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Abstract 

Executive function, an umbrella term used to describe the goal-directed regulation of thoughts, 

actions, and emotions, is an important dimension implicated in neurodiversity and established 

malleable predictor of multiple adult outcomes. Neurodevelopmental differences have been 

linked to both executive function strengths and weaknesses, but evidence for associations 

between specific profiles of executive function and specific neurodevelopmental conditions is 

mixed. In this exploratory study, we adopt an unsupervised machine learning approach (self-

organising maps), combined with k-means clustering to identify data-driven profiles of 

executive function in a transdiagnostic sample of 566 neurodivergent children aged 8-18 years 

old. We include measures designed to capture two distinct aspects of executive function: 

performance-based tasks designed to tap the state-like efficiency of cognitive skills under 

optimal conditions, and behaviour ratings suited to capturing the trait-like application of 

cognitive control in everyday contexts. Three profiles of executive function were identified: 

one had consistent difficulties across both types of assessments, while the other two had 

inconsistent profiles of predominantly rating- or predominantly task-based difficulties. Girls 

and children without a formal diagnosis were more likely to have an inconsistent profile of 

primarily task-based difficulties. Children with these different profiles had differences in 

academic achievement and mental health outcomes and could further be differentiated from a 

comparison group of children on both shared and profile-unique patterns of neural white matter 

organisation. Importantly, children’s executive function profiles were not directly related to 

diagnostic categories or to dimensions of neurodiversity associated with specific diagnoses 

(e.g., hyperactivity, inattention, social communication). These findings support the idea that 

the two types of executive function assessments provide non-redundant information related to 

children’s neurodevelopmental differences and that they should not be used interchangeably. 

The findings advance our understanding of executive function profiles and their relationship to 

behavioural outcomes and neural variation in neurodivergent populations. 

Keywords: executive function, neurodiversity, neurodevelopment  
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Introduction 

The transdiagnostic revolution in neurodevelopmental conditions emphasises a move away 

from diagnostic systems and towards identifying broad dimensions that characterise 

neurodiversity (Astle et al., 2022). One such dimension, which captures characteristics 

associated with multiple neurodevelopmental differences (Bloemen et al., 2018), can be a 

barrier to learning (Holmes et al., 2021), is a well-established and malleable predictor of 

multiple adult outcomes (Diamond, 2013), and is linked to neural differences in white matter 

organisation (Bathelt et al., 2018; Baum et al., 2017) is executive function. The term executive 

function is used widely to describe the processes supporting the volitional control of cognition 

and behaviour, and in this way, it is sometimes referred to as a system of cognitive control. In 

this exploratory study, we adopt a transdiagnostic data-driven approach to delineate profiles of 

executive function among a large neurodevelopmentally neurodivergent sample using 

measures designed to capture two conceptually distinct aspects of executive function: 

performance-based tasks designed to tap higher-order cognitive skills (Miyake et al., 2000), 

and behaviour ratings suited to capturing the application of cognitive control in everyday 

contexts (Doebel, 2020). We then explore whether and how these different profiles (i.e., groups 

of children with different profiles identified in a data-driven manner), are associated with 

differences in neurodevelopmental diagnostic categories and dimensions, academic and mental 

health outcomes, and neurobiology.  

Executive function can be conceptualised in two ways that map broadly onto the ways 

in which they are measured (Malanchini et al., 2018; Toplak et al., 2013). The first views 

executive function as a set of higher-order cognitive skills that enable flexible thinking (Miyake 

et al., 2000). There are many different accounts of executive function that vary in whether they 

consider it to be a unitary construct or a set of related skills or components  (for a review, see 

Baggetta & Alexander, 2016). There are also differences in the sets of skills included under the 
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‘executive function umbrella’, but these are broadly considered to include shifting/switching, 

inhibition, working memory, planning, and (sustained) attention (Baggetta & Alexander, 2016; 

Carlson et al., 2004; Deodhar & Bertenthal, 2023; Friedman & Miyake, 2017; Garon et al., 

2008; Miyake et al., 2000; St Clair-Thompson & Gathercole, 2006). These are typically all 

indexed by accuracy or response times on performance-based tasks, such as memory span tasks 

that index working memory performance (e.g., Automated Working Memory Assessment, 

Alloway, 2007), tasks that require goal-oriented planning (e.g., Tower of London, Shallice, 

1982), semantic incongruence or cognitive flexibility tasks that assess shifting/switching (e.g., 

Number-Letter sequencing, Delis et al., 2001; Stroop, Stroop, 1935), and tasks that require 

focused attention in the face of distraction over lengthy periods that measure sustained attention 

and response inhibition (e.g., Continuous Performance Test , Conners, 1992). There are many 

other task-based measures of executive function, and multiple variants of the examples 

provided here (see Strauss et al., 2006 for a comprehensive list of task-based measures of 

executive function), but what they have in common is that they are administered individually 

under controlled experimental conditions requiring effortful cognitive control. In this way, 

therefore they can be viewed to reflect optimal (state-like) rather than typical (trait-like) 

performance. 

The second view of executive function integrates knowledge, beliefs, and values 

alongside cognitive, motor, and perceptual control, and makes explicit that these factors come 

together in the service of goals in specific settings (Doebel, 2020). It refers to the individual 

use of executive skills in particular situations, rather than a general “capacity process” such as 

inhibition that is applied across all situations. To illustrate the distinction, Doebel (2020) uses 

the example of a child inhibiting the impulse to hit another child who has taken their toy. In 

this situation, the child brings to bear knowledge and beliefs about hitting another child (e.g., 

socially acceptable alternatives to hitting, beliefs about being scolded for engaging in hitting 
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behaviour) when inhibiting a response or action. In this way, executive function is viewed as 

inseparable from the task goals, context, and mental content that come into play in specific 

situations. Understanding executive function as tied to the activities a person is completing in 

their everyday activities mirrors the second way in which executive function is measured – 

using rating scales to index the ability to coordinate multiple processes in everyday problem-

solving situations that draw on knowledge, beliefs, and values. Examples of such rating scales 

include the Behaviour Rating Index of Executive Function (BRIEF; Gioia et al., 2000) and the 

Working Memory Rating Scale (Alloway et al., 2009). These, and similar questionnaires, 

require self or observer ratings of the frequency of everyday executive function behaviours in 

different contexts. They were originally developed to provide an ecologically valid measure of 

executive function that captures real-world functioning. Questionnaire responses typically 

reflect behavioural observations over extended periods of time, and may therefore reflect more 

trait-like or stable processes and provide a more accurate assessment of typical performance 

(Doebel & Müller, 2023; Holochwost et al., 2023; Malanchini et al., 2018). This may explain why 

rating-based assessments are often observed to be more psychometrically reliable than 

cognitive tasks (Hedge et al., 2018; Pezzoli et al., 2023).  

Two lines of evidence suggest that measures of executive function used in these two 

domains – cognitive processes and skills involved in goal-oriented behaviour in everyday 

situations – capture different information and are dissociable. First, there is little convergent 

validity between the measurement types tapping each domain (Dang et al., 2020). If 

performance-based and rating-based measures of executive function were fully overlapping 

and capturing the same information, they should be highly correlated. Yet concurrent and 

predictive validity studies consistently indicate that they are, at best, weakly correlated (e.g., 

Gerst et al., 2017; Nin et al., 2022; Soto et al., 2020; Tamm & Peugh, 2019; Toplak et al., 

2013), and that these relationships remain small when using latent variable approaches (Snyder 
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et al., 2021) and/or when controlling for mono-method bias (e.g., that performance-based 

measures predict other performance-based measures, and rating-based measures predict other 

rating-based measures Soto et al., 2020). In a review, Toplak and colleagues (2013) concluded 

that the two types of measurement capture different information, with rating-based measures 

capturing goal-oriented successes in typical everyday settings and performance-based 

measures capturing processing efficiency under optimal conditions.  

Second, they make independent contributions to clinical, academic, and life outcomes. 

Difficulties with executive function are associated with multiple neurodevelopmental 

conditions, including attention deficit hyperactivity disorder (ADHD), specific learning 

difficulties, and autism (e.g., Benallie et al., 2021; Holmes et al., 2014; Loe & Feldman, 2007; 

McClain et al., 2022; Willcutt et al., 2005), they can be a barrier to learning (Holmes et al., 

2021; Peng & Fuchs, 2016; Soto et al., 2021; Yeniad et al., 2013), and are also linked to poor 

mental health outcomes (e.g., Bloemen et al., 2018). Substantial evidence suggests that the 

different measurement methods of executive function make unique and separable contributions 

to these outcomes (Gerst et al., 2017; Soto et al., 2020). In terms of academic achievement, 

both rating- and performance-based measures predict outcomes, but the relationships are 

typically stronger and more consistent for performance-based measures (Gerst et al., 2017; 

Malanchini et al., 2018; Soto et al., 2020). Similarly, for mental health outcomes, rating- and 

task-based measures of executive function explain independent variance in both internalising 

and externalising difficulties (Eisenberg et al., 2019; Ellingson et al., 2019; Friedman et al., 

2020; Friedman & Gustavson, 2022), with  stronger relationships typically reported between 

rating-based measures and mental health (Friedman et al., 2020), although mono-method bias 

is rarely controlled for in such comparisons. 

The correspondence between ratings of executive function behaviours and performance 

on cognitive tests is also low in neurodivergent groups. For example, in both children and adults 
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with ADHD, executive function profiles captured by performance-based and rating-based 

measures have little overlap (Biederman et al., 2008; Krieger & Amador-Campos, 2018; Tan 

et al., 2018). Moreover, both types of assessments make distinct contributions when predicting 

occupational outcomes in people with ADHD (Barkley & Murphy, 2010, 2011). Similar 

differences between the two types of assessment have been reported for other 

neurodevelopmental conditions (Gómez-Pérez et al., 2016; Gross et al., 2015). In a transdiagnostic 

study, Williams and colleagues (2022) found that a substantial proportion of a large sample of 

neurodivergent children had what they termed as an inconsistent executive function profile, 

defined as difficulties reported on rating-based assessments of executive function that were not 

evident on performance-based tasks. 

Current study  

The aim of the current study was to adopt a data-driven transdiagnostic approach to delineate 

profiles of executive function among a large neurodevelopmentally neurodivergent sample. 

Previous studies exploring executive function in neurodivergent children have typically either 

contrasted executive function performance between groups (e.g., those with a diagnosis 

compared to those with a different, or no, diagnosis) across a range of performance-based 

measures (e.g., Geurts et al., 2004; Holmes et al., 2014), explored how well executive function 

rating scales and performance tests predict outcomes separately (e.g., Gerst et al., 2017; Soto 

et al., 2020), or tested relationships between different types of executive function measurement 

(e.g., Nin et al., 2022; Tamm & Peugh, 2019). Studies applying strict diagnostic thresholds or 

using case-control designs fail to capture broad populations of neurodivergent children and 

tend to overemphasise the differences between diagnostic groupings (Astle et al., 2022). For 

these reasons, here, we used a data-driven approach and focused on a transdiagnostic sample 

that included a range of children who had been identified as having additional needs by health 

and education practitioners, irrespective of their diagnostic status. Classifying individuals into 
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homogenous data-driven groupings, based on executive functioning rather than diagnostic 

status, provides a way to more accurately map phenotypes to outcomes and neurophysiology 

(Bathelt et al., 2018; Vaidya et al., 2020). To do this, we used a self-organising map algorithm 

to map the multidimensional space of a broad range of performance- and rating-based 

assessments of executive function, representing how children group together based on their 

executive function profiles. We then used data-driven clustering to delineate subgroups of 

children presenting with different executive function profiles and explored how these related 

to the two dissociable aspects of executive function. We also investigated whether the groups 

differed in terms of neurodevelopmental diagnostic categories (ADHD, autism, etc.) and 

dimensions that capture neurodiversity (hyperactivity, inattention, communication). Finally, 

we explored how these groups related to learning, mental health, and neural white matter 

organisation. We focussed on white matter organisation because there is substantial literature 

supporting its links to both executive function (Bathelt et al., 2018; Baum et al., 2017) and 

neurodevelopmental conditions and dimensions (Ameis et al., 2016; Beare et al., 2017).  

The study was fully exploratory, and we did not formulate a hypothesis about the 

number of groups or the phenotypic and neural features that would differentiate them. Instead, 

we used a data-driven approach to address the following questions: 1) can we identify 

subgroups of children with different profiles of executive function; 2) if so, do these groups 

differ in terms of the two dissociable aspects of executive function; and 3) how do these groups 

relate to neurodevelopmental diagnostic categories/characteristics, academic and mental health 

functioning, and neural white matter organisation? No part of the study procedures or analysis 

plans was preregistered prior to this research being conducted. 

Method 

Participants 
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Participants were drawn from the Centre for Attention, Learning, and Memory (CALM) 

cohort. Recruitment details and testing procedures are described in the study protocol (Holmes 

et al., 2019). Here, we provide a short overview and report on how we determined the final 

sample size for this analysis, all data exclusions, whether inclusion/exclusion criteria were 

established before data analysis, all manipulations, and all measures used in this analysis. 

Broadly, children aged 5-18 years were referred to the study by health and educational 

professionals for difficulties with attention, learning, and/or memory regardless of diagnostic 

status. Most referrals came from education services, which included school special educational 

needs coordinators, specialist teachers, educational psychologists, and head teachers (63%). A 

smaller proportion were referred from health services, which included clinical psychologists, 

psychiatrists, and paediatricians (33%). A minority of the sample were referred by speech and 

language therapists (4%). Participants aged 8 years and above were included in the current 

study. Younger children were excluded before data analyses because some of the executive 

function tasks were not standardised for children under 8 years old and were therefore not 

administered to them. The sample for this study included 566 children (45% with at least one 

diagnosis) with an average age of M = 10.55 years, SD = 2.02 (Nboys = 380, Ngirls = 186). The 

most common diagnoses were ADHD (N=156, of whom N medicated = 88), autism (N=46), 

and dyslexia (N=47). Smaller numbers of children had dyscalculia, developmental language 

disorder, dyspraxia, global developmental delay, sensory processing disorder, Tourette’s 

syndrome, and mental health conditions (see Holmes et al., 2021 for a full breakdown of 

diagnoses in this cohort). Demographic information is not reported here by diagnostic category 

for several reasons. First, diagnostic comparisons have been reported previously for some of 

the larger diagnostic groups in this cohort (Holmes et al., 2021). Second, diagnostic groupings 

were not discrete – many children with diagnoses had more than a single diagnosis and these 

high comorbidity rates meant that it was not feasible to make meaningful comparisons due to 
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small group sizes. We instead report a comparison between children who had any diagnosis 

and those who did not across the executive function measures in the Supplementary Materials 

(Table S2). This revealed that those with a diagnosis tended to be older and experienced more 

difficulties on rating-based assessments of executive function relative to non-diagnosed 

participants. No differences were observed on any of the performance-based measures.  

Ethnicity information was not collected as part of the original CALM study, but it was 

requested retrospectively as part of an enrichment phase of the project to which only a 

subsample of the original cohort responded (N=189, of which 176 identified as ‘White’; 12 as 

‘Mixed/Multiple Ethnic Groups’; and 1 as Black/African/Caribbean/Black British). As a proxy 

for socioeconomic status, the index of multiple deprivation (a measure that ranks relative levels 

of deprivation across different areas of England) based on participant’s postcodes was used. 

These data were available for 517 participants (M = 20,455, SD =8,222, min = 155, max = 

32,803). The national ranking ranges from 1 (most deprived) to 32,8444 (least deprived), 

suggesting that our sample included participants living in varying levels of deprivation. Ethical 

approval was obtained by the National Health Service (REC: 13/EE/0157). Parents/caregivers 

gave written consent and children gave verbal assent to participate.  

Measures 

Children completed a range of assessments of learning and cognition and a questionnaire 

asking about their mental health. Parents/caregivers completed questionnaires about the child’s 

behaviour and communication skills. All assessments were administered by a trained 

researcher at the CALM clinic, following standardised administration procedures documented 

in the test manuals. Task details and administration procedures are available in the study 

protocol, and psychometric properties have been previously reported in other publications 

using this cohort (Holmes et al., 2021; Mareva & Holmes, 2019). A summary of each 

assessment included in this study is provided below. For all assessments, norms for average 
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age-typical levels of functioning were available and therefore age-referenced scores were used 

in all analyses. Legal copyright restrictions prevent public archiving of most assessments listed 

below (except the Revised Child Anxiety and Depression Scale), which can be obtained from 

the copyright holders in the cited references. 

Executive Function  

Task-based measures – Tasks tapping executive functioning were chosen from the broader 

neuropsychological battery used in the CALM study (Holmes et al., 2019). These included four 

tasks from the Automated Working Memory Assessment (AWMA; Alloway, 2007), tapping 

verbal and visuospatial short-term/working memory: forward digit recall, backward digit 

recall, dot matrix, and Mr X. Two tasks from the Delis-Kaplan Executive Function System test 

battery (D-KEFS, Delis et al., 2001) were included: the Tower task, commonly used to assess 

planning skills, and the Trail-making number-letter sequencing task, a Stroop-like task 

indexing shifting. Two tasks from the Test of Everyday Attention for Children 2 (TEA-Ch2, 

Manly et al., 2016) were also included: the switching task, Reds, Blues, Bags and Shoes 

(RBBS), and the Vigil task tapping sustained attention.  

Rating-based measures – Parents/caregivers completed the BRIEF (Gioia et al., 2000), an 80-

item rating scale covering eight domains: Inhibition, Shifting, Emotional control, Initiation, 

Working memory, Planning, Organisation, and Monitoring.  

Age-standardised scores derived from performance and rating-based measures were a 

combination of T-, scaled and standardised scores and were converted to age-referenced z-

scores to be on the same scale (a score of zero corresponded to age-typical performance, a score 

of one represented 1 SD above the age-expected mean, and -1 represented 1 SD below the age-

expected mean). 

Learning  
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The Word Reading and Numerical Operations subtests of the Wechsler Individual 

Achievement Test II (WIAT-II; Wechsler, 2005) were used to assess children’s reading and 

mathematical skills.  

Mental health  

The total anxiety and depression score from the Short Youth-Report Revised Child Anxiety 

and Depression Scale https://dev-rcads-ucla-site.pantheonsite.io/sites/default/files/2023-

06/RCADS25-Youth-English-2018.pdf (RCADS, Chorpita et al., 2005) was used to index 

child-reported internalising difficulties. This questionnaire was introduced into the CALM 

protocol mid-way through the study, meaning data were only available for 269 participants.  

Diagnostic categories and dimensions of neurodiversity 

Neurodevelopmental diagnoses were reported by the referring professional and confirmed by 

parents/ caregivers at the time of referral to the CALM study. Ratings on dimensions of 

neurodiversity that are core features of neurodevelopmental conditions that were included in 

the CALM protocol were included in the current study. These were ratings provided by the 

child’s parent / caregiver using the following scales: inattention and hyperactivity/impulsivity 

(dimensions of ADHD measured by the Conners-3 Parent Short Form Rating Scale (Conners, 

2008); communication skills (dimension of developmental language disorder measured by the 

Child Communication Checklist-2, CCC-2, Bishop, 2003), and social communication and 

interests (core dimensions of autism, measured by the CCC-2, Bishop, 2003). 

Neuroimaging 

Neuroimaging data was available for a subset of the cohort. The current analysis included 248 

referred children (Mage scan = 10.92, SD = 2.07, 70% male) and 77 children (M age scan =10.75, 

SD = 2.01) who formed a comparison group. The children in the comparison group were 

recruited from the same schools attended by those who were referred, but themselves had not 
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been referred. Children forming this group were not screened for 

psychiatric/neurodevelopmental conditions, consistent with the transdiagnostic approach. They 

were included as a socio-demographically matched group of non-referred children who 

attended the same schools as those who were referred. This non-referred group was included 

in the neuroimaging analyses for the purposes of data interpretation - unlike the cognitive and 

behavioural assessments, neuroimaging metrics do not allow for a straightforward 

interpretation of age-typical levels of functioning. The acquisition and pre-processing steps of 

the diffusion scans have been reported elsewhere (Mareva et al., 2023) and are briefly described 

in the Supplementary Materials. In the final step, whole-brain white matter connectivity 

matrices (i.e. connectomes) were constructed for each child based on the Brainnetome atlas 

(Fan et al., 2016). The number of streamlines intersecting each pairwise combination of regions 

(N = 246) was estimated and transformed into a 246 x 246 streamline matrix. 

Analysis Plan 

Analyses were conducted in four steps: 1) missing data estimation; 2) self-organising map 

(SOM) and data-driven clustering; 3) comparison of profiles across executive function, 

neurodevelopmental, academic, and mental health functioning based on a series of chi-squares 

and t-tests; 4) pairwise comparisons and partial least squares discriminant analysis (PLSDA) 

to explore patterns of neural white matter organisation that distinguish the data-driven groups 

from the non-referred participants who were included in the neuroimaging cohort. Details for 

each step of the analysis are outlined below.  

Missing data 

Missing data were estimated only for the assessments used in the SOMs (see Table S1 for 

descriptive statistics before imputation). For all other assessments used in the validation 

analyses, missing data was not estimated to ensure it was independent and suitable for external 
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validation. Data was complete for 59% of participants. Boys and girls were equally likely to 

have missing data (χ2 = 0.22, p = 0.64) and so were participants with and without a diagnosis 

(χ2  = 0.03, p = 0.87). Missing data was estimated via the random forest nonparametric 

imputation procedure implemented in R package missForest (Stekhoven & Bühlmann, 2012). 

Participant sex and age were also added to the imputation model to improve estimates.  

Self-organising maps (SOMs) 

Self-organising maps (SOMs) are a specific type of artificial neural network designed 

for noise reduction and the analysis of complex, high-dimensional data in a simplified, lower-

dimensional space. Unlike other data-reduction methods such as factor analysis, SOMs do not 

aim to determine the optimal number of underlying dimensions in the data. Instead, they reduce 

data complexity by mapping it onto a topological space of nodes, in our case organised along 

two spatial dimensions. In this space, individuals are assigned to nodes based on similarities 

across input variables (i.e., 16 executive function measures) expressed as nodal weights. In 

simpler terms, SOMs group together individuals who share similar input data on this 

topological map. This means that on the final map, children with similar profiles will be located 

on nodes closer to each other in space. Subsequently, each assessment from the input data can 

be projected onto this map, allowing us to gain insights into how specific features differentiate 

children in various areas of the map. A conceptual overview of the implementation used here 

is provided in the Supplementary Materials and more details are available in Wehrens & 

Buydens (2007). 

Data-driven clustering 

The SOM algorithm is a valuable tool for addressing challenges associated with 

analysing multidimensional data, a problem known as the ‘curse of dimensionality’ (Dalmaijer 

et al., 2022). It accomplishes this by representing data in a continuous, two-dimensional grid 
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of nodes, where proximity in space reflects similarity. Assuming that our study population is 

diverse, dividing this map into sections should reveal groups of individuals with similar 

profiles, distinct from those located elsewhere on the map. The SOM itself doesn't explicitly 

define these sections by drawing boundaries between nodes; an additional analysis step is 

required for this purpose. There isn't a fixed rule for determining how many sections the map 

should be divided into. To find the optimal number of groups, we employed an additional data-

driven approach, in which we used the nodal weight values obtained from the SOM and 

submitted them to k-means clustering. This method was chosen for its non-parametric nature 

and because it makes fewer assumptions about the data than other clustering methods, meaning 

it aligned well with the exploratory nature of the analysis. Following good practice 

recommendations, before clustering, the nodal weights were reduced using uniform manifold 

approximation and projection (Bathelt et al., 2021; Dalmaijer et al., 2022). The optimal number 

of clusters was chosen based on a consensus approach implemented in the R-package NbClust 

(Charrad et al., 2014). This method uses 30 indices for determining the number of clusters and 

converges on the best clustering scheme across the different results obtained by combinations 

of the number of clusters, distance measures, and clustering methods (full description of these 

metrics is beyond the scope of this manuscript but for a full list and detailed description please 

see Charrad et al., 2014). This provided us with clusters of children based on the nodes they 

were assigned to in the original mapping. To check the clustering, each cluster distribution was 

plotted on the original map with the expectation that all cluster members ought to sit on 

neighbouring nodes within the original map.  

Cluster characterisation & comparisons 

To characterise the data-driven groups we compared their average scores on each of the 

assessments used in the SOM in a series of t-tests. False discovery correction was used to 

handle multiple comparisons at each level of analysis (e.g., data used in SOM, behavioural data 
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not included in SOM, neural data). We also validated the data-driven clusters by testing 

whether group differences generalised to data not included in the SOM – in this case, learning 

assessments and self-reported mental health difficulties, neurodevelopmental diagnostic 

categories, and parent-reported dimensions of neurodiversity. For continuous data, t-tests were 

conducted using false discovery rate as a correction for multiple comparisons, and for 

categorical data, chi-square tests were used (e.g., to compare the number of children with a 

particular diagnosis in each subgroup relative to the overall distribution across the whole 

sample). 

Neuroimaging comparisons 

The neuroimaging analyses explored three levels of white matter connectome organisation: 

global, module, and regional hubs. For the first two, we used a series of non-parametric 

comparisons contrasting the non-referred comparison group to the data-driven groups using 

false-discovery rate correction. This approach was favoured as it allowed us to explore both 

shared and subgroup-unique differences relative to the comparison group with a minimum 

number of comparisons. To explore differences in regional hub organisation we used a PLSDA 

(Brereton & Lloyd, 2014) , aiming to derive components of regional hubs that best explain 

group membership across the data-driven profiles and the non-referred comparison sample. 

Prior to analyses, the effects of age and in-scanner motion (average frame displacement) were 

regressed from each metric using a robust estimation approach. 

At the global level, we focused on connectome efficiency and the average participation 

coefficient. Global efficiency describes the potential for information exchange in the 

connectome and is the average inverse distance from any one brain region to another (Sporns 

et al., 2007). The participation coefficient measures the proportion of possible connections each 

region has with regions from other modules. It is considered an index of modular segregation, 

with lower values indicating more segregation: regions with a high participation coefficient 
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have strong connections to many modules, while regions with a low participation coefficient 

have strong connections to fewer modules (Baum et al., 2017). A global participation 

coefficient was derived by averaging the participation coefficient estimated for each one of the 

246 regions included in the Brainnetome atlas. These metrics were chosen because they have 

been previously linked to performance on tests of executive function in developing populations 

(Baum et al., 2017; Koenis et al., 2015).  

To derive module organisation, we grouped the 246 regions of the Brainnetome atlas a 

priori into their corresponding functional networks as defined by Yeo et al. (2011). Subcortical 

nodes were also grouped together. This modular parcellation is based on independent 

functional data but has been previously shown to be a good representation of the organisation 

seen in the white matter connectome in developing populations (Baum et al., 2017). We then 

estimated modular strength for each one of the 7 networks and the subcortex. Significantly 

different results were followed-up to explore whether differences were driven by changes in 

within-module connectivity, between-module connectivity, or both. 

Finally, PLSDA was chosen as a tool to explore links between regional connector hub 

strength and group membership. PLSDA is a statistical technique used to find relationships 

between two sets of variables: a predictor set and a response set. In our case these were 

connector hub strength and group membership respectively. The goal of PLSDA was therefore 

to identify the linear combination of connector hubs that best explains the variation in group 

membership. We focused on connector hubs because they play an important role in network 

specialisation across development and support the development of executive function (Baum 

et al., 2017; Jones et al., 2021; Zink et al., 2021). In accordance with prior work, connector 

hubs were defined as regions which were above the 70th percentile on both betweenness 

centrality and participation coefficient (Jones et al., 2021). The analysis was implemented in 

the R package mixOmics (Rohart et al., 2017). The model was evaluated by using 5-fold cross-
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validation repeated 50 times and the number of components to retain was chosen based on the 

balanced error rate metric, accounting for the uneven number of participants across groups (N 

cluster 1 = 95, Ncluster2 =74, N cluster3 =79). The contribution of each hub (i.e., component loadings) 

to the PLSDA components was then evaluated using a bootstrap procedure (N= 1000), where 

a Procrustes rotation was applied to align the factors across iterations (Krishnan et al., 2011). 

This was done to test whether the bootstrapped confidence interval passed zero, and thus to 

establish which hubs reliably load on the PLSDA components. Group differences in component 

scores were compared using a non-parametric permutation procedure testing whether they 

significantly differed from chance when group labels were permuted 1000 times. 

Results 

SOMs and Clustering 

Performance across all measures used in the SOM is presented in Table 1, and correlations 

between the measures are in Figure S1 (for descriptive statistics before imputation see Table 

S1). The outcomes of the trained SOM are presented in Figure 1, showing how the SOM 

represents the values for each weight vector (i.e., the weights that correspond to each individual 

executive function measure) across the grid of nodes. Each panel shows the distribution of 

weights for a different executive function measure. Data-driven consensus clustering applied 

to the SOM suggested that a three-cluster solution was optimal (the map separated by cluster 

can be seen in Figure 1). 

Cluster Characterisation 

The group means for each of the three data-driven groups on the executive function 

assessments used in the SOM are shown in Figure 2 (for exact p-values see Table S3). One 

group (Cluster 1, N = 204) was characterised by close to age-expected levels across the rating-

based assessments, with fewer difficulties compared to the other two clusters. Their 
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performance on the task-based measures was poorer than their ratings and below age-expected 

levels. Overall, they had better task-based performance compared to children in Cluster 2 and 

poorer performance than those in Cluster 3. Based on the discrepancy between their rating- and 

task-based performance, children in Cluster 1 are referred to as having an inconsistent profile 

of predominantly task-based difficulties.   

A second group, Cluster 2 (N=187), was characterised by widespread difficulties across 

both the rating- and task-based executive function assessments and was therefore labelled as 

having consistent difficulties. The third group, Cluster 3 (N = 175), included children with the 

opposite profile to those in Cluster 1. They had an inconsistent profile with close to age-

expected levels of performance on the task-based measures with pronounced difficulties on the 

rating-based assessments that were indistinguishable from those of the children in Cluster 2 

who had a profile of consistent difficulties. Children in Cluster 3 are referred to as having an 

inconsistent profile of predominantly rating-based difficulties. Taken together the three data-

driven groups had more homogenous profiles across the sixteen executive function assessments 

relative to groupings based on the largest diagnostic categories represented in our cohort (see 

Homogeneity analysis in Supplementary Materials for details). 

There were significant differences in the average age of children in each of the three 

Clusters (F = 9.56, p <.01, see Table 2): children in Cluster 1 who had an inconsistent profile 

of predominantly task-based difficulties were on average younger than both children in Cluster 

2 who had a consistent profile of difficulties (t= -3.50, p <.001, mean difference = 0.71 years) 

and children in Cluster 3 who had predominantly rating-based difficulties (t = -3.06, p <.002, 

mean difference = 0.62 years). There was no significant difference in age between children in 

Clusters 2 and 3. To explore whether child sex was related to group membership, while 

accounting for the overrepresentation of boys in the sample as a whole, a series of chi-square 

tests were conducted to compare the sex distribution observed in each cluster to the sex 
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distribution of the whole sample (Table 2). Girls were overrepresented in Cluster 1 and 

underrepresented in Cluster 3 (profile with predominantly rating-based difficulties). The 

distribution of boys and girls in Cluster 2 (consistent difficulties group) matched that of the 

whole sample, suggesting that boys and girls were equally likely to have this profile. 

Cluster validation 

To validate differences between the three clusters, their performance was compared across 

measures of learning, mental health, and dimensions of neurodiversity, and the distribution of 

children with diagnosed neurodevelopmental conditions in each cluster was compared to the 

distribution across the whole sample. Children in Cluster 3 (inconsistent profile of 

predominantly rating-based difficulties) had significantly better performance across measures 

of reading and maths relative to children in the other two clusters (Figure 3). Those in Cluster 

2 (consistent difficulties profile) had significantly lower performance on the maths measure 

relative to children in Clusters 1 and 3, but their reading performance was indistinguishable 

from that of children in Cluster 1 who had predominantly task-based difficulties. For mental 

health, children in Cluster 3 (predominantly rating-based difficulties) had significantly elevated 

levels of anxiety and depression relative to children in the other two clusters; their scores were 

not significantly different from one another (see Figure 3).  

Children without any diagnoses were overrepresented in Cluster 1 (p<.001) but were 

represented in similar proportions in the other two clusters. Next, we looked at the largest 

diagnostic groups in our sample, observing that autistic participants and those with an ADHD 

diagnosis were underrepresented in Cluster 1, the group with predominately task-based 

difficulties (Table 2) but were represented in similar proportions in the other two clusters. It 

should be noted that 41% of autistic participants also had an ADHD diagnosis, meaning 

separate conclusions cannot be drawn for the two conditions. Children with a dyslexia 

diagnosis were present in each cluster, and there was no relationship between diagnostic status 
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for dyslexia and group membership (Table 2, p-s >.05). A similar pattern emerged across 

dimensions associated with neurodevelopmental conditions. Across the five dimensional 

measures (inattention, hyperactivity/impulsivity, general communication skills, social 

communication and interests), children in Cluster 1 (predominantly task-based difficulties) had 

significantly fewer difficulties than those in Clusters 2 and 3, who did not differ significantly 

from one another. In other words, there was no clear one-to-one correspondence between data-

driven group membership and neurodevelopmental diagnostic dimensions. Instead, relative to 

the group with primarily task-based difficulties (Cluster 1), the groups with consistent and 

predominantly rating-based difficulties (Clusters 2 and 3) included more children with 

diagnosed neurodevelopmental conditions and experienced more neurodevelopmental 

difficulties on dimensional measures.  

Neuroimaging comparisons 

At the global level (Figure 4), children with consistent difficulties across rating- and task-based 

measures (Cluster 2) and those with mainly rating-based difficulties (Cluster 3) had 

significantly lower global connectome efficiency compared to the non-referred group. The 

three data-driven groups did not differ significantly from the non-referred comparison group 

in average connectome participation coefficient. Looking at modular organisation, Clusters 2 

(consistent difficulties) and 3 (predominantly rating-based difficulties) had similar patterns of 

neural organisation that differentiated them from the non-referred comparison group: they both 

showed reduced modular strength in the limbic network and the subcortex (Figure S2). The 

group with primarily task-based difficulties (Cluster 1) showed the same pattern of reduced 

modular strength in the limbic network and the subcortex but was also characterised by 

increased strength in somatomotor and ventral attention modules relative to the comparison 

sample (Figure S2). Follow-up analysis suggested that all these differences were driven by 

differences in between - rather than within - modular connection strength (Figure 4). 
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Next, we identified 22 connector hubs that included regions within middle frontal 

gyrus, orbital gyrus, precentral gyrus, insula, cingulate gyrus, and the subcortex. The cross-

validated balanced error rate across all models explored (k =1:8) suggested that the most 

accurate PLSDA model was the one with two components. The bootstrapped hub loadings onto 

the PLSDA components, which had 95% confidence intervals that did not cross zero, are shown 

in Figure 5. For the first component, robust loadings included regions mostly within the insula, 

as well as within the dorsolateral prefrontal cortex, superior temporal gyrus, and the basal 

ganglia. Permutation analyses suggested that relative to the non-referred comparison group, 

children with an inconsistent profile of predominantly task-based difficulties (Cluster 1) scored 

significantly lower on this component (p=.003). For the second component, all loadings that 

were shown to be robust in the bootstrapping procedure were frontal and parietal subregions. 

The second component distinguished participants with a profile of consistent difficulties across 

the executive function measures (Cluster 2) from the non-referred comparison group (p = .02), 

with component scores significantly higher in the comparison group. 

Discussion 

This study used an unsupervised machine learning approach to map profiles of executive 

function among a large neurodivergent sample of children. Self-organising maps were used to 

represent the profiles, which were subsequently carved into clusters representing homogeneous 

groups of children with similar profiles of executive function. Three clusters were identified, 

each with a distinct profile of executive function. The clusters could also be distinguished on 

measures of learning and mental health, but they cut across traditional neurodevelopmental 

diagnostic taxonomies: for the most part, they did not correspond to diagnostic categories or to 

dimensions of neurodiversity associated with common conditions such as ADHD or autism. 

 Three profiles of executive function were identified. One was characterised by 

difficulties that were consistent across the task- and rating-based measures of executive 
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function (Cluster 2). The other two profiles were inconsistent across the two measurement 

types: children in Cluster 1 had close to age-expected levels on the rating-based measures but 

had difficulties on the performance-based tasks, while children in Cluster 3 had the opposite 

profile of close to age-expected performance on the task-based measures with pronounced 

difficulties on the rating-based assessments. In total, more than half the sample had an 

inconsistent profile. This provides further evidence that the two types of assessment (ratings 

and tasks) are dissociable, consistent with previous studies that have used latent variable or 

predictive validity approaches (e.g., Gerst et al., 2017; Nin et al., 2022; Soto et al., 2020; Tamm 

& Peugh, 2019; Toplak et al., 2013). The finding that a substantial proportion of our 

transdiagnostic neurodivergent sample showed little overlap between performance and rating-

based measures is also consistent with previous neurodevelopmental literature, which has 

shown that the two domains of executive function can be selectively affected within the 

boundaries of a single neurodevelopmental condition  (e.g., those with ADHD, Biederman et 

al., 2008). Overall, the current findings support the idea that the two types of measurement 

provide non-redundant information and should not be used interchangeably in the context of 

neurodevelopment. 

Cluster comparisons: behaviour 

 Children in Cluster 1, who were characterised by difficulties on the cognitive 

performance-based tasks with near to age-typical everyday executive function behaviours, 

were significantly younger than children in other two clusters, were less likely to have a 

diagnosed neurodevelopmental condition, and had fewer difficulties on dimensions of 

neurodiversity associated with ADHD, developmental language disorder and autism than 

children in the other two clusters. Girls were over-represented in this cluster. Children in this 

cluster performed more poorly on both learning measures than children in Cluster 3, who had 
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the opposite profile of better task- than rating-based performance, and their maths scores were 

equivalent to those in Cluster 2 who had a consistent but poor executive function profile.  

The broad profile of children in Cluster 1 suggests that diagnoses are less common 

among younger children, girls, and those with everyday behaviours that appear to be age-

typical, despite poor performance on cognitive task-based measures of executive function and 

learning. This might reflect diagnostic referral systems that rely primarily on observations of 

behaviour rather than performance on cognitive tests (the everyday behaviours of this group 

were almost age-typical). Currently, in England, referrals for diagnoses require an adult to 

notice a difficulty, and while diagnosis is not made solely based on a rating scale, the diagnostic 

process itself involves direct observation of behaviour in different settings (National Institute 

for Health and Care Excellence, 2011, 2018). The nature of the executive function difficulties 

of this group, which were likely less overt (i.e., not easily observed through outward 

behaviours) may have meant their difficulties were not as easily detected by parents and 

professionals, and therefore that fewer children were referred for diagnostic 

assessment/received a diagnosis. The lower diagnostic prevalence in this group may also be 

related to their age. This group was the youngest of all three, and considering that conditions 

such as ADHD are typically diagnosed at age 7 or above (American Psychiatric Association, 

2013; Hoang et al., 2019; Root et al., 2019), it may be that diagnostic rates increase in this 

group as they age. Lower rates of diagnoses among this group could also reflect the 

overrepresentation of girls in this group - there are documented differences in the outward 

characteristics of neurodivergent girls and boys: girls are more likely to use behavioural 

camouflaging strategies, appearing more able from others’ perspectives (Dean et al., 2017; 

Hiller et al., 2014; Hull et al., 2020), meaning they are less likely to receive a diagnosis (Dhuey 

& Lipscomb, 2010; Lockwood Estrin et al., 2021).  
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Patterns of difficulties captured by parent/carer ratings on dimensions of neurodiversity 

associated with neurodevelopmental difficulties (e.g. ratings of inattention, restricted social 

interests etc.) reflected the same pattern as the diagnostic categories: fewer difficulties were 

present in children in this cluster relative to those in the other clusters. This could again reflect 

masking/camouflaging, as well as socially constructed gender-biased or stereotypical views of 

boys as being disruptive (e.g., Sciutto et al., 2004). Together these findings underscore the need 

to include cognitive task-based assessments and female-representative characteristics in 

systems designed to identify children’s additional needs (see Guy et al., 2022 further discussion 

of this issue).  

 Children with the opposite profile of executive function, those in Cluster 3 with close 

to age-typical task-based performance and greater difficulties on the rating-based assessments, 

had significantly better performance on the learning measures than children in the other two 

clusters. This is consistent with a vast literature showing strong associations between 

performance on laboratory-based assessments of executive function and learning (Bull et al., 

2008; Holmes et al., 2021; St Clair-Thompson & Gathercole, 2006). This group also self-

reported more internalising difficulties relative to the other two clusters, potentially suggesting 

a link between higher levels of executive function rating difficulties and mental health. 

Notably, this could not be entirely attributed to rater biases, given that mental health was self-

rated and executive function ratings were provided by parents. The relationship between mental 

health difficulties and a profile of inconsistent and predominantly rating-based difficulties has 

previously been observed using different methods in this cohort (Williams et al., 2022). Others 

have suggested that rating-based difficulties occurring in the absence of any task-based 

performance problems arise through emotional rather than cognitive mechanisms (Vaidya et 

al., 2020; Williams et al., 2022), but longitudinal and/or causal evidence is needed to test this 

hypothesis.  
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 Finally, those with a consistent profile of executive function difficulties had below-age-

expected performance across both types of executive function assessments. Relative to the 

other clusters, they had similar ratings of executive function difficulties to children in Cluster 

3, but significantly poorer performance on the task-based assessments than children in both 

other clusters. Their reading and mental health ratings were equivalent to those in Cluster 1, 

but their maths performance was significantly poorer. They generally showed both 

commonalities and differences with children in the other two clusters, which were not entirely 

attributable to measurement type (e.g., even though their rating-based executive function 

difficulties were equivalent to those in Cluster 3, they had significantly different mental health 

ratings).  

Cluster comparisons: neuroimaging 

We observed both shared and cluster-specific patterns of neural white matter organisation 

differentiating data-driven groups from the comparison sample of children who had not been 

referred for attention, learning, and/or memory difficulties. Children with either a consistent 

profile of executive difficulties (Cluster 2) and those with predominantly task-based difficulties 

(Cluster 3) had decreased global connectome efficiency relative to the comparison sample, but 

no group differences were observed in global participation. This was unexpected given 

previous reports of an association between modular segregation and executive function (Baum 

et al., 2017).  

Looking at modular organisation, all three data-driven groups showed reduced 

connection strength within the limbic network and the subcortex relative to the non-referred 

comparison group, with follow-up analyses showing that differences were driven by reduced 

inter-module connections. This is consistent with the idea that limbic and subcortical areas play 

a role in goal-directed cognition and that differences in this circuitry are related to executive 

functioning in neurodevelopmental conditions (e.g., Arnsten & Rubia, 2012). The group with 
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predominantly task-based difficulties (Cluster 1) also showed increased inter-module 

connection strength in the somatomotor and ventral attention modules, a pattern that was also 

observed in the PLSDA: the component of connector hubs differentiating this group from the 

non-referred comparison group involved multiple insular regions of the somatomotor and 

ventral attention modules. Somatomotor and ventral attention networks undergo substantial 

restructuring over the course of development, becoming more structurally segregated with age 

(Baum et al., 2017; Grayson & Fair, 2017). Observing differences in this network among 

children with predominantly task-based difficulties is consistent with their implicated role in 

task-based executive function (Reineberg et al., 2015). Additionally, several of the hubs which 

loaded robustly on the PLSDA component that differentiated this group from the non-referred 

sample shared perception as a behavioural metadata label within the BrainMap Database 

(www.brainmap.org/ taxonomy).  

Children with a profile of consistent difficulties across the task- and rating-based 

measures (Cluster 2) were uniquely distinguished from the non-referred comparison group 

through a component of frontal and parietal connector hubs identified through the PLSDA. 

This is consistent with decades of research that has established a role for frontal and parietal 

regions in supporting executive function (see Friedman & Robbins, 2022). Exploratory cross-

checking of the behavioural metadata labels for the hubs robustly loading on this component 

within the BrainMap Database suggested that many of them were functionally implicated in 

action execution.  

Finally, considering other similarities, the two components identified by the PLSDA 

that differentiated the two groups with task-based executive function difficulties (Cluster 1 and 

2) from the non-referred comparison sample had a single shared robust loading. This region, 

located in the right dorsal area 9/46 within the middle frontal gyrus, is functionally associated 
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with task-based executive function performance on measures of working memory and attention 

(e.g., Jung et al., 2022).  

Implications & Future Directions 

The current findings speak to the need to incorporate both performance- and rating-

based assessments of executive function in the diagnostic process or when tailoring support 

and accommodations for neurodivergent children. In the research domain, we advocate that 

researchers explicitly specify their choice and rationale for the aspect of executive function 

they are interested in, or better still, consider both in combination. We particularly encourage 

further research into the developmental origins and longitudinal trajectories of the profiles 

observed here, which could provide important insights into the mechanisms that distinguish 

the two aspects of executive function. 

Limitations  

The measurement types used were limited by those available in the cohort data. As such, it is 

possible, for example, that stronger links between the everyday manifestations of executive 

function difficulties captured by the rating scales and learning could have been detected if we 

did not have to rely on measures of learning administered under optimal testing conditions, but 

instead had access to school-based measures of academic achievement that reflect learning and 

assessment in everyday conditions. The age-heterogenous nature of the cohort meant that age 

was controlled for in all analyses (i.e., all scores were age-corrected), which limited our ability 

to explore age-related differentiation between different executive skills. We also note that the 

CALM cohort is drawn from the school population of Southeast England, which may limit the 

extent to which these findings generalise to populations not well-represented in this part of the 

country. Methodologically, the combination of a continuous multidimensional mapping 

method with a data-driven clustering algorithm means that inevitably some children will sit 
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close to the cluster boundaries within the map. This issue is common to any attempt to parse 

out heterogeneity by applying categorical boundaries to any type of continuous space. In terms 

of the neuroimaging results, it is important to acknowledge that the use of multimodal 

neuroimaging and larger samples may reveal further and equally important differences across 

groups, which we consider an important future direction. Finally, we note that exploratory data-

driven methods could sometimes "overfit” the data (i.e., capture noise and irrelevant details), 

which may limit generalisability to unseen data. We, therefore, encourage further efforts to 

replicate and extend these findings to better understand the diversity of executive function 

profiles among neurodivergent individuals. 

Conclusion 

In summary, we used a machine learning approach to map the executive function profiles of 

large neurodevelopmentally neurodivergent sample. We identified three distinct profiles that 

were validated by differences across measures of learning, mental health, and neural white 

matter organisation. The profiles did not clearly map onto neurodevelopmental diagnostic 

categories, but we observed that children with an inconsistent profile of primarily task-based 

difficulties were less likely to have a diagnosis and more likely to be girls. These data add to 

the growing evidence base for two dissociable aspects of executive function: one that reflects 

state-like efficiency of cognitive skills and can be measured by cognitive tasks (Miyake et al., 

2000), and another that reflects the trait-like application of cognitive control in everyday 

contexts and can be measured by rating scales (Doebel, 2020). The majority of our 

neurodivergent sample had inconsistent profiles across the two domains, suggesting that 

researchers and practitioners should not use these two types of assessments interchangeably in 

the context of neurodevelopment. They should instead be used together in a complementary 

manner.  
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Table 1 

 

Norm-referenced age-corrected means and standard deviations for the whole sample across 

all measures used in the self-organising map and clustering after imputation.  

 

 Mean SD 

AWMA: Digit recall  91.62 15.59 

AWMA: Backward digit recall 91.39 11.46 

AWMA: Dot matrix 90.02 15.60 

AWMA: Mr X 95.90 14.43 

DKEFS: Trails: number-letter sequencing 6.14 3.44 

DKEFS: Tower 9.41 2.28 

TEA-Ch2: Vigil 8.26 3.20 

TEA-Ch2: Reds, Blues, Bags and Shoes 7.69 3.36 

BRIEF: Initiation 66.46 10.43 

BRIEF: Inhibition 66.16 15.15 

BRIEF: Monitoring 65.51 10.71 

BRIEF: Shifting 68.24 14.52 

BRIEF: Organisation 60.08 9.82 

BRIEF: Planning 70.41 9.57 

BRIEF: Working memory 73.28 9.60 

BRIEF: Emotional control 64.60 13.30 

 

Note. AWMA = Automated Working Memory Assessment, Standardised scores (M=100, SD 

= 15); DKEFS = Delis-Kaplan Executive Function Battery, Scaled scores (M = 10, SD = 3); 

TEA-Ch2 = Test of Everyday Attention for Children 2 Scaled scores (M = 10, SD = 3); BRIEF 

= Behaviour Rating Inventory of Executive Function, T-scores (M = 50, SD =10). All norm-

referenced scores take age into account, TEA-Ch2 and BRIEF also take sex into account.  
Jo

urn
al 

Pre-
pro

of



Figure 1 

Weight distributions from the self-organizing map, split by assessment. For each assessment, 

the map depicts high weights (i.e., relatively stronger performance/ratings) as yellow hexagons 

and low weights (i.e., below age-expected performance/rating) as red hexagons. Boundaries 

represent the clustering solution: Cluster 1 is on the far left; Cluster 2 - bottom right, Cluster 

3- top right. 

 

Note. Automated Working Memory Assessment: digit recall, backward digit recall, dot matrix, 

mr x; Delis-Kaplan Executive Function Battery: trails number-letter sequencing & tower; Test 

of Everyday Attention for Children 2: vigil & reds, blues, bags and shoes; Behaviour Rating 

Inventory of Executive Function: inhibition; initiation, monitoring, shifting; organisation of 

materials, planning, working memory, emotional control. All scores are norm-referenced for 

age and BRIEF and TEA-Ch2 also take into account sex. They were converted to z-scores 

where scores of 0 are equivalent to age-typical levels, scores of 1 indicate one SD above the 

age-expected mean, and scores of -1 indicate one SD below the age-expected mean. Note that 

x- and y-axis carry no pre-determined meaning, rather the organisation is the output of the 

SOM algorithm.   
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Table 2 

Average age and distribution of sexes and different diagnoses across data-driven groups. 

Cluster Age Sex ADHD Autism Dyslexia 

  Nboys 2 p Ndiagnosed 2 p Ndiagnosed 2 p Ndiagnosed 2 p 

1,N=204  10.1 121 5.7 0.035 16 39.7 0 3 12.1 0.002 21 1.1 0.4 

2,N=187  10.8 124 0.1 0.883 70 9.1 0.008 21 2.4 0.181 15 0.0 0.889 

3,N=175 10.7 135 7.9 0.012 70 13.6 0.001 22 4.6 0.054 11 0.9 0.4 

Note. Comparisons are based on chi-square tests, contrasting the overall proportion of boys and 

girls/diagnoses in the whole-referred sample to the proportion observed in each cluster. All p-

values are adjusted using a false-discovery rate correction applied across all comparisons 

shown in this table. Note that diagnostic categories are not exclusive in this sample, and many 

children had multiple diagnoses.  
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Figure 2 

Executive function scores across all assessments used in the self-organising map for each one 

of the data-driven groups. 

 

Note. All age-referenced scores are converted to z-score, where scores of zero are equivalent 

to age-typical levels, scores of 1 indicate one standard deviation above the age-expected mean, 

and scores of -1 indicate one standard deviation below the age-expected mean. P-values are 

adjusted using false discovery rate correction. DR = AWMA Digit recall, BRD= AWMA 

Backward digit recall, DOT = AWMA Dot matrix, MR X = AWMA Mr X, TRAILS = DKEFS 

number-letter sequencing, TOWER = DKEFS Tower, VIGIL = TEA-Ch2 Vigil, RBBS = TEA-

Ch2 Reds, Blues, Bags and Shoes, .INITI = BRIEF Initiation, INHIB =BRIEF Inhibition, 

.MONIT = BRIEF Monitoring, .SHIFT = BRIEF Shifting, .ORG = BRIEF Organisation, 

.PLAN = BRIEF Planning, .WM = BRIEF Working Memory, .EMO = BRIEF Emotional 

Control; AWMA = Automated Working Memory Assessment, DKEFS = Delis-Kaplan 

Executive Function Battery,  TEA-Ch2 = Test of Everyday Attention for Children 2; BRIEF = 

Behaviour Rating Inventory of Executive Function. 

§ = p fdr-corrected (1 vs 2) <.05 

^ = p fdr-corrected (1 vs 3) <.05  

* = p fdr-corrected (2 vs 3) <.05  
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Figure 3 

Results of pairwise comparisons of the data-driven groups across measures of learning, self-

rated mental health, and patent-rated neurodevelopmental diagnostic dimensions. All measures 

are age-corrected. 

 

Note. WIAT = Wechsler Individual Achievement Test II: reading = Word Reading & math = 

numerical operations, Standardised scores, higher scores indicate relatively better 

performance; RCADS = The Revised Child Anxiety and Depression Scale (Child-version) total 

difficulties score, T-score, higher score indicate more self-reported difficulties; CCC2 = 

Children Communication Checklist-2: gcc= general communication composite, social = social 

relations, Scaled score, higher scores indicate relatively better skills; Conners = Conners-3: 

inattention and hyperactivity/impulsivity, T-scores, higher scores indicate relatively more 

difficulties; All p-values are adjusted using false discovery rate correction.*p<.05, **p <.01, 

*** p<.001, **** p<.0001  
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Figure 4 

Group differences in modular and global organisation between each one of the three data-

driven groups and the comparison group 

 

 
Note. Panel A shows modules which showed different between-module strength from the 

comparison sample in at least one of the data-driven groups. Panel B shows group comparisons 

of global connectome metrics efficiency and participation coefficient. All metrics are age and 

motion-corrected. All p-values are corrected using false-discovery rate adjustment. *<.05, 

**<.01, ***<.001  
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Figure 5 

Bootstrapped component loadings of two components identified in the partial least squares 

discriminate analysis 

 
 

Note. The forest plots show the group loadings for both components (95% confidence intervals 

based on 1000 bootstraps). Displayed on the left side are connector hub loadings on both 

components. Only hub loadings that had 95% confidence intervals that did not cross zero are 

displayed.  
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Supplementary Materials 

Table S1 

 

Descriptive statistics for all measures used in the self-organising map and clustering before 

imputation. For ease of interpretation, all scores are converted to z-scores, where a score of 

zero corresponds to the age-expected level of functioning, and a score of minus one suggests a 

score corresponding to one standard deviation below the age-expected mean. The percentage 

of children scoring one standard deviation below the mean is also shown for each assessment. 

 N M SD Skew Kurtosis % -1SD 

AWMA: Digit recall 564 -0.56 1.04 0.22 -0.06 34 

AWMA: Backward digit recall 562 -0.57 0.77 0.59 0.58 36 

AWMA: Dot matrix 564 -0.67 1.04 0.33 -0.26 41 

AWMA: Mr X 563 -0.27 0.96 0.32 0.26 23 

DKEFS: Trails: number-letter sequencing 423 -1.24 1.29 0.17 -1.23 57 

DKEFS: Tower 441 -0.19 0.84 -0.11 0.65 20 

TEA-Ch2: Vigil 528 -0.58 1.1 0.61 -0.6 49 

TEA-Ch2: Reds, Blues, Bags and Shoes 516 -0.76 1.17 0 -0.03 45 

BRIEF: Initiation 566 -1.65 1.04 0.33 -0.2 72 

BRIEF: Inhibition 566 -1.62 1.52 0.12 -1.05 67 

BRIEF: Monitoring 566 -1.55 1.07 0.51 -0.25 70 

BRIEF: Shifting 566 -1.82 1.45 0.23 -0.85 70 

BRIEF: Organisation 566 -1.01 0.98 0.88 -0.1 61 

BRIEF: Planning 566 -2.04 0.96 0.82 0.53 87 

BRIEF: Working memory 566 -2.33 0.96 0.94 1.04 91 

BRIEF: Emotional control 566 -1.46 1.33 0.27 -0.84 65 

Note. All norm-referenced scores take age into account, TEA-Ch2 and BRIEF also take sex 

into account. AWMA = Automated Working Memory Assessment; DKEFS = Delis-Kaplan 

Executive Function Battery; TEA-Ch2 = Test of Everyday Attention for Children 2; BRIEF = 

Behaviour Rating Inventory of Executive Function. 
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Table S2 

Comparison of children with and without a diagnosed condition across age, IMD, and all 

assessments used in the self-organising map and clustering after imputation.  

 Non-diagnosed Diagnosed   

 N M SD N M SD p d 

AWMA: Digit recall 311 92.38 15.93 255 90.70 15.15 0.199 -0.11 

AWMA: Backward 

digit recall 311 91.69 11.43 255 91.04 11.50 0.504 -0.06 

AWMA: Dot matrix 311 90.28 15.54 255 89.70 15.69 0.664 -0.04 

AWMA: Mr X 311 96.91 14.38 255 94.66 14.42 0.065 -0.16 

DKEFS: Trails: 

number-letter 

sequencing 311 6.15 3.45 255 6.12 3.44 0.907 -0.01 

DKEFS: Tower 311 9.45 2.16 255 9.36 2.41 0.654 -0.04 

TEA-Ch2: Vigil 311 8.24 3.18 255 8.28 3.22 0.885 0.01 

TEA-Ch2: Reds, 

Blues, Bags and Shoes 311 7.76 3.32 255 7.59 3.40 0.557 -0.05 

BRIEF: Initiation 311 63.99 11.06 255 69.47 8.72 <.001 0.55 

BRIEF: Inhibition 311 61.45 14.79 255 71.90 13.53 <.001 0.74 

BRIEF: Monitoring 311 62.59 11.14 255 69.07 8.96 <.001 0.64 

BRIEF: Shifting 311 64.66 14.84 255 72.62 12.86 <.001 0.57 

BRIEF: Organisation 311 58.31 10.10 255 62.25 9.02 <.001 0.41 

BRIEF: Planning 311 67.92 10.28 255 73.46 7.59 <.001 0.61 

BRIEF: Working 

memory 311 71.37 10.62 255 75.63 7.58 <.001 0.46 

BRIEF: Emotional 

control 311 61.35 13.62 255 68.56 11.77 <.001 0.56 

IMD 276 20931.18 7869.90 241 19909.89 8590.68 0.162 -0.13 

Age 311 10.34 1.91 255 10.81 2.12 0.007 0.23 

Note. All norm-referenced scores take age into account, TEA-Ch2 and BRIEF also take sex 

into account. All p-values are uncorrected and based on two-tailed t-tests assuming unequal 

variances. AWMA = Automated Working Memory Assessment; DKEFS = Delis-Kaplan 

Executive Function Battery; TEA-Ch2 = Test of Everyday Attention for Children 2; BRIEF = 

Behaviour Rating Inventory of Executive Function; IMD = Index of Multiple Deprivation.   
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Figure S1 

Pearson correlations across all norm-referenced age-corrected executive function assessment 

scores used in the self-organising map. 

Note. Age-referenced scores were a combination of T-, scaled and standardised scores, so prior to 

analyses they were converted to age-referenced z-scores to be on the same scale (a score of 0 

corresponded to age-typical performance, 1 = 1 SD above the age-expected mean, and -1 represented 1 

SD below the age-expected mean). DR = AWMA Digit recall, BRD= AWMA Backward digit recall, 

DOT = AWMA Dot matrix, MR X = AWMA Mr X, TRAILS = DKEFS number-letter sequencing, 

TOWER = DKEFS Tower, VIGIL = TEA-Ch2 Vigil, SWITCH = TEA-Ch2 Reds, Blues, Bags and 

Shoes, .INITI = BRIEF Initiation, INHIB =BRIEF Inhibition, .MONIT = BRIEF Monitoring, .SHIFT 

= BRIF Shifting, .ORG = BRIEF Organisation, .PLAN = BRIEF Planning, .WM = BRIEF Working 

Memory, .EMO = BRIEF Emotional Control; AWMA = Automated Working Memory Assessment, 

DKEFS = Delis-Kaplan Executive Function Battery, TEA-Ch2 = Test of Everyday Attention for 

Children 2; BRIEF = Behaviour Rating Inventory of Executive Function. 
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Table S3 

 

Pairwise comparisons of the three data-driven groups across the 16 executive function 

assessments used in the self-organising map 

 

    C1 vs C2 C1 vs C3 C2 vs C3 

Assessment Mc1 Mc2 Mc3 p padj p padj p padj 

AWMA: Digit recall -0.60 -0.81 -0.24 .047 .054 .001 .001 <.001 <.001 

AWMA: Backward digit 

recall -0.66 -0.77 -0.26 .144 .15 <.001 <.001 <.001 <.001 

AWMA: Dot matrix -0.64 -1.04 -0.29 <.001 <.001 .001 .001 <.001 <.001 

AWMA: Mr X -0.33 -0.58 0.12 .007 .008 <.001 <.001 <.001 <.001 

DKEFS: Trails: number-

letter sequencing -1.38 -2.03 -0.39 <.001 <.001 <.001 <.001 <.001 <.001 

DKEFS: Tower -0.16 -0.42 -0.01 .001 .001 .045 .053 <.001 <.001 

TEA-Ch2: Vigil -0.46 -0.93 -0.35 <.001 <.001 .353 .37 <.001 <.001 

TEA-Ch2: Reds, Blues, 

Bags and Shoes -0.67 -1.22 -0.41 <.001 <.001 .018 .022 <.001 <.001 

BRIEF: Initiation -0.80 -2.10 -2.15 <.001 <.001 <.001 <.001 .507 .52 

BRIEF: Inhibition -0.30 -2.24 -2.48 <.001 <.001 <.001 <.001 .066 .072 

BRIEF: Monitoring -0.64 -1.95 -2.19 <.001 <.001 <.001 <.001 .003 .003 

BRIEF: Shifting -0.46 -2.44 -2.76 <.001 <.001 <.001 <.001 .002 .003 

BRIEF: Organisation -0.40 -1.24 -1.48 <.001 <.001 <.001 <.001 .002 .002 

BRIEF: Planning -1.35 -2.37 -2.50 <.001 <.001 <.001 <.001 .065 .072 

BRIEF: Working 

memory -1.68 -2.72 -2.67 <.001 <.001 <.001 <.001 .525 .52 

BRIEF: Emotional 

control -0.18 -2.00 -2.37 <.001 <.001 <.001 <.001 <.001 <.001 

Note. All norm-referenced scores take age into account, TEA-Ch2 and BRIEF also take sex 

into account. Note that all scores are converted to z-scores where scores of zero are equivalent 

to age-typical levels, scores of 1 indicate one standard deviation above the age-expected mean, 

and scores of -1 indicate one standard deviation below the age-expected mean. All p-values are 

adjusted using false-discovery rate correction and based on two-tailed t-tests assuming unequal 

variances. AWMA = Automated Working Memory Assessment; DKEFS = Delis-Kaplan 

Executive Function Battery; TEA-Ch2 = Test of Everyday Attention for Children 2; BRIEF = 

Behaviour Rating Inventory of Executive Function; C1= Cluster 1; C2 = Cluster 2; C3= Cluster 

3. 
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MRI Acquisition and pre-processing 

All participants were invited to participate in an optional magnetic resonance imaging (MRI) 

session, provided they met standard MRI-safety criteria. T1-weighted volume scans were 

acquired using a whole-brain coverage 3D Magnetization Prepared Rapid Acquisition Gradient 

Echo (MP RAGE) sequence acquired using 1 mm isometric image resolution. Diffusion scans 

were obtained using echo-planar diffusion-weighted images with an isotropic set of 68 

noncollinear directions. Whole brain coverage was based on 60 contiguous axial slices and 

isometric image resolution of 2 mm. Echo time was 90 ms and repetition time was 8,500 ms. 

QSIPrep 0.13.0RC1 (based on Nipype 1.6.0 Gorgolewski et al., 2011) was used for MRI pre-

processing and reconstruction. Only a subsample of the children referred to CALM agreed to 

participate in the neuroimaging session (N=269). Of those who accepted, five scans were 

terminated early due to the child choosing to withdraw their participation and an additional 16 

were excluded due to excessive movement during the acquisition phase, which led to poor data 

quality, unsuitable for the QSIPrep pipeline. None of the five children who withdrew from the 

neuroimaging session had a diagnosed condition, and seven of the children excluded due to 

motion artefacts were diagnosed (four were diagnosed with ADHD, other diagnoses in this 

group were dyslexia, dyspraxia, autism, and global developmental delay). The overall 

composition of the subset of the referred cohort included in the final neuroimaging analysis 

had similar characteristics to the children included in the behavioural analyses (sex: 70% male 

neuroimaging vs. 67% male behavioural; diagnostic status: 43% diagnosed neuroimaging vs. 

45% diagnosed behavioural) and there was no significant difference in age between those who 

participated in the neuroimaging session and those who did not (t = 0.04, p = .97). 
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Self-organising map (SOM) algorithm 

SOMs consist of a predefined number of nodes laid out on a grid – in this case, hexagonal 

nodes on 10 by 10 grid, where each node in the grid corresponded to a weight vector with the 

same dimensionality as the input data (N =16, corresponding to the number of executive 

function measures used to train the SOMs). The training of the map began with a subset of the 

data randomly assigned to the units. The process was repeated in 1000 iterations, and each time 

the weights of a best-matching unit (i.e., the node most alike the current training object based 

on the least shared Euclidean distance), and its neighbouring nodes, were updated to become 

more similar to the input data. In this way, neighbouring nodes became more alike. At the end 

of the training process, the weight vector for each node reflected the executive function scores 

of the children for whom that node was the best matching unit, with neighbouring nodes having 

similar weights. The resulting map represented a topological representation of the data on 

which the SOM was trained, whereby children with similar profiles across the 16 executive 

function assessments “sat” closer in space. SOMs were trained using the R package kohonen 

(Wehrens & Buydens, 2007). 

Homogeneity of data-driven groups 

To explore the homogeneity of data-driven profiles relative to established diagnostic categories 

we employed a bootstrapping procedure: we drew 1000 random samples of 30 from each 

grouping (Cluster 1, Cluster 2, Cluster 3, ADHD, Autism, Dyslexia) and calculated the 

correlations between their scores across the 16 executive function assessments. These 

bootstrapped samples of correlations were averaged across the three data-driven groups and 

the three diagnostic groups. The differences in correlation strengths across groups were 

significantly different from zero (M = .32, p<.001), suggesting that data-driven groupings were 

behaviourally more similar than diagnostic groupings.  
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Figure S2 

Group differences in modular strength between each one of the three data-driven groups and 

the comparison group 

 

 
Note. The figure displays modules which showed differences in modular connection strength 

from the comparison sample in at least one of the data-driven groups. . All metrics are age and 

motion-corrected. All p-values are corrected using false-discovery rate adjustment. *<.05, 

**<.01, ***<.001  Jo
urn

al 
Pre-

pro
of



References 

 

Gorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko, Y. O., Waskom, M. L., & 

Ghosh, S. S. (2011). Nipype: A flexible, lightweight and extensible neuroimaging 

data processing framework in Python. Frontiers in Neuroinformatics, 5(August). 

https://doi.org/10.3389/fninf.2011.00013 

Wehrens, R., & Buydens, L. M. C. (2007). Self- and Super-organizing Maps in R: The 

kohonen Package. Journal of Statistical Software, 21, 1–19. 

https://doi.org/10.18637/jss.v021.i05 

 

Jo
urn

al 
Pre-

pro
of


