% 81.33% 73.17% 80.63%

SRS2 50.0% 51.35% 52.04% 49.52% 48.87% 51.67% 49.61% 50.24% 52.43% 51.63% 53.69% 53.46% 48.69% 50.65% 50.02% 50.28% 48.48%

SWJ 33.3% 45.56% 42.00% 34.67% 45.11% 40.67% 42.00% 30.89% 25.56% 44.00% 22.00% 35.11% 38.44% 33.33% 36.89% 34.00% 35.78%

UW 12.5% 94.43% 91.23% 90.39% 92.42% 91.31% 91.32% 88.35% 91.51% 87.03% 92.28% 88.39% 89.59% 85.05% 86.13% 71.11% 87.58%

Chapter 4: MTSC bake-off 84

4.5 HIVE-COTE 2 in MTSC

One of the top-tier algorithms from the previous work was HC1. In [53], HC2 was

presented and executed the same experiments. In n figure 4.5.1 we show a critical

difference diagram presented in that work. [53] proved that HC2 is statistically

better than the top-tier algorithms and can be considered the most accurate in

the UEA archive. We include this work as it is relevant to the bake-off benchmark

but it was not included because the algorithm was not developed at the time of

the experiments.

6 5 4 3 2 1

2.1538 HC2
3 ROCKET

3.6731 HC13.7308CIF
3.7885ResNet
4.6538DTW-D

Figure 4.5.1: Critical difference diagrams for 26 equal-length UEA datasets all
algorithms compared with Hive Cote 2.

4.6 Conclusion

MTSC is a fast-moving field and new approaches are released in a short time.

From the time this thesis is being written, HC2 is the most accurate in the UEA

archive. However, the results also show that, for many problems, there is a lot

of improvement that can be made. Some of the improvements can be based on

improving the performance (train time) or improving the classifiers used in the

ensemble. In the remainder of the thesis, we will explore these improvements in

Chapter 4: MTSC bake-off 85

the following way:

• Improving STC: From HC1 to HC2 the only algorithm that remained is

the Shapelet Transform Classifier. We are going to present improvement

variants for this algorithm.

• Dimension Selection: One way to improve the performance is to reduce

the dimensions of the multivariate classifier. We will research current

techniques for dimension selection on MTSC and use them as filters for

HC2 to verify if there are improvements in performance and accuracy,

5

Multivariate Shapelet Classifiers

Chapter 5: Multivariate Shapelet Classifiers 87

5.1 Introduction

The shapelet transform classifier (STC) is one component of HC2 and the one

that remains from HC1. In chapter 2.3.3 we introduced the shapelet transform

classifier algorithm. In this chapter, we explore novel techniques to improve the

shapelet transform classifier algorithm and use this approach to improve HC2.

The idea of using different shapelet quality criteria was first explored on [44]

where the Krustal-Wallis and Moods Median nonparametric tests were considered

as alternatives to information gain to a subset of univariate time series problems.

This chapter presents different quality criteria and is applied to multivariate time

series classification on dependent or independent shapelets.

The first contribution of this chapter is to introduce RSTC which is a

modification of STC that adds some new features. For example, improved

random search of shapelets, and new stop criteria for shapelet search, among

others. The second contribution is an experiment RSTC using different quality

criteria in combination with dependent/independent shapelets. The third

contribution is to show that an ensemble RSTC with different quality criteria

STC can improve the original STC algorithm without increasing the train time.

The fourth contribution is to show that HC2 improves its performance by

replacing STC with the ensemble of RSTC.

5.2 Quality criteria

The quality criteria is an important aspect of STC because it ranks the shapelets

that are candidates to be used as feature vectors. The process of the quality

criteria is as follows:

1. Calculate the distance from the shapelet candidate to every series in the

dataset. This generates a list of n values which is called an orderline: a pair

Chapter 5: Multivariate Shapelet Classifiers 88

Figure 5.2.1: Orderline example

(a) Example of an orderline produced by a high-quality shapelet

(b) Example of an orderline produced by a low-quality shapelet

(d, c) where d is the distance and c is the class label

2. Sort the list in ascending order based on distance

3. Calculate all the split points on the orderline list using quality criteria. This

can be seen in figure 5.2.1

4. Select the best-split point and use this as the final shapelet quality value

An ideal shapelet should produce small distance values when compared to the

time series of the same class and large distance values with other classes. In

figure 5.2.1a, we can see a good shapelet that will have a good score because

there is a split point where most examples from the same class are grouped. On

the contrary in figure 5.2.1b we see that the shapelet cannot have a good split

point as in all the options there is a mix of elements for all classes

In the next section, we will detail all shapelet quality functions considered.

5.2.1 Information Gain

This is the default quality measure and it has been widely used in several machine

learning problems such as in decision trees to evaluate a split point [34]. In the

Chapter 5: Multivariate Shapelet Classifiers 89

scenario, when the decision tree has a numerical feature IG is used to select the

optimum split point that generates the branches in the sub-tree. IG is based on

entropy which is a measure of the uncertainty associated with a random variable.

The entropy is calculated by the following formula:

H(S) =
∑
i

−pi log2 pi (5.2.1)

To measure the information gain of a split point, it is required to calculate the

entropy of the data and reduce the weighted entropy of the possible values. For

all possible split points a we select the minimum to calculate the information

gain

IG(S) = H(S)–mina
∑
v∈a

Sa(v)

S
·H(Sa(v)) (5.2.2)

5.2.2 Chi-squared (CHI)

This is a statistical hypothesis test to calculate the differences between expected

and observed frequencies in random variables. It has also been used on decision

trees to calculate the quality of a split point, making it a good candidate to be

considered as an alternative quality measure. The formula is:

χ2 =

r∑
i

c∑
j

(oij − eij)2

eij
(5.2.3)

Where eij is the expected number of instances that fall in that category if the

split point follows the same distribution of instances as the attribute. Therefore,

oij is the real observed value and this formula will assign higher values if the

observed values are too different from the expected values. In this case, the χ2

is calculated for several split points, and the highest one is chosen.

Chapter 5: Multivariate Shapelet Classifiers 90

5.2.3 Pearson correlation (COR)

This is a measure of the linear correlation between two vectors, in this case, two

feature vectors are generated. The formula is:

PC(x, y) =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(5.2.4)

5.2.4 OneR (ONER)

This is a naive classifier that has been used as the base for weak ensembles of

trees. It creates a simple 1-level decision tree. This is done by classifying the

input provided and observing the accuracy of the model generated as a quality

measure.

5.2.5 F-Stat

Evaluate the variance of two different sets of data to define if they are drawn

from the same statistical distribution. It assumes that the variance of the class

values and the distances are similar the shapelet can be a good discriminator.

5.2.6 Symmetrical uncertainty (SYM)

Evaluates the quality of an attribute by measuring the symmetrical uncertainty

concerning the class. It is based also on entropy and is considered as a variation

of information gain

H(Class,Attribute) = 2 · H(Class)−H(Class|Attribute)
H(Class) +H(Attribute)

(5.2.5)

Chapter 5: Multivariate Shapelet Classifiers 91

Figure 5.3.1: Example of a multivariate time series of 4 dimensions. A dependent
shapelet (blue) covers a subset of all dimensions whereas an independent (red)
covers only one of them.

5.3 Independent / Dependent Shapelets

There are two main strategies for using shapelets in MTSC problems:

Independent (MSTCI) and Dependent (MSTCD). On independent, we

consider a shapelet a 1-dimensional vector as with univariate time series. The

difference is that a shapelet is associated with a specific dimension. Therefore,

for independent shapelets, it is necessary to add a property to the shapelet to

specify which dimension the shapelet belongs to compare it with other examples

in the sDist function.

On dependent, we consider that a shapelet covers all dimensions. Therefore, the

shapelet data is a n×m data where n is the shapelet size and m is the number

of dimensions. In this case, the sDist function needs to be updated to compare

against all dimensions.

5.4 Experiment settings

To compare different shapelet variants a first experiment was performed. It ran

30 resamples of the 26 multivariate datasets. In the results, the original

Chapter 5: Multivariate Shapelet Classifiers 92

7 6 5 4 3 2 1

3.5 RSTC-CHI
I

3.5769 STC
3.6731 RSTC

I
3.6923 RSTC-COR

I

4.4615RSTC-FSTAT
I

4.5192RSTC-ONER
I

4.5769RSTC-SYM
I

Figure 5.5.1: Comparing variants of shapelet quality and shapelet dependent with
STC and RSTC Ensemble on 26 MTSC problems.

algorithm is named STC. Our approaches will be named by the acronym

RSTC-Xy where X is the quality metric and y is either Dependent or

Independent. For example, RSTC-SYMI represents the shapelet transform

classifier using the quality criteria symmetrical uncertainty and using

Independent shapelets. If no quality criteria are specified the original

information gain criteria are used. Our goal is to improve the state-of-the-art

shapelet transform classifier (STC) with one or any combination of RSTC

5.5 Results

First, it was important to analyze which of the different combinations works

better. Second, we explore a strategy to combine these criteria to create a more

robust algorithm. Finally, verify if one of these approaches improves STC to plug

it as part of HC2.

5.5.1 Shapelet quality variants

In the first experiment, all different quality combinations are compared. In this

case, all dependent versions did not perform well. The main reason is that the

high number of dimensions makes the comparison of shapelets a time-consuming

operation producing a poor performance. To have simpler figures we did not add

the dependent results to the results. The results are shown in figure 5.5.1. The

Chapter 5: Multivariate Shapelet Classifiers 93

Algorithm Hours

RSTC − CHII 345.82

RSTCI 330.50

RSTC − CORI 345.38

STC 7019.68

RSTCD 501.61

RSTCEQ 1528.01

Table 5.1: The number of hours to complete all 30 resamples on 26 MTSC
problems.

6 5 4 3 2 1

2.0385 RSTCE
Q

3.5385 STC
3.5577 RSTC

I3.8462RSTC-COR
I

3.8846RSTC-CHI
I

4.1346RSTC
D

Figure 5.5.2: Comparing variants of shapelet quality and shapelet dependent with
STC and RSTC Ensemble on 26 MTSC problems.

quality criteria χ2, Pearson correlation, and information gain are significantly

better than other approaches but they are not better than the state-of-the-art

STC. We will consider only these quality measures in the following experiments.

5.5.2 Ensemble shapelets using different quality measures

In this section, we introduce a random shapelet transform classifier ensemble

(RSTCE) of shapelet qualities and compare it with. In this version, we consider

an ensemble of four elements: The independent versions of the quality measures

on the top tier (1. information gain, 2.χ2, 3. Pearson). The other element of the

ensemble and the information gain with dependent shapelets. As we are adding

the variations that performed better on the test results from the previous step

the ensemble generated can have some bias. In future work, we can consider a

variant selection phase on the training phase to remove this bias.

Chapter 5: Multivariate Shapelet Classifiers 94

 2 1

HC2 HC2RSTCE 1.2692 1.73 08

Figure 5.5.3: Comparing HC2 results with STC component against using RSTC
Ensemble on 26 MTSC problems.

The predictions of the ensemble are done by CAWPE (the same strategy as HC).

The results can be seen in figure 5.5.2. We can observe that the ensemble is

significantly better than any of its components and the state-of-the-art STC.

In terms of performance, we will use train time as a metric to compare with STC.

In table 5.1 we can observe that the time required to complete the ensemble

is significantly less than the original STC. One of the reasons for this is the

stop criteria used in RSTC. For small problems, usually, the max iterations are

reached in a few seconds, and for large problems, the no improvement conditions

help to detect when the algorithm stalls and stops improving which also avoids

overfitting.

5.5.3 Adding to HC2

As a final experiment we compare the state-of-the-art HC2 but using the RSTCE

ensemble instead of STC. The results are shown in figure 5.5.3 and show that

the ensemble improves significantly the accuracy of HC2 and also improves the

performance and reduces the train time.

5.5.4 Compared with univariate TSC

Given the success of improvement HC2 for MTSC it would be interesting to

repeat the procedure for the univariate time series classification problems. We

ran 30 resamples of the 112 problems from the univariate UEA archive. Of course,

Chapter 5: Multivariate Shapelet Classifiers 95

5 4 3 2 1

1.7311 RSTCE
Q

3.1462 STC
3.3019 RSTC-CHI

I

3.3585RSTC
I

3.4623RSTC-COR
I

Figure 5.5.4: Comparing variants of shapelet quality and shapelet dependent with
STC and RSTC Ensemble on 112 TSC problems.

 2 1

HC2 HC2RSTCE
1.4771 1.52 29

Figure 5.5.5: Comparing HC2 results with STC component against using RSTC
Ensemble on 112 TSC problems.

one change must be made to do this, as the previous ensemble contains RSTCD

which is based on using several dimensions and TSC always has one. Therefore,

this component was dropped and instead, we added STC as the fourth element of

the ensemble. The results in figure 5.5.4 show that the ensemble is significantly

better than the individual results showing similar results as in the multivariate

case.

Finally, as in multivariate, we added the ensemble as the basis for HC2 instead

of STC. The results in figure 5.5.5 show that even though the ensemble is

significantly better, it does not improve HC2 like in the multivariate case. This

can be explained in several ways but the main reason is that univariate time

series problems have less search space to find making the original STC good

enough to find the best quality shapelets.

Chapter 5: Multivariate Shapelet Classifiers 96

5.6 Conclusions

In this chapter, we developed a variation of the shapelet transform classifier for

MTSC by modifying shapelet quality measures for dependent and independent

shapelets. Then, we created an ensemble of the best qualities and this strategy

proved to be significantly better than STC. Moreover, when used as a

component of HC2 improved significantly the results and reduced the train time

on multivariate time series classification. This also illustrates the power of using

ensembles for machine learning by combining individual strategies that did not

perform well and make a significant improvement when combined.

As the individual classifiers could not improve significantly STC, there is still

room for improvement on shapelet classifiers based on quality. For example,

the shapelet-dependent classifiers always underperform the independent versions.

This suggests that not all dimensions are important for MTSC problems. It

could be the case that filtering not only important dimensions can improve the

accuracy of the results on the dependent algorithms but also the independent

ones by reducing the feature space and focusing on the important dimensions.

This approach will be explored in more detail in the next chapter.

6

Dimension Selection Strategies

Chapter 6: Dimension Selection Strategies 98

Contributing publications

• Alejandro Pasos Ruiz and Anthony J. Bagnall. Dimension selection

strategies for multivariate time series classification with hive-cote v2.0.

volume 13812 of Lecture Notes in Computer Science, pages 133–147.

Springer, 2022. [59]

6.1 Introduction

The second approach to improve HC2 consists of selecting the most important

dimensions as a preprocessing strategy to reduce the training time and possibly

improve accuracy. This could be possible in theory given the fact that many

algorithms like STC involve a search phase for patterns. Reducing the search

space can optimize this process.

Standard approaches include employing a filter to select a subset of attributes or

transforming the data into a lower dimensional feature space using, for example,

principal component analysis. Our focus is on dimensionality reduction through

filtering.

Dimension selection can, on average, either increase, not change, or decrease the

accuracy of classification. The first case implies that the higher dimensionality

is confounding the classifier’s discriminatory power. In the second case, it is

often still desirable to filter due to improved training time. In the third case,

filtering may still be desirable, depending on the trade-off between performance

(e.g. accuracy) and efficiency (e.g. train time): a small reduction in accuracy

may be acceptable if build time reduces by an order of magnitude.

In this chapter, we address the problem of how to select a subset of dimensions

for high-dimensional problems. The first contribution of this chapter is to

propose a method based on dimension ranking by criteria and selecting through

the elbow method. We use existing methods like ECP, ECS, and MTSC. The

Chapter 6: Dimension Selection Strategies 99

second contribution is to use the proposed method and the existing approaches

as a preprocessing step on HC2. Finally, the third contribution is to select a

subset of high-dimensional problems from the UEA archive and introduce four

new problems.

6.2 Dimension selection problem

Detecting the best subset of dimensions is not a straightforward problem, since

the number of combinations to consider increases exponentially with the number

of dimensions. Selection is also made more complex by the fact that the objective

function used to assess a set of features may not generalize well to unseen data.

Furthermore, since the primary reason for filtering the dimensions is improving

the efficiency of the classifier, dimension selection strategies themselves need to

be fast. HC2 is not as fast as ROCKET. We investigate whether we can use the

speed and competitive accuracy of ROCKET to serve as a dimension filter for

HC2. We use a stripped-back version of ROCKET called miniROCKET to assess

and select dimensions through cross-validation, then measure the impact this has

on HC2 on both the train and the test data. We compare the miniROCKET

filter to recently proposed algorithms from the literature. Our contribution is to

incrementally improve our understanding of how best to classify high dimensional

time series: we introduce four new high dimensional MTSC problems to the UEA

archive; we propose a hybrid approach for classifying high dimensional MTSC

problems using miniROCKET as a filter; and we compare our approach to a

range of alternative algorithms and analyze the results.

6.3 Related work

The first algorithm to consider is the Common principal component

loading-based variable subset selection (CleVer) [77]. Clever is based on

Principal Component Analysis (PCA) which is a technique used in machine

Chapter 6: Dimension Selection Strategies 100

learning as feature extraction and to find similarities among features. As PCA

works on the feature vector representation, it cannot be used directly on time

series. The first step is to execute PCA independently on each instance and

extract the PCA. Next, all components that belong to the same class are

combined to create common principal components through a process called

Common Principal Component Analysis (cPCA). A proportion of the common

components are used to create a feature space. These features are clustered,

and the closest dimension to each centroid is chosen as the selected dimension.

Clever requires a separate PCA on each series, which is both time and

space-consuming. It is also complex, and we cannot find an open-source

implementation. Since we are looking for a lightweight feature selector, we do

not evaluate CleVer in this study.

Another approach was based on one nearest neighbor classification in combination

with dynamic time warping (1-NN DTW) [35]. This approach used a merit

score function (MSTS) to assess the quality of a subset of dimensions. This is

a formula that balances the quality of the prediction of each dimension to the

class and the similarity of each dimension. The first part is achieved by using

1-NN with DTW get the accuracy of prediction between a dimension with the

classes. The similarity between each dimension is estimated using the adjusted

mutual information (AMI) which is based on information gain. Once this is

done, the merit score function is calculated for each possible subset of variables

and selecting the top 5% of subsets. The merit score function is calculated as

follows:

MS(subset) =
kDC√

k + k(k − 1)DD
(6.3.1)

Where DC is the average of dimension-to-class of each dimension in the subset

and DD is the average of dimension-to-dimension of each pair of dimensions in

the subset. The evaluation of all dimension combinations makes MSTS infeasible

Chapter 6: Dimension Selection Strategies 101

Algorithm 8 MSTS(X, y, |X|)
Parameters: Training data X, labels y, the number of dimensions |X|

1: for i← 1 to |X| do
2: ŷi ← CrossValidate(Xi, classifier : DTW , folds : 3)
3: DCi ← accuracy(ŷi, yi)
4: for (i, j) in pairs(|X|) do
5: DDi,j ← AMI(ŷi, ŷj)
6: bestSubset← Ø
7: bestScore← −∞
8: for each subset ⊆ |X| do
9: subsetScore←MS(subset)

10: if subsetScore > bestScore then
11: bestSubset← subset
12: bestScore← subsetScore
13: return bestSubset

for very high dimensional problems.

Another approach that is more closely aligned to our work is described in [17],

where dimensions are selected based on distances between series within classes. A

synthetic series that characterizes each dimension/class combination is found by

averaging the relevant dimension of the series belonging to that class. A matrix

of the pairwise Euclidean distance between all dimension/class centroids is then

found. These algorithms use a Distance Matrix (size d × c · (c − 1)) which is

calculated as follows.

Algorithm 9 CalculateDistanceMatrix(X, y, dimensions, classes)

Parameters: Training data X, labels y, the number of dimensions and classes
1: for c in classes do
2: for d in dimension do
3: Calculate Centroid(d, c)
4: for each pair(ca, cb) in classes do
5: for d in dimensions do
6: DistanceMatrix(d, [ca, cb]) ← dist(Centroid(d,ca),Centroid(d, cb))
7: return DistanceMatrix

After calculating the matrix, three approaches are introduced:

1. The KMeans approach applies k-means clustering (with k = 2) on the

distance matrix to separate the channels. The cluster centroid represents

the mean distance of dimensions across all class pairs and the average of the

Chapter 6: Dimension Selection Strategies 102

centroid describes the within-cluster variation of dimensions. The K-means

algorithm selects all dimensions in the cluster with the largest average.

2. The Elbow Class Sum (ECS) algorithm sums each row of the distance

matrix, and then uses the elbow cut method to select dimensions based on

the rank order of the sums.

3. The Elbow Class Pairwise (ECP) iterates through every class pair, and

selects the best set of dimensions for that pair using the same elbow cut

method as ECS. Finally, it takes the union of dimensions over all pairs.

6.4 Proposed method

We propose a range of methods for dimension selection, including adaptations of

the algorithms described in Section 6.3, to make HC2 more efficient.

Our classifier pipeline involves dimension selection followed by the HC2 classifier.

We want to evaluate the effect of changing the dimension selection mechanism

whilst keeping everything else the same. Dimension selection is either through

scoring and ranking then selection or dimension subset evaluation.

Our first filtering approach is to employ miniROCKET as a mechanism for scoring

features from the training data, then using the elbow method to select features.

This involves scoring a miniROCKET classifier on each dimension independently,

then ranking dimensions. We consider three scores all based on miniROCKET

predictions found through three-fold cross-validation:

• Accuracy (A): proportion of cases correctly classified.

• Silhouette (S): As an alternative to using accuracy the silhouette method is

used in clustering to determine the optimal numbers of clusters. It is a score

that goes from -1 to 1 indicating how good is the clustering based on the

distances within a cluster and their differences from the points from other

Chapter 6: Dimension Selection Strategies 103

clusters. To use in dimension selection, the train data is cross-validated

with 3 folds, and the predictions are used as clusters. The formula for the

silhouette method is:

S =
(b− a)

max(a, b)
(6.4.1)

where a is the mean distance between data points in the same cluster and

b is the mean distance between all other data points of the next nearest

cluster.

• Adjusted Mutual information (M). It is a variation of mutual information

that adds an element of chance, usually used in clustering. The formula is:

AMI(U, V) =
MI(U, V)− E(MI(U, V))

avg(H(U), H(V))− E(MI(U, V))
(6.4.2)

We also consider using both ECP and ECS as a filtering algorithm for HC2.

As another cluster variant, we propose that instead of calculating the centroid

distances as with ECP and ECS, we calculate the distance between each instance

and the centroid which is calculated as the mean vector of all instances that

belong to that class. This method is called CLUSTER. Finally, we also evaluate

using the MSTS subset selection algorithm, although we make two changes to

the version described in 6.3.

• We use miniROCKET instead of DTW as classifier on line 2 of Algorithm 9;

• The exhaustive subset selection is done on lines 8-12 of Algorithm 9 is

infeasible for some problems because there are 2d possible subsets of

attributes. Instead, a forward selection procedure is used where the best k

subsets starting with size two are selected and one dimension is added per

step until the merit score function MSTS stops improving.

Table 6.1 summarises the attribute selection methods used in our evaluations.

Chapter 6: Dimension Selection Strategies 104

Table 6.1: Summary of different dimension selection ranking methods with elbow
method.

Attribute ranking then selection with elbow method

Algorithm Ranking

ECS Sum of difference between centroid pair distance [17]

ECP Union of sum of individual centroid pair distances [17]

CLUSTER Error between centroid and examples

ROCKETA Accuracy of miniROCKET predictions on each dimension

ROCKETS Sillouette of miniROCKET predictions on each dimension

ROCKETM AMI of miniROCKET predictions on each dimension

Attribute subset selection

MSTS Subset selection using merit score [35]

KMeans Cluster distance function [17]

6.5 Evaluation

We use the time series machine learning toolkit Aeon for our experiments. All of

the algorithms used have been implemented in aeon format and are available at

the GitHub repository associated with this page1.

6.5.1 Data

The UEA multivariate time series repository contains 30 datasets from a wide

range of fields such as EEG classification and human activity recognition [62].

In our experience, filtering does not improve the performance of HC2, so our

priority is improving efficiency. Low-dimensional data can mask the

performance differences of filtering algorithms, so we restrict our attention to

higher dimensional problems, which we define as nine or more dimensions.

Ideally, we would set the threshold even higher, but there are just nine

equal-length problems in the archive with nine or more dimensions. Two

high-dimensional data are unequal length: JapaneseVowels and

SpokenArabicDigits. We made these equal lengths by padding to the longest

1https://github.com/aeon-toolkit/aeon

Chapter 6: Dimension Selection Strategies 105

Table 6.2: Summary of 15 data sets used in experimentation. (*) indicates a
padded series, and bold indicates a data set new to the UEA archive.

Name Train size Test size Dimensions Length Classes

ArticularyWordRecognition 275 300 9 144 25

DuckDuckGeese 50 50 1345 270 5

EMOPain 1093 50 30 180 3

FingerMovements 316 100 28 50 2

MotionSenseHAR 217 144 12 200 6

HandMovementDirection 160 74 10 400 4

Heartbeat 204 205 61 405 2

JapaneseVowels(*) 270 370 12 25 9

MindReading 727 653 204 200 5

MotorImagery 278 100 64 3000 2

NATOPS 180 180 24 51 6

PEMS-SF 267 173 963 144 7

PhonemeSpectra 3315 3353 11 217 39

Siemens 700 395 39 180 10

SpokenArabicDigits (*) 6599 2199 13 65 10

length. We also include four new high-dimensional datasets in the archive to

help improve the power of our tests of performance. These four datasets are

available on the UEA archive website2.

EMOPain: The goal of the project that generated this data was the automatic

detection of pain behaviors [19] and pain levels, based on data collected from

people with chronic pain performing movements that are identical to those that

make up daily physical functioning. The data consists of 26 sensors calculating

angle positions on distinct parts of the body and 4 electromyography sensors

that have the objective of measuring the electric signals generated by a muscle

when is moved. The sensors are positioned on the upper fibers of the trapezium

and the lumbar paraspinal muscles approximately at the 4/5 lumbar vertebra.

2www.timeseriesclassification.com

Chapter 6: Dimension Selection Strategies 106

MindReading: The data consists of MEG recordings [36] of a single subject,

made during two separate measurement sessions (consecutive days). In each

session, the subject was watching five different movie categories without audio.

The goal is to predict the category of the movie the subject is watching.

Siemens: This data consists of a group of sensors from four tanks that pump

water from a reservoir tank to three small tanks [68]. The goal is to detect the

type of failure the tank is experiencing based on the value of the different

sensors.

MotionSenseHAR: This dataset includes time series data generated by

accelerometer and gyroscope sensors (attitude, gravity, user acceleration, and

rotation rate) [50]. A total of 24 participants in a range of genders, ages,

weights, and heights performed 6 activities in 15 trials in the same environment

and conditions: downstairs, upstairs, walking, jogging, sitting, and standing.

With this dataset, we aim to look for personal attribute fingerprints in a series

of sensor data, i.e. attribute-specific patterns that can be used to infer the

gender or personality of the data subjects in addition to their activities.

6.5.2 Experiments

The experiments were carried out on the High-Performance Computing Cluster

supported by the Research and Specialist Computing Support service at the

University of East Anglia. Each classifier was trained on the same 30 train-test

resamples of the 15 high-dimensional datasets. Build time was limited to 7

days. Our performance metric is test set accuracy. To compare multiple

classifiers on multiple data sets use ranks rather than accuracy, and we use

critical difference diagrams [15] to display average ranks and cliques: a clique is

a group of classifiers that are labeled as not significantly different from each

Chapter 6: Dimension Selection Strategies 107

other. We find cliques through pairwise comparison at the 5% alpha level with

an adjustment for multiple testing commonly called the Holm correction. This

adjustment is less severe than a Bonferroni adjustment: we order classifiers by

rank and then start with the best-performing classifier as our control. We

pairwise test using the Wilcoxon sign-rank test in order, adjusting as to the

maximum size of the clique. Thus, if testing 11 classifiers, the maximum

number of tests to find the top clique is 10, so we require a p-value of alpha/10

to be considered significantly different. Once we find a classifier that fails the

pairwise test, we form a clique of those before it. We then repeat the process

with the second-best classifier, with the caveat that if a clique is found that is

contained with one found already, we ignore it.

This is the most robust way we have found to form cliques, but it can still lead to

anomalies. Given three classifiers, A, B, and C, where A is the highest rank and

C is the lowest, A may be significantly better than B but not significantly better

than C. However, our approach would put A and C in different cliques. We intend

to move towards a more graphical display of pairwise tests and recommend that

CD diagrams should only form part of the methodology of presenting results that

compare classifiers.

6.6 Results

Our first experiment defines the scope of further experiments by bounding our

expectations as to the accuracy of filtering before training HC2. Figure 6.6.1

shows the ranks of full HC2, full ROCKET, HC2 with 20% of dimensions selected

randomly, and HC2 with 60% of dimensions selected randomly. Figure 6.6.1

illustrates that HC2 is significantly more accurate than ROCKET. We reran the

experiments with the aeon implementation of HC2, so this serves to recreate the

results reported in [53]. HC2 is, on average, 2.5% more accurate than ROCKET,

winning on 11 problems and losing on 4. By default, HC2 is not configured for

speed: it takes several hours to complete one resample of experiments, whereas

Chapter 6: Dimension Selection Strategies 108

4 3 2 1

1.4333 HC2
2.3 HC2-Rand602.8ROCKET

3.4667HC2-Rand20

Figure 6.6.1: Critical difference diagram for comparing ROCKET, full HC2 and
HC2 with random dimension selection.

ROCKET takes minutes. Figure 6.6.1 also shows that our basic straw man for

comparison, randomly selecting 20% or 60% of attributes, results in a significant

loss of accuracy in HC2. Our second experiment addresses the question as to

whether applying any of the dimension selection algorithms listed in Table 6.1

can speed up HC2 without loss of accuracy. Figure 6.6.2 shows the relative

ranked performance of eight different filtering algorithms in addition to the four

classifiers shown in Figure 6.6.1. Cliques were formed with the p-values shown in

Table 6.3. The average accuracy data for four classifiers is provided in Table 6.4,

and full results are available in the associated repository.
12 11 10 9 8 7 6 5 4 3 2 1

3.4667 HC2
4.8333 HC2-ECP
5.4667 HC2-MSTS
6.0333 HC2-Rand60
6.0333 HC2-R

A
6.1 HC2-R

M6.7667HC2-CLST
7HC2-R

S

7.2667HC2-ECS
7.3ROCKET
8HC2-KMEANS
9.7333HC2-Rand20

Figure 6.6.2: Critical difference diagram for comparing all dimension selection
methods proposed.

Our first conclusion is that our hypothesis that ROCKET could be a good way

of filtering dimensions for HC2 is not supported by these results. The three

ROCKET variants are significantly worse than HC2, and no better than randomly

selecting 60% of dimensions. Table 6.4 shows that using HC2-RA results on

average in an approximate 1% decrease in accuracy. However, the two filters

Chapter 6: Dimension Selection Strategies 109

Table 6.3: P-values for pairwise Wilcoxon rank-sum test on 15 high dimensional
MTSC problems.

ECP MSTS R60 R A R M CLST R S ECS RCKT KMNS R20

HC2 0.753 0.198 0.004 0.011 0.016 0.019 0.004 0.096 0.041 0.048 0.001

ECP 0.256 0.272 0.173 0.246 0.124 0.140 0.011 0.100 0.020 0.015

MSTS 0.394 0.570 0.056 0.125 0.173 0.334 0.334 0.281 0.006

R60 0.551 0.551 0.041 0.272 0.246 0.173 0.233 0.001

R A 0.975 0.096 0.158 0.433 0.307 0.233 0.004

R M 0.246 0.397 0.551 0.496 0.496 0.015

CLST 0.331 0.510 1.000 0.691 0.140

R S 0.925 0.910 0.158 0.002

ECS 0.532 0.683 0.061

RCKT 0.826 0.307

KMNS 0.364

ECP and MSTS both achieve an accuracy rank that is not significantly worse

than HC2. Table 6.4 shows that HC2-ECP performs very similarly to full HC2,

but that HC2-MSTS may slightly reduce accuracy on average.

Of course, filtering will perfectly recreate HC2 results if it selects all dimensions.

Table 6.5 shows the proportion of dimensions selected for three classifiers. On

average, HC2-MSTS selects fewer dimensions, and in some cases, massively fewer.

For example, with PEMS-SF3 it selects just 13 out of 963 attributes and achieves

an accuracy very close to that of full HC2. Each dimension in PEMS-SF is a

single traffic sensor, and the data is measured over time. There will be high

correlation between adjacent sensors, and HC2-MSTS is effective at removing a

high degree of redundancy in this data.

Similarly, with DuckDuckGeese4, HC2-MSTS chooses just 33 of the 1345

attributes and gets comparable accuracy to HC2, although HC2-ECP improves

on HC2 when selecting about a third of attributes. DuckDuckGeese contains

audio spectrograms of different bird species, and each dimension represents a

frequency range. Both HC2-MSTS and HC2-RA filter on the problem

MindReading, whereas HC2-ECP correctly selects a larger number of

3http://www.timeseriesclassification.com/description.php?Dataset=PEMS-SF
4http://www.timeseriesclassification.com/description.php?Dataset=DuckDuckGeese

Chapter 6: Dimension Selection Strategies 110

Table 6.4: Accuracy of four classifiers averaged over 30 resamples of 15 high
dimensional datasets.

Name HC2 HC2-ECP HC2-MSTS HC2-RA

ArticularyWordRecognition 99.51 99.51 99.37 99.27

DuckDuckGeese 55.07 57.93 55.2 54

EMO 88.78 89.87 89.05 88.77

FingerMovements 55.57 52.53 54.5 55

MotionSenseHAR 99.71 99.67 99.66 99.67

HandMovementDirection 41.26 42.48 41.53 41.89

Heartbeat 73.59 74.29 73.06 73.24

JapaneseVowelsEq 93.15 94.51 93.06 91

MotorImagery 53.63 52.77 53.73 53.53

MindReading 68.36 68.17 60.81 60.44

NATOPS 89.04 87.54 85.98 87.17

PEMS-SF 99.96 97.23 99.92 99.96

PhonemeSpectra 32.01 31.72 32.01 31.67

Siemens 100 100 99.92 100

SpokenArabicDigitsEq 99.67 99.62 99.64 99.63

Average 76.62 76.52 75.83 75.68

Wins 9 7 2 2

dimensions and achieves a similar accuracy to full HC2.

Table 6.6 summarises the average training time for the HC2 and the three main

filtering methods, and includes the time taken to filter. There is hardly any

difference in time between the three algorithms, and each method takes about

60% of the time of full HC2.

MSTS and RA both rely on miniROCKET to score dimensions but differ

primarily in how attributes are selected. It seems that the subset selection used

by MSTS may be marginally better than the elbow method used by RA,

although our tests do not have the power to reject the null hypothesis that

Chapter 6: Dimension Selection Strategies 111

Table 6.5: Percentage of dimensions used.

Name d HC2-ECP HC2-MSTS HC2-RA

ArticularyWordRecognition 9 100 55.17 57.09

DuckDuckGeese 1345 29.93 2.48 21.08

EMOPain 30 55.29 31.72 35.52

FingerMovements 28 38.18 17.49 50.49

MotionSenseHAR 12 86.78 30.75 65.8

HandMovementDirection 10 83.1 44.14 56.21

Heartbeat 61 15.38 13.85 45.56

JapaneseVowelsEq 12 75.57 97.41 62.07

MotorImagery 64 25.11 6.25 54.8

MindReading 204 61.56 12.81 16.23

NATOPS 24 79.31 45.98 63.07

PEMS-SF 963 35.03 1.38 13.8

PhonemeSpectra 11 18.18 100 59.25

Siemens 39 30.77 10.88 55.61

SpokenArabicDigitsEq 13 53.85 53.85 54.91

Average 52.54 34.94 47.43

there is no difference. ECP is based on distances between predictions and

rather than accuracy and uses 1-NN DTW to make predictions. It tends to

select more attributes than MSTS, but the extra time the resultant HC2

classifier takes is offset by the more time-consuming components of MSTS.

Overall, these experiments show that, although there is no significant difference

between HC2-ECP, HC2-MSTS and HC2-RA, only ECP and MSTS reduce

dimensionality without reducing the accuracy of HC2 significantly. Both can

prove useful tools for filtering before using HC2 with high dimensional data,

with ECP marginally preferred because it more closely recreates HC2 results.

Chapter 6: Dimension Selection Strategies 112

Table 6.6: Train time in hours, including the time to filter.

Name HC2 HC2-ECP HC2-MSTS HC2-RA

ArticularyWordRecognition 3.80 4.13 3.42 3.47

DuckDuckGeese 8.16 5.34 4.09 3.87

EMO 23.99 17.72 12.57 11.52

FingerMovements 4.15 3.29 2.98 3.70

HAR 21.36 21.70 12.82 19.39

HandMovementDirection 3.63 3.55 3.20 3.46

Heartbeat 6.71 3.94 3.96 4.42

JapaneseVowelsEq 3.04 3.07 3.06 3.00

MotorImagery 33.06 15.35 9.32 26.44

MindReading 42.38 29.9 14.06 15.56

NATOPS 3.06 3.00 2.70 2.90

PEMS-SF 32.64 13.54 5.74 9.44

PhonemeSpectra 112.49 68.18 113.20 85.18

Siemens 14.96 7.70 4.96 10.16

SpokenArabicDigitsEq 118.89 79.21 78.59 76.84

Sum 432.31 279.63 274.65 279.33

6.7 Conclusion

In this chapter, we focused on selecting dimensions as a preprocessing step and

then executing HC2. It may be interesting to explore how filtering may affect

each component, and indeed other classifiers. It may be more useful to embed the

dimension selection within the component classifiers to create different feature

subsets for each. we have also only evaluated dimension selection algorithms.

Dimension creation algorithms may also be of use in MSTC.

We have donated four new datasets to the archive, but even then we are limited

to evaluating 15 datasets. Furthermore, many of these are not genuinely high

dimensional. More realistic cut-off points would be 50 or 100 dimensions. MTSC

Chapter 6: Dimension Selection Strategies 113

data is very diverse in origin, and finding algorithms significantly better than

other over all problem domains may prove unrealistic. In future work, we will

continue to seek out new high-dimensional problems, and we intend to focus more

specifically on EEG/MEG datasets, to make our research question more specific

to that problem domain.

7

Conclusions / Future work

Chapter 7: Conclusions / Future work 115

7.1 Discussion of contributions

This thesis started by defining the MTSC problem and the most important state-

of-the-art algorithms. We mention the importance of having a robust archive of

problems to test and introduce an archive of 33 problems in chapter 3 that we call

the UEA archive. We outline a methodology for a set of experiments to find the

most accurate algorithm for the UEA archive. The first set of experiments did

not give a clear winner but Hive Cote, Canonical Interval Forest, and Rocket as

statistically better than the other algorithms. Given that Rocket is significantly

faster than the others. Next, we mentioned Hive Cote 2 (HC2) which proved to

be significantly better than the other algorithms. We concluded that HC2 was

the most accurate algorithm in the UEA archive.

Therefore, the rest of the thesis focused on two ways to improve HC2: First, by

improving the shapelet transform classifier, which is the only component that

remained from HC1 to HC2, and second, by giving that HC2 is a complex

algorithm that takes a lot of time to train, we consider adding a dimension

selection preprocess step to speed up the training time and if possible improve

the accuracy.

For improving STC, we introduced a set of shapelet qualities to verify if any

shapelet quality criteria is better than the other, which we proved is not the

case. Then, we propose an ensemble of STC that uses different quality measures.

We proved that the ensemble improved significantly the original results while

improving training time. Finally, we ran an experiment of using HC2 with the

ensemble we created and compared with the original HC2 results. We use the

univariate and multivariate archives. We proved that in the multivariate case,

HC2 with the shapelet ensemble is statistically better than HC2 with the original

shapelet algorithm. However, in the case of univariate, this was not the case as

they were equivalent.

In dimensions selection, it was possible to significantly reduce the number of

Chapter 7: Conclusions / Future work 116

dimensions efficiently and without decreasing the performance.

7.2 Reflection and Future work

MTSC is an area of research that is still in its first steps and there is a lot of

improvement to make. Compared with univariate problems there are a lot of

improvements to be made. We presented some ideas in this thesis but many

improvements can be made. In this section, we present some of these ideas.

7.2.1 UCR/UEA Archive chapter

There is a set of 33 problems but we did not include all of them as four problems

do not have equal length in their examples. We added this limitation as many

algorithms were not prepared to handle unequal time series. This limitation on

the algorithms needs to be fixed as many problems in MTSC can have unequal

series length as part of the nature of the problem and the algorithms need to fix

that.

The univariate archive has more than 100 problems. Considering the 33 plus the

4 introduced in Chapter 6 is still a very low number. It is necessary to improve

the research to find, categorize, and prepare the datasets that need to be included

to consider at least 50 problems in the archive. More problems can give more

accurate results to consider an algorithm as the state of the art and not only the

most accurate in the archive.

The idea of grouping the problems by problem type was to find if any algorithm

is better for some specific subset of problems. In future work, this can be a line

of research to follow.

Chapter 7: Conclusions / Future work 117

7.2.2 MTSC Bakeoff chapter

This chapter gives the most detailed work for this MTSC archive. However, as

time goes new algorithms are developed in these need to be considered. Some

algorithms performed poorly in the experiments and can easily be dropped to

reduce the number of algorithms and increase the number of problems.

The deep learning algorithms did not perform well in these problems. It would

be interesting to analyze what was the reason such as incorrect architecture, not

enough train time, or any specific deep learning issue. Deep learning has proved

to be useful in other domains so it is possible that with more research on the

area, it can improve its results.

HC2 is the most accurate in the UEA archive. However, Rocket is the fastest

algorithm that has good results. We base this on the 7-day constraint. HC2

passes this constraint but there are problem domains that maybe cannot afford

to have this amount of time to train available. Another idea would be to define a

smaller constraint (for example 1 day) and verify how many algorithms can pass

this constraint and which one is the best.

7.2.3 Multivariate shapelet classifiers chapter

The major drawback in this chapter is that for the ensemble we handpicked the

components which introduced bias to the model. For future work, a training

phase should include a component selection to be included in the ensemble. It

should analyze how this affects the train time and also if most algorithms select

the same components or if some components are preferred for different problems.

Another element to analyze is why HC2 with the ensemble improved for

multivariate problems but not for univariate ones. It can be that the univariate

archive is stronger, or the more complex nature of MTSC problems or other

causes but it is usually the case that if an algorithm improved univariate, this

Chapter 7: Conclusions / Future work 118

improvement also reflects on multivariate like in the case of HC2.

Random dilated shapelet transform is different from than shapelet transform

classifier as it does not have the shapelet quality selection part which is very

time-consuming. That introduced the question of whether this part is necessary

and if the improvement justifies the amount of time it takes.

7.2.4 Dimension selection strategies

This is perhaps one of the newest areas on MTSC as the results did not improve

or decrease the accuracy of not filtering. This strategy was used to filter HC2

because HC2 is time-consuming in train time and the most accurate in the UEA

archive. We perform filtering first and then start HC2. A different approach

would be to filter each component of HC2 and verify if this individual filter

strategy is better than the one used.

More research is required to find novel ways to improve the filtering to improve

performance on problems. In this case, it would be necessary to answer the

question to verify if a problem has redundant or unnecessary dimensions or if all

dimensions are needed. For huge dimensional problems (more than 100) the first

case is probably the case but some statistical analysis needs to be developed to

measure this and include filtering as part of the algorithm.

The previous chapter introduced independent vs dependent shapelets and

compared both approaches. An intermediate model called semi-dependent

shapelets has been introduced where a subset of random dimensions is chosen.

In this case, the filtering approaches here can be used to have a more intelligent

way to make the subset selection.

A

Appendix

Chapter A: Appendix 120

Table A.1: Classifier Configuration

Algorithm Configuration

DTW D Full warping window

DTW I Full warping window

DTW A Full warping window

MUSE χ=2

gRFS Default (Max depth: none, min sample split: 2, num shapelets: 10

min size: 0%, max size: 100%, metric: Euclidean distance)

MrSEQL seql mode: fs, symrep: [’sax’, ’sfa’]

ROCKET Ridge regression classifier, 10,000 kernels

CIF Default (trees: 500, intervals:
√

(m)×
√

(d), 8 attributes per tree)

TapNet Default (Epochs: 3000, Learning rate: 1e− 5, weight decay: 1e− 3

stop threshold: 1e− 9, num filters: [256 256 128], kernels: [8 5 3]

dilation: 1, dropout: 0%)

ArticularyWordRecognition (dilation: 10)

EthanolConcentration (dilation: 200, learning rate: 1e− 6)

FaceDetection (filters: [64 64 32], learning rate: 5e− 5)

Heartbeat (dilation: 200, learning rate: 1e− 6, filters: [64 64 32])

PenDigits (kernels: [4 1 1], learning rate: 1e− 3)

PhonemeSpectra (filters: [64 64 32], learning rate: 1e− 3)

SelfRegulationsCP1 (learning rate: 1e− 6)

SelfRegulationsCP2 (learning rate: 1e− 9)

SpokenArabicDigits (filters: [128 128 64], learning rate: 1e− 4)

ResNet Epochs: 1500, batch size: 16, learning rate: 1e− 3 and halved after

no improvement for 50 epochs.

Three residual blocks each with three conv layers with kernel sizes [8, 5, 3]

filters per conv layer for each block [64, 128, 128]

InceptionTime Epochs: 1500, batch size: 64, learning rate: 1e− 3 and halved after no

improvement for 50 epochs.

Two residual blocks each with three Inception modules with kernel sizes

per module [10, 20, 40]

plus bottleneck filters for all conv layers 32

CBOSS Default, see [2]

STC Default, see [2]

RISE Default, see [2]

TSF Default, see [2]

HC1 [2]

Bibliography

[1] A. Bagnall, H. Dau, J. Lines, M. Flynn, J. Large, A. Bostrom, P. Southam,

and E. Keogh. The UEA multivariate time series classification archive, 2018.

ArXiv e-prints, arXiv:1811.00075, 2018.

[2] A. Bagnall, M. Flynn, J. Large, J. Lines, and M. Middlehurst. On the usage

and performance of HIVE-COTE v1.0. In proceedings of the 5th Workshop

on Advances Analytics and Learning on Temporal Data, volume 12588 of

Lecture Notes in Artificial Intelligence, 2020.

[3] A. Bagnall, M. Flynn, J. Large, J. Lines, and M. Middlehurst. A tale of two

toolkits, report the third: on the usage and performance of HIVE-COTE

v1.0, 2020.

[4] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh. The great time

series classification bake off: a review and experimental evaluation of recent

algorithmic advances. Data Mining and Knowledge Discovery, 31(3):606–

660, 2017.

[5] M. Baydogan and G. Runger. Learning a symbolic representation

for multivariate time series classification. Data Mining and Knowledge

Discovery, 29(2):400–422, 2015.

[6] B. Blankertz, G. Curio, and KR. Müller. Classifying single trial EEG:

towards brain computer interfacing. In proceedings of Advances in Neural

Information Processing Systems 15, pages 157–164, 2002.

Chapter A: Appendix 122

[7] B. Blankertz, G. Dornhege, M. Krauledat, K. Müller, and G. Curio. The

non-invasive berlin brain-computer interface: Fast acquisition of effective

performance in untrained subjects. In NeuroImage, volume 37(2), pages

539,550, 2007.

[8] A. Bostrom and A. Bagnall. Binary shapelet transform for multiclass

time series classification. Transactions on Large-Scale Data and Knowledge

Centered Systems, 32:24–46, 2017.

[9] A. Bostrom, A. Bagnall, and J. Lines. Evaluating improvements to the

shapelet transform. Knowledge Discovery and Data Mining, in Workshop

on Mining and Learning from Time Series, 2016.

[10] M. Cuturi. Fast global alignment kernels. In proceedings of the 28th

International Conference on Machine Learning, pages 929–936, 2011.

[11] S. Peres D. Dias. Algoritmos bio-inspirados aplicados ao reconhecimento

de padroes da libras: enfoque no parâmetro movimento. 16 Simpósio

Internacional de Iniciaçao Cientıfica da Universidade de Sao Paulo, 2016.

[12] H. Dau, A. Bagnall, K. Kamgar, M. Yeh, Y. Zhu, S. Gharghabi,

C. Ratanamahatana, A. Chotirat, and E. Keogh. The UCR time series

archive. IEEE/CAA Journal of Automatica Sinica, 6(6):1293–1305, 2019.

[13] V. Alves de Souza. Asphalt pavement classification using smartphone

accelerometer and complexity invariant distance. Engineering Applications

of Artificial Intelligence, 74:198–211, 09 2018.

[14] A. Dempster, F. Petitjean, and G. Webb. ROCKET: Exceptionally fast and

accurate time series classification using random convolutional kernels. FData

Mining and Knowledge Discovery, 34:1454–1495, 2020.

[15] J. Demšar. Statistical comparisons of classifiers over multiple data sets.

Journal of Machine Learning Research, 7:1–30, 2006.

[16] H. Deng, G. Runger, E. Tuv, and M. Vladimir. A time series forest for

Chapter A: Appendix 123

classification and feature extraction. Information Sciences, 239:142–153,

2013.

[17] B. Dhariyal, T. Le Nguyen, and G. Ifrim. Fast channel selection for scalable

multivariate time series classification. 2021.

[18] L. Grundy L. Tadas E. Yemini, A. Brown and W. Schafer. A dictionary of

behavioral motifs reveals clusters of genes affecting caenorhabditis elegans

locomotion. proceedings of the National Academy of Sciences, 110(2):791–

796, 2013.

[19] J. Egede, A. Olugbade, C. Wang, S. Song, N. Bianchi-Berthouze, M. Valstar,

A. Williams, H. Meng, H. Aung, and N. Lane. Emopain challenge 2020:

Multimodal pain evaluation from facial and bodily expressions. 2020 15th

IEEE International Conference on Automatic Face and Gesture Recognition

(FG 2020), pages 849–856, 2020.

[20] E. Alpaydin F. Alimoglu, Y. Doc and Y. Denizhan. Combining multiple

classifiers for pen-based handwritten digit recognition, 1996.

[21] H. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P. Muller. Deep

learning for time series classification: a review. Data Mining and Knowledge

Discovery, 33(4):917–963, 2019.

[22] HI. Fawaz, B. Lucas, G. Forestier, C. Pelletier, D. Schmidt, J. Weber,

G. Webb, L. Idoumghar, P. Muller, and F. Petitjean. Inceptiontime: Finding

alexnet for time series classification. ArXiv, 2019.

[23] M. Flynn, J. Large, and A. Bagnall. The contract random interval spectral

ensemble (c-RISE): The effect of contracting a classifier on accuracy. In

International Conference on Hybrid Artificial Intelligence Systems, volume

11734 of Lecture Notes in Computer Science, pages 381–392. 2019.

[24] B. Fulcher and N. Jones. HCTSA: A computational framework for

automated time-series phenotyping using massive feature extraction. Cell

Systems, 5(5):527–531, 2017.

Chapter A: Appendix 124

[25] N. Ghouaiel, PF. Marteau, and M. Dupont. Continuous pattern detection

and recognition in stream-a benchmark for online gesture recognition.

International Journal of Applied Pattern Recognition, 4(2):146–160, 2017.

[26] A. Goldberger, L. Amaral, L. Glass, J. Hausdorff, P. Ivanov, R. Mark,

J. Mietus, G. Moody, CK. Peng, and E. Stanley. PhysioBank, physiotoolkit,

and physionet: components of a new research resource for complex

physiologic signals. Circulation, 101(23):e215–e220, 2000.

[27] A. Guillaume, C. Vrain, and W. Elloumi. Random dilated shapelet

transform: A new approach for time series shapelets. In Pattern Recognition

and Artificial Intelligence, pages 653–664. Springer International Publishing,

2022.

[28] M. Hammami and M. Bedda. Improved tree model for arabic speech

recognition. In Computer Science and Information Technology (ICCSIT),

2010 3rd IEEE International Conference on, volume 5, pages 521–526. IEEE,

2010.

[29] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image

recognition. In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2016.

[30] J. Hills, J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. Classification

of time series by shapelet transformation. Data Mining and Knowledge

Discovery, 28(4):851–881, 2014.

[31] H. Hossein and A. Mueen. Dual-domain hierarchical classification of phonetic

time series. In Data Mining (ICDM), 2014 IEEE International Conference

on, pages 160–169. IEEE, 2014.

[32] F. Karim, S. Majumdar, H. Darabi, and S. Harford. Multivariate LSTM-

FCNs for time series classification. Neural Networks, 116:237–245, 2019.

[33] F. Karim, S. Majumdar, h. Darabi, and S. Chen. Lstm fully convolutional

networks for time series classification. IEEE access, 6:1662–1669, 2017.

Chapter A: Appendix 125

[34] I. Karlsson, Papapetrou P, and H. Boström. Generalized random shapelet

forests. Data Mining and Knowledge Discovery, 30(5):1053–1085, 2016.

[35] B. Kathirgamanathan and P. Cunningham. A feature selection method

for multi-dimension time-series data. In Advanced Analytics and Learning

on Temporal Data, pages 220–231, Cham, 2020. Springer International

Publishing.

[36] A. Klami. Proceedings of icann/pascal2 challenge: Meg mind reading.

Technical report, 2011.

[37] MH. Ko, G. West, S. Venkatesh, and M. Kumar. Online context recognition

in multisensor systems using dynamic time warping. In Proceedings of

the International Conference on Intelligent Sensors, Sensor Networks, and

Information Processing, pages 283–288, 2005.

[38] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing

systems, pages 1097–1105, 2012.

[39] M. Kudo, J. Toyama, and M. Shimbo. Multidimensional curve classification

using passing-through regions. Pattern Recognition Letters, 20(11-13):1103–

1111, 1999.

[40] T. Lal, T. Hinterberger, G. Widman, M. Schröder, J. Hill, W. Rosenstiel,

C. Elger, N. Birbaumer, and B. Schölkopf. Methods towards invasive human

brain-computer interfaces. In Proceedings of Advances in Neural Information

Processing Systems 18, pages 737–744, 2005.

[41] J. Large, K. Kemsley, N. Wellner, I. Goodall, and A. Bagnall. Detecting

forged alcohol non-invasively through vibrational spectroscopy and machine

learning. In Pacific-Asia Conference on Knowledge Discovery and Data

Mining, pages 298–309, 2018.

[42] J. Large, J. Lines, and A. Bagnall. A probabilistic classifier ensemble

Chapter A: Appendix 126

weighting scheme based on cross validated accuracy estimates. Data Mining

and Knowledge Discovery, 33(6):1674––1709, 2019.

[43] J. Lin, E. Keogh, L. Wei, and S. Lonardi. Experiencing SAX: a novel

symbolic representation of time series. Data Mining and Knowledge

Discovery, 15(2), 2007.

[44] J. Lines and A. Bagnall. Alternative quality measures for time series

shapelets. In Hujun Yin, José A. F. Costa, and Guilherme Barreto, editors,

Intelligent Data Engineering and Automated Learning - IDEAL 2012, pages

475–483, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[45] J. Lines, L. Davis, J. Hills, and A. Bagnall. A shapelet transform for

time series classification. In Proc. the 18th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 2012.

[46] J. Lines, S. Taylor, and A. Bagnall. Time series classification with HIVE-

COTE: The hierarchical vote collective of transformation-based ensembles.

ACM Trans. Knowledge Discovery from Data, 12(5), 2018.

[47] C. Liu, D. Springer, Q. Li, B. Moody, JR. Abad, F. Chorro, F. Castells,

J. Roig-Millet, I. Silva, and A. Johnson. An open access database for

the evaluation of heart sound algorithms. Physiological Measurement,

37(12):2181, 2016.

[48] J. Liu, L. Zhong, J. Wickramasuriya, and V. Vasudevan. uWave:

accelerometer-based personalized gesture recognition and its applications.

Pervasive and Mobile Computing, 5(6):657–675, 2009.

[49] C. Lubba, S. Sethi, P. Knaute, S. Schultz, B. Fulcher, and N. Jones.

Catch22: Canonical time-series characteristics. Data Mining and Knowledge

Discovery, 33(6):1821–1852, 2019.

[50] M. Malekzadeh, R. Clegg, A. Cavallaro, and H. Haddadi. Mobile sensor data

anonymization. In Proceedings of the International Conference on Internet

Chapter A: Appendix 127

of Things Design and Implementation, IoTDI ’19, pages 49–58, New York,

NY, USA, 2019. ACM.

[51] M. Middlehurst, J. Large, and A. Bagnall. The canonical interval forest

(CIF) classifier for time series classification. In proceedings of the IEEE

International Conference on Big Data, 2020.

[52] M. Middlehurst, J. Large, G. Cawley, and A. Bagnall. The temporal

dictionary ensemble (TDE) classifier for time series classification. In

proceedings of the European Conference on Machine Learning and Principles

and Practice of Knowledge Discovery in Databases, 2020.

[53] M. Middlehurst, J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall.

Hive-cote 2.0: a new meta ensemble for time series classification. Machine

Learning, 110:3211–3243, 2021.

[54] T. Hinterberger I. Iversen-B. Kotchoubey A. Kübler J. Perelmouter E. Taub

H. Flor N. Birbaumer, N. Ghanayim. A spelling device for the paralysed.

Nature, 398(6725):297, 1999.

[55] T. L. Nguyen, S. Gsponer, and G. Ifrim. Time series classification by

sequence learning in all-subsequence space. In proceedings of 33rd IEEE

International Conference on Data Engineering, pages 947–958, 2017.

[56] T. Le Nguyen, S. Gsponer, J. Ilie, M. O’Reilly, and G. Ifrim. Interpretable

time series classification using linear models and multi-resolution multi-

domain symbolic representations. Data Mining and Knowledge Discovery,

33(4):1183–1222, 2019.

[57] T. Le Nguyen and G. Ifrim. Mrsqm: Fast time series classification with

symbolic representations, 2022.

[58] E. Olivetti, SM. Kia, and P. Avesani. MEG decoding across subjects. In

Pattern Recognition in Neuroimaging, 2014 International Workshop, pages

1–4, June 2014.

Chapter A: Appendix 128

[59] A. Pasos-Ruiz and A. Bagnall. Dimension selection strategies for

multivariate time series classification with hive-cotev2.0. volume 13812 of

Lecture Notes in Computer Science, pages 133–147. Springer, 2022.

[60] A. Pasos-Ruiz, M. Flynn, and A. Bagnall. Benchmarking multivariate time

series classification algorithms. ArXiv e-prints, ArXiv:2007.13156, 2020.

[61] J. Rodriguez, L. Kuncheva, and C. Alonso. Rotation forest: A new classifier

ensemble method. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 28(10):1619–1630, 2006.

[62] A. Pasos Ruiz, M. Flynn, Large J, M. Middlehurst, and A. Bagnall. The great

multivariate time series classification bake off: a review and experimental

evaluation of recent algorithmic advances. Data Mining and Knowledge

Discovery, 35:401 – 449, 2021.

[63] P. Schäfer. The BOSS is concerned with time series classification in the

presence of noise. Data Mining and Knowledge Discovery, 29(6):1505–1530,

2015.

[64] P. Schäfer and M. Högqvist. SFA: a symbolic Fourier approximation and

index for similarity search in high dimensional datasets. In Proceedings of

the 15th International Conference on Extending Database Technology, pages

516–527, 2012.

[65] P. Schäfer and U. Leser. Fast and accurate time series classification with

weasel. In Proceedings of the 2017 ACM on Conference on Information and

Knowledge Management, pages 637–646. ACM, 2017.

[66] M. Shokoohi-Yekta, B. Hu, H. Jin, J. Wang, and E. Keogh. Generalizing

DTW to the multi-dimensional case requires an adaptive approach. Data

Mining and Knowledge Discovery, 31(1):1–31, 2017.

[67] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In The

Chapter A: Appendix 129

IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

June 2015.

[68] D. Labisch T. Bierweiler. Four-tank batch process in smart automation.

Technical report, 2021.

[69] J. Villar, P. Vergara, M. Menéndez, E. de la Cal, V. González, and J. Sedano.

Generalized models for the classification of abnormal movements in daily life

and its applicability to epilepsy convulsion recognition. International Journal

of Neural Systems, 26(06):1650037, 2016.

[70] J. Wang, A. Balasubramanian, LM. de La Vega, J. Green, A. Samal, and

B. Prabhakaran. Word recognition from continuous articulatory movement

time-series data using symbolic representations. In Proceedings of the 4th

Workshop on Speech and Language Processing for Assistive Technologies,

pages 119–127, 2013.

[71] Z. Wang, W. Yan, and T. Oates. Time series classification from scratch

with deep neural networks: A strong baseline. In 2017 international joint

conference on neural networks, pages 1578–1585, 2017.

[72] M. Wilhelm, D. Krakowczyk, F. Trollmann, and S. Albayrak. ERing:

multiple finger gesture recognition with one ring using an electric field.

In Proceedings of the 2nd International Workshop on Sensor-based Activity

Recognition and Interaction, page 7. ACM, 2015.

[73] B. Williams, M. Toussaint, and A. Storkey. Extracting motion primitives

from natural handwriting data. In International Conference on Artificial

Neural Networks, pages 634–643. Springer, 2006.

[74] B. Williams, M. Toussaint, and A. Storkey. A primitive based generative

model to infer timing information in unpartitioned handwriting data. In

IJCAI, pages 1119–1124, 2007.

[75] B. Williams, M. Toussaint, and A. Storkey. Modelling motion primitives and

Chapter A: Appendix 130

their timing in biologically executed movements. In Proceedings of Advances

in Neural Information Processing Systems 21, pages 1609–1616, 2008.

[76] G. Batista A. Mafra-Neto E. Keogh Y. Chen, A. Why. Flying insect

classification with inexpensive sensors. Journal of insect behavior, 27(5):657–

677, 2014.

[77] K. Yang, H. Yoon, and C. Shahabi. CLeVer: A feature subset selection

technique for multivariate time series. In Advances in Knowledge Discovery

and Data Mining, pages 516–522, Berlin, Heidelberg, 2005. Springer Berlin

Heidelberg.

[78] L. Ye and E. Keogh. Time series shapelets: a novel technique that allows

accurate, interpretable and fast classification. Data Mining and Knowledge

Discovery, 22(1-2):149–182, 2011.

[79] X. Zhang, Y. Gao, J. Lin, and CT. Lu. TapNet: Multivariate time series

classification with attentional prototypical network. In proceedings of 34th

AAAI conference on artificial intelligence, 2020.

	Abstract
	Aknowledments
	List of Figures
	List of Tables
	Introduction
	Introduction
	Thesis contributions
	Thesis structure

	Background
	Introduction
	Distance-based
	Independent DTW (DTWI)
	Dependent DTW (DTWD)
	Adaptive (DTWA)

	Transformation based
	The Random Convolutional Kernel Transform (ROCKET)
	Arsenal
	Shapelet based classifiers
	The Multiple Representation Sequence Learner (MrSEQL)

	Dictionary approaches
	CBOSS
	WEASEL+MUSE
	Temporal Dictionary Ensemble (TDE)

	Deep learning
	The Multivariate Long Short Term Memory Fully Convolutional Network (MLCN).
	Residual Network (ResNet)
	InceptionTime
	Time Series Attentional Prototype Network (TapNet)

	Interval based
	The Random Interval Spectral Ensemble (RISE)
	Canonical Interval Forest (CIF)
	Diverse Representation Canonical Interval Forest (DrCIF)

	Heterogeneous ensembles
	HIVE-COTE 1
	HIVE-COTE 2
	HIVE-COTE Independent

	The UCR/UEA MTSC Archive
	Introduction
	Accelerometer data
	Asphalt
	Basic Motions
	Epilepsy
	Cricket
	Racket sports

	Medical scan data
	Atrial fibrillation
	Face detection
	Finger movements
	Hand movement direction
	Heart beat
	Motor imagery
	Stand walk jump
	Self regulations 1 and 2

	Handwriting problems
	Character Trajectories
	Handwriting
	Pen digits

	Gesture recognition
	Ering
	NATOPS
	UWave gesture library
	Libras

	Sound data
	Duck duck gees
	Japanese vowels
	Insect wing beat
	Phoneme spectra
	Spoken Arabic digits

	Other sensors
	Articulary word recognition
	Ethanol concentration
	Eigen worms
	LSST
	PEMS-SF

	MTSC bake-off
	Introduction
	Methodology
	Evaluation
	Results
	Comparison of Eleven Classifiers on Twenty-Six Datasets
	Comparison of Sixteen Classifiers on Twenty Datasets

	HIVE-COTE 2 in MTSC
	Conclusion

	Multivariate Shapelet Classifiers
	Introduction
	Quality criteria
	Information Gain
	Chi-squared (CHI)
	Pearson correlation (COR)
	OneR (ONER)
	F-Stat
	Symmetrical uncertainty (SYM)

	Independent / Dependent Shapelets
	Experiment settings
	Results
	Shapelet quality variants
	Ensemble shapelets using different quality measures
	Adding to HC2
	Compared with univariate TSC

	Conclusions

	Dimension Selection Strategies
	Introduction
	Dimension selection problem
	Related work
	Proposed method
	Evaluation
	Data
	Experiments

	Results
	Conclusion

	Conclusions / Future work
	Discussion of contributions
	Reflection and Future work
	UCR/UEA Archive chapter
	MTSC Bakeoff chapter
	Multivariate shapelet classifiers chapter
	Dimension selection strategies

	Appendices
	Appendix

