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The interaction between the flow in a channel with an obstruction on the bottom and an8
elastic sheet representing the ice covering the liquid is considered for the case of steady9
flow. The mathematical model based on the velocity potential theory and the theory of thin10
elastic shells fully accounts for the nonlinear boundary conditions at the elastic sheet/liquid11
interface and on the bottom of the channel. The integral hodograph method is employed to12
derive the complex velocity potential of the flow, which contains the velocity magnitude at13
the interface in explicit form. This allows one to formulate the coupled ice/liquid interaction14
problem and reduce it to a system of nonlinear equations in the unknown magnitude of15
the velocity at the interface. Case studies are carried out for a semi-circular obstruction16
on the bottom of the channel. Three flow regimes are studied: a subcritical regime, for17
which the interface deflection decays upstream and downstream; an ice supercritical and18
channel subcritical regime, for which two waves of different lengths may exist; and a channel19
supercritical regime, for which the elastic wave is found to extend downstream to infinity.20
All these regimes are in full agreement with the dispersion equation. The obtained results21
demonstrate a strongly nonlinear interaction between the elastic and the gravity wave near22
the first critical Froude number where their lengths approach each other. Results for the23
interface shape, the bending moment, and the pressure along the interface are presented for24
wide ranges of the Froude number and the obstruction height.25

1. Introduction26

The problem of the interaction between a liquid and an elastic boundary is a classical problem27
in fluid mechanics, which has applications in offshore and polar engineering, medicine, and28
various industrial fields. In recent decades, this topic has gained renewed attention due to29
global warming and the melting of ice in Arctic regions, which has opened up new routes for30
ships and new areas for resource exploration (Squire et al. (1995), Părău and Dias (2002),31
Korobkin, Părău and Vanden-Broeck (2011), Blyth, Părău and Vanden-Broeck (2011)).32

In the past century, studies on ice/liquid interaction primarily focused on the response of33
an ice cover to a load moving on the ice surface. This problem was driven by the practical34
need for seasonal routes for vehicles and runways for aircraft in polar regions (Squire et35
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al. (1988)). A comprehensive bibliography on this subject can be found in the monograph36
Squire et al. (1996).37

Current studies on ice-related phenomena are centered around the effect of ice on ocean38
waves and their interaction with various ice structures, such as continuous ice, floes, polynyas,39
and pancake ice. One important aspect is understanding how far ocean waves can penetrate40
into ice fields, leading to the breaking of ice near the shore and the formation of a marginal41
ice zone with multiple cracks and polynyas (Guyenne and Părău (2012), Guyenne and Părău42
(2017), Meylan et al. (2018), Squire (2020)).43

Studying the interaction between an ice sheet and water waves is mathematically chal-44
lenging. Most publications in this field rely on linear theories of water waves and the theory45
of a thin elastic shell to model the ice cover (Sturova (2009), Karmakar (2010), Korobkin,46
Părău and Vanden-Broeck (2011), Khabakhpasheva et al. (2019), Shishmarev et al. (2019),47
Stepanyants and Sturova (2021)). One interesting aspect of ice/water interaction is different48
types of ice response depending on the wave velocity caused by a moving disturbance, such49
as a load on the ice sheet or a body moving beneath the ice sheet. Linear theories can be50
used to derive the dispersion relation and determine two critical wave speeds: one applies51
to gravity waves in a channel of finite depth, and the other is the minimal speed of wave52
propagation at the interface due to the elastic sheet (Kheisin (1963), Kheisin (1967)). The53
corresponding critical Froude numbers based on the depth of the channel are denoted as54
𝐹 = 1 and 𝐹 = 𝐹cr.55

For wave speeds in the range between these two critical speeds, the linear theories predict56
two waves of different lengths: a longer wave due to gravity moving downstream, and a shorter57
wave moving upstream caused by the elastic sheet. A linear theory is also employed to study58
ice/water/structure interaction, with recent reviews provided by Ni et al. (2020). Some papers59
in this field focus on the effects of bottom topography and an arbitrary ice thickness. For60
example, Porter and Porter (2004) used a variational approach to study the effect of varying61
the ice thickness and the water depth on wave propagation in three dimensions. Sturova62
(2009) investigated the unsteady behavior of ice floating on shallow water with a variable63
depth. Karmakar (2010) analyzed wave transformation by multiple steps and blocks on the64
channel bottom using the wide-spacing approximation. Shishmarev et al. (2019) explored65
methods to mitigate oscillations of floating elastic plates under periodic surface water waves.66
Ice response on load moving along on frozen channel and on motion of underwater body67
was investigated by Shishmarev et al. (2016), Shishmarev et al. (2019) and Shishmarev et68
al. (2023). At the last work thickness of ice cover was variable across a channel. Large time69
response of ice cover on underwater moving body was described in Khabakhpasheva et al.70
(2019). Xue et al. (2021) investigated the hydroelastic response of an ice sheet with a lead71
to a moving load.72

However, the linear theories cannot accurately predict the behavior of an ice sheet near the73
critical speed, where they predict an infinite response of the interface. Nonlinear studies of74
flexural-gravity waves in this context are limited. Părău and Dias (2002) studied the effects75
of nonlinearity slightly below the critical wave speed, or 𝐹 < 𝐹cr, and derived a nonlinear76
Schrödinger equation. Bonnefoy et al. (2009) developed a higher-order spectral method to77
calculate the nonlinear response of an infinite ice sheet to a moving load in the time domain.78
Milewski et al. (2011) obtained purely hydroelastic solitary waves for a full nonlinear79
model in deep water using a conformal mapping technique. Gao et al. (2019)) extended this80
method to finite depth flows with constant vorticity. Guyenne and Părău (2012) discovered81
depression and elevation branches of solitary waves below the minimum phase speed using82
the Cosserat theory of hyperelastic shells satisfying Kirchhoff’s hypotheses (Plotnikov and83
Toland (2011)). They compared the wave profiles computed by the boundary-integral method84
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and high-order spectral method. Strongly nonlinear events were also studied for a jet impact85
on an ice sheet (Yuan et al. (2022)) and for ice–bubble interaction (Zhang et al. (2023)).86

The nonlinear studies mentioned above mainly focus on exploring solitary waves with an87
ice sheet in deep or constant depth water. Both the steady and the unsteady formulations88
of the problem are used to predict the wave propagation originated by the pressure load on89
the ice sheet. Page and Părău (2014) investigated the steady problem of hydraulic fall in90
the presence of an ice sheet and bottom geometry. They used the Cosserat theory to model91
the ice sheet and employed boundary integral equation techniques to solve the problem for92
the liquid region. They presented results for hydraulic falls without wave trains upstream or93
downstream; however, they obtained solutions with a train of waves trapped between two94
obstructions.95

In this paper, a general solution to the steady nonlinear problem of hydroelastic waves96
generated by an obstruction on the channel bottom is presented. The problem is equivalent to97
a body moving beneath an ice sheet along a flat bottom in still water. Although the formulation98
of the problem is steady and two-dimensional, that is, simpler than the unsteady formulations99
in the studies mentioned above, the present study focuses on the nonlinear features of the100
elastic sheet /fluid interaction which have not been explored before. In particular, how101
the height of the obstruction affects the interface, the bending moment, and the pressure102
distribution along the interface in the whole range of flow velocities, including the subcritical103
and the supercritical flow regime; at what maximal height of the obstruction a steady solution104
still exists. For supercritical flows with Froude number 𝐹 > 1, the present study revealed the105
existence of flexural gravity waves downstream of the obstruction, which are in agreement106
with those predicted by the dispersion relation. The integral hodograph method is employed to107
derive the complex velocity potential, which includes the velocity magnitude at the ice/liquid108
interface and the slope of the bottom in explicit form. The coupling of the elastic sheet and109
moving liquid solutions is based on the condition of an equal pressure at the interface, which110
arises both from flow dynamics and from elastic sheet equilibrium. The entire problem111
is reduced to a system of nonlinear equations in the unknown velocity magnitude at the112
interface, which is solved numerically. This methodology was previously applied to infinite113
depth water (Semenov (2021)) and to the flow in a channel covered by broken ice (Ni et al.114
(2023)).115

The derivation of the flow potential and the numerical method for solving the coupled116
liquid/elastic sheet interaction problem are presented in Section II. Extended numerical117
results are discussed in Section III. The solution is carefully checked by reproducing the118
results of Page and Părău (2014) for the hydraulic fall under an ice plate. Then, three119
flow regimes are studied: a subcritical regime (𝐹 < 𝐹cr), an ice supercritical and channel120
subcritical regime (𝐹cr < 𝐹 < 1), and a channel supercritical regime (𝐹 > 1). For the Froude121
number range 𝐹cr < 𝐹 < 1, the presented results revealed a strongly nonlinear interaction122
between the wave due to the elastic sheet and the gravity wave near the critical Froude123
number 𝐹cr where their wavelengths approach each other. A steady solution does not exist124
for a Froude number equal to one of the critical Froude numbers; otherwise, the height of the125
obstruction should be zero. The new findings are summarized in the Conclusions section.126

2. Theoretical analysis.127

A two-dimensional steady flow in a channel with an obstruction on the bottom covered by128
an elastic sheet representing the ice cover is considered. The obstruction has a characteristic129
length 𝑅, and the thickness of the sheet is ℎ̄. We define a Cartesian coordinate system 𝑋𝑌 with130
the origin at the center of the obstruction. The 𝑋 axis is aligned with the velocity direction131
of the flow, which has a constant speed 𝑈. The 𝑌−axis points vertically upwards. This132
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Figure 1: (𝑎) Physical plane and (𝑏) parameter, or 𝜁−plane.

consideration is equivalent to the obstruction moving along the flat bottom of the channel133
with velocity 𝑈 in the opposite direction. A definition sketch of the coordinate system is134
shown in Figure 1𝑎. The liquid is inviscid and incompressible, and the flow is assumed to be135
irrotational, thus allowing us to use a potential flow model.136

The obstruction and the bottom downstream are assumed to have an arbitrary shape, which137
is defined by the function 𝑌𝑏 (𝑆), where 𝑆 is the arc length coordinate, or by the slope of the138
bottom, 𝛿𝑏 = 𝑑𝑌/𝑑𝑆,139

𝛿𝑏 (𝑋) = arctan
𝑑𝑌𝑏

𝑑𝑋
.140

We introduce the complex velocity potential,𝑊 (𝑍) = Φ(𝑋,𝑌 ) + 𝑖Ψ(𝑋,𝑌 ), which consists141
of the velocity potential Φ(𝑋,𝑌 ) and the stream function Ψ(𝑋,𝑌 ). Here, 𝑍 = 𝑋 + 𝑖𝑌 . The142
boundary value problem for the velocity potential can be written as follows:143

∇2Φ = 0, ∇2Ψ = 0, (2.1)144

in the liquid domain;145

𝜕Φ

𝜕𝑌
=
𝜕Φ

𝜕𝑋

𝑑𝑌𝑏

𝑑𝑋
, Ψ = 0, (2.2)146

on the bottom of the channel 𝑌𝑏 = 𝑌𝑏 (𝑋);147

𝜌
𝑉2

2
+ 𝜌𝑔𝑌 + 𝑝𝑖𝑐𝑒 (𝑋) + 𝑝𝑒𝑥𝑡 (𝑋) = 𝜌

𝑈2

2
+ 𝜌𝑔𝐻 + 𝑝∞, (2.3)148

which is the dynamic boundary condition at the ice/liquid interface, 𝑌 = 𝑌 (𝑋). Here,149
𝑉 = |∇Φ| is the velocity magnitude, 𝑝𝑖𝑐𝑒 (𝑋) is the hydrodynamic pressure at the ice/liquid150
interface and 𝑃∞ = 𝑃𝑎 + 𝜌𝑖𝑔ℎ is its value at infinity; 𝑝𝑎 is the atmospheric pressure, 𝜌𝑖 is the151
density of ice, ℎ is the thickness of the ice sheet, and 𝑔 is the gravity acceleration, 𝑝𝑒𝑥𝑡 (𝑋)152
is the external pressure applied to the elastic sheet on the intervals 𝑋𝑃2 < 𝑋 < 𝑋𝑃1 and153
𝑋𝑇1 < 𝑋 < 𝑋𝑇2 to provide a waveless interface far upstream and downstream; this will be154
discussed in the following.155

The sought-for solution has the limit𝑌 (𝑋)𝑋→−∞ = 𝐻, where 𝐻 is the depth of the channel.156
The flow is steady; therefore, the value of the stream function at the interface is constant and157
equal to the flowrate across the channel158

Ψ = 𝑈𝐻; (2.4)159

and the far field condition160

∇Φ → 𝑈, 𝑋 → −∞, 0 ⩽ 𝑌 ⩽ 𝐻. (2.5)161

To complete the formulation of the boundary-value problem (2.1) - (2.3), an equation in162
the hydrodynamic pressure at the ice/liquid interface is needed. The elastic sheet is modeled163
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using the Cosserat theory of hyperelastic shells (Plotnikov and Toland (2011))164

𝑝𝑖𝑐𝑒 = 𝐷
′
(
𝑑2𝜅

𝑑𝑆2 + 1
2
𝜅3

)
+ 𝑝𝑎, (2.6)165

where 𝐷′ = 𝐸ℎ3

12(1−𝜈2 ) is the flexural rigidity of the elastic sheet, 𝜅 is the curvature of the166

interface, 𝐸 = 5.0𝐺𝑃𝑎 is Young’s modulus, and 𝜈 = 0.3 is Poisson’s ratio. Equation (2.6)167
corresponds to the assumption that the elastic sheet is inextensible and is not prestressed. It168
should be noted that the difference between the Cosserat theory and the Kirchhoff - Love169
plate model, in which the cube of the curvature term in (2.6) is omitted, is quite small due to170
a small curvature of the ice sheet before it starts breaking.171

The interactions between the obstruction, the flow, and the elastic sheet may generate172
waves that extend to both upstream and downstream infinity. However, the solutions with173
waves extending to upstream infinity are physically meaningless because they do not satisfy174
the radiation condition, which requires that there be no energy coming from infinity (Binder,175
Vanden-Broeck and Dias (2009)). To satisfy the radiation condition, or make the interface176
waveless far upstream, we apply an external pressure on the interval 𝑃1𝑃2 (see Figure 1𝑎),177
which can be located as far as necessary to avoid its effect on the flow near the obstruction,178

𝑝𝑒𝑥𝑡 = 𝐶𝑑𝑉
𝑑𝑉

𝑑𝑋
, (2.7)179

where the coefficient 𝐶𝑑 characterizes the wave attenuation on the interval 𝑃1𝑃2; it linearly180
increases from zero at point 𝑃1 to some value 𝐶up > 0 at point 𝑃2 and then remains constant.181

Now we recall that potential flows of an ideal fluid are reversible, i.e., changing the182
direction of the inflow velocity has no effect on the results. Alternatively, the flow region can183
be mirrored about the y-axis without reversing the velocity direction. Therefore, to make our184
solution reversible, it is also necessary to provide a waveless interface far downstream.185
Similarly, the external pressure (2.7) is applied on the interval 𝑇1𝑇2 downstream. The186
coefficient 𝐶𝑑 changes from zero at point 𝑇1 to some value 𝐶𝑑 = 𝐶dw at point 𝑇2 and187
then remains constant. The same wave attenuation technique was used by Semenov (2021)188
for a similar problem, but with an infinite water depth.189

To solve the problem, it is convenient to nondimensionalize the variables. The velocity 𝑈190
and the depth of the channel 𝐻 are used as the reference quantities. Specifically, 𝑥 = 𝑋/𝐻191
and 𝑦 = 𝑌/𝐻, 𝑠 = 𝑆/𝐻, the thickness of the ice sheet ℎ is replaced with ℎ∗ = ℎ/𝐻, the bottom192
profile 𝑦𝑏 (𝑥) = 𝑌𝑏 (𝑋)/𝐻, and the interface profile 𝑦(𝑥) = 𝑌 (𝑥)/𝐻. The velocity potential Φ193
and the stream function Ψ are also normalized to the product𝑈𝐻. The normalized variables194
are denoted as 𝜙 = Φ/𝑈𝐻 and 𝜓 = Ψ/𝑈𝐻. With these normalizations, the value of the195
stream function on the bottom of the channel is 𝜓 = 0, and the value of the stream function196
at the interface is 𝜓 = 1.197

The nondimensionalized dynamic boundary condition (2.3) takes the form198

𝑣2 = 1 − 2(𝑦 − 1)
𝐹2 − 2𝐷

(
𝑑2𝜅

𝑑𝑆2 + 1
2
𝜅3

)
− 2𝐶𝑑

𝐻
𝑣
𝑑𝑣

𝑑𝑠
, (2.8)199

where200

𝑣 = |∇𝜙| = 𝑉/𝑈, 𝐸𝑏 =
𝐷′

𝜌𝑔𝐻4 , 𝐷 =
𝐸𝑏

𝐹2 , 𝜅 =
𝑑𝛿

𝑑𝑠
,201

and202

𝐹 =
𝑈

√
𝑔𝐻

(2.9)203

is the Froude number based on the depth of the channel, 𝛿 = arcsin(𝑑𝑦/𝑑𝑠) = 𝛽 + 𝜋 is the204
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angle between 𝑋−axis and the unit tangential vector 𝝉 oppositely directed to the velocity205
direction 𝛽. Equation (2.8) contains the velocity magnitude along the interface 𝑣 and the wave206
elevation 𝑦 with its derivatives, which will be related in the following through the derived207
expression for the complex potential.208

2.1. Dispersion relation209

We examine a steady sine-like waving interface of small steepness 𝛿0, or the slope of the210
interface can be represented as211

𝛿(𝑠) = ℜ[𝛿0𝑒
𝑖𝑘𝐻𝑠], (2.10)212

where 𝑘𝐻 is the nondimensional wave number. Upon differentiating equation (2.8) in the arc213
length coordinate 𝑠, we obtain:214

𝑣2 𝑑 ln 𝑣
𝑑𝑠

= −
(

1
𝐹2 + 𝐷 (𝑘𝐻)4

)
𝛿. (2.11)215

For the case without an ice sheet (𝐷 = 0), equation (2.11) becomes216

𝑣2 𝑑 ln 𝑣
𝑑𝑠

= − 𝛿

𝐹2 = − 𝑘𝐻

tanh 𝑘𝐻
𝛿, (2.12)217

where we used the relation between the Froude and wave numbers for free surface gravity218
waves in a channel of depth 𝐻 (Kochin, Kibel and Roze (1964)). We assume that the velocity219
along the interface behaves in the same as for the free surface case. From equations (2.11)220
and equation (2.12), we obtain the dispersion equation, which coincides, in particular, with221
that in the papers Greenhill (1886), Page and Părău (2014)222

𝑘𝐻

tanh 𝑘𝐻
=

1
𝐹2 + 𝐷 (𝑘𝐻)4. (2.13)223

The number of real roots of equation (2.13) depends on the value of the constant 𝐷 and224
the Froude number 𝐹. It can have no roots, two roots, or one root. These cases correspond225
to a subcritical flow (no roots), 𝐹 < 𝐹cr, a channel subcritical and ice supercritical flow (two226
roots), 𝐹cr < 𝐹 < 1, and a channel supercritical flow (𝐹 > 1).227

The wave number versus the Froude number obtained from the solution of equation (2.13)228
is shown in Figure 2 for various thicknesses of the ice sheet. It can be seen that without an229
ice sheet (ℎ = 0) each Froude number 𝐹 < 1 corresponds to one wave number. It tends to230
zero as the Froude number 𝐹 → 1. In the presence of an ice sheet, there is a minimal, or231
critical Froude number 𝐹cr, for which the solution of the dispersion equation exists. In the232
range 𝐹cr < 𝐹 < 1, there are two wave numbers, 𝑘gr and 𝑘 ice corresponding to the gravity233
and elastic waves; the wave number 𝑘 ice > 𝑘gr, or the elastic wave is shorter than the gravity234
wave. This range of the Froude number corresponds to the ice supercritical and channel235
subcritical flows. The larger the ice thickness, the smaller the wave number 𝑘 ice, and the236
critical Froude number 𝐹cr → 1. Thus, the interval 𝐹cr < 𝐹 < 1, in which both the gravity237
and the elastic wave may appear, reduces. For 𝐹 > 1, or for the channel supercritical flows,238
there is one root due to the elastic sheet. Since for 𝐹 > 1 the perturbations in the channel239
cannot extend upstream, and we may expect the elastic wave extending downstream. Usually,240
the dispersion equation 2.13 relates a wave frequency (or phase speed of a monochromatic241
wave moving in still water) to the wavenumber: 𝜔2 = 𝑘2𝑈2. In the present case,𝑈2 = 𝐹2𝑔𝐻;242
therefore, the frequency 𝜔 and the Froude number are related as 𝜔2 = 𝑘2𝐹2𝑔𝐻.243
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Figure 2: Wave number vs. Froude number for different thicknesses of the ice sheet, ℎ/𝐻.

2.2. Integral hodograph method244

Finding the complex potential of the flow, 𝑤 = 𝑤(𝑧), directly is a complicated problem since245
the boundary of the flow region is unknown in advance. Instead, Joukowskii (1890) and246
Michell (1890) proposed to introduce an auxiliary parameter plane, or 𝜁−plane, which was247
typically chosen as the upper half-plane. Then, they considered two functions, which were248
the complex potential 𝑤 and the function249

𝜔 = − ln
(

1
𝑣0

𝑑𝑤

𝑑𝑧

)
= ln

𝑣

𝑣0
− 𝑖𝛽, (2.14)250

both functions of the parameter variable 𝜁 . Here, 𝑣 and 𝛽 are the velocity magnitude and251
direction, respectively; 𝑣0 is the magnitude of the velocity on the free surface, which is252
assumed to be constant. When 𝑤 = 𝑤(𝜁) and 𝜔(𝜁) are derived, the velocity and the flow253
region can be obtained in parametric form as follows:254

𝑑𝑤

𝑑𝑧
= exp[−𝜔(𝜁)], 𝑧(𝜁) = 𝑧0 +

∫ 𝜁

0

𝑑𝑤

𝑑𝜁 ′
/𝑑𝑤
𝑑𝑧
𝑑𝜁 ′, (2.15)255

where the function 𝑧(𝜁) is called the mapping function.256
The Joukovskii - Michell method is capable to solve free surface problems for flows over257

polygon-shaped bodies and a constant velocity on the free surface/interface (without gravity,258
surface tension, etc.). In this case the functions𝜔(𝜁) and𝑤(𝜁) form polygon-shaped domains259
and can be found applying the Schwarz-Christoffel integral to find their conformal mapping260
into the upper half-plane.261

An additional complexity arises when the slope of the body varies along the body contour262
or the velocity magnitude on the free surface/interface varies due to gravity, surface tension,263
etc. On these parts of the flow boundary, the boundary conditions are of different types: on264
the solid part of the boundary, the velocity direction is determined by the slope of the body;265
on the free surface/interface, the velocity magnitude can be obtained from the Bernoulli266
equation. This is a so-called mixed boundary-value problem for a complex function.267
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If the upper half-plane is chosen as the region of the parameter variable and the whole real268
axis corresponds to the free surface or the body surface, then Schwarz’s integral formula or269
Cauchy’s integral formula can be applied to determine the desired complex function. This270
approach was applied by Forbes and Schwartz (1982) for solving free-surface flow over271
a semicircular obstruction. In order to use Cauchy’s integral formula, they introduced an272
image flow symmetric about the 𝑥− axis and were able to formulate a uniform boundary-273
value problem for the complex function 𝑑𝜁/𝑑𝑤. By using Cauchy’s integral formula and the274
dynamic boundary condition, they obtained an integro-differential equation in the complex275
function 𝑑𝜁/𝑑𝑤.276

In this paper, we use a different integral formula (Semenov and Iafrati (2006), Semenov277
and Cummings (2007)) that allows us to determine a complex function based on the values278
of its argument and magnitude given on the real and the imaginary axis of the first quadrant,279
respectively. Therefore, we chose the first quadrant as the region of the parameter variable280
𝜁 = 𝜉 + 𝑖𝜂 (instead of a half-plane) shown in Figure 1𝑏. The parameter region corresponds281
to the liquid domain in the physical plane 𝑧 = 𝑥 + 𝑖𝑦 shown in Figure 1𝑎: the real axis282
corresponds to the bottom of the channel, and the imaginary axis corresponds to the interface.283
The conformal mapping theorem allows us to arbitrarily choose the location of three points284
𝑂 (𝑂′) (𝜁 = 0) 𝐵 (𝜁 = 1) and 𝐷 (𝐷′) (𝜁 = ∞), as shown in 1𝑏. Then, the locations of points285
𝐴 (𝜁 = 𝑎) and 𝐶 (𝜁 = 𝑐) are unknown and have to be determined using additional physical286
considerations.287

The complex velocity function on the bottom of the channel and that at the interface are288
unknown a priori. At this stage, we assume that these functions are known as functions of289
the parameter variables: 𝑣(𝜂) = |𝑑𝑤/𝑑𝑧 | is known as a function of the coordinate 𝜂 along the290
imaginary axis in the 𝜁−plane; 𝜒(𝜉) = arg(𝑑𝑤/𝑑𝑧) is a known function of the coordinate 𝜉291
along the real axis of the first quadrant in the 𝜁−plane. These functions will be determined292
later using the dynamic and kinematic boundary conditions at the interface and on the bottom,293
respectively. Using the above definitions, we can write the following boundary-value problem294
for the complex velocity function:295 ����𝑑𝑤𝑑𝑧 ����

𝜁=𝑖𝜂

= 𝑣(𝜂), 0 ⩽ 𝜂 < ∞, (2.16)296

297

arg

(
𝑑𝑤

𝑑𝑧

����
𝜁=𝜉

)
= 𝜒(𝜉), 0 ⩽ 𝜉 < ∞. (2.17)298

By using Chaplygin’s singular point method (Gurevich (1965), §5 Chapter 1), the following299
integral formula can be obtained for solving the mixed boundary value problem (2.16) and300
(2.17) (Semenov and Iafrati (2006)):301

𝑑𝑤

𝑑𝑧
= 𝑣∞ exp


1
𝜋

0∫
∞

𝑑𝜒

𝑑𝜉
ln

(
𝜁 + 𝜉
𝜁 − 𝜉

)
𝑑𝜉 − 𝑖

𝜋

∞∫
0

𝑑 ln 𝑣
𝑑𝜂

ln
(
𝜁 − 𝑖𝜂
𝜁 + 𝑖𝜂

)
𝑑𝜂 + 𝑖𝜒∞

 , (2.18)302

where 𝑣∞ = lim
𝜂→∞

𝑣(𝜂) and 𝛾∞ = lim
𝜉→∞

𝜒(𝜉). An alternative way of derivation of the above303

integral formula is presented by Semenov and Cummings (2007). It can easily be verified304
that for 𝜁 = 𝜉 the argument of the function 𝑑𝑤/𝑑𝑧 is the function 𝜒(𝜉), while for 𝜁 = 𝑖𝜂 the305
magnitude of 𝑑𝑤/𝑑𝑧 is the function 𝑣(𝜂), i.e. the boundary conditions (2.16) and (2.17) are306
satisfied.307

The argument of the complex velocity is determined by the slope of the bottom, 𝛿𝑏, or308
𝜒(𝜉) = −𝛿𝑏 (𝜉), which at points 𝐴 and𝐶 undergoes a step change due to the corners at points309
𝐴 and 𝐶 as can be seen in Figure 1𝑎. We introduce a continuous function 𝛾(𝜉) that changes310
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from the value 𝛾(𝑎) = 0 at point 𝐴, (𝜉 = 𝑎), to the value 𝛾(𝑐) = −𝜋 at point 𝐶, (𝜉 = 𝑐), and311
further may vary continuously along the bottom,312

𝜒(𝜉) =


0, 0 < 𝜉 < 𝑎,
−𝜋/2 − 𝛾(𝜉), 𝑎 ⩽ 𝜉 ⩽ 𝑐,

−𝜋 − 𝛾(𝜉), 𝑐 < 𝜉 < ∞.
(2.19)313

The function 𝜒(𝜉) has two jumps: at point 𝐴, Δ𝐴 = −𝜋/2 and at point 𝐶, Δ𝐶 = −𝜋/2. The314
function 𝛾(𝜉) differs from the function 𝛿𝑏 (𝜉) only by a constant; therefore, 𝑑𝛾/𝑑𝜉 = 𝑑𝛿𝑏/𝑑𝜉.315
Substituting Eq.(2.19) into Eq.(2.17), evaluating the integrals over the step changes of the316
function 𝜒(𝜉), and using 𝑑𝛾/𝑑𝜉 = 𝑑𝛿𝑏/𝑑𝜉, we obtain the expression for the complex velocity317
as318

𝑑𝑤

𝑑𝑧
= 𝑣0

√︄
𝑎 − 𝜁
𝑎 + 𝜁

𝑐 − 𝜁
𝑐 + 𝜁 exp

−
1
𝜋

∞∫
𝑎

𝑑𝛿𝑏

𝑑𝜉
ln

(
𝜉 − 𝜁
𝜉 + 𝜁

)
𝑑𝜉 − 𝑖

𝜋

∞∫
0

𝑑 ln 𝑣
𝑑𝜂

ln
(
𝑖𝜂 − 𝜁
𝑖𝜂 + 𝜁

)
𝑑𝜂

 .
(2.20)319

where 𝑣0 = 1 is the velocity magnitude at point𝑂. Here, we used arg(𝜁−𝑖𝜂) = arg(𝑖𝜂−𝜁)−𝜋320
for the second integral.321

2.3. Derivative of the mapping function, 𝑑𝑧/𝑑𝑤322

On the bottom of the channel the stream function 𝜓 ≡ 0, and at the interface 𝜓 ≡ 1 as it323
follows from the boundary conditions (2.2) and (2.4), while the potential varies from −∞ to324
+∞. Thus, the domain of the complex potential 𝑤 = 𝜙 + 𝑖𝜓 is the infinite strip −∞ < 𝜙 < ∞325
of unit width, 0 ⩽ 𝜓 ⩽ 1. Due to the simplicity of the domain of 𝑤, we can use conformal326
mapping to immediately write the complex potential𝑤 as a function of the parameter variable327
𝜁328

𝑤(𝜁) = 2
𝜋

ln 𝜁 . (2.21)329

The complex potential (2.21) is a logarithmic function of 𝜁 , or 𝜁 exponentially depends330
on the complex potential 𝑤 = 𝜙 + 𝑖𝜓. The arc length coordinates 𝑠𝑏 ∼ 𝜙 and 𝑠 ∼ 𝜙 along the331
bottom and the interface, respectively. This causes difficulties in computations for a length332
of the computational region larger than 5𝐻. We can resolve the logarithmic singularity if we333
eliminate the parameter variables 𝜁 , 𝜉 and 𝜂 from equation (2.20) using the expressions:334

𝜁 = exp(𝜋𝑤/2), −∞ ⩽ 𝜙 ⩽ ∞, 0 ⩽ 𝜓 ⩽ 1,
𝜂 = exp(𝜋𝜙/2), −∞ ⩽ 𝜙 ⩽ ∞, 𝜓 = 1,
𝜉 = exp(𝜋𝜙/2), −∞ ⩽ 𝜙 ⩽ ∞, 𝜓 = 0.

 (2.22)335

By substituting (2.22) into (2.20), we obtain the complex velocity as a function of the336
complex potential 𝑤, the inverse function of which is the derivative of the mapping function,337
𝑧 = 𝑧(𝑤):338

𝑑𝑧

𝑑𝑤
=

1
𝑣0

√︂
𝑎 + 𝑒𝑤′

𝑎 − 𝑒𝑤′
𝑐 + 𝑒𝑤′

𝑐 − 𝑒𝑤′ exp


1
𝜋

∞∫
𝜙′
𝐴

𝑑𝛿𝑏

𝑑𝜙′
ln

(
𝑒𝜙

′ − 𝑒𝑤′

𝑒𝜙
′ + 𝑒𝑤′

)
𝑑𝜙′339

+ 𝑖

𝜋

∞∫
−∞

𝑑 ln 𝑣
𝑑𝜙′

ln
(
𝑖𝑒𝜙

′ − 𝑒𝑤′

𝑖𝑒𝜙
′ + 𝑒𝑤′

)
𝑑𝜙′

 , (2.23)340
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where 𝑤′ = 𝜋𝑤/2 and 𝜙′ = 𝜋𝜙/2. The integrals containing functions341

ln
(
𝑒𝜙

′ − 𝑒𝑤′

𝑒𝜙
′ + 𝑒𝑤′

)
, ln

(
𝑖𝑒𝜙

′ − 𝑒𝑤′

𝑖𝑒𝜙
′ + 𝑒𝑤′

)
.342

exponentially decay as the difference |𝜙′ − 𝑤′ | increases. The integration of equation (2.23)343
along −∞ < 𝜙 < ∞, 𝜓 = 1, in the 𝑤−plane gives the interface 𝑂𝐷; its integration along344
−∞ < 𝜙 < ∞, 𝜓 = 0 gives the bottom surface. The parameters 𝑎 = exp(𝜋𝜙𝐴/2) and345
𝑐 = exp(𝜋𝜙𝐶/2). The potentials 𝜙𝐴 and 𝜙𝐶 , and the functions 𝛿𝑏 (𝜙) and 𝑣(𝜙) are unknown346
and have to be determined from physical considerations and the boundary conditions.347

2.4. Integro-differential equations in the functions 𝛿𝑏 (𝜙)348

By using the derivative of the mapping function (2.23) we can obtain the arc length coordinate349
𝑠𝑏 as a function of the potential 𝜙:350

𝑠𝑏 (𝜙) =
∫ 𝜙

0

𝑑𝑠𝑏

𝑑𝜉
𝑑𝜙′. (2.24)351

where352

𝑑𝑠𝑏

𝑑𝜙
=

���� 𝑑𝑧𝑑𝑤 ����
𝑤=𝜙

=
1
𝑣0

√︄���� 𝑎 + 𝑒𝜙′

𝑎 − 𝑒𝜙′
𝑐 + 𝑒𝜙′

𝑐 − 𝑒𝜙′

���� exp


1
𝜋

∞∫
𝜙𝐴

𝑑𝛿𝑏

𝑑𝜙′′
ln

����𝑒𝜙′′ − 𝑒𝜙′

𝑒𝜙
′′ + 𝑒′′

���� 𝑑𝜙′′353

+ 1
𝜋

∞∫
−∞

𝑑 ln 𝑣
𝑑𝜙′′

[
𝜋 − 2 tan−1

(
𝑒𝜙

′′−𝜙′
)]
𝑑𝜙′′

 , (2.25)354

and 𝜙′ = 𝜋𝜙/2.355
The bottom shape is given by the slope of the bottom, 𝛿𝑏 = 𝛿𝑏 (𝑠𝑏). By making the change356

of the variables 𝑠𝑏 = 𝑠𝑏 (𝜙) we obtain the following integro-differential equation in the357
function 𝛿𝑏 (𝜙):358

𝑑𝛿𝑏

𝑑𝜙
=
𝑑𝛿𝑏

𝑑𝑠

𝑑𝑠𝑏

𝑑𝜙
, (2.26)359

where 𝑑𝑠𝑏/𝑑𝜙 is determined from the above equation, which also contains the function360
𝑑𝛿𝑏/𝑑𝜙. The parameters 𝜙𝐴 and 𝜙𝐶 are determined from the given arc length of the361
obstruction 𝐴𝐵𝐶. In view of equation (2.24):362

𝑠𝐴𝐵 = 𝑠𝑏 (𝜙𝐴), 𝑠𝐵𝐶 = 𝑠𝑏 (𝜙𝐶), (2.27)363

where 𝑠𝐴𝐵 and 𝑠𝐵𝐶 are the arc lengths of the parts 𝐴𝐵 and 𝐵𝐶 of the obstruction.364

2.5. Determination of the function 𝑣(𝜙)365

The velocity magnitude at the interface is determined using the dynamic boundary condition366
(2.8), which contains the interface shape 𝑦(𝑠) and curvature with its higher derivatives. The367
ice/liquid interface is obtained by integrating the derivative of the mapping function (2.23)368
along the upper side of the strip in the 𝑤−plane, or 𝑤 = 𝜙 + 𝑖, it takes the form369

𝑥(𝜙) + 𝑖𝑦(𝜙) = 𝑥𝑂 + 𝑖𝐻 +
∫ 𝜙

−𝜙∗

(
𝑑𝑧

𝑑𝑤

)
𝑤=𝜙+𝑖

𝑑𝜙, (2.28)370

where the coordinate of point 𝑥𝑂 is obtained by integrating the derivative of the mapping371
function (2.23) along the lower side of the strip in the 𝑤−plane, which corresponds to the372

Rapids articles must not exceed this page length
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bottom of the channel:373

𝑥𝑂 =

∫ −𝜙∗

0

(
𝑑𝑧

𝑑𝑤

)
𝑤=𝜙

𝑑𝜙. (2.29)374

Here, −𝜙∗ and 𝜙∗ are the lower and the upper boundary of the computational region; the375
channel in the physical plane is truncated, and the flow outside the computational region ,376
|𝜙| > 𝜙∗, is assumed to be uniform. The arc length coordinate along the interface is377

𝑠(𝜙) =
∫ 𝜙

0

𝑑𝜙

𝑣(𝜙) . (2.30)378

It would be possible to determine the slope of the interface using the derivative of the379
mapping function (2.23),380

𝛿(𝜙) = ℑ
[
ln

(
𝑑𝑧

𝑑𝑤

)
𝑤=𝜙+𝑖

]
, (2.31)381

and then evaluate the curvature of the interface and its first and second derivatives by382
differentiating the equation383

𝜅 =
𝑑𝛿

𝑑𝑠
=
𝑑𝛿

𝑑𝜙

𝑑𝜙

𝑑𝑠
. (2.32)384

However, when differentiating the function 𝛿(𝜙) with respect to 𝜙, the order of singularity385
in the integrand of the second integral in equation (2.23) increases. By substituting the386
𝑦− coordinate of the interface and the second derivative of the curvature into the dynamic387
boundary condition (2.8), we obtain a very complicated hypersingular integral equation in388
the function 𝑣(𝜙), whose numerical solution requires special treatments.389

Instead of solving the hypersingular integral equation, we use another numerical method390
based on the spline approximation of the interface to evaluate its curvature and higher391
derivatives. In discrete form, the solution is sought on two fixed sets of points: a set −𝜙∗ <392
𝜙 𝑗 < 𝜙

∗, 𝑗 = 1, ..., 𝑁 corresponding to the bottom of the channel and a set −𝜙∗ < 𝜙𝑖 < 𝜙∗,393
𝑖 = 1, ..., 𝑀 corresponding to the interface; both sets of points 𝜙 𝑗 and 𝜙𝑖 monotonically394
increase.395

We chose a fifth-order spline, which provides continuous derivatives along the interface396
up to the fourth derivative appearing in the pressure coefficient due to the ice sheet397

𝑦(𝑠) = 𝑦𝑘 + 𝑎1,𝑘 (𝑠 − 𝑠𝑘−1) + · · · + 𝑎𝑛,𝑘 (𝑠 − 𝑠𝑘−1)𝑛, 𝑠𝑘−1 < 𝑠 < 𝑠𝑘 , 𝑘 = 1, . . . , �̄� .398

(2.33)399

where nodes 𝑠𝑘 = 𝑠𝑖 (𝑘 ) and 𝑦𝑘 = 𝑦𝑖 (𝑘 ) , 𝑖(𝑘) = 4𝑘 − 3, 𝑘 = 1, ..., �̄� , �̄� = 𝑀/4, are chosen as400
every 4th point on the set of the discrete points 𝑠𝑖 = 𝑠(𝜙𝑖) and 𝑦𝑖 = 𝑦(𝜙𝑖) determined from401
equations (2.28) and 2.30. The curvature and its derivatives are obtained by differentiating402
Eq. (2.31):403

𝛿 = arcsin 𝑦′, 𝜅 =
𝑦′′√︁

1 − 𝑦′2
,

𝑑𝜅

𝑑𝑠
=
𝑦′𝑦′′2 − 𝑦′′′ (𝑦′2 − 1)

(1 − 𝑦′2)3/2 , · · · .404

By applying the dynamic boundary condition (2.8) at the points 𝜙𝑘 , 𝑘 = 1, ..., �̄� , we can405
obtain the following system of nonlinear equations406

𝐺𝑘 (�̄�) = 𝑐𝑝𝑘 (�̄�) − 𝑐𝑖𝑐𝑒𝑝𝑘 (�̄�) = 0, 𝑘 = 1, . . . , �̄�, (2.34)407
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where �̄� = (𝑣1, . . . , 𝑣�̄� )𝑇 is the vector of the unknown velocities 𝑣𝑘 at the nodes 𝑠𝑘 ;408

𝑐𝑝𝑘 (�̄�) = 1 − 𝑣2
𝑘 −

2[𝑦𝑘 (�̄�) − 1]
𝐹2 − 𝐶𝑑𝑣𝑘

(
𝑑𝑣

𝑑𝑥

)
𝑘

, (2.35)409

𝑐𝑖𝑐𝑒𝑝𝑘 (�̄�) = 2𝐷
[(
𝑑2𝜅

𝑑𝑠2

)
𝑘

+ 1
2
𝜅3
𝑘

]
. (2.36)410

are the hydrodynamic pressure coefficient and the pressure coefficient due to the elastic411
sheet, respectively. The wave attenuation intervals are chosen to be 𝑥𝑃1 − 𝑥𝑃2 = 2𝜆gr and412
𝑥𝑇2 − 𝑥𝑇1 = 3𝜆gr, where 𝜆gr is the wavelength determined from the dispersion relation. The413
coefficients 𝐶up and 𝐶dw are chosen in the interval from 0.2𝜆gr to 0.4𝜆gr to effectively damp414
both the elastic and the gravity wave upstream and downstream, respectively.415

The system of equations (2.34) is solved using Newton’s method. The Jacobian of the416
system is evaluated numerically using the central difference with Δ𝑣𝑘 = 10−8. At each417
evaluation of the function 𝐺𝑘 (�̄�), the integro-differential equation (2.26) together with418
equations (2.25) and (2.27) is solved using the method of successive approximations, which419
in discrete form becomes420

(Δ𝛿𝑏) (𝑚+1)
𝑗

Δ𝜙 𝑗
=
𝛿𝑏 (𝑠 (𝑚)

𝑏 𝑗
) − 𝛿𝑏 (𝑠 (𝑚)

𝑏 ( 𝑗−1) )
Δ𝜙 𝑗

, (2.37)421

where the arc length along the body, 𝑠 (𝑚)
𝑏 𝑗

= 𝑠
(𝑚)
𝑏

(𝜙 𝑗) is evaluated using (2.24) with422

(Δ𝛿𝑏) (𝑚)
𝑗

/Δ𝜉 𝑗 known at iteration 𝑚. The iteration process converges very fast. After 5423

to 10 iterations, the error is below a prescribed tolerance of 10−6. The parameters 𝑎 and 𝑐424
are obtained as425

𝑎 = exp(𝜋/2𝜙𝐴) 𝑐 = exp(𝜋/2𝜙𝐶), (2.38)426

where 𝜙𝐴 and 𝜙𝐶 are determined from equation (2.27). From 5 to 20 iterations are necessary427
to get a converged solution. All solutions, say 𝑉∗, reported here satisfied the condition428

1
�̄�

�̄�∑︁
1

|𝐺𝑘 (𝑉∗) | < 10−6, (2.39)429

which is considered as giving a sufficiently accurate solution of the nonlinear equations.430
At the first iteration, the functions 𝑣(𝜙), 𝑠𝑏 (𝜙), and 𝛿𝑏 (𝜙) and the parameters 𝜙𝐴 and 𝜙𝐶431

are specified as follows: 𝑣 (1) (𝜙) ≡ 1, 𝑠 (1)
𝑏

(𝜙) = 𝜙, 𝜙 (1)
𝐴

= 𝑠𝐴𝐵, 𝜙 (1)
𝐶

= 𝑠𝐵𝐶 , and432

𝛿
(1)
𝑏

(𝜙) =

𝜋/2, −∞ < 𝜙 ⩽ 𝜙𝐴,

𝜋/2 − 𝜋(𝜙 − 𝜙𝐴)/(𝜙𝐶 − 𝜙𝐴), 𝜙𝐴 ⩽ 𝜙 ⩽ 𝜙𝐶 ,

−𝜋/2, 𝜙𝐶 ⩽ 𝜙 < ∞.
(2.40)433

Then, the next iteration starts with solving the integro-differential equation (2.26).434

3. Results and discussion435

3.1. Numerical approach436

The number of nodes on the bottom and at the interface is chosen in the ranges 200 < 𝑁 < 400437
and 400 < 𝑀 < 4000, respectively, based on the requirement to provide at least 12 nodes438
𝑠𝑘 within the shorter wavelength and to get a reasonably accurate converged solution. On439



13

a Precision Tower desktop T7920, the computational time varies from a few minutes for440
𝑀 = 400 to about 30𝑚𝑖𝑛 for 𝑀 = 4000.441

The integrals appearing in Eq. (2.23) are evaluated analytically using points of discretiza-442
tion of the real and the imaginary axis of the first quadrant in the 𝜁−plane, 𝜉 𝑗 = exp(𝜋𝜙 𝑗/2)443
and 𝜂𝑖 = exp(𝜋𝜙𝑖/2), and a linear interpolation of the functions 𝛿𝑏 (𝜉) on the intervals444
(𝜉 𝑗−1, 𝜉 𝑗), and the function ln 𝑣(𝜂) on the intervals (𝜂𝑖−1, 𝜂𝑖):445

1
𝜋

𝜉 𝑗∫
𝜉 𝑗−1

𝑑𝛿𝑏

𝑑𝜉
ln

(
𝜉 − 𝜁
𝜉 + 𝜁

)
𝑑𝜉 = Δ𝛿𝑏 𝑗𝑎 𝑗 (𝜁) (3.1)446

447

1
𝜋

𝜂𝑖∫
−𝜂𝑖−1

𝑑 ln 𝑣
𝑑𝜂

ln
(
𝑖𝜂 − 𝜁
𝑖𝜂 + 𝜁

)
𝑑𝜉 = Δ(ln 𝑣)𝑖𝑏𝑖 (𝜁) (3.2)448

where449

Δ𝛿𝑏 𝑗 = 𝛿𝑏 (𝜉 𝑗) − 𝛿𝑏 (𝜉 𝑗−1),450

𝑎 𝑗 (𝜁) =
1

𝜋Δ𝜉 𝑗

∫ 𝜉 𝑗

𝜉 𝑗−1

ln
(
𝜉 − 𝜁
𝜉 + 𝜁

)
𝑑𝜉,451

Δ(ln 𝑣)𝑖 = ln 𝑣𝑖 − ln 𝑣𝑖−1 = ln
𝑣𝑖

𝑣𝑖−1
,452

𝑏𝑖 (𝜁) =
1

𝜋Δ𝜂𝑖

∫ 𝜂𝑖

𝜂𝑖−1

ln
(
𝑖𝜂 − 𝜁
𝑖𝜂 + 𝜁

)
𝑑𝜂.453

The integral in the above equation can be easily evaluated, and the result is a nonsingular454
expression for the functions 𝑎 𝑗 (𝜁) and 𝑏 𝑗 (𝜁). By substituting (2.22) into (3.1) and (3.2) we455
can evaluate the integrals in equation (2.23).456

3.2. Verification of the numerical approach457

For verification purposes we compare the results predicted by the present nonlinear solution458
with the nonlinear theory Page and Părău (2014) based on the boundary integral method for459
the case of a hydraulic fall. They considered the hydraulic fall solution for which the depth460
of liquid upstream is greater than downstream. The flow is assumed to be uniform in the far461
field as |𝑥 | → ∞, with a constant depth 𝐻 and velocity 𝑈 downstream and a constant depth462
𝐻𝑢𝑝 > 𝐻 and velocity𝑈𝑢𝑝 < 𝑈 upstream of the obstruction on the bottom of the channel.463

Applying Bernoulli’s equation in the far fields |𝑥 | → ±∞ and using the conservation mass464
equation, the parameters upstream and downstream are related in nondimensional form as465
follows (Dias and Vanden-Broeck (2004)):466

1
2
− 1

2
𝛾∗2 + 1

𝐹2 − 1
𝐹2𝛾∗2 = 0, (3.3)467

where 𝛾∗ = 𝑈𝑢𝑝/𝑈468
Page and Părău (2014) considered a cosine-squared profile of the bottom of the channel469

including two obstructions as follows470

𝑦𝑏 (𝑥) =


2𝐴1 cos2

(
𝜋 (𝑥+𝑥1 )

2𝐿1

)
, −𝐿1 < 𝑥 < 𝑥 + 𝑥1 < 𝐿1,

2𝐴2 cos2
(
𝜋𝑥
2𝐿2

)
, −𝐿2 < 𝑥 < 𝑥 < 𝐿2,

0, otherwise.

(3.4)471
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Figure 3: Hydraulic fall profiles over a single submerged obstruction of: height 2𝐴2 = 0.1
and length 𝐿2 = 6; 𝐸𝑏 = 0.5, 𝐹 = 1.367, 𝛾∗ = 0.649 (solid circles); 𝐸𝑏 = 0.1, 𝐹 = 1.345,
𝛾∗ = 0.664 (solid squares); lines and symbols correspond to the present solution and Page

and Părău (2014), respectively.

The heights and half-lengths of the submerged obstructions are defined by 2𝐴𝑖 and 𝐿𝑖472
(𝑖 = 1, 2), respectively. The separation constant 𝑥1 describes the central position of the473
additional obstruction. In the case of just a single submerged obstruction, 𝐴1 is taken to be474
zero.475

The hydraulic fall profiles over an obstruction predicted by the present solution are476
compared with the results by Page and Părău (2014) in Figure 3 for two cases with Froude477
number 𝐹 = 1.367 and 𝐹 = 1.345. It can be seen that the results predicted by the present478
method and that by Page and Părău (2014) coincide.479

An additional verification is performed for the case of two obstructions on the bottom.480
In the absence of a thin ice sheet, placing an additional obstruction downstream of the481
hydraulic fall in the pure gravity case can result in a train of trapped waves between the two482
obstructions (Dias and Vanden-Broeck (2004)). Page and Părău (2014) predicted trapped483
waves in the presence of an ice sheet. The interface profile and the bottom shape for the case484
of an additional obstruction centred at 𝑥 = 20 is shown in Figure 4 for the present solution485
(solid line) and Page and Părău (2014) (dashed line and solid symbols). The Froude number486
𝐹cr is found as part of the solution using the additional condition of the absence of a wave487
downstream. If this condition is not applied and Froude number 𝐹 > 1 is given, a wave488
downstream of the second obstruction can be observed. This will be discussed later in the489
following. An agreement between the present results and those by Page and Părău (2014)490
verifies the calculation code.491

3.3. Subcritical flows, 𝐹 < 𝐹cr492

For Froude numbers 𝐹 < 𝐹cr, equation (2.13) has only complex roots, which correspond to493
decaying perturbations of the interface caused by the obstruction on the bottom. In Figure494
5𝑎, the interface profiles for obstruction height 𝑅/𝐻 = 0.2 and thickness of the ice elastic495
sheet ℎ/𝐻 = 0.01 are shown for different Froude numbers approaching the critical Froude496
𝐹cr = 0.864. It can be seen that the interface shape is symmetric about the 𝑦−axis and the497
wave decays; the trough of the wave is located just above the obstruction, and it gets deeper498
as the Froude number approaches the critical value. This situation is different from that for499
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Figure 4: Trapped wave at the ice/liquid interface (the solid line corresponds to the present
calculations; the dashed line with symbols corresponds to Page and Părău (2014)) for the
bottom profile including two obstructions (blue line): 2𝐴2 = 0.2 and width 2𝐿2 = 6.4 and

an additional obstacle with 2𝐴1 = 0.16 and 2𝐿1 = 6.4 placed at 𝑥1 = 20; the Froude
number 𝐹 = 1.5373 and 𝛾∗ = 0.545 are found as part of the solution, and 𝐸𝑏 = 0.5.

Figure 5: (𝑎) the interface shape and (𝑏) the pressure coefficient along the interface for
obstruction height 𝑅/𝐻 = 0.2, ice thickness ℎ/𝐻 = 0.01 , and a subcritical flow: Froude

number 𝐹 = 0.65 (solid line), 𝐹 = 0.6 (dashed line); 𝐹 = 0.5 (dotted line).

the free-surface flows without an elastic sheet, for which the free surface is flat upstream500
and exhibits a wave downstream of the obstruction. Thus, for 𝐹 < 𝐹cr, the elastic sheet501
suppresses the waves downstream and perturbs the flow near the obstruction. It was found502
that for 𝑅/𝐻 = 0.2 and Froude 0.65 < 𝐹 < 𝐹cr the solution fails to converge, or 𝐹 = 0.65 is503
the maximal value.504

The interface profiles for different heights of the obstruction and the maximal value of the505
Froude number for each height are shown in Figure 6: for height 𝑅/𝐻 = 0.32 the maximal506
Froude number is 𝐹 = 0.5; for 𝑅/𝐻 = 0.17, 𝐹 = 0.7; and for 𝑅/𝐻 = 0.06, 𝐹 = 0.83. As507
the height of the obstruction further decreases, the maximum Froude number approaches the508
critical Froude number 𝐹cr = 0.864. It can be seen from Figure6𝑎 that the smaller the height509
of the obstruction, the smaller the deflection of the interface corresponding to the onset of510
convergence of the solution. Therefore, we can conclude that a large height of the obstruction511
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Figure 6: (𝑎) the interface shape and (𝑏) the pressure coefficient along the interface
corresponding to the onset of convergence of the subcritical solution for ice thickness
ℎ/𝐻 = 0.01: 𝐹 = 0.5, 𝑅/𝐻 = 0.32 (solid line); 𝐹 = 0.7, 𝑅/𝐻 = 0.17 (solid line);
𝐹 = 0.83, 𝑅/𝐻 = 0.06 (solid line); the critical Froude number 𝐹cr = 0.8636.

 

Figure 7: Convergence of the iterations for Froude number 𝐹 = 0.5 and two heights of the
obstruction, 𝑅/𝐻 = 0.32 (red line) and 𝑅/𝐻 = 0.33 (blue line); the left axis corresponds

to the average error in the dynamic boundary condition (solid lines); the right axis
corresponds to the velocity magnitude at the trough (dashed lines).

or a large deflection of the ice/liquid interface themselves do not prevent the convergence of512
the solution.513

The behavior of the average error (2.39) and the velocity magnitude at the trough is shown514
in Figure 7 (the left and the right axis, respectively) for two slightly different heights of the515
obstructions. The initial velocity at the interface is set to 𝑣(𝜙) ≡ 1. At the beginning of516
the iterations, the velocity magnitude at the trough increases linearly for both cases due to517
the given restriction of the velocity increment. For 𝑅/𝐻 = 0.32 the average error gradually518
decreases and the velocity at the trough tends to some value, while for 𝑅/𝐻 = 0.33 both the519
error and velocity magnitude oscillate without any tendency to converge.520
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Figure 8: The ice/water interface for Froude number 𝐹 = 0.8, obstruction height
𝑅/𝐻 = 0.11, and different lengths of the computational region: 16𝜆𝑔𝑤 (red line ); 19𝜆𝑔𝑤

(blue line). The dashed lines indicate the length and location of the attenuation zones.

3.4. Ice supercritical – channel subcritical flows, 𝐹cr < 𝐹 < 1521

In this range of the Froude number, the dispersion relation (2.13) has two real roots: one522
root, 𝑘𝑔𝑤 , is the wave number corresponding to the gravity wave (since its value is close523
to the wave number corresponding to the free surface gravity waves), and the other root,524
𝑘 ice, is caused by the elastic wave. Both waves may extend to infinity downstream and525
upstream. In order to examine how the introduced attenuation regions affect the solution, we526
compare in Figure 8 the ice/liquid interfaces corresponding to two cases: for the first case,527
the computational region starts at 𝑥𝑃2 = −8𝜆𝑔𝑤 and ends at 𝑥𝑇2 = 8𝜆𝑔𝑤 with attenuation528
zone length 𝐿𝑃1𝑃2 = 4𝜆𝑔𝑤 and 𝐿𝑇1𝑇2 = 3𝜆𝑔𝑤; for the second case, it starts at 𝑥𝑃2 = −10𝜆𝑔𝑤529
and ends at 𝑥𝑇2 = 9𝜆𝑔𝑤 with the same length of the attenuation zones. For both cases,530
the attenuation coefficients are 𝐶up = 0.14𝜆𝑔𝑤 and 𝐶dw = 0.4𝜆𝑔𝑤; for the both cases,531
the Froude number 𝐹 = 0.8, 𝑅/𝐻 = 0.11 and the ice thickness ℎ/𝐻 = 0.005, for which532
the critical Froude number 𝐹cr = 0.6935. From the dispersion relation (2.13), the wave533
numbers are obtained: 𝑘𝑔𝑤 = 1.4252 (𝜆𝑔𝑤 = 4.409) and 𝑘 ice = 4.0757 (𝜆ice = 1.542). The534

number of nodes of the spline 𝐾 is chosen to provide at least 12 nodes within the shorter535
ice wave 𝜆ice. Then, the total number of nodes for the first case, 𝑥𝑇2 − 𝑥𝑃2 = 16𝜆𝑔𝑤 , is536

obtained as 𝐾 = 12 ∗ 16𝜆𝑔𝑤/𝜆ice ≈ 550, and the total number of discretization points at the537

interface is 𝑀 = 4𝐾 = 2200. For the second case, the length of the computational region538
𝑥𝑇2 − 𝑥𝑃2 = 19𝜆𝑔𝑤 , and 𝐾 ≈ 650 and 𝑀 = 2600.539

The red and blue solid lines in Figure 8 correspond to the first case and the second case,540
respectively. The dashed lines indicate the location and the length of the attenuation zones for541
each case. It can be seen that the red and blue lines coincide in the range of −4 < 𝑥𝜆𝑔𝑤 < 5542
where the attenuation term in the dynamic boundary condition (2.8) is equal to zero (𝐶𝑑 = 0).543

As the Froude number 𝐹 → 1, the ratio 𝜆𝑔𝑤/𝜆ice = 𝑘 ice/𝑘𝑔𝑤 → ∞ since the gravity544
wave number 𝑘𝑔𝑤 → 0. In this case the required number of discretization points also tends545
to infinity, thus causing computational difficulties. The computational analysis starts with546
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Figure 9: The ice/water interface (𝑎), the bending moment (𝑏), and the pressure coefficient
(𝑐) along the interface for Froude number 𝐹 = 0.9, ice thickness ℎ/𝐻 = 0.005, and
obstruction height 𝑅/𝐻 = 0.05 (red line) and 0.07 (blue line), which is the maximal

height for which the steady solution is obtained; the critical Froude number 𝐹𝑐𝑟 = 0.6935.

𝐹 = 0.9 and then gradually approaches the critical Froude number 𝐹cr = 0.6935; the ice547
thickness ℎ/𝐻 = 0.005. The wavelengths of the gravity and the elastic wave are 𝜆𝑔𝑤 = 7.250548
and 𝜆ice = 1.344, and their ratio 𝜆𝑔𝑤/𝜆ice = 5.394.549

Figure 9 shows (𝑎) the interface profile, (𝑏) the bending moment, and (𝑐) the pressure550
coefficient along the interface for two heights of the obstruction: 𝑅/𝐻 = 0.05 (red line) and551
0.07 (blue line), Froude number 𝐹 = 0.9, or 𝐹/𝐹cr = 1.30, and ice thickness ℎ/𝐻 = 0.005.552
This ratio is relatively large in terms of interaction between the gravity and the elastic wave,553
which is quite weak. For 𝑅/𝐻 = 0.05 the interface is almost flat upstream, or the oscillations554
of the elastic wave are invisible, although its contribution to the bending moment and the555
pressure coefficient is significant. For a larger height, 𝑅/𝐻 = 0.07, the wave amplitude of556
the interface upstream becomes visible, but it is still much lower than the amplitude of the557
interface downstream corresponding to the gravity wave.558

𝐹loc =
𝑣(𝑥)√︁
𝑦(𝑥)

𝐹 (3.5)559

The dashed lines correspond to the local Froude number (right axis). It can be seen in560
Figure 9𝑎 that the local Froude number for 𝑅/𝐻 = 0.05 (red dashed line) does not reach the561
channel critical value (𝐹 = 1), and the period of the wave is close to 𝜆𝑔𝑤 predicted by the562
dispersion relation. For 𝑅/𝐻 = 0.07, the amplitude of the both the elastic and the gravity563
wave increases, and the local Froude number reaches the critical value at the wave trough on564
some shot intervals. This means that the flow becomes transcritical on some shot intervals,565
thus affecting the wavelength, which is slightly increased. We found that the convergence566
of the solution for obstruction height 𝑅/𝐻 > 0.07 is very challenging: the amplitude and567
period of the gravity wave further increase, which results in the lowering of the interface and568
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Figure 10: The same as in Figure 9 for 𝐹 = 0.8 and 𝑅/𝐻 = 0.05 (red line) and 0.1 (blue
line.

a further increase in the velocity at the trough. The supercritical part of the flow becomes569
larger.570

The bending moment along the interface is shown in Figure 9𝑏. It can be seen that the571
amplitudes of the bending moment for the elastic wave upstream and the gravity wave572
downstream are about the same. For obstruction height 𝑅/𝐻 = 0.05, the bending moment573
varies quite smoothly both upstream and downstream of the obstruction. For 𝑅/𝐻 = 0.07, the574
bending moment exhibits sine-like behavior upstream of the obstruction, but downstream we575
can observe a sharp trough corresponding to the crest at the interface and a flat interval576
of bending with a small contribution of the elastic wave, which gradually decays. A577
superposition of the gravity and the elastic wave is clearly seen because the wavelength578
ratio 𝜆𝑔𝑤/𝜆ice = 5.394 is relatively large. For a smaller ratio, the interaction of the waves will579
cause more complicated behaviour of the interface, the bending moment, and the pressure580
coefficient.581

The behavior of the pressure coefficient along the interface is shown in Figure 9𝑐. It can be582
seen that the amplitude of the oscillations upstream is much higher than those downstream.583
The oscillations of the pressure coefficient due to gravity downstream are so small that they584
are almost invisible. That is why we can observe downstream only a small contribution585
caused by the elastic wave, which gradually decays.586

The results for Froude number 𝐹 = 0.8, or 𝐹/𝐹cr = 1.15, and two obstruction heights587
𝑅/𝐻 = 0.05 and 0.11 are shown in Figure 10 The wavelengths are: 𝜆𝑔𝑤 = 4.409 and588
𝜆ice = 1.542; the ratio 𝜆𝑔𝑤/𝜆ice = 2.86. For height 𝑅/𝐻 = 0.05, the amplitude of the589
elastic wave upstream is quite small in comparison with the amplitude of the gravity wave590
downstream. Both waves exhibit sine-like behavior. For height 𝑅/𝐻 = 0.11, the amplitude591
of the elastic wave increases, so that the local Froude number approaches the critical value592
𝐹 = 1 at the troughs. This causes difficulties in the convergence of the solution for larger593
heights of the obstruction. The interface downstream exhibits a superposition of the gravity594
wave and the elastic wave, although the contribution of the latter decays. However, since the595
wavelengths approach each other, their interaction exhibits more complicated behavior than596
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Figure 11: The same as in Figure 9 for 𝐹 = 0.75 and 𝑅/𝐻 = 0.05 (red line) and 0.11 (blue
line.

that in Figure 9. The bending moment and the pressure coefficient along the interface are597
shown in Figures 10𝑏 and 10𝑐. For the smaller height of the obstruction, the oscillations598
caused by the elastic sheet and gravity can be seen upstream and downstream separately. For599
the larger height, the gravity does not affect the oscillations of bending moment upstream,600
while the elastic sheet contributes to a superposition of the oscillations downstream to a601
larger extent, and its contribution decays downstream slower than in Figure 9𝑏.602

The results for Froude number 𝐹 = 0.75, or 𝐹/𝐹cr = 1.08, and two obstruction heights603
𝑅/𝐻 = 0.05 and 0.11 are shown in Figure 11. The wavelengths are: 𝜆𝑔𝑤 = 3.537 and604
𝜆ice = 1.705; the ratio 𝜆𝑔𝑤/𝜆ice = 2.07. This case is closer to the critical Froude number605
𝐹cr = 0.6935, and we can observe a larger amplitude of the interface upstream (due to the606
elastic sheet), while the amplitude of the wave downstream (due to gravity) becomes smaller.607
Moreover, for 𝑅/𝐻 = 0.11 the amplitude of the elastic wave upstream becomes larger than608
the amplitude of the gravity wave far downstream, where the contribution of the elastic wave609
decays. The length of the computational region in Figure 11 may not be large enough to see610
the interface without any contribution of the elastic wave. When the Froude number further611
approaches the critical Froude number 𝐹cr, the interaction of the elastic and the gravity wave612
gets stronger. This results in a smaller height of the obstruction for which the solution can be613
obtained.614

3.5. Channel supercritical flows, 𝐹 > 1615

It is well known for free-surface channel flows (Dias and Vanden-Broeck (1989)) that for616
the supercritical regime (𝐹 > 1) there may exist two solutions, one with a smaller height617
of the wave crest called the ’perturbed’ wave and the other with a higher wave crest called618
the soliton wave. The ’perturbed’ wave is a solution that is a member of a family of steady619
solutions that bifurcate from the uniform stream as the height of the obstruction increases620
from zero. The ’soliton’ wave is a member of a family of steady solutions that bifurcate from621
a solitary wave as the height of the obstruction increases from zero. The families merge at622
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Figure 12: The perturbed wave (dashed line) and the soliton wave (solid line) for a
free-surface channel supercritical flow with Froude number (𝑎) 𝐹 = 1.2 and (𝑏) 𝐹 = 1.3;

the height of the obstruction 𝑅/𝐻 = 0.2.

a fold for some Froude number, 𝐹𝑚𝑖𝑛, which is the minimum Froude number. If a solitary623
wave does not exist, then a ’soliton’ type solution does not exist either. There is no solution624
of any type in the range 1 < 𝐹 < 𝐹𝑚𝑖𝑛 (Dias and Vanden-Broeck (1989)).625

The present method allows one to compute both these cases. The perturbed wave, 𝑦(𝑥),626
is computed in parametric form using equations (2.28) and (2.29). In order to compute the627
soliton wave, we rearrange the obtained free-surface/interface 𝑦(𝑥) in such a way as to fit its628
maximum value with the given coordinate 𝑦𝑚𝑠 of the soliton crest,629

𝑦(𝑠) = 𝐻 + 𝐶𝑚𝑠 (𝑦(𝑠) − 𝐻), (3.6)630

where631

𝐶𝑚𝑠 =
𝑦𝑚𝑠 − 𝐻
𝑦𝑚 − 𝐻 , 𝑦𝑚 = max[𝑦(𝑠)]

𝑠 (−𝜙∗ )<𝑠<𝑠 (𝜙∗ )
.632

The unknown coordinate of the soliton crest, 𝑦𝑚𝑠, is obtained by solving the equation633

𝐶𝑚𝑠 (𝑦𝑚𝑠) = 1, (3.7)634

then the functions 𝑦(𝑠) and 𝑦(𝑠) are coincided.635
The perturbed (dashed line) and the soliton (solid line) wave for Froude numbers (𝑎)636

𝐹 = 1.3 and (𝑏) 𝐹 = 1.2 are shown in Figure 12; the height of the obstruction 𝑅/𝐻 = 0.2.637
For this height, the soliton wave was found in the range of the Froude number 1.2 < 𝐹 < 1.4.638
As the Froude number approaches the upper limit, the free surface of the soliton wave forms639
an angle of 120 degrees at the wave crest (Vanden-Broeck (1987)).640

In contrast to a channel flow with a free surface or a liquid surface covered by broken ice641
Ni et al. (2023), the attempts to find a soliton wave in the presence of an elastic sheet were642
unsuccessful. In the following, the analysis of perturbed-type supercritical flows is presented.643

Figure 13 shows the interface profiles (𝑎), the bending moment (𝑏), and the pressure644
coefficient (𝑐) along the interface for the perturbed type of channel supercritical flow.645
Froude number 𝐹 = 1.2 is the minimal value for which a converged solution is obtained for646
obstruction height 𝑅/𝐻 = 0.2. For this case (red line), the interface reaches its maximum647
above the obstruction, and the local Froude number (red dashed line) drops below 1, or the648
local flow becomes subcritical. A subcritical flow at some part of the interface may generate649
local waves there, which may hinder the convergence of the iterative process. In Figure 13𝑎,650
it can be seen that there are no waves upstream (because the flow is supercritical), but there651
are small (almost invisible) waves downstream. These waves manifest themselves clearly in652
the behavior of the bending moment and the pressure coefficient shown in Figure 13𝑏 and653
𝑐. The wave amplitudes of the interface, the bending moment, and the pressure coefficient654
decrease as the Froude number increases.655

The ice/water interfaces for thickness ℎ/𝐻 = 0.01 are shown in Figure 14 for different656
Froude numbers. In comparison with the results for ℎ/𝐻 = 0.005 in Figure 13, the oscillation657
of the ice/liquid interface about the perturbed free surface is clearly seen. The wave attenuation658
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Figure 13: Supercritical flows for Froude numbers 𝐹 = 1.2, 𝜆ice = 1.0434, (red), 𝐹 = 1.3,
𝜆ice = 0.981, (blue), and 𝐹 = 1.5, 𝜆ice = 0.882 (magenta) and 𝑅/𝐻 = 0.2: (𝑎) the

ice/water interfaces (solid lines) and the local Froude number (dashed lines); (𝑏) bending
moment, and (𝑐) the pressure coefficient.

term in the dynamic boundary condition (2.8) was applied far downstream. The sign of the659
coefficient 𝐶dw was taken negative to provide wave attenuation for the case of the channel660
supercritical flows, 𝐹 > 1.661

The elastic wave for 𝐹cr < 𝐹 < 1 in Figures 9 to 11 propagates upstream, while for 𝐹 > 1662
in Figures 13 and 14 it propagates downstream. The wave number 𝑘 ice in both cases coincides663
with that predicted by the dispersion equation (2.13), and it is continuous near 𝐹 = 1 (see664
Figure 2). Therefore, one would expect that even at 𝐹 > 1 the elastic wave remains upstream665
rather than appearing downstream. Such a case is possible from a mathematical point of view666
if we recall that the potential flows of an ideal fluid are reversible, i.e., changing the direction667
of the inflow velocity has no effect on the results. Then the elastic wave will propagate668
upstream and the downstream flow will be waveless. This is because the flow direction does669
not appear in the formulation of the boundary value problem (2.1) - (2.5). The choice of the670
‘correct’ flow direction depends on how the solution corresponds to real observations. Dias671
and Vanden-Broeck (2002) studied a generalised hydraulic fall with a free surface. They672
found that the radiation condition is satisfied only for waves propagating downstream.673

Finally, let us justify the results shown in Figure 13 and reffig14, for which the velocity is674
directed from left to right. For 𝐹 > 1, a perturbation in the liquid cannot move upstream, so675
there is no perturbation of the ice sheet from the liquid, and consequently no wave upstream676
is excited.677

The scaled strain, 𝜀𝑥𝑥/𝜀𝑌 , where 𝜀𝑥𝑥 = − 1
2 ℎ𝜅 is the strain in the floating elastic plate678

and 𝜀𝑌 is the yield strain for the ice estimated as 8 · 10−5, see Brocklehurst et al. (2011),679
is shown in Figure 14 by red lines. For the obstacle with 𝑅/𝐻 = 0.2, the scaled strain is680
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Figure 14: The perturbed supercritical ice/water interfaces (blue solid lines), the free
surface without an ice sheet (blue dashed lines) and the scaled strain, 𝑒𝑥𝑥/𝑒𝑌 (red lines)
for Froude numbers (𝑎) 𝐹 = 1.2, (𝑏) 𝐹 = 1.3, and (𝑐) 𝐹 = 1.5; ice thickness ℎ/𝐻 = 0.01,

and obstruction height 𝑅/𝐻 = 0.2.

less than one in magnitude only well above the obstacle. Formally speaking, the obtained681
solution predicts that the continuous ice sheet should be broken starting from 𝑋/𝐻 = −2.682
Note that yield strain 𝜀𝑌 is not used for calculations of the ice elevation. If the ice is less683
brittle, which is 𝜀𝑌 is greater than our estimate, then the ice could be not damaged even for684
the conditions of Figure 14. It is understood that the strains in the ice cover are smaller for685
smaller obstacles. For given characteristics of the ice cover and a given speed of the current,686
we can find the maximal height of the obstacle before the scaled strain 𝜀𝑥𝑥/𝜀𝑌 exceeds one.687
Different characteristics of elastic plate placed on the water above an obstacle, as those used688
in the laboratory experiments by Pogorelova et al. (2019) provide different conditions of the689
plate damage.690

The scaled strains in Figure 14 can be well approximated by sinusoidal functions691
downstream from the obstacle,692

𝑒𝑥𝑥

𝑒𝑌
= 𝐴 sin

[
𝑘𝐻

𝑥

𝐻
+ 𝛿

]
+ 𝐴0,693

where694

𝐴 = 19.2, 𝑘𝐻 = 2.866, 𝛿 = 2.42, 𝐴0 = 0.30, for 𝐹 = 1.2;695

𝐴 = 16.4, 𝑘𝐻 = 3.087, 𝛿 = 2.85, 𝐴0 = 0.20, for 𝐹 = 1.3;696

𝐴 = 13.8, 𝑘𝐻 = 3.485, 𝛿 = 2.94, 𝐴0 = 0.15, for 𝐹 = 1.5.697

The non-zero values 𝐴0 indicate that the waves downstream the obstacle are non-linear.698
However, the dimensionless wave numbers 𝑘𝐻 obtained from the numerical solution satisfy699
the dispersion equation (2.13) for linear waves with relative accuracy less than 0.4%. The700
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Figure 15: Wave amplitudes of the interface downstream of the obstruction versus the ice
sheet thickness ℎ/𝐻: the interface (red, left axis), its bending moment (magenta, right

axis), and the pressure coefficient (blue, right axis) for Froude number 𝐹 = 1.4 and
obstruction height 𝑅/𝐻 = 0.2.

relative difference was calculated as the difference between the left hand side and right hand701
side of (2.13) divided by the left hand side and multiplied by 100%.702

The wave amplitude of the ice/liquid interface, the bending moment, and the pressure703
coefficient versus the thickness of the ice sheet are shown in Figure 15 for Froude number704
𝐹 = 1.4 and obstruction height 𝑅/𝐻 = 0.2. In the case of the free surface (ℎ = 0), waves705
are absent, or the amplitude is equal to zero. For the case of a very large thickness of the ice706
sheet, it behaves like a rigid plate; therefore, waves are absent too. Therefore, there exists a707
thickness of the ice sheet for which the wave amplitude reaches its maximal value. It can be708
seen in Figure 15 that the amplitude of the interface reaches its maximal value at thickness709
ℎ/𝐻 = 0.033, while the pressure coefficient takes its maximal value at ℎ/𝐻 = 0.18. The710
bending moment gradually increases in the range ℎ/𝐻 < 0.1 presented in the figure. For a711
larger ice thickness, computations become challenging because the waves become very long712
(see Figure 2) and require too many discretization points, for example, for ℎ/𝐻 = 0.1 and713
𝐹 = 1.4 𝜆ice/𝐻 = 16.2.714

Throughout the analysis of the results discussed in this section starting with the subcritical715
flows and ending with the channel supercritical flows, it was shown that the obstruction716
height plays an important role: it determines the level of flow nonlinearity and affects the717
existence of the solution. It was found that as the Froude number approaches one of the718
critical Froude numbers 𝐹cr or 𝐹 = 1, the obstruction height corresponding to the onset of719
existence of the solution becomes smaller. This is shown in Figure 16 in the Froude number720
versus obstruction height plane for two thicknesses of the ice sheet, ℎ/𝐻 = 0.005 and 0.010.721
The reasons restricting the height of the obstruction near the 𝐹cr and 𝐹 = 1 are different: near722
the critical value 𝐹cr, but 𝐹cr < 𝐹 the lengths of the elastic and the gravity wave approach each723
other, and they exhibit a complicated interaction; near the channel critical Froude number,724
𝐹 = 1, the flow downstream becomes transcritical, or it becomes subcritical at the wave crest,725
while the flow is supercritical upstream; alternatively, it becomes supercritical at the trough,726
while the flow is channel subcritical (F¡1) upstream. The larger the height of the obstruction,727
the more the Froude number deviates from the critical values. It can also be seen in 16 that728
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Figure 16: The onset of existence of the steady solution (exists below the line) in the
Froude number versus obstruction height plane; the ice thickness ℎ/𝐻 = 0.005 (blue line)

and ℎ/𝐻 = 0.010 (red line).

the region between the two critical Froude numbers, 1 − 𝐹cr, and the maximal height of the729
obstruction get smaller.730

4. Conclusions731

Fully nonlinear solutions of the flexural-gravity waves in a channel covered by an elastic732
sheet are obtained. A case study is presented for a channel of constant depth with a semi-733
circular obstruction on the bottom. The integral hodograph method is adopted to solve the734
boundary value problem in two steps. At the first step, an expression for the complex velocity735
is obtained using the integral formula that solves the mixed boundary value problem for the736
first quadrant, which is the chosen parameter region. At the second step, the parameter variable737
of the first quadrant is eliminated by using the relation between it and the complex potential738
𝑤. Then, the complex potential 𝑤 is used as the independent variable in the expression for739
the derivative of the mapping function, which facilitates the computations in the channel at740
larger distances from the obstruction in both directions. A system of integral equations in741
the slope of the bottom and the velocity magnitude at the interface is obtained using the742
kinematic and dynamic boundary conditions. In discrete form, the problem is reduced to a743
system of nonlinear equations in the unknown magnitude of the velocity at the interface,744
which is solved numerically using a collocation method. The numerical model is verified by745
computing hydraulic fall solutions and comparing the results with those by Page and Părău746
(2014).747

According to the dispersion relation, there are three intervals of the Froude number for748
which the interface behaves differently. The first corresponds to the subcritical flows 𝐹 < 𝐹cr,749
for which the disturbance of the ice/liquid interface caused by the submerged body decays750
both in the upstream and in the downstream direction; the second is the ice supercritical751
and channel subcritical interval, 𝐹cr < 𝐹 < 1, which is characterized by the elastic wave752
extending to infinity upstream and the gravity wave extending to infinity downstream; the753
third interval corresponds to the channel supercritical flows, 𝐹 > 1, for which the obstruction754
generates a hydroelastic wave downstream oscillating about the perturbed free surface wave.755
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It is found that for each Froude number there exists a restriction on the obstruction height for756
which a converged solution can be obtained.757

The most complicated behavior of the interface was found for the second range of the758
Froude number where the two waves caused by the elastic sheet and gravity interact with759
each other. The gravity wave is observed only downstream, while the elastic wave extends760
to infinity upstream and some distance downstream of the obstruction. The contribution of761
the elastic wave to the resulting interface shape decays downstream at a rate that depends on762
the ratio 𝜆𝑔𝑤/𝜆ice, or 𝐹/𝐹cr. For a relatively large ratio of the wavelengths, the elastic wave763
decays very fast, and its contribution to the resulting interface can be observed considering764
only the behavior of the bending moment and the pressure coefficient. As the ratio 𝜆𝑔𝑤/𝜆ice765
approaches one, or 𝐹/𝐹cr → 1, the elastic wave weakly decays downstream. The length766
and amplitude of the waves are about the same; therefore, they exhibit a strongly nonlinear767
interaction. In order to get a converged solution, the height of the obstruction should be taken768
small enough.769

For the channel supercritical flows, 𝐹 > 1, we found a wave caused by the elastic sheet770
whose wave number agrees with that predicted by the dispersion relation. The wave oscillates771
about the perturbed free surface solution for the case without an elastic sheet. The amplitude772
of the wave depends on the thickness of the elastic sheet. It is obvious that there is no wave773
downstream for the cases ℎ/𝐻 = 0 (the free surface) and ℎ/𝐻 → ∞ (the rigid plate). From774
the computations, we found the maximal amplitude of the hydroelastic wave downstream775
and the thickness of the elastic sheet, ℎ/𝐻 ≈ 0.033, to which it corresponds; the pressure776
coefficient reaches its maximal value for sheet thickness ℎ/𝐻 ≈ 0.018.777

The Forbes and Schwartz (1982) found for the free surface flows that there is no solution778
for Froude number 𝐹 = 1. The present solution confirmed this result for the cases of an779
elastic sheet and revealed that no solution exists for the critical Froude number 𝐹cr.780
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