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ABSTRACT
BACKGROUND Machine learning (ML) models have been proposed to predict risk related to transvenous lead extraction (TLE).

OBJECTIVE The purpose of this study was to test whether integrating imaging data into an existingMLmodel increases its abil-
ity to predict major adverse events (MAEs; procedure-related major complications and procedure-related deaths) and lengthy
procedures (�100 minutes).

METHODS We hypothesized certain features—(1) lead angulation, (2) coil percentage inside the superior vena cava (SVC), and
(3) number of overlapping leads in the SVC—detected from a pre-TLE plain anteroposterior chest radiograph (CXR) would
improve prediction of MAE and long procedural times. A deep-learning convolutional neural network was developed to auto-
matically detect these CXR features.

RESULTS A total of 1050 cases were included, with 24MAEs (2.3%) . The neural network was able to detect (1) heart border with
100% accuracy; (2) coils with 98% accuracy; and (3) acute angle in the right ventricle and SVCwith 91% and 70% accuracy, respec-
tively. The following features significantly improvedMAEprediction: (1)�50% coil within the SVC; (2)�2 overlapping leads in the
SVC; and (3) acute lead angulation. Balanced accuracy (0.74–0.87), sensitivity (68%–83%), specificity (72%–91%), and area under
the curve (AUC) (0.767–0.962) all improved with imaging biomarkers. Prediction of lengthy procedures also improved: balanced
accuracy (0.76–0.86), sensitivity (75%–85%), specificity (63%–87%), and AUC (0.684–0.913).

CONCLUSION Risk prediction tools integrating imaging biomarkers significantly increases the ability of ML models to predict
risk of MAE and long procedural time related to TLE.

KEYWORDS Transvenous lead extraction; Complications; Machine Learning; Artificial intelligence; Risk prediction; Computer
vision
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Introduction

The progressive rise of cardiac implantable electronic devices
over the last 20 years has been mirrored by an increased
requirement for lead extraction. Transvenous lead extraction
(TLE) remains a safe procedure in the majority of cases, with
the incidence of procedure-related major complications
quoted as 1.6% in a systematic review of 18,433 patients.1
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Although procedural success is high, an increasing number
of patients are at risk for adverse outcomes because of a
high burden of comorbidities andmultiple previous device in-
terventions.2 Improved risk stratification of patients based on
likelihood of risk of adverse outcomes and procedural
complexity is important for informed patient consent and
appropriate resource allocation basis.3
t, London, United Kingdom, 2School of Biomedical Engineering and Imaging
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Table 1 Performance measures used to describe results of the neural network and machine learning model to predict MAE

Performance measure Definition Formula

Balanced accuracy Balanced accuracy, rather than total accuracy, was utilized as the
primary performance measure in view of the skewed distribution of
outcomes with noMAEs vs those withMAEs, that is, there were very
few cases involving MAEs in both datasets.9 Using accuracy alone
would overestimate the ability of the risk stratification method to
appropriately identify the patient risk. Balanced accuracy is the
mean accuracy for each class.

TPR1TNR
2

Precision Precision is the ability of a model to identify only the relevant objects,
that is, precision is howgood themodel is at accurately identifying a
geometric feature.

TP
TP1FP

5
TP

All detections

Recall Recall is the ability of a model to find all the relevant cases, that is, how
many times the model was able to accurately identify a geometric
feature.

TP
TP1FN

5
TP

All ground truths

F1 score F1 score is a method of calculating a mean of precision and recall. 2 � Precision � Recall
Precision1Recall

JSC JSC is a statistical measure for correlating the similarity between
binary data samples (defined as sample A and B). M11 represents
the total number of attributes, where sample A and B both have a
value of 1.M01 represents the total number of attributes where the
attribute of A is 0 and the attribute of B is 1.M10 represents the total
number of attributes where the attribute of A is 1 and the attribute
of B is 0.

It represents the percent of characteristics found in both samples and
found in only 1 sample, that is, JSC of 0.3 means 30% of the
characteristics were found in both samples, and 70% were found in
only 1 of the 2 samples.

JSC5
M11

M011M101M11

FN5 false negative; FP5 false positive; JSC5 Jaccard similarity coefficient; MAE5major adverse event; TNR5 true negative rate; TP5 true positive; TPR5 true
positive rate.
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Multiple risk scores have been developed; however, their
predictive capability is constrained by the rarity of adverse
events, the binary nature of preprocedural risk factors, and
variation in methodology.4,5 We previously published a risk
assessment model to predict risk of adverse events using ma-
chine learning (ML) methods. The study used patient-level
data derived from the European Society of Cardiology
EORP (EURObservational Research Programme) ELECTRa
Abbreviations

AUC: area under the curve

CXR: chest radiograph

DL: deep learning

EROS: ELECTRa Registry
Outcome Score

ICD: implantable cardi-
overter-defibrillator

JSC: Jaccard similarity coeffi-
cient

MAE: major adverse event

ML: machine learning

RV: right ventricle

SVC: superior vena cava

TLE: transvenous lead extrac-
tion
(European Lead Extraction
ConTRolled) registry of 3555
patients undergoing TLE in 73
centers across Europe.6 The
predictive capability of this
ML model was tested against
an independent registry of
>1000 patients and its perfor-
mance compared to an estab-
lished clinical risk score—the
ELECTRa Registry Outcome
Score (EROS).7

We hypothesized that geo-
metric features extracted from
a preprocedure plain antero-
posterior chest radiograph
(CXR) would improve the pre-
dictive capability of this ML
model. This study aimed to (1)
develop a deep learning
(DL)–based, convolutional neural network to automatically
detect geometric features relevant to risk of TLE from prepro-
cedure CXRs; (2) evaluate whether these features improve the
previously published performance of this ML model; and (3)
assess whether the same methods could predict long proce-
dural times (which acted as a proxy for procedural complexity).
Methods

The database collection and analysis were approved by the
Institutional Review Board of Guy’s and St Thomas’ Hospital.
Study populations and outcome definitions

A prospectively collected database of all consecutive pa-
tients undergoing TLE between October 2000 and
November 2019 were recorded on a computer database
at Guy’s and St Thomas’ NHS Foundation Trust, a high-
volume UK TLE center used for CXR data. A total of
1171 patients underwent TLE during this period. The in-
tended outcome from the ML model was preprocedural
identification of patients at high risk for negative outcomes
and complex procedures. The outcome of major adverse
event (MAE)—defined as a composite of procedure-
related major complication and procedure-related
death—was selected as the ground truth to capture this
goal. These were defined in both datasets by the
consensus statement in the ELECTRa dataset3,8

(Supplemental Table 1). Each MAE was counted only



Table 2 Baseline characteristics of all subjects in test dataset
(N 5 1050)

Demographics
Male 772 (73.5)
Explant age (y) 65.30 6 14.49

Device type
Single-chamber PPM 74 (7.1)
Dual-chamber PPM 370 (35.3)
Implantable cardioverter-defibrillator 297 (28.3)
CRT-pacemaker 67 (6.4)
CRT-defibrillator 240 (22.9)

Leads
Dwell time (y) 5.30 [1.80–10.00]
Active RV lead 546 (24.4)
Passive RV lead 207 (19.7)
Active RA lead 534 (50.9)
Passive RA lead 201 (19.1)
LV lead 234 (22.3)
Single-coil defibrillator lead 224 (21.3)
Dual-coil defibrillator lead 219 (20.9)

Total no. of leads extracted
1 294 (28.0)
2 444 (42.3)
3 216 (20.6)
�4 96 (9.1)

Side of explant
Left-sided 856 (81.5)
Right-sided 131 (12.5)
Both sides 63 (6.0)

Extraction indication
Noninfective indication 482 (45.9)
Local infection 372 (35.5)
Systemic infection 196 (18.7)

Extraction history
History of previous extraction 118 (11.2)

Comorbidities
IHD 402 (39.6)
Valvular disease 100 (9.9)
Heart failure 414 (40.7)
Diabetes mellitus 174 (17.3)
Hypertension 406 (40.4)
Respiratory disease 145 (14.4)
CKD 206 (20.1)
ESRF 10 (1.0)

Cardiac function
LVEF (%) 44.77 6 14.34

Biochemistry
Creatinine (mmol/L) 92.00 [77.00–119.25]
eGFR (mL/min/1.73 m2) 67.47 6 20.75
eGFR <60 mL/min/1.73 m2 391 (37.2)
Peak CRP (mg/L) 6.00 [2.00–18.00]

Values are given as n (%), mean 6 SD, or median [interquartile range].
CKD 5 chronic kidney disease; CRP 5 C-reactive protein; CRT 5 cardiac re-
synchronization therapy; eGFR 5 estimated glomerular filtration rate; ESRF 5
end-stage renal failure; IHD 5 ischemic heart disease; LV 5 left ventricle;
LVEF 5 left ventricular ejection fraction; PPM 5 permanent pacemaker; RA 5
right atrium; RV 5 right ventricle.
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once per patient (ie, if a major complication and death
were recorded for the same patient, this was counted as
only 1 MAE). Prolonged procedural time was defined as
time taken from procedure start to removal of targeted
leads lasting >100 minutes. This cutoff was chosen
because it was the 75th percentile of procedural duration
(ie, 25% of the cases were >100 minutes).
Statistical analysis

Categorical variables were comparedwith the c2 test or Fisher
exact test. Normally distributed data were analyzed using the
independent samples t test. Non-normally distributed contin-
uous data were analyzed using the Kruskal-Wallis 1-way anal-
ysis of variance test. Results are given as mean 6 SD for
normally distributed variables and as median [interquartile
range] for non-normally distributed variables. Categorical var-
iables are given as number of patients (% of group). These an-
alyses were performed using R Version 1.3.1093
(R Foundation for Statistical Computing, Vienna, Austria).

The definitions of the performance measures used to
describe the accuracy of the neural network to detect the geo-
metric features and the ML model to predict MAE are
described in Table 1. The Jaccard similarity coefficient (JSC)
was used as a simple statistical measure for testing the corre-
lation between an identified individual geometric feature on
CXR and the binary outcome of MAE.10 Because the dataset
is known to be imbalanced,6 an adaptive synthetic sampling
technique was used to balance the datasets and calculate
the JSC.11 The relative importance of each feature in the final
model is represented by an F score, which is a way to rank the
features based on their contribution to the final prediction,
that is, the higher the F score, the greater that particular
feature contributes to the model’s prediction of risk. The F
score for each feature should be considered in relation to
the score of other features contributing to the model.
Balanced accuracy, sensitivity, specificity, and receiver oper-
ating characteristic curves were used to assess the predictive
capability of the ML model.

Overview of original ML study
We previously published an ML-based risk stratification

tool trained using the ELECTRa Registry to predict the risk
of MAEs in 3555 patients undergoing TLE and tested this
on an independent registry of 1171 patients.6 ML models
were developed, including a self-normalizing neural network,
stepwise logistic regression (“stepwise model”), support vec-
tor machines, and random forest model. These were
compared to the EROS forMAEs.3ML techniques were similar
to EROS by balanced accuracy (ML model 0.74 vs EROS 0.70)
and superior by area under the curve (ML model 0.764 vs
EROS 0.677). An improvement in accuracy was incremental,
and it was hypothesized that integrating imaging biomarkers
into this model would improve its predictive capability.
Rationale for radiograph feature selection

A combination of known risk factors and senior clinical
opinion was considered when choosing appropriate features
from a plain CXR. In previously published data, the presence
of an implantable cardioverter-defibrillator (ICD) lead, an
increased number of leads extracted,3,12 and likelihood of
lead encapsulation13 are established risk factors that could
be detected from a plain CXR. The most common cause of
procedure-related major complication or death is a tear in
the superior vena cava (SVC),14 so identifying accurate prox-
ies for a model of the SVC and the location of leads and coils



Figure 1
Overview of the deep learning framework to identify geometric features on a plain anteroposterior chest radiograph. 3D5 3-dimensional; CT5 computed tomog-
raphy; SVC 5 superior vena cava.
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in relation to this was considered essential. It was also hy-
pothesized that lead-to-lead interaction (measured by
whether the leads were overlapping) and an acute
(ie, <90�) angulation of the lead within the SVC or the
myocardium were important factors to consider. An acute
angle was defined as an angle between 0� and 90� of the
lead itself at the locations of the SVC or the right ventricle
(RV) (Supplemental Figure 1).



Table 3 Performance of the neural network in detecting the
feature on CXR in comparison to the ground truth

Geometric feature Accuracy Precision Recall F1 score

Detection of heart border* NA 0.818 1 NA
Detection of coils 0.98 0.98 0.99 0.98
Detection of leads 0.782 0.879 0.836 0.857
Detect acute angle in SVC 0.7 0.833 0.714 0.769
Detect acute angle in RV 0.905 0.969 0.923 0.945

CXR 5 chest radiograph; RV 5 right ventricle; SVC 5 superior vena cava.
*Ability to detect >75% of the true heart border.

Table 4 Geometric feature detected and respective JSC

Geometric feature JSC

50% of coil and �2 overlapping leads
inside the SVC

0.35

Acute angle in the RV 0.03
Acute angle near entry point of the SVC 0.01

JSC 5 Jaccard similarity coefficient; RV 5 right ventricle; SVC 5 superior vena
cava.
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These geometric features were combined with the base-
line characteristics of the patients to feed into an ML model
to predict risk of MAE (Table 2). The model was based on
the preprocedural features in a previously published ML
model trained on the ELECTRa Registry and tested on the
Guy’s and St Thomas’ Trust database.6 All features considered
and included in the final ML models, including and excluding
geometric features, are given in Supplemental Table 2. An
XGBoost classifier was chosen because of its high perfor-
mance with imbalanced datasets and binary classifications,
and is an ensemble learning method that combines the pre-
dictions of multiple models to produce a stronger predic-
tion.15 Due to the relative infrequency of MAEs observed,
leave-one-out cross-validation was used.16 For comparison,
the added value of the geometric features was tested against
the model using only the preprocedural characteristics listed
in Table 2 (ie, excluding the geometric features from the CXR).

Overview of imaging biomarker detection framework

TheDL framework to automatically identify the geometric fea-
tures has been previously described in detail.17 A summary of
the process is illustrated in Figure 1 and outlined in the
following.

Identification of the approximate location of the SVC

The SVC is not readily identifiable on CXR unless contrast is
injected; however, it is possible to determine an approximate
course in relation to heart anatomy. Using known common
approximate models of heart anatomy, we were able to
approximate the location of the SVC. The location of the
SVC is approximately half the height and one-third of the
width of the heart region (Supplemental figure 2). This was
validated by overlaying 3-dimensional anatomy models ex-
tracted from 20 preprocedural computed tomographic scans.
In order to use this automated SVC location on CXR, the heart
region must be detected. A transfer learning approach was
used to detect the heart region that was based on a modified
VGG16 model. Seventy percent of the CXRs were used for
training and 30% for accuracy testing.

Detection of lead and coils

To segment the leads and coils from the CXRs, a U-Net con-
volutional network was trained and tested on the CXR dataset.
To semi-automate this process, a vessel enhancement filter18
was used to extract all wirelike objects, and the resultant im-
age was automatically binarized. An experienced clinician
manually removed features not leads or coils, which acted
as the “ground truth” for the U-net model to train on 737
CXRs to automatically extract coils and leads while ignoring
other objects such as electrocardiographic leads, ribs, and
the generator. To improve detection with poor-quality im-
ages, the contrast or brightness of these images was reduced
by a factor between 0.6 and 0.9 to create an additional 1474
training images.
Extracting geometric features

A centerline extraction method was used to precisely identify
the lead or coil detected that was present in the SVC.19 In this
process, a binarized image of the detected coils and leads was
skeletonized and a 1-pixel wide object created. A contour-
finding algorithm and wire reconstruction method were
used to determine the course of the lead, compute the loca-
tion and angulation of the leads or coil, and determine
whether they were overlapping.20,21 The 2 points of angula-
tion interest were at the point of entry into the SVC or within
the RV (Supplemental Figure 1). The ground truth was the
manual labeling of all angles of the leads in 2 positions: (1) en-
try point of the SVC and (2) inside the RV. Overlapping leads
were defined as the centerlines of the leads overlapping with
each other at least once.
Results

Baseline characteristics

The overall cohort included 1151 patients, of whom 1050 had
preprocedure CXRs available for use in the current analysis
(Table 2). There were 24 MAEs (2.3%), and the most common
major complication was cardiac avulsion (n 5 12 [1.2%])
(Supplemental Table 3). In total, there were 484 cases with
complete procedural duration data available; of these, 123
(25.4%) had a long procedural time. Overall, 73.5%
(n 5 772) were male (mean age at explant 65.3 6 14.5 years;
mean left ventricular ejection fraction 44.8% 6 14.3%). Me-
dian lead dwell time was 5.30 [1.80–10.00] years, and the plu-
rality of devices explanted were dual-chamber pacemakers
(n5 370 [35.3%]) followed by ICDs (n5 297 [28.3%]). In total,
2246 leads were explanted, with amean of 2.14 leads per pro-
cedure. A total of 443 defibrillator leads were explanted, of
which 219 (49.4%) were dual-coil leads. Themajority of extrac-
tions were for infective indications (n 5 562 [54.1%]), with



Figure 2
Machine learning (ML) model for predicting major adverse event (MAE). A: Features and their respective weights for predicting MAE. B: Receiver operating charac-
teristic (ROC) curve of theMLmodel for predictingMAE. Blue shows ROC curve using a model without imaging data.Green shows the ROC curve using a model with
imaging.
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most for local infections (n5 372 [52.6%]). The most common
comorbidities were heart failure (n5 414 [40.7%]) and hyper-
tension (n 5 406 [40.4%]). In total, 206 patients (20.1%) had
CKD, with a median baseline creatinine of 92.00 [77–119.3]
mmol/L.
Automated detection performance

The performance of the DL neural network in automatically
detecting the geometric features is given in Table 3. It was
excellent in all areas except for acute angle detection in the
SVC.
Geometric feature selection and DL model for risk
assessment

The geometric features assessed and their respective JSC
values are given in Table 4. A total of 143 cases had an acute
angle in the RV. Greater than 50% of a coil in the SVC
combined with �2 overlapping leads in the SVC had a highly
sensitive JSC value and resulted in much better performance
and contribution overall to the model in predicting MAE
rather than separating the features (Supplemental Table 4).
Therefore, the following geometric features were included
in the final model: (1) >50% coil in the SVC and �2 overlap-
ping leads in the SVC; and (2) acute angle in the RV.

Ability of model to predict MAE and long procedural
time

Themost important features in themodel excluding geometric
features are dwell time, left ventricular ejection fraction, and
estimated glomerular filtration rate (Supplemental Figure 3)
for predicting MAE. The presence of a dual-coil lead was
only the 10th most important feature in the model excluding
geometric features. In comparison, 2 geometric features were
the 2nd and 12th most important features in the model
including the CXR data (Figure 2A). The most important



Table 5 Predictive capability of the machine learning model to predict a major adverse event or long procedure excluding and including the
geometric features from the preprocedural chest radiograph

Outcome Results Balanced accuracy Specificity Sensitivity Area under curve

Major adverse event Excluding imaging 0.74 0.63 0.62 0.77
Including imaging 0.87 0.91 0.83 0.96

Long procedural time Excluding imaging 0.76 0.63 0.75 0.684
Including imaging 0.86 0.87 0.85 0.913
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preprocedural clinical factor remained lead dwell time; howev-
er, the presence of �50% of a coil in the SVC and �2 overlap-
ping leads had a similar predictive value for MAE as dwell time
(F score 19.7 vs 18.7). An acute angle in the RV was almost as
important as left ventricular ejection fraction (F score 7.16 vs
8.53) and more important than male gender (F score 7.07).
Infective factors were of high relevance (endocarditis F score
16.85; local infective indication F score 15.21).

There was a significant improvement in the ability of the
model to predict MAE with CXR data (Table 5). Balanced ac-
curacy improved from 0.75 to 0.87, sensitivity improved from
69% to 83%, specificity improved from 72% to 91%, and area
under the curve (AUC) improved from 0.767 to 0.962
(Figure 2B). There was no significant difference in model per-
formance when using the ground truth data compared to
automated CXR feature detection (Supplemental Figure 4).

With respect to long procedural time, the most important
preprocedural clinical factors were endocarditis (F score
12.95), respiratory disease (F score 11.77), and local infection
(F score 7.01) (Figure 3A). The most predictive feature was
>50% of coil in the SVC and �2 overlapping leads from the
preprocedural CXR of (F score 48.11). Balanced accuracy
improved from 0.76 to 0.86, sensitivity improved from 75%
to 87%, specificity improved from 63% to 85%, and AUC
improved from 0.684 to 0.913 (Figure 3B).

We explored whether inclusion of lateral CXRs increased
the predictive capability of the model; however, there was
no significant improvement, with balanced accuracy
increasing from 0.91 to 0.92 and AUC from 0.962 to 0.969
(Supplemental Appendix).
Discussion

This is the first DL-derived model integrating imaging bio-
markers to predict risk following TLE. The main findings are
as follows. (1) Convolutional neural networks can automati-
cally, and accurately, detect key geometric features relevant
to lead extraction, particularly the SVC location, the course
of a lead, lead angulation, percentage of coil in the SVC,
and whether leads overlap. (2) Imaging biomarkers integrated
into an independently tested ML model significantly
improved its predictive capability. (3) ML can improve predic-
tion of potentially lengthy procedures.
Relevance of risk stratification

Undertaking a lead extraction procedure with the appropriate
expertise and tools and in the correct setting is one of the
cornerstones of reducing procedural risk. Extensive data
have shown that high-volume lead extraction centers perform
better compared with low-volume centers and that patients
with known risk factors who have undergone lead extraction
in a low-volume center have poorer outcomes, reinforcing
the fact that high-volume operators should perform higher-
risk procedures.1,22 TLE is a resource-intensive, expensive
procedure, which often is poorly reimbursed relative to their
economic costs to the health institution.23 Within this context,
risk stratification scores are a helpful tool for the heart team
when triaging patients appropriately preprocedure.

Several risk stratification tools, primarily using a combina-
tion of expert consensus and logistic analysis, have been pub-
lished. Bontempi et al24 developed the “LED risk score,”
which identified the number of extracted leads within a pro-
cedure, lead age, dual-coil lead, and presence of vegetation
as increasing the likelihood of a complex procedure. Kan-
charla et al4 derived a risk score including ICD lead >5 years
old and pacemaker lead >10 years old. The tool was prospec-
tively validated on whether patients should have TLE per-
formed in an operating room or device laboratory. The
EROS score developed by Sidhu et al7 categorized patients
as low (EROS 1), intermediate (EROS 2), and high risk
(EROS 3). EROS 3 risk was heavily dependent on lead dwell
time: pacemaker lead >15 years and ICD lead >10 years
from implant. We previously compared the EROS score to
an ML-based risk score trained on the ELECTRa database
and tested on the dataset used in this study with AUC of
0.764; however, the study concluded that more nuanced
and richer preprocedural data were required to make ML a
beneficial tool.6 This current study has built on that conclusion
and shown that features extracted from a plain CXR—a simple
investigation that should be performed in all patients under-
going lead extraction—significantly improves risk prediction.
This is particularly marked in the geometric features related to
the SVC and the congestion of leads within it. TLE has a high
procedural success rate and complications remain low, so an
excellent AUC is necessary to provide the necessary sensitivity
and specificity for added value. AUC improvement from 0.76
to 0.96 in this study demonstrates such an improvement. AUC
score between 0.9 and 0.99 is considered excellent.25
Clinical perspectives

Better risk stratification tools have the potential to ensure
stronger mitigation and minimize the risk of MAE. The value
of such a risk tool may be useful for both infective and nonin-
fective indications of lead extraction. For infective indication,



Figure 3
MLmodel for predicting long procedural times. A: Features and their respective weights for predictingMAE. B: ROC curve of theMLmodel for predictingMAE. Blue
shows the ROC curve using a model without imaging data. Green shows the ROC curve using a model with imaging. Abbreviations as in Figure 2.
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there is always a class I indication to extract infected mate-
rial26; however, who is likely to be at significantly higher risk
of an adverse event is not always clear. For noninfective indi-
cations, the evidence for lead extraction is less strong, with
clinical consensus and patient preference primarily deter-
mining whether a malfunctioning lead should be extracted
or left redundant when a new lead is implanted. Currently,
the data regarding the potential harms of abandoning leads
in such circumstances are unclear, and weighing benefits
and risks is a largely a joint decision between the cardiologist
and the patient.27 Having a highly sensitive and specific test
would help quantify that risk better and allow more objective
decision-making. The current study provides the framework
for such a test.

In addition, the ability of the current model to determine
those at higher risk for a long procedural times has clinical util-
ity. Traditional risk factors for complex procedures, particu-
larly the presence of an ICD, markers of infection, and
respiratory disease, were strong influencers in the model.
These patients likely hadmore complex general anesthetic re-
quirements in view of their endocarditis and respiratory dis-
ease, and the presence of a coil increased the number of
tools and time required to extract the material. These factors
are important when determining resource and time allocation,
and whether the procedure should occur in the operating
room, or hybrid or device laboratory.
Future perspectives

Aprevious study by Howard et al28 showed the utility of neural
networks to accurately identified the model of pacemakers
and defibrillators; however, this is the first DL framework to
automatically detect CXR and lead-related features that in-
crease the risk of MAE following TLE. We demonstrated that
novel methods can improve the prediction of an adverse
outcome by integrating a ubiquitous and inexpensive investi-
gation, such as CXR. All patients should have CXR pre-TLE,
and these data, combined with baseline clinical features,
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can be routinely integrated into preprocedural planning. Such
techniques potentially also can be used in cross-sectional im-
aging, which has greater spatial resolution of the 3-
dimensional course of a lead and coil, particularly in relation
to the SVC. However, contrast-enhanced computed tomo-
graphic imaging using current DL techniques is challenging
because of the high intensity of artifacts from the lead and
coils. Real-time fluoroscopy and motion tracking could give
added information on lead-to-lead or lead-to-SVC interaction,
providing a far greater understanding of how lead kinetics
affect procedural risk.21

Overall, the whole process is computationally inexpensive.
The computer vision algorithmworks within 500ms to identify
the coil and lead route, as well calculate the angles. The pre-
diction algorithm (XGBoost) performs the prediction in 1000
ms to produce the prediction once the relevant baseline de-
mographic and imaging data are uploaded. We anticipate
that this tool can be used before or during the “heart team”

meeting, at which a decision is made on the appropriateness
and location of any lead extraction procedure.
Study limitations

The high imbalance between MAE (2.4%) and non-MAE
(97.6%) cases means much larger datasets are required to in-
crease the confidence in our results. To mitigate this, leave-
one-out validation andML algorithms (ie, XG Boost and adap-
tive synthetic sampling technique), which perform well with
imbalanced data, were used. Certain low-frequency but tradi-
tional high-risk features of patients undergoing TLE, such as
lead calcification, were not included in the analysis because
they were not consistently recorded. The risk prediction
model was applied retrospectively, which may introduce
bias, and a prospective validation study would mitigate this.
Although the neural network to detect most geometric fea-
tures was robust, it was suboptimal in detecting acute angles
in the SVC due to the low frequency of such cases; therefore,
this feature was not included in the final model. A plain ante-
roposterior CXR was used; however, for 3-dimensional dis-
tances between individual leads, a higher volume of lateral
CXRs may be included in future analyses.
Conclusion

This is the first study to use imaging biomarkers to assess risk
related to TLE. We have developed a high-performing auto-
mated DL algorithm to accurately extract geometric features
from a plain anterior posterior CXR. By integrating this imag-
ing data to an existing ML model, we have significantly
improved the prediction of adverse events and potentially
complex procedures related to TLE.

Appendix

Supplementary data
Supplementary data associated with this article can be found
in the online version at https://doi.org/10.1016/j.hrthm.2024.
02.015.
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