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Abstract. Two-dimensional problem of the response of an ice cover to an applied external load is considered. The ice cover is
modeled as a thin elastic plate. The fluid under the plate is incompressible, inviscid and is of finite depth. The external load has a
given shape and does not move. Amplitude of the load oscillates at a given frequency. The deflections of the ice have the form of
standing waves far away from the load. The problem is solved using the Green’s function and the method of vertical modes. The
eigenvalues of the vertical modes are the roots of the dispersion relation for hydroelastic waves propagating along the plate. The
contribution of each type of roots to the formation of the ice deflections is studied. It is shown that the ice deflections for an elastic
plate approximate the ice deflections for a porous plate with low porosity.

INTRODUCTION

The interaction of gravitational waves with thin porous structures is of considerable interest [1, 2]. There are many
examples of mathematical models of ocean waves interacting with porous structures. In particular, problems related
to reducing the wave force acting on engineering structures is of great importance. These problems are widely occur
in applications to coastal engineering, where structures are often used to dissipate wave energy to protect the coast.
Examples of such structures are vertical breakwaters and floating or submerged horizontal plates. Mathematical
formulation in this case often incudes the theory of thin plates and research focuses on analyzing the characteristics
of these structures to increase scattering of the wave energy [3, 4, 5, 6]. In the work [6] the last problem was solved
in a three-dimensional formulation, and a method for matching eigenfunctions was developed for the problem of
linear scattering of water waves by a round floating porous elastic plate. It was found that the dissipation of wave
energy due to porosity of the plate initially increases as the plate becomes more porous, reaches a maximum, and
then slowly decreases as the porosity further increases. In works on the dynamics of thin plates the large class of
problems is related to the behavior of a thin ice cover. The ice, in general, is a porous medium. In many studies the
porosity of ice is not taken into account. In [7] unsteady oscillations of the poroelastic ice cover under the action of
the applied periodic pressure were investigated. It was found that the increase in the porosity increases the deflections
of the poroelastic plate in the region of applied pressure, reduces the ice deflections at a distance from the load and
reduces the observed disturbed area of the ice. It was shown that porosity increases the length of the hydroelastic
wave propagating along an ice cover from the applied pressure. This study is a continuation of the research reported
in [7]. In [7] the question about the convergence of the ice deflections when the porosity tends to zero remains open.
The method of the solution in the considered work does not allow calculating the ice deflections in the case of zero
porosity. In this paper the problem of oscillations of an elastic ice plate under the action of an applied pressure with
a periodically oscillating amplitude is considered. The problem is solved by the method of vertical modes, in which
it is necessary to calculate the complex roots of the corresponding dispersion relation. The contribution of different
roots to the profile of the ice deflections is studied and the result is compared with the ice deflections for a plate with
small porosity.

FORMULATION OF THE PROBLEM

The oscillations of an ice cover under the action of an external load are considered. The problem is two-dimensional
and formulated within the linear theory of hydroelasticity. The ice cover is modeled as a thin elastic plate. The
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liquid under the ice cover is inviscid, incompressible and has a finite depth H, (−H < y < 0). The flow caused by
the ice deflections is potential. The liquid and the ice cover are not limited horizontally. The vertical displacement
(deflections) of the plate from the equilibrium position satisfies the equation of a thin elastic beam, the velocity
potential of the flow satisfies the Laplace equation. The load is modeled by a smooth localized pressure with an
amplitude oscillating at a constant frequency. The scheme of the problem is shown in Fig. 1.

FIGURE 1. The scheme of the problem.

We are concerned with the case where the ice deflections has the form of standing waves at a distance from the load,
periodically oscillating with the frequency of oscillation of the external load’s amplitude. In this case, the governing
system of equations are

Mwtt +EJwxxxx = p(x,0, t)−Pext(x)cos(ωt), (1)

φxx +φyy = 0 (−H < y < 0), (2)

φy = 0 (y =−H), φy = wt (y = 0), (3)

p(x,0, t) =−ρφt −ρgw (y = 0), (4)

where p(x,0, t) is the pressure of the liquid at the ice/liquid interface, defined by the linearized Bernoulli integral,
M = ρihi is the mass of the ice per unit area, ρi is the density of ice, hi is the thickness of ice, Pext(x) is the function

describing the shape of the external load, EJ =
Eh3

i
12(1−ν2)

is the bending rigidity of the plate, E is the Young’s modulus,

ν is the Poisson’s ratio, wxxxx =
d4w
dx4 , ω is the frequency of the oscillations of the amplitude of the load.

The solution of the problem (1) – (4) are sought in the form

w(x, t) = Re[W (x)eiωt ], φ(x,y, t) = Re[iωΦ(x,y)eiωt ], p(x,0, t) = Re[P(x)eiωt ].

Substituting these function to the system (1) – (4), we governing equations read

−Mω2W +EJW IV = ρω2Φ(x,0)−ρgW −Pext(x) (−∞ < x <+∞), (5)

Φxx +Φyy = 0 (−H < y < 0), (6)

Φy = 0 (y =−H), Φy =W (y = 0), (7)

The absence of porosity, viscosity and other damping effects leads to the condition for the ice deflections at a distance
from the load

W ∼W∞e−ik|x| (|x| → 0), (8)
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where k is the wavenumber and W∞ is the amplitude of the hydroelastic waves far away from the load. The problem
(5) – (8) is solved in dimensionless variables. We introduce

y = Hỹ, x = Hx̃, Pext = P0P̃e(x̃), W =WscW̃ (x̃), Φ = HWscΦ̃,

where P0 is the maximum amplitude of the external load, Wsc = P0H4/[EJ]. In the dimensionless variables (the sign
∼ is omitted) the system of equation (5) – (8) has the form

W IV +δ0W = γΦ−Pe (−∞ < x <+∞), Δ2Φ = 0 (−∞ < x <+∞,−1 < y < 0), (9)

Φy = 0 (y =−1), Φy =W (x) (y = 0), W ∼W∞e−ik|x| (|x| → 0), (10)

where

Δ2 = ∂/∂x2 +∂/∂y2, δ0 =

(
1− Mω2

ρg

)(
H
Lc

)4

, γ =
ω2H

g

(
H
Lc

)4

, Lc =

(
EJ
ρg

)1/4

.

We shall find W (x) and then determine the shape of the ice deflections near and far away from the load and comapre
the result with the ice deflection of the plate with small porosity.

METHOD OF THE SOLUTION

The boundary-value problem (9) – (10) is solved using the Green’s function

W (x) =
∫ +∞

−∞
Pext(x0)G(x,x0)dx0, Φ(x,y) =

∫ +∞

−∞
Pext(x0)Ψ(x,x0,y)dx0,

The equations for G and Ψ are derived from the system of the equations (5) – (8). The differential operator in (5) has
constant coefficients, so we can write G(x,x0) = G1(x− x0), where G1(−x) = G1(x), and Ψ(x,x0,y) = Ψ1(x− x0,y),
where Ψ1(−x,y) = Ψ1(x,y). This allows to find the functions G and Ψ for x ∈ [0,+∞) and then extend the solutions
for negative x. In this case the ice deflection W (x) and the potential Φ(x,y) are calculated as integrals of the product
of the shape of the load and Green’s functions

W (x) =
∫ +∞

−∞
Pext(x0)G(|x− x0|)dx0, Φ(x,y) =

∫ +∞

−∞
Pext(x0)Ψ(|x− x0|,y)dx0. (11)

It can be shown that the boundary conditions for G1(x) are G′
1(0) = 0, G′′′

1 (0) =−1/2 and symmetry condition for
Ψ1(x,y) is Ψ′

1(0,y) = 0. Using the relation between G1 and Ψ1 the original boundary-value problem can be reduced
to the problem for Ψ1

ΨV
1 +δ0ΨIV

1 = γΨ1 (y = 0), Ψ1,xx +Ψ1,yy = 0 (−1 < y < 1),

Ψ1,y = 0 (y =−1), Ψ1 ∼ Ψ1∞e−ik|x| (|x| → ∞),

This problem is solved using the vertical mode method [8]

Ψ1(x,y) =
∞

∑
n=−2, n�=0

Cne−iκnx fn +C0eiκ0x f0,

where κn is the dimensionless wavenumber of hydroelastic waves propagating along the plate.
Functions fn(y) = cosh(κn(1+ y))/[κn sinh(κn)] are called vertical modes. They are normalized and orthogonal in

a special sense

< F,G >=
∫ 0

−1
F(z)G(z)dz+

1

γ
(F ′′′(0)G′(0)+F ′(0)G′′′(0)), f ′n(0) = 1.
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The principal coordinated of the vertical modes are found from the boundary conditions for G1 and the definition of
the last orthogonal product

Ck =
1

2γ
1

iκkQk
, C0 =− 1

2γ
1

iκ0Q0
, Qk =

1

2κ2
n γ2

[κ2
n (κ

4
n +δ0)

2 + γ(5κ4
n +δ0 − γ)],

The Green’s function for the ice deflections is represented as the sum of three functions due to the three types of
roots of the dispersion relation

G1(x) =C1R(x)+G1S(x)+G1C(x),

where the first term gives the contribution of purely imaginary roots, the second gives the contribution of complex
roots and the third gives the contribution of a real root. For the purely imaginary roots κn = iκ̃n

G1R(x) = γ
∞

∑
n=1

κ̃ne−κ̃nx

γ(5κ̃4
n +δ0 − γ)− κ̃2

n (κ̃4
n +δ0)2

.

For the complex roots κ−1 = a0 + ib0 and κ−2 =−a0 + ib0

G1S(x) =−e−b0x

γ
Re

[
i

eia0x

(a0 + ib0)Q−1

]
.

For the real root κ0

G1C(x) =
ie−iκ0x

2γκ0Q0
.

After the wavenumbers are calculated the ice deflection is determined by the equation (11).

NUMERICAL RESULTS AND DISCUSSION

The calculations of the ice deflections under the action of the periodic load are performed for H = 2 m, E = 4.2 ·109 Pa,
ν = 0.3, hi = 0.1 m, ρ = 1024 kg/m3, ρi = 917 kg/m3, g = 9.8 m/s2, ω = 1c−1, t = 0 s. The function describing
the load Pext(x) in our calculations has the form P(x) = P0P1(x), P1(x) = (cos(πcx)+ 1)/2 (c|x| < 1), P1(x) = 0
(c|x|> 1) with c = 1/2, P0 = 1000 Pa.

For a complete solution of the problem, it is necessary to calculate both real and complex κn, which are the roots
of the dispersion relation

(κ4 +δ0)tanh(κ) = γ.

This dispersion relation has an infinite number of solutions: 2 real roots ±κ0, a countable number of imaginary roots
κn = iκ̃n, κ̃n > 0 and 4 complex roots ±a0± ib0, a0 > 0,b0 > 0. Calculation of the last roots is difficult. The dispersion
relation after the substitution of these roots is divided into 2 implicit equations for a0 and b0. These equations are the
real and imaginary parts of the dispersion relation respectively. The graphics of these equations are shown in Fig. 2.
We need to take into account not all roots of the dispersion relation, but only the roots giving different solutions
and damping of the ice deflections as x → ∞. These roots are 1 positive real root, 2 complex conjugate roots, and
a countable number of imaginary roots. All roots are calculated numerically. Real and purely imaginary roots are
calculated by the iteration method. The algorithm of the calculation of the complex root is: first, the area with root
on the Oxy plane (the neighborhood of the intersection of blue and red lines in Fig. 2) is cut to a square 1x1, then the
implicit equations for the real and imaginary parts are constructed numerically, and the point of their intersection is
found. All roots are calculated up to 10−5. The root values depend on the δ0 and γ parameters.

Note that w(x,0) = W (x) for t = 0 s. The corresponding values of the function W (x) are shown in Figs. 3 and 4.
All results are shown in dimensional variables. Contributions to the formation of the ice deflections with purely
imaginary and complex roots of the dispersion relation are shown in Fig. 3. The contributions with these roots are
concentrated in a local area near the load. Contribution of the real root of the dispersion relation κ0 is shown in
Fig. 4a. This contribution is the most significant. For the considered case κ0 = 0.4474. It can be shown that the
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FIGURE 2. Implicit functions that are real and imaginary parts of the equation (κ4 + δ0)tanh(κ) = γ , blue line – the imaginary
part, red line – the real part.

corresponding dimensional wavenumber is the limit of the wavenumbers of hydroelastic waves propagating from
the load in a porous plate with decreasing porosity. Wavenumbers for a porous plate can be estimated numerically,
see [7]. The ice deflections of the elastic plate with zero porosity (solid line) and the ice deflections of the plate
with low porosity (markers) are shown in Fig. 4b. The ice deflections match with visual accuracy in both cases. The
solution of the problem with porous plate, as well as the discussion of the choice of the porosity value, is presented
in [7].

FIGURE 3. Contribution to the formation of the ice deflections of the terms with purely imaginary roots of the dispersion relation
(a), with the complex roots (b).

FIGURE 4. Contribution to the formation of the ice deflections of the term with the real root of the dispersion relation (a). The
ice deflections in the considered case (solid blue line) and in the case of the plate with low porosity (red markers) (b).
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CONCLUSION

The two-dimensional problem of oscillations of a thin elastic plate under the action of an external load is considered.
The external load does not move and has a periodic amplitude. The problem is solved using the Green’s function and
the method of vertical modes, in which the solution is written as a sum of functions that are orthogonal in a special
sense. The eigenvalues of these functions are the roots of the dispersion relation of periodic waves propagating along
the plate. For a complete solution, it is necessary to take into account both real and complex roots of the dispersion
relation. The form of the waves propagating from the load is determined and its wavenumber is calculated. This
wavenumber is the limit of the wavenumbers of waves propagating from the load in the porous plate with decreasing
porosity of the plate. It is shown that terms with complex roots and purely imaginary roots give local contributions
near the load; a significant contribution is for a term with real root. It is shown that the shape of the ice deflections in
the problem for a porous plate with decreasing porosity converges to the shape of the ice deflections for a plate with
zero porosity. Further development of this problem involves the construction of the vertical mode method for a porous
ice cover.
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