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Objective. There is growing evidence that genetic data are of benefit in the rheumatology outpatient setting by aid-
ing early diagnosis. A genetic probability tool (G-PROB) has been developed to aid diagnosis has not yet been tested in
a real-world setting. Our aim was to assess whether G-PROB could aid diagnosis in the rheumatology outpatient set-
ting using data from the Norfolk Arthritis Register (NOAR), a prospective observational cohort of patients presenting
with early inflammatory arthritis.

Methods. Genotypes and clinician diagnoses were obtained from patients from NOAR. Six G-probabilities (0%–

100%) were created for each patient based on known disease-associated odds ratios of published genetic risk vari-
ants, each corresponding to one disease of rheumatoid arthritis, systemic lupus erythematosus, psoriatic arthritis,
spondyloarthropathy, gout, or “other diseases.” Performance of the G-probabilities compared with clinician diagnosis
was assessed.

Results. We tested G-PROB on 1,047 patients. Calibration of G-probabilities with clinician diagnosis was
high, with regression coefficients of 1.047, where 1.00 is ideal. G-probabilities discriminated clinician diagnosis
with pooled areas under the curve (95% confidence interval) of 0.85 (0.84–0.86). G-probabilities <5% corre-
sponded to a negative predictive value of 96.0%, for which it was possible to suggest >2 unlikely diseases
for 94% of patients and >3 for 53.7% of patients. G-probabilities >50% corresponded to a positive predictive
value of 70.4%. In 55.7% of patients, the disease with the highest G-probability corresponded to clinician
diagnosis.

Conclusion. G-PROB converts complex genetic information into meaningful and interpretable conditional
probabilities, which may be especially helpful at eliminating unlikely diagnoses in the rheumatology outpatient
setting.
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INTRODUCTION

Given that there has been and continues to be significant
investment in the study of human genetics and genomics,1 it is
important that we fully harness the potential value of genetic data
in the clinical setting. With initiatives such as the “UK Newborn
Genomes Programme,” which will whole-genome sequence up
to 200,000 newborn babies,2 and the popularity of
direct-to-consumer genotyping companies,3,4 an ever increasing
proportion of the population will be genotyped, meaning that
these data will be increasingly available with no added cost. Cou-
pled with the fact that the costs associated with whole-genome
genotyping have reduced over time, it is now feasible to have
genetic data available for patients during patient appointments.3,4

Misdiagnosis of patients first presenting to rheumatology
clinic with suspected early inflammatory arthritis can delay treat-
ment and increase the risk of irreversible disability, comorbidity,
and death.5,6 The majority of patients seen in rheumatology out-
patient clinics with early inflammatory arthritis will be diagnosed
with rheumatoid arthritis (RA),7 psoriatic arthritis (PsA),8 systemic
lupus erythematosus (SLE),9 ankylosing spondylitis (SpA),10 or
gout.11 Furthermore, it is known that these rheumatologic dis-
eases have a strong genetic basis with heritability estimates of
approximately 60% for RA and PsA,12,13 90% for SpA,14 65%
for SLE,15 and 30% for gout,16 with numerous risk loci identified
for each disease.17–21

Polygenic risk scores (PRSs) are an estimate of an individ-
ual’s genetic predisposition to a disease or trait and are typically
calculated from the sum of risk alleles carried by the individual
weighted by the effect estimate of the risk allele.22 Although using
genetics on a population level has limited value given the low prev-
alence of rheumatic diseases, using genetics to aid diagnosis in a
rheumatology clinic, where all patients will have symptoms and
thus have an increased pretest probability for disease, may make
probabilistic predictions based on genetics more effective.23,24

Based on this premise, a tool to aid diagnosis using existing
knowledge of genetic risk loci resulted in the development of a
genetic probability tool (G-PROB).25 G-PROB converts PRSs
derived from known risk variants into easy-to-interpret conditional
probabilities (G-probabilities) for multiple diseases, assuming that
one of the diseases is present.25 In principle, patients would be
genotyped before their first rheumatology clinic visit, and the clini-
cian would be provided with G-probabilities adding up to 100%,
indicating a breakdown of which diagnoses are most likely based
on the presence of known disease-associated variants. These
G-probabilities would then be interpreted, with diseases with low
G-probabilities (eg, <5% or <20%) suggesting unlikely diagnoses
and diseases with high G-probabilities (eg, >20% or >50%) sug-
gesting a likely diagnosis. This information could complement
existing investigations and tools, such as clinical history and phys-
ical examination, to aid and improve the accuracy of the first pro-
visional diagnosis.

The authors who developed G-PROB tested the tool in vari-
ous settings. These initially included applying G-PROB to simu-
lated cohorts of various sizes and disease prevalence and finally
on a constructed cohort of 243 patients from a biobank who
had presented to a rheumatology outpatient clinic with suspected
synovitis using classification criteria to define cases. They con-
cluded that G-probabilities created by G-PROB were well cali-
brated with diagnosis based on classification criteria, with high
negative predictive value (NPV) and modest positive predictive
value (PPV).25 However, G-PROB has not been tested on a real-
world cohort of patients from a rheumatology outpatient clinic
with real-world disease prevalence, nor has its performance using
clinician diagnosis been assessed. Before conducting prospec-
tive studies of the G-PROB tool, it is necessary to assess its per-
formance in its intended setting by comparing it with clinician
diagnosis in patients presenting to a rheumatology outpatient
clinic with early inflammatory arthritis. The aim of our study was
to assess G-PROB’s ability to aid clinician diagnosis of patients
who present with early inflammatory arthritis using prospective
data from a large observational cohort in which the clinical hetero-
geneity and disease prevalence reflect that seen in a typical rheu-
matology clinic.

METHODS

The Norfolk Arthritis Register. The Norfolk Arthritis
Register (NOAR) is a primary care-based inception cohort of
patients with early inflammatory arthritis, defined as a minimum
of two swollen joints for a period of at least 4 weeks.26 Patient
recruitment began in 1989, and in this data set, follow-up contin-
ued for up to 20 years. All patients were from the UK and had self-
reported White ancestry. Ethical approval was granted by the
Norwich Research Ethics committee, and all patients were
recruited after giving informed consent (NOAR - REC Ref
2003/075, December 18, 2003, Norwich Local Research Com-
mittee [NHS]).

Clinical diagnosis. Case note review was undertaken for
all patients in the NOAR cohort, and the clinical diagnosis made
by a consultant rheumatologist at the last available follow-up
was recorded. Patients with a documented clinical diagnosis
were included in the analysis. Patients with missing case notes
were excluded (Figure 1).

The G-PROB tool and calculating G-probabilities. The
full method by which G-PROB operates can be found in the orig-
inal study.25 Briefly, G-PROB generates G-probabilities, which
each correspond to a disease probability based on a weighted
genetic risk score. This risk score considers the presence of
known genetic variants associated with disease susceptibility
and estimated disease prevalence and also assumes the patient
has one of the diseases in the model. In theory, G-PROB can be
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used to discriminate any sets of diseases with known genetic risk
variants. G-PROB requires three inputs to generate
G-probabilities: 1) estimated disease prevalence, 2) odds ratios
(ORs) of susceptibility for known genetic variants, and 3) geno-
types including presence of known genetic variants.

Genotyping and imputation. All samples with sufficient
DNA available were genotyped using the Illumina Infinium CoreEx-
ome genotyping array. This was performed in accordance with
the manufacturer’s instructions, in which genotype calling was
performed using the GenCall algorithm in the GenomeStudio Data
Analysis software platform (Genotyping Module version 1.8.4).
Non-HLA imputation was performed using the Michigan Imputa-
tion server, in which phasing was performed with Shapeit2, and
imputation was performed with the haplotype reference consor-
tium panel. After imputation, single-nucleotide polymorphisms
(SNPs) were excluded based on a minor allele frequency of
<0.01 and imputation accuracy of r2 < 0.5.

HLA-DRB1 typing. A semiautomated, reverse dot-blot
method was used for HLA typing.27,28 For HLA-DRB1, amino
acids at position 11, 71, and 74 were determined, and a four-digit
HLA typing corresponding to the full and unambiguous amino
acid sequence of the HLA protein was assigned.28 The estimated
association with RA for each of the 16 possible HLA-DRB1

haplotypes have been described previously (Supplementary
Table 1).18,29

Disease-associated genetic variants. Known genetic
risk variants associated with one of five rheumatologic diseases
(RA, PsA, SLE, SpA, or gout) at the genome-wide significance
level (P < 5 × 10−8) from the most recent genome-wide studies
on people of European descent were collated.17–21,25 Disease-
specific ORs for each variant for each of the diseases (except
gout) were determined, in which different ORs denote variants
that contributed to the susceptibility of several diseases and
ORs of 1.0 denote variants that are not associated with a particu-
lar disease (Supplementary Table 2).25 For gout, known genetic
variants associated with serum urate concentrations were used
to calculate ORs for susceptibility to gout as described previ-
ously.21,25 A total of 208 SNPs outside the HLA region and
42 HLA variants were included in the G-PROB settings for this
analysis (Supplementary Table 2).

“Other disease” category. To account for patients with
suspected inflammatory arthritis who have a condition other than
the five most common aforementioned rheumatologic diseases,
a sixth category entitled “Other disease” was devised by the cre-
ators of the G-PROB tool.25 The “Other disease” cohort will
include a proportion of patients presenting to rheumatology clinic

Figure 1. Flowchart of patient selection. CCP, cyclic citrullinated peptide; CPPD, crystal pyrophosphate deposition disease; CTD, connective
tissue disease; GCA, giant cell arteritis; GPA, granulomatosis with polyangiitis; IIM, idiopathic inflammatory myopathy; JIA, juvenile idiopathic arthri-
tis; NOAR, Norfolk Arthritis Register; PMR, polymyalgia rheumatica; PsA, psoriatic arthritis; RA, rheumatoid arthritis; SLE, systemic lupus erythe-
matosus; SpA, ankylosing spondylitis.
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that will not have one of the five most common rheumatologic
conditions described and will have a variety of other conditions,
including chronic pain syndromes (such as fibromyalgia) and sim-
ple musculoskeletal injuries, for which there are limited known
genetic variants. The ORs for the genetic risk scores of the “Other
disease” group will be set to 1.0 to reflect that no data on the
genetic risk profile are available for these patients.

Prevalence settings. G-PROB combines the weighted
genetic risk score of each disease with an intercept to ensure that
the mean probability is equal to the predefined disease prevalence.
To enable comparisonwith the initial study that developed and tested
G-PROB, the same estimates of outpatient clinic disease prevalence
were used (Supplementary Table 3).25,30,31 The disease prevalence
within the NOAR cohort was also calculated and G-PROB was
tested using these disease prevalence settings as well for compari-
son (Supplementary Table 3).

Statistical analysis. All analyses were performed in R ver-
sion 4.2.32 Six G-probabilities were generated for each patient,
with one G-probability corresponding to the clinician diagnosis
(denoted as a match) and the other five not (denoted as non-
match). All G-probabilities for all patients were combined into
one vector, and a corresponding binary disease match vector
indicating clinician diagnosis match or nonmatch was created,
with one of the six of the G-probabilities being “matched” and five
of six being “nonmatched.”

G-PROB performance was assessed in three ways as
described previously.25 First, density plots indicating distribution
of G-probabilities that were matched compared with those that
were nonmatched were created, for which good performance
would find that matched G-probabilities were higher and distrib-
uted to the right compared with nonmatched G-probabilities. Mean
matched and nonmatched G-probabilities were compared using
an independent samples t-test. Second, calibration with clinician
diagnosis match was determined by performing a linear regression
without intercept, in which G-probabilities were the independent
variable and binary disease match was the dependent variable. A
regression coefficient (β) was determined for which the ideal cali-
bration would have β = 1.0.33 Third, the ability of G-probabilities to
correctly classify clinician diagnosis was assessed using the area
under the curve (AUC)-receiver operating curve (ROC) of multiclass
classifications, in which higher AUCs (from 0.5 to 1.0) indicate bet-
ter classification.34 As described previously, AUCs were deter-
mined using two-vector data summaries of G-probabilities and
clinician diagnosis match/nonmatch (known as micro-AUCs); how-
ever, macro-AUCs were also determined for comparison.25,34,35

Fourth, performance of G-probabilities in suggesting likely and
unlikely diagnoses was assessed by determining the NPVs and
PPVs at several G-probability thresholds.

G-probabilities can range from 0% to 100%, for which a
G-probability of 16.7% for all diseases would suggest all diseases
are equally probable. Therefore, to further assess the

discriminative abilities of different G-probability thresholds, arbi-
trary cutoffs of <5% and <20% for NPV and cutoffs of >20% or
>50% for PPV, defined in the study in which G-PROB was devel-
oped, were assessed.25 The number of patients for which at least
one, two, or three diseases could be considered less likely based
on a G-probability threshold of <5% was determined, and the
number of patients for which the highest G-probability corre-
sponded to the clinician diagnosis was determined. Finally, scat-
terplots were created to investigate the PPV and NPV at different
G-probability thresholds.

Patient and public involvement. Patients and the public
were not specifically involved in this study. Deidentified data are
available after reasonable request and ethical approval to the cor-
responding author.

RESULTS

Patient cohort characteristics and case assignment.
From NOAR, 1,047 patients with genotype data and clinician
diagnosis following case note review were included in the study
(Figure 1). Clinical characteristics of patients according to clinician
diagnosis were noted as well as for those with and those without
retrievable clinical case notes (Supplementary Table 4).

G-probabilities by disease and distribution for
correct and incorrect diagnoses. Six G-probabilities were
created for each patient, resulting in 6,282 G-probabilities, of
which 1,047 corresponded to clinician diagnosis and 5,235 did
not (Table 1). The mean of G-probabilities matching clinician diag-
nosis was significantly higher than the G-probabilities not match-
ing clinician diagnosis (12.2% vs 39.1%, P < 2.2 × 10−16).
Furthermore, the distribution of G-probabilities matching clinician
diagnosis was clearly skewed to the right toward higher probabil-
ities compared with the G-probabilities not matching clinician
diagnosis (Figure 2). Distributions of G-probabilities for each dis-
ease group were also determined (Supplementary Figure 1).

Concordance of G-probabilities with clinician-
defined disease. Estimation of the regression line between
G-probabilities and clinician diagnosis match using linear regres-
sion, constraining the intercept to zero, demonstrated that the
magnitude of G-probabilities was well calibrated with clinician
diagnosis match status (β = 1.047, where β = 1.00 would indicate
perfect test performance). It also showed that G-PROB is well cal-
ibrated for its intended use, that is, to produce G-probabilities that
increase if the clinician diagnosis is more likely (Figure 3).

ROC analysis. Micro-AUC analysis found that the ability of
G-PROB to discriminate among different diseases was high, with
an AUC of 0.849 (95% confidence interval 0.835–0.863)
(Figure 4). ROC analysis on the individual disease level as well as
macro-AUC analysis was determined and showed that

DIAGNOSIS OF PATIENTS USING POLYGENIC RISK SCORES 699

 23265205, 2024, 5, D
ow

nloaded from
 https://acrjournals.onlinelibrary.w

iley.com
/doi/10.1002/art.42760 by U

niversity O
f E

ast A
nglia, W

iley O
nline L

ibrary on [30/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



G-probabilities had low to moderate discriminative capabilities
(Supplementary Figure 2).

NPV and PPV of G-probabilities.We found that 41.3% of
the G-probabilities (n = 2,597 of 6,282) were <5%, corresponding
to an NPV of 96.0% (Table 1). At the <5% threshold, it was possi-
ble to suggest that at least one disease was unlikely for 100% of
patients (n = 1,047 of 1,047), at least two diseases were unlikely
for 94% of patients (n = 984 of 1,047), and three or more diseases
were unlikely for 53.7% of patients (n = 562 of 1,047).

We found that 48.8% of patients (n = 511 of 1,047) had a sin-
gle G-probability >50%, corresponding to a PPV of 70.3%,
whereas using a G-probability threshold of >20% resulted in a
lower PPV at 40.7% (Table 1). In 70.3% of patients (n = 359 of
511), the diseasewith the highest G-probability corresponded to cli-
nician diagnosis. Scatterplots were created to investigate changes

Figure 2. Distribution of G-probabilities that matched clinician diag-
nosis (blue) and G-probabilities that did not match clinician diagnosis
(red). Ideally, the correct diagnosis should have higher probabilities,
and the distribution should be skewed to the right, with incorrect diag-
noses having lower probabilities with a distribution skewed to the left.

Figure 3. Linear regression model without intercept of concordance
of G-probabilities with clinician diagnosis match, with the x-axis show-
ing G-probabilities and the y-axis showing a binary outcome of concor-
dance with clinician diagnosis (y = 1) and nonconcordance with clinician
diagnosis (y = 0), with a β (regression coefficient) of 1.047. Ideally, the
higher the inferred G-probability for a disease, the more likely that it is
the actual diagnosis. Linear regression comparing G-probabilities and
disease match (yes/no) constraining the intercept to zero is shown as
a solid blue line. A β of one indicating exact calibration is shown as a
dashed black line. For visualization, G-probabilities were placed into five
equally sized bins, and we plotted the proportion of instances in which
predicted disease is concordant with clinician diagnosis. Color figure
can be viewed in the online issue, which is available at http://
onlinelibrary.wiley.com/doi/10.1002/art.42760/abstract.

Table 1. Performance of G-probabilities in suggesting likely and unlikely diagnoses at different thresholds*

G-probability threshold

Patients with at least
one G-probability at the

given threshold (n = 1,047), n (%)

G-probabilities at the
given threshold
(n = 6,282), n (%)

NPV or PPV
at the given
threshold, %

Thresholds suggesting unlikely diagnoses
<5% 1,047 (100) 2,597 (41.3) NPV 96.0
<20% 1,047 (100) 4,159 (66.2) NPV 95.6

Thresholds suggesting likely diagnosis
>20% 1,047 (100) 2,123 (33.8) PPV 40.7
>50% 511 (48.8) 510 (8.1) PPV 70.3

* Two lower G-probability thresholds (<5% and <20%) for suggesting unlikely diagnoses and two upper
G-probability thresholds (>20% and >50%) for suggesting likely diagnosis were evaluated. Each patient has six
G-probabilities (one for each disease) generated. The number of patients with at least one G-probability at the given
threshold are displayed out of 1,047 patients, as well as the number of G-probabilities overall at the given threshold
out of 6,282 G-probabilities generated (6 per patient). NPV, negative predictive value; PPV, positive predictive value.
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in NPV and PPV at different G-probability thresholds at which NPV
and PPV were inversely correlated, with higher NPV and lower
PPV at lower G-probability thresholds (Supplementary Figure 3).

DISCUSSION

In the first real-world validation of the G-PROB tool, we found
first, that G-PROB produces meaningful, easily interpretable out-
puts; second, that G-PROB is especially helpful at suggesting
unlikely diagnoses; and finally, that G-PROB showed good,
although not perfect, agreement with likely clinician diagnoses. Our
results demonstrate that the G-PROB tool can be easily set up and
used to generate G-probabilities. These G-probabilities are easy to
interpret, and we demonstrate that they are meaningful based on
G-probabilities matching clinician diagnosis being significantly higher
compared with those that do not match and very good calibration of
G-probabilities with clinician diagnosis, indicating that increases in
G-probabilities are concordant with increases in proportions of clini-
cian diagnosis match, as would be expected (Figure 2). Further-
more, ROC-AUC analysis showed that G-probabilities had good
performance at discriminating clinician diagnosis. Overall, these
assessments suggest that the G-probabilities generated by
G-PROB are meaningful, and that increases and decreases in
G-probabilities occur in a way that is appropriate.

We found that NPV was high at G-probability thresholds of
<5% and <20%. This suggests that, when interpreting G-PROB
results in clinic, we can be especially confident that diseases with
G-probabilities below these thresholds are unlikely. However, the

PPV was modest, which demonstrates that genetics alone can-
not accurately suggest or make diagnoses; this is not unexpected
given that common rheumatologic conditions are typically only
between 60% and 90% heritable.12–16 It is important to note that
the tool itself, and therefore its current performance, is directly
linked to how much is known about the genetic risks of the dis-
eases assessed, so as more susceptibility loci are discovered for
each disease, performance may improve further. Furthermore,
integrating clinical risk factors such as demographics, serology,
and comorbidities with PRS has the potential to improve predic-
tive performance, including PPV, as has been demonstrated in
studies in atherosclerotic cardiovascular disease.36

There are several strengths of our study including the use of
data from the NOAR cohort, which is a large, real-world observa-
tional cohort of patients who present with early inflammatory
arthritis and are suspected to have a rheumatologic disease.
Use of this cohort addresses several limitations of the original
study, which assessed performance of G-PROB in a smaller sam-
ple size and used patients from a biobank.25 Furthermore, we
have compared G-PROB’s performance with clinician diagnosis
as opposed to classification criteria, which is more appropriate in
the real-world setting given that patients in the real world may
not satisfy classification criteria but will still receive diagnoses
based on expert clinical opinion. Overall, the fact that G-PROB
performs well in the NOAR cohort and using clinician diagnosis
strengthens the evidence that the tool may be helpful in real-world
clinical practice.

We acknowledge several limitations of our study. First, the
NOAR cohort only included patients who identified as White;
therefore, we extrapolate performance to patients of other ethnic-
ities. As methods to improve generalizability of known genetic risk
variants using transancestry data are developed, this issue may
be resolved in the future, but testing of the tool in patients from
other ancestries is required.37 Future genetic studies such as
functional genomics studies, which discover new disease-
associated variants and functionally annotate known genetic risk
variants with target genes and regulatory elements, can be incor-
porated into further iterations of the G-PROB tool, which may fur-
ther improve its cross-ancestry performance and utility.38,39

A second limitation relates to power; despite including a
sample size nearly four times larger than the original study,25 we
still had relatively low numbers of patients with diagnoses less
commonly made in patients with suspected early inflammatory
arthritis (including gout) (Figure 1). In the context of NOAR and
UK clinical practice, this is likely because patients with gout are
diagnosed by clinicians outside of the rheumatology outpatient
setting (eg, in primary care or in hospital). Low numbers of cases
in certain categories potentially overestimate the tool’s ability
(especially the NPV) by overemphasizing its ability to rule out
uncommon diagnoses. Furthermore, because the selection of
disease prevalence settings is crucial in the set-up and generation
of G-probabilities, care must be taken when implementing the

Figure 4. Receiver operative curve analysis assessing the discrimi-
native ability of G-probabilities to correspond with clinician diagnosis.
The AUC summarizes the AUC (micro-AUC) of the pooled data for all
diseases. AUC, area under the curve.
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G-PROB tool in clinical practice to ensure that the appropriate
disease prevalence is selected to reflect the disease prevalence
in a given clinic population.

In the initial study describing G-PROB, it was found in a
cohort of 197 patients, of which 35% were initially misdiag-
nosed on first presentation to a rheumatology clinic, that for
65% of patients, the G-probability of the correct disease was
higher than the G-probability of the initial diagnosis of the
rheumatologist.25 Unfortunately, the NOAR study was not set
up to record misdiagnoses, and therefore, a third limitation
of our study is that we could not validate these findings
because “initial diagnosis” and subsequent “follow-up/final
diagnosis” were not recorded.

Finally, our study has demonstrated that there is strong cor-
relation between the G-probabilities generated by genetic data
from known genetic risk alleles and the final clinician diagnosis;
however, in both our study and the initial study describing
G-PROB, there is a heterogeneous group of patients in the “Other
disease” category. In the “Other disease” category, there are
patients with inflammatory conditions (such as polymyalgia rheu-
matica) as well as those with noninflammatory conditions (such
as chronic pain syndromes). Therefore, a fourth limitation that nei-
ther our nor the initial G-PROB study could address was whether
G-PROB can assist in improving the accuracy of diagnosis for
patients who exist in the heterogeneous “Other disease”
category.

In conclusion, we have shown that the G-PROB tool and
G-probabilities are meaningful using assessments based on
real-world observational data and clinician diagnoses. Further
work is needed in the form of prospective studies to assess the
added value of genetic tools such as G-PROB in addition to non-
genetic factors such as serology and other clinical information.
Additionally, studies aimed at evaluating the views of clinicians
and patients with regards to the acceptability and usefulness of
using genetic information in clinical practice as well as studies
assessing the cost–benefit of genotyping patients and using
genetic information in the clinical setting are needed before this
technology is integrated in the modern outpatient clinic.
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