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Abstract: Mathematical modelling of visco-elastic plate breaking and consequent deflection of the
plate are studied using the simplified formulation. The plate is modelled as a thin visco-elastic
plate of constant thickness. The edges of the plate are clamped. The plate deflection is caused by a
uniform aerodynamic pressure, which slowly increases in time. The plate deflection before breaking
is approximated as quasi-static. The plate breaks instantly then and there, when and where the
modified fracture criterion by Petrov and Morozov is achieved. Both the deflections and velocities of
the plate before and after breaking are assumed equal.The motion of the plate parts after breaking
are highly unsteady and dependent on the viscous properties of the plate. If the viscosity of the
plate material is negligible compared with the elastic characteristics of the plate, then the velocity
of the plate deflection is discontinuous at the time instant of the plate breaking. This feature of the
plate motion after its breaking should be taken into account in interpretation of the numerical results
within the linearised model of plate deflection with sudden breaking. It is shown that the plate can
break in a cascade way. Each part after the first breaking breaks again. The configuration studied
in this paper is specially tailored to highlight the behaviour of the numerical solutions of the plate
breaking problems in applications.

Keywords: fluid structure interaction; elastic plate fracture; initial stage

1. Introduction

The present study is motivated by vertical impact of a rigid body onto a floating
ice floe with subsequent breaking the floe. It two-dimensional formulation, this problem
was studied in [1] for visco-elastic homogeneous plate of constant thickness before the
plate breaking. Korobkin and Khabakhpasheva [2] investigated the problem of vertical
impact onto a floating plate with a central crack, which is normal to the plate surface. The
plate was modelled as rigid outside the crack. The crack was modelled by a torsional
spring. The stress intensity factor for the crack was not allowed to be greater than the ice
fracture toughness. If the stress intensity factor approaches the fracture toughness value,
the crack grows in such a way that the stress intensity factor is either below or equal to
the fracture toughness of the plate material. The problem was reduced to a non-linear
ordinary differential equation of the second order for the opening angle of the crack. The
calculations were terminated when the crack length achieved 90% of the plate thickness.
Recently this study was generalised to a crack in a visco-elastic thin plate. Two criteria of
the plate breaking were used. These criteria are based on the concept of stress intensity
factor for the crack tip and the concept of yield strain. The crack was modelled by a
torsional spring as in [2,3]. Only the criterion of the plate breaking based on the concept
of the yield strain of the plate material was used for cracks longer than 90% of the plate
thickness. The plate was assumed to break instantly when the strain at the place of the
crack achieves the yield strain value. This model of visco-elastic plate breaking is highly
simplified. However, it is expected to be suitable for practical calculations of impact loads
experienced by a ship navigating in icy waters and loads experienced by a lifeboat launched
in water covered with ice floes. The impact loads are dependent on behaviour of ice floes
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during the impact and its possible breaking, see [4] for discussions. The model of ice floe
breaking by vertical impact should be developed further by using laboratory experiment in
well controlled conditions. We are unaware of such experiments with floating ice plates
with or without pre-existing cracks for vertical impact on the plates, in contrast to extensive
experimental studies of horizontal impact by ice floes onto offshore structures and ships.
On the other hand, models of breaking ice floes should be simplified further in a robust
way, leading to practical tools of estimating impact loads in real life situations, see [5] for
general formulation of the problem.

In order to be sure that our model of vertical impact onto an ice floe with its breaking
is reliable, we need to check that the numerical results provided by the model are not
affected by the numerical algorithm in use. Preliminary results for the problem of rigid
body impact onto a floating visco-elastic plate with account for the plate breaking into two
parts obtained by the normal mode method with accurate calculations of the added mass
matrices before and after the plate breaking, see [6,7], showed that the plate speed exhibits a
discontinuity close to the place of the plate breaking, even though the numerical algorithm
requires the plate speed continuity at the time instant of the plate breaking. The instant of
the plate breaking is critical for the subsequent interaction of the impacting rigid body with
the ice plate. Correct understanding of the plate motion after breaking is important for the
prediction of the impact loads. To gain knowledge about the visco-elastic plate motion after
its breaking, we formulate in this paper a problem which mimics the breaking process and
can be solved analytically with analysis of the solution in full detail. This problem was
inspired by the configuration studied in [8], where impact onto a floating plate between
two vertical walls was considered.

The simplified problem of highly unsteady two-dimensional motion of a thin visco-
elastic plate after the plate breaking by a uniform slowly time-varying load is formulated as
follows. Initially the plate is horizontal and corresponds to the interval y = 0, −L < x < L,
see Figure 1a. The plate edges are clamped. Then a uniform load is applied to the upper
surface of the plate. One can think about a sealed air chamber above the plate, see Figure 1a,
where the air pressure is gradually increased up to a certain value pcr, at which the plate
deflection and the bending stresses in the plate are so high that the plate breaks into two
parts but the air chamber continues to be sealed. The load magnitude p increases slowly
in time, such that the plate deflection is quasi-stationary. The plate deflection w(x) before
the plate breaks is governed by the equation Dwiv = −p, where |x| < L and D is the plate
rigidity, with the edge conditions w(±L) = w′(±L) = 0. The solution of this boundary
problem, w(x), is even and smooth. It is given by the formula, w(x) = w(0)(1− x2/L2)2,
where w(0) = −pL4/(24D). The strains on the plate surface are given by the formula,
ε(x) = ± 1

2 hw′′(x) = ∓2hw(0)L−2(1− 3x2/L2), where h is the plate thickness. The strain
magnitude |ε(x)| is maximum at the plate edges x = ±L and have its local maximum
|ε(0)| at the plate centre, x = 0. Note that ε(±L) = −2ε(0).

The strains linearly increase with increase of the air pressure p within the linear
model of plate deflection. The material of the plate is assumed brittle. According to
the phenomenological failure criterion, the plate breaks suddenly then and there, when
and where the strain approaches the so-called uniaxial tensile strain εt of the material.
Note that this failure criterion depends on the value of εt, which does not affect the plate
dynamics in elastic regime and can be different in different parts of the plate. For example,
ultimate tensile strength of ice is in the range 0.7–3.1 MPa. With Young’s modulus of ice
E = 4.2× 109 Pa, we find εt in the range 1

6 × 10−3 − 1
1.2 × 10−3, which well corresponds

to the result by Schulson [9], who wrote “ice breaks after lengthening 0.01–0.1% through
transgranular cleavage”.

To model plate breaking far from its edges, we assume that the ultimate tensile strength
of the plate is constant in the central part of the plate, where |x| < 2L/3, and then increase
linearly towards the plate ends. The corresponding tensile strain εt(x) is equal to a constant
ε∗t in |x| < 2L/3 and is ε∗t [1 + 12(|x|/L− 2/3)], where 2L/3 < |x| < L. We assume that
such non-uniform ultimate tensile strength of the plate material does not affect the plate
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rigidity D. Such a plate breaks at the middle, where the strains have their local maximum,
but not at the support edges x = ±L, where the strains are higher than at the plate centre,
but the plate material is stronger. The selected tensile strain εt(x) is motivated by our
original problem of a plate, which is broken in its inner part but not at its edge. These types
of floating ice breaking are observed under vertical impact onto an ice floe [1], floating ice
interaction with sloped structures [10], and level ice failure by an icebreaker [11].

Figure 1. Sketch of the clamped plate broken by the air pressure; (a) Initial horizontal position of the
plate with the air pressure inside the chamber being equal to the external ambient pressure, (b) shape
of the plate before its first breaking, (c) dynamical shape of the plate after the first breaking but before
the second one, (d) the second breaking of the plate without increase of the the pressure.

Comparing the strain at the plate centre, ε(0) = −2hw(0)L−2 = pL2h/(12D), with
the tensile strain ε∗t there, we find the critical value of the air pressure pcr = 12Dε∗t /(L2h).

The time, when the air pressure achieves this critical value, is taken as t = 0. We
assume that at this time instant the plate breaks instantly into two parts, −L < x < 0 and
0 < x < L, with the edges at x = ±0 being free of stresses and shear force, wxx = wxxx = 0
where x = ±0. We do not account here for separation of the edges. We do not account also
for leakage of the air through the gap between the two parts of the plate assuming that the
air chamber is sealed. The air pressure in the chamber does not change after the plate breaks.
We shall determine the motion of the visco-elastic plate after its breaking. In particular, it
will be shown that the plate breaks second time after the first break without increase of
the air pressure. This implies that cascade mechanism of plate breaking is possible. The
studied configuration and the conditions of plate breaking are highly simplified with the
aim to reveal features of the plate motion after its breaking.

2. Formulation of the Problem

The plate deflection, w(x, t), after breaking, t > 0, is an even function of x. We consider
only the right plate, 0 < x < L. The small deflections of this thin visco-elastic plate are
governed by the equations [12,13]

m
∂2w
∂t2 + D

(
1 + τ

∂

∂t

)∂4w
∂x4 = −pcr (0 < x < L, t > 0),

wxx = wxxx = 0 (x = 0, t > 0),
w = wx = 0 (x = L, t > 0)

(1)

w(x, 0) = w(0)
(

1− x2

L2

)2
, wt(x, 0) = 0,

where m is the mass of the plate per unit area, pcr is a constant critical air pressure at
which the plate breaks (it was determined above), and τ is the retardation time of the plate
material. The initial conditions in the problem (1) imply that both the plate deflections and
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speeds are continuous at the breaking instant. Note that the plate speed before the plate
breaking was negligible because of the slow time-varying pressure.

Without account for both the damping, τ = 0, and a failure criterion after t = 0, the
plate oscillates without decay around its static deflection. The solution of the problem (1)
tends to the static deflection, w∞(x) = w(0)[(x/L)4− 4(x/L)+ 3], as t→ ∞ and τ > 0. The
corresponding static strain distribution in the right plate is given by ε∞(x) = −3ε∗t (x/L)2.
The module of this strain is greater than the tensile strain εt(x) of the plate material in
1/
√

3 < x/L < 7/9. Therefore, within the present failure model, the static deflection
w∞(x) cannot be achieved. The plate will break again with the time t2 and position x2
of the new breaking to be determined by the unsteady solution of the problem (1). After
the secondary breaking, we have two free-free plates, −x2 < x < 0 and 0 < x < x2, and
two cantilever plates, −L < x < −x2 and x2 < x < L. For each of these four plates we
can formulate unsteady problems similar to (1), in order to find the motions of the plates
after the secondary breaking. Third and subsequent breaks of the plate are possible in the
present simplified problem, as well as in more complex problems of impact onto a floating
visco-elastic plate. The problem (1) can be solved formally for any t > 0, but we should
terminate the solution when the failure criterion is satisfied.

Note that the initial and boundary conditions at x = 0 in the problem (1) do not match
each other. This implies that the strains and deflections close to t = 0 and x = 0 are locally
self-similar. We do not consider this interesting problem here. This observation shows
that some numerical difficulties are expected near the breaking place, where derivatives
of the deflections and strains both in time and along the plate can be high. Interestingly,
the duration of this self-similar initial stage is proportional to the retardation time τ and
decays as τ → 0. In general, the idea that any damping makes a solution smooth, is
wrong for unsteady problems, see [1], where the damping model used in (1) increases the
impact loads.

It will be shown below that the plate velocity wt(x, t) changes rapidly during an early
stage just after the breaking near the free-free edge, x = 0, for small τ. This property of the
solution should be taken into account in numerical integration in time of the plate equation
just after the plate breaking. The problem (1) is solved by the method of normal modes.
The solution is obtained in the form of a series, terms of which are given by analytical
formulae. However, this does not help because the convergence of the series for strains is
weak for any τ. The convergence can be improved by analysing asymptotic behaviour of
the coefficients in the series. However, this technique does not work for small times of order
τ. There are still open problems with the plate motion just after the plate breaking. Later in
time, when we approach the secondary breaking, our solution allows us to investigate the
plate deflection and strains in the plate and plate velocities after the plate breaking with
high accuracy.

3. Solution of the Problem

The problem (1) is solved in the dimensionless variables denoted with tilde,

x = Lx̃, w = w(0)W(x̃, t̃), t = tsc t̃, τ̃ =
τ

tsc
, tsc = m

L4

D
. (2)

The dimensionless deflection W(x̃, t̃) satisfies the following equations (tilde is dropped
below)

∂2W
∂t2 +

(
1 + τ̃

∂

∂t

)∂4W
∂x4 = 24 (0 < x < 1, t > 0),

Wxx = Wxxx = 0 (x = 0), W = Wx = 0 (x = 1). (3)

W(x, 0) = (1− x2)2,
∂W
∂t

(x, 0) = 0 (0 < x < 1),

The solution of the problem (3) depends on a single positive parameter τ̃, which is the
ratio of the retardation time τ and the time scale tsc of the natural plate vibration.
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The problem (3) is solved using the normal modes of a cantilever beam ψn(x), which
are the non-zero solutions of the spectral problem

d4ψn

dx4 = λ4
nψn(x) (0 < x < 1), ψn(1) = ψ′n(1) = 0, ψ′′n (0) = ψ′′′n (0) = 0, (4)

where λn are the eigenvalues of the spectral problem (4) , n ≥ 1 and λn+1 > λn. The modes
ψn(x) are orthogonal and normalised as

1∫
0

ψn(x)ψm(x)dx = δnm, (5)

where δnm = 0 for n 6= m and δnn = 1. The modes are given by

ψn(x) = qn{(1− e−λn θ−n ) sin(λnx)− (1 + e−λn θ+n ) cos(λnx)−

tanh λn × e−λnx − sin λne−λn(1−x)}, (6)

qn =
1

|θ−n − e−λn |
, θ±n = sin λn ± cos λn,

where λn are positive roots of the dispersion equation,

cos λn = − 1
cosh λn

. (7)

It can be shown that λn = π
2 (2n− 1) + (−1)n+1δn, n ≥ 1, where δn satisfies the equation

δn = arcsin
( 1

cosh λn

)
. (8)

Equation (8) is solved by iterations starting from the initial guess δn = 0. Note that δn
tends to zero exponentially as n→ ∞.

The initial deflection of the plate W(x, 0) can be presented as a superposition of the
normal modes,

(1− x2)2 =
∞

∑
n=1

an0ψn(x), (9)

where

an0 = λ−4
n (4ψ′n(0) + cn), cn = 24

1∫
0

ψn(x)dx =
24
λ4

n
ψ′′′n (1). (10)

Equations (6) and (10) yield

cn = −48qn

λn
(θ+n + e−λn), an0 =

8qn

λ3
n
(1− e−λn θ−n ) +

cn

λ4
n

. (11)

Within the normal mode method, the plate deflection is sought in the form,

W(x, t) =
∞

∑
n=1

an(t)ψn(x), (12)

with time-dependent coefficients an(t) to be determined. Substituting (12) in the plate
Equation (3) and using the orthogonality condition (5), we have

d2 ân

dt2 + λ4
n(ân + τ̃

dân

dt
) = 0 (t > 0), ân(0) = an0 −

cn

λ4
n

,
dân

dt
(0) = 0, (13)
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where ân = an(t)− cn/λ4
n. The solutions of (13) are different for small and large n.

For small n, where 1
2 τ̃λ2

n = κn < 1, we obtain

ân(t) = (an0 −
cn

λ4
n
)e−κnλ2

nt
{

cos(Ωnt) +
κnλ2

n
Ωn

sin(Ωnt)
}

, (14)

with Ωn = λ2
n
√

1−κ2
n. For κn > 1, we have

ân(t) =
(

an0 −
cn

λ4
n

) 1

1− k(2)n /k(1)n

(
e−k(2)n t − k(2)n

k(1)n

e−k(1)n t
)

, (15)

where k(1)n = κnλ2
n(1 + µn), k(2)n = (2/τ̃)(1 + µn)−1, µn =

√
1−κ−2

n . Note that k(1)n =

O(n4) and k(2)n → 1/τ̃ as n → ∞. For τ̃ = 0, only solution (14) is used. Therefore,
ân(t) = O(n−3) and â′n(t) = O(n−3) as n→ ∞ for any τ̃ ≥ 0. This implies that the present
mechanism of structural damping does not increase the rate of decay of the coefficients
an(t) in (12) as n→ ∞.

4. Analysis of the Solution

The solution of the problem (3) depends on a single parameter of the problem τ̃. Small
values of τ̃ imply that the retardation time τ is much smaller than the time scale tsc defined
in (2). The dimensionless deflection at the breaking place of the plate, x = 0, is shown in
Figure 2 as a function of the dimensionless time t for different values of the parameter τ̃.
The deflections and velocities of the plate are computed with 1000 terms retained in the
series (12) and the dimensionless time step 10−4. The static deflection of this edge of the
plate is 1 at the time of breaking and 3 for large time, see the formulation of the problem (1).
The unsteady solution (12), (14) and (15) slowly approaches the limiting value 3 for large τ̃
without oscillations. For τ̃ < 0.5 overshooting is observed. The unsteady plate deflection
at x = 0 arrives at the static deflection 3 at t = 2 for τ̃ = 0.5.

Figure 2. Displacements of the plate edge W(0, t) after the plate breaking at t = 0 as functions of the
dimensionless time for the dimensionless retardation times τ̃ = 0.4, 0.5, 1, 2, 5.

For smaller values of the dimensionless retardation time τ̃ the maximum displacement
of the free edge exceed the static deflection of the edge, which is equal to 3, see Figure 3. For
example, the maximum deflection of the edge for τ̃ = 0.1 is 4 and it is achieved at t = 0.9.
The unsteady deflection for τ̃ = 0.01 oscillates around the static deflection with slow decay.
Without damping, τ̃ = 0, the edge oscillates without decay with maximum dimensionless
deflection being around 5. The speed of the plate edge quickly increases after the plate
breaking to its maximum and then decays for τ̃ ≥ 0.5, see Figure 4. Oscillations of the plate
edges occur for τ̃ ≤ 0.4. For smaller retardation times, see Figure 5, the acceleration of the
plate edge after breaking increases with decrease of τ̃. An interesting effect is observed
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shortly after the plate breaking, see Figure 6. The velocity of the broken edge becomes
discontinuous at t = 0 when τ̃ → 0. Therefore, the present damping model reduces the
edge acceleration after the the plate breaks. The velocities of the plate at points x = 0.2 and
x = 0.1 as functions of the dimensionless time are shown in Figures 7 and 8. Note that the
velocities and displacements are positive in the direction of the external load action. It is
seen that different points of the plate move in different directions during the very early
stage after the plate breaks.

Figure 3. Displacements of the plate edge W(0, t) after the plate breaking for small values of the
dimensionless retardation time τ̃ = 0.4, 0.1, 0.01, 0.

Figure 4. Dimensionless velocity of the plate edge Wt(0, t) after the plate breaking t > 0 for large
values of the dimensionless retardation time τ̃ = 0.4, 0.5, 1, 2, 5.

Figure 5. Dimensionless velocity of the plate edge Wt(0, t) after the plate breaking for small values of
the dimensionless retardation time τ̃ = 0.4, 0.1, 0.05, 0.02.



J. Mar. Sci. Eng. 2022, 10, 833 8 of 11

Figure 6. Dimensionless velocity of the plate edge Wt(0, t) shortly after after the plate breaking for
very small values of the dimensionless retardation time τ̃ = 0.01, 0.005, 0.001, 0.0005.

Figure 7. Dimensionless velocity of the plate at x = 0.2 shortly after after the plate breaking for very
small values of the dimensionless retardation time τ̃ = 0.001, 0.005, 0.0005.

Figure 8. Dimensionless velocity of the plate near the free-free edge, x = 0.1, shortly after the plate
breaking t > 0 for very small values of the dimensionless retardation time τ̃ = 0.001, 0.005, 0.0005.

The strain ε(x, t) in the plate after its breaking is given in the dimensionless variables
by the formula

ε(x, t) = −1
4

ε∗t Wxx(x, t). (16)

Calculations of the second derivative, Wxx(x, t), require the second derivatives ψ′′n (x)
of the normal modes. Note that ψ′′n (x) = O(λ2

n) and ân(t) = O(λ−3
n ) as n→ ∞. Therefore
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the terms in the series for Wxx(x, t) and, correspondingly for the strain ε(x, t) decay as
O(λ−1

n ). This means that the series for Wxx(x, t) cannot be evaluated numerically without a
special treatment of its convergence. Convergence of such series can be improved in several
ways. In the present study we use the modified fracture criterion suggested by Petrov
and Morozov [14]. They argued that the maximum values of elastic strains at a certain
point of the structure and at a given time instant are not enough to conclude about a crack
initiation in the structure and its following failure. They suggested that an averaged, both
in time and space, strain should be used as a measure of the structural failure. The time
and space intervals of averaging are related to the so-called fracture incubation time t f and
the characteristic size l of a fracture zone, which could be reasonable to select as the plate
thickness for thin plates. A review of this modified fracture criterion can be found in [1].

To demonstrate the modified fracture criterion, we select the interval of space aver-
aging l = 0.01 and the incubation time t f = 0.001 in the dimensionless variables. The
averaged strains in the plate read

ε̄(x, t) =
1
l

x+l∫
x

1
t f

t+t f∫
t

ε(x0, t0)dt0dx0 (17)

and the modified fracture criterion is

|ε̄(x, t)| < εt(x, t). (18)

Combing Equations (12) and (16)–(18), we conclude that the plate breaks then and
there, when and where the inequality

εt(x, t)− 1
4

ε∗t

∣∣∣ ∞

∑
n=1

1
t f

t+t f∫
t

an(t0)dt0 ×
1
l
[ψ′n(x + l)− ψ′n(x)]

∣∣∣ > 0 (19)

is violated. The scaled strain distributions, ε̄(x, t)/ε∗t , along the plate, 0 < x < 1, at
different time instants are shown in Figures 9 and 10 for τ̃ = 0.01. Here l = 0.01 and t f = 0.
The displacement of the plate free edge for such dimensionless retardation time is shown
in Figure 3 by green line. Figure 9 illustrates quick changes in the strains after the plate
break. It is seen that the solution by the normal mode method does not satisfy the condition
of zero stress at x = 0 up to t = 0.05, which is of order of τ̃. For such an initial stage,
an inner solution near the free edge is required. Later, at t = 0.1, the strains are rather
released even near the clamped edge of the plate, see blue line in Figure 9. Then the strains
start to increase with rapid changes in time between t = 0.2 and t = 0.4. At t = 0.35 the
fracture condition (19) is violated. This implies that at this time the plate breaks at x = 2/3,
on the border between the weak inner part of the plate and stronger plate part near the
edge, where the plate is clamped. Therefore, our solution (12) can be used only in the
interval 0 < t < 0.35. Then the plate beaks again. We can continue our calculations of the
plate motion—actually, motions of parts of the original continuous plate—by formulating
boundary problems similar to (1) for the intervals 0 < x < 2/3 and 2/3 < x < 1. It is
possible that the plate breaks then third time near the clamped edge. The plate pieces
close to the plate centre are free-free plates, which are not expected to break due to their
vibrations after the secondary breaking.
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Figure 9. Scaled strain distributions for small times after the plate breaking.

Figure 10. Scaled strain distributions near the time instant, when the plate breaks second time.

5. Conclusions

The motion of a visco-elastic plate after it breaks into two parts has been studied using
the normal mode method within the simplified model. The model allows the analytical
solution of the problem but, at the same time, has main properties of the practical problems
of a rigid body impact onto a floating ice floe. In this simplified problem, the plate breaks
due to the air pressure, which slowly increases in time up to the plate breaking. The fracture
criterion, which accounts for fracture incubation time, characteristic size of the fracture
zone, and the uni-axial tensile strain of the plate material has been used. The plate breaks
instantly then and there, when and where the fracture criterion is achieved. The uni-axial
tensile strain was constant in the central part of the plate and then was increasing linearly
towards the plate edges. It was shown that the motion of the plate after breaking depends
on a single dimensionless parameter, which is the dimensionless retardation time of the
plate material. If this parameter decreases, the acceleration of the plate near the breaking
place increases leading to discontinuity of the plate speed in time at the breaking instant.
This observation gives the idea that the obtained solution should be considered as an
outer solution for small values of the dimensionless retardation time. An inner solution is
required to describe the plate motion near the breaking point. The size of the vicinity of the
breaking point, where the inner solution is applicable, is of the order of the dimensionless
retardation time. The inner solution is expected to be self-similar. The composed solution of
the present problem for small dimensionless retardation time will be studied in future work
to help with the numerical solutions of elastic plate breaks in the case of materials with low
viscosity. The present solution will be also generalized to other edge conditions and other
loading in order to be applicable to practical problems of breaking floating ice floes.
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The obtained analytical solution of the elastic plate breaking problem in the simplified
formulation was investigated in detail. The analysis revealed that numerical solutions of
practical problems involving breaking of elastic plates are expected to predict unbounded
accelerations of the plates at the time instant of breaking. Processes with unbounded
accelerations are difficult to simulate. These numerical difficulties are caused by simplified
modelling of plate fracture as pure brittle.
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