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Abstract 

Several scientific disciplines have announced a “reproducibility crisis”, initiated by 

numerous high-profile studies being found to be unreproducible. Although health 

economic research has not been subject to such discussions, decision models are often 

termed ‘black boxes’ and there have been calls for heightened transparency in their 

reporting.  

This thesis explores the role and value of replication within health economic decision 

modelling, specifically, how replicability is defined, what it means for a model to be 

replicable and the challenges facing modellers in incorporating replicability. This was 

achieved in a series of interlinked works. First, I identified studies defining replication 

success across all scientific disciplines. Whilst many studies discussed replicability, few 

defined replication success, none of which were found within health economics. 

Definitions ranged from subjective assessment to obtaining identical results. From 

these, definitions with varying specificity applicable to decision models were proposed. 

Next, to examine factors influencing replication and assess the viability of the proposed 

definitions, five published models were replicated. This identified barriers and facilitators 

to replication and found that common reporting checklists were poor indicators of model 

replicability. 

Finally, a decision model was developed with replicability in mind, to assess the 

feasibility of implementing the replication facilitators identified and overcoming the 

barriers. This highlighted the considerable time required to develop accessible models 

using open-source methods. These time requirements conflicted with the funded 

research project’s timeline, suggesting that in order to build replication into research, 

specific researcher time must be funded for replicability. 

Overall, this thesis has shown that there is currently no consensus about how to define 

replication success for health economic models. Despite this, the importance of 

replication has been demonstrated as has the need for further work when reporting 

models to facilitate replication. To enable this, reforms to research infrastructure have 

been proposed. 
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Chapter 1 Introduction 

 

1.1 Introduction to health economics 

Health economics is the application of economic theory in the context of health and 

health care (Morris et al., 2007). At its cornerstone, is the premise that in society, there 

are limited resources to provide health care, but there is unlimited health need. Health 

economics studies the production of health and health care, and the allocation of these 

scarce resources, taking into consideration the efficiency and equity of allocations. 

There are different types of efficiency which include: technical, productive and allocative 

efficiency (S. Palmer & Torgerson, 1999). Technical efficiency is defined to be obtaining 

the greatest output for a given unit of resource (Knapp, 1984) and productive efficiency 

relates to the maximisation of output for a given cost. Allocative efficiency considers 

both productive efficiency and the optimal allocation of goods and services across 

society so as to maximise the welfare of that society. Equity on the other hand, is more 

complex and refers to the fair distribution of that output throughout society. The World 

Health Organization (WHO) refers to equity as “the absence of unfair, avoidable or 

remediable differences among groups of people” (World Health Organization, 2023), 

and therefore may encompass a range of measures such as access to health care, 

health outcomes or allocated resources. In making choices to allocate resources, there 

is an inherent trade-off in that the same resources cannot then be allocated elsewhere. 

In allocating resources to one area instead of another, there is also the lost opportunity 

to provide benefit. This is referred to as the opportunity cost.  

Health and health care are unique to other conventional economic markets, in several 

respects (Arrow, 1963; Olsen, 2022). The first is that access to health care is 

considered to be a basic human right (World Health Organization, 1948), and so unlike 

traditional markets, it is considered inhumane to let the market decide who can (those 

who are willing and able to pay) and those who cannot consume it. The demand for 

health care is also a derived demand, in that it derives from the fundamental demand 

for good health (Santana et al., 2023). There is also information asymmetry, in that a 

healthcare provider typically has more knowledge of the service being provided than the 

patient (consumer) and therefore they may be unable to determine alone which strategy 

to choose or the quality of the health care they are receiving, creating an imbalance 

which is not usually observed in an economic market. As well, the concept of health 

itself is intangible, in that it cannot be traded or inherently passed on from one person to 



15 
 

another, but it can generate positive externalities to the wider society. Positive 

externalities refer to the positive spill-over effect from the consumption or action of an 

individual on a third-party, an example of which would be herd immunity from 

vaccination programmes (Mwachofi & Al-Assaf, 2011). There are also multiple factors 

than can affect health, beyond just the provision of health care.  

 

1.2 Economic evaluation 

Given the scarcity of resources, any health care intervention to be implemented needs 

to be demonstrated as a good use of funds, or value for money. Demonstrating value 

for money is now considered the fourth hurdle of technology approval, along with 

quality, safety and efficacy (Paul & Trueman, 2001).  

To investigate whether an intervention is value for money, an economic evaluation can 

be performed. The aim of an economic evaluation is to identify which treatment (or 

prevention strategy) represents the most effective use of resources, commonly referred 

to as cost-effectiveness. 

Economic evaluation is a systematic approach, involving the identification, 

measurement and valuation of inputs and outcomes of two or more alternative health 

care interventions (Drummond et al., 2015), measured in terms of their costs and health 

benefits. The methods used to conduct such evaluations may vary, for example, in 

terms of the perspective taken, the costing methods used, the measure of benefit and 

the time horizon taken. There are also different types of evaluations, such as cost-

minimisation, cost-effectiveness, cost-utility and cost-benefit analysis. Whilst all of these 

evaluation types measure costs in monetary terms, they vary in how they value 

outcomes. In cost-minimisation analysis, it is assumed that the health outcomes of 

different interventions are identical and so the focus is on finding the intervention with 

the lowest costs. In cost-effectiveness analyses outcomes are measured in terms of a 

health outcome or unit measure. Cost-utility analyses use quality-adjusted life years 

(QALYs) as their measure of outcome (there is more on this concept below). In cost-

benefit analyses, health outcomes are valued in terms of a monetary value, assessing 

whether the monetary value of benefits is greater or less than the costs of obtaining 

them (Drummond et al., 2015). These methodological variations may lead to different 

results being obtained. In an attempt to standardise this, the National Institute for Health 

and Care Excellence (NICE) who produce guidelines and recommendations for 

England, Wales and Northern Ireland, developed a reference case, outlining the desired 
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methods for conducting economic evaluations (National Institute for Health and Care 

Excellence, 2013). In this, NICE stated that economic evaluations should be undertaken 

using cost-utility analyses and incremental analysis. They also stated the primary 

perspective to be used and advocated for the EQ-5D to be used as its preferred 

measure of health-related quality of life in adults (National Institute for Health and Care 

Excellence, 2022), although NICE accepted that other instruments might be used if the 

EQ-5D is unavailable or unsuitable. Preference weightings used alongside EQ-5D 

responses generate utility values, which when paired with the length of time in that state 

can be converted into QALYs (Whitehead & Ali, 2010). QALYs capture both the effect 

on survival and the quality of life.  

Measuring outcomes with a generic measure, such as QALYs, facilitates the cross 

comparison of interventions for different disease areas. A health care intervention would 

be determined as cost-effective if the costs for a unit of benefit were below a given 

willingness to pay threshold. NICE currently (in 2023) states that the willingness to pay 

for an additional QALY generated is between £20,000 and £30,000 (National Institute 

for Health and Care Excellence, 2013). Academic debate has challenged this figure, 

with some suggesting this threshold ought to be considerably lower, with Claxton et al. 

(2015) estimating £13,000 per QALY and S. Martin et al. (2023) suggesting between 

£6,000 to £8,000. In contrast, others have suggested it should instead be raised (Low & 

Macaulay, 2022).  

Economic evaluations are often conducted alongside clinical trials (known as within-trial 

economic evaluations); however, there is often conflict between the clinical and 

economic objectives (Raftery et al., 2020). Usually, the sample size is calculated with 

the intention of demonstrating clinical efficacy rather than for economic outcomes. As is 

the timeframe of trials, and thus trials may end before the outcomes of economic 

interest have been fully observed and measured. The setting of the trial may also 

influence the economic analysis, due to strict treatment protocols designed to improve 

treatment adherence. Therefore some of the findings of the within-trial economic 

evaluation may not be transferable to real-life practice (Morris, 1997). 

 

1.3 Decision modelling 

To consider a longer time horizon, a decision-analytic model (from herein referred to as 

decision model) can be used to extend an economic evaluation, building upon the 

findings of short-term trial analyses and allowing them to be extrapolated. Models may 
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also facilitate the comparison of multiple treatment options. A decision model is defined 

as: 

“An analytic methodology that accounts for events over time and across 

populations, that is based on data drawn from primary and/or secondary 

sources, and whose purpose is to estimate the effects of an intervention on 

valued health consequences and costs” (Weinstein et al., 2003). 

The benefits of using a modelling approach are that multiple sources of evidence can 

be used, an extended time horizon can be considered, the effect of changing 

parameters can be explored and perhaps most importantly, the uncertainty surrounding 

the long-term result can be assessed. Whilst decision models have many associated 

advantages, it should be acknowledged that they are not complete alternatives to 

within-trial economic evaluations, as the economic data from these trials is often used 

within modelling studies. 

The most common modelling approaches used within economic evaluations (sourced 

from McManus, Sach, et al. (2019)) are described below. 

 

1.3.1 Common Modelling Approaches 

1.3.1.1 Decision Tree Model 

The decision tree is often the simplest modelling method available and may be used to 

model one-off decision processes (P. Barton et al., 2004). To produce a decision tree 

model, the tree must begin with a decision node, which is a point where a choice is 

made. Importantly, the choice options branching from the decision node must be 

mutually exclusive, meaning if one is chosen then the other is not.  

Along each branch there may be further nodes (referred to as event or chance nodes), 

which represent points at which different events can arise (for example switching to a 

second-line antibiotic or not). As with the decision node, the events represented by the 

chance node must also be mutually exclusive, as well as being collectively exhaustive, 

meaning that all possible patient pathways are shown. 

Alongside each of these branches, probabilities are displayed which show the likelihood 

of the event occurring, and at the end of each patient pathway or branch, the resulting 

outcome measures are displayed, such as effect on utility value and cost. 

A decision tree is an appropriate choice of model when the time horizon is short, the 

individuals represented in the tree can be thought of as independent from one another 
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and the number of events spanning from the decision node are manageable. If these 

criteria are satisfied, then decision trees are usually simple to produce and make 

calculations with.  

However, due to the general probabilities applied, decision trees represent an 

aggregate (population) level approach and therefore do not consider individual-level 

attributes. They may ignore characteristics of the patient that may make certain events 

unlikely (such as antibiotic allergy). Furthermore, decision trees do not demonstrate the 

passage of time, only that at some point an event will occur. This is why they may be 

regarded as only suitable to model events over a short time horizon. Thus, they are not 

appropriate to model chronic illnesses or choices that may vary greatly depending on 

individual attributes.  

 

1.3.1.2 Markov Cohort Model 

A Markov model (also referred to as a state-transition model) comprises a finite number 

of mutually exclusive and collectively exhaustive disease or treatment states. These 

states aim to represent the consequences of treatment options under analysis 

(Sonnenberg & Beck, 1993). Attributed to each disease state is a cost and associated 

utility value for being in that state. It is possible to transition between these disease 

states, which allows the Markov model to deal more succinctly with disease recurrence 

and flare up than the growing number of branches that would be seen within a decision 

tree. The likelihood of the patient moving from one state to another is defined by 

transition probabilities. The main advantage of using Markov models is their ability to 

deal easily with recurrent events (P. Barton et al., 2004). 

Time is represented in the model using unit cycles. It is assumed that only one state 

transition (e.g. moving from remission to eczema flare up) can be made during each 

cycle. The cycle length must be short enough so that events that change over time can 

be represented by individual, successive cycles (Briggs & Sculpher, 1998).  

A great benefit to introducing time cycles into the model is that the transition 

probabilities between states, as well as the cost and health utilities experienced can 

vary with time. This, for example, allows the transition probability from any state to the 

“Dead” state to increase over time, representing either general or disease specific 

mortality. During each time cycle, the various costs and utilities attributed to being in 

each disease state can be totalled. This gives a different cost and overall health utility 
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output dependent on the pathway taken (representing the course of the disease) and 

the number of cycles spent in each state. 

All of this is represented in a state transition diagram, where disease states are 

represented as circles, and arrows from these circles represent the possibility and 

direction of transition to a different disease state. It is possible to remain in the same 

transition state for consecutive cycles (P. Barton et al., 2004), which is represented by 

circular arrows going and returning to the same state. It is also possible to construct an 

absorbing state, one that a cohort (or individual) can enter but not leave. The most 

common example of an absorbing state would be death. 

One fundamental restriction that must hold in a Markov model is known as the 

Markovian assumption (Briggs et al., 2006, pp. 36-37). This specifies that the 

probabilities that govern how an individual stays in, or moves from, any given disease 

state are not affected by the previous disease states or the duration spent in such 

states. In this sense, the Markovian assumption means that the process has no 

memory and that all individuals within any given state are treated in the same way 

(homogeneity). 

This inherent “lack of memory” is a disadvantage of Markov Cohort models. However, 

the severity of this limitation can be reduced by creating additional states that take into 

account the history of the individual. As well, a series of “tunnel states” could be 

introduced. Tunnel states allow transition through one state directly into another, which 

might allow for an extended treatment time.  

Despite there being potential to build in some form of memory into the Markov model, 

as with the decision tree, the model may quickly become complex with a cumbersome 

number of disease states. 

 

1.3.1.3 Markov Monte Carlo Simulation 

Instead of assuming patients can be grouped into homogenous cohorts as is done in 

the Markov approach above, it is also possible to simulate patients with individual level 

attributes, using Monte Carlo Simulation (Brennan et al., 2006). In this process, each 

patient begins in a given starting state. At the end of each cycle, a random number 

generator (see section 4.4 of Briggs et al. (2006)) produces a value, from which this and 

the predetermined transition probabilities determine which state the individual will move 

to for the beginning of the next cycle (P. Barton et al., 2004). In a simplistic example 

with only two states: alive and dead, where the transition probability of staying alive 
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over a twelve month period is 0.7 and the probability of death is 0.3, a random number 

can be generated between 0 and 1. If the random number is between 0 and 0.7, the 

individual will remain in the well state, if the number is between 0.7 and 1, the individual 

will move to the dead state. This process is repeated over a finite number of cycles, 

defined as the time horizon of the model, or until the individual has reached the dead 

state (which is an example of an absorbed state). As with the Markov Cohort model, 

each respective state has associated utility values and costs, able to vary with time, 

which accumulate over the number of cycles. This process can be repeated to simulate 

a large number of individuals. The Markov Monte Carlo simulation gives a measure of 

variability that is not possible with the previously described Markov Cohort approach 

(Briggs & Sculpher, 1998).  

 

1.3.1.4 Discrete Event Simulation 

Discrete Event Simulation is a method primarily used for modelling queue systems or 

processes (Caro, 2005), an example might be to look at the effects of changing a 

particular health service pathway (Vahdat et al., 2018). This is achieved by allocating 

each individual their own attributes, which may then affect their progression through the 

model and the events that occur. 

The discrete event simulation model structure comprises of entities, events, resources 

and time (Brennan et al., 2006). Entities are the items (usually, but not always; patients) 

that proceed through the simulation. Each entity can be given different attributes, such 

as age, sex or duration of disease, and these can be updated as the entity progresses 

through the simulation. Events refer to any defined diseases or treatments that may 

occur during that patient’s lifetime. Events may occur simultaneously and future events 

may be determined by previous event history. The occurrence of an event in the model 

does not necessarily imply that the patient has changed disease state. This approach 

allows patients to experience competing probabilities of risks; in which the experience 

of one event, may influence subsequent risks to both the individual and other entities 

within the simulation (for example, possible reduced access to a rationed drug). 

Timing within discrete event simulation is based on an events list; all events that take 

place are listed in the model in a way that allows them to be processed in a 

chronological order. In contrast to the Markov process which focuses on the probability 

of transitioning to another state, discrete event simulation is focused on the events an 

entity has experienced and the decision about what the next event will be and for how 

long until it occurs (Briggs et al., 2006, p. 59). By having an events list, the idea of a 
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queue system (e.g. patients waiting for a referral to secondary care) can be introduced 

into the model. With discrete event simulation, it is unnecessary to specify the unit of 

time, as patients move through the model and can experience events at any discrete 

point. This means that discrete event simulations can proceed very efficiently, as the 

simulation clock can advance to the time when the next event will occur, without 

conducting the interim computations required in models that utilise unit cycles (Caro, 

2005). Resources are incorporated directly, and entities are able to consume a 

resource at any appropriate time, it is also possible for entities to consume more than 

one resource (e.g. multiple medications) at a time.  

Overall, discrete event simulation provides greater flexibility than a Markov process and 

it may also add a greater sense of realism to the model than the use of disease states 

and transition probabilities (Karnon, 2003). However, to achieve this, discrete event 

simulation requires a large volume of clinical data to populate parameters, access to 

specific software, specialist programming knowledge as well as the need for greater 

computational power. As well as this, due to the complexity of discrete event simulation, 

it is often difficult to thoroughly and transparently report the methods and data sources 

used within the model within the confines of a published manuscript. 

 

1.3.2 Model transparency 

Regardless of the modelling approach chosen, in order for a model to be informative 

and usable, model developers must endeavour for it to be transparent, reliable and 

valid. Model validation is a form of quality assurance and comes in many forms, 

including but not limited to: face validity, internal validity, cross-validity and external 

validity (Eddy et al., 2012). Face validity relates to ensuring that the structure of the 

model makes intuitive sense, and also that it is clinically valid, in that it accurately 

captures the condition represented and the clinical pathway. Internal validity relates to 

the mathematical equations and coding used, ensuring that it is free from errors. Cross-

validity compares the results of a model to those of existing models answering the 

same research question. External validity relates to how the model output compares 

with observed real-world data and how its predictions may compare to observed 

outcomes. It is also important for models to adequately capture the uncertainty 

surrounding a decision, this can be achieved by conducting sensitivity analyses. 

Sensitivity analyses may involve the variation of parameters within a certain range, 

using different sources of parameters or changing of the model structure and any 

underlying assumptions. All of these aspects are important in their own right and 
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contribute to a transparent and valid model. This is important as models are often 

considered to be ‘black boxes’ (Birkmeyer & Liu, 2003) by those who make decisions 

using them, meaning that the mechanisms by which the model makes conclusions are 

not clear and with many commenting that they lack adequate transparency (Sampson 

et al., 2019). Decision models are also particularly vulnerable to manipulation, given 

that researchers often have free license on how the model is developed and the 

parameters that are chosen, which may impact the results and the overall cost-

effectiveness estimates obtained. This is especially true if the model developers have 

ties to the intervention being evaluated, where there may be a perceived pressure for 

the model to derive favourable results. This idea of decision models lacking 

transparency is the central theme of this thesis. The concept of research transparency 

and how it relates to health economics, specifically decision models is explored in more 

detail below. 

 

1.4 Introduction to research transparency 

1.4.1 Introduction to transparency 

Alongside the need for research to be ethical, relevant, valid and reliable (Jansen & 

Warren, 2020), a fundamental concept of open research is that it should be transparent. 

Research transparency involves the detailed reporting of methods, datasets and any 

statistical analyses conducted so that others may inspect the scientific rigour and 

understand what was conducted (Prager et al., 2019). Truly transparent research 

should be reported with sufficient detail so that it may be repeated and the results 

replicated by a third party. Research transparency is essential for building trust in the 

scientific community, promoting research integrity, and advancing knowledge by 

increasing the reliability and verification of results as well as helping to identify errors. It 

is also considered a part of good, ethical research practice and a sign of academic 

rigour.  

There are numerous reasons why research transparency is essential. Firstly, it may 

help to facilitate research development. With increased transparency, researcher effort 

can be focused on developing new ideas rather than reinventing aspects of previous 

research due to a lack of reporting transparency and the need to repeat processes, 

hence reducing research waste (Chan et al., 2014). Increased transparency is likely to 

speed up the research process and facilitate the spread of knowledge. Other reasons 

may be more malign. For example, researchers face increased pressures to publish, 
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which may be referred to as “publish or perish” (Van Dalen & Henkens, 2012). These 

pressures, paired with academic journals’ tendency to publish positive, novel results, 

known as publication bias (Franco et al., 2014), may incentivise researchers 

consciously or unconsciously to manipulate or falsify results. There may also be 

commercial interests related to the research being conducted, which may influence the 

methods or reporting of results (Goldacre, 2014), and thus reduce transparency 

(Moynihan et al., 2019). In a meta-analysis of researcher surveys exploring misconduct, 

Fanelli (2009) found that on average 1.97% of scientists admitted to having “fabricated, 

falsified or modified data or results at least once” and up to 33.7% reported 

“questionable research practices” (Fanelli, 2009). This highlights the need for a 

research system whereby other researchers can examine the results of others, and 

thus a need for transparency. Another argument in favour of increased transparency 

relates to the possibility of errors within the research, which may mean that the results 

of studies are not replicable. One study examined the reason for article retractions, and 

found that 7% were due to data fabrication and 13% related to “honest error”, showing 

that such mistakes do occur. The average time between publication and retraction for 

these articles was 337.5 days, which implies that the results may already have been 

used in other studies or to inform policy decisions (Moylan & Kowalczuk, 2016).  

There have been calls for greater research reproducibility and research integrity. Most 

recently (2023), the UK government commissioned a report on the reproducibility of 

research (Science Innovation and Technology Committee, 2023), citing the increased 

public investment in research and development (with the Government Research and 

Development budget set to reach £20 billion annually by 2024/5) and the fact that some 

research has been found to not be reproducible, with some scientific disciplines going 

as far to suggest that there is a “reproducibility crisis” (Baker, 2016; Chang & Li, 2015; 

Ioannidis, 2005; Maxwell et al., 2015). 

 

1.4.2 Transparency and health economics 

Whilst transparency should be a goal of all scientific disciplines, it is especially 

important within health economics, given that research findings may have direct 

implications on health policy, such as the commissioning of services or provision of 

treatments. In fact, it is stated within NICE guidance that researchers conducting 

economic evaluations should have the “highest level of transparency in reporting 

methods and results” in order to ensure appropriate, transparent and robust decision 

making (National Institute for Health and Care Excellence, 2013). This is particularly 
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important given that research is often funded by public money (such as with the NIHR) 

and as such should be openly accessible, to allow for reuse and scrutiny. With regards 

to decision models, publications by the International Society for Pharmacoeconomics 

and Outcomes Research & The Society for Medical Decision Making (ISPOR-SMDM) 

Task Force provide an explicit definition of a transparent decision model. Significantly, 

this definition cites the process of replication, suggesting that the ability to replicate a 

model may indicate that it is transparent:  

“Transparency serves two purposes: 1) to provide a non-quantitative description 

of the model … and 2) to provide technical information to readers who want to 

evaluate a model at higher levels of mathematical and programming detail, and 

possibly replicate it” (Eddy et al., 2012). 

In another publication by the Task Force, the importance of transparency is repeated, 

stating that “a model should not be a ‘black box’ for the end-user but be as transparent 

as possible, so that the logic behind its results can be grasped at an intuitive level” 

(Weinstein et al., 2003). This is echoed in a study focusing on models used within 

oncology, which concluded that, “there is a need for elevated rigor and transparency of 

reporting” (Beca et al., 2017) although exactly how this might be achieved was not 

discussed. 

 

1.4.3 Transparency initiatives 

Several initiatives have been developed within health economics to try and improve 

research transparency. Applicable to all types of economic evaluation are initiatives 

such as reporting checklists and Health Economic Analysis Plans (HEAPs) (Thorn et 

al., 2021). Several checklists have been developed to facilitate thorough reporting of 

methods and critical appraisal. In a systematic review of checklist use within economic 

evaluations, a study identified 18 different checklists used between 2010 to 2018 (Watts 

& Li, 2019). One of the most commonly used is the Consolidated Health Economic 

Evaluation Reporting Statement (CHEERS) (Husereau et al., 2022; Husereau et al., 

2013) which is a relatively simple, 24 point (28 point in the 2022 updated version), 

checklist designed to ensure thorough reporting of economic evaluations, both those 

conducted alongside trials and using a decision model. Given the generalisability and 

relative shortness of the CHEERS checklist, it is this checklist that is often required 

when submitting research to peer-reviewed journals. This checklist was updated in 

2022, and now includes wording within the “if modelling is used, describe in detail and 

why used” item to also “report if the model is publicly available and where it can be 
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accessed”. There is also a decision modelling specific checklist, the Philips checklist 

(Philips et al., 2004), which is more commonly used by health economists to critically 

appraise decision models. This checklist is more comprehensive, comprising of over 50 

items designed to evaluate if the decision model and any underlying assumptions have 

been thoroughly reported. 

Researchers undertaking economic evaluations have also been pushed towards 

developing HEAPs, which is a guidance document or standard operating procedure 

which outlines how an economic evaluation will be conducted in predetermined steps. 

This is to avoid selection of analyses or parameters once data is available such that 

decisions about methods could then be based on the results they obtain. Such plans 

are not yet routine practice, one paper by Dritsaki et al. (2018) evaluated the usage of 

HEAPs across clinical trials units and found that they were used as standard in only one 

third of clinical trial units. Although this paper did not consider the use of HEAPs when 

developing decision models. 

Other transparency initiatives include the calls for modelling registries and the push to 

publish models as open-source (Sampson & Wrightson, 2017). These calls have, so 

far, had limited impact on how decision models are published, with Sampson et al. 

suggesting that whilst calls for model transparency have been numerous, “there are few 

signs of improvement in practice” (Sampson & Wrightson, 2017). This was also 

highlighted in a study by Emerson et al., which conducted a survey of US authors who 

had published papers describing decision models from 2010 to 2017 to investigate their 

willingness to share their model source code. Of the 248 distinct authors surveyed, 

7.3% responded to the request for model code (n=18), of which five said they would 

share code, of whom only four actually did (Emerson et al., 2019). Notably, there have 

also been arguments against open-source modelling, with Padula et al. (2017) 

suggesting that there may be issues surrounding the retention of individuals’ intellectual 

property and also that open-source models do not necessarily facilitate clinician access 

or interpretation. Instead, the authors argued for the journal peer-review process to 

become more rigorous by providing all technical details, including the model, to 

reviewers who had signed a confidentiality agreement. Other modelling initiatives to 

increase transparency and the betterment of modelling methods, include the Mount 

Hood diabetes modelling group, who have developed guidance on developing diabetes 

simulation models and also developed model validation methods. One of these, uses a 

set of reference input parameters which can be used across different simulation models 

to see the variation in results, in what is known as “comparative modelling” (Kim & 

Neumann, 2019). In another disease area, there is the Birmingham Rheumatoid 
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Arthritis Model (BRAM). This initiative brought together different modellers in order to 

develop a consensus model that is continually developed and updated, and has now 

been used for several health technology appraisals, rather than developing multiple 

piece wise models separately (Pelham Barton, 2011). 

 

1.5 Replication 

One way of exploring how transparently research is reported is to conduct a replication 

study. A replication study is an independent duplication of a published study using (in 

the most basic sense), the same methods and data, with the intention of recreating the 

reported results. Aside from evaluating transparency, there are several other 

motivations for conducting a replication study, these range from checking for calculation 

errors (McCullough et al., 2008), to demonstrating understanding of the original study 

(Duvendack et al., 2015) and to then improve and extend upon existing research 

(Chang & Li, 2015). Replication studies are also valued as a learning tool. For example, 

in the wider economic disciplines, there have been instances where replications are 

commissioned as coursework for students as a means of gaining practical experience 

of the techniques and theory or modelling that they have learnt. In the infamous case of 

Reinhart and Rogoff (Herndon et al., 2014), such a coursework replication study 

resulted in the identification of serious calculation errors. 

There is growing consensus that an independent modeller should be able to reproduce 

the results of a model using only the published information (Eddy et al., 2012; Weinstein 

et al., 2003). Replicable models have practical benefits, in terms of potentially reducing 

research waste as well as reducing researcher time spent developing future models, as 

advocated by the REWARD Alliance (The REWARD Alliance, 2016). For example, if an 

existing model was easily replicable, this could mean future modellers may be able to 

use this model as a springboard for the development of another, leaving more time to 

devote to validation work. Chilcott et al. (2010) discuss the concept of replication as a 

method to check the face validity of models in the development process, as well as 

citing the potential benefits of replicating a model using different software. 

 

1.6 Aim and research questions 

The concept of transparency is of great importance to research, as highlighted above, 

and is especially needed within health economics to ensure evidence-based decisions 
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are made. This thesis will focus on exploring the role and value of replication within 

health economic decision models, as an indicator of overall transparency. Given the 

remit and scope of the thesis, it will focus on the replicability of decision models, rather 

than within health economics as a whole. This thesis therefore aims to address the 

following research questions:  

 RQ1. Why is replication needed? 

 RQ2. How do other scientific disciplines approach replication? 

 RQ3. What is the role of replication in decision models within health economics 

research? 

 RQ4. How could a successful replication be defined? 

 RQ5. What are the barriers and facilitators to replicating decision models? 

 RQ6. What are the implications of a model being replicable (or not)? 

 RQ7. What are the implications and challenges for modellers trying to 

incorporate replicability? 

 RQ8. Does the ability to replicate lead to greater transparency? 

 

1.7 Thesis structure  

This thesis consists of three substantive chapters (Chapters 2, 3 and 4), presented in 

the style of journal articles. Below, I outline the role of each of these chapters and the 

research question(s) that they aim to address. As this thesis represents an iterative 

body of work, some research questions are revisited at multiple points throughout the 

thesis. 

Chapter 2 begins by reviewing the existing replication literature. It aims to identify how a 

successful replication has been defined both outside of health economics and, if at all, 

within health economic research, to address questions RQ2 and RQ3. Based on these 

findings, it then proposes several definitions with variable levels of specificity that could 

be used when replicating decision models within health economics, addressing RQ4. 

Chapter 3 attempts to replicate five published decision models, with the intention of 

identifying common facilitators and barriers to replication. This chapter addresses 

questions RQ5 to RQ6. Within this chapter, the definitions proposed in Chapter 2 are 

applied, to evaluate their usability, revisiting question RQ2. 

Chapter 4 focuses on the development of a decision model with the intention of future 

replicability to address RQ7. A list of items identified from the previous chapters work 
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are compiled and evaluated to see if and how they can be incorporated into the model 

development process. 

Chapter 5 provides the final discussion, which summarises the key results from the 

chapters above, as well as discussing the overall implications of this research, 

addressing the overarching research questions of RQ1 and RQ8. Finally, areas for 

further research are proposed. 
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Chapter 2 Defining a successful replication 

 

2.1 Introduction 

The concept of replication is widely discussed across scientific disciplines, including but 

not limited to: biomedicine (Iqbal et al., 2016), computational science (Peng, 2011; 

Rougier et al., 2017), psychology (Makel et al., 2012) and epidemiology (Peng et al., 

2006). Replication has also been explored in other economics disciplines such as 

development and strategic economics (Bettis et al., 2016; Brown et al., 2014; 

Duvendack et al., 2017; Duvendack et al., 2015; Höffler, 2017). 

 

Publications from various scientific disciplines have announced a “reproducibility crisis” 

(Baker, 2016; Chang & Li, 2015; Ioannidis, 2005; Maxwell et al., 2015), initiated by 

several high profile studies being found to contain errors or to not be reproducible. In 

response, numerous replication initiatives (Berkeley Initiative for Transparency in the 

Social Sciences, 2017; International Initiative for Impact Evaluation, 2017; Pashler et 

al.; The Replication Network, 2017) have been formed, with the aim of maintaining 

research integrity and transparency. One of these, The International Initiative for Impact 

Evaluation (3ie), commissions replication studies in development economics, to 

improve research quality and promote good research practices (International Initiative 

for Impact Evaluation, 2017).  

 

A significant amount of research has explored what constitutes a replication, resulting in 

the development of various taxonomies classifying the different types and definitions of 

replication (Bettis et al., 2016; Duvendack et al., 2017; Schmidt, 2009). Most often, 

these distinguish between broad and narrow replications (Bettis et al., 2016; Clemens, 

2017; Goodman et al., 2016). A broad replication is defined as using data from other 

“periods, countries, regions or other entities as appropriate” to see if the empirical 

finding can be repeated (Pesaran, 2003). Broad replications can improve the 

understanding of a concept, test the robustness of results, as well as show how 

generalisable the results might be (Bettis et al., 2016). In this chapter, I consider 

replication in the narrow sense, that is: a replication attempt conducted using the exact 

same methods and data as in the original study, with the intention of regenerating the 

original results (Bettis et al., 2016).  
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As well as the distinction between narrow and broad, it is also notable that an innate 

difference exists within replication across different disciplines, regarding what is being 

replicated. For example, replication is considered in experimental disciplines (whereby 

one seeks to replicate an experiment observing an effect) and by contrast in analytical 

disciplines, which involves coded analysis of a dataset. To demonstrate, authors of a 

study evaluating replication in computer science remarked that: “In theory, computation 

is a deterministic process and exact reproduction should therefore be trivial” (Rougier et 

al., 2017), meaning that it should be as easy as rerunning lines of code. In comparison, 

a replication of an experiment or clinical trial may have inherent variability due to 

variation in subjects or other external factors, which may prevent the original results 

from being exactly reproduced. 

 

In this chapter, I explore how other scientific disciplines have defined replication 

success, and whether any such definition has been proposed in the health economic 

literature. This is a logical starting point. Whilst there may be value in conducting 

replications of decision models within health economics – it is first important to define 

what the aim of the replication is and therefore what constitutes replication success. 

Without such a definition, researchers would likely have to make a subjective 

assessment. 

 

From this, I propose how the definitions identified might be tailored to health economic 

models. This work was motivated by the COSMIN (COnsensus-based Standards for the 

selection of health Measurement Instruments) initiative (Mokkink et al., 2010) founded 

in 2005. This initiative sought to standardise terminology and definitions within 

measurement properties, with the aim of improving the quality of studies.  

 

2.2 Methods  

A non-systematic literature review was conducted with the intention of identifying how a 

‘successful replication’ was defined, firstly within scientific disciplines outside of health 

economics, and secondly to explore if the concept had been defined within health 

economic research. Whilst systematic literature reviews are considered to be the gold 

standard, this approach was not used due to the broad range of studies this review 

sought to identify, the nebulous nature of the search terms and the frequent use of 

‘replication’ within basic science (for example relating to DNA or virus replication). 

Therefore, it was not possible to develop a search strategy with sufficient specificity and 

sensitivity such that a systematic literature review could be conducted within the scope 
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of this thesis. Instead, a simple search strategy was designed with the intention of 

identifying a subset of the relevant literature, which could act as a foundation to identify 

further relevant studies through the use of snowballing and citation tracking (Bakkalbasi 

et al., 2006; Wohlin, 2014). Snowballing refers to using the reference list of a relevant 

study in order to identify any additional relevant publications, it therefore only identifies 

retrospectively published studies to the study searched. Citation tracking on the other 

hand is used to identify which papers cite the study, in order to find relevant papers that 

have subsequently been published.  

 

Searches were conducted of the following databases: Web of Science, PubMed and the 

Cumulative Index of Nursing and Allied Health Literature (CINAHL). Searches were 

conducted originally from the date of their inception until July 2017, but were then 

updated in November 2023. The search terms used for each of these databases are 

shown in Table 2.1.  

 

Table 2.1: Search terms used for the literature search. 

Database Search Terms Scientific discipline 

Web of Science 1. TITLE:(econ* AND 

replica*) 

 

Studies specific to 

economics 

PubMed 1. (reproducible[Title] OR 

transparen*[Title]) 

2. research[Title] 

3. 1 and 2 

 

All studies 

CINAHL 1. (AB replica*) AND (MH 

“Reproducibility of 

Results”) 

 

All studies  

 

Eligible studies were those that explicitly discussed what it meant for a replication to be 

successful, regardless of scientific discipline. Information was then extracted from the 

relevant papers. This included the general characteristics of the study (such as title, 

journal, publication year, funding source) as well as the scientific discipline, type of 

study (for example commentary, discussion on the concept of replication or if a 
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replication attempt was conducted), the stated purpose of replication and how a 

successful replication was defined. Where the paper was related to health economics, 

additional information was extracted. If a replication was conducted, this included the 

type of study replicated, and if it were a model, the model type, modelling software 

used, if contact with the original authors was made, and the outcome of the replication 

attempt and whether the replication was defined as a success. 

 

Using the results from the literature review, a variety of definitions were then proposed, 

constructed to be specific to health economic modelling. Importantly, such definitions 

needed to reflect the unique aspects of decision modelling. For example, models 

commonly evaluate multiple treatment or disease pathways. Therefore a definition 

would need to specify whether the replication should refer only to the base case of the 

analysis or if it should also extend to the sensitivity analyses carried out. Another aspect 

to consider is that there are multiple types of models used within health economics, 

which can vary in complexity. It may be reasonable to accept a lower standard of 

replication success if the model is more complex, which would require that the definition 

of replication success be proportionate to the complexity of the original model, whilst 

also taking into account the motivation for the replication. These motivations may range 

from attempting to replicate the structure of an existing model to facilitate the 

development of a new model, or for replication’s sake, where the definition of success is 

likely to be a lot stricter. In this chapter replication is considered for replication’s sake, 

that is, as a means to assess the transparency of model reporting. 

 

2.3 Results 

2.3.1 Definitions of ‘Successful Replication’ from other scientific disciplines 

The literature review yielded many studies discussing the concept of replication, 

however substantially fewer were found exploring the concept of what makes a 

replication successful. Indeed, it was reported by the Open Science Collaboration that 

there is “no single standard for evaluating replication success” (Open Science 

Collaboration, 2015). This statement is supported by the definitions found within this 

review, detailed in Table 2.2, which range from subjective assessments to expecting 

exactly the same results to be reproduced. The definitions found, along with the 

objectives for completing the replication, were split according to whether they were 

replications of data analyses or seeking to replicate an observed effect (primarily 

conducted within psychology), the latter of which appeared to focus more on statistical 
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significance. All definitions referred to a narrow replication, that is, they were seeking to 

reproduce the original results using the same methods and data. 

 

Although not a systematic literature search, 13 definitions were found, with most 

including some form of subjective assessment to determine success and only one 

suggesting use of a statistical test. The majority of these definitions were considered 

opaque, with sufficiently loose wording to allow most studies to be considered 

successful if the right interpretation was taken. Indeed, Chang et al, stated that they 

deliberately chose a loose definition to determine an “upper bound on what the 

replication success rate could potentially be” (Chang & Li, 2015). A lack of formal 

definition may be due to the simplicity of the term itself and perhaps the perception that 

it is obvious what a ‘successful replication’ is.  

 

Several of the replication studies relied on data or code provided by the original authors 

(Chang & Li, 2015; Hardwicke et al., 2017; Peng, 2009). This may have been due to 

convenience (in that they sought to replicate a large number of studies), but it might 

also suggest that the replication was more a test of open data policies and the usability 

of provided materials, rather than testing how thoroughly the methods were reported 

within the manuscript.  

 

As well as the studies that explicitly defined success, several replications were found 

that made a judgement as to whether the replication was a success or failure. Whilst 

these studies failed to articulate exactly how a successful replication was defined, 

inferences can be made from the concluding judgements about aspects of the definition 

used. The first study conducted by Jones and Ziebarth (2016), reported a successful 

replication within applied econometrics, stating: “We were able to replicate Levitt’s 

(2008) findings almost exactly” (Jones & Ziebarth, 2016). The second, detailed three 

independent replications of a study within psychology (thus looking to replicate an 

observed effect), stated that their replication was a failure, given that, “The difference is 

in the opposite direction to that predicted” (Ritchie et al., 2012). 
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Table 2.2: Definitions of 'Successful Replication' found. 

Study 
Scientific 

Discipline 
Objective Methods Definition of ‘Successful Replication’ 

DATA DRIVEN – REPLICATING ANALYSIS 

McCullough et al. 

(2006) 

Economics Exploring whether data and code 

depositing requirements of the 

Journal of Money, Credit, and 

Banking are being followed, and 

therefore allow replications. 

Replications conducted using the 

original study’s data and code. 

“Successful replication … refer to 

duplicating all the results.” 

Peng (2009) Biostatistics To establish a reproducible 

research policy for the journal 

Biostatistics. 

Replications conducted using the 

data and code provided by the 

original authors. 

“An article is designated as reproducible if 

the AER (Associate Editor for 

reproducibility) succeeds in executing the 

code on the data provided and produces 

results matching those that the authors 

claim are reproducible. In reproducing 

these results, reasonable bounds for 

numerical tolerance will be considered.” 

García (2014) 

 

Economics To verify the results of a 

previously published study. The 

original article was referred to as 

highly cited and relevant to 

ongoing policy debate. 

The replication used the original 

study’s own data and the methods 

reported in the manuscript. 

“A pure replication is successful if the 

exact same results reported in the original 

study, including any errors and omissions, 

can be reproduced using the inputs in the 

replication file.” 
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Table 2.2: Definitions of 'Successful Replication' found. (Continued) 

Study 
Scientific 

Discipline 
Objective Methods Definition of ‘Successful Replication’ 

Chang and Li 

(2015) 

Preprint 

Economics 

 

To broadly evaluate the state of 

replication within economics. 

Where possible replications were 

conducted using data and code 

provided by the original authors. 

 

If not provided, they checked the 

personal websites of each of the 

authors for replication files, and 

failing this contacted authors via 

email. 

“We define a successful replication as 

when the authors or journal provide data 

and code files that allow us to qualitatively 

reproduce the key results of the paper.” 

 

“For example, if the paper estimates a 

fiscal multiplier for GDP of 2.0, then any 

multiplier greater than 1.0 would produce 

the same qualitative result” 

 

Chang (2017a) † 

Published 

   “Defining replication success as our ability 

to use the author-provided data and code 

files to produce the key qualitative 

conclusions of the original paper” 

Chang (2017b) 

Preprint 

Economics A pre-analysis plan detailing the 

steps to be carried out during a 

planned replication. 

The replication would use the 

original, raw data and the 

replicator would produce their own 

code with the intention of 

reproducing the analysis reported. 

 

“I would be “successful” if I was able to 

replicate the Figures that I pre-specified 

(1, 2, 3, 7, and 8) to a reasonable degree 

of accuracy.” 
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Table 2.2: Definitions of 'Successful Replication' found. (Continued) 

Study 
Scientific 

Discipline 
Objective Methods Definition of ‘Successful Replication’ 

Chang (2018) † 

Published 

   “I would be successful with this replication 

if there were no visual difference between 

any replicated figure and published figure 

and if the observation count cited on page 

424 (190,778 observations) matched the 

observation count in the replication.” 

Hardwicke et al. 

(2017) 

Cognitive 

Science 

To more broadly examine 

whether open data policies are 

being adhered to such that: data 

is available, it is in a usable form 

and if so, that reported outcomes 

can be reproduced. 

The replication used author 

provided datasets and any 

computer code that were used to 

produce published results. 

“If there are only Minor Numerical Errors, 

or no discrepancies, then the 

reproducibility check is considered an 

overall success” 

ReplicationWiki 

(Höffler, 2018)  

Economics  To facilitate replications via an 

online database. Suggests 

studies for replication and details 

the results of replication attempts.  

No formal methods given other 

than that replications should aim to 

repeat the reported analyses. 

“Successful: Results could be replicated 

without major deviations from the 

published results 

Partially Successful: Key results could be 

replicated but some deviations from 

published results 
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Table 2.2: Definitions of 'Successful Replication' found. (Continued) 

Study 
Scientific 

Discipline 
Objective Methods Definition of ‘Successful Replication’ 

    Failed: Key results could not be 

replicated, significant deviations from the 

published results.” 

EXPERIMENTAL – REPLICATING AN OBSERVED EFFECT 

Brunner and 

Schimmack 

(2016) 

Psychology To explore possible proxy 

measures to conducting full 

replications. 

Not applicable (looking at 

alternatives to full replications). 

“Show that the description of the original 

study was sufficiently precise to 

reproduce the study in a way that it 

successfully replicated the original result.”  

 

Patil et al. (2016) Psychology Exploring the definition of 

replication success, to take into 

account that observed effects will 

have natural levels of variation. 

Not applicable (looking at 

statistical likelihood of replication 

results). 

When the 95% prediction interval for the 

effect size estimate of the replication 

study (calculated using the original study 

effect size) includes the actual point 

estimate from the replication. 

Cova et al. (2018) Philosophy To broadly evaluate the 

reproducibility of studies within 

experimental philosophy. 

Replications followed the design 

and methods of the original studies 

as closely as possible. 

 

“Three different methods for designating a 

replication attempt as a success or a 

failure… 

(a) Were the replication results statistically 

significant*? 
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Table 2.2: Definitions of 'Successful Replication' found. (Continued) 

Study 
Scientific 

Discipline 
Objective Methods Definition of ‘Successful Replication’ 

    (b) Subjective assessment of the 

replicating team. 

(c) Comparison of the original and 

replication effect size.”  

 

*Statistical significance was defined as a 

p-value less than 0.05. 

PsychFileDrawer, 

(Pashler et al.) 

Psychology An archive of replication 

attempts, intended to facilitate the 

reporting of replications and the 

discussion of their results. 

All replications sought to 

reproduce the original results. 

However it is not clear if the 

methods used were exactly the 

same, with reported replications 

varying from “Highly exact/direct 

replication” to “Fairly exact /direct 

replication”. 

“A very pronounced trend or a significant 

difference in the same direction as a 

published result deserves the 

characterization of a "successful 

replication".” 

Note: 

† These papers are published versions of the preprints highlighted in the table and are included here due to the slight change in definition of replication 

success. 
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2.3.2 Definitions of ‘Successful Replication’ used in Health Economics 

A small number of studies reporting replication attempts of decision models within 

health economics were found (Bermejo et al., 2017a, 2017b; McManus & Sach, 2017; 

McManus, Turner, Gray, et al., 2019; A. J. Palmer et al., 2018; Schwander et al., 2021; 

Smolen et al., 2015). Notably these studies are those that have conducted replications 

and published them for replications sake. It is acknowledged that there are likely to be a 

number of replications conducted pragmatically and not reported, instead being used as 

a stepping-stone to inform the development of new models.  

 

The concept of a successful replication was explored at the Eighth Mount Hood 

Diabetes Modelling Conference (2016), where modelling teams were set the challenge 

of replicating two published simulation models. Here, the replication challenge was 

used to indicate transparency and therefore in their proposed definition of replication 

success, Palmer et al. speak in terms of model transparency:  

 “A simulation would be regarded as transparent if one of the users was able to produce 

a set of instructions of the simulation they undertook that was sufficiently detailed and 

comprehensive to allow the other user to implement them and produce identical results 

using the same model” (A. J. Palmer et al., 2018). 

 

In contrast to the above, Bermejo et al. (2017a) conducted a study evaluating the 

replicability of five decision models within health economics, varying from Markov 

models to simulations. These replications were conducted using only the information 

presented in the original publications and any online supplementary materials. Whilst in 

the original manuscript an explicit definition of replication success was not given, when 

answering “Was full replication successful?” two out of five of the models were labelled 

with “yes”. In response to further academic debate (McManus & Sach, 2017), Bermejo 

et al. subsequently stated that they defined a successful replication as the following: 

 “We considered that the replication was successful if: (a) all the necessary information 

to replicate the model was available, and (b) if the results were not significantly 

dissimilar from the original reported model results” (Bermejo et al., 2017b). 

 

The latter clause of this definition allows some variation between original and replicated 

results, which might, inherently be expected, for example with probabilistic modelling, or 

issues with rounding error or a different software being used. However, it brings further 
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questions as to how much variation should be considered and what should be deemed 

a significantly different result (it was not stated in the paper whether the term 

‘significance’ related to statistical significance or otherwise). Whilst it is easy to suggest 

that if an alternative intervention was found to be cost-effective this would be 

considered significantly dissimilar, there is less clarity, for example, about how much 

costs or outcomes would need to vary before a result was considered significantly 

different. The two models considered to be successfully replicated by Bermejo et al. 

varied from the original incremental cost-effectiveness ratios (ICERs) by “all around 

17%” within one and by “9.6% and 1% lower than the reported ICERs” (Bermejo et al., 

2017b) in the other, whilst unfortunately the variation of the results from the failed 

replications were not reported. 

 

Another study found within the literature review that specifically considered replication 

within health economic decision models, was conducted by Smolen et al. (2015) who 

replicated a Markov model. Whilst this study did not provide an explicit definition of what 

they considered a successful replication to be, they did state that their replication 

attempt was a success citing the small percentage differences obtained between the 

original results and those replicated, “Table 1 results indicate success” (percentage 

difference varied between -1.92% to 1.15%). This suggests that to those authors, the 

concept of successful replication may be closely aligned to the definition proposed by 

Bermejo et al. (2017b). Interestingly, when the authors were contacted about their 

replication attempt, they stated that they had used a pixel counting software to derive 

the transition probabilities used in the model which they described as a ‘painstaking 

process’, as they had not been conventionally presented in a table, but had instead 

been presented graphically (Figure 2, “Visual representation of transition probabilities” 

Batty et al. (2013)). When considering the definition proposed by Bermejo et al., 

outlined above, it is questionable if by presenting the transition probabilities in this way, 

others would have perceived this as providing all the necessary information. 

 

Although only a limited number of studies within health economics were found to 

propose an idea of what constitutes a successful replication, commonalities existed in 

the expectation that all the necessary information was provided and that the original 

results were regenerated to some degree. There is need to develop a consensus on 

how much variation should be permitted. Whilst it may be easier to expect an exact 

replication of results (as with the A. J. Palmer et al. (2018) definition), it is also 

pragmatic to expect minor variations between replicated results and those reported in 

the original manuscript. These variations could be purely due to potential rounding of 
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key results, probabilistic terms within the model or replicator error; and it seems 

reasonable that these should be accounted for within any definition proposed. 

Furthermore, it is practical to expect that the complexity of the model is also likely to 

impact on how exactly the results can be replicated, for example comparing the 

expectations of a successful replication of a simple decision tree to the results of a 

complex Markov model which employs a lifetime time horizon. 

 

Finally, another study by Schwander et al. (2021) was found, however this was 

published after both chapters 2 and 3 were published and it therefore uses the 

definitions proposed within this thesis. This paper is discussed further in Chapter 3. 

 

2.3.3 Proposed definition of ‘Successful Replication’ for health economic 

models 

Given the results of the literature review, it is evident there is no consistent definition of 

what constitutes a ‘successful replication’ in other disciplines, nor has a definition been 

found that could directly apply to decision modelling. Therefore, there is a need to 

construct a definition that can be used to evaluate the replicability of decision models in 

health economics, holding models accountable to a set standard of reporting and 

transparency. Importantly, such a definition should be usable and not deliberately 

opaque.  

 

Due to the above, it may not be appropriate to have a single ‘one size fits all’ definition, 

but instead to have a staged definition with levels of success, like the definition 

proposed by PsychFileDrawer (Pashler et al.) which include: successful, partially 

successful and failed. Although as of 2023, this website is no longer operational. By 

using staged definitions, this may also allow the definition to change depending on the 

different motivations for conducting the replication. For example, to evaluate the overall 

reporting transparency (and thus conduct a replication for replication’s sake) it may be 

that a stricter definition is enforced. Whereas with pragmatic replications, carried out to 

extend the applications of an existing model, it may be acceptable for the replicated 

results to only loosely match those of the original, such that they have the same 

qualitative result (i.e. cost-effective or not). 

 

In Table 2.3, several definitions are proposed which give a broad to narrow definition of 

success. These definitions were informed by the definitions found within the literature 
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review (detailed in Table 2.2) and amended to be specific to decision models. Alongside 

each of these are the potential strengths and weaknesses of using such a definition.
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Table 2.3: Proposed definitions of replication success for decision models, ranging from broad to narrow. 

Example definition Strengths Weaknesses 

The same conclusions for 

intervention cost-effectiveness were 

reached. 

 This broad definition allows a lot of variability, 

allowing for potential rounding errors, different 

software and so on (which may naturally be 

encountered within a replication). 

 This definition is not dependent on the outcome 

of the original model producing an ICER. 

 Does not necessarily reflect on reporting quality of the 

model. 

 Models reporting results close to the willingness to pay 

threshold may be subject to tighter constraints. For 

example if the original model reported a cost per QALY 

way above the threshold (e.g. £1 million) then any 

replication result greater than £30,000 would be 

equivalent to success, whilst potentially allowing a great 

deal of variance. In comparison, a model reporting a cost 

per QALY of £29,000 would be permitted significantly 

less variability for the replication to be deemed 

successful. 

The calculated ICER varies by only 

XX% compared to the original. 

 This would be useful, as long as there was an 

ICER to compare to.  

 As above, the definition also allows some 

inherent variability. 

 ICERs may not always be reported, if for example an 

intervention is dominant.  

 Permitting ICER variation may allow for contradictions to 

the original study’s conclusions if there was variation 

close to the cost-effectiveness threshold. 
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Table 2.3: Proposed definitions of replication success for decision models, ranging from broad to narrow. (Continued) 

Example definition Strengths Weaknesses 

Costs and outcomes replicated for 

some treatment pathways/model 

scenarios and not others. 

 This definition incorporates the idea of a ‘partial’ 

success, and is probably the most likely 

outcome from attempted replications within 

modelling. 

 If the replicator is able to identify why some 

pathways/scenarios were replicable and not 

others, it may help to inform reporting 

guidelines.  

 This definition may raise more questions than it answers, 

for example how many pathways/scenarios would need 

to be replicated for it to be considered a success? 

Cost-effectiveness figures could be 

reproduced to a reasonable degree 

of success (for example the cost-

effectiveness acceptability curve)  

 Allows for some variability, but ensures that the 

general trends of the results are the same. 

 Figures may not be produced, or provided in sufficient 

resolution to facilitate proper comparison. 

 Some figures, such as the cost-effectiveness plane, 

might be difficult to visibly see the scale of differences 

between the original and replicated bootstrap pairs. 

 

Results for the costs and outcomes 

vary by only XX% compared to the 

original, AND are consistent with 

the original conclusions. 

 This definition would allow for some inherent 

variability, whilst still being strict enough so that 

a replication deemed as ‘successful’ would be 

informative. 

 Similar to the definition proposed by Patil et al. 

(2016), the variability could be set so that the 

replicated results lie within the xx% confidence  

 The variation permitted is likely to be arbitrary. 
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Table 2.3: Proposed definitions of replication success for decision models, ranging from broad to narrow. (Continued) 

Example definition Strengths Weaknesses 

 intervals or in turn x number of standard 

deviations from the original result. 

 

Identical results are produced.  A very narrow definition, but one that suggests, 

if a replication is successful, that the original 

model is well reported and free of calculation 

errors. 

 This definition is less informative if the replication fails, as 

it does not account for replicator error, probabilistic 

modelling or potential rounding errors. 

 Whilst holding the highest of standards, it is not 

pragmatic. 
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2.4 Discussion 

This is the first literature review to identify how replication success has been defined 

across all studies considering the concept of replication, regardless of scientific 

discipline. It is also the first to present a review of the replication literature, tailored 

to a health economic audience, going on to consider how such definitions may apply 

to replications of health economic decision models.  

 

This review has provided examples of how ‘successful replication’ is defined in other 

disciplines, but has also highlighted the lack of workable definitions that can be 

applied to health economic models. Given the extensive literature discussing 

replication and the relatively smaller number of definitions proposed, it seems there 

may be a reluctance to label a replication as a success or failure. This may be due 

to a fear of how the verdict will be received, potentially damaging research 

reputation and alienating colleagues. The reputation of the replicator is also at 

stake, given that an inability to replicate might reflect their modelling skill. It is also 

important to clarify what the implications of a successful or failed replication are. For 

example, whilst being able to replicate a model may imply that it is transparently 

reported and usable, it does not necessarily imply that it is accurate to the clinical 

condition it represents or that the underlying assumptions are valid. Likewise, whilst 

a failed replication may indicate a lack of reporting clarity or the use of proprietary 

data, it does not implicitly suggest that the model is completely invalid, or that there 

is a deliberate intent to mislead.  

 

With these consequences clearly outlined, any definition constructed requires 

specificity and exactness to allow the definition to be informative, but should also be 

pragmatic, allowing for marginal variation between the replicated and original 

results, so that it is usable. The definition may also depend on the original purpose 

of the replication, or the context. For example, there are a number of reasons why 

models might be replicated, whether it is to be used as a springboard for developing 

a new model, to ensure transparent reporting or indeed to check that the results are 

free from calculation errors. The process of carrying out a replication and 

interrogating published models may also be a valuable learning exercise in itself for 

the modeller. How a successful replication is then defined, for example if the 

purpose of the replication is to check another’s work (where little variation in results 

would be expected), may vary in comparison to if the aim of the replication was to 

understand and re-purpose an existing model (where differences in results would be 
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less of an issue). The importance of context on how a successful replication is 

defined is also echoed by Chang (2018), who suggest that the replication context 

may influence the amount of money and time a researcher is willing to devote to a 

replication effort. 

 

Whilst several definitions have been proposed within this paper (informed by the 

breadth of definitions found within the review), it should be the wider health 

economics community that dictate the final definition and the standard that should 

be expected within economic models, to facilitate buy-in and ensure that the 

standards are practicable. Particularly, there is need to consider how much variation 

is permissible between the replicated and original models.  

 

The role of journals in facilitating replication also needs to be considered, as there 

are often strict word limits, which might restrict the amount of detail than can be 

given about modelling methods, although it is acknowledged that these restrictions 

may be offset with allowances for supplementary materials. The importance of 

journals facilitating and advocating the inclusion of supplementary material is 

highlighted in the recent transparency guidelines relating to the Eighth Mount Hood 

Challenge. In this paper, which sees the development of a checklist for reporting the 

inputs of diabetes simulation models, the authors argue that journals could go 

beyond merely allowing the checklist to be published alongside the manuscript, but 

instead to mandate the populated checklist in order for the modelling study to be 

published (A. J. Palmer et al., 2018).  

 

Journals may also be reluctant to publish replication attempts (as highlighted by 

other disciplines (Duvendack et al., 2017; G. Martin & Clarke, 2017; Ryan‐Wenger, 

2017)), however this is currently under explored within health economics, given the 

lack of formal replications being conducted. Although there are some journals that 

have stated replication studies will be considered for publication and others, such as 

the American Economic Review journal who have even published statements 

dedicated to replication and the standard it expects its manuscripts to uphold 

(American Economic Association, 2020). 

 

It is also important to state that not all researchers consider replication as a valuable 

endeavour. In example of this, Bermejo et al. (2017b) stated that replication of 

health economic decision models is an “inefficient use of time”, although these 

authors considered replication mainly for the purpose of quickly developing a new 
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model, as opposed to a means to evaluate transparent reporting. Whilst conducting 

a replication can be a time consuming process, and as acknowledged above there 

are limitations to what the results of a replication can tell researchers, it is believed 

that replication studies are able to provide invaluable insights into how models 

should be reported to enhance transparency and to improve future methods. 

Furthermore, whilst the concept of transparency and model replicability is a much 

broader topic than simply replicating published results, it is argued that it is a logical 

starting point for a body of further research in this area. It is hoped that through the 

development of an accepted standard, replication testing could act as a catalyst to 

promote changes in the way modelling studies are presented. Importantly this will 

also indicate how well currently used checklists (such as CHEERS (Husereau et al., 

2022; Husereau et al., 2013) and Philips (Philips et al., 2004)) are at identifying 

reporting thoroughness and may also provide further evidence to support the 

multiple calls for modelling registries (Arnold & Ekins, 2010; Sampson, 2012; 

Sampson & Wrightson, 2017). There may also be scope to further the application of 

such standards.  

 

2.5 Strengths and limitations 

This is the first review which sought to identify definitions for replication success, 

and the first to consider the role of replication within health economics. The fact the 

literature search was not restricted to any scientific discipline may mean that a 

greater breadth of literature was captured than what would otherwise have been 

captured in discipline specific reviews. In finding explicit definitions of replication 

success it is possible to consider how replication exercises have been judged in the 

past. Furthermore, in adapting these definitions in a manner that can apply to health 

economics, these can be used to inform and encourage debate of how replication 

within health economics might be judged going forward. 

 

With that being said, there were also some limitations. Firstly, this was not a 

systematic literature review, which may mean that some relevant publications were 

missed from inclusion. This was due to the fact that the search strategy was difficult 

to refine due to the nebulous search terms, and the wide scope of disciplines 

searched. The search was also restricted to English language articles, which again 

may have resulted in some relevant studies being omitted. As well, this chapter only 

considered replication in the context of decision modelling, and therefore definitions 
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applicable to other areas of health economics such as economic evaluation 

alongside clinical trials, have not been proposed. 

 

2.6 Conclusion 

This review has shown that there is currently no universal definition of a ‘successful 

replication’ being used, or a definition that could directly be applied to health 

economic models. Community buy-in is needed to develop an accepted definition 

and therefore to establish a standard of transparent reporting that can be adhered 

to. Without which, it is difficult to assess the replicability of decision modelling within 

health economics and therefore to measure how well the discipline is doing in 

meeting transparency and reporting standards. 
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Chapter 3 Barriers and facilitators to model replication 

 

3.1 Introduction 

The previous chapter explored how replication success is currently defined, and 

used these definitions to suggest how they might in turn be applied to health 

economic decision modelling. Now that what researchers may strive to do in order 

to achieve replication has been evaluated, it is time to appreciate the practicalities of 

carrying out a model replication, and to explore the barriers and facilitators that may 

help or hinder future model publications from being replicated.  

Currently, there are few published studies looking at the actual replicability of 

models (Bermejo et al., 2017a; A. J. Palmer et al., 2018; Schwander et al., 2021; 

Smolen et al., 2015). One of which, was published by the collaborative diabetes 

modelling group, Mount Hood. This publication detailed the results of their 2016 

conference which focused on ‘Research Transparency’ and set modellers the 

challenge of replicating two diabetes simulation models (Mount Hood Diabetes 

Challenge, 2016). In response to the difficulties encountered during this challenge, 

Mount Hood published ‘the Diabetes Modeling Input Checklist’ which was designed 

to facilitate the reporting of diabetes model inputs (A. J. Palmer et al., 2018). This 

has since been used to varying degrees in publications detailing diabetic simulation 

modelling studies: one paper stated its use to inform the write up of the study, but 

did not include it as supplementary material (Dakin et al., 2020), whilst others have 

provided the completed checklist in supplementary material to the publication 

(Johansen et al., 2019; Shao et al., 2019). However, there have yet to be any 

publications evaluating the effectiveness of this checklist in increasing transparency, 

or commentaries on its ease of use. More generally, decision models are subject to 

quality and reporting checklists. A review of the use of checklists within systematic 

reviews of economic evaluations identified 18 unique checklists that had been used 

in the literature since 2010 (Watts & Li, 2019). Amongst the most commonly used 

was the CHEERS checklist (Husereau et al., 2022; Husereau et al., 2013) and the 

Philips criteria (Philips et al., 2004). 

The CHEERS checklist was developed by the International Society for 

Pharmacoeconomics and Outcomes Research (ISPOR) task force, which was 

established in 2009 with the purpose of developing guidance to improve the 

reporting of economic evaluations. The task force conducted a systematic review of 
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existing reporting guidelines and used the results of this review along with a two-

round modified Delphi panel to identify the minimum set of items required when 

reporting economic evaluations (Husereau et al., 2013). After which, a 24-point item 

checklist was developed. Items relate to the reporting of elements within the study 

design as well as sources of funding and conflicts of interest. Importantly, this 

checklist is not specific to publications describing decision models, and as such only 

a small number of the checklist items directly relate to modelling components 

(items: 13b, 15-18 and 20b in the 2013 version). The CHEERS statement was 

originally published simultaneously by 10 journals when it was first introduced, 

although it is now more widely endorsed (Equator Network, 2020). Since its original 

conception, the CHEERS statement has now been updated (Husereau et al., 2022) 

with an added focus on transparency and the incorporation of public involvement in 

the research design. Most notably, the CHEERS checklist now includes a sentence 

within the modelling item relating to reporting if the model is publicly available and 

where it can be accessed. 

In contrast, the Philips criteria was developed specifically to provide a consistent 

framework to assess the quality of decision models. The framework was developed 

following a review of existing guidelines for modelling studies, with three key 

themes: Structure, Data and Consistency, incorporating in total around 56 reporting 

criteria (note that some criteria incorporated multiple questions within one). 

Elsewhere, Bermejo et al. sought to reproduce five modelling studies published in 

the journal of Pharmacoeconomics between the period of August and November 

2016. This paper has been discussed in Chapter 2, but they concluded that the 

majority “could not be fully replicated” (Bermejo et al., 2017a). This paper had 

several limitations, in that they failed to provide the exact results of their replications, 

failed to define how they judged a ‘successful’ replication and also failed to provide 

clarity on how the models replicated were chosen, beyond being published in the 

stated time period. 

Smolen et al. (2015) detailed a replication attempt in a conference proceeding 

presented at ISPOR. They replicated a Markov model, which evaluated treatments 

for chronic migraine from the perspective of the NHS. This model had a time horizon 

of two years, with 12 week cycle lengths (Batty et al., 2013); and unlike the 

replications detailed by Mount Hood and Bermejo et al., their motivation was 

pragmatic, in that they wanted to build upon the existing model in order to develop a 

model for a similar disease area. Smolen et al. (2015) concluded that their 
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replication was successful, reporting differences in terms of incremental costs and 

QALYs of between 0.00% and 1.92% for the replication of the base case analysis.  

Informed by these existing studies, this chapter seeks to explore how replicable 

existing published decision models are, and to identify any barriers and facilitators 

that may make replication more or less feasible. In doing so, it is hoped that the 

future reporting of modelling studies can be adapted to facilitate replication. This 

chapter also seeks to evaluate the success of the replication case studies, using the 

definitions proposed in the previous chapter. This will inform the workability of the 

definitions proposed.  
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3.2 Methods  

Five published modelling studies were selected to be replicated, with each of the 

replication attempts detailed as case studies. The justification for selecting the 

original models varied. For case studies 1 to 3, each of the models were identified 

through a systematic review of models within that disease area. The models 

selected for replication were judged to be the most thoroughly reported (in terms of 

the most number of Philips checklist criteria satisfied (Philips et al., 2004)) and were 

therefore considered to be the most likely replicable. The final model replications, 

case studies 4 and 5, detail replications that were conducted due to needing to 

develop a model for a similar decision problem. The original model detailed in case 

study 4 was chosen as it had characteristics and health states that made it suitable 

for adaptation to address a specific research question. Whereas the model detailed 

within case study 5 was selected as it was the most up to date and contextually 

relevant at the time of replication. 

The primary focus of the replication attempts was to recreate the key findings 

published, such as total costs, outcomes and if applicable, the ICER, for the base 

case analyses. Replications were conducted using only the information presented in 

the referenced publications, and where possible, the same modelling software as in 

the original publication was used. Replication attempts did not extend to any 

sensitivity analyses reported, however for case study 5 (one of the pragmatic case 

studies), probabilistic sensitivity analysis was replicated, and the results of this are 

discussed. The degree to which the original results varied in comparison to the 

replicated results were calculated as a percentage difference on a per patient basis, 

to facilitate comparison across the case studies and to an existing replication study, 

who also reported results in this manner (Smolen et al., 2015).  

To ensure that the results of the replications conducted were generalisable and not 

merely reflective of one individual’s modelling expertise (or lack thereof), each 

replication was conducted by a different analyst; case study 1: was completed by 

myself, case study 2: Toochukwu Okoli; case study 3: Haseeb Khawar; case study 

4: David Turner; and case study 5: Ewan Gray. Both Toochukwu Okoli and Haseeb 

Khawar completed these replications as part of their dissertation in MSc Health 

Economics, which were supervised by Prof Tracey Sach and myself. In contrast, 

both David Turner and Ewan Gray were contacted to be included in this chapter of 

work as I was aware that they had both previously attempted to replicate a decision 
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model. It is important to note that the publications chosen for replication were not 

selected to intentionally single out individual authors, journals, or institutions.  

It was considered that the five replicators covered a range of modelling expertise, 

from newly graduated in health economics, to being fully established within the 

modelling field. Although four of the replications were conducted by other 

researchers, the case studies presented are written up in their entirety by the 

doctoral candidate, using responses from the replicators to set questions, which are 

shown in Table 3.1. The type of model replicated, the journal the research was 

published in and the funding source of the research is also noted. 

 

Table 3.1: Questions asked to inform the write up of the replication case studies. 

1. Please give the reference to the model you replicated and a brief 

description of what it was evaluating. 

2. Why did you choose the treatment pathway(s) you replicated? 

3. Did you use any supplementary material or contact the author for 

clarifications when conducting the replication? If yes, please provide 

details. 

4. Would you consider your replication attempt to be successful? 

Why/Why not? 

5. Were there any difficulties in replicating the model?  

6. If yes, what were they and what could have helped to have alleviated 

these? (E.g. in the presentation of the model, or providing supplementary 

material) 

7. What things helped you in your replication attempt? (E.g. example 

diagram of the model, or clear table of inputs) 

8. Did you have to make any assumptions when you replicated the 

model? If so what were they and how did you inform these? 

9. Looking back on the Philips criteria, and aspects that your model 

satisfied/did not satisfy, do you think it is a good indicator of whether the 

model is likely to be replicable or not? 

 

As with the manuscripts in case studies 1 to 3, the Philips checklist was also 

completed for case studies 4 and 5, with the intention of exploring whether any 

barriers and facilitators identified in the replications could be related to items within 

the checklist. For each of the criteria, a subjective response of ‘yes’, ‘no’, ‘partial’ or 
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‘not applicable’ was given. I completed the checklist items for all case studies along 

with the case study replicator and in case study 1 with Prof Tracey Sach. Where any 

disagreement occurred, this was resolved by reviewer discussion, although for any 

item where it was unclear if the criteria was satisfied, the reviewers erred on the 

side of caution and responded ‘No’. The Philips checklist responses were then used 

in conjunction with the barriers identified in the model replications. It was reasoned, 

that if the barriers to model replication were not picked up within the checklist or 

indeed that they were satisfied, this might suggest that the existing reporting criteria 

are insufficient to ensure research transparency and reproducibility. To facilitate 

this, items of the Philips checklist thought to be particularly relevant to reporting 

thoroughness were highlighted and the responses to these items were focused on. 

The results of the replications were then compared to the definitions proposed in 

Chapter 2, to explore the workability of such definitions and to gauge how 

successful each of the replications were.  

Since publishing the work documented in both this chapter (McManus, Turner, 

Gray, et al., 2019) and that of Chapter 2 (McManus, Turner, & Sach, 2019), a 

subsequent paper was published by Schwander et al. replicating four decision 

models within the clinical area of obesity, with the aim of identifying replication 

facilitators and barriers, as well as to evaluate the definitions of success proposed in 

Chapter 2 (Schwander et al., 2021). All of the replications within this paper were 

conducted by one researcher using the modelling software, TreeAge (TreeAge Pro, 

2021). In the following section, I also discuss and examine the findings of this paper, 

to identify any areas of similarities and differences, as well as to highlight another 

author’s perception of applying the ‘successful replication’ definitions. 
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3.3 Results 

The general characteristics of the models selected for replication can be found in 

Table 3.2, along with the results of the replication attempts compared to the 

published results, in Table 3.3.  
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Table 3.2: Characteristics of the models replicated. 

Case Study  Selected by Model 

Type 

Disease Population Perspective Software Time 

Horizon 

(Cycle 

Length) 

Health 

Outcome 

Results 

1 

Garside 

(2005) 

 

Systematic 

review and 

Philips 

Criteria 

 

State-

transition, 

Cohort 

Eczema Adults with 

mild to 

moderate 

facial 

eczema 

NHS Microsoft 

Excel 

1 year (4 

weeks) 

QALY Corticosteroid 

dominant 

State-

transition, 

Cohort 

Eczema Children 

with 

moderate to 

severe 

body 

eczema 

NHS Microsoft 

Excel 

14 years 

(4 weeks) 

QALY ICER: £14,175 for 

tacrolimus 2nd line 

treatment compared to 

no tacrolimus 

2 

Dean (2001) 

 

Systematic 

review and 

Philips 

Criteria 

 

Decision 

Tree 

Erosive 

Reflux 

Oesophagitis 

“Ambulatory 

care 

patients” 

Third-party 

Payer 

Data 

TreeAge 

1 year 

(Not 

applicable) 

Percentage 

of 

symptomatic 

recurrences 

prevented  

 

Rabeprazole dominant 
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Table 3.2: Characteristics of the models replicated. (Continued) 

Case Study  Selected by Model 

Type 

Disease Population Perspective Software Time 

Horizon 

(Cycle 

Length) 

Health 

Outcome 

Results 

3 

Affleck (2011) 

Systematic 

review and 

Philips 

Criteria 

 

State-

transition, 

Cohort 

Psoriasis Adults with 

moderately 

severe 

scalp 

psoriasis 

NHS in 

Scotland 

Microsoft 

Excel 

1 year (4 

weeks) 

QALY TCF gel dominant  

4 

Chambers 

(1999) 

 

Model 

development 

State 

transition, 

Cohort 

Stroke Stroke 

survivors 

Health and 

social care 

Data 

TreeAge 

5 years, 

extended 

to 25 

years (3 

months) 

Number of 

strokes, life 

years 

Aspirin dominant 

5 

Ganesalingam 

(2015) 

Model 

development 

Decision 

tree 

State-

transition, 

Cohort 

Stroke Adults 

suffering 

acute 

stroke 

NHS Software 

not 

stated 

20 years 

(3 months) 

QALY ICER: £7,061 for 

mechanical 

thrombectomy 

compared to usual 

care 

Abbreviations: TCF; Two-compound formulation.  
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Table 3.3: Results of the replications compared to the published results, transformed to per patient to facilitate comparison. 

  Results (Per patient) 

  Cost Health Outcome 

Case 

Study 

Scenario Replicated  Original Replication Difference (%) Original Replication Difference (%) 

1 Adults, no pimecrolimus (Base Case) 39.39 38.27 -1.12 (-2.84%) 0.968 0.968 0.000 (0.00%) 

Adults, pimecrolimus (2nd-line treatment) 70.58 79.69 9.11 (12.91%) 0.961 0.964 0.003 (0.31%) 

Adults, pimecrolimus (1st-line treatment) 135.44 157.78 22.34 (16.49%) 0.967 0.967 0.000 (0.00%) 

Children, no tacrolimus (Base Case) 956.47 1,989.44 1,032.97 (108.00%) 1.085 1.060 -0.248 (-2.29%) 

2 Rabeprazole 1,414.00 1,431.00 17.00 (1.20%) 86.000 86.000 0.000 (0.00%) 

Lansoprazole 1,671.00 1,597.00 -74.00 (-4.43%) 68.000 68.000 0.000 (0.00%) 

Omeprazole 1,599.00 1,581.00 -18.00 (-1.13%) 81.000 81.000 0.000 (0.00%) 

3 TCF gel as first-line therapy (Base Case) 241.86 230.89 -10.97 (-4.54%) 0.782 0.785 0.003 (0.37%) 

BMV as first-line therapy 255.12 255.29 0.17 (0.07%) 0.780 0.783 0.003 (0.40%) 

4 No treatment (5 year time horizon) 15,093.00 14,955.00 -138.00 (-0.91%) 3.911 3.981 0.070 (1.79%) 

Aspirin (5 year time horizon) 14,817.00 14,717.00 -100.00 (-0.67%) 3.918 3.989 0.071 (1.81%) 

No treatment (25 year time horizon) 24,881.00 25,858.00 977.00 (3.93%) 7.607 7.585 -0.022 (-0.29%) 

Aspirin (25 year time horizon) 24,491.00 25,503.00 1,012.00 (4.13%) 7.664 7.643 -0.021 (-0.27%) 
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Table 3.3: Results of the replications compared to the published results, transformed to per patient to facilitate comparison. (Continued) 

  Results (Per patient) 

  Cost Health Outcome 

Case 

Study 

Scenario Replicated  Original Replication Difference (%) Original Replication Difference (%) 

5 IV-tPA (Base Case) 52,495.00 53,545.00 1,050.00 (2.00%) 3.790 3.795 0.005 (0.13%) 

Thrombectomy 64,757.00 65,656.00 899.00 (1.39%) 4.842 4.800 -0.042 (-0.87%) 

Abbreviations: TCS; Topical corticosteroid. TCF; Two-compound formulation. BMV; betamethasone valerate. IV-tPA; Intravenous tissue-type 

plasminogen activator. % difference calculated using the following formula: ((Replication – Original) / Original) x 100% 
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3.3.1 Replication Case Studies  

3.3.1.1 Case Study 1: Garside et al. (2005), Replicator: Emma McManus 

The model for case study 1 was selected from a systematic review of decision models 

evaluating preventions or treatment for atopic eczema (McManus et al., 2017). This 

review identified 24 models, of which the model by Garside et al. (2005) was deemed to 

satisfy the most Philips criteria (satisfying 83% of applicable criteria). 

The model was a state-transition model developed using Microsoft Excel and was 

described in a Health Technology Assessment monograph (Garside et al., 2005), and 

was funded by the NIHR. It evaluated the cost-effectiveness of two different topical 

calcineurin inhibitors (pimecrolimus and tacrolimus) for the treatment of atopic eczema, 

from the perspective of the United Kingdom (UK) NHS, across eight scenarios. These 

scenarios were divided into population: adults or children, location of eczema: facial or 

body, as well as severity: mild to moderate or moderate to severe. The models that 

evaluated the treatment of adults covered a time horizon of one year, with four weekly 

cycles, whereas the child models covered a 14 year time horizon, also with four weekly 

cycle lengths. The Health Technology Assessment monograph satisfied the majority of 

Philips checklist criteria, with 83% of applicable criteria being satisfied. This monograph 

was submitted as evidence to the NICE committee appraising the use of tacrolimus and 

pimecrolimus for the treatment of atopic eczema (National Institute for Health and Care 

Excellence, 2015). The NICE committee concluded that topical tacrolimus and 

pimecrolimus were not recommended for the treatment of mild atopic eczema or for 

first-line use for atopic eczema of any severity, whilst tacrolimus could be used for 

second line treatment of moderate to severe atopic eczema. 

For this case study, two scenarios were chosen for replication, which were thought to 

encompass the widest range of options evaluated within the original study: the first 

evaluated pimecrolimus for the treatment of mild to moderate facial eczema within 

adults, whilst the second evaluated tacrolimus for moderate to severe body eczema 

amongst children. The models were constructed using treatment states comprised of 

different disease severity mixes, allowing for the fact that different disease severities 

could receive the same treatment (whilst at the same time having different health utility 

scores). 

The results of the adult scenario replication varied by -2.84% to 16.49% for costs, 

0.00% to 0.31% for outcomes, and the same overall conclusion regarding cost-

effectiveness was found (topical corticosteroids dominated). In contrast, whilst 

replicating the childhood scenario numerous additional assumptions were required in 
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order to make the model functional. Due to this and the extended time horizon of 14 

years, any differences between the original and replicated model per cycle were 

amplified, which resulted in the replicated model returning values that were far removed 

from the original results; with costs varying by 108% of those originally reported. As 

such, no further attempts to replicate the other treatment pathways within this scenario 

were made. Whilst the costs were far removed, the outcomes replicated were relatively 

close to the original values (varying by -2.29%), which may suggest that rather than 

outright replicator error, the variation may have resulted from misinterpretation of 

costing assumptions. 

The main barrier encountered when conducting this replication was the way in which 

the multiple scenarios were presented, which were all based on modifications of a 

general model. Although the transition probabilities were given, they were done so for 

all of the eight different scenarios together, with no clear labelling as to which transition 

probabilities related to which scenario. Additionally, some of the transition probabilities 

were presented instead as the likelihood of patients being offered different treatments, 

having previously failed a treatment. This was further complicated by conflicting 

information being presented within the text and the transitions presented in the table. 

For example, when recreating the adult scenario, it was stated that following a failed 

treatment of low-potency steroids, the probability that a patient would receive 

pimecrolimus was 0.85, mid-potency steroids, 0.1, and high-potency steroids, 0.05. 

However, this conflicted with information in the text, stating that high-potency steroids 

were not a treatment option within this scenario. Therefore, this left a 0.05 probability to 

be allocated to a treatment with no description about how this should be done. An 

author of the original publication was contacted to provide clarification (in 2015), 

however they were unable to help, citing the time that had passed since the publication, 

and current workload. 

Facilitators: 

• Detailed diagrams of the model structures, including possible transitions 

between states. 

Barriers: 

• Instances where the text and tables conflicted with one another. 

• Transition probabilities were grouped together for multiple scenarios, instead 

of being presented individually. 
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• Lengthy time horizons meant that any differences between the replicated 

and original model were amplified over time (which occurred in the childhood 

scenario). 

• Authors were unavailable to provide clarification. 

 

3.3.1.2 Case Study 2: Dean et al. (2001), Replicator: Toochukwu Okoli 

This case study replicated a decision tree, modelling the use of proton pump inhibitors 

for the maintenance therapy of erosive reflux oesophagitis over a one year time 

horizon, from the perspective of third party payer (Dean et al., 2001). The country within 

which this evaluation was set was not explicitly stated, however it may be inferred as 

the United States, due to the source of estimates used within the sensitivity analyses. 

This model was selected from the results of a systematic review (unpublished) which 

sought to identify published models evaluating different management approaches in 

Gastro-Oesophageal Reflux Disease (GORD). This systematic review identified 17 

published models, of which the paper by Dean et al. satisfied the most Philips criteria 

(69% of applicable criteria were met). This was the lowest percentage of applicable 

criteria met across the five case studies. The journal article detailing the decision model 

was published in the American Journal of Health-System Pharmacy, a medical journal 

covering all aspects of drug therapy and pharmacy practice specific to secondary care. 

The work was funded by research grants from Janssen Pharmaceutica, Zynx Health 

and Ovation Research Group. 

The replication was conducted in Microsoft Excel, instead of TreeAge, which was used 

in the original study as this proprietary software was not available to the replicator. The 

manuscript included a figure clearly showing the tree structure as well as a table of the 

probabilities used. Indeed, 69% of the applicable Philips checklist criteria were met, with 

the majority of criteria that were not satisfied mostly pertaining to the justification of 

modelling methods, as opposed to reporting clarity. Consequently, it was possible to 

replicate the decision tree closely, with the replicated outcomes matching exactly to that 

of the original, and replicated costs differing from the original by -4.43% to 1.20% and 

the same cost-effectiveness conclusions being reached (Rabeprazole dominant).  

Despite the simplicity of the decision tree, there were still some barriers to exact 

replication. These included discrepancies between the text and branch structure 

presented in the model diagram (which was later assumed to be purely descriptive) 

along with a lack of clarity surrounding how to cost the treatments used as maintenance 

therapy. 
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Facilitators: 

• Straightforward model structure. 

Barriers: 

• Instances where the text and model diagram conflicted with one another. 

• Ambiguity regarding how costs were attributed during maintenance therapy. 

 

3.3.1.3 Case Study 3: Affleck et al. (2011), Replicator: Haseeb Khawar 

The model using in this replication study was selected from an unpublished systematic 

review, which aimed to identify decision models evaluating treatments for psoriasis. The 

review found 35 published decision models, of which the Affleck et al. (2011) study was 

deemed to satisfy the most of the Philips criteria (with 76% of applicable criteria met). 

This study was published in Current Medical Research and Opinion, a medical journal, 

and was funded by LEO Pharma, a pharmaceutical company. 

Affleck et al. described a 15 state, state-transition model, built to evaluate treatment 

approaches for scalp psoriasis using four weekly cycles over a one year time horizon, 

from the perspective of the Scottish NHS (Affleck et al., 2011). Treatment pathways one 

and five were chosen for replication, on the basis that one of these evaluated the 

intervention and the other evaluated current treatment. The model was described 

comprehensively with tables of the transition probabilities, utilities, and descriptions of 

the health states being provided. Additionally, a detailed diagram of both the model and 

the different treatment pathways being evaluated, was given. This is reflected in the 

number of Philips criteria that were judged to be satisfied, 76% of those applicable. This 

enabled the replicated outcomes to vary from the original publication by only 0.37% and 

0.40% across the two pathways, whereas the costs varied by -4.54% and 0.07%. The 

replication produced the same cost-effectiveness conclusions as in the original 

publication; that is, treatment pathway one dominated treatment pathway five. Only 

minor barriers to replication were encountered, involving the way some of the costs, 

assigned to each of the health states were described. For example, it was stated that a 

“weighted average of treatment modalities” was costed, although the weightings for this, 

were not given. 

Facilitators: 
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• A table was provided which detailed the different health states of the model 

at baseline, any assumptions as well as the possible transitions from each 

state. 

Barriers: 

• Ambiguity surrounding the “weighted average” used when calculating the 

cost of treatments. 

 

3.3.1.4 Case Study 4: M. Chambers et al. (1999), Replicator: David Turner 

Case study 4 details the replication of a state-transition model developed by M. 

Chambers et al. (1999) evaluating the use of aspirin for stroke survivors, from a broad 

health and social care perspective, within the UK. This model was originally published 

in the journal of Pharmacoeconomics, a health economics journal. This model was also 

described in a subsequent publication by M. G. Chambers et al. (2002) in the journal 

Value in Health, an health economics journal. Both of these publications declared 

funding by Boehringer Ingelheim, a pharmaceutical company. The original publication 

satisfied 79% of applicable Philips criteria. Due to the multiple publications, some of the 

values used in the replication attempt were from the subsequent publication. In the 

base case of the model, the time horizon was five years, however in other iterations; 

this was varied between two and 25 years. Attempts were made to replicate the results 

from both the five and 25 year analyses, using Microsoft Excel. 

In the base case, costs were replicated to within -0.91% and -0.67%, and outcomes 

were within 1.79% and 1.81%, in comparison to the reported results. Increased 

variation in costs was seen when the time horizon was extended to 25 years, with 

variation of 3.93% and 4.13%, although outcomes remained close to the variation found 

in the base case, varying by -0.29% and -0.27%. 

Whilst conducting the replication, there was uncertainty relating to some parameter 

values. This was due to the table giving a range for each of the parameters, instead of 

listing individual values for each of the time points. Whilst this simplified reporting, it was 

unclear as to what value was used in particular cycles. Additionally, some values were 

reported with limited numbers of decimal places. In the model replication, total long-

term costs over 25 years were overestimated by approximately 4%. Although total 

estimates of life years were very similar; there were small discrepancies as disabled life 

years were overestimated and disability free life years were slightly underestimated. 

Long-term care costs were the largest cost and estimates per cycle were much higher 
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for disabled stroke survivors. Given the overestimate of disabled life years (from the 

original model) and the higher costs associated with this state, it is likely that this small 

discrepancy in overestimating disabled life years accounted for the additional estimates 

in cost. As a result, very small discrepancies in the number of individuals in disabled 

states had the potential for much larger discrepancies in expected costs.  

Facilitators:  

• Tables detailing how the main costs were derived, as well as a complete 

table of costs entered in the model, greatly facilitated replication.  

Barriers: 

• Ranges were given for the parameters, instead of individual values. 

 

3.3.1.5 Case Study 5: Ganesalingam et al. (2015), Replicator: Ewan Gray 

The final case study replicated an evaluation conducted by Ganesalingam et al. (2015) 

which was published in the medical journal, Stroke and funded by the NIHR. This model 

compared mechanical thrombectomy to standard care alone which was defined as: 

Intravenous tissue-type plasminogen activator (IV-Tpa), in cases of acute stroke, from 

the perspective of the UK NHS. Analyses were carried out using a combined short-term 

decision tree and state-transition cohort model, with a hypothetical cohort of 1,000 

patients simulated. The time horizon was 20 years with discounting of costs and 

outcomes at 3.5%. The replication was conducted using Microsoft Excel, although the 

original modelling software was not stated.  

The replicated costs varied by 2.00% and 1.39% in comparison to the original, whereas 

the outcomes varied by 0.13% and -0.87%. This case study was the only one where the 

interventions were not dominant or dominated, and so it enabled an ICER to be 

replicated. The original ICER was £11,651 per QALY, in comparison to £12,051 when 

using the replicated values, a total variation of 3.43%. 

The original publication thoroughly reported the model, with a diagram being provided 

and all of the parameters required to recreate the main analyses being clearly listed in a 

table. The cost per cycle for two of the model states was also given, which further 

facilitated the replication. This was reflected in the number of Philips Criteria that were 

satisfied, 74% of applicable criteria.  

Despite the parameters being comprehensively reported, several barriers to replication 

were still encountered which required additional assumptions during the replication. 
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These included uncertainties about the allocation of treatment costs following recurrent 

stroke, as well as how discounting was applied. It was unclear whether the first cycle 

was considered as time zero (given that 3 months was meant to have elapsed within 

the decision tree) and therefore whether the cycles within the first year were discounted 

or not. 

The probabilistic sensitivity analyses were also replicated in this case study. During 

which, it became apparent that not all of the distribution parameters were included in 

the publication (for example, no shape parameters were provided for any of the gamma 

distributions), and although some of these were available in online supplementary 

materials, additional assumptions about the distributions used were required. As well, 

the shape parameters reported for the beta distributions to generate utilities were 

implausible, as they generated values that were far lower than the point estimates 

reported in the base case analysis and univariate sensitivity analysis.  

To demonstrate this, the values reported in the manuscript for the beta distributions 

used in the probabilistic analysis, alongside the calculated mean and mode of the beta 

distribution using the reported shape parameters are shown in Table 3.4. 

For all of the distributions reported, the calculated mean is well below the base-case 

value, and outside of the reported univariate sensitivity range. This suggests that at the 

very least, there has been a reporting error or potentially an error within the technical 

specification of the model when carrying out the probabilistic sensitivity analysis. Whilst 

the results of the probabilistic sensitivity analysis are not extensively discussed in the 

manuscript, a figure is presented of the Monte Carlo simulation for 1,000 patients using 

10,000 simulations (Figure 3 in Ganesalingam et al. (2015)), which shows the 

simulation points broadly clustering around the base-case results, suggesting that the 

inappropriate shape parameters are more likely to be a reporting error.  
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Table 3.4: Beta distributions used in the probabilistic analysis of Case Study 5. 

Reported in publication Calculated 

statistics 

Utilities 

Base-

case 

value 

Univariate 

sensitivity 

analysis Distribution Range 

Alpha-

Beta 

Mean 

(2dp) 

Mode 

Independent 

mRS 0-1-2 
0.74 0.70–0.77 Beta 0–1 684-3,021 

0.18 0.18 

Dependent 

mRS 3-4-5 
0.38 0.29–0.47 Beta 0–1 60-590 

0.09 0.09 

Recurrent 

stroke 
0.34 0.32–0.36 Beta 0–1 540-5,685 

0.09 0.09 

Mean calculated using Gupta and Nadarajah (2004):  

𝜇 =
𝛼

𝛼 + 𝛽
 

Mode calculated using Gupta and Nadarajah (2004): 

𝑥 =
𝛼 − 1

𝛼 +  𝛽 − 2
 

 

 

Whilst carrying out this replication, an attempt was made to contact two of the original 

authors, to ask if they would be willing to share the original model code, however no 

response was received. 

Facilitators: 

• Model parameters clearly listed. 

• Example of costs per cycle were given for two of the model states. 

Barriers: 

• Ambiguity about the assumptions made with treatment costs following 

recurrent stroke. 

• Lack of clarity surrounding the three month decision tree and how this 

affected subsequent cycle discounting. 

• Not all distribution parameters used in the probabilistic sensitivity analyses 

were given. As well, implausible shape parameters were given for the beta 

distributions. 
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• Authors were unavailable to provide clarification as they did not respond to 

requests for help. 

 

3.3.2 Philips Criteria 

Across the five publications replicated, all appeared to satisfy the majority of Philips 

criteria (as shown in Chapter 3 Appendix, Table A3.1). Whilst it may have appeared that 

the reporting of the studies was thorough, the replication case studies still highlighted 

areas where the reporting prevented replication. Table 3.5 shows a subset of the Philips 

checklist that were perceived to be most relevant in facilitating replication. 

In example of this, the following criteria: “Have all data incorporated into the model been 

described and referenced in sufficient detail?” and “Is the process of data incorporation 

transparent?” were considered to be satisfied for all of the five case studies. However, 

as documented above, there were certainly issues with the reporting of model 

parameters (as seen in case studies 1 and 4) and ambiguity around how costs were 

incorporated, as with the “weighted average” of treatments used in case study 3 and as 

well in case studies 2 and 5. Moreover, when comparing the barriers identified in the 

replications and the Philips checklist responses, it does not appear that the checklist 

criteria were able to suggest the presence of such barriers, such as conflicting 

information being presented; or issues with the way that parameter information was 

presented.  
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Table 3.5: Shortened Philips checklist, with items directly related to reporting 

thoroughness. 

 Case Study 

Checklist Item 1 2 3 4 5 

Has the scope of the model been stated and 

justified? 
y y y y y 

Has the evidence regarding the model structure 

been described? 
y n y y n 

Are the sources of data used to develop the 

structure of the model specified? 
y n y n n 

Are the structural assumptions transparent and 

justified? 
y y y y y 

Is there a clear definition of the options under 

evaluation? 
y y y y y 

Is the time horizon of the model, and the duration of 

treatment and treatment effect described and 

justified? 

y y y y y 

Is the cycle length defined and justified in terms of 

the natural history of disease? 
p n/a y p p 

Is the choice of baseline data described and 

justified? 
y y y y y 

Are transition probabilities calculated appropriately? y y y y y 

Has a half cycle correction been applied to both cost 

and outcome? 
n n/a n n n 

Have the methods and assumptions used to 

extrapolate short-term results to final outcomes 

been documented and justified? Have alternative 

assumptions been explored through sensitivity 

analysis? 

y y y y y 

Have assumptions regarding the continuing effect of 

treatment once treatment is complete been 

documented and justified? Have alternative 

assumptions been explored through sensitivity 

analysis? 

y y n y y 
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Table 3.5: Shortened Philips checklist, with items directly related to reporting 

thoroughness. (Continued) 

 Case Study 

Checklist Item 1 2 3 4 5 

Is the source for the utility weights referenced? y n/a y n/a y 

Have all data incorporated into the model been 

described and referenced in sufficient detail? 
y y y y y 

Is the process of data incorporation transparent? y y y y y 

If data have been incorporated as distributions, has 

the choice of distribution for each parameter been 

described and justified? 

n/a n/a n/a n/a p 

If data are incorporated as point estimates, are the 

ranges used for sensitivity analysis stated and 

justified? 

y y p y p 

Abbreviations: Y: Yes; N: No; P: Partial; N/A: Not applicable.  
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3.3.3 Evaluating the definitions of success 

Table 3.6 contrasts the definitions identified in Chapter 2, to the results of the replication 

case studies conducted above. In doing so, it is possible to see whether the replications 

would be deemed as a success or failure, under each of the proposed definitions. 

All of the replications satisfied the least specific definition (#1); that the same 

conclusions for intervention cost-effectiveness were reached. In contrast, none of the 

case studies met the strictest definition of replication success (#6); that the replication 

yielded the exact same results. Between these extremes, the other definitions resulted 

in greater variation. Definition #2, which looked at the percentage of ICER variation, 

was not applicable for the majority of case studies (four out of five) due to treatment 

dominance making it inappropriate to calculate ICER values. The only case study to 

replicate an ICER, case study 5, would have been considered a replication success if 

the percentage for variance was set at 5% (given total variation of 3.43%). Case study 3 

on the other hand, was the only replication study that satisfied the third definition 

suggested, which considered a successful replication as the costs and outcomes being 

replicated for some treatment pathways and not others. Definition #4 was not applicable 

to any of the replications, given that none of them attempted to replicate the original 

figures. Finally, for definition #5, which required a variation limit to be specified, I chose 

the conventional value used in tests of statistical significance (5%) along with a stricter 

requirement of 1%. Using the 5% level, the majority of case studies (four out of five) 

were considered a successful replication, whereas none of the case studies satisfied 

the 1% threshold wholly. 

In applying these definitions to the results of the case studies, several points were 

observed in terms of their workability. The first, was the importance of the original 

study’s results and how these influenced whether or not the definition was useful as a 

measure of ‘replication success’. This is a particularly important consideration for 

definitions #1, #2 and #4. Definition #1 relies on the same cost-effectiveness results 

being produced. However, this may be easier or more difficult to achieve depending on 

the original study results. For example, in the replication case studies above, the 

majority were either dominant/dominated or comfortably under conventional willingness 

to pay thresholds. This meant that even with large variations in the original results 

compared to the replication, the same conclusion would be reached. Therefore, this 

definition could be satisfied despite having considerable variability between original and 

replicated results whereas much smaller variability would be accepted if the original 
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results were nearer to willingness to pay thresholds. This allows for potential unfair 

variability depending on the original study results. Similarly, depending on the original 

results, definitions #2 and #4 could be redundant: given it is inappropriate to calculate 

an ICER when a treatment is dominant. This implies that either the original study results 

need to be first considered before choosing an applicable definition; or that these 

definitions would not be functional in future replication studies (given their lack of 

generalisability). As was expected, definition #6 was too specific, and resulted in none 

of the case studies being deemed a success. This went against some of the subjective 

views of the replicators, which suggests that it may not be a workable definition. Of the 

remaining definitions, definition #3 was found to be overly specific, with only one case 

study meeting the requirements. In contrast, definition #5 allowed some variability, 

whilst ensuring that the same cost-effectiveness results were derived. It is therefore 

likely that this is the most workable definition, albeit with some further clarifications. 

Currently the definition does not specify whether it should apply to only some or all of 

the pathways replicated. As such, all of the case studies were labelled with “Partial” 

when looking at a threshold of 1%, due to some of the treatment pathways being 

replicated closely. It is likely that the most workable version of this definition is to allow 

for the majority of pathways to be replicated. Given this, I propose an update of 

definition #5: 

“Results for the costs and outcomes vary by only XX% compared to the original for the 

majority of the treatment pathways replicated, AND are consistent with the original 

conclusions.” 
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Table 3.6: Deeming the replications a success or failure according to the definitions proposed in Chapter 2. 

  Case Study Comments 

Proposed definition 1 2 3 4 5 

1. The same conclusions for intervention cost-

effectiveness were reached 
Yes Yes Yes Yes  Yes 

All of the replications found this. 

2. The calculated ICER varies by only XX% 

compared to the original 
N/A N/A N/A N/A Yes 

For case study 5, there was a total variation 

of 3.43% between ICERs. 

3. Costs and outcomes replicated for some 

treatment pathways/model scenarios and not 

others 
No No Yes No No 

Case study 2 and 5 replicated the outcomes 

in some scenarios, but not costs. Case study 

3 satisfied this, conditional on rounding (0dp 

for costs and 2dp for outcomes). 

4. Cost-effectiveness figures could be 

reproduced to a reasonable degree of success 

(for example, the cost-effectiveness acceptability 

curve) 

N/A N/A N/A N/A N/A 

 

5. Results for the costs and outcomes 

vary by only XX% compared to the 

original, AND are consistent with the 

original conclusions 

±1% Partial Partial Partial Partial Partial A distinction needs to be made for this 

definition about whether it is just for some of 

the pathways replicated or for all of the 

scenarios. The majority of case studies had 

some instances where the costs or outcomes  

±5% 

Partial Yes Yes Yes Yes 
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Table 3.6: Deeming the replications a success or failure according to the definitions proposed in Chapter 2. (Continued) 

 Case Study Comments 

Proposed definition 1 2 3 4 5 

 

     

were replicated within 1%. The choice of the 

degree to which results can vary is arbitrary, 

and for the purposes of this definition, 1% 

and 5% were chosen (in keeping with 

traditional levels of statistical significance). 

6. Identical results are produced 
No No No No No 

None of the replication attempts met this 

definition. 
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3.3.4 Subsequent findings from Schwander et al. (2021) 

There are several similarities between the barriers and facilitators identified by 

Schwander et al. (2021) and those detailed in the above case studies. In example of 

common barriers, in two out of the four case studies conducted by Schwander et al, 

there was insufficient information on the parameter values used, meaning that the 

probabilistic sensitivity analyses could not be replicated (as with case study 5 above). In 

another of their case studies, Schwander et al. found that parameter information was 

only presented in a figure. The authors also cited a similar replication facilitator, that the 

inclusion of clinical event frequencies greatly facilitated the replication as it made “it 

possible to check whether the event simulation and hence the clinical heart of the 

replicated model is working correctly” (Schwander et al., 2021).  

More generally, the results of the replication case studies also showed similarities to 

those conducted above, in that the replicated costs deviated more than outcomes. The 

average variation in replicated costs compared to the original was 3.78% (ranging from 

-3.9 to 16.1%) and for QALYs, -0.11% (ranging from -3.7 to 2.1%), excluding the case 

study where variations of over 100% were found. This echoes the suggestion made 

above, that further detail regarding any costing assumptions used, are required.  

Schwander et al. evaluated the reporting thoroughness of the original publications using 

the CHEERS checklist (Husereau et al., 2013). Whilst a different checklist was used, 

their findings were also similar. They cited that often it was not clear that crucial 

information was omitted from the publication until the replication was conducted; “the 

missing information on clinical event results (case studies 1 and 2) had no impact on 

the CHEERS rating on the quality of reporting results (CHEERS item #19)” (Schwander 

et al., 2021). 

When applying the definitions of replication success, similar to the findings above, all of 

their case studies met the loosest definition (#1) and no case study met the strictest 

definition (#6). Where a threshold of variability needed to be specified in the definitions, 

Schwander et al. used a range of values: 5%, 10% and 20%, allowing for substantially 

larger levels of variation than the 5% and 1% used in the thesis study. In addition to 

calculating the variation in terms of costs and outcomes, the authors also calculated 

percentage variation in terms of the ICERs. For the latter, the variation rarely fell within 

the permitted ranges, with the authors concluding that: “for the assessment of 

incremental costs, QALYs, and ICERs, the calculation of relative variations may be 

misleading”. Instead, they proposed that the results should be visualised on a cost-

effectiveness coordinate plane citing that this would allow the size of the differences to 
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be put into perspective. The authors concluded that any definition needed to: meet the 

same cost-effectiveness conclusions, permit some variation in terms of replicated costs 

and outcomes (suggesting 5%), and that incremental results should be visualised to 

ensure that they are “fairly comparable”. 
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3.4 Discussion 

In this chapter, five case studies were considered, attempting to replicate published 

decision models. In doing so, common barriers and facilitators to replication were found, 

which may inform how future modelling studies are presented, which is the focus of the 

next chapter, Chapter 4.  

Common facilitators included providing a clear diagram of the model, detailing all 

potential transitions, and clearly reporting transition probabilities alongside the 

treatment pathways. As well as this, providing example cost calculations, documenting 

the cost per cycle for model states (as was seen in case study 5), and providing 

example calculations for transitions, were also considered great facilitators to model 

replication.  

In contrast, common barriers included the use of conflicting information, particularly 

between model diagrams and the manuscript text or tables. In addition, despite all of 

the papers providing some description of model input parameters, these were 

commonly grouped for multiple treatment pathways or time horizons, instead of being 

specific. Consequently, it was difficult to appreciate which parameter referred to which 

model iteration or scenario, and thus was a common barrier to replication. As well, the 

case studies that had longer time horizons proved to be harder to replicate given that 

any, even minor, discrepancies in costs, outcomes or transition probabilities between 

the original and replicated model became amplified over time. Notably in two of the 

case studies an author was unsuccessfully contacted for clarification; whilst this cannot 

be counted as a barrier to replication per se, it should act as a reminder to modellers to 

archive and thoroughly annotate their work, to facilitate future enquiries, regardless of 

the time that may have elapsed since the original work was conducted and published. 

The results of the replications also revealed another finding, which was that there was 

often greater variation in the replicated costs than outcomes. This can be seen when 

comparing the range of variation in costs: -4.54% to 108.00%, compared to outcomes: -

3.81% to 0.40%. This is not unexpected, given the multiple components that may feed 

in to the total costs of an intervention (intervention costs, primary and secondary care 

resource use, productivity costs and so on), compared to health state utilities, which 

usually have a single value per state. With that being said, this may suggest that future 

modelling studies should consider including greater detail on how costs were derived 

for the model, perhaps by including example calculations, or making explicit all of the 

assumptions made. 
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These findings also build on the existing replication literature. Smolen et al. (2015) 

found replication variances ranging from 0.00% and 1.92% in their base case 

replication. The lead author of this replication was contacted (as described in Chapter 

2), to further understand their experiences of carrying out the replication, particularly to 

find out about perceived facilitators or barriers. Whilst the published replication study 

stated that all parameters were clearly reported within the original study, Smolen 

clarified that to generate the transition probabilities used in the model special ‘pixel 

counting’ software was used, as the parameters were presented in graphical form. 

Therefore exposing a barrier to replication. Barriers identified in the Bermejo et al. 

(2017a) study which detailed the replication of five models, also reveal commonalities. 

In one of the replications, the authors stated that “no details were provided on… 

covariate or coefficients” for a generalised linear model that was used. In another 

replication, they found that “the model structure diagram did not exactly match the 

implemented model”; which echoes the findings in the above work, with case studies 1 

and 2. 

Reporting checklists, such as the Philips checklist are often advocated to encourage 

transparent research practices. The responses to the Philips checklist for the studies 

included in the case studies, suggest that the original publications were 

comprehensively reported, shown by the fact that the majority of applicable criteria were 

satisfied in each of the case studies, ranging from 69% to 83%. Indeed, three of the 

case studies were chosen because they satisfied the most criteria out of those identified 

in a review and the latter case studies were chosen by the replicator presumably with 

some thought towards how well the studies were described to facilitate replication. With 

this being said, there were still a number of barriers encountered to replication, which 

may suggest that the Philips checklist is not able to discern whether studies are 

reported thoroughly enough to facilitate replication. This may be due to the fact that the 

checklist focuses more so on model quality, for example ensuring that appropriate 

justifications for the methods used are given. It could also be that the checklist may be 

completed in different contexts which may be less scrupulous to the threshold for 

replication, such as peer reviewing or quality assessment for a peer review. These are 

similar to the findings reported by Mount Hood (as described in previous chapters), who 

undertook several replications of diabetes simulation models. The authors referred to 

the commonly used checklists of CHEERS (Husereau et al., 2013) and Philips (Philips 

et al., 2004) as being potentially “overly general to satisfy the needs in complicated 

multifactorial disease areas” to facilitate adequately transparent reporting and thus a 

models replication.  
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Given the barriers and facilitators identified, along with the potential inadequacies of 

reporting checklists, if future models are to be more easily replicated, instead of 

checklists, a more formalised process of how models are presented is required. For 

example, whilst a table of input parameters may be enough to satisfy a checklist item, it 

may not be apparent until a replication is conducted if any parameters have been 

omitted. Examples of how the presentation process may be more formalised include 

necessitating a table with the total costs associated with every model state. In doing so, 

any implicit assumptions that the modeller had failed to document in the manuscript 

could be deciphered. Other suggestions could include providing a summary of results 

for a shorter time horizon (for example a year), given that models with a longer time 

horizon proved harder to replicate. This would give the replicator values to check 

against, before running the model over many more cycles, and therefore inflating any 

discrepancies. 

Alternatively, a more thorough presentation could be encouraged by changing workflow 

practices to give more consideration to replicability. Replication of the model 

programming by two individuals within the study team, both working from the same 

analysis plan, would encourage clear and unambiguous descriptions of the model 

structure. This type of redundancy in workflow is already commonly practised by 

statisticians analysing clinical trial data as well as in software development (detailed in 

‘Good Clinical Practice Guide’, Chapter 9.7.9, Quality Control, Medicines and 

Healthcare products Regulatory Agency (2018)). 

It should also be mentioned that whilst this chapter has focused on how authors could 

present their modelling studies to facilitate replication, there are other factors that could 

greatly influence replicability. These include: journal data sharing policies, word limits 

and the use of supplementary materials. As well, if model registries (Arnold & Ekins, 

2010; Sampson, 2012; Sampson & Wrightson, 2017) or the publishing of open-source 

models (Dunlop et al., 2017) were more commonplace, replication may be more easily 

facilitated, given that a replicator could access and inspect model code (albeit that to be 

understood by a third party, this would still require detailed annotation). 

The five replication case studies also presented an opportunity to test out the definitions 

of ‘replication success’ proposed in Chapter 2, and to evaluate the workability of the 

definitions proposed. In doing so, it was found that all of the case studies satisfied the 

loosest definition of success, whereas none met the stricter criteria of identical results 

being produced. In applying the definitions, it was also shown that some of the 

definitions were not applicable to certain studies, depending on the original results of 
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the model being replicated. In example, replicating an ICER value would not be 

appropriate for studies that found a treatment to be dominant. This is an important 

finding from trying to apply the definitions proposed, and shows that a universal 

definition would need to be applicable regardless of the original study’s results. From 

this work, an updated definition was proposed, with an additional clause, clarifying that 

a replication success should be consistent with the original study’s conclusions, and 

that the majority of treatment pathways can be replicated to within a reasonable degree 

of accuracy. 

 

3.5 Strengths and limitations 

Whilst efforts were made to ensure the breadth of models replicated, the five case 

studies only covered Markov and decision-tree models. As such, the potential barriers 

and facilitators to model replications for more complex models, such as discrete event 

simulation models have not been explored. Moreover, whilst the suggestions made to 

enhance the likelihood of replication in terms of model presentation may appear 

feasible for more simplistic models, it is recognised that transparent reporting is likely to 

be far more challenging with complex models. The lack of diversity in the case studies 

is also reflected in the software used within the models, with the majority using 

Microsoft Excel, hence preventing the evaluation of how other software types or 

programming languages, such as R, may facilitate or impair replication. This may have 

occurred due to the replicators unconsciously opting for models that looked to be more 

feasibly replicated. 

It is also important to acknowledge that the results of the replications are highly 

dependent on replicator skill. Therefore, it is possible that given a different replicator, 

the same case study may have had more or less success. Also, the inability to replicate 

does not necessarily infer errors within the model, but may just suggest a lack of 

information within the report.  

Efforts were made to mitigate the effect of the replicator however, by using different 

modellers with varying levels of experience, to conduct each of the case study 

replications. It is also promising that common barriers and facilitators emerged across 

the five studies, indicating that they were more than a subjective experience. Moreover, 

whilst there was variation in the motivation for selecting the replicated models (Philips 

criteria fulfilled and pragmatism), it should be acknowledged that the models chosen 

pragmatically are also likely to have also been chosen on the basis that the replicator 

believed that the models were described in sufficient detail to facilitate replication. Thus, 
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it is possible that the models selected were of a higher reporting standard than the 

‘average’ published modelling study. If less thoroughly reported models were included 

in the replication attempts, it is possible that additional barriers may have been 

identified, perhaps for example the use of proprietary data. 

Importantly, it should be reiterated that none of the case studies were chosen to single 

out any author, institution or journal. 

 

3.6 Conclusion 

This study has highlighted several barriers and facilitators that may influence how 

replicable a modelling study is. It is hoped that these can be used to inform the way 

future models are presented; this might particularly apply to how thoroughly costing 

assumptions are reported, given that costs were often replicated with greater variation 

to the original, than outcomes. This study has also shown that the Philips checklist, is 

not indicative of whether or not a model is likely to be replicable, given that all of the 

case studies appeared to be relatively well reported. The replications conducted also 

presented an opportunity to apply the definitions of ‘replication success’ derived in the 

Chapter 2. Applying these definitions highlighted that several of these definitions were 

reliant on a certain cost-effectiveness outcome (i.e. that no treatment dominated) which 

would prevent the generalisability of any definition. As such, an updated definition was 

proposed.  

It is reassuring to see that the findings of these replication case studies and applying 

the definition of success were echoed in the publication by Schwander et al., which was 

published subsequent to this chapter’s work. 
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Chapter 4 Developing and reporting a decision model in a 

manner which seeks to aid future replication 

 

4.1 Introduction 

As evidenced throughout this thesis, there have been repeated calls for research 

transparency and reproducibility initiatives. Within health economics, these include: the 

establishment of modelling registries (Sampson & Wrightson, 2017) and publication of 

modelling code (Dunlop et al., 2017; Pouwels et al., 2022), and in other disciplines: 

conducting replication studies (Höffler, 2018). However, these calls rarely consider how 

easily they may be implemented by the individual researcher and thus may lack 

practicality. Most initiatives will require in the least additional researcher effort, either in 

the short-term whilst learning new programming languages or more generally when 

making aspects of the modelling process more transparent. This may include, for 

example, making modelling assumptions more explicit, or making code accessible and 

readable to an external party. The additional time required for this will incur a cost, 

either requiring more funding of researcher time or forcing researchers to do more 

within limited constraints. Hostler (2023) warns of the consequences of encouraging 

open research practices but not explicitly funding this additional work, in a concept they 

refer to as “workload creep”. This is a phenomenon whereby researchers are expected 

to engage in additional tasks and commitments, but the time to do so is not specifically 

funded, potentially leading to higher rates of work-place burnout and stress (Hostler, 

2023). 

There has also been little discussion about the incentives or motivators for researchers 

in health economics to undertake the additional work to make their output replicable. 

Currently, there are few tangible incentives for such work. Motivation to improve 

replicability may come from an expectation that new standards will soon be adopted, 

either required by research funders or journals. Some research funders now request 

that findings are published in open-access journals (for example, UK Research and 

Innovation from April 2022), although publishing in an open-access format stops short 

of most reproducibility calls. A recent report by the House of Commons, Science, 

Innovation and Technology Committee exploring ‘Reproducibility and Research 

Integrity’ found that open-access calls “should go further in requiring the recipients of 

research grants to share data and code alongside the publications arising from the 

funded research” (House of Commons: Science Innovation and Technology Committee, 
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2023). Some journals now request replication packages to be published alongside the 

accepted article (as is now commonplace in American Economic Review (American 

Economic Association, 2020)), although this is not yet standard practice. 

This chapter explores the practicalities of a researcher trying to engage in replicable 

practices, particularly, to develop a decision model with replication in mind. It uses this 

development process to explore how the replication barriers and facilitators identified in 

the previous chapter (Chapter 3) may be implemented and overcome. The learning 

points derived from the practicalities of incorporating these into a decision model are 

important to consider. If they cannot feasibly be achieved then the recommendations 

themselves will not improve standards. It aims to answer the following research 

question identified at the start of this thesis: 

 What are the implications and challenges for modellers trying to incorporate 

replicability? 

 

4.2 Methods 

4.2.1 Reason for model development 

The ‘Diabetes Prevention – Long Term Multimethod Assessment’ (DIPLOMA) study 

(National Institute for Health and Care Research, 2017) was commissioned by the 

NIHR to independently evaluate the NHS Diabetes Prevention Programme (NHS DPP), 

in terms of its effectiveness and cost-effectiveness from the perspective of the NHS. To 

evaluate the cost-effectiveness, the study pledged to undertake a short-term analysis 

using the observed data, and a longer-term analysis using a decision model. It is the 

latter model development which is described in this chapter. It is important to note that 

the model used in this PhD to evaluate the practicalities of incorporating replicable 

research practices was done so within the constraints of a major national funded 

research project, rather than a project solely for the purposes of the PhD, thus allowing 

it to closely mirror the experience of other researchers. 

 

4.2.2 Replicable research practices 

Whilst creating the model, care was taken to be mindful of the decisions being made at 

each stage, and to document the subsequent choices and rationale for each. In 

particular, there was a focus on ensuring the model code was transparent and 

replicable, programming the model in an open-source software and publishing the 
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model code. There was also a focus on incorporating the barriers and facilitators 

identified in the previous chapter, along with those identified in the similar replication 

exercise subsequently published by Schwander et al. (2021). The barriers identified in 

these two studies are presented in Table 4.1, alongside proposed methods and planned 

deliverables for removing these barriers in subsequent models (if applicable). In both of 

these studies, key facilitators included providing a detailed description of the model 

structure, including all possible transitions, as well as a table of all of the input 

parameters. Other facilitators identified in the case studies detailed in Chapter 3 

included giving example cost calculations for each model cycle or providing costs per 

model state, and including a table of health states and explicitly listing any assumptions 

made. 

During the model development, effort was made to incorporate the planned deliverables 

into the model development whilst evaluating the feasibility of doing so. 

 

4.2.3 Modelling Software 

One of the most important aspects of replicable research practices is the software used 

to develop the model. Whilst it is important that it has a sufficient user base, it might 

also be important that the software is open-source, and therefore accessible to all. 

Software that can be used to develop decision models include, but are not limited to: 

Microsoft Excel, TreeAge, Simul8, and R. Both TreeAge and Simul8 are specialist 

software products for the development of models, whereas R is a general programming 

language often used for statistical analysis and Microsoft Excel is a spreadsheet 

software used for data visualisation and analysis. As part of their Health Technology 

Assessment (HTA) process, NICE currently accepts economic models built in Microsoft 

Excel, TreeAge, R or WinBUGs (with other software requiring special permission) 

(National Institute for Health and Care Excellence, 2022). Markedly, R is the only 

programming language and environment in this list, with the others being proprietary 

software, meaning that they are not open-source or free to use. 

It is unclear how frequently different software is used when developing decision models 

(or indeed, how this may have changed over time). In an example of software use, a 

systematic review conducted by the author, identified 24 models evaluating treatments 

for atopic eczema. This found that the most popular software was Microsoft Excel (46%, 

11/24), followed by TreeAge (21%, 5/24), although a large number did not report which 

software was used (33%, 8/24) (McManus et al., 2017).  
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More recently, there have been several calls for modellers to move away from 

developing models in Microsoft Excel (Incerti et al., 2019), given that these models can 

be difficult to navigate, and are prone to coding errors (due to formulae relating to 

several cells and the ability to easily overwrite text). R is often suggested as an 

alternative, with researchers identifying the following benefits: increased transparency, 

free to use, ability to conduct all analyses in one script - referred to as end-to-end 

functionality (Hart et al., 2020) and computational efficiency (Xin et al., 2021). With R, 

scripts are written linearly, which means that the code may be easier to follow than the 

multi-cell and worksheet approach used in Microsoft Excel. 

There are also arguments against using a programming language like R. Some 

consultancy companies consider that their clients may be more familiar with Microsoft 

Excel and therefore less able to understand the model if developed in another software, 

and so Microsoft Excel may actually be perceived as more transparent (Hart et al., 

2020). There may also be practical restrictions, such as some HTA agencies not 

accepting submissions in R. Up until recently, the HTA body in the Netherlands, 

Zorginstituut Nederland (ZIN) did not accept R submissions, although they have 

recently run a pilot scheme to evaluate the feasibility of doing so (Zorginstituut 

Nederland, 2022). 

Given the perceived transparency benefits of using R rather than Microsoft Excel, it was 

decided to programme the model using R. R was chosen as it is open-source, which 

would enable anyone to inspect and run the model code. R code also means that the 

whole model could be coded in one script. Importantly, I had not used R to develop a 

decision model before, although had previously used it to carry out some statistical 

analyses. 
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Table 4.1: Barriers of model replication as identified in Chapter 3 and Schwander et al. 

(2021). 

Barriers  Planned Deliverables (if applicable) 

Identified in Chapter 3: 

Work flow  Model to be programmed in an open-
source software, such as R. 

 Model code to published, for example 
in a Github repository. 

Authors unable to be contacted – 
requirement for authors to archive and 
annotate their work 

 Publishing code on Github would 
mean that this was open to 
interrogation / and would not be 
dependent on the author responding 
to requests. 

 Development of an R Shiny App. 

Lack of transparency around costs used  Table of costs used for each model 
state. 

 Summary of costs for a shorter time 
horizon. 

Lack of transparency around model 
parameters 

 Table of parameters grouped for 
each of the scenarios modelled. 

 Diagram for each scenario, along 
with all possible transitions 
documented. 

Identified in Schwander et al. (2021): 

Inability to recreate probabilistic 
sensitivity analysis due to lack of 
reporting of standard deviations or 
distribution parameters 

 Ensure all shape parameters for 
probabilistic sensitivity analysis are 
reported. 

Lack of reporting of clinical event results  Present event and mortality results 
(for all simulated alternatives) over 
the whole time horizon of the model, 
for each model cycle. 

Self-created regression analyses  State all regression methods used, 
and provide details on how to 
apply/solve the regression equations 
correctly. 

Lack of reporting of details on Life Tables  Ensure that adequate detail is 
provided around the Life Tables, 
including the year used. 

 

4.2.4 Model background 

Type 2 diabetes is a chronic condition that affects insulin function and production, 

leading to high blood glucose levels. Symptoms include tiredness and excessive thirst, 

diabetes is also associated with an increased risk of developing other problems, such 

as cardiovascular disease, nerve and eye damage (Chatterjee et al., 2017). Worldwide, 

it is estimated that diabetes is the sixth leading cause of disability (Vos et al., 2016). 
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Whilst there are genetic risk factors, such as a family history of the disease and being 

from South-Asian, African-Caribbean or black African descent; the majority of risk 

factors are lifestyle based. These include, being overweight, smoking, poor diet and 

physical inactivity (Fletcher et al., 2002). People with type 2 diabetes are usually 

prescribed medications, such as Metformin, to regulate their blood sugar, although it 

can sometimes be managed with weight loss, diet and exercise alone (Krentz et al., 

2008).  

In the UK, prevalence of diabetes is increasing, with prevalence rates more than 

doubling between the years of 2000 and 2013 (2.39% to 5.32%) (Sharma et al., 2016), 

exacerbated by an increase in average weight, sedentary lifestyles, and an aging 

population. As well as the patient and carer burden, type 2 diabetes also places a 

considerable burden on healthcare systems, with a study estimating direct costs to the 

NHS each year of approximately £8.8bn (price year 2011-12) (Hex et al., 2012).  

Before developing type 2 diabetes, many patients first develop non-diabetic 

hyperglycaemia or ‘pre-diabetes’, characterised by elevated blood glucose levels that 

are below the threshold of type 2 diabetes, but above normal ranges (Tabák et al., 

2012). It is possible for individuals in this state, to progress to type 2 diabetes or return 

to normal blood glucose levels. It is estimated that 11% of individuals with obesity and 

non-diabetic hyperglycaemia will progress to type 2 diabetes annually (Tabák et al., 

2012); with an estimated conversion rate of 7% within the first year of non-diabetic 

hyperglycaemia diagnosis (R Ravindrarajah et al., 2020). 

Studies have shown that targeting this high-risk group of non-diabetic hyperglycaemia 

patients with interventions that combine diet and exercise advice can delay or prevent 

the progression to type 2 diabetes (Hemmingsen et al., 2017). A recent systematic 

review identified 29 studies evaluating a lifestyle intervention to prevent type 2 diabetes 

(M. Davies et al., 2017) and conducted a meta-analysis (using 25 studies). The meta-

analysis found that lifestyle interventions result in a mean weight loss at 12 months of 

2.31kg (95% CI: –2.87 to –1.76 kg), and a reduction of 0.11% (95% CI: –0.19% to –

0.03%) in blood glucose levels, measured with HbA1c (using eight studies). 

The NHS DPP was established as part of a major new emphasis in England on the 

need for targeted prevention strategies. The programme targets individuals with non-

diabetic hyperglycaemia, with the aim of preventing these individuals from going on to 

develop type 2 diabetes.  
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Participants are primarily referred to the programme by a healthcare professional, 

during an NHS health check, or opportunistically during a consultation. To be referred, 

participants require a blood test to show that they are within the non-diabetic 

hyperglycaemia range (HbA1c 42–47 mmol/mol (6.0–6.4%)). HbA1c is a measure of 

average blood sugar over 8-12 weeks, with normal glucose tolerance considered to be 

a HbA1c concentration of below 42mmol/mol. 

The programme comprises of at least 13 group-based behaviour change sessions, 

incorporating structured education on nutrition, physical activity and weight loss and 

typically lasts 9-12 months. It began in 2016, being rolled out across England in a series 

of waves (as shown in Figure 4.1), covering the whole of England by April 2018. To 

avoid placing additional burden on frontline NHS services, NHS England decided to 

procure the programme from external contractors. As part of the first framework, four 

commercial providers were selected in a national competition. Only these providers 

were able to bid to provide the programme at each site.  

 

Figure 4.1: England Clinical Commissioning Groups according to the first wave in which 

they participated in the NHS Diabetes Prevention Programme (wave 1 from 2016, wave 

2 from 2017 and wave 3 from 2018). 

Figure created using data obtained NHS England. 
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NHS England conducted an impact assessment in 2016, which estimated the costs 

associated with implementing the NHS DPP in England from 2016-2021, along with the 

expected outcomes of the programme in the short- and long-term (NHS England, 2016) 

using estimates from the literature along with expert opinion. This report estimated that 

by 2021, a total of 18,000 cases of diabetes would have been prevented or delayed 

amongst a cohort of 390,000 participants. It also found that the programme was likely to 

be cost-effective, and by the year 2033/34 cost saving (when applying discounting), 

assuming a cost of £270 per participant. 

The model described in this chapter sought to update these estimates of long-term 

cost-effectiveness, for the first time using observed data from the programme on 

participant retention and health outcomes, along with provider contract information. 

 

4.2.5 Model description 

The excerpts below are from the ‘Methods’ section of a publication currently under 

review describing the model that was developed: 

A Markov cohort model was developed in R (Green et al., 2023; R Core Team, 2009) to 

evaluate the cost-effectiveness of the NHS DPP compared to usual care, from the 

perspective of the NHS. A model was developed as it is likely that many of the benefits 

of the NHS DPP occur in the long-term, beyond that which can be observed using 

routinely collected data. The model code in full is available via the author’s Github 

repository (McManus, 2023) and an excerpt of the code is provided in Appendix 

Chapter 4, Code excerpt – Base case analysis. 

 

4.2.5.1 Interventions analysed 

Two strategies: 1) usual care and 2) referral to the diabetes prevention programme, in 

addition to usual care were considered. In this instance, usual care was defined as what 

existed prior to the introduction of the NHS DPP. Guidance from NICE, first published in 

2012, recommends that individuals with non-diabetic hyperglycaemia be offered a blood 

test and assessment of their body mass index at least once a year (National Institute for 

Health and Care Excellence, 2012). The intervention evaluated is a referral to the NHS 

DPP. An individual referred to the programme is free to take up as much or as little of 

the programme as they wish. The usual programme pathway comprises of first an initial 

assessment and then a series of group-based sessions. Depending on the provider, 
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there are either 13 or 18 total sessions. Further detail about the programme can be 

found in Barron et al. (2018).  

 

4.2.5.2 Model Structure 

A Markov model was chosen due to the chronic nature of type 2 diabetes, which 

involves recurring events and continuous risk over time (Sonnenberg & Beck, 1993). 

The model comprises of the following states: Normal glucose tolerance (HbA1c below 

42mmol/mol (6·0%)), Non-diabetic hyperglycaemia (defined as a HbA1c within the 

range of 42–47 mmol/mol (6·0–6·4%)), Type 2 diabetes (HbA1c above 47 mmol/mol 

(6·4%)) and Death. These states are mutually exclusive and exhaustive. A diagram of 

the model and the possible transitions between each of the states is shown in Figure 

4.2.  

In the model, it is possible for individuals with non-diabetic hyperglycaemia to transition 

to a normal glucose tolerance state, remain with non-diabetic hyperglycaemia, progress 

to type 2 diabetes or death. Individuals in the type 2 diabetes state can remain in the 

state, return to non-diabetic hyperglycaemia or die. However, individuals with type 2 

diabetes cannot directly transition to normal glucose tolerance and likewise it is not 

possible for individuals with normal glucose tolerance to directly transition to type 2 

diabetes.  

The model structure was developed by reviewing existing model structures and in 

collaboration with a clinical expert to ensure it captured the clinical reality of the 

disease. This structure is also used in several studies (Frempong et al., 2021; A. J. 

Palmer et al., 2004; A. J. Palmer & Tucker, 2012; Roberts et al., 2018). Roberts et al. 

(2018) also state that this structure was developed following a review and in 

collaboration with a multi-disciplinary clinical team.  
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Figure 4.2: Markov model structure. 

 

 

 

4.2.5.3 Model Parameters 

The transition probabilities from and to each of the model states are described in Table 

4.2, in terms of the point estimates and sampling distributions used. Where possible, 

age specific transition probabilities were obtained for the following age groups: <40, 40-

49, 50-59, 60-69, 70-79 and 80+ years, although this was not possible for all 

parameters. Mortality rates according to five year age categories were used due to the 

availability of data. 

The NHS DPP specific parameters were obtained from data used for the national 

evaluation of the programme. Other parameter values were obtained from peer-

reviewed literature. The way these parameters were sourced and derived, as well as 

justifying where choices were made between sources are described fully in Appendix 

Chapter 4, Transition Probabilities.   
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Table 4.2: Transition probabilities and distributions. 

 State to State transition Age category 
(where 
available) 

Point Estimate Distribution Source* 

Normal glucose 
tolerance 

Remaining in state Remainder from other transitions - - 

to Non-diabetic 
hyperglycaemia 

20<x≤39 0.0355 Beta (α=36.1, β=963.9) Hadaegh et al. (2017) 
 
Using estimates 
presented in Table 2, 
page 73 

40<x≤59 0.0528 Beta (α=54.2, β=945.8) 

x≥60 0.0742 Beta (α=77.1, β=922.9) 

to Type 2 diabetes Transition not possible - - 

to Death 30<x≤34 0.000674 Constant National Life Tables 
(2018-2020) (Office for 
National Statistics, 
2021) 

35<x≤39 0.00101 

40<x≤44 0.00150 

45<x≤49 0.00230 

50<x≤54 0.00336 

55<x≤59 0.00506 

60<x≤64 0.00794 

65<x≤69 0.0124 

70<x≤74 0.0196 

75<x≤79 0.0345 

80<x≤84 0.0609 

85<x≤89 0.111 

90<x≤94 0.187 

x≥95 0.296 
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Table 4.2: Transition probabilities and distributions. (Continued) 

 State to State transition Age category 
(where 
available) 

Point Estimate Distribution Source* 

Non-diabetic 
hyperglycaemia 

to Normal glucose 
tolerance 

 0.0795 
 

Beta(α=335.0, 
β=3709.0) 

Balk et al. (2015) 
 
Using estimates 
presented in Figure 2, 
page 442 

Remaining in state Remainder from other transitions - - 

to Type 2 diabetes** x<40 0.0268 Beta(α=27.1, β=972.9) Linked National Diabetes 
Audit data (NHS Digital, 
2023) 

40≤x<50 0.0339 Beta(α=34.5, β=965.5) 

50≤x<60 0.0303 Beta(α=30.7, β=969.3) 

60≤x<70 0.0251 Beta(α=25.5, β=974.5) 

70≤x<80 0.0201 Beta(α=20.3, β=979.7) 

x≥80 0.0141 Beta(α=14.2, β=985.8) 

to Death Age-specific mortality as described 
above (Normal glucose tolerance to 
Death) 

Constant National Life Tables 
(2018-2020) (Office for 
National Statistics, 2021) 

Type 2 diabetes to Normal glucose 
tolerance 

Transition not possible - - 

to Non-diabetic 
hyperglycaemia 

 0.00280 
 

Beta(α=2.8, β=997.2) Karter et al. (2014) 
 
Abstract, results. 

Remaining in state Remainder from other transitions - - 

to Death Age-specific mortality as described 
above (Normal glucose tolerance to 
Death) multiplied by excess mortality 

Constant National Life Tables 
(2018-2020) (Office for 
National Statistics, 2021) 
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Table 4.2: Transition probabilities and distributions. (Continued) 

 State to State transition Age category 
(where 
available) 

Point Estimate Distribution Source* 

 Excess Mortality  Hazard ratio: 1.60 
 

LogNormal(µ=0.470, 
σ=0.064) 
 

DECODE Study Group 
European Diabetes 
Epidemiology Group 
(2003) 
 
Abstract, results. 

Dead to any other state  0 - - 

Remaining in state  1 - - 

Effectiveness 
of the NHS 
DPP*** 

  Hazard ratio: 0.80  
(95% CI: 0.73 to 
0.87) 

LogNormal (µ=-0.223, 
σ=0.0448) 

Rathi Ravindrarajah et 
al. (2023) 
 
Abstract, findings. 

Notes:  
*Further details on how parameters were derived from these sources are provided in Appendix Chapter 4, Transition Probabilities. 
**Effect of referral to the NHS DPP applied here. 
***In the base case, it is assumed that the effect of the NHS DPP lasts for 3 cycles and then stops (equivalent to an adjusted hazard ratio of 
1.0). 
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4.2.5.4 Costs & Outcomes 

Table 4.3 shows the costs used for each of the model states along with the sources for 

these values. Costs considered were from the perspective of the NHS and using UK 

pounds sterling for a price year of 2020, the mean and standard error of which are 

reported to 2 decimal places, as is convention with costs, and the shape parameters 

reported to 1 decimal place. Whilst there is not a state associated with type 2 diabetes-

related complications in this model, the cost distribution used for the type 2 diabetes 

state was sourced from two studies which costed all of the primary and secondary 

healthcare resource use of a population of individuals with type 2 diabetes. As such it is 

expected that they will have incorporated a range of disease severities, including those 

who experienced diabetes-related complications; which will then be reflected in the cost 

distribution used in this model. Model outcomes were in terms of QALYs. To calculate 

these, each of the model states were assigned utility scores, which were then used to 

calculate QALYs depending on the time spent in that state. Table 4.4 shows the utility 

values used along with the source; the mean and standard error of these values are 

shown to 3 significant figures, so as to allow the reader (both here and in the submitted 

manuscript) to recreate the shape parameters for the distributions, and shape 

parameters are reported to 1 decimal place. A utility score of 0 was attributed to the 

dead state and assumed to be constant (hence no distribution). Further information on 

how these sources were selected is available in the Appendix Chapter 4, Costs and 

Utility Scores. 
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Table 4.3: Costs associated with each state of the model (2020 price year). 

 Cost Source Distribution 

Referral cost to 
the NHS DPP 

£141.77 
 
 
 
Standard 
error: 
34.65 
 

Analysis of provider and 
contract data provided 
by NHS England 
(average cost of referral 
and costs of 
implementation) 
(McManus et al., 2023) 

Gamma(α=16.7, β=8.5) 

State    

Normal glucose 
tolerance  

£2,005.31 
 
Standard 
error not 
reported* 

Using resource use 
estimates from Nichols 
et al. (2008) and 
applying NHS specific 
resource use costs for 
2020 
 

Gamma(α=44.4, β=45.1) 
 

Non-diabetic 
hyperglycaemia 

£2,224.76 
 
Standard 
error not 
reported* 

Using resource use 
estimates from Nichols 
et al. (2008) and NHS 
specific applying 
resource use costs for 
2020 
 

Gamma(α=44.4, β=50.1) 
 

Type 2 diabetes £4,420.57 
 
Standard 
error not 
reported* 
 

Inflated estimate from 
Kanavos et al. (2012)  

Gamma(α=44.4, β=99.5) 

Death 0 
 

  

Notes: 
*Further details on how state costs were derived from these sources are provided in 
Appendix Chapter 4, Costs. 
**The source used to estimate the cost of diabetes, non-diabetic hyperglycaemia and 
normal glucose tolerance did not present the variation around the cost estimates. As 
such, a standard error of 15% of the mean is assumed. 
 
Costings for model states include all NHS resource use, not just disease specific 
expenditure. 
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Table 4.4: Utility scores associated with each state of the model. 

Age 
category 

Normal glucose 
tolerance 

Non-diabetic 
hyperglycaemia 

Type 2 diabetes NHS DPP gain 

 Mean (se) Distribution Mean (se) Distribution Mean (se) Distribution Mean (se) 1- DPP gain 
Distribution 

x<40 0.890 
(0.00408) 

Beta(α= 
5,243.2, 
β=647.9) 

0.840 
(0.00245) 

Beta(α= 
18,852.3, 
β=3,585.4) 

0.776  
(0.0684) 

Beta(α= 27.9, 
β=8.1) 

0.00431 
(0.0000730) 

Beta(α= 
801,123.6, 
β=3,464.7) 

40≤x<50 0.872 
(0.00510) 

Beta(α= 
3,749.4, 
β=552.7) 

0.829 
(0.00171) 

Beta(α= 
40,397.0, 
β=8,321.1) 

0.674  
(0.0544)  

Beta(α= 49.0, 
β=23.7) 

0.00609 
(0.0000603) 

Beta(α= 
1,653,302.7, 
β=10,122.6) 

50≤x<60 0.855 
(0.00496) 

Beta(α= 
4,317.4, 
β=733.5) 

0.799 
(0.00127) 

Beta(α= 
79,459.7, 
β=19,951.7) 

0.724  
(0.0301) 

Beta(α= 
159.0, β=60.7) 

0.00891 
(0.0000545) 

Beta(α= 
2,945,489.9, 
β=26,470.7) 

60≤x<70 0.844 
(0.00582) 

Beta(α= 
3,275.4, 
β=605.1) 

0.810 
(0.000954) 

Beta(α= 
137,085.2, 
β=32,219.1) 

0.699  
(0.0248)  

Beta(α= 
238.3, 
β=102.8) 

0.0139 
(0.0000589) 

Beta(α= 
3,884,458.6, 
β=54,584.9) 

70≤x<80 0.825 
(0.00653) 

Beta(α= 
2,793.5, 
β=592.8) 

0.814 
(0.000866) 

Beta(α= 
164,314.0, 
β=37,615.0) 

0.745 
(0.0219)  

Beta(α= 
294.0, 
β=100.8) 
 

0.0153 
(0.0000637) 

Beta(α= 
3,650,006.1, 
β=56,613.4) 

x≥80 0.756 
(0.0115) 

Beta(α= 
1,048.6, 
β=338.7) 

0.781 
(0.00158) 

Beta(α= 
53,445.9, 
β=14,946.6) 

0.671  
(0.0272)  

Beta(α= 
198.9, β=97.4) 

0.0107 
(0.0000914) 

Beta(α= 
1,250,791.6, 
β=13,497.3) 

Notes: 
The utility scores for Normal glucose tolerance and Type 2 diabetes were sourced from analysis of the 2018 Health Survey for England 
(NatCen Social Research, 2022). 
Non-diabetic hyperglycaemia utility scores and the benefit from programme participation were sources from analysis of the NHS DPP 
provider data. 
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The cost of the NHS DPP was derived from data collected by providers of the 

programme up until April 2020 along with cost data provided by NHS England. These 

sources were combined to determine the cost of each referral made to the programme. 

This showed that the average cost per referral received was £118.98 (sd: 117.54), 

weighted by provider, with an additional £22.79 per referral estimated due to 

implementation costs of the programme (McManus et al., 2023). 

As a probabilistic version of the model was implemented, point estimates were 

transformed into distributions using their respective means and standard errors. Beta 

distributions were used for transition probabilities, as they are continuous variables 

ranging between 0 and 1. Beta distributions were also used for the utility scores, which 

was appropriate as the health state utility values used were suitably far from zero and a 

constant utility score of 0 was applied to the dead state, with no distribution applied. In 

the instance where utility benefit from programme participation was parameterised, as 

this value was close to zero, a transformation was used of 1 minus the utility score. 

Gamma distributions were used for model costs given that costs are non-negative and 

finally a LogNormal distribution was used for the hazard ratios included. The formulas 

used to derive the shape parameters for each of these distributions are detailed in 

Appendix Chapter 4, Distributions. 

 

4.2.5.5 NHS DPP Effectiveness 

The effect of the NHS DPP was modelled in two ways. The first considered the utility 

gains obtained directly from individuals who participated in the programme, which are 

attributed to all individuals for the first cycle of the model. Previous analysis showed that 

for each session attended an individual gains 0.0042 in utility (95% CI: 0.0025 to 

0.0059) (McManus et al., 2023). Provider data was used to determine the average 

number of sessions attended and then the associated utility benefit calculated. This 

estimate was then applied to the starting cohort of the NHS DPP in the model.  

The second measure of NHS DPP effect considered the long-term effect of the 

programme in terms of delaying or preventing type 2 diabetes. For this, analysis 

conducted as part of the wider NHS DPP evaluation was used, which estimated the 

impact of being referred to the NHS DPP compared to not being referred, using a 

matched analysis. This analysis found an adjusted hazard ratio of 0.80 (95% CI: 0.73 to 

0.87) for developing type 2 diabetes within 36 months (Rathi Ravindrarajah et al., 

2023). When modelling the cohort exposed to the NHS DPP, this hazard ratio was 

applied to the transition probability for transitioning from ‘Non-diabetic hyperglycaemia’ 
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to ‘Type 2 diabetes’. In the base case, this effect was assumed to be maintained for 

three model cycles, akin to the time horizon of effect within the observed analysis. 

For both costs and outcomes, a discount rate of 3.5% was used as recommended in 

the NICE Reference Case (National Institute for Health and Care Excellence, 2013). A 

common price year of 2020 was employed for all costs and where applicable, costs 

were inflated using the annual Office for National Statistics Consumer Price Index (All 

items) (Office for National Statistics, 2022).  

 

4.2.5.6 Cost-effectiveness Analysis 

A cohort of 1,000 individuals was modelled, all of whom begin in the ‘Non-diabetic 

hyperglycaemia’ state, using a cycle length of one year and run over 35 cycles. To 

better reflect the reality of individuals referred to the NHS DPP, six age groups were 

considered (<40, 40-49, 50-59, 60-69, 70-79 and 80+) within this cohort, based on the 

observed age composition of individuals referred to the programme prior to April 2020. 

As such, 5.8% of the cohort began at an age of 34 years, 12.2% started at 45, 21.9% 

started at 55, 26.7% started at 65, 24.4% started at 75 and finally 9.0% started at 84. 

The annual cycle length is consistent with the natural history of type 2 diabetes and is 

commonly used in other modelling studies in this disease area. A within-cycle correction 

was used (Barendregt, 2014; Gray et al., 2010) to account for the fact that transitions 

can occur at any point during the cycle and not at a discrete point in each cycle. This 

was applied by adding the state membership at time t to the state membership at time t 

+ 1 and then dividing by 2, using this value to then multiply by the relevant cost and 

outcome.  

The primary analysis was conducted using probabilistic analysis with 10,000 Monte 

Carlo simulations. Running a probabilistic analysis as the base case of the model is in 

line with current recommendations by NICE (National Institute for Health and Care 

Excellence, 2013) and academic debate (Thom, 2022; Wilson, 2021).  

From the results of the 10,000 Monte Carlo simulations, the expected costs and QALYs 

accrued for usual care and for the NHS DPP were calculated. From this the incremental 

costs and QALYs gained by the programme were calculated and averaged across the 

Monte Carlo simulations. The average incremental cost and QALYs associated with 

each individual for each of these simulations is plotted in a scatter plot to display the 

uncertainty around the simulation estimates. 
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The NHS DPP would be considered cost-effective if the incremental cost per additional 

QALY gained is below the currently accepted willingness to pay threshold. For this 

analysis, two thresholds were considered of £20,000 and £30,000, as these are the 

commonly used thresholds by NICE (National Institute for Health and Care Excellence, 

2013). The NHS DPP would be considered to dominate usual care, if it incurred less 

costs and generated more QALYs over the course of the model (or dominated if the 

converse was true). 

The incremental net-monetary benefit was also calculated, estimated as the average 

incremental benefit multiplied by the willingness to pay threshold, minus the incremental 

cost of the programme. Here, a positive net-monetary benefit amount would mean that 

the NHS DPP would be considered cost-effective, with higher values being more cost-

effective than lower values. The probability of the NHS DPP being cost-effective 

compared to usual care was calculated at £20,000 and £30,000 per QALY by counting 

the proportion of simulations for which the incremental net benefit is positive. From this, 

cost-effectiveness acceptability curves (CEAC) were also plotted, which show the 

probability that the NHS DPP is cost-effective compared with usual care for a range of 

willingness to pay thresholds. 

 

4.2.5.7 Impact of the NHS DPP 

Using the results of the modelled cohort of 1,000 along with the number of actual 

referrals received by the NHS DPP (526,283 referrals received by 31st March 2020) the 

total incremental costs and benefits were calculated for the whole of the programme.  

 

4.2.5.8 Sensitivity Analyses 

Finally, the sensitivity of these results were tested according to several scenarios. 

Firstly, different levels of effectiveness were considered, in terms of the length of time 

for which the probability of transitioning to type 2 diabetes from non-diabetic 

hyperglycaemia was reduced. In the base-case analysis, a hazard ratio of 0.80 was 

applied to this transition probability for three cycles of the model. This effectiveness was 

based on what has been observed from analysis of routinely collected data. In 

sensitivity analyses, two different scenarios for the continued effectiveness of diabetes 

prevention were considered. The first scenario was based on evidence from the US 

Diabetes Prevention Programme (US DPP), a large clinical trial evaluating three 

different treatment groups: placebo, metformin and a lifestyle programme. This study 
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found that there was still an observable effect in diabetes incidence at 10 years 

following the lifestyle programme (a hazard ratio of 0.66 at 10 years from 0.42 after 

three years) in comparison to placebo (Diabetes Prevention Program Research Group, 

2009). Calculating the equivalent proportional change for the 0.80 hazard ratio 

observed in the NHS DPP base case, this was equivalent to an effect of 0.88, where it 

is assumed to be maintained for seven years to parallel what was observed in the US 

study, after which there was no lasting effect of the programme within the model.  

The second sensitivity analysis used subsequent analysis of the US DPP which showed 

that after 15 years there was still an observable difference between lifestyle 

programmes and placebo, with a hazard ratio of 0.73 (Diabetes Prevention Program 

Research Group, 2015). As above, the equivalent proportional change was calculated 

and it was assumed that this effect was maintained for the subsequent five years, with 

the hazard ratio going from 0.80 (three cycles) to 0.88 (seven cycles) to 0.91 (five 

cycles) after which the risk of diabetes returns to normal, equivalent to a hazard ratio of 

1.  

There were also several sources for model parameters that could have been selected. 

As such, sensitivity analyses were conducted which used alternative sources for the 

costs associated with each of the model states, which were used in another published 

model (Roberts et al., 2018). In this modelling study, the authors used estimates from 

Hex et al. (2012) to determine the annual cost of type 2 diabetes, and did not include 

healthcare costs that were unrelated to diabetes or its complications in their base case 

analysis. They assumed an annual cost of £773.00 (standard error (se): 102.63) for 

normal glucose tolerance, a cost of £869.00 (se: 104.56) for non-diabetic 

hyperglycaemia and an annual cost of type 2 diabetes which increased linearly over 15 

years from £1,179.00 to £2,939.00 (se: 270.00), using a price year of 2015. As the 

model used in this case was a Markov cohort model, it was not possible to determine 

how long an individual had remained in the type 2 diabetes state, instead an average of 

this range was taken, £2,059. These estimates were inflated to a 2020 price year using 

Shemilt et al. (2010) (using option ‘IMF’ as the data source for purchasing power 

parities) to obtain the following annual cost estimates: £853.48 (se: 113.32) for normal 

glucose tolerance, £959.47 (se: 115.45) for non-diabetic hyperglycaemia and £2,273.37 

(se: 298.11) for type 2 diabetes. 

The uncertainty surrounding the transition parameter from non-diabetic hyperglycaemia 

to type 2 diabetes was also examined in another sensitivity analysis. In the base case 

this was sourced from analysis of routinely collected primary care data and produced a 
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probability of 0.0249. However, this was a lower probability than what had been 

reported in other studies (particularly clinical trials), and therefore what had been used 

in other modelling studies. The sensitivity analysis conducted looked at the impact of 

using two higher rates, the first reported by Herman et al. (2005) who used data from 

the US DPP to obtain a transition probability of 0.108, and the second used by Leal et 

al. (2020), who reported an event rate of 80.4 per 1,000 person years for their base 

case (equivalent to a transition probability of: 0.077). Neither of these estimates 

presented the different transition rates across age categories, and as such it is 

assumed that it is the same across all ages modelled. 

In the final sensitivity analysis, an alternative source to estimate the utility score of 

individuals with type 2 diabetes is used. In the base case, the utility scores are 

estimated from data obtained from the Health Survey for England, using responses 

from 491 individuals. Whilst using data from the survey enabled a utility score to be 

estimated for different age categories, the sample size was relatively low and there was 

no information about the length of time an individual was diagnosed with diabetes or if 

they were suffering from any diabetes-related complications. Thus instead, estimates 

presented by Keng et al. (2022) were used, which detailed the health utility score of 

11,683 individuals with established diabetes (93.9% with type 2 diabetes and 6.1% with 

type 1 diabetes). This population had a mean diabetes duration of 16.4 years and 

14.7% were recorded as having at least one comorbid adverse event. The utility scores 

presented by Keng et al. (2022) were not broken down by diabetes type or age 

category, and thus the mean utility score presented (after imputation) of 0.771 (with 

standard deviation: 0.221), was used for all age categories in the model.  

The different sensitivity analyses are described in Table 4.5. 
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Table 4.5: Different probabilistic sensitivity analyses conducted. 

 Scenario New distribution 

 Changing effectiveness  

SA1 Effect maintained for 3 years (HR 
0.800), and then reduced to (HR: 

0.883) for the following 7 years, then 
nothing 

First 3 years: 
LogNormal (µ=-0.223, σ=0.0448) 
 
Following 7 years: 
LogNormal (µ=-0.125, σ=0.0405) 
 
 

SA2 Effect maintained for 3 years (HR 
0.800), and then reduced to (HR: 

0.883) for the following 7 years, then 
reduced to (HR: 0.907) for the 
following 5 years then nothing 

First 3 years: 
LogNormal (µ=-0.223, σ=0.0448) 
 
Following 7 years: 
LogNormal (µ=-0.125, σ=0.0405) 
 
Following 5 years: 
LogNormal (µ=-0.0977, σ=0.0395) 
 

 Costs from alternative source  

SA3 Using costs estimates used in Roberts 
et al. (2018) inflated to 2020 price year 

 

Normal glucose tolerance:  
Gamma(α=56.7, β=15.0) 
 
Non-diabetic hyperglycaemia: 
Gamma(α=69.1, β=13.9) 
 
Type 2 diabetes: 
Gamma(α=58.2, β=39.1) 
 

 Transition to type 2 diabetes from 
alternative source 

 

SA4 US DPP trial data used as parameter 
source in Herman et al. (2005) 

Normal(mean=0.108, sd=0.00950) 
 
*Assume the same across all ages 
modelled 

SA5 NAVIGATOR trial data (NAVIGATOR 
Study Group, 2010) (n=4,661 

participants in placebo arm) used as 
parameter source in Leal et al. (2020) 

Beta(α=80.4, β=919.6) 
 
*Assume the same across all ages 
modelled 

 Utility scores from alternative 
source 

 

SA6 Utility score associated with type 2 
diabetes, sourced from Keng et al. 

(2022) 

Beta(α= 32,561.2, β=9,671.2) 
 
*Assume the same across all ages 
modelled 

Notes: 
HR: Hazard ratio; Sd: Standard deviation. 
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4.2.5.9 Validation 

The mathematical programming of the model was validated by double programming a 

deterministic version of the model using the point estimates described, in both Microsoft 

Excel and R, to ensure the same results were obtained. The parameters used in the 

distributions were checked by plotting the distributions and ensuring that they clustered 

around the point estimate they were based upon. The model outputs were also 

compared against results from other modelling studies in the same disease area by 

comparing state memberships over time to ensure the same general trends were 

observed. 
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4.3 Results 

4.3.1 Model Results 

4.3.1.1 Base Case – Effectiveness observed for 3 years 

Table 4.6 presents the costs and QALYs generated according to the two strategies: 

NHS DPP and usual care. Over the course of the 35 model cycles, the cohort referred 

to the NHS DPP incurred less costs on average than usual care, and generated more 

QALYs. This suggests that the NHS DPP dominates usual care. Across the 10,000 

Monte Carlo simulations, on average the NHS DPP resulted in cost savings of 

£135,755 with QALY gains of 40.8, compared to usual care alone (for the cohort of 

1,000).  

The uncertainty surrounding the estimates of expected costs and effects, is shown in a 

scatterplot of the incremental cost and QALY pairs from the 10,000 Monte Carlo 

simulations, comparing the NHS DPP to usual care in Figure 4.3, alongside a 

willingness to pay threshold of £20,000 per QALY (the black line). The majority of these 

points fell within the south-east quadrant (86.1%) indicating that the NHS DPP was both 

cost-saving and generated more QALYs. 

The CEAC from the base case analysis is shown in Figure 4.4. This plot shows the 

likelihood of the NHS DPP being cost-effective at different willingness-to-pay 

thresholds. The plot begins at 86.1% due to the number of simulations that both 

generated additional QALYs and incurred less costs. The probability of the NHS DPP 

being effective at a willingness to pay threshold of £20,000 per QALY generated was 

98.1% which increased to 98.4% with a willingness to pay threshold of £30,000. 

Scaling up these cost-savings to the number of referrals actually received by the NHS 

DPP by the end of March 2020 (526,283) equated to an additional 21,472 QALYs 

generated and cost savings of £71.4 million over the course of the 35 year time horizon. 

An example of a cohort trace from one of the Monte Carlo simulations is shown in 

Appendix Chapter 4, Table A4.6. 

 

4.3.1.2 Sensitivity Analyses 

The results of the sensitivity analyses conducted are shown in Table 4.6 and the 

respective scatter plots of incremental cost and QALY pairs from the 10,000 Monte 

Carlo simulations shown in Appendix Chapter 4, Figures A4.1 to A4.6, alongside the 
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number of simulations that fell within each of the scatterplot quadrants. Across all 

scenarios modelled the NHS DPP dominates usual care. The scenario which resulted in 

the highest on average cost-savings was when the transition probability from ‘Non-

diabetic hyperglycaemia’ to ‘Type 2 diabetes’ was updated with the transition 

probabilities reported in the US DPP trial (Herman et al., 2005) (SA4), which had a 

higher probability than that used in the base case analysis. This resulted in an average 

cost saving of £321,383 and an average increase of 90.2 QALYs across the cohort of 

1,000. Indeed, 99.7% of the 10,000 Monte Carlo simulations fell within the south-east 

quadrant of the scatter plot, corresponding to the NHS DPP being both cost saving and 

generating additional utilities when compared to usual care (Figure A4.3, Appendix 

Chapter 4). Across the six sensitivity analyses, the scenario with the highest uncertainty 

and therefore the lowest probability that the NHS DPP was cost-effective at a 

willingness to pay threshold of £20,000 occurred when using the lower state costs 

(SA3). In this instance, 97.9% of the 10,000 Monte Carlo simulations were cost-

effective at a willingness to pay of £20,000, which increased to 98.4% when using a 

willingness to pay of £30,000. There were three sensitivity analyses in which all of the 

Monte Carlo simulations fell below the willingness to pay threshold of £20,000, these 

were: when the effect was maintained for 15 years (SA2), and in the two instances 

(SA4 and SA5) when the transition probability from ‘Non-diabetic hyperglycaemia’ to 

‘Type 2 diabetes’ was updated using trial data. 
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Table 4.6: Model results for base case and sensitivity analyses (cohort of 1,000 with 10,000 Monte Carlo simulations). 

Intervention Total Mean 
costs 
(£, 2020) 

Total 
Mean 
QALYs 

Cohort 
Incremental 
cost (£, 
2020) 

Cohort 
Incremental 
effect 
(QALY) 

Mean Incremental 
Net Monetary 
Benefit per 
individual at 
£20,000 (£30,000) 

Probability cost-
effective at 
£20,000 
(£30,000) WTP 
threshold 

Base Case  

No intervention 31,998,394 10,765.8     

NHS DPP 31,862,639 10,806.6 -135,755 40.8 951.94 (1360.04) 98.1% (98.4%) 

Sensitivity Analyses 

Changing effectiveness 

SA1 – effect maintained for 10 years 

No intervention 31,998,394 10,765.8     

NHS DPP 31,711,537 10,826.4 -286,857 60.6 1,499.55 (2,105.90) 99.9% (99.9%) 

SA2 – effect maintained for 15 years 

No intervention 31,998,394 10,765.8     

NHS DPP 31,677,544 10,831.1 -320,850 65.3 1,626.93 (2,279.97) 100.0% (100.0%) 

Changing cost estimates 

SA3 – Using costs estimates used in Roberts et al.  

No intervention 14,508,167 10,765.8     

NHS DPP 14,481,464 10,806.6 -26,703 40.8 842.89 (1,250.98) 97.9% (98.4%) 

Changing type 2 diabetes transition 

SA4 – US DPP trial  

No intervention 39,687,183 9,648.2     

NHS DPP 39,365,800 9,738.4 -321,383 90.2 2,124.97 (3026.76) 100.0% (100.0%) 

SA5 – NAVIGATOR trial  

No intervention 39,101,371 9,823.2     

NHS DPP 38,928,500 9,906.5 -172,871 83.3 1,838.77 (2,671.72) 100.0% (100.0%) 
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Table 4.6: Model results for base case and sensitivity analyses (cohort of 1,000 with 10,000 Monte Carlo simulations). (Continued) 

Intervention Total Mean 
costs 
(£, 2020) 

Total 
Mean 
QALYs 

Cohort 
Incremental 
cost (£, 
2020) 

Cohort 
Incremental 
effect 
(QALY) 

Mean Incremental 
Net Monetary 
Benefit per 
individual at 
£20,000 (£30,000) 

Probability cost-
effective at 
£20,000 
(£30,000) WTP 
threshold 

Utility scores from alternative source 

SA6 – Using type 2 diabetes utility scores from Keng et al. (2022) 

No intervention 31,998,394 10,950.0     

NHS DPP 31,862,639 10,977.1 -135,755 27.1 679.25 (951.00) 98.0% (98.5%) 

Abbreviations: 
NHS DPP: NHS Diabetes Prevention Programme; WTP: Willingness to pay. 
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Figure 4.3: Base case analysis.  

Scatter plot of incremental cost and QALY pairs from 10,000 Monte Carlo simulations, 

on average for an individual in the modelled cohort. The black line represents a 

willingness to pay threshold of £20,000 per QALY gained. The number of points in each 

quadrant are: North-East: 1,295, North-West: 91, South-East: 8,614, South-West: 0. 

Percentage cost-effective at £20,000 willingness to pay (£30,000): 98.1% (98.4%). 
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Figure 4.4: Cost-effectiveness acceptability curve for the strategy of NHS DPP 
compared to usual care (base case analysis)  

 

 

4.3.2 Reflections on replicable practices 

4.3.2.1 Incorporating facilitators 

The identified facilitators to model replication were easily incorporated, these included a 

model diagram showing all transition pathways, along with a table of all of the input 

parameters which were reported alongside the different transitions.  

 

4.3.2.2 Overcoming identified barriers 

Table 4.7 presents what was developed in actuality alongside the proposed method of 

overcoming the identified barriers, and any positive or negatives from trying to address 

them. The majority of these were deemed to be successfully achieved, with only some 

not being incorporated: the development of an RShiny app to go alongside the model 

(as discussed further below), and providing example costs over short-term model 

cycles. These cost calculations were not directly included due to the model being 

probabilistic in the base case, however the average costs used to inform these 

distributions and cost calculations for how the estimates were derived, along with the 

costs per model state were reported. The provision of the model code was also thought 

to reduce the need for such calculations. One proposed method of addressing a barrier 
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was not relevant in this study (providing regression equations). Key aspects of 

addressing these barriers are discussed in further detail below. 

 

4.3.2.3 Learning R 

The process of programming the model in R for an individual who had not used R to 

develop a model before, was time consuming. During the development process, 

example code published in a tutorial paper by Green et al. (2023) which detailed 

modelling a simple three state: sick/sicker/dead model, was adapted to develop the 

code for this model which had four health states. This tutorial was vital in developing my 

understanding of R. The learning curve associated with using R (even with the tutorial 

code as an example) was high and could be viewed as a barrier to this programming 

language being used by other modellers who do not have prior experience of using R, 

especially if there is a strict deadline and therefore no time for the modeller to spend 

learning a different programming language. Learning a new programming language 

also increased the potential for user error due to not fully understanding model code 

and how to implement it. This suggests that there is a fine balance between striving 

towards replicable models using open-source software and delivering a model free from 

coding errors in a more familiar software. It should also be noted that no one in my 

research team was familiar with R, which meant that there was nobody available to 

check the model code. Therefore, in this particular instance, a deterministic version of 

the model was double programmed in both R and in Microsoft Excel to check the 

coding of the model and to ensure that the same model results were being obtained. 

However this was not possible to do in the probabilistic version of the model, which was 

how the base case and sensitivity analyses of the final model were coded. The model 

was also intentionally coded without relying on R packages (such as Heemod (Filipović-

Pierucci et al., 2017)), so as to ensure that the workings of the model and the code 

written were understood. Another consequence of being new to programming in R, was 

that the model code developed may not have been as concise or readable compared to 

the code of someone proficient in R and knowledgeable of the available R packages. 

This may then have an impact on the readability of the code by individuals who go on to 

access the model code, and therefore the transparency, despite efforts to annotate the 

code throughout. Another implication is that only those with experience of the R 

programming language will be able to inspect the code, which may reduce its usability. 
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4.3.2.4 Time constraints of the project 

As this model was developed as part of funded work on a research project, there were 

time constraints relating to the end of the research grant. This meant that there was 

limited time to finesse the model code and ensure aspects of replicability once the 

model had been developed, given the project deadlines and the need to submit the 

manuscript in time for the final report submission (for example, in terms of ensuring the 

code was concise or enhancing readability to an external user). Other aspects that 

could have been developed included developing an RShiny (Smith & Schneider, 2020) 

version of the model embedded in a web browser. This would have enabled users who 

may not have any programming knowledge in R to change the parameters and rerun 

the model according to different scenario analyses. However in order to develop this it 

would have required substantially more time as well as learning another coding 

language (C++). Further transparency could also have been built into the model by 

using RMarkdown (Xie et al., 2018), both to structure the code of the R script and also 

to produce the report directly from the code. This would also have been another aspect 

of programming to learn and would have required additional time. As such, it was not 

possible to completely exploit the ‘end to end’ functionality of R, which is where the 

analysis is conducted (for say transition probabilities), the model is run and then the 

output is collated in a report, all in one script. This was partially due to the time 

constraints of the project, and also due to the way some of the data for the project was 

housed in a secure environment due to NHS Digital requirements. This meant that 

some analysis was performed in the secure environment and then the results exported. 

 

4.3.2.5 Incentives and Motivating factors for reproducibility 

Other than being motivated by interest in reproducibility and the knowledge that it was 

contributing to the thesis, there were actually very few incentives or motivators to 

conduct the work in a reproducible manner. The original journal the manuscript was 

submitted to (BMC Medicine) had no requirements that any reporting checklists were 

completed as part of the submission, and as such a checklist like CHEERS was not 

completed. This suggests that unless mandated by the journal, researchers under time 

constraints may not think to complete such reporting checklists. As part of the peer 

review process, the absence of a completed reporting checklist was not commented 

upon, nor did they comment on the efforts made to use an open-source programming 

language, the publishing of the model code or indicate that they had accessed the code 

to check that it was functional. The manuscript was unfortunately rejected from this first 
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journal, and resubmitted to another (The European Journal of Health Economics). 

Similarly, this journal did not require any reporting checklists to be completed. 

Subsequent to these submissions, the CHEERS checklist was completed and can be 

seen in Appendix Chapter 4, Table A4.7.  
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Table 4.7: Barriers of model replication and how they were addressed, colour coded as to whether they were achieved or not: achieved (green), 

partially achieved (amber), not achieved (red), not applicable (grey). 

Barriers Planned Deliverables Actuality Discussion/learning 
points, positive 

Discussion/learning points, 
negative 

Work flow  Model to be 
programmed in an 
open-source 
software, such as: R. 

 Model code to 
published, for 
example in a Github 
repository. 

 Model 
developed in 
R. 

 Model code 
published on 
Github. 

 R is open-source, and 
publishing code on 
Github means it can be 
openly interrogated. 

 R presents the model 
code linearly, in a step-
wise format, which 
may be easier for the 
user to understand. 

 

 Significant learning curve 
associated with R. 

 Lack of familiarity with R may 
have led to coding errors (if I 
had not have double coded 
the model in Excel). 

 R may be considered to lack 
transparency by some users 
(due to the learning curve). 

 Some HTAs do not accept 
submissions in R – so from 
the consultancy perspective, 
R models are not that useful. 

 Considerable time was spent 
programming the model in an 
open-source software. This 
might not always be possible 
given the time limits of the 
project. 
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Table 4.7: Barriers of model replication and how they were addressed, colour coded as to whether they were achieved or not: achieved (green), 

partially achieved (amber), not achieved (red), not applicable (grey). (Continued) 

Barriers Planned Deliverables Actuality Discussion/learning 
points, positive 

Discussion/learning 
points, negative 

Authors unable to be 
contacted – requirement 
for authors to archive and 
annotate their work 

 Publishing code on 
Github would mean 
that this was open to 
interrogation / and 
would not be 
dependent on the 
author responding to 
requests. 
 

 Model code published 
on Github. 

 Github repository is 
linked in the final 
publication and code 
is annotated along 
with a ‘Readme’ file. 

 There is a reliance on 
Github being 
maintained as a 
coding platform. 

 Github requires the 
user to create a (free) 
account to access 
model code, this might 
put some people off 
from accessing it. 
 

 Development of an R 
Shiny App. 

 R Shiny not 
developed. 

 Not applicable.  There was insufficient 
time during the project 
to develop an RShiny 
version of the model. 
The learning curve 
represented by R was 
steep enough, let 
alone learning another 
programming 
language (C++). 

Lack of transparency 
around costs used 

 Table of costs used 
for each model state. 

 Table of costs 
provided, along with 
shape parameters for 
distribution. 

 

 This was easy to do.   Commercially 
sensitive information 
surrounding costs by 
private providers, this 
meant the costs were  
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Table 4.7: Barriers of model replication and how they were addressed, colour coded as to whether they were achieved or not: achieved (green), 

partially achieved (amber), not achieved (red), not applicable (grey). (Continued) 

Barriers Planned Deliverables Actuality Discussion/learning 
points, positive 

Discussion/learning 
points, negative 

    a weighted average 
across providers. 

 If the model is 
transparent in all other 
respects, it may be 
that the model can 
easily be interrogated 
through a series of 
sensitivity analyses, 
meaning the costs can 
be calculated. 

 Summary of costs for 
a shorter time 
horizon. 

 The final model did 
not explicitly describe 
the costs over a 
shorter time horizon. 

 It was assumed the 
open model code 
would negate the 
need for this. 

 This comment fits 
more with 
deterministic models. 
When running a 
model that is 
probabilistic in the 
base case (with 
10,000 simulations), it 
would only be 
possible to provide a 
few examples of the 
cost traces over time. 

Lack of transparency 
around model 
parameters 

 Table of parameters 
grouped for each of 
the scenarios 
modelled. 

 Table of model 
parameters provided, 
split across the 
different age. 

 This was easy to do 
and incorporate in the 
manuscript using a 
table in the form of 

 There is potential that 
whilst I may think that 
I have reported all of 
the model parameters, 
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Table 4.7: Barriers of model replication and how they were addressed, colour coded as to whether they were achieved or not: achieved (green), 

partially achieved (amber), not achieved (red), not applicable (grey). (Continued) 

Barriers Planned Deliverables Actuality Discussion/learning 
points, positive 

Discussion/learning 
points, negative 

  Diagram for each 
scenario, along with all 
possible transitions 
documented. 

categories modelled 

 Diagram of model 
included (although this 
did not change across 
scenarios). 

 Example state 
membership over time 
given for one of the 
PSA iterations 
included. 

state transition matrix 
to make sure that all 
possible transitions 
were included. 

some may be omitted. 

Inability to recreate 
PSA due to lack of 
reporting of standard 
deviations or 
distribution parameters 

 Ensure all shape 
parameters for PSA 
are reported. 

 All parameters were 
detailed in a table in 
the manuscript. 

 This was easily 
incorporated. 

 None. 

Lack of reporting of 
clinical event results 

 Present event and 
mortality results (for all 
simulated alternatives) 
over the whole time 
horizon of the model, 
for each model cycle. 

 An example cohort 
trace was provided for 
one of the Monte 
Carlo simulations. 

 None.  This point is less 
appropriate for models 
that are run as 
probabilistic in the 
base case. 

Self-created regression 
analyses 

 State all regression 
methods used, and 
provide details on how 
to apply/solve the  

 This was not 
applicable to the 
model developed. 

 Not applicable.  Not applicable. 
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Table 4.7: Barriers of model replication and how they were addressed, colour coded as to whether they were achieved or not: achieved (green), 

partially achieved (amber), not achieved (red), not applicable (grey). (Continued) 

Barriers Planned Deliverables Actuality Discussion/learning 
points, positive 

Discussion/learning 
points, negative 

 regression equations 
correctly. 

   

Lack of reporting of 
details on Life Tables 

 Ensure that adequate 
detail is provided 
around the Life 
Tables, including the 
year used. 

 Where life tables were 
used, the version and 
web address for the 
resource were 
included in the 
manuscript. 

 This was easily 
incorporated. 

 None. 
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4.4 Discussion 

This chapter sought to explore the practical implications of researchers developing 

replicable decision models, particularly in incorporating the facilitators and overcoming 

the barriers identified in the previous chapter. The learning points of trying to practically 

incorporate these into decision model development are vital to consider if replicable 

research practices are going to be recommended and pursued more generally going 

forward. This chapter produced several key findings: the steep learning curve in 

developing a model in a new, open-source, programming language, the additional time 

required to develop models with replicability and transparency in mind and the lack of 

motivators or incentives for researchers to do this. The facilitators and proposed 

solutions for the barriers were largely easily implemented, however some of them were 

no longer relevant given that the model code was openly published. 

Whilst programming the model in an open-source programming language meant that it 

may have had greater accessibility and would allow individuals to see the step-wise 

development of the model, it was not without its challenges. Leaning a new 

programming language was particularly time-consuming and may have led to more 

mistakes in the code, given lack of user proficiency. This experience of using R to 

develop model code appeared to be similar to that of other researchers who looked to 

compare the use of R and Microsoft Excel when creating models. In the publication by 

Xin et al. (2021), a group of authors sought to replicate a published Microsoft Excel 

model in R. The authors reflected that learning the programming language of R was 

challenging and that the process of modelling in this new environment represented a 

time trade-off between the familiarity of working in Microsoft Excel and the learning 

curve required to program the model in R. Finally, these authors also remarked that the 

R code they used to develop the model had scope to be made more “elegant or 

efficient” but cited their inexperience and lack of time as a barrier in doing this. Similarly, 

Hart et al. remarked that developing an R model presented coding challenges that were 

not present when developing the Microsoft Excel model, and as such the development 

of the model in R took “significantly longer” to build (Hart et al., 2020).  

The development of a replicable model was also found to be a lengthy process. It may 

not be practicable for researchers to prioritise replicable practices, given the often strict 

time constraints of funded research projects. Whilst some of this time would be reduced 

once researchers were more familiar with open coding practices and using new 

programming languages, there would still be time spent making the code transparent, 

well coded and accessible. This risk was also identified by Sampson et al. when they 
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considered the benefits and risks of incorporating transparency into decision models 

(Sampson et al., 2019) , and also by Harris et al. who conducted a survey of public 

health analysts and found that 41.7% of those surveyed cited a lack of time as a barrier 

to reproducible practices (Harris et al., 2018). Given the increased time required, there 

is a financial cost associated with replication. Although this cost might be offset by the 

reduced researcher effort amongst those that then go on to use the open-source code 

or model. To ensure researchers have the time to dedicate to reproducible research 

methods, researchers must be given either explicit incentives to make their model code 

replicable, or alternatively have time built into the project in order to concentrate on the 

write up of model code and the automation of reports. One solution might be for 

universities to include replication efforts as a factor considered in promotion. 

Alternatively, funding bodies could incorporate funded time for researchers to finalise 

their code and ensure that it is transparent and readable to external users, however, 

this would require explicit commitment from the funders of research. This would be an 

important commitment beyond the current transparency requirements of some funders 

to publish in open-access journals. The potential of research funding was highlighted as 

an area of possible intervention in a scoping report looking at how to increase 

reproducibility of scientific results in the European Union, describing it as a “great 

potential … lever to increase reproducibility” (Lusoli, 2020), alongside other potential 

interventions such as the development of guidelines and increased researcher training. 

Another paper suggested this too, advising that grants could include and fund “data 

curation time, expertise in developing reproducible and transparent research workflows 

and infrastructure for data curation” (Stewart et al., 2021).  

When considering the implementation of the facilitators to replication identified in 

Chapter 3 and by Schwander et al. (2021), the majority related to clear and specific 

aspects of reporting. Several checklists exist to improve reporting thoroughness, and 

many journals, although not all, require these (particularly CHEERS) to be submitted as 

part of the submission process. However, authors of publications often state that an 

item is reported when in actuality it is not (as shown in the replication case studies 

conducted in Chapter 3 and by the case studies conducted by Schwander et al. (2021)). 

This might be due to several reasons, one of which could be author fatigue, as by the 

time a manuscript has been prepared and is ready to be submitted, the checklist is 

often just a part of the submission process, at which point they are focused on 

achieving the submission and may rush its completion. Alternatively, it may be that 

authors are so familiar with their work that they are not able to see what they have and 

have not included due to their high level of involvement. A suggestion to rectify this, 
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may be to require peer reviewers to complete a reporting checklist as part of their 

appraisal. Not only will the peer reviewers be adequately removed from the publication 

in that they are able to see what is and what is not reported, but they will also have less 

of a vested interest in saying that an aspect is reported. The journal could then include 

this feedback in the reviewer comments and ensure that any items that were 

inadequately reported were then incorporated in the manuscript revisions. A caveat of 

this approach is that peer reviewers are unpaid and may fill in the requested checklists 

to different degrees of meticulousness. Furthermore, adding another aspect to the often 

lengthy review process may make peer reviewers less likely to accept the review 

invitation. The completion of checklists could also be modernised, by using online tools 

where individuals click through the different criteria, with a link to the online tool being 

included in the peer review interface. An online tool would then allow the responses to 

be automatically included in any revision requests to the author. An example of this is 

the recently developed “Criteria for Health Economic Quality Evaluation” (CHEQUE) 

tool, which is an online tool which can be used to appraise reporting quality (Kim et al., 

2023). However to my knowledge this tool has yet to be embedded into any journal 

peer review process. 

Similarly, whilst model code is made available, it may not actually run. Whilst some 

journals now have data editors who have the role of checking that the data deposited 

can be opened and that associated code runs, this is not commonplace. Alternatively 

there are several initiatives which verify code can be run, for example, Code Check 

(CODECHECK, 2023), where individuals submit their code and receive a certificate if 

the code can be independently run. 

 

4.5 Strengths and limitations 

To my knowledge, this is the first study to consider from the modeller’s perspective the 

implications of replicable research practices and the practicalities of implementation. In 

developing the model alongside a funded research project, this study is likely to capture 

the practicalities that may have been missed if attempting only to develop a model 

purely with the goal of increased transparency and replicability. With that being said, 

there are also some limitations. The first being that these were only the experiences of 

the author. As such, if another researcher within a different research team or project 

attempted a similar task, it may be that they would have had an entirely different 

experience, finding it either to be more feasible or potentially encountering other 

barriers that have not been observed in this study. As well, the lack of familiarity with R 
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and the barriers encountered, may be self-correcting amongst future health economists, 

as more universities may start to incorporate R into their curriculum and training 

courses emerge relating to using R in HTA (R for Health Technology Assessment, 

2023). Alternatively, other software and programming languages may become more 

fashionable, leading to similar problems being encountered in the future. 

 

4.6 Conclusion 

Whilst this work has shown that it is possible for researchers to develop a decision 

model with replicable research practices in mind, it has highlighted that this is not 

without a substantial investment in researcher time and effort. In order for these 

research practices to become widespread, more motivators are needed. These may 

include the funding of researcher time explicitly in the grant to write up model code in a 

transparent way or in the form of additional researcher training to facilitate the 

development of models in open-source programming languages. 
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Chapter 5 Discussion 

 

5.1 Introduction 

This thesis aimed to examine the role and value of replication in health economic 

decision models. The concept of replication has been discussed widely in other 

scientific disciplines, such as biomedicine (Iqbal et al., 2016), computational science 

(Peng, 2011; Rougier et al., 2017), psychology (Makel et al., 2012) and 

epidemiology (Peng et al., 2006). However, how replication might apply and its 

value to decision modelling has been less well explored. This is of importance for 

several reasons. Decision models are used to inform health policy and the funding 

decisions surrounding treatments and interventions, yet they are also often seen as 

‘black boxes’ that lack transparency. Decision models may also be vulnerable to 

manipulation for perceived personal or commercial gain (Z. M. Khan & Miller, 1999). 

Possible manipulation paired with the potential for perverse incentives to have 

models show a certain result, may mean they are reported with a lack of 

transparency. This lack of transparency may be particularly problematic regarding 

the motivation for sourcing model parameters, which may be influential to the model 

results obtained. 

In addressing this overarching topic, this thesis sought to answer the following 

research questions: 

 RQ1. Why is replication needed? 

 RQ2. How do other scientific disciplines approach replication? 

 RQ3. What is the role of replication in decision models within health 

economics research? 

 RQ4. How could a successful replication be defined? 

 RQ5. What are the barriers and facilitators to replicating decision models? 

 RQ6. What are the implications of a model being replicable (or not)? 

 RQ7. What are the implications and challenges for modellers trying to 

incorporate replicability? 

 RQ8. Does the ability to replicate lead to greater transparency? 

 

The thesis includes three original studies, all of which incorporate a discussion and 

a strengths and limitations section. This final chapter will summarise the key 

findings of each of the chapters of this thesis, as well as present the overarching 
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discussion points, implications for future health economic analyses and the overall 

strengths and limitations of the thesis work. Finally, the chapter will suggest 

potential areas for further research. 

 

5.2 Summary of thesis 

5.2.1 Chapter 1 Summary 

 RQ1. Why is replication needed? 

Chapter 1 introduced the general concept of health economics, with a particular 

focus on decision modelling. It discussed the different types of decision models 

commonly used, along with the scenarios in which certain types of models may be 

best implemented. It also presented the concepts of research transparency and 

replicability and described the current initiatives ongoing within the discipline of 

health economics to facilitate transparent and replicable research. These include, 

but are not limited to, the call for modelling registries, the use of health economics 

analysis plans and exercises in comparative modelling, whereby modelling studies 

use the same input parameters to highlight differences in results obtained. 

 

5.2.2 Chapter 2 Summary 

 RQ2. How do other scientific disciplines approach replication? 

 RQ3. What is the role of replication in decision models within health 

economics research? 

 RQ4. How could a successful replication be defined? 

Chapter 2 reviewed the existing literature to determine how replication and the 

concept of ‘replication success’ had been defined across scientific disciplines. This 

was the first published review of its kind in any discipline (McManus, Turner, & 

Sach, 2019). Whilst there was considerable literature discussing the concept of 

research replication, there was little that explicitly proposed how to define a 

successful replication and what this entailed. This may suggest a reluctance 

amongst researchers to label replications as a success or failure. This could be due 

to the potential reputational damage or alienation of colleagues if a replication is 

found to not reproduce the same results, or fear from the replicator since their skills 

may also come into question if different results were found. Replications may also 

not yet be reported for replications sake (and hence not require a definition of 
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success) and instead be used as a way to develop other models. This review also 

highlighted a paucity of literature on replication within the field of health economics, 

although there was discussion around other transparency initiatives, such as 

modelling registries.  

Using the definitions identified within other scientific disciplines, this chapter 

concluded by proposing six definitions of what might constitute a successful 

replication of a decision model. These ranged in specificity, from broad definitions to 

the narrowest requiring an exact replication of model results. Whilst several 

definitions were proposed, it was not possible to identify a single definition, given 

that the definition of a successful replication may depend on the motivation for the 

replication and importantly, the need for greater engagement from the wider health 

economics community. 

 

5.2.3 Chapter 3 Summary 

 RQ5. What are the barriers and facilitators to replicating decision models? 

 RQ6. What are the implications of a model being replicable (or not)? 

Chapter 3 described five case studies that sought to replicate published decision 

models. In doing so, it aimed to understand the current replicability of published 

decision models and to identify the common barriers and facilitators of replication. 

This chapter also evaluated the definitions of replication success proposed in 

Chapter 2 and sought to update these based on the replication findings. The 

replication studies identified several common barriers and facilitators to model 

replication. Common barriers to replication included: the presentation of conflicting 

information; that not all parameters were adequately described; that longer time 

horizons amplified any discrepancies between the replicated model and the original; 

authors not being contactable regarding their original work and that too much time 

had elapsed since the original publication. Facilitators included: the provision of 

clear model diagrams detailing all possible transitions and providing example cost 

calculations. The replication case studies also demonstrated that reporting 

checklists such as CHEERS (Husereau et al., 2022; Husereau et al., 2013) or 

Philips (Philips et al., 2004) may not be able to pick up on reporting nuances, given 

that the majority of the five case studies appeared to be well reported but were still 

missing key details needed for model replication. Therefore, checklists may not be 

sufficient to ascertain if a model is replicable or be an adequate tool for ensuring 
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research transparency or the thoroughness of reporting required for model 

replication. 

When implementing the proposed ‘replication success’ definitions, all five case 

studies satisfied the broadest of definitions, but none satisfied the narrowest which 

required an exact replication. It became evident that the model results influenced 

whether a definition could be used. One of the proposed definitions was found to be 

not applicable to four out of five of the case studies as it related to ICER variation 

and the model results found the intervention to either be dominant or be dominated 

by usual care. The most workable definition of those proposed in Chapter 2 was 

then adapted in Chapter 3 as follows: 

“Results for the costs and outcomes vary by only XX% compared to the original for 

the majority of the treatment pathways replicated, AND are consistent with the 

original conclusions.” 

Here the percentage of variation (XX) is still to be determined, depending on wider 

community input. 

 

5.2.4 Chapter 4 Summary 

 RQ7. What are the implications and challenges for modellers trying to 

incorporate replicability? 

In Chapter 4 a decision model was developed with a focus on trying to develop it in 

a manner that supported it being replicable. This contrasts with the previous thesis 

chapters, which evaluated the replicability of existing research models. This gave a 

different perspective, evaluating whether current replication initiatives along with the 

suggested facilitators and solutions to barriers identified in Chapter 3 were 

achievable from the perspective of the researcher developing the model. 

The model construction was undertaken within a funded research project to mirror 

the experience of researchers more generally. In doing so, this chapter identified 

several issues, particularly relating to the use of open-source modelling software or 

programming language and the steep learning curve associated with this, along with 

the time required in making model code available and ensuring that it was readable 

to other users. Due to the significant time investment, this work identified that buy-in 

from research funders is required to fund researcher time to devote to such 

transparency initiatives. Without explicit funding and given the conflicting demands 
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on researcher time to begin other projects, it is unlikely that researchers would 

engage in these additional steps to achieve transparency and replicability, which 

has been seen to date. Notably, the development of the model within this chapter 

highlighted the lack of incentives or motivators for researchers to engage in 

research transparency. For instance, there was no explicit push for developing the 

model using open-source software from the wider research team. There was also 

no mandated submission of a completed reporting checklist from several of the 

high-impact journals to which the research was submitted. Finally, it was found to be 

feasible to overcome the barriers and implement the facilitators identified in Chapter 

3, however some were no longer relevant given that the model code was made 

publicly available. 

 

5.3 Reflecting across the thesis 

The work presented in this thesis represents an integrated body of work exploring 

the role and value of replication in decision models, with each chapter building upon 

the findings of the previous. Considering the combined results of these chapters, 

there are several common themes that have emerged. The first is that reporting 

checklists may be inadequate to discern if a model is sufficiently reported to allow 

replication. Secondly, the importance and need for a more developed research 

infrastructure to drive forward the replication initiative, as current research culture 

does not encourage or incentivise transparency and replicability. Finally, that 

replication is not a stand-alone concept, but one that must be employed alongside 

other transparency initiatives. Using these findings, it is possible to consider the 

overarching value of replication and what replication case studies are able to 

contribute to the transparency of health economic decision models. These themes 

are discussed in further detail below. 

Reporting checklists are one of the more widespread approaches to increase the 

transparency of research, with checklists such as CHEERS (Husereau et al., 2022) 

being commonly recommended for the reporting of health economic research. 

Indeed, the CHEERS checklist was updated in 2022 and now includes a prompt to 

report if the model “is publicly available and where it can be accessed” in a further 

nod to the importance of transparency, although notably this is within a modelling 

item, rather than a standalone requirement. Whilst such checklists have a role in 

ensuring that key aspects of research methodology are reported, this thesis has 

shown that they are inadequate in assessing whether models are sufficiently 
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reported to facilitate model replication and therefore are unable to fully assess if 

research transparency is achieved. This is because they do not specify the level of 

detail required and are unable to detect for example, if all parameters are sufficiently 

reported (as encountered in Chapter 3), which may only be discovered when a 

replication is attempted. These checklists are also not routinely mandated by every 

journal, as identified during the journal submission process of the model developed 

in Chapter 4. Whilst the importance of reporting transparency is accepted by the 

majority of researchers, there appears to be less consensus surrounding the role 

and value of replication, as shown by the relative lack of literature on the topic within 

health economics (Chapter 2) which may be why the role of checklists in facilitating 

replication has been less well explored.  

Another key finding of this thesis is that in order to move towards replicable health 

economic research, more motivations or incentives for researchers are required. 

Currently, replicability appears to be a focus of a few select researchers with a 

passion for the topic, but it is not a widespread expectation or something that is 

routinely engaged with by the broader community with any sincerity or importance. 

This may be due to the high cost associated with conducting replications, for 

example in terms of researcher time, although the benefit of greater research 

transparency and the learning points from such studies may be worth such costs. In 

order to make this a more mainstream endeavour, changes in the current research 

culture and infrastructure are required. Presently, the focus of researcher time is on 

generating original outputs such as publications and impact. Due to this focus on 

metrics, there is potentially less time for researchers to focus on how the research is 

achieved and on research integrity. This is seen in the research promotions criteria, 

which focuses on the above metrics, rather than specifically on good research 

practice (McKiernan et al., 2019). In example, one study conducted a survey 

amongst researchers to identify factors they perceived to affect their research 

integrity (Vitae, 2020). This review found that journal impact factors, institutional 

workload models and how researchers are assessed for promotion were all 

perceived to have a strongly negative impact on their research integrity. Elsewhere, 

it has been suggested that incentives for research transparency should also be 

incorporated within the job-hiring phase (Gernsbacher, 2018), with candidates being 

asked to demonstrate how they have engaged in transparency initiatives within their 

research and being assessed against such criteria, which may be akin to the recent 

focus on demonstrating research impact. 
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Not only did the work within this thesis suggest a need for a change in the overall 

research infrastructure and culture, but it also demonstrated the role of research 

funders and to lesser extent journals in facilitating replicable research. Such 

changes could come in the form of explicit funding for researchers to write up their 

analysis using open-source software, or time to improve the readability of their code 

before uploading to coding repositories. This would need to be explicit in the funding 

rather than incorporated in the general time allocated to develop the model, given 

the learning curve associated with developing such materials and the conflicting 

pulls on researcher time, which would mean it could easily be lost to other aspects 

of the research. This is especially true towards the end of research projects (which 

may be when researchers focus most on transparency and replication efforts) as 

focus may start to drift towards upcoming projects. Alternatively, research funders 

could mandate that all code be uploaded in an open-source framework, which would 

ensure that researchers engage in more replicable research practices. This may be 

especially relevant for research funders that use public money (such as the NIHR), 

to ensure that the methods as well as the results of the research can be used by 

others, hence helping to ensure the best value for money. Whilst the open sharing 

of code and results is currently mandated by some journals in wider economic 

disciplines, such as the American Economic Review (American Economic 

Association, 2020), there is yet to be such a policy amongst any of the main journals 

publishing health economic decision models. Furthermore, researchers have a 

choice not to submit to these more stringent journals, which may reduce the impact 

of these initiatives, as they could opt to submit to a journal without such policies. 

Outside of health economics, whilst some journals require the uploading of data and 

analysis code, there is variation in the quality and readability of such code, with one 

study finding that the uploaded data and code did not even run (Trisovic et al., 

2022) and another study finding that authors refused to provide code despite it 

being mandated (Wood et al., 2018). Journals also have a role in allowing for the 

publication of supplementary materials, which were shown in Chapter 3 to help 

facilitate replications. Moreover, they may also be able to influence how replication 

is received, by publishing replication studies, which would increase awareness of 

the concept amongst their readership and also show researchers that their 

replication efforts can lead to valued research output. 

This thesis sought to assess the role and value of replication within health economic 

decision models. The combined findings from the empirical work suggest that 

replication is of value and needed when assessing the current standard of reporting 
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transparency for decision models, with replication highlighting areas that may need 

to be reported more consistently and thus helping to inform reporting guidelines and 

practices. Currently research transparency is most often assessed by reporting 

checklists, however this work has shown that such checklists fail to identify if a 

decision model is reported thoroughly enough to facilitate replication and therefore 

currently published works may be lacking in areas of transparency. The value of 

replication is both in highlighting general trends for the improvement of research 

reporting, and at a more individual level, potentially highlighting coding errors within 

the model. Replication may also be an informative endeavour to the replicator, 

allowing them to learn from the methods used by the original author and help to give 

an understanding of how aspects of the model need to be reported in order to 

facilitate replication, which may help to improve their own work. As well, conducting 

replications can help to speed up the research process, allowing the replicator to 

build on what others have developed, rather than developing a completely new 

model for each research question. 

Whilst it has been shown that conducting replications may be a useful endeavour to 

the individual researcher and can suggest the general state of transparency, it is 

unclear how individual replication studies are used by other researchers (outside of 

the replicator and the original author). This may be due to the lack of replications 

currently conducted within health economics or being published under such a label, 

as it is still a new and emerging field. It is likely that some replications are carried 

out when researchers are in the process of developing a new model, but that they 

might not be published or branded as such, making them difficult to identify in the 

literature. However, a study within psychology looked at how replications were used 

alongside original studies and found that less than 3% of articles citing the original 

studies also then cited the replication attempt (von Hippel, 2022), regardless of 

whether the replication study was a success or failure. This might suggest that 

individual replication studies lack value as individual pieces of work and that further 

work may be needed in broadcasting the results of replications, encouraging their 

use and potentially the need to link the replication and the original work so that the 

replication is identified alongside the original study when readers access it. One way 

around this, may be to include a replication attempt or analysis check within the 

original paper’s supplementary material and have the replicator be included as an 

author in turn allowing them to get recognition for their work. This would make sure 

that the replication is highlighted alongside the original paper and also allow for the 

replication to identify any errors or areas where the reporting thoroughness is 
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lacking, before the paper was published. However, this would require a replicator to 

be invited to replicate by the original authors (perhaps from the same institution), 

and would also rely on the original authors waiting for the replication to be 

conducted before publishing their work, which they may be reluctant to do. This 

method would also lack external validity, given that the replicator is likely to have 

links to the original authors and therefore may face pressure to report a successful 

replication.  

It is also important to emphasise that replication is not a standalone or fix-all 

concept, but is something that needs to operate within a wider agenda of other 

research integrity and quality initiatives. Whilst a model may be perfectly replicable 

based on the information presented, it may be lacking in other areas of 

transparency, for example the description of why one source for a parameter was 

used over another, this would enhance the overall transparency but not directly 

impact on the replicability of the model. This is also the case with validation. Whilst 

replicating a model will show that the model is internally valid, it cannot inform other 

aspects of model validity, such as whether the model is clinically valid or speak to 

the external validity of the results. The converse is also true, whilst a model may not 

be replicable, it does not mean that it is not clinically valid or a good representation 

of the decision problem, merely that the methods have not been sufficiently 

reported. In this way, the three concepts may be viewed as an overlapping Venn 

diagram sitting within the wider concept of research quality, with some of each 

element covering the other, but neither concept fully encompassing another (as 

shown in Figure 5.1).  
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Figure 5.1 Example overlap of the concepts of Transparency, Replication and 

Validation in health economic modelling. 

 

 

5.4 Strengths and limitations 

A strength of this thesis is that it is one of the first to explore the concept of 

replication as a distinct topic in the field of health economics. It helps to address a 

considerable research gap. This thesis implemented an iterative research approach, 

where chapters built on the work of the previous and revised any recommendations 

made. 

Another key strength of this thesis is that it evaluated the concept of replication from 

the perspective of those using research and those developing it. This ensured that 

any of the recommendations made in earlier chapters could be feasibly 

implemented. 

There are also some limitations of the thesis. Whilst this thesis pertains to the 

replicability of decision models in general, it has inadvertently focused primarily on 
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state-transition models, with the majority of case studies in Chapter 3 being Markov 

models, and the model developed in Chapter 4 also being a Markov model. Thus, 

this thesis may not have captured findings from bespoke elements relating to more 

complex models, such as discrete event simulation or individual patient level 

simulations. Although, it could be argued that if issues with replicability were found 

within more simple models, they are also likely to be relevant to more complex 

models.  

Furthermore, this research has focused on modelling studies published within 

academic journals, but it has not explored the role of replication for decision models 

developed as part of the NICE HTA process. In this, models are submitted in 

executable form to NICE as part of a technology appraisal, which are then 

interrogated by an evidence review group or an independent Technology 

Assessment Review (TAR), who then provide a review of the evidence. As part of 

this review, the “reliability” of the model is tested, which may involve conducting 

other exploratory analyses using the model, although aspects of the model may be 

redacted depending on commercial sensitivities (National Institute for Health and 

Care Excellence, 2018). Transparency and the value of replication may be 

warranted even more so in models that are developed using public funds and that 

will ultimately inform how health budgets are spent, where one might reasonably 

expect that they should be open to scrutiny.  

This thesis has also focused on replication in its purest form; that is to directly 

replicate reported results (which is known as ‘narrow’ replication). However 

replication can also be considered in terms of a ‘broad’ replication which looks to 

test the robustness of results and use other data sources or assumptions to test 

whether the empirical findings can be repeated and are generalisable (Bettis et al., 

2016; Pesaran, 2003). This focus may be considered a limitation, as there may be 

additional value in broad replications that are not captured within this thesis. An 

example of the broader concept of replication being considered has been described 

earlier in the thesis with the Mount Hood input checklist, where the impact of using a 

set of input parameters across 11 decision models was evaluated to see the 

variability in results and whether they would give similar conclusions regarding the 

cost-effectiveness of three interventions (Altunkaya et al., 2023). The thesis has 

also not explored the extent to which replication already takes place under the guise 

of model development (by building on existing models), nor have the chapters 

above explored the value of replication with this solely in mind. The use of 

replication in this way would be harder to identify in the literature, but doing so 
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would provide important additional insight into the role of replication which is not 

currently captured here. 

Moreover, this thesis has focused solely on the value of replication within decision 

modelling, and makes no assessment on how replication relates to the wider 

discipline of health economics such as studies relating to economic evaluation 

within clinical trials or elicitation exercises. This was beyond the scope of the thesis.  

 

5.5 Implications for policy and research 

The findings of this thesis have several important implications for research. There is 

a need for greater involvement and engagement by research funders if they 

consider it important to encourage replicable research. This could be in the form of 

mandating replicable health economic research practices, for example ensuring that 

researchers who receive funding to develop decision models openly share the 

models. Although careful consideration would be needed about the implications of 

this regarding intellectual property, to ensure that the original researchers retain the 

credit for their work, as highlighted by Padula et al. (2017) and Sampson et al. 

(2019). Another important implication is that time should be built into research grant 

expenses to allow researchers to further develop their code so it is readable and 

executable by others. 

An important implication of this research for health service funders and for policy 

makers, is that current models that are used to inform health policy and the funding 

of medications may not be replicable. Whilst this may be for innocuous reasons, 

such as insufficient reporting of a model or replicator inability, it could also be due to 

coding errors within the published model, which would mean that funding decisions 

are being made based on inaccurate results. As per the findings in Chapter 3, the 

replicated costs had greater variation than the health outcomes.  

Some of the findings of this thesis have already contributed to academic debate 

regarding the value of replication, with the definitions proposed in Chapter 2 being 

used and adapted by other health economists (Schwander et al. (2021)), as well as 

being cited by other papers exploring transparency initiatives (Hamilton et al., 2023; 

Imam, 2022; Otten et al., 2023; Schwander et al., 2022; Zawadzki & Hay, 2020).  
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5.6 Future research 

A major finding of this thesis is the need for researchers to be motivated to engage 

in transparency initiatives that may facilitate replication. The logical next steps would 

be to engage with research funders to argue for time for transparent practices to be 

built into grant proposals and for sufficient funding to be allocated to support health 

economic researchers with such endeavours. This would help to move beyond the 

current transparency initiatives such as journal open-access, which whilst important, 

have been shown in this thesis and in other studies, to fall short of ensuring 

complete transparency and replicability (McCullough et al., 2006; Wood et al., 

2018). Another way of increasing researcher awareness of the importance of 

replication, would be for replication studies to become more commonplace. 

Initiatives to help with this could be akin to the Replication Games, which are hosted 

by the Institute for Replication (Institute for Replication, 2023). These games bring 

together teams of researchers and tasks them with replicating studies within 

economics. However, most of the studies chosen for replication come from journals 

where it is required to upload data and analysis code. Therefore there is a greater 

focus on the broader replicability of the research rather than direct ‘narrow’ 

replications. A similar initiative could be started to increase awareness of the 

importance of replication within health economics research. 

Research is also needed to obtain a consensus from health economists on what 

threshold should be used when defining a successful replication. Currently the 

proposed definition fails to specify the percentage by which costs and outcomes can 

vary. In order to make this decision workable, and to conduct further replication 

studies using it, a decision on the variability is required. A Delphi consensus method 

could be used to reach a consensus. Similar methods have been used to determine 

the contents of HEAPs (Thorn et al., 2021).  

This thesis has also suggested that there may be a need for health economist 

training in the use of open software or programming languages such as R, given the 

current reliance on Microsoft Excel. This could be incorporated in university 

modules for health economists in training. Alternatively, work is currently ongoing by 

researchers at the University of Bristol on the automated conversion of models 

developed in Microsoft Excel to R (Thom, 2023) which in the first instance involved 

writing popular Microsoft Excel commands into R. This may allow modellers to 

continue to develop models in Microsoft Excel and then convert them to an R script 

using the software, which could then be openly interrogated.  
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Research funders’ willingness to pay for reproducibility must also be determined, 

given the likely increased costs of such an initiative. As part of this, it is important 

that research funders understand that more replicable research practices would 

likely lead to less research waste, if researchers build upon existing models rather 

than recreating a model within a specific condition. This could potentially also allow 

more time to be spent on validation exercises that would strengthen existing 

models. More replicable and transparent research could lead to better decisions on 

drug and technology funding by national bodies such as NICE, leading to more 

efficient utilisation of health care technologies by health systems. 

The work conducted in this thesis could also be extended to other types of decision 

models. It could be used in other context settings such as the process of HTA, or 

extended to other areas of health economics such as in economic evaluations 

alongside trials.  

The CHEERS checklist was updated in 2022 to include a reference to open-source 

modelling and to state whether model code was made available. A future research 

study could look to investigate whether the updated CHEERS checklist has 

impacted the availability of model code or if this aspect of the checklist is currently 

being overlooked, after allowing a sufficient amount of time for these new 

recommendations to establish.  

There is also scope to consider the role of artificial intelligence or machine learning, 

given that this is now an emerging field in research, and may have applications to 

health economics and outcomes research (Padula et al., 2022). Artificial intelligence 

uses algorithms according to the following broad categories: natural language 

processing, data mining, and machine learning. The natural language processing 

component could be used in an initial screening process of manuscripts by journals 

in order to populate reporting checklists, or depending on the sophistication, 

developed in a way to ensure that model parameters are reported adequately. 

Whilst artificial intelligence may be a new avenue of research within health 

economics, how these practices are implemented will require careful reporting in 

order to prevent another aspect of reduced transparency and replication barriers.  

 

5.7 Conclusion 

This thesis has demonstrated the lack of current research exploring the replication 

of decision models within health economics. It has also shown the value of 
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conducting replications, as both a tool to enhance the transparency of research, as 

a springboard for further model development and as a way to identify computation 

errors. For decision model transparency and replication initiatives to progress there 

is a requirement to move beyond the individual researcher motivated to develop 

replicable research and instead to build it into research infrastructure so that it is 

mandated. This would most likely need to come from the research funder and 

perhaps employing institutions, so as to introduce incentives for researchers to 

engage in such practices. Journals similarly have a role, but this would more likely 

be in raising the profile of replication studies, by publishing them and showing 

researchers that there is value in them being conducted. 
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Chapter 3 Appendix 

 
Table A3.1: Responses to the Philips checklist criteria for each of the models replicated. 

 Case Study 

Checklist Item 1 2 3 4 5 

Is there a clear statement of the decision problem? y y y y y 

Is the objective of the evaluation and model 

specified and consistent with the stated decision 

problem? 

y y y y y 

Is the primary decision maker specified? y y y y y 

Is the perspective of the model stated clearly? y y y y y 

Are the model inputs consistent with the stated 

perspective?  
y y y y y 

*Has the scope of the model been stated and 

justified? 
y y y y y 

Are the outcomes of the model consistent with the 

perspective, scope and overall objective of the 

model? 

y y y y y 

*Has the evidence regarding the model 

structure been described? 
y n y y n 

Is the structure of the model consistent with a 

coherent theory of the health condition under 

evaluation?  

y y y y y 

Have any competing theories regarding model 

structure been considered?  
y n n n n 

*Are the sources of data used to develop the 

structure of the model specified? 
y n y n n 

Are the causal relationships described by the model 

structure justified appropriately? 
y y y y y 
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Table A3.1: Responses to the Philips checklist criteria for each of the models replicated. 

(Continued) 

 Case Study 

Checklist Item 1 2 3 4 5 

*Are the structural assumptions transparent 

and justified? 
y y y y y 

Are the structural assumptions reasonable given 

the overall objective, perspective and scope of the 

model? 

y y y y y 

*Is there a clear definition of the options under 

evaluation? 
y y y y y 

Have all feasible and practical options been 

evaluated? 
y y y y y 

Is there justification for the exclusion of feasible 

options? 
y n/a n/a n/a n/a 

Is the chosen model type appropriate given the 

decision problem and specified causal 

relationships within the model?  

y n y y y 

Is the time horizon of the model sufficient to 

reflect all important differences between options? 
y n y y y 

*Is the time horizon of the model, and the 

duration of treatment and treatment effect 

described and justified? 

y y y y y 

Has a lifetime horizon been used? If not, has a 

shorter time horizon been justified? 
n n n y y 

Do the disease states (state transition model) or 

the pathways (decision tree model) reflect the 

underlying biological process of the disease in 

question and the impact of interventions? 

y y y y y 

*Is the cycle length defined and justified in 

terms of the natural history of disease? 
p n/a y p p 

Are the data identification methods transparent 

and appropriate given the objectives of the 

model?  

y y y y y 
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Table A3.1: Responses to the Philips checklist criteria for each of the models replicated. 

(Continued) 

 Case Study 

Checklist Item 1 2 3 4 5 

Where choices have been made between data 

sources, are these justified appropriately? 
y n/a y n/a n/a 

Has particular attention been paid to identifying 

data for the important parameters in the model? 
y y y y y 

Has the process of selecting key parameters been 

justified and systematic methods used to identify 

the most appropriate data? 

y y y y y 

Has the quality of the data been assessed 

appropriately? 
y y y y n 

Where expert opinion has been used, are the 

methods described and justified? 
p p y y n/a 

Are the pre-model data analysis methodology 

based on justifiable statistical and epidemiological 

techniques? 

y y y y y 

*Is the choice of baseline data described and 

justified? 
y y y y y 

*Are transition probabilities calculated 

appropriately? 
y y y y y 

Has a half cycle correction been applied to both 

cost and outcome? 
n n/a n n n 

If relative treatment effects have been derived from 

trial data, have they been synthesised using 

appropriate techniques? 

y y y y y 

*Have the methods and assumptions used to 

extrapolate short-term results to final outcomes 

been documented and justified? Have 

alternative assumptions been explored through 

sensitivity analysis? 

y y y y y 

*Have assumptions regarding the continuing 

effect of treatment once treatment is complete 

been documented and justified? Have  

y y n y y 
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Table A3.1: Responses to the Philips checklist criteria for each of the models replicated. 

(Continued) 

 Case Study 

Checklist Item 1 2 3 4 5 

alternative assumptions been explored 

through sensitivity analysis? 
     

Are the utilities incorporated into the model 

appropriate? 
y n/a y n/a y 

*Is the source for the utility weights 

referenced? 
y n/a y n/a y 

Are the methods of derivation for the utility 

weights justified? 
y n/a y n/a y 

*Have all data incorporated into the model 

been described and referenced in sufficient 

detail? 

y y y y y 

Has the use of mutually inconsistent data been 

justified (i.e. are assumptions and choices 

appropriate)? 

n/a n/a n/a n/a n/a 

*Is the process of data incorporation 

transparent? 
y y y y y 

*If data have been incorporated as 

distributions, has the choice of distribution for 

each parameter been described and justified? 

n/a n/a n/a n/a p 

Have the four principal types of uncertainty been 

addressed? 
p p p p p 

If not, has the omission of particular forms of 

uncertainty been justified? 
n n n n n 

Have methodological uncertainties been 

addressed by running alternative versions of the 

model with different methodological assumptions? 

n n n y n 

Is there evidence that structural uncertainties 

have been addressed via sensitivity analysis? 
n y n n y 
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Table A3.1: Responses to the Philips checklist criteria for each of the models replicated. 

(Continued) 

 Case Study 

Checklist Item 1 2 3 4 5 

Has heterogeneity been dealt with by running the 

model separately for different sub-groups? 
y n n n n 

Are the methods of assessment of parameter 

uncertainty appropriate? 
y y y y y 

Has probabilistic sensitivity analysis been done, if 

not has this been justified? 
y n n n y 

*If data are incorporated as point estimates, 

are the ranges used for sensitivity analysis 

stated and justified? 

y y p y p 

Is there evidence that the mathematical logic of 

the model has been tested thoroughly before 

use? 

n n n n n 

Are the conclusions valid given the data 

presented? 
y y y y y 

Are any counterintuitive results from the model 

explained and justified? 
n/a n/a n/a n/a n/a 

If the model has been calibrated against 

independent data, have any differences been 

explained and justified? 

y n/a n/a n/a n/a 

Have the results of the model been compared 

with those of previous models and any 

differences in results explained? 

y n y y y 

TOTALS:      

Yes 83% 69% 76% 79% 74% 

No 11% 27% 20% 17% 18% 

Partial 6% 4% 4% 4% 8% 
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Table A3.1: Responses to the Philips checklist criteria for each of the models replicated. 

(Continued) 

Abbreviations: Y: Yes; N: No; P: Partial; N/A: Not applicable.  

*The asterisked criteria were those that were thought to have the greatest potential to 

influence the replicability of a modelling study, due to the fact that they directly related 

to the reporting of items needed for replication. 
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Chapter 4 Appendix 

 

Sourcing Model Parameters 

Transition Probabilities  

To source transition probabilities the existing peer reviewed literature was searched, 

along with consulting the sources for parameters of existing modelling studies. Below, it 

is described how and why each of the transition probabilities were selected, along with 

other potential sources that could have been used. 

Where applicable, transition probabilities were calculated from rates using the following 

formula:  

𝐴𝑛𝑛𝑢𝑎𝑙 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 − 𝑒
−(

𝑒𝑣𝑒𝑛𝑡𝑠
𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑

)∗1
 

 

Normal glucose tolerance to Non-diabetic Hyperglycaemia 

Two studies were identified that could be used to determine the rate of progression 

from normal glucose tolerance and non-diabetic hyperglycaemia: Meigs et al. (2003) 

and Hadaegh et al. (2017). The study by Hadaegh et al. was more recent and had a 

larger sample size (n=5,879), with a 9-year follow-up, however was based in Iran and 

as such the estimates may not be generalisable to the English population. This paper 

also presented the rates in terms of different age categories: 20-39, 40-59 and 60 years 

and over. The study by Meigs et al. was less recent with a smaller sample size (n=488) 

but had a similar follow-up period of 10 years and had a study population from the 

United States (largely from the Baltimore, Maryland, and Washington D.C. areas), 

reporting rates in terms of individuals above and below 65 years of age. This paper 

found that progression from normal glucose tolerance to non-diabetic hyperglycaemia 

(measured by: 2hPG>=7.8 mmol/l) was 12.1 per 100 person years amongst individuals 

aged 65 and over, which was equivalent to a transition probability of 0.114. Hadaegh et 

al. found a higher event rate of 77.1 events per 1,000 person years (amongst 

individuals that were aged 60 years and over), equivalent to a transition probability of: 

0.0742. 
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The estimates presented by Hadaegh et al. were chosen to be used, due to this study 

being the more recent, having a much larger sample size and the rates being presented 

by more age categories. 

 

Non-diabetic Hyperglycaemia to Normal glucose tolerance  

A systematic review was identified that looked at studies reporting on regression to 

normal glucose tolerance from non-diabetic hyperglycaemia (Balk et al., 2015). This 

review identified six studies, of which four reported rates for 3 years of follow-up. The 

data presented in this systematic review was used to determine the transition 

probability to be used in the model, shown in Table A4.1. 

 

Table A4.1: Study rates of individuals reverting to normal glucose tolerance from non-

diabetic hyperglycaemia within a three year time horizon. Sourced from Balk et al. 

(2015) 

 Usual Care  

Study Events People Person Life Years 

Bhopal et al. (2014) 32 82 246 

Penn et al. (2009) 11 51 153 

Ramachandran et al. (2007) 32 133 399 

Diabetes Prevention 

Program Research Group 

(2002) 

260 1,082 3,246 

Total: 335  4,044 

Rate: 0.0828 per 1 person year 

Transition probability 0.0795 

Distribution Beta(α=335, β=3709) 

 

Non-diabetic Hyperglycaemia to Type 2 diabetes 

Linked data from the National Diabetes Audits for individuals with non-diabetic 

hyperglycaemia and type 2 diabetes was used, along with the NHS DPP provider dataset, 

which included all referrals made to the programme. The National Diabetes Audit covered 

99.3% of practices in England in 2019/20 (NHS Digital, 2021). As this dataset is nationally 

representative, this data was used to derive the transition probabilities from non-diabetic 
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hyperglycaemia to type 2 diabetes, rather than trying to find a published estimate from 

the literature. Three extracts of the National Diabetes Audit were used, covering the 

periods: 1st April 2017 – 31st March 2018, 1st January 2018 – 31st March 2019 and 1st 

January 2019 – 31st March 2020. Individuals that were offered or referred to the 

programme were excluded, to determine the baseline probability of developing type 2 

diabetes from a non-diabetic hyperglycaemic state.  

There were a total of 1,069,790 subjects diagnosed with a Read Code of non-diabetic 

hyperglycaemia in their electronic health care record from 1st January 2016, this 

amounted to 2,071,280 person years from the time of the non-diabetic hyperglycaemia 

diagnosis to the date of type 2 diabetes diagnosis or 31st March 2020 (whichever came 

sooner). A total of 52,330 cases of type 2 diabetes were observed during this period, 

which was equivalent to: 25.27 cases per 1,000 person years. These calculations were 

repeated for the different age groups modelled. 

Here numbers are rounded according to the output rules of the National Diabetes Audit. 

 

Type 2 diabetes to Non-diabetic hyperglycaemia 

Two studies were identified that looked at regression from type 2 diabetes to non-

diabetic hyperglycaemia. The first, a study by Holman et al. (2022) used data from the 

National Diabetes Audit and found that amongst 2,297,700 people with type 2 diabetes, 

the overall incidence of remission per 1,000 person-years was 9.7 (95% CI 9.6–9.8). 

Whilst this study is representative of the English population being modelling, it 

unfortunately did not distinguish between remission state (for example normal glucose 

tolerance or prediabetes).  

Another, US based study did differentiate between types of remission (Karter et al., 

2014). They studied 122,781 adults with type 2 diabetes and found an incidence of 

remission to a “sub-diabetic hyperglycaemia” state of 2.8 (95% CI: 2.6–2.9) per 1,000 

person years. This is equivalent to a transition probability of: 0.00280. As this study 

differentiated between normal glucose tolerance and non-diabetic hyperglycaemia, it is 

this estimate that was used. 

 

Death 

The probability of death was obtained from Office for National Statistics population life 

tables, 2018-2020 (Office for National Statistics, 2021). Here, “qx” was used, which 
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represents the probability that a person aged x will die before reaching age (x +1). The 

estimates for male and females were combined by taking an average of the 

probabilities. These estimates were used for individuals in the normal glucose tolerance 

and the non-diabetic hyperglycaemic states. The Office for National Statistics is the 

best source for this data, as it is routinely collected and representative of the English 

population. 

For individuals in the type 2 diabetes state, an excess mortality risk was applied. To do 

this, the population life table estimates of death were multiplied by a hazard ratio. 

Estimates from the DECODE study were used, which used data from 22 cohorts across 

Europe, amounting to 29,714 subjects to determine the relationship between plasma 

blood glucose levels and mortality (DECODE Study Group European Diabetes 

Epidemiology Group, 2003). This study reported a hazard ratio of 1.6 (95% CI: 1.4–1.8) 

for all-cause mortality amongst individuals with diabetes compared to normal glucose 

tolerance. No other source of excess mortality for type 2 diabetes could be found in the 

literature that had a similar number of subjects and were more relevant to the 

population being considered. 

 

Costs 

In the absence of primary data collected on participants of the NHS DPP, or routinely 

collected data demonstrating primary and secondary healthcare resource use, 

published literature was searched to determine the costs of being in each of the model 

states. These costs include: the annual cost of having type 2 diabetes, the annual cost 

of having non-diabetic hyperglycaemia and the annual cost of having normal glucose 

tolerance. 

There have been several literature reviews of decision-analytic models in the prevention 

of type 2 diabetes (Alouki et al., 2016; Leal et al., 2019; Li et al., 2010; Roberts et al., 

2017; Zhou et al., 2020). These reviews identified the following studies with a UK focus: 

A. J. Palmer et al. (2004), Gillies et al. (2008), Anokye et al. (2011)*, Miners et al. 

(2012)*1, Gillett et al. (2015) and Breeze et al. (2017). There have also been three 

modelling studies focusing on the UK setting published since these reviews were 

conducted: Roberts et al. (2018), Leal et al. (2020) and Frempong et al. (2021). The five 

most recently published of these models were consulted to determine where they 

                                                           
1 *Miners and Anokye focused more on obesity related interventions. 
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sourced their costings and what cost components they included. The most recent of 

these studies, Frempong et al. (2021), was consulted first, as these would perceivably 

be using the most up to date sources, assuming that they obtained their cost estimates 

from literature searches. 

A table of the costs used in five of the most recent UK-based models (published from 

2015 to 2021), along with the sources for the costings (where available) is shown below 

(Table A4.2). 

In addition to this, a simple literature search was conducted to see if there were any 

recent publications related to the cost of treating non-diabetic hyperglycaemia or type 2 

diabetes beyond what were used in these published modelling studies. To do this, the 

following search terms were used “cost” “non-diabetic hyperglycaemia/type 2 diabetes” 

and “UK” in the PubMed database. 

 

Literature Search – Cost of Type 2 diabetes 

This search identified no newly published studies on the cost of treating type 2 

diabetes, beyond those use in the studies published by Roberts et al. (2018) and Leal 

et al. (2020). This lack of costing data was confirmed by a systematic review titled “The 

Economic Costs of Type 2 diabetes: A Global Systematic Review” (Seuring et al., 

2015), which only found one UK specific study. This study looked at the cost associated 

with people with type 2 diabetes and their employment, rather than the cost of their 

treatment from the perspective of the NHS. A published report by Kanavos et al. (2012) 

titled “Diabetes expenditure, burden of disease and management in 5 EU countries” 

also identified the lack of data for the UK according to diabetes type, and as a result, 

they estimated the cost of type 2 diabetes using two studies: C Ll Morgan et al. (2010) 

and Currie et al. (2010), estimating an annual cost of £3,717 for type 2 diabetes. The 

way in which these costs were combined is not fully described, beyond stating “a simple 

combination” was used. These two studies are discussed below: 

 C Ll Morgan et al. (2010) used data from an area of Wales for all residents 

(approximately 439,000) in 2004 to estimate the secondary health care costs of 

individuals with type 2 diabetes, it also reported on the healthcare resource use 

of individuals without type 2 diabetes. 

 Currie et al. (2010) conducted a UK specific analysis using data from The Health 

Improvement Network (THIN) to estimate primary care costs for 114,752 

individuals with type 2 diabetes from 1997 to 2007. Importantly, this study also 
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obtained healthcare resource use for a cohort of non-diabetic controls, matched 

by age, sex and their general practice. As such, this study could be used to 

estimate the average healthcare resource use of individuals with normal glucose 

tolerance. The authors reported the resource use units for each aspect of 

primary care, making it possible to cost these using updated costings. 

 

The literature review also identified a poster presentation which costed healthcare 

resource use for individuals with type 2 diabetes prescribed Exenatide or Basal Insulin 

therapy within the UK (C LI Morgan et al., 2016).  

 

Literature Search – Cost of Non-diabetic Hyperglycaemia 

There were no newly published estimates of the cost of non-diabetic hyperglycaemia in 

the UK beyond what have been referenced in the modelling studies below (Table A4.2).  

 

Literature Search – Cost of Normal glucose tolerance  

No published estimates subsequent to those used in the modelling studies were 

identified. 

 

Cost used for Type 2 diabetes 

From the estimates identified from the literature and other modelling studies (Alva et al., 

2015; M. J. Davies et al., 2008; Hex et al., 2012; Kanavos et al., 2012), the estimate 

published by Kanavos et al. (2012) was selected for use in the model, which combined 

data from C Ll Morgan et al. (2010) and Currie et al. (2010). Both of these estimates 

used a large sample size and are relevant to the English setting of the model. As such 

they reflected the best source to use for the annual cost of the type 2 diabetes 

modelling state. 

 

Cost used for Non-diabetic Hyperglycaemia & Normal glucose tolerance 

Of the literature estimates, the study by Nichols et al. (2008) was used for both normal 

glucose tolerance and non-diabetic hyperglycaemia. Whilst this study was not directly 

representative of the English population modelled (being from the United States), they 

did present the mean number of each resource use type used, which enabled UK cost 
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estimates to be applied. In this paper, an assumption is made that individuals with 

impaired fasting glucose, and impaired glucose tolerance have the same healthcare 

resource use as individuals with non-diabetic glycaemia identified with elevated HbA1c. 

The unit costs applied are shown in Table A4.3. 

From these calculations, the annual cost of having normal glucose tolerance is 

estimated to be: £2,005.31, and the annual cost of having non-diabetic hyperglycaemic 

to be: £2,224.76. 
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Table A4.2: Cost and sources used in the five most-recently published, UK-specific, modelling studies evaluating diabetes prevention initiatives. 

 Glycaemic State 

Study  Type 2 diabetes Non-diabetic hyperglycaemia Normal glucose tolerance 

Frempong et 

al. (2021) 

 

(2018 price 

year) 

 

 

Cost 

used 

£1,179 

 

This paper did not assume a 

linear increase overtime. 

£869 

 

£773 

 

Source Same cost sources as Roberts 

2018 (described below) 

Same cost sources as Roberts 2018 

(described below) 

Same cost sources as Roberts 

2018 (described below) 

Notes on 

source 

- - - 

Leal et al. 

(2020) 

 

(2017 price 

year) 

Cost 

used 

£827 to £2,792 

Costs varied by sex and age 

group (up to 50, 51-60, 61-70, 71-

80, 81+) 

 

The above costs excluded 

complications. 

£636 to £2,149 

Costs varied by sex and age group 

(up to 50, 51-60, 61-70, 71-80, 81+) 

 

 

“IGT costs estimated by applying ratio 

of IGT and diabetes costs per 

individual from Khan 2007 (23) for the 

US setting (0.74) and DPP (22) for the 

UK setting (0.77)” 

 

Does not have a normal glucose 

tolerance state. 

Source Alva et al. (2015) 

 

 

(22) T. Khan et al. (2017)  

(23) Herman et al. (2005)  
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Table A4.2: Cost and sources used in the five most-recently published, UK-specific, modelling studies evaluating diabetes prevention initiatives. 

(Continued) 

  Glycaemic State 

Study  Type 2 diabetes Non-diabetic hyperglycaemia Normal glucose tolerance 

   It is unclear whether the references 
here are switched – in the publication 
they do not correspond to the author 
mentioned. As such, it was assumed 
that the UK estimates were sourced 
from Herman et al., rather than the 
(22) cited in the text of the manuscript 
(which corresponds to Khan). 

 

 Notes on 

source 

This study used patient-level data 

from the UKPDS, Hospital 

Episode Statistics to estimate 

secondary care costs and 

resource use questionnaires were 

administered during clinic visits of 

the trial, to estimate primary care 

visits. 

 

It is difficult to disentangle how 

Leal et al. produced the cost 

estimates cited. The paper 

focused on diabetes 

complications. 

 

In the paper they stated that the 
average cost for non-inpatient 

This study described a Markov 

simulation model using data from the 

US DPP and published reports. 

The Herman study estimated base 

case costs of prediabetes as $1,296, 

and sourced these from US DPP data. 
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Table A4.2: Cost and sources used in the five most-recently published, UK-specific, modelling studies evaluating diabetes prevention initiatives. 

(Continued) 

  Glycaemic State 

Study  Type 2 diabetes Non-diabetic hyperglycaemia Normal glucose tolerance 

  resource use was: £676.21 (all), 

£550.75 (no complications).  

(Obtained from Table 5 in the 

supplementary material). 

 

The average cost for inpatient 
visits was £1,351.52 (all) and 
£767 (no complications) (obtained 
from Table 4 in the supplementary 
material). 

  

Roberts et al. 

(2018) 

 

(2015 price 

year) 

Cost 

used 

£1,179 to £2,939 

 

The annual cost increased linearly 

from Year 1-15. 

 

For probabilistic sensitivity 

analysis, they used a Gamma 

distribution with a standard error 

of 270.00. 

 

£869.00 

 

In the model Roberts et al. evaluates 

the different categorisations of 

elevated blood glucose: IFG, IGT and 

HbA1c. 

 

“IFG costs are 73% of T2DM costs” 

where the type 2 diabetes (T2DM) 

costs excluded the cost of 

complications. 

  

 

£773.00 

 

Costs associated with normal 

glucose tolerance were 

assumed to be 66% of type 2 

diabetes costs without 

complication costs. 
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Table A4.2: Cost and sources used in the five most-recently published, UK-specific, modelling studies evaluating diabetes prevention initiatives. 

(Continued) 

  Glycaemic State 

Study  Type 2 diabetes Non-diabetic hyperglycaemia Normal glucose tolerance 

   The authors make the assumption 
that individuals with non-diabetic 
hyperglycaemia (identified via raised 
HbA1c) are equal to those of IFG. 

 

Source Hex et al. (2012) 

 

Bächle et al. (2016) 
Nichols et al. (2008) 

Bächle et al. (2016) 
Nichols et al. (2008) 

Notes on 

source 

Hex et al. estimated the 

prevalence of type 2 diabetes for 

2010/11 as 3,419,727. They 

identified costs according to the 

following categories and 

estimated the annual cost 

associated with them. This paper 

looked at type 1 and type 2 

diabetes, but presented the costs 

separately for each of these 

conditions: 

Screening £10,588,726 

Treatment £1,75,615,980 

Complications £7,000,037,553 

  
 

Bächle et al. described a population 

based study from Germany. 

 

This study reported the average 

resource use, making it possible to 

assign UK costs to these estimates. 

 

Resource use was derived from the 

statutory health insurances’ data. 

 

The Nichols et al. study is based in 

the US, looking at individuals 

identified with prediabetes between 

1998 and 2004. They present 

estimates in terms of IFG and IFT. 

 

Bächle et al. describes a 

population based study from 

Germany. 

 

This study reported the average 

resource use, making it possible 

to assign UK costs to these 

estimates. 

 

Resource use was derived from 

the statutory health insurances’ 

data. 

 

The Nichols et al. study is based 

in the US, looking at individuals 

identified with prediabetes 

between 1998 and 2004. 
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Table A4.2: Cost and sources used in the five most-recently published, UK-specific, modelling studies evaluating diabetes prevention initiatives. 

(Continued) 

  Glycaemic State 

Study  Type 2 diabetes Non-diabetic hyperglycaemia Normal glucose tolerance 

  The treatment costs included 

costs for “education programmes” 

which would need to be excluded 

if used in the current model, as 

the DPP costs are assigned 

separately. 

 

This leads to an annual average 

cost of treating type 2 diabetes of 

£2,101.41 (2010/11 price year). 

Inflating this to 2020 price year, 

this is equivalent to an annual 

cost of £2,499.17 (inflated using: 

Shemilt et al. (2010)). 

 

This study also presented the average 
resource use, making it possible to 
assign UK costs to these estimates. 

This study also presented the 
average resource use, making it 
possible to assign UK costs to 
these estimates. 

Breeze et al. 

(2017) 

 This paper described an individual patient simulation model, and as such did not describe costs by blood 

glucose category (Type 2 diabetes/ Non-diabetic hyperglycaemia /Normal control), and instead individually 

presented costs, prescriptions and healthcare resource use dependant on individual characteristics and 

comorbidities. 

Gillett et al. 

(2015) 

Cost 

used 

Not directly reported (used 

Sheffield type 2 diabetes model) 

Not directly reported (used Sheffield 

type 2 diabetes model) 

Not directly reported (used 

Sheffield type 2 diabetes model) 

Source Reports using data directly from 
the DESMOND trial (M. J. Davies 
et al., 2008) (resource use over  
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Table A4.2: Cost and sources used in the five most-recently published, UK-specific, modelling studies evaluating diabetes prevention initiatives. 

(Continued) 

  Glycaemic State 

Study  Type 2 diabetes Non-diabetic hyperglycaemia Normal glucose tolerance 

  12 months, recruited 2004-2006) 
for individuals newly diagnosed 
with Type 2 diabetes (n=824, 55% 
men, mean age 59.5 years). Only 
information on primary care health 
care resource use was collected. 

  

 Notes on 

source 

Trial data were used to identify 

use of drugs and use of general 

practitioners’ and other primary 

care professionals’ time over 12 

months. They did not collect 

secondary care use and instead 

used literature estimates. 

 

The authors present the mean 

use of primary care resources 

over 12 months (for both control 

and DESMOND trial members). 

Looking at the control arm, the 

average cost of primary care 

(excluding prescriptions) was: 

£264.47. 
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Table A4.3: Calculating cost of normal glucose tolerance and non-diabetic hyperglycaemia health states from published resource use by 

Nichols et al. (2008). 

 States of glycaemic control  

 
Normal IFG IFT IFG/IFT 

Unit 
Cost 

Source 

Cost Element (n=15,629) (n=5,713) (n=2,552) (n=2,217)   

Inpatient 
    

  

Mean number 
reported 

0.14 0.15 0.26 0.22 £2,941 

 

Using weighted average of Elective Inpatients, Non 
Elective Inpatients and Non-elective short stay  

(NHS England, 2022)  Total cost for 
sample1 

£6,436,146 £2,520,706 £1,951,734 £1,434,680 

Outpatient visits 
    

  

Mean number 
reported 

3 3 3.6 3.5 £39 Assumed cost of primary care visit equates to a GP 
consultation (Curtis & Burns, 2020) 

Total cost for 
sample1 

£1,828,593 £668,421 £358,301 £302,621 

Urgent visits       

Mean number 
reported 

0.8 0.7 1.1 1 £297 Assumed cost of A&E visit. Sourced from National 
Schedule of NHS Costs 2020 (NHS England, 2022)  

Total cost for 
sample1 

£3,713,450 £1,187,733 £833,738 £658,449 

Speciality visits       

Mean number 
reported 

5.7 5.5 6 5.8 £182 Using weighted average of outpatient unit costs  
(NHS England, 2022)  

Total cost for 
sample1 

£16,172,270 £5,704,162 £2,779,693 £2,334,310 

Pharmaceutical 
    

  

Mean number 
reported 

23.6 25.7 31.7 32.1 £8.65 Average cost per item  
(NHS Business Services Authority, 2021) 
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Table A4.3: Calculating cost of normal glucose tolerance and non-diabetic hyperglycaemia health states from published resource use by 

Nichols et al. (2008). (Continued) 

 States of glycaemic control  

 
Normal IFG IFT IFG/IFT 

Unit 
Cost 

Source 

Cost Element (n=15,629) (n=5,713) (n=2,552) (n=2,217)   

Total cost for 
sample1 

£3,190,504 £1,270,028 £699,771 £615,583   

Overall total 
cost2 

£31,340,963 £11,351,050 £6,623,238 5,345,643   

Average per 
person3 

£2,005.31 £2,224.76   

Notes: 

1Total cost for sample was calculated as the unit cost multiplied by the number in the sample multiplied by the mean number reported. 

2Overall total cost is the sum of all of the cost element ‘total cost for sample’ costs. 

3Weighted by number in each impaired glucose category. All resource use estimates sourced from Nichols et al. (2008). 
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Utility Scores  

A table showing the sources of utility data for the five most recent UK modelling studies 

is shown in Table A4.4.  

Data collected as part of the NHS DPP was used to inform the utility values used for 

individuals with non-diabetic hyperglycaemia. The responses to the EQ-5D-5L 

questionnaire, recorded at initial assessment of the NHS DPP, were valued using the 

Crosswalk value set (Van Hout et al., 2012). There were 116,004 referrals that had a 

baseline utility score recorded (out of referrals received to the programme prior to 1st 

April 2019). The average utility score for these referrals was: 0.808 (sd: 0.216) with a 

visual analogue score (VAS) of 74 (sd: 19). This estimate is higher than existing studies 

have previously estimated (ranging from 0.759 (Neumann et al., 2014) to 0.7302 

(Herman et al., 2005)). This may be because clinical trials select individuals that are at 

a higher-risk and therefore, have a lower utility score. Reassuringly, there are other 

studies have found similar results to the estimates derived from NHS DPP data. In the 

feasibility of the Norfolk Diabetes Prevention Study, it was reported that the baseline 

characteristics of their non-diabetic hyperglycaemic population, had a utility score of 

0.85 (n=177) (Irvine et al., 2011), which is higher than the average baseline of referrals 

to the NHS DPP. 

Due to the higher baseline score, individuals in a pre-diabetic state would have a higher 

utility score than those in a normal state, which appears counterintuitive.  

As such, data from the 2018 Health Survey for England (NatCen Social Research, 

2022) was analysed to determine the utility scores of being in the following model 

states: normal glucose tolerance and type 2 diabetes. This is an annual survey which 

looks at the health and lifestyle of English people, surveying approximately 8,000 adults 

and 2,000 children. As part of this survey, the EQ-5D-5L is collected. The number of 

respondents used to estimate each utility score for the model states by age category is 

shown in Table A4.5. 

To determine the utility score to be used in the type 2 diabetes state, the data was 

restricted to individuals who reported having type 2 diabetes in the survey and weighted 

according to the age/sex profile of individuals referred to the NHS DPP. 

To determine the utility score to be used in the normal glucose tolerance state, the data 

was restricted to individuals not reporting diabetes, and excluded individuals with ‘bad’ 

self-reported health, as there was no question about prediabetes in the survey. 
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Table A4.4: Utility values and sources used in the five most-recently published, UK-specific, modelling studies evaluating diabetes prevention 

initiatives. 

  Glycaemic State  

Study  Type 2 diabetes Non-diabetic 
hyperglycaemia 

Normal glucose 
tolerance 

Incremental utility 
gain from DPP 

Frempong et al. 
(2021) 

Value 0.738 
 
 

0.759 
 
 

0.768 
 

0.0189  

Source Neumann et al. (2014) 
 

Neumann et al. (2014) 
 

(Neumann et al., 2014) 
 

Roberts et al. (2018) 

Notes on 
source 

Measured using Short 
Form-36 questionnaire 
(SF-36). 
 
Study based in Sweden, 
between 2003 and 2013. 
 
2,995 individuals with 
type 2 diabetes. 
 
Responses stratified by 
age, sex, education and 
BMI. 

Measured using Short 
Form-36 questionnaire 
(SF-36). 
 
Study based in Sweden, 
between 2003 and 2013. 
 
5,629 (IFG), 2,440 (IGT), 
1,232 (IFG and IGT). 
 
Utility was 0.759 for IFG, 
0.746 for IGT and 0.745 
for those with both. 

Measured using Short 
Form-36 questionnaire 
(SF-36). 
 
Study based in Sweden, 
between 2003 and 2013. 
 
43,586 ‘healthy’ 
individuals 

Modelling study 
discussed below. 

Leal et al. (2020) 

 

Value Initial utility 0.807 (although it is unclear if this corresponds to non-diabetic hyperglycaemia). 
 
Information was not presented according to different glycaemic control states. The supplementary 
material instead only stated an initial utility value, and gave decrements associated with complications. 
The model looked at delaying the onset of diabetes in individuals with cardiovascular disease or 
cardiovascular risk factors and IGT, and therefore it was assumed that this utility value referred to 
individuals with prediabetes. 
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Table A4.4: Utility values and sources used in the five most-recently published, UK-specific, modelling studies evaluating diabetes prevention 

initiatives. (Continued) 

  Glycaemic State  

Study  Type 2 diabetes Non-diabetic 
hyperglycaemia 

Normal glucose 
tolerance 

Incremental utility gain 
from DPP 

 Source Alva et al. (2014) 
 

Notes on 
source 

EQ-5D questionnaires administered between 1997 and 2007 in the UK Prospective Diabetes Study 
(UKPDS). 
0.807 is from a regression model looking at the presence of complications. 
Raw data from the waves of UKPDS show an average utility of 0.702 (amongst 3,380 individuals without 
complications who have type 2 diabetes). 

Roberts et al. 

(2018) 

 

Value 0.738 0.759 0.768 0.0189 

Source Neumann et al. (2014) 
 

Neumann et al. (2014) 
 

Neumann et al. (2014) 
 

Herman et al. (2005) 

Notes on 
source 

As described above. As described above. As described above. States source as 
“DPP data”. The 
paper does not 
describe how this is 
determined or the 
length of time over 
which there is 
expected to be a 
benefit. 
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Table A4.4: Utility values and sources used in the five most-recently published, UK-specific, modelling studies evaluating diabetes prevention 

initiatives. (Continued) 

  Glycaemic State  

Study  Type 2 diabetes Non-diabetic 
hyperglycaemia 

Normal glucose 
tolerance 

Incremental utility 
gain from DPP 

Breeze et al. 
(2017) 

Value Not directly stated. 
 
 

Not directly stated. 
 

Not directly stated. 
 

0.0003 to 0.0009  

 Source Baseline utilities for all individuals in the cohort were extracted from the Health 
Survey for England, 2011. This data was not presented. 
 

Dunkley et al. (2014) 
 

 Notes on 
source 

Authors of the modelling study state: “we assumed that a diagnosis of diabetes 
was not associated with a reduction in EQ-5D independent of the utility 
decrements associated with complications, comorbidities or depression”. 
 
“Utility was assumed to decline due to ageing independent of health status. In the 
simulation, utility declines by an absolute decrement of 0.004 per year” (sourced 
from supplementary material 1). 

Meta-analysis 
looking at the 
effectiveness of 
diabetes prevention 
programmes. It 
included 22 studies 
with outcome data 
for weight loss at 12 
months. 
 
The paper did not 
present results in 
terms of changes in 
quality adjusted life 
years or utility 
values. 

Gillett et al. 
(2015) 

Value Not directly reported (used Sheffield type 2 diabetes model) 
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Table A4.5: Sample size used for utility calculations. 

 Sample size 

Age category Normal glucose 
tolerance 

Non-diabetic 
hyperglycaemia* 

Type 2 
diabetes 

<40 1,038 7,469 19 

40-49 1,066 17,170 48 

50-59 945 35,349 91 

60-69 698 51,838 135 

70-79 267 50,982 130 

80+ 304 15,642 68 

Total sample size 4,318 178,450 491 

*Utility scores for non-diabetic hyperglycaemia were estimated from referrals to the 
NHS DPP, recorded at initial assessment. 
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Distributions 

A distribution for each of the parameters included in the model was estimated (for 

example: transition probabilities, costs and utilities). As recommended by Briggs et al. 

(2006), Beta distributions were used for transition probabilities and utility estimates 

(given they were sufficiently removed from zero), and Gamma distributions for costs. 

The parameters for these distributions were obtained using the following formulas:  

The alpha and beta parameters of the Gamma(α,β) distribution were calculated using: 

𝛼 =
𝜇2

𝑠2⁄  

𝛽 = 𝑠2

𝜇⁄  

Where µ is sample mean, 𝑠2 is variance. 

The alpha and beta parameters of the Beta(α,β) distribution were calculated using: 

 

𝛼 =
𝜇2(1 − 𝜇)

𝑠2
− 1 

 

𝛽 = 𝛼 ∗
(1 − 𝜇)

𝜇
 

 

Where µ is sample mean, 𝑠2 is variance. 
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Model Results 

Example cohort trace 

As the model was run using probabilistic analysis with 10,000 Monte Carlo simulations, it is not possible to provide all of the cohort traces. 

However, an example of one of the traces from these simulations is shown in Table A4.6. 

 

Table A4.6: Example cohort trace over time (from 1 Monte Carlo simulation). 

 Usual Care NHS DPP 

Cycle 

Normal 
glucose 
tolerance 

Non-diabetic 
hyperglycaemia 

Type 2 
diabetes Dead 

Normal 
glucose 
tolerance 

Non-diabetic 
hyperglycaemia 

Type 2 
diabetes Dead 

0 0 1000 0 0 0 1000 0 0 

1 82.569 868.571 25.736 23.124 83.837 872.523 20.516 23.124 

2 145.759 761.943 47.171 45.127 147.741 770.169 37.082 45.008 

3 193.670 674.982 65.369 65.978 195.285 685.317 53.579 65.819 

4 228.089 607.224 78.980 85.706 233.848 611.609 68.940 85.602 

5 254.256 543.520 89.225 112.999 258.240 550.436 78.492 112.832 

6 271.776 488.351 96.957 142.916 276.058 494.250 87.400 142.292 

7 283.338 443.587 103.048 170.027 287.379 449.099 94.158 169.363 

8 288.880 407.113 109.083 194.924 294.657 409.968 101.264 194.112 

9 292.076 376.006 114.424 217.495 297.894 378.118 107.148 216.839 

10 287.884 344.102 116.651 251.363 291.069 347.207 110.938 250.786 

11 281.927 314.835 118.975 284.263 284.404 319.390 112.593 283.612 

12 275.642 289.838 121.634 312.886 277.196 295.457 114.837 312.511 

13 265.893 272.569 122.633 338.905 268.918 275.955 117.015 338.112 

14 259.011 255.150 123.567 362.272 260.402 258.670 119.179 361.750 
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Table A4.6: Example cohort trace over time (from 1 Monte Carlo simulation). (Continued) 

 Usual Care NHS DPP 

Cycle 

Normal 
glucose 

tolerance 
Non-diabetic 

hyperglycaemia 
Type 2 

diabetes Dead 

Normal 
glucose 

tolerance 
Non-diabetic 

hyperglycaemia 
Type 2 

diabetes Dead 

15 245.328 236.243 121.122 397.307 247.134 237.796 117.803 397.267 

16 234.718 218.152 118.602 428.529 234.300 222.221 114.559 428.920 

17 223.654 203.838 117.104 455.405 220.512 209.834 113.608 456.046 

18 215.751 188.302 116.320 479.627 210.971 195.967 113.044 480.018 

19 207.791 176.078 114.763 501.368 202.450 184.020 111.938 501.592 

20 190.710 164.861 109.850 534.580 189.608 168.328 107.611 534.453 

21 178.407 153.257 105.038 563.298 178.396 154.329 104.015 563.261 

22 166.714 143.453 101.354 588.479 166.815 144.375 101.127 587.683 

23 157.043 133.940 98.730 610.287 156.774 135.523 98.079 609.624 

24 149.124 124.858 96.499 629.519 147.449 128.368 95.293 628.890 

25 136.951 114.814 90.488 657.747 135.951 117.236 89.315 657.498 

26 126.734 105.278 85.954 682.034 126.793 107.215 84.563 681.430 

27 117.369 98.370 81.275 702.986 118.021 99.303 79.924 702.752 

28 109.071 91.957 78.179 720.793 109.754 92.743 76.349 721.154 

29 101.390 86.588 75.090 736.932 102.176 87.723 73.109 736.992 

30 91.674 78.757 68.809 760.760 91.684 79.888 67.777 760.650 

31 83.720 71.683 63.580 781.017 83.892 72.589 62.751 780.768 

32 76.711 65.689 59.746 797.855 77.204 66.359 58.872 797.565 

33 71.075 59.943 56.690 812.292 71.373 60.961 55.426 812.239 

34 65.944 55.407 53.870 824.779 67.084 55.860 52.190 824.867 

35 59.148 49.828 48.773 842.251 59.906 50.423 47.294 842.378 
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Scatter Plots from sensitivity analyses 

Figure A4.1: Sensitivity analysis 1 

Scatter plot of incremental cost and QALY pairs from 10,000 Monte Carlo simulations, 
on average for an individual in the modelled cohort. The black line represents a 
willingness to pay threshold of £20,000 per QALY gained. The number of points in each 
quadrant are: North-East: 89, North-West: 3, South-East: 9,907, South-West: 1. 
Percentage cost-effective at £20,000 willingness to pay (£30,000): 99.9% (99.9%) 
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Figure A4.2: Sensitivity analysis 2 

Scatter plot of incremental cost and QALY pairs from 10,000 Monte Carlo simulations, 
on average for an individual in the modelled cohort. The black line represents a 
willingness to pay threshold of £20,000 per QALY gained. The number of points in each 
quadrant are: North-East: 39, North-West: 0, South-East: 9,960, South-West: 1. 
Percentage cost-effective at £20,000 willingness to pay (£30,000): 100.0% (100.0%) 
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Figure A4.3: Sensitivity analysis 3 

Scatter plot of incremental cost and QALY pairs from 10,000 Monte Carlo simulations, 
on average for an individual in the modelled cohort. The black line represents a 
willingness to pay threshold of £20,000 per QALY gained. The number of points in each 
quadrant are: North-East: 3,533, North-West: 91, South-East: 6,376, South-West: 0. 
Percentage cost-effective at £20,000 willingness to pay (£30,000): 97.9% (98.4%) 
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Figure A4.4: Sensitivity analysis 4 

Scatter plot of incremental cost and QALY pairs from 10,000 Monte Carlo simulations, 
on average for an individual in the modelled cohort. The black line represents a 
willingness to pay threshold of £20,000 per QALY gained. The number of points in each 
quadrant are: North-East: 26, North-West: 0, South-East: 9,974, South-West: 0. 
Percentage cost-effective at £20,000 willingness to pay (£30,000): 100.0% (100.0%) 
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Figure A4.5: Sensitivity analysis 5 

Scatter plot of incremental cost and QALY pairs from 10,000 Monte Carlo simulations, 
on average for an individual in the modelled cohort. The black line represents a 
willingness to pay threshold of £20,000 per QALY gained. The number of points in each 
quadrant are: North-East: 405, North-West: 0, South-East: 9,595, South-West: 0. 
Percentage cost-effective at £20,000 willingness to pay (£30,000): 100.0% (100.0%) 
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Figure A4.6: Sensitivity analysis 6 

Scatter plot of incremental cost and QALY pairs from 10,000 Monte Carlo simulations, 

on average for an individual in the modelled cohort. The black line represents a 

willingness to pay threshold of £20,000 per QALY gained. The number of points in each 

quadrant are: North-East: 1,311, North-West: 75, South-East: 8,612, South-West: 2. 

Percentage cost-effective at £20,000 willingness to pay (£30,000): 98.0% (98.5%) 
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Code Excerpt – Base case analysis 

Below is an excerpt of the model code used in the base case analysis of the model, 

which is available in full from the author’s Github repository (McManus, 2023).  

It includes the code used for cohort of age category x<40, which is then repeated for the 

other age categories used (but for brevity omitted here). The model parameters are first 

defined as point estimates and then updated in the code using distributions. From line 

372 is the code that is used to combine the results of the different age categories 

modelled and run analysis of the results. 

 

######################################## 1 

# Markov model: Evaluating the NHS DPP # 2 

# 4 modelling states: 3 

# Normal glycaemic control 4 

# NDH 5 

# Type 2 Diabetes 6 

# Death 7 

######################################## 8 

getwd() 9 

## SET WORKING DIRECTORY ## 10 

setwd("…") 11 

library('ggplot2') 12 

library('ggthemes') 13 

library("dplyr") 14 

#Cohort is made up of 6 age categories / model runs 15 

############ 16 

# AGE CAT 1 17 

############ 18 

set.seed(9009) 19 
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## model set-up ---- 20 

t_names <- c("without DPP", "with DPP") 21 

n_treatments <- length(t_names) 22 

s_names  <- c("Normal", "NDH", "T2D", "Dead") 23 

n_states <- length(s_names) 24 

n_cohort <- 58 25 

n_cycles <- 36 26 

Initial_age <- 35 27 

#NUMBER OF PSA ITERATIONS 28 

n_trials<-10000 29 

costs <- matrix(NA,nrow=n_trials,ncol=n_treatments, 30 
dimnames=list(NULL,t_names)) 31 

qalys <- matrix(NA,nrow=n_trials,ncol=n_treatments, 32 
dimnames=list(NULL,t_names)) 33 

#Cost of states 34 

cNorm <- rgamma(1, 44.44444, scale=45.119475) 35 

cNDH <- rgamma(1,  44.44444, scale=50.0571) 36 

cT2D <- rgamma(1,  44.44444, scale=99.4628) 37 

cDeath <- 0 38 

cDPP <- 0 39 

#Utility of states 40 

uNorm <- rbeta(1,27.53076303,4.883160879) 41 

uNDH <- rbeta(1,26.33007731, 6.334144666) 42 

uT2D <- rbeta(1, 26.52841, 10.65937) 43 

uDeath <-0 44 

uDPP<-0  45 

#Discount rates 46 

oDr <- 0.035 47 
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cDr <- 0.035 48 

#utility gains from DPP 49 

utility <- c(1-rbeta(n_cohort,801123.6265,3464.71833)) 50 

utility_sum <-sum(utility) 51 

#costs of the DPP 52 

dppcost <- c(rgamma(n_cohort,16.73964,scale=8.469118)) 53 

dppcost_sum <- sum(dppcost) 54 

#Transition probabilities (later replaced with PSA values) 55 

#normal to NDH 56 

tpProgNDH <- 0.074202731 57 

#dying from NGT or NDH 58 

tpDeath <- 0.05 59 

#Progression to T2D from NDH 60 

tpProgT2D <- 0.0249 61 

#From NDH to NGT 62 

tpNorm <- 0.0795 63 

#From T2D to NDH 64 

tpRegress <- 0.002796084 65 

#Additional risk of death for T2D 66 

tpExcessDeath <- 1.6 67 

 68 

#change in transition probability for DPP (later replaced with PSA values) 69 

effect <- 0.8 70 

# Cost of staying in state 71 

state_c_matrix <- 72 

  matrix(c(cNorm, cNDH, cT2D, 0, 73 

           cNorm, cNDH + cDPP, cT2D, 0), 74 
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         byrow = TRUE, 75 

         nrow = n_treatments, 76 

         dimnames = list(t_names, 77 

                         s_names)) 78 

# qaly when staying in state 79 

state_q_matrix <- 80 

  matrix(c(uNorm, uNDH, uT2D, 0, 81 

           uNorm, uNDH + uDPP, uT2D, 0), 82 

         byrow = TRUE, 83 

         nrow = n_treatments, 84 

         dimnames = list(t_names, 85 

                         s_names)) 86 

# cost of moving to a state 87 

# same for both treatments - no cost of death applied 88 

trans_c_matrix <- 89 

  matrix(c(0, 0, 0, cDeath, 90 

           0, 0, 0, cDeath, 91 

           0, 0, 0, cDeath, 92 

           0, 0, 0, 0), 93 

         byrow = TRUE, 94 

         nrow = n_states, 95 

         dimnames = list(from = s_names, 96 

                         to = s_names)) 97 

# Transition probabilities ----  98 

# time-homogeneous 99 

#not by row - by column 100 

p_matrix <- array(data = c(1-tpProgNDH - tpDeath, tpNorm, 0, 0, 101 
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                           tpProgNDH, 1-tpProgT2D-tpDeath-tpNorm, tpRegress, 102 
0, 103 

                           0, tpProgT2D,  1-tpRegress - 104 
(tpDeath*tpExcessDeath), 0, 105 

                           tpDeath, tpDeath, (tpDeath*tpExcessDeath), 1, 106 

                           #below would be adjusted for effect of DPP 107 

                           1-tpProgNDH - tpDeath, tpNorm, 0, 0, 108 

                           tpProgNDH, 1-(tpProgT2D*effect)-tpDeath-tpNorm, 109 
tpRegress, 0, 110 

                           0, (tpProgT2D*effect),  1-tpRegress - 111 
(tpDeath*tpExcessDeath), 0, 112 

                           tpDeath, tpDeath, (tpDeath*tpExcessDeath), 1), 113 

                  dim = c(n_states, n_states, n_treatments), 114 

                  dimnames = list(from = s_names, 115 

                                  to = s_names, 116 

                                  t_names)) 117 

# Store population output for each cycle  118 

# state populations 119 

pop <- array(data = NA, 120 

             dim = c(n_states, n_cycles, n_treatments), 121 

             dimnames = list(state = s_names, 122 

                             cycle = NULL, 123 

                             treatment = t_names)) 124 

pop["Normal", cycle = 1, ] <-0 125 

pop["NDH", cycle = 1, ] <- n_cohort 126 

pop["T2D", cycle = 1, ] <- 0 127 

pop["Dead", cycle = 1, ] <- 0 128 

 129 

halfpop<-array(data=NA, dim=c(n_states,n_cycles,n_treatments),  130 
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               dimnames = list(state= s_names, cycle=NULL, treatment= 131 
t_names)) 132 

 133 

halfpop["Normal", cycle=1, treatment="without DPP"]<- 0 134 

halfpop["NDH", cycle=1, treatment="without DPP"]<- 0 135 

halfpop["T2D", cycle=1, treatment="without DPP"]<- 0 136 

halfpop["Dead", cycle=1, treatment="without DPP"]<- 0 137 

halfpop["Normal", cycle=1, treatment="with DPP"]<- 0 138 

halfpop["NDH", cycle=1, treatment="with DPP"]<- 0 139 

halfpop["T2D", cycle=1, treatment="with DPP"]<- 0 140 

halfpop["Dead", cycle=1, treatment="with DPP"]<- 0 141 

 142 

# _arrived_ state populations 143 

trans <- array(data = NA, 144 

               dim = c(n_states, n_cycles, n_treatments), 145 

               dimnames = list(state = s_names, 146 

                               cycle = NULL, 147 

                               treatment = t_names)) 148 

trans[, cycle = 1, ] <- 0 149 

# Sum costs and QALYs for each cycle at a time for each treatment   150 

cycle_empty_array <- 151 

  array(NA, 152 

        dim = c(n_treatments, n_cycles), 153 

        dimnames = list(treatment = t_names, 154 

                        cycle = NULL)) 155 

 156 

cycle_state_costs <- cycle_trans_costs <- cycle_qalys <- cycle_empty_array  157 

cycle_costs <- cycle_QALYs <- cycle_empty_array 158 
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LE <- LYs <- cycle_empty_array    # life expectancy; life-years 159 

cycle_QALE <- cycle_empty_array   # quality-adjusted life expectancy 160 

 161 

total_costs <- setNames(c(NA, NA), t_names) 162 

total_QALYs <- setNames(c(NA, NA), t_names) 163 

 164 

# Transition probabilities (later updated with PSA) 165 

#normal to NDH 166 

tpProgNDH <- 0.074202731 167 

# dying from NGT or NDH 168 

tpDeath <- 0.05 169 

# Progression from NDH to T2D 170 

tpProgT2D <- 0.0249 171 

# From NDH to NGT 172 

tpNorm <- 0.0795 173 

# From T2D to NDH 174 

tpRegress <- 0.002796084 175 

# Additional risk of death for T2D 176 

tpExcessDeath <- 1.6 177 

 178 

# change in transition probability for DPP 179 

effect <- 0.8 180 

 181 

tpNorm <- rbeta(1,335,3709) 182 

tpProgT2D <- rbeta(1,25.27,974.73) 183 

tpRegress <- rbeta(1,2.8,997.2) 184 

tpProgNDH <- rbeta(1,77.1,922.9) 185 
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tpExcessDeath <- rlnorm(1, meanlog = 0.470004, sdlog = 0.064111) 186 

 187 

# Time-dependent probability matrix ---- 188 

# Time dependent transition - risk of death 189 

p_matrix_cycle <- function(p_matrix, age, cycle, 190 

                           tpProgNDH = rbeta(1,77.1,922.9), 191 

                           #tpProgT2D = rbeta(1,25.27,974.73), 192 

                           tpNorm = rbeta(1,335,3709), 193 

                           tpRegress = rbeta(1,2.8,997.2), 194 

                           tpExcessDeath = rlnorm(1, meanlog = 0.470004, 195 
sdlog = 0.064111) 196 

) { 197 

  tpDeath_lookup <- 198 

    c("[30,34]" = 0.000674, 199 

      "[35,39]" = 0.001007, 200 

      "[40,44]" = 0.001499, 201 

      "[45,49]" = 0.002298, 202 

      "[50,54]" = 0.003359, 203 

      "[55,59]" = 0.005056, 204 

      "[60,64]" = 0.007940, 205 

      "[65,69]" = 0.012389, 206 

      "[70,74]" = 0.019640, 207 

      "[75,79]" = 0.034483, 208 

      "[80,84]" = 0.060938, 209 

      "[85,89]" = 0.110627, 210 

      "[90,94]" = 0.187364, 211 

      "[95,120]" = 0.295984) 212 

   213 
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  age_grp <- cut(age, breaks = c(30,34,39,44,49,54,59,64,69,74,79, 84, 89, 214 
94, 120)) 215 

  tpDeath <- tpDeath_lookup[age_grp] 216 

   217 

  tpProgT2D_lookup <- 218 

    c("[30,39]" = rbeta(1,27.12014,972.8799), 219 

      "[40,49]" = rbeta(1,34.49617,965.5038), 220 

      "[50,59]" = rbeta(1,30.72741,969.2726), 221 

      "[60,69]" = rbeta(1,25.45268,974.5473), 222 

      "[70,79]" = rbeta(1,20.27103,979.729), 223 

      "[80,120]" = rbeta(1,14.16019,985.84731)) 224 

   225 

  age_grpT2D <- cut(age, breaks= c(30,39,49,59,69,79,120)) 226 

  tpProgT2D <-tpProgT2D_lookup[age_grpT2D] 227 

   228 

  # [ includes, ( doesn't include 229 

  effect_lookup <- 230 

    c("(0,3]" = rlnorm(1, meanlog = -0.22314, sdlog = 0.044757), 231 

      "(3,10]" = rnorm(1, mean = 1.000, sd = 0.00000001), 232 

      "(10,15]"= rnorm(1, mean = 1.000, sd = 0.00000001), 233 

      "(15,50]" = rnorm(1, mean = 1.000, sd = 0.00000001)) 234 

   235 

  cycle2 <- cut(cycle, breaks = c(0,3,10,15,50)) 236 

  effect <- effect_lookup[cycle2] 237 

  ######### 238 

  p_matrix["Normal", "Normal", "without DPP"] <- 1 - tpProgNDH - tpDeath 239 

  p_matrix["Normal", "NDH", "without DPP"] <- tpProgNDH  240 

  p_matrix["Normal", "Dead", "without DPP"] <- tpDeath 241 
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  p_matrix["NDH", "Normal", "without DPP"] <- tpNorm 242 

  p_matrix["NDH", "NDH", "without DPP"] <-1-tpProgT2D-tpDeath-tpNorm 243 

  p_matrix["NDH", "T2D", "without DPP"] <- tpProgT2D 244 

  p_matrix["NDH", "Dead", "without DPP"] <- tpDeath 245 

  p_matrix["T2D", "NDH", "without DPP"] <- tpRegress 246 

  p_matrix["T2D", "T2D", "without DPP"] <- 1-tpRegress - 247 
(tpDeath*tpExcessDeath) 248 

  p_matrix["T2D", "Dead", "without DPP"] <- (tpDeath)*tpExcessDeath 249 

  p_matrix["Dead", "Dead", "without DPP"] <- 1 250 

  p_matrix["Normal", "Normal", "with DPP"] <- 1 - tpProgNDH - tpDeath 251 

  p_matrix["Normal", "NDH", "with DPP"] <- tpProgNDH 252 

  p_matrix["Normal", "Dead", "with DPP"] <- tpDeath 253 

  p_matrix["NDH", "Normal", "with DPP"] <- tpNorm 254 

  p_matrix["NDH", "NDH", "with DPP"] <- 1 - (tpProgT2D*effect) - tpDeath - 255 
tpNorm 256 

  p_matrix["NDH", "T2D", "with DPP"] <- (tpProgT2D*effect) 257 

  p_matrix["NDH", "Dead", "with DPP"] <- tpDeath 258 

  p_matrix["T2D", "NDH", "with DPP"] <- tpRegress 259 

  p_matrix["T2D", "T2D", "with DPP"] <- 1 - tpRegress - 260 
(tpDeath*tpExcessDeath) 261 

  p_matrix["T2D", "Dead", "with DPP"] <- tpDeath*tpExcessDeath 262 

  p_matrix["Dead", "Dead", "with DPP"] <- 1 263 

 return(p_matrix) 264 

} 265 

########### 266 

#state_q_matrix 267 

state_q_matrix_cycle <- function(state_q_matrix, age) 268 

{ 269 

  #uNorm  270 
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  uNorm_lookup <- 271 

    c("[30,39]" = rbeta(1,5243.210127, 647.8882745), 272 

      "[40,49]" = rbeta(1,3749.390288, 552.6603545), 273 

      "[50,59]" = rbeta(1,4317.392142, 733.4582261), 274 

      "[60,69]" = rbeta(1,3275.399881, 605.1330164), 275 

      "[70,79]" = rbeta(1,2793.5369, 592.8093771), 276 

      "[80,120]" = rbeta(1,1048.602386, 338.6611273)) 277 

   278 

  age_grpnorm <- cut(age, breaks= c(30,39,49,59,69,79,120)) 279 

  uNorm <-uNorm_lookup[age_grpnorm] 280 

   281 

#uNDH 282 

  uNDH_lookup <- 283 

    c("[30,39]" = rbeta(1,18852.2607, 3585.449629), 284 

      "[40,49]" = rbeta(1,40397.03381, 8321.148331), 285 

      "[50,59]" = rbeta(1,79459.6746, 19951.65504), 286 

      "[60,69]" = rbeta(1,137085.1892, 32219.07565), 287 

      "[70,79]" = rbeta(1,164314.0338, 37615.0213), 288 

      "[80,120]" = rbeta(1,53445.85673, 14946.63982)) 289 

  age_grpNDH <- cut(age, breaks= c(30,39,49,59,69,79,120)) 290 

  uNDH <-uNDH_lookup[age_grpNDH] 291 

   292 

#uT2D 293 

  uT2D_lookup <- 294 

    c("[30,39]" = rbeta(1,27.8648312, 8.05807557), 295 

      "[40,49]" = rbeta(1,48.96668398, 23.6572448), 296 

      "[50,59]" = rbeta(1,158.9763077, 60.70760667), 297 
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      "[60,69]" = rbeta(1,238.2666204, 102.8036175), 298 

      "[70,79]" = rbeta(1,294.0078638, 100.8414828), 299 

      "[80,120]" = rbeta(1,198.9254422, 97.37988722)) 300 

  age_grpT2D <- cut(age, breaks= c(30,39,49,59,69,79,120)) 301 

  uT2D <-uT2D_lookup[age_grpT2D] 302 

   303 

  state_q_matrix[1,1]<- uNorm 304 

  state_q_matrix["without DPP", "NDH"] <- uNDH 305 

  state_q_matrix["without DPP", "T2D"] <- uT2D 306 

  state_q_matrix["without DPP", "Dead"] <-0 307 

  state_q_matrix["with DPP", "Normal"] <- uNorm 308 

  state_q_matrix["with DPP", "NDH"] <- uNDH 309 

  state_q_matrix["with DPP", "T2D"] <-uT2D 310 

  state_q_matrix["with DPP", "Dead"]<-0 311 

  return(state_q_matrix) 312 

} 313 

## Run model ---- 314 

for(n in 1:n_trials) { 315 

    for (i in 1:n_treatments) { 316 

    age <- Initial_age 317 

    for (j in 2:n_cycles) { 318 

      p_matrix <- p_matrix_cycle(p_matrix, age, j - 1) 319 

      pop[, cycle = j, treatment = i] <- 320 

      pop[, cycle = j - 1, treatment = i] %*% p_matrix[, , treatment = i] 321 

      trans[, cycle = j, treatment = i] <- 322 

      pop[, cycle = j - 1, treatment = i] %*% (trans_c_matrix * p_matrix[, , 323 
treatment = i]) 324 

      325 
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      halfpop["Normal", cycle=j, treatment=i]<- 0.5*(pop["Normal", cycle=(j-326 
1), treatment=i]+pop["Normal", cycle=j, treatment=i]) 327 

      halfpop["NDH", cycle=j, treatment=i]<- 0.5*(pop["NDH", cycle=(j-1), 328 
treatment=i]+pop["NDH", cycle=j, treatment=i]) 329 

      halfpop["T2D", cycle=j, treatment=i]<- 0.5*(pop["T2D", cycle=(j-1), 330 
treatment=i]+pop["T2D", cycle=j, treatment=i]) 331 

      halfpop["Dead", cycle=j, treatment=i]<- 0.5*(pop["Dead", cycle=(j-1), 332 
treatment=i]+pop["Dead", cycle=j, treatment=i]) 333 

      cycle_qalys[i, ] <- 334 

        (state_q_matrix[treatment = i, ] %*% halfpop[, , treatment = i]) * 335 
(1/(1 + cDr))^(-1:(n_cycles-2)) 336 

      age <- age + 1 337 

    } 338 

    #Half cycle correction applied  339 

    cycle_state_costs[i, ] <- 340 

      (state_c_matrix[treatment = i, ] %*% halfpop[, , treatment = i]) * 341 
(1/(1 + cDr))^(-1:(n_cycles-2))  342 

   # discounting at _previous_ cycle 343 

    cycle_costs[i, ] <- cycle_state_costs[i, ] #+ cycle_trans_costs[i, ] 344 

    total_costs[i] <- sum(cycle_costs[treatment = i, -1]) 345 

    total_QALYs[i] <- sum(cycle_qalys[treatment = i, -1]) 346 

  } 347 

  #adding in costs of DPP participation 348 

  total_costs["with DPP"] <- total_costs["with DPP"] + dppcost_sum 349 

  #adding in benefits from DPP participation 350 

  #multipling by 0.5 as this is utility gain to convert to QALY 351 

  total_QALYs["with DPP"] <- total_QALYs["with DPP"] + 0.5*utility_sum 352 

   353 

  costs[n, ] <- total_costs 354 

  qalys[n,] <- total_QALYs 355 
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} 356 

agecat1 <- data.frame(costs, qalys) 357 

names(agecat1)[names(agecat1) == "without.DPP.1"] <- 358 
"Without.DPP.qalys.AGECAT1" 359 

names(agecat1)[names(agecat1) == "with.DPP.1"] <- "With.DPP.qalys.AGECAT1" 360 

names(agecat1)[names(agecat1) == "without.DPP"] <- 361 
"Without.DPP.costs.AGECAT1" 362 

names(agecat1)[names(agecat1) == "with.DPP"] <- "With.DPP.costs.AGECAT1" 363 

writexl::write_xlsx(agecat1, "age category1 - 58.xlsx") 364 

save(agecat1,file="agecat1.Rda") 365 

#example population trace 366 

popagecat1 <- data.frame(pop) 367 

writexl::write_xlsx(popagecat1, "age category1 trace.xlsx") 368 

save(popagecat1,file="agecat1trace.Rda") 369 

 370 

######################## 371 

# Analysis of Results  # 372 

######################## 373 

set.seed(9009) 374 

load("agecat6.Rda") 375 

load("agecat5.Rda") 376 

load("agecat4.Rda") 377 

load("agecat3.Rda") 378 

load("agecat2.Rda") 379 

load("agecat1.Rda") 380 

#willingness to pay threshold 381 

wtp <- 20000 382 

#creating a common variable ID so they can be merged 'trials' 383 
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n_trials<-10000 384 

trials<-c(seq(1, n_trials, by=1)) 385 

agecat1$trials <- trials 386 

agecat2$trials <- trials 387 

agecat3$trials <- trials 388 

agecat4$trials <- trials 389 

agecat5$trials <- trials 390 

agecat6$trials <- trials 391 

#merging the two data frames 392 

age12 <- merge(agecat1, agecat2, by="trials") 393 

age123 <- merge(age12, agecat3, by="trials") 394 

age1234 <- merge(age123, agecat4, by="trials") 395 

age12345 <- merge(age1234, agecat5, by="trials") 396 

whole_cohort <- merge(age12345, agecat6, by="trials") 397 

writexl::write_xlsx(whole_cohort, "whole cohort.xlsx") 398 

save(whole_cohort,file="whole_cohort.Rda") 399 

#create a variable that's the sum of all the rows 400 

#create datasets for QALYs & COSTS according to DPP / without DPP 401 

#sum across the rows - using rowSums 402 

#create a dataset from this 403 

#With DPP - costs 404 

DPP_costs 405 
=data.frame(whole_cohort$With.DPP.costs.AGECAT6,whole_cohort$With.DPP.costs.A406 
GECAT5,whole_cohort$With.DPP.costs.AGECAT4,whole_cohort$With.DPP.costs.AGECAT407 
3,whole_cohort$With.DPP.costs.AGECAT2,whole_cohort$With.DPP.costs.AGECAT1) 408 

DPP_costs$total_costs=rowSums(DPP_costs) 409 

#without DPP - costs 410 

withoutDPP_costs 411 
=data.frame(whole_cohort$Without.DPP.costs.AGECAT6,whole_cohort$Without.DPP.c412 
osts.AGECAT5,whole_cohort$Without.DPP.costs.AGECAT4,whole_cohort$Without.DPP.413 
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costs.AGECAT3,whole_cohort$Without.DPP.costs.AGECAT2,whole_cohort$Without.DPP414 
.costs.AGECAT1) 415 

withoutDPP_costs$total_costs=rowSums(withoutDPP_costs) 416 

#With DPP - qalys 417 

DPP_qalys 418 
=data.frame(whole_cohort$With.DPP.qalys.AGECAT6,whole_cohort$With.DPP.qalys.A419 
GECAT5,whole_cohort$With.DPP.qalys.AGECAT4,whole_cohort$With.DPP.qalys.AGECAT420 
3,whole_cohort$With.DPP.qalys.AGECAT2,whole_cohort$With.DPP.qalys.AGECAT1) 421 

DPP_qalys$total_qalys=rowSums(DPP_qalys) 422 

#without DPP - qalys 423 

withoutDPP_qalys 424 
=data.frame(whole_cohort$Without.DPP.qalys.AGECAT6,whole_cohort$Without.DPP.q425 
alys.AGECAT5,whole_cohort$Without.DPP.qalys.AGECAT4,whole_cohort$Without.DPP.426 
qalys.AGECAT3,whole_cohort$Without.DPP.qalys.AGECAT2,whole_cohort$Without.DPP427 
.qalys.AGECAT1) 428 

withoutDPP_qalys$total_qalys=rowSums(withoutDPP_qalys) 429 

PSA_results =data.frame(DPP_costs$total_costs, withoutDPP_costs$total_costs, 430 
DPP_qalys$total_qalys, withoutDPP_qalys$total_qalys) 431 

writexl::write_xlsx(PSA_results, "PSA results from mixed age cohort.xlsx") 432 

save(PSA_results,file="PSA_results.Rda") 433 

#creating a variable that calculates the difference between costs / qalys 434 

PSA_results$cost_dif <- PSA_results$DPP_costs.total_costs - 435 
PSA_results$withoutDPP_costs.total_costs  436 

PSA_results$qaly_dif <- PSA_results$DPP_qalys.total_qalys - 437 
PSA_results$withoutDPP_qalys.total_qalys  438 

#calculating the incremental net monetary benefit at different WTP thresholds 439 

# 440 

PSA_results$inmb0 <- ((PSA_results$qaly_dif * 0) - PSA_results$cost_dif)/1000 441 

PSA_results$inmb1 <- ((PSA_results$qaly_dif * 1000) - 442 
PSA_results$cost_dif)/1000 443 

PSA_results$inmb2 <- ((PSA_results$qaly_dif * 2000) - 444 
PSA_results$cost_dif)/1000 445 

PSA_results$inmb3 <- ((PSA_results$qaly_dif * 3000) - 446 
PSA_results$cost_dif)/1000 447 
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PSA_results$inmb4 <- ((PSA_results$qaly_dif * 4000) - 448 
PSA_results$cost_dif)/1000 449 

PSA_results$inmb5 <- ((PSA_results$qaly_dif * 5000) - 450 
PSA_results$cost_dif)/1000 451 

PSA_results$inmb6 <- ((PSA_results$qaly_dif * 6000) - 452 
PSA_results$cost_dif)/1000 453 

PSA_results$inmb7 <- ((PSA_results$qaly_dif * 7000) - 454 
PSA_results$cost_dif)/1000 455 

PSA_results$inmb8 <- ((PSA_results$qaly_dif * 8000) - 456 
PSA_results$cost_dif)/1000 457 

PSA_results$inmb9 <- ((PSA_results$qaly_dif * 9000) - 458 
PSA_results$cost_dif)/1000 459 

PSA_results$inmb10 <- ((PSA_results$qaly_dif * 10000) - 460 
PSA_results$cost_dif)/1000 461 

PSA_results$inmb11 <- ((PSA_results$qaly_dif * 11000) - 462 
PSA_results$cost_dif)/1000 463 

PSA_results$inmb12 <- ((PSA_results$qaly_dif * 12000) - 464 
PSA_results$cost_dif)/1000 465 

PSA_results$inmb13 <- ((PSA_results$qaly_dif * 13000) - 466 
PSA_results$cost_dif)/1000 467 

PSA_results$inmb14 <- ((PSA_results$qaly_dif * 14000) - 468 
PSA_results$cost_dif)/1000 469 

PSA_results$inmb15 <- ((PSA_results$qaly_dif * 15000) - 470 
PSA_results$cost_dif)/1000 471 

PSA_results$inmb16 <- ((PSA_results$qaly_dif * 16000) - 472 
PSA_results$cost_dif)/1000 473 

PSA_results$inmb17 <- ((PSA_results$qaly_dif * 17000) - 474 
PSA_results$cost_dif)/1000 475 

PSA_results$inmb18 <- ((PSA_results$qaly_dif * 18000) - 476 
PSA_results$cost_dif)/1000 477 

PSA_results$inmb19 <- ((PSA_results$qaly_dif * 19000) - 478 
PSA_results$cost_dif)/1000 479 

PSA_results$inmb20 <- ((PSA_results$qaly_dif * 20000) - 480 
PSA_results$cost_dif)/1000 481 

PSA_results$inmb21 <- ((PSA_results$qaly_dif * 21000) - 482 
PSA_results$cost_dif)/1000 483 

PSA_results$inmb22 <- ((PSA_results$qaly_dif * 22000) - 484 
PSA_results$cost_dif)/1000 485 
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PSA_results$inmb23 <- ((PSA_results$qaly_dif * 23000) - 486 
PSA_results$cost_dif)/1000 487 

PSA_results$inmb24 <- ((PSA_results$qaly_dif * 24000) - 488 
PSA_results$cost_dif)/1000 489 

PSA_results$inmb25 <- ((PSA_results$qaly_dif * 25000) - 490 
PSA_results$cost_dif)/1000 491 

PSA_results$inmb26 <- ((PSA_results$qaly_dif * 26000) - 492 
PSA_results$cost_dif)/1000 493 

PSA_results$inmb27 <- ((PSA_results$qaly_dif * 27000) - 494 
PSA_results$cost_dif)/1000 495 

PSA_results$inmb28 <- ((PSA_results$qaly_dif * 28000) - 496 
PSA_results$cost_dif)/1000 497 

PSA_results$inmb29 <- ((PSA_results$qaly_dif * 29000) - 498 
PSA_results$cost_dif)/1000 499 

PSA_results$inmb30 <- ((PSA_results$qaly_dif * 30000) - 500 
PSA_results$cost_dif)/1000 501 

PSA_results$inmb31 <- ((PSA_results$qaly_dif * 31000) - 502 
PSA_results$cost_dif)/1000 503 

PSA_results$inmb32 <- ((PSA_results$qaly_dif * 32000) - 504 
PSA_results$cost_dif)/1000 505 

PSA_results$inmb33 <- ((PSA_results$qaly_dif * 33000) - 506 
PSA_results$cost_dif)/1000 507 

PSA_results$inmb34 <- ((PSA_results$qaly_dif * 34000) - 508 
PSA_results$cost_dif)/1000 509 

PSA_results$inmb35 <- ((PSA_results$qaly_dif * 35000) - 510 
PSA_results$cost_dif)/1000 511 

PSA_results$inmb36 <- ((PSA_results$qaly_dif * 36000) - 512 
PSA_results$cost_dif)/1000 513 

PSA_results$inmb37 <- ((PSA_results$qaly_dif * 37000) - 514 
PSA_results$cost_dif)/1000 515 

PSA_results$inmb38 <- ((PSA_results$qaly_dif * 38000) - 516 
PSA_results$cost_dif)/1000 517 

PSA_results$inmb39 <- ((PSA_results$qaly_dif * 39000) - 518 
PSA_results$cost_dif)/1000 519 

PSA_results$inmb40 <- ((PSA_results$qaly_dif * 40000) - 520 
PSA_results$cost_dif)/1000 521 

PSA_results$inmb41 <- ((PSA_results$qaly_dif * 41000) - 522 
PSA_results$cost_dif)/1000 523 
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PSA_results$inmb42 <- ((PSA_results$qaly_dif * 42000) - 524 
PSA_results$cost_dif)/1000 525 

PSA_results$inmb43 <- ((PSA_results$qaly_dif * 43000) - 526 
PSA_results$cost_dif)/1000 527 

PSA_results$inmb44 <- ((PSA_results$qaly_dif * 44000) - 528 
PSA_results$cost_dif)/1000 529 

PSA_results$inmb45 <- ((PSA_results$qaly_dif * 45000) - 530 
PSA_results$cost_dif)/1000 531 

#calculating number of trials that are cost-effective given willingness to 532 
pay 533 

wtprange<-c(seq(0,45000,1000)) 534 

#per_ce<-c(rep(0,length(wtprange))) 535 

#manually changed length to allow for additional CEAC estimates to ensure 536 
there is not a 'kink' in the graph 537 

per_ce<-c(rep(0,length(67))) 538 

ceac<-data.frame(wtprange, per_ce) 539 

ceac$per_ce[1] <- (sum(PSA_results$inmb0 >= 0, na.rm=TRUE)/n_trials) 540 

ceac$per_ce[2] <- (sum(PSA_results$inmb1 >= 0, na.rm=TRUE)/n_trials) 541 

ceac$per_ce[3] <- (sum(PSA_results$inmb2 >= 0, na.rm=TRUE)/n_trials) 542 

ceac$per_ce[4] <- (sum(PSA_results$inmb3 >= 0, na.rm=TRUE)/n_trials) 543 

ceac$per_ce[5] <- (sum(PSA_results$inmb4 >= 0, na.rm=TRUE)/n_trials) 544 

ceac$per_ce[6] <- (sum(PSA_results$inmb5 >= 0, na.rm=TRUE)/n_trials) 545 

ceac$per_ce[7] <- (sum(PSA_results$inmb6 >= 0, na.rm=TRUE)/n_trials) 546 

ceac$per_ce[8] <- (sum(PSA_results$inmb7 >= 0, na.rm=TRUE)/n_trials) 547 

ceac$per_ce[9] <- (sum(PSA_results$inmb8 >= 0, na.rm=TRUE)/n_trials) 548 

ceac$per_ce[10] <- (sum(PSA_results$inmb9 >= 0, na.rm=TRUE)/n_trials) 549 

ceac$per_ce[11] <- (sum(PSA_results$inmb10 >= 0, na.rm=TRUE)/n_trials) 550 

ceac$per_ce[12] <- (sum(PSA_results$inmb11 >= 0, na.rm=TRUE)/n_trials) 551 

ceac$per_ce[13] <- (sum(PSA_results$inmb12 >= 0, na.rm=TRUE)/n_trials) 552 

ceac$per_ce[14] <- (sum(PSA_results$inmb13 >= 0, na.rm=TRUE)/n_trials) 553 
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ceac$per_ce[15] <- (sum(PSA_results$inmb14 >= 0, na.rm=TRUE)/n_trials) 554 

ceac$per_ce[16] <- (sum(PSA_results$inmb15 >= 0, na.rm=TRUE)/n_trials) 555 

ceac$per_ce[17] <- (sum(PSA_results$inmb16 >= 0, na.rm=TRUE)/n_trials) 556 

ceac$per_ce[18] <- (sum(PSA_results$inmb17 >= 0, na.rm=TRUE)/n_trials) 557 

ceac$per_ce[19] <- (sum(PSA_results$inmb18 >= 0, na.rm=TRUE)/n_trials) 558 

ceac$per_ce[20] <- (sum(PSA_results$inmb19 >= 0, na.rm=TRUE)/n_trials) 559 

ceac$per_ce[21] <- (sum(PSA_results$inmb20 >= 0, na.rm=TRUE)/n_trials) 560 

ceac$per_ce[22] <- (sum(PSA_results$inmb21 >= 0, na.rm=TRUE)/n_trials) 561 

ceac$per_ce[23] <- (sum(PSA_results$inmb22 >= 0, na.rm=TRUE)/n_trials) 562 

ceac$per_ce[24] <- (sum(PSA_results$inmb23 >= 0, na.rm=TRUE)/n_trials) 563 

ceac$per_ce[25] <- (sum(PSA_results$inmb24 >= 0, na.rm=TRUE)/n_trials) 564 

ceac$per_ce[26] <- (sum(PSA_results$inmb25 >= 0, na.rm=TRUE)/n_trials) 565 

ceac$per_ce[27] <- (sum(PSA_results$inmb26 >= 0, na.rm=TRUE)/n_trials) 566 

ceac$per_ce[28] <- (sum(PSA_results$inmb27 >= 0, na.rm=TRUE)/n_trials) 567 

ceac$per_ce[29] <- (sum(PSA_results$inmb28 >= 0, na.rm=TRUE)/n_trials) 568 

ceac$per_ce[30] <- (sum(PSA_results$inmb29 >= 0, na.rm=TRUE)/n_trials) 569 

ceac$per_ce[31] <- (sum(PSA_results$inmb30 >= 0, na.rm=TRUE)/n_trials) 570 

ceac$per_ce[32] <- (sum(PSA_results$inmb31 >= 0, na.rm=TRUE)/n_trials) 571 

ceac$per_ce[33] <- (sum(PSA_results$inmb32 >= 0, na.rm=TRUE)/n_trials) 572 

ceac$per_ce[34] <- (sum(PSA_results$inmb33 >= 0, na.rm=TRUE)/n_trials) 573 

ceac$per_ce[35] <- (sum(PSA_results$inmb34 >= 0, na.rm=TRUE)/n_trials) 574 

ceac$per_ce[36] <- (sum(PSA_results$inmb35 >= 0, na.rm=TRUE)/n_trials) 575 

ceac$per_ce[37] <- (sum(PSA_results$inmb36 >= 0, na.rm=TRUE)/n_trials) 576 

ceac$per_ce[38] <- (sum(PSA_results$inmb37 >= 0, na.rm=TRUE)/n_trials) 577 

ceac$per_ce[39] <- (sum(PSA_results$inmb38 >= 0, na.rm=TRUE)/n_trials) 578 

ceac$per_ce[40] <- (sum(PSA_results$inmb39 >= 0, na.rm=TRUE)/n_trials) 579 

ceac$per_ce[41] <- (sum(PSA_results$inmb40 >= 0, na.rm=TRUE)/n_trials) 580 
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ceac$per_ce[42] <- (sum(PSA_results$inmb41 >= 0, na.rm=TRUE)/n_trials) 581 

ceac$per_ce[43] <- (sum(PSA_results$inmb42 >= 0, na.rm=TRUE)/n_trials) 582 

ceac$per_ce[44] <- (sum(PSA_results$inmb43 >= 0, na.rm=TRUE)/n_trials) 583 

ceac$per_ce[45] <- (sum(PSA_results$inmb44 >= 0, na.rm=TRUE)/n_trials) 584 

ceac$per_ce[46] <- (sum(PSA_results$inmb45 >= 0, na.rm=TRUE)/n_trials) 585 

par(mar=c(1,1,1,1)) 586 

#par("mar") 5.1 4.1 4.1 2.1 587 

plot(ceac$wtprange,ceac$per_ce, type="l", ylim=c(0,1), col="black", lwd=2, 588 
xlab="Willingness to Pay (£)", ylab="Probability Cost-effective", main="Cost-589 
effectiveness Acceptability Curve") 590 

#export to excel 591 

writexl::write_xlsx(ceac, "ceac.xlsx") 592 

percent_CE_20 <- (sum(PSA_results$inmb20 >= 0, na.rm=TRUE)/n_trials)*100 593 

percent_CE_30 <- (sum(PSA_results$inmb30 >= 0, na.rm=TRUE)/n_trials)*100 594 

NE <-sum(PSA_results$cost_dif>= 0 & PSA_results$qaly_dif>= 0, na.rm=TRUE) 595 

NW <- sum(PSA_results$cost_dif>= 0 & PSA_results$qaly_dif<= 0, na.rm=TRUE) 596 

SE <- sum(PSA_results$cost_dif<= 0 & PSA_results$qaly_dif>= 0, na.rm=TRUE) 597 

SW <- sum(PSA_results$cost_dif<= 0 & PSA_results$qaly_dif<= 0, na.rm=TRUE) 598 

PSA_results$qaly_difpp <- (PSA_results$qaly_dif)/1000 599 

PSA_results$cost_difpp <- (PSA_results$cost_dif)/1000 600 

#exporting the results 601 

writexl::write_xlsx(PSA_results, "incremental_nmb.xlsx") 602 

#plotting per person incremental 603 

#find out range of x variable to ensure plot is correct 604 

range(PSA_results$qaly_difpp) 605 

#-0.02891131  0.10872687 606 

ceacplot <- ggplot(data=PSA_results,aes(y=cost_difpp))+ 607 

  geom_point(aes(x=qaly_difpp),color="blue")+ 608 
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  geom_vline(xintercept=0,color="grey", size=1)+ 609 

  geom_hline(yintercept=0,color="grey", size=1)+ 610 

  xlim(-0.03,0.2)+ 611 

  xlab("Incremental QALYs")+ 612 

  ylab("Incremental Costs")+ 613 

  ggtitle("")+ 614 

  theme(plot.title = element_text(hjust = 0.5)) 615 

ceacplot + geom_abline(intercept = 0, slope = 20000, color="black", 616 
linetype="solid", size=1) 617 

#Average costs: 618 

mean(DPP_costs$total_costs) 619 

#31862639 620 

mean(withoutDPP_costs$total_costs) 621 

#31998394 622 

#Average QALYs: 623 

mean(DPP_qalys$total_qalys) 624 

#10806.61 625 

mean(withoutDPP_qalys$total_qalys) 626 

#10765.8 627 

#Average incremental net benefits 628 

#20,000 WTP 629 

mean(PSA_results$inmb20) 630 

#951.9416 631 

#30,000 WTP 632 

mean(PSA_results$inmb30) 633 

#1360.035 634 

#Number of monte carlo simulations that are cost-effective 635 

ceac$per_ce[21] 636 
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#98.08% 637 

ceac$per_ce[31] 638 

#98.42%  639 
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Table A4.7: Completed CHEERS (2022) checklist. 

 Item Guidance for Reporting Reported in section 

TITLE  

Title 1 Identify the study as an economic evaluation and specify the 
interventions being compared 

Title (manuscript version) 

ABSTRACT  

Abstract  2 Provide a structured summary that highlights context, key methods, 
results and alternative analyses.  

Abstract (manuscript version) 

INTRODUCTION  

Background and 
objectives  

3 Give the context for the study, the study question and its practical 
relevance for decision making in policy or practice.  

4.1. Introduction, 4.2.4. Context for model 
development 

METHODS  

Health economic  
analysis plan  

4 Indicate whether a health economic analysis plan was developed 
and where available.  

Availability of data and materials 

Study population  5 Describe characteristics of the study population (such as age range, 
demographics, socioeconomic, or clinical characteristics).  

4.2.5.1. Interventions Analysed, 4.2.5.3. Model 
Parameters 

Setting and location  6 Provide relevant contextual information that may influence findings.  4.1. Introduction, 4.2.4. Context for model 
development 

Comparators  7 Describe the interventions or strategies being compared and why 
chosen.  

4.2.5.1. Interventions Analysed 

 

Perspective  8 State the perspective(s) adopted by the study and why chosen.  4.2. Methods 

Time horizon  9 State the time horizon for the study and why appropriate.  4.2.5.6. Cost-effectiveness Analysis 

Discount rate  10 Report the discount rate(s) and reason chosen.  2.5 NHS DPP Effectiveness 
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 Table A4.7: Completed CHEERS (2022) checklist. (Continued) 

 Item Guidance for Reporting Reported in section 

Selection of outcomes  
11 Describe what outcomes were used as the measure(s) of benefit(s) 

and harm(s).  
4.2.5.4. Costs & Outcomes 

Measurement of  
outcomes  

12 Describe how outcomes used to capture benefit(s) and harm(s) 
were measured.  

4.2.5.4. Costs & Outcomes 

Valuation of outcomes  13 Describe the population and methods used to measure and value 
outcomes.  

4.2.5.4. Costs & Outcomes 

Measurement and 
valuation of resources 
and costs  

14 Describe how costs were valued.  4.2.5.4. Costs & Outcomes 

Currency, price date, 
and conversion  

15 Report the dates of the estimated resource quantities and unit 
costs, plus the currency and year of conversion.  

4.2.5.4. Costs & Outcomes 

Rationale and 
description of model  

16 If modelling is used, describe in detail and why used. Report if the 
model is publicly available and where it can be accessed.  

4.2. Methods 

Model code available from Github 

Analytics and  
assumptions  

17 Describe any methods for analysing or statistically transforming 
data, any extrapolation methods, and approaches for validating any 
model used.  

4.2.5.3. Model Parameters, Supplementary 
Material 

Characterizing 
heterogeneity  

18 Describe any methods used for estimating how the results of the 
study vary for sub-groups.  

Not applicable 

Characterizing 
distributional effects  

19 Describe how impacts are distributed across different individuals or 
adjustments made to reflect priority populations.  

Not applicable 

Characterizing  
uncertainty  

20 Describe methods to characterize any sources of uncertainty in the 
analysis.  

4.2.5.8. Sensitivity Analyses 

 

 



 

 
 

2
1
7 

Table A4.7: Completed CHEERS (2022) checklist. (Continued) 

 Item Guidance for Reporting Reported in section 

Approach to 
engagement with 
patients and others 
affected by the study  

21 Describe any approaches to engage patients or service recipients, 
the general public, communities, or stakeholders (e.g., clinicians or 
payers) in the design of the study.  

Availability of data and materials: wider project 
protocol (manuscript version) 

RESULTS  

Study parameters  22 Report all analytic inputs (e.g., values, ranges, references) 
including uncertainty or distributional assumptions.  

Table 4.2 

Summary of main  
results  

23 Report the mean values for the main categories of costs and 
outcomes of interest and summarise them in the most appropriate 
overall measure.  

Table 4.3, Table 4.4 

Effect of uncertainty  24 Describe how uncertainty about analytic judgments, inputs, or 
projections affect findings. Report the effect of choice of discount 
rate and time horizon, if applicable.  

Table 4.6 

4.3.1.2. Sensitivity Analyses 

Effect of engagement 
with patients and others 
affected by the study  

25 Report on any difference patient/service recipient, general public, 
community, or stakeholder involvement made to the approach or 
findings of the study.  

Not reported 

DISCUSSION  

Study findings, 
limitations, 
generalizability, and 
current knowledge  

26 Report key findings, limitations, ethical or equity considerations not 
captured, and how these could impact patients, policy, or practice.  

4.4.1. Strengths and limitations 

Source of funding  27 Describe how the study was funded and any role of the funder in 
the identification, design, conduct, and reporting of the analysis  

Author’s declaration 

Funding statement (manuscript version) 

Conflicts of interest  28 Report authors conflicts of interest according to journal or  

International Committee of Medical Journal Editors requirements.  

Conflicts of Interest (manuscript version) 
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