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Beneficial reversals of dominance reduce the costs of genetic trade-offs and can
enable selection to maintain genetic variation for fitness. Beneficial dominance
reversals are characterized by the beneficial allele for a given context (e.g. habi-
tat, developmental stage, trait or sex) being dominant in that context but
recessive where deleterious. This context dependence at least partially miti-
gates the fitness consequence of heterozygotes carrying one non-beneficial
allele for their context and can result in balancing selection that maintains
alternative alleles. Dominance reversals are theoretically plausible and are sup-
ported by mounting empirical evidence. Here, we highlight the importance of
beneficial dominance reversals as a mechanism for the mitigation of genetic
conflict and review the theory and empirical evidence for them. We identify
some areas in need of further research and development and outline three
methods that could facilitate the identification of antagonistic genetic vari-
ation (dominance ordination, allele-specific expression and allele-specific
ATAC-Seq (assay for transposase-accessible chromatin with sequencing)).
There is ample scope for the development of new empirical methods as well
as reanalysis of existing data through the lens of dominance reversals. A
greater focus on this topic will expand our understanding of the mechanisms
that resolve genetic conflict and whether they maintain genetic variation.
1. Introduction
Explaining the maintenance of genetic variation has been a mainstay pursuit in
evolutionary biology since the modern synthesis [1–9]. One mechanism of particu-
lar interest is genetic trade-offs. A genetic trade-off occurs when alternative alleles
are expressed in more than one context (i.e. habitat, developmental stage, trait or
sex) with differing fitness effects between contexts. Alleles that are unambiguously
beneficial across contexts can be fixed by positive directional selection. Those
alleles that are unambiguously deleterious can be removed from the population.
However, selection can maintain genetic variation when it favours alternative
alleles in alternative contexts (e.g. antagonistic pleiotropy [10–13], sexually antag-
onistic selection [14,15], and some forms of spatially or temporally varying
selection [16–19]) or can at least prolong the loss of additive genetic variance
since antagonistic alleles will have longer transit times to fixation than uncondi-
tionally beneficial/deleterious alleles [15]. There is abundant evidence consistent
with antagonistic genetic variation underlying some proportion of variance in
fitness or its components due to trade-offs between alternative life history traits
[20–25], tissue types [26,27], sexes [28–39], environments or generations [40–44].

Until and unless the lower net-fitness allele of these antagonistic poly-
morphisms is lost, this form of genetic variation will impose a genetic load
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[2,45–48] on population mean fitness, as selection is either maintaining or slowing the loss of alleles that harm the fitness of some
individuals in some context(s). Theoretical and empirical evidence suggest there is strong selection pressure to resolve this form of
genetic conflict [49–51].

One mechanism that partially resolves the genetic load imposed by antagonistic genetic variation is beneficial reversals of dom-
inance, where alternative antagonistic alleles are dominant in their beneficial context and recessive in their deleterious context
[10,14,17–19,52]. For example, a dominance reversed sexually antagonistic polymorphism would entail the female-beneficial
(male-detrimental) allele having dominant fitness effects in heterozygous females but recessive fitness effects in heterozygous
males, and the reverse for the male-beneficial (female-detrimental) allele. Similarly, under antagonistic pleiotropy between survival
and reproduction, a heterozygous individual would have the harmful effects of each allele masked by fitness benefits of the other
allele, one having dominant benefits to survival but recessive harmful effects on reproduction and vice versa for the other allele.
Hence, context-dependent dominance reversals partially resolve the genetic conflict by allowing heterozygous individuals to be
closer in fitness to that of the preferred homozygous genotype of each context, improving context-specific (and hence population)
mean fitness – a reduction in the genetic load. Note that even complete dominance reversals cannot completely resolve the genetic
conflict, as there will always be some homozygotes in the ‘wrong’ contexts.

Whereas other forms of resolving genetic trade-offs such as gene duplication [53–56], sex-linkage [57–59] and epigenetics [60,61]
may result in the loss of genetic variation, partial resolution by dominance reversal actually promotes the maintenance of the poly-
morphism [62]. Dominance reversal results in marginal overdominance (a net heterozygote advantage when averaged across
contexts) or potentially overdominance (true heterozygote advantage) when the genetic trade-off is between individual fitness com-
ponents [10], as in the Soay sheep ([24]; details in Empirical examples). Higher (mean) heterozygote fitness stabilizes the
polymorphism and can deterministically maintain this form of genetic variation for fitness ([10,14,17–19,52]). The strength of selec-
tion to resolve genetic trade-offs hinges on whether the cost of the conflict (magnitude of genetic load) is great enough and therefore
the degree to which they have already been (partially) resolved by competing mechanisms [53]. For example, a dominance reversal
that partially resolves a genetic trade-off would reduce the strength of selection for a gene duplication at that same polymorphic locus
[53]. Hence, the timescales and constraints surrounding dominance reversals relative to other forms of resolution are likely highly
consequential to the fate of genome architecture, genetic load, genetic variation and the adaptive potential of the population.

Early scepticism over the plausibility of dominance reversals [12,63,64] may have delayed our understanding of this fundamen-
tal concept, but likely stemmed from the limited empirical evidence prior to the last decade [65,66]. For example, alternative
variants of Est-4 in Drosophila mojavensis were shown to preferentially hydrolyze alternative esters and the heterozygotes faintly
resemble the more efficient homozygote on each substrate [67] (table 1). Similarly, alternative LDH allozyme variants in the
fish Fundulus heteroclitus showed opposite substrate affinity in alternative temperatures and heterozygote enzyme activity
resembles the more efficient homozygote in each temperature [68] (table 1). And heterozygous amylase activity in D. melanogaster
was closer to the low-activity homozygote in starch food and closer to the high-activity homozygote in normal food [69] (table 1).
While these examples may seem only distantly related to organismal fitness in nature, recent empirical evidence is more
convincing, putting dominance reversal back in the spotlight.

In this review, we describe the theory of dominance reversals, their ability to partially resolve genetic conflicts and their
relationship to genetic variation. We then highlight empirical examples consistent with dominance reversals across several subdis-
ciplines. Finally, we provide a forward look at identifying dominance reversals using quantitative genetics and gene expression
analyses. Taken together, dominance reversals are not only plausible but supported by accumulating theory and empirical evi-
dence, and their ability to partially resolve genetic trade-offs could render tests of dominance reversal (paired with validation
tests) a powerful complement to existing methods of identifying antagonistic polymorphisms in the genome.
2. Evolutionary causes of dominance reversals
The plausibility of dominance reversals starts with the plausibility of antagonistic polymorphisms. A direct extension of Fisher’s geo-
metric model [79–82] shows that for relatively well-adapted populations, the relatively rare instance of a mutation that would improve
fitness in one context would tend to reduce fitness in a second context (assuming similar fitness landscapes between contexts and no
mutational biases) [83–85]. Hence, antagonistic polymorphisms can readily arise but will tend to be unstable if simply additive.

Whether an antagonistic polymorphism is dominance reversed, or can become dominance reversed before it is lost, is clearly
important and raises the question of how dominance reversals arise. The simplest answer is that antagonistic polymorphisms may
be inherently dominance reversed – an inevitable outcome of overlapping and concave fitness functions (figure 1). Theory suggests
that fitness functions are generally curved in the vicinity of their optima and that beneficial alleles should be dominant [83,86–90],
with modest empirical support [91–96] (but see [97–100]). Hence, for a trait with context-antagonistic effects on fitness, a de facto
dominance reversal will ensue at the underlying polymorphism(s) as long as the fitness functions overlap in their concave vicin-
ities (figure 1d, (iii); [17,19,88,101,102]). Still, the shape of the fitness landscape cannot be taken for granted. For example, two
fitness functions could very plausibly overlap in their convex vicinities (e.g. overlapping tails of two Gaussian curves), sometimes
resulting in net underdominance (heterozygote inferiority; electronic supplementary material, figure S1e,v,vi), which would desta-
bilize the polymorphism and rapidly fix one or the other alleles [47]. Whether the overlap between two real fitness functions occurs
in their linear (figure 1c), concave (figure 1d) or convex (electronic supplementary material, figure S1e) portions can only be resolved
by empirical estimates of context-specific fitness functions. But dominance reversals need not rely on curved phenotype–fitness
relationships since they can apparently be dominance reversed already at the phenotypic level (figure 1b), as in many of the empirical
examples we discuss below (table 1). Note, however, that trait-level dominance reversals may or may not be dominance reversed for
fitness, per se, depending on how the phenotype maps to fitness. In principle, dominance reversals at the phenotypic level could occur



Table 1. Empirical evidence for beneficial reversals of dominance.

study species evidence context data method analysis

Zouros and Van

Delden [67]

Drosophila

mojavensis

single locus environments phenotypic crossing scheme enzyme assay

Place and Powers

[68]

Fundulus

heteroclitus

single locus environments phenotypic crossing scheme enzyme assay

Matsuo and

Yamazaki [69]

Drosophila

melanogaster

single locus environments phenotypic crossing scheme enzyme assay

Via et al. [70] Acyrthosiphon

pisum

polygenic environments fitness crossing scheme statistical modelling

Posavi et al. [43] Eurytemora affinis polygenic environments fitness

component

crossing scheme statistical modelling

Chen et al. [71] Drosophila

melanogaster

polygenic environments gene

expression

transcriptomic allele-specific expression

Johnston et al.

[24]

Ovis aries single locus traits fitness

component

pedigree/GWAS* statistical modelling

Le Poul et al. [72] Heliconius numata inversion /

polygenic

traits phenotypic crossing scheme image analysis

Gautier et al. [73] Harmonia axyridis single locus traits phenotypic crossing scheme image analysis

Mérot et al. [74] Coelopa frigida inversion traits / sexes fitness

component

experimental

evolution

statistical modelling/

numerical simulations

Jardine et al. [75] Drosophila

melanogaster

single locus traits fitness

component

genomics/

phenotyping

statistical modelling

Barson et al. [35] Salmo salar single locus sexes fitness

component

capture-recapture/

GWAS*

statistical modelling

Grieshop and

Arnqvist [36]

Callosobruchus

maculatus

polygenic sexes fitness crossing scheme dominance ordination

Pearse et al. [76] Oncorhynchus

mykiss

inversion sexes fitness

component

capture-recapture statistical modelling

Geeta Arun et al.

[77]

Drosophila

melanogaster

polygenic sexes fitness

component

experimental

evolution

statistical modelling

Mishra et al. [78] Drosophila

melanogaster

polygenic sexes gene

expression

transcriptomic allele-specific expression

* = genome wide association study.
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due to traits being threshold-like (non-linear genotype–phenotype relationship) [103], or could arise due to the explicit action of a
dominance modifier [62].

A dominance modifier could be any genetic or epigenetic process that can affect the dominance properties between alleles at an
otherwise additive polymorphism. Unlike the de facto dominance reversals owing to the shape of the fitness landscape, a dominance
modifier conferring a beneficial reversal of dominance would need to evolve in concert with the antagonistic polymorphism somehow.
For example, a feature of a pre-existent neutrally evolving regulatory network conducive to dominance reversed gene regulation could
potentially facilitate an antagonistic mutation invading and sweeping to some intermediate equilibrium frequency, but there is currently
no empirical or theoretical precedent for this. Instead, this has been approached from the starting assumption that an additive antag-
onistic polymorphism already exists with a sufficiently high frequency of heterozygotes. In that case, as Spencer and Priest [62] have
demonstrated under sexually antagonistic selection, a dominance modifier mutation that partially resolves the genetic conflict of the
additive antagonistic polymorphism is adaptive and will invade. This partial mitigation of the fitness costs paid by heterozygotes
for carrying one of the deleterious alleles for their sex subsequently stabilizes the antagonistic polymorphism [62]. This theory is an
extension of Otto and Bourguet’s [104] theory, and the concept ultimately dates back more than 100 years, even prior to (but including)
the classical Fisher-Wright debate [62,105,106].

There are two outstanding issues with dominance reversals owing to a modifier. The first is that they either have to pre-date
the antagonistic mutation (as described above) or rely on a sufficiently high proportion of heterozygotes at an additive
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Figure 1. Graphical representation of beneficial dominance reversals. Circles versus triangles represent alternative sexes, environments or generations (antagonistic
pleiotropy scenarios not shown). We first map genotype to trait expression under two scenarios: (a) additivity for the phenotype, and (b) dominance reversal for the
phenotype. Then we map trait expression to fitness under two scenarios of antagonistic selection: (c) additivity for fitness and (d ) curved fitness functions over-
lapping in their concave vicinities. The ultimate effect of a genotype on fitness is given by the combination of the genotype-phenotype map (a or b) and the
phenotype-fitness map (c or d ) in the matrix of resultant genotype-fitness panels (i–iv): (i) additivity, (ii) dominance reversal owing to the genotype-phenotype
map or (iii) owing to the phenotype-fitness map, and (iv) a greater magnitude of dominance reversal owing to their combined effects. See electronic supplementary
material, figure S1 for varying parameter settings, convex fitness functions, heterozygote inferiority, etc.
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antagonistic polymorphism (since the strength of selection for a modifier is roughly proportional to the probability of finding it in
a heterozygote for the antagonistic site) [62,104]. But as discussed, most additive antagonistic polymorphisms will be progressing
toward fixation for one or the other allele, so there may only be a narrow window of opportunity for a mutant dominance modifier
to invade before drift or selection causes the antagonistic polymorphism to be lost. The second issue is that it is unclear what real-
life gene regulatory phenomena might constitute a dominance modifier of this sort, which could bear consequence on its ability to
evolve before the polymorphism is lost or whether there could be pre-existent neutrally evolving conditions conducive to
beneficial dominance reversal. Below, we provide a biophysically explicit proof-of-concept for what a dominance modifier
could look like and analyse its evolution using forward-time individual-based population genetic simulations (box 1; electronic
supplementary material S2). Our example is a starting point for a theoretical approach that would be useful in assessing
both of these outstanding issues, as well as whether antagonistic selection on a phenotype can maintain genetic variation [109],
whether dominance reversals compete with gene duplications [110] or other forms of resolution, and evaluating patterns in
empirical data [78].
3. Evolutionary consequences of dominance reversals
Evidence of antagonistic genetic variation does not imply that the underlying polymorphisms would be maintained indefinitely under
antagonistic balancing selection –most likely will not. While antagonistic mutations are inevitable (see previous section), to maintain an
antagonistic polymorphism when the allelic effects on fitness are strictly additive (as in figure 1i) would require very strong and/or
symmetric antagonistic selection between contexts [10,12,14,18,19,52,111]. However, even a partial dominance reversal would already
cause a drastic expansion in the range of selection coefficients in each context that would deterministically maintain the polymorphism,
including weak and/or asymmetric selection between contexts. This stabilizing effect of dominance reversal holds for genetic trade-offs



Box 1. Dominance modifier

An allele of a transcription factor polymorphism can be dominant by having a lower mismatch to the downstream binding
site or by having greater allele-specific concentration, either of which give a greater fractional occupancy of the binding site
[107]. In the three-part linear regulatory network below, the sex-limited regulatory stimulus, D, and Genes A and B are all
unlinked, whereas the protein-coding domains of Genes A and B, Ai and Bi, are linked to their respective cis-regulatory bind-
ing sites, ai and bi. Only ai and bi are allowed to mutate. The protein-coding domain of Gene A harbours a sexually
antagonistic polymorphism with male- and female-benefit alleles, A1 and A2, that, respectively, decrease and increase the
expression level of Gene B, [B]. Those alleles are sexually antagonistic because the standardized [B], w, is under additive sexu-
ally antagonistic selection (as in figure 1c). (We note there is precedent for gene expression levels showing opposite sign
correlations with male versus female fitness in D. melanogaster [108]).

sex = male

fi
tn

es
s

[Ai]

[B]

D

mDα

mAβ

A1

A2
αi

βi

βi

ϕ (standardized [B])

αi

A B

sex = female

Arbitrarily, A2 is intrinsically dominant over A1 due to having a lower mismatch to the downstream substrate bi and
therefore, a greater fractional occupancy of that binding site, all else equal. But A1 can be effectively dominant over A2 if
it can achieve a greater fractional occupancy via increased allele-specific concentration, [Ai], determined as:

[Ai] / ½D�=kmDa(sex, ai)

1þ 2½D�=kmDa(sex, ai)

� �
, ðB:1Þ

where [D] is the concentration of the sex-limited regulatory stimulus, k is the stepwise change in the dissociation constant for
D binding to ai, and mDa(sex, ai) is the proportion of mismatched nucleotides between D and ai as a function of sex and ai.
That is, in a heterozygous genotype a1A1=a2A2, mutations in a1 that reduce mDa(male, a1) relative to mDa(male, a2) will
increase the relative concentration of the linked male-benefit allele, A1, in males.

Allowing these gene regulatory networks to evolve in forward-time individual-based population genetic simulations
(electronic supplementary material S2) revealed that:

1. Selection favours the adaptive aiAi haplotypes that enable heterozygous males and females to plastically adjust the [B] toward their sex-specific fitness
optima (electronic supplementary material, figure S2.4) because it partially resolves the genetic conflict (electronic supplementary material, figure S2.5),

2. This dominance reversal in turn tends to maintain the focal sexually antagonistic polymorphism (electronic supplementary material, figure S2.2),

3. The ‘dominance modifier’ ai cannot act alone and relies on the surrounding regulatory network, and

4. Our focal polymorphism exhibited a pattern of reversed allele-specific expression between the sexes (electronic supplementary material, figure S2.6) – a
detectable signature of dominance reversal [78].
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between fitness components of individuals [10], between sexes [14,52] and between temporally and spatially varying environments
[17–19,112] (especially in conjunction with other stabilizing mechanisms [113]).

The stability of a partially dominance reversed antagonistic polymorphism owes to the same phenomenon that renders dom-
inance reversal a resolution to conflict: the improved mean fitness of the heterozygotes. That is, above-intermediate mean
heterozygote fitness not only improves population mean fitness (resolution of conflict) but it also increases the proportion of het-
erozygotes, which helps both alleles stay in circulation. When the alternative contexts of a genetic trade-off are not experienced by
a single individual (e.g. sexes, environments, generations) this above-intermediate fitness of heterozygotes is a net heterozy-
gote advantage at the population level (marginal overdominance) [14,18,19], with the highest-fitness individuals still being the
homozygotes in their preferred contexts (figure 1(ii–iv)). In cases where the alternative contexts are components of an individual’s
fitness (i.e. antagonistic pleiotropy) a dominance reversal can potentially result in true heterozygote advantage (overdominance)
[10,24]. Indeed, evidence for overdominance may represent cases of dominance reversed antagonistic pleiotropy upon closer
inspection, as in [24] (table 1; details in Empirical examples).

Whether overdominance or marginal overdominance, the consequence is an expansion of the range of selection coefficients that
would result in stable antagonistic polymorphism in the face of random genetic drift and/or imbalances in the strength of selection
between contexts [10,14,17–19,52]. This expansion of the parameter space is especially impressive for small selection coefficients
[52] such as those expected on average for each of the many loci presumed to underlie fitness and continuous traits [114]. As indir-
ect empirical support for this notion, hundreds of SNPs (single nucleotide polymorphisms) with sexually antagonistic effects on
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fitness in D. melanogaster were significantly more likely to be trans-species polymorphisms shared with D. simulans relative to a
randomly selected set of frequency-matched control sites [37], meaning that most of these sexually antagonistic polymorphisms
arose prior to the speciation event between the two and were maintained over approximately one million years in both species
ever since, which is highly unlikely to have occurred if they were simply additive.
ietypublishing.org/journal/rspb
Proc.R.Soc.B

291:20232816
4. Empirical examples
Surprisingly, few studies have explicitly set out to test for dominance reversals. We gathered empirical evidence consistent with
dominance reversals spanning several subdisciplines. In addition to the early evidence presented in the Introduction, below we
highlight more recent examples of environment-specific, trait-specific, sex-specific and multi-context dominance reversals.
These examples emphasize the different methodologies, forms of evidence and subdisciplines that share this common interest.
Most do not directly relate dominance reversal to the resolution of genetic conflict but rather to dominance reversal assisting
the maintenance of antagonistic genetic variation; however, we note that the latter is owing to the former.

(a) Environment-specific dominance reversal
Posavi et al. [43] found evidence consistent with an environment-specific dominance reversal in the invasive copepod Eurytemora
affinis (table 1). They derived two inbred strains from each of two high- and low-salinity environments and crossed them in a sex-
specific full diallel cross [115] to compare survival of the within- versus between-environment F1 offspring in each salinity environ-
ment. They found that while the within-environment crosses showed substantially lower survival in their ‘wrong’ salinity
environments, the between-environment heterozygotes exhibited high survival in both salinities. Assuming high- and low-salinity
adaptation in this system in largely governed by the same loci (though it may well not be), these results are consistent with dom-
inance reversals maintaining genetic variation under antagonistic selection between environments. This finding is like the scenario
depicted in figure 1b, which could facilitate the maintenance of genetic variation by spatially antagonistic selection. Via et al. [70]
identify a similar example looking at the potential for ecological speciation between two populations of pea aphid (Acyrthosiphon
pisum) that were alternatively adapted to alfalfa and clover (table 1). F1 heterozygotes showed above-intermediate breeding values
for fitness (per capita offspring/adult) on each host [70]. This dominance reversal is for an estimate of fitness and would likely
generate marginal overdominance and balancing selection on the underlying polymorphisms [70], but the results are also consist-
ent with heterosis (hybrid vigour) owing to divergent sets of unconditionally deleterious alleles between populations (see [102]).

Chen et al. [71] used allele-specific expression in two D. melanogaster strains and reared their F1 hybrids in hot or cold temp-
eratures to identify the dominance of parental alleles under different temperature environments. They identified 1384 genes in
which the opposite parental strain allele was dominant in the hot versus cold environment. However, because they assessed dom-
inance by comparing F1 hybrid effects to each homozygous parent, the inferred dominance effects could be due to background
genetic differences between inbred parental strains. Still, some of these candidate genes likely do represent dominance reversals
for expression and this set of genes exhibit patterns that are reminiscent of our dominance modifier model (Box 1). For example, we
model a transcription factor polymorphism (Box 1) and their list of 1384 genes was enriched for 13 different transcription factor
binding sites [71]. Two of those 13 transcription factors were themselves putatively dominance reversed [71]. One transcription
factor (mip120) exhibited cis-regulatory variation in the hot environment but cis- and trans-regulatory variation in the cold environ-
ment [71], which is consistent with our model of a dominance reversed transcription factor in that it requires the interplay between
its cis-regulatory binding sites and a trans-acting regulatory stimulus (Box 1, electronic supplementary material S1). We note, how-
ever, that none of these putative dominance reversals have any known relationship to fitness or its components.

(b) Trait-specific dominance reversal
Johnston et al.’s [24] study of the gene RXFP2 in wild Soay sheep (Ovis aries) shows how true overdominance for fitness can emerge
from dominance reversed fitness components under antagonistic pleiotropy. Homozygous Ho+Ho+ males have relatively high
reproductive success and low survival, while HoPHoP males have relatively low reproductive success and high survival. Hetero-
zygous males have nearly equal reproductive success to Ho+Ho+ males and nearly equal survival to HoPHoP males, which combine
to yield overdominance for fitness [24] (table 1). This scenario of overdominance for fitness can occur when the genetic trade-off is
between fitness components that combine to determine an individual’s total fitness, even in the absence of overdominance for the
fitness components ([10]). Jardine et al. [75] likewise identified a case of antagonistic pleiotropy between survival and reproduction
likely acting to maintain short (S) and long (L) alleles of the classic fruitless ( fru) gene in D. melanogaster. The 43 bp polymorphic
indel was in a 1 kb region of the genome with elevated nucleotide diversity and Tajima’s D (genomic signatures consistent with
long-term balancing selection). Follow-up experiments showed that S/S flies had greater male mating success and lower larval
survival relative to the L allele in its hemizygous arrangement (i.e. L/-, which we note is not the ideal comparison). Heterozygotes
tended to have equally high male mating success to S/S flies, but also equally high larval survival to L/- flies (table 1). Hence, the
beneficial allele for each trait was dominant for that trait’s expression in heterozygotes.

Colour hierarchies can result in alternative alleles being dominant for alternative colour patches, which can be thought of as
different traits. For example, Le Poul et al. [72] investigated the individual genes lying within a super gene that underly a mimicry
polymorphism for wing colour pattern with important fitness consequences in the butterfly Heliconius numata. All eight within-
population allele-pairs studied show opposite parental alleles being dominant for different colour patches in F1 offspring [72]. Per-
haps the clearest case of a dominance reversal between colour patches is between the tar and arc alleles, where the tar allele is
dominant to the arc allele with respect to its large black patch but recessive with respect to its white patch [72]. These dominance
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reversals may assist the stable maintenance of these widespread and persistent mimicry polymorphisms by limiting the production
of intermediate, non-mimetic individuals [72]. In a similar case, Gautier et al. [73] show that harlequin ladybird beetles (Harmonia
axyridis) with alternative cis-regulatory alleles of the pannier gene have distinct colour patterns on their elytra, and their heterozygous
offspring exhibit a unique colour pattern owing to alternative alleles being dominant in some colour patches but recessive in others
(table 1). This dominance reversal may contribute to the maintenance of alternative pannier alleles [73], as alternative colour variants
seem to be subject to seasonally fluctuating natural and sexual selection [116].

(c) Sex-specific dominance reversal
One of the turning points in the growing appreciation for dominance reversals came from Barson et al.’s [35] study of the VGLL3
gene in Atlantic salmon (Salmo salar), which explains 39% of phenotypic variation in age at sexual maturity. Alternative early- (E)
and late-development (L) alleles are under sexually antagonistic selection with males preferring the former and females the latter,
but heterozygous male and female development resembles that of the EE and LL homozygous genotype, respectively [35]. While
this may depend on population- and age-specific genetic architecture [117,118], it nevertheless may still partially resolve the gen-
etic conflict between the sexes over this life history trait. In another example of a life history trait under sexually antagonistic
selection, Geeta Arun et al. [77] revealed a polygenic signal of dominance reversal by challenging replicate populations of D. mel-
anogaster to evolve in response to pathogenic infection. After 65–75 generations of experimental evolution, the progeny of crosses
between populations both within and between treatments were challenged to survive infection. The between-treatment male and
female progeny were not perfectly intermediate between the within-infected and within-control crosses, rather, female heterozy-
gotes exhibited above-intermediate survivorship (closer to that of the infected group) while males showed below-intermediate
survivorship [77]. The results were consistent across all four replicate pairs of the experimental evolution program, suggesting
a trade-off between immunocompetence and some other fitness-related trait in males. Both studies represent examples of a sex-
specific dominance reversal at the phenotypic level (as in figure 1b), which would likely assist in the stable maintenance of the
underlying genetic variation via sexually antagonistic selection.

Grieshop & Arnqvist [36] uncovered a polygenic signal of sex-specific dominance reversal for fitness in seed beetles (Calloso-
bruchus maculatus). They used a full diallel cross among 16 strains and obtained replicated estimates of sex-specific competitive
lifetime reproductive success for all combinations. They then used the ‘array covariances’ [115,119] to order the strains by how
dominant their fixed allelic variation was relative to one another, separately for the male and female data. They found a negative
genetic correlation between the male and female dominance ordination among strains, implying that strains’ fixed genetic vari-
ation tended to be dominant to that of other strains in one sex but recessive to that of other strains when measured in the
opposite sex, a polygenic signal of sex-specific dominance reversal for fitness [52]. Mishra et al.’s [78] recent study of allele-specific
expression in D. melanogaster also identified evidence of polygenic sex-specific dominance reversal. In 176 of 3796 quality-con-
trolled genes, opposite alleles were significantly more highly expressed in opposite sexes (with as many as 26/176 representing
false positives) [78]. This sex-specific dominance reversal for expression is consistent with a pattern predicted by our model
(Box 1, electronic supplementary material, figure S1.6), but as with Chen et al.’s [71] study these have no known relationship to
fitness or its components.

(d) Multi-context dominance reversal
The final two studies we highlight both identified dominance reversals in major-effect autosomal inversion polymorphisms that
underlie life history traits with sex-specific fitness optima. Both examples involve the interplay between life history trade-offs,
environmental effects and sex- or trait-specific dominance reversals combining to consequently maintain genetic variation at
these fitness-determining inversions. Pearse et al. [76] investigated a large supergene (Omy05) in rainbow trout (Oncorhynchus
mykiss), where the ancestral and rearranged alleles represent a polymorphism that underlies an alternative migratory-based repro-
ductive strategy subject to environmentally dependent and sexually antagonistic selection [76,120,121]. They found that the
statistical model of best fit to explain their capture-recapture data was one that allowed for sex-specific dominance, which has
therefore likely assisted in the maintenance of this major-effect multivariate antagonistic polymorphism for approximately 1.5
million years [76]. Similarly, Mérot et al. [74] examined a large inversion in the seaweed fly Coelopa frigida. The allelic effects of
this inversion represent an environmentally dependent survival/reproduction trade-off that results in overdominance for fitness
(as with other examples above), with their experimental evolution data suggesting that the overdominance emerges not only due
to varying strengths and directions of dominance effects between life history traits but also between the sexes [74]. These examples
highlight how multiple forms of antagonistic selection and dominance reversal can act in concert to maintain genetic variation.
5. Detecting signatures of dominance reversals
It is a longstanding problem to confidently detect antagonistic balancing selection using traditional methods [113,122–127] driving
various creative analyses of polygenic signals [37,38,108,128–131]. For example, Ruzicka et al.’s [37] GWAS would have overlooked
many sexually antagonistic SNPs (none being significant after Bonferroni correction) if not for reducing their significance threshold
and testing for trans-species polymorphism (see end of Evolutionary consequences section, above). Their method was optimized
for detecting additive signals [37], meaning that the effects would have needed to be strong enough and/or additive enough to be
detected through the noise of the unmodelled dominance effects predicted of such sites. Interestingly, there is very little overlap
between Ruzicka et al.’s [37] list of candidate sexually antagonistic genes and Mishra et al.’s [78] list of genes with dominance
reversed allele-specific expression between the sexes, suggesting the methods may complement one another. Similarly, Grieshop
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& Arnqvist [36] saw only a modest signal of additive sexually antagonistic effects using traditional quantitative genetic variance
partitioning, but a definitive and strong signature of sex-reversed dominance ordination among strains using the same data. We
propose that tests for dominance reversal – the signature of partially resolved antagonistic polymorphisms – paired with follow-up
fitness validation tests would offer a powerful complementary approach to methods that aim to detect additive signals of antag-
onistic polymorphisms.

Besides those of the empirical examples above (table 1), three methods of testing for dominance reversals seem particularly
promising: dominance ordination, allele-specific expression and allele-specific ATAC-Seq (assay for transposase-accessible chroma-
tin with sequencing). While this list does not capture all potential approaches (e.g. [132,133]), we believe it represents some of the
most promising newer methods. There are likely many existing datasets in the medical and agricultural literature that are ripe for
reanalysis through the lens of dominance reversal using one or more of these methods.

Dominance ordination (explained in greater detail in electronic supplementarymaterial S2) uses the ‘array covariances’ obtained from
quantitative genetic data of a full diallel cross [115,119] to ordinate a panel of inbred strains from thosewhose fixed allelic variation (aver-
aged across the genome) is mostly dominant over that of the other strains to those whose fixed alleles are mostly recessive to that of the
other strains [36]. This process can be done separately for alternative contexts. The null expectation for underlying loci is that alternative
alleles are either unconditionally dominant or unconditionally recessive, which would cause the strains to be in approximately the same
orderalong thedominant-recessive continuum inboth contexts. This null expectationwould bedetectable as a positive genetic correlation
between contexts among the strain-specific array covariances ([36]; electronic supplementary material, figure S3.2C). By contrast, a nega-
tive cross-context genetic correlation among the array covarianceswould indicate that strains tend to be fixed for alleles that are dominant
in one context but recessive in the other ([36]; electronic supplementarymaterial, figure S3.2D), meaning that the underlying polymorph-
isms are dominance reversed. This method is currently best used as a quantitative genetic test of dominance reversal and does not reveal
the causal polymorphisms underlying the signal. Possible avenues for further development of this method include extending it to other
breeding designs and pedigree data [115] and/or applying the dominance ordination step at the level of chromosomes, linkage-blocks, or
SNPs rather than strains or families.

By contrast, allele-specific expression analyses can identify specific genes with dominance reversed expression between alterna-
tive life stages, traits, tissues, sexes or environments. Sites with context-dependent allelic imbalance in expression represent
candidate regions of the genome harbouring antagonistic polymorphisms, where further work would be required to identify can-
didate SNPs or indels as well as to validate their effects on fitness or fitness traits. We note that many allele-specific expression
studies utilize crosses between compatible species because it increases the number of mRNA reads that can be confidently distin-
guished as having been inherited from one parent or the other (see below), but such data would not be relevant to the concept of
dominance reversals resolving genetic conflicts (or maintaining genetic variation), as many of the variable sites would represent
fixed differences between species. There are broadly two alternative allele-specific expression designs to identify dominance rever-
sals: the ‘F1 hybrids’ approach and the ‘common reference’ approach [134]. Under both designs, transcriptomic reads from
maternally and paternally inherited alleles can be identified and quantified by mapping F1 heterozygote reads back to both par-
ental genotype-specific reference genomes [78,134]. Careful quality control and data filtering must be applied to rule out
confounding parental effects and other sources of mapping bias (see [78]).

Once completed, relative read coverage between alternative alleles reveals allele-specific expression, and reversed allelic imbalance
between contexts represents dominance reversed gene expression (electronic supplementary material, figure S2.6). Genes should only
be considered as true positive reversals of allelic imbalance if the magnitude of allelic imbalance is significant in both contexts inde-
pendently. A statistically significant allele-by-context interaction term could include genes that exhibit allelic imbalance in one
context but not the other, which would indicate context-dependent dominance but not a dominance reversal, per se. This method
could be enhanced by using long-read technologies such as PacBio, Oxford Nanopore or Iso-Seq [135–139] or linked-read sequencing
applied to transcriptomic data [140] to better assign reads to the correct parental genome. In principle, single-cell technologies [137,141]
could be integrated within the allele-specific expression methods to reveal the full atlas of genes that are dominance reversed across all
tissue types.

ATAC-Seq could potentially reveal dominance reversed non-coding regions of the genome. ATAC-Seq identifies the genome-wide
regions of organized DNA (i.e. chromatin) that are ‘open’ for transcription (i.e. euchromatin) by sequencing only the unwound euchro-
matin to build a database of active loci [142,143]. ATAC-Seq requires less tissue, time, troubleshooting and cost than CHIP-seq, while
providingmore information on the active loci, promoters and enhancers genome-wide. Since the euchromatin or heterochromatin state
of DNA varies across contexts [144], allele-specific ATAC-Seq [145] could in principle reveal non-coding regions that are dominance
reversed for transcriptional availability, including loci that may regulate dominance reversed allele-specific gene expression (such as
the cis-regulatory binding sites in Box 1, S2). ATAC-Seq also reveals transcription factor binding site motifs [146] that could be inte-
grated with the analysis of allele-specific expression data [145] to identify the regulatory networks that govern dominance reversed
gene expression. These results could be assessed for the extent to which certain regulatory networks are predisposed to maintaining
antagonistic polymorphisms via dominance reversal and could be evaluated across different classes of genetic trade-offs to assess the
extent of overlap in regulatory sites and networks that are conducive to maintaining polymorphisms under different forms of antag-
onistic selection. Again, dominance reversed allele-specific expression and ATAC-Seq findings would have no functional or fitness
basis on their own and should be interpreted with caution and/or validated by manipulative experimentation.
6. Conclusion
Beneficial reversals of dominance partially resolve genetic conflicts by improving population mean fitness, with the consequence
of maintaining genetic variation. Studying whether different mechanisms compete or coordinate with dominance reversal to
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resolve genetic conflict has important implications for the evolution of genetic architecture and maintenance of genetic variation.
Antagonistic genetic variation is likely to be enriched for dominance reversals because non-dominance reversed antagonistic poly-
morphisms are sensitive to being lost by drift or unequal strengths of selection between contexts. We suggest that dominance
ordination, allele-specific expression and allele-specific ATAC-Seq represent promising methods of testing for these signatures of
dominance reversal that are predicted to accompany antagonistic polymorphisms. There is ample scope for developing methods
to identify signatures of dominance reversal and there are likely also many suitable datasets that already exist. We hope this article
reignites research interest in dominance reversal as it bears broad and pivotal consequences to several areas of evolutionary biology.
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