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Mapping accessible chromatin across time scales can give insights into its dynamic
nature, for example during cellular differentiation and tissue or organism development.
Analysis of such data can be utilised to identify functional cis-regulatory elements (CRE)
and transcription factor binding sites and, when combined with transcriptomics, can
reveal gene regulatory networks (GRNs) of expressed genes. Chromatin accessibility
mapping is a powerful approach and can be performed using ATAC-sequencing (ATAC-
seq), whereby Tn5 transposase inserts sequencing adaptors into genomic DNA to iden-
tify differentially accessible regions of chromatin in different cell populations. It requires
low sample input and can be performed and analysed relatively quickly compared with
other methods. The data generated from ATAC-seq, along with other genomic
approaches, can help uncover chromatin packaging and potential cis-regulatory elements
that may be responsible for gene expression. Here, we describe the ATAC-seq approach
and give examples from mainly vertebrate embryonic development, where such datasets
have identified the highly dynamic nature of chromatin, with differing landscapes between
cellular precursors for different lineages.

Introduction
Genomic DNA is packaged into chromatin composed of repeating structural units called nucleosomes,
where 147 bps of DNA wrap 1.6 times around an octamer of core histone proteins. The degree of
nucleosome occupancy determines chromatin accessibility, which is linked to biological functions,
including gene expression, since physical access to regions such as gene promoters, enhancers or silen-
cers is essential for transcription factor (TF) binding. Chromatin accessibility is facilitated by pioneer
transcription factors, which bind to nucleosomes and recruit chromatin remodelling complexes, as
well as other enzymes which modify histones and control DNA methylation to release DNA from the
tightly coiled nucleosome into euchromatin, reviewed in [1–3].
During embryonic development and cell differentiation, the epigenetic and therefore chromatin

landscapes change in response to developmental cues and external stimuli. Changes in access to chro-
matin can influence the activity of regulatory elements such as enhancers, short DNA sequences con-
taining TF binding motifs that increase the likelihood of transcription of one or more genes through a
cis-regulatory mechanism, whereby enhancer bound proteins assemble the transcription machinery to
initiate transcription.
Enhancer identification remains challenging for several reasons. Enhancers can interact with pro-

moters that are long distances away [4,5]. Although genome organisation imposes constraints on
enhancer–promoter interactions [6] it is difficult to allocate gene-specific enhancers that are scattered
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throughout the genome. Models for interactions of enhancers with their target promoters include enhancer
tracking, looping and loop-extrusion [7]. Experiments using the globin locus suggested that ‘looping out’ inter-
vening DNA brings enhancer and promoter regions into proximity. Subsequent chromosome conformation
capture experiments, which involve digestion and ligation of chromatin within formaldehyde cross-linked cells,
confirmed this idea [8,9]. Furthermore, DNA sequence alone is not sufficient to identify enhancers, as sequence
conservation is often limited to specific TF binding motifs, however some epigenetic marks are associated with
enhancers. Finally, if the activity of an enhancer is spatially and temporally restricted, it cannot be identified
unless the method used captures the correct tissue or developmental time point.
Functional characterisation of enhancers becomes difficult when several enhancers act on one gene to

produce complex expression patterns. These can result from the cooperation between different enhancers with
cell type or tissue-specific activities [10]. The presence of multiple enhancers with overlapping activity can
provide robustness to gene expression and establish precise expression boundaries [11,12]. For example, in
mouse embryos the Sonic Hedgehog (Shh) gene is controlled by two enhancers. When activated by both, Shh
expression is restricted to the floor plate, but when controlled by only one enhancer, Shh transcription is con-
fined to the limb bud [13].
Despite these challenges, many attempts have been made to identify enhancer elements, as this is critical in

aiding our understanding of gene regulation, not only during embryonic development but also in human
disease. Here, we review the use of ATAC-seq to aid enhancer discovery in dynamic systems.

Overview of the ATAC-seq method
For enhancers to act on target promoters, chromatin must be accessible to enable TF binding, thus changes in
chromatin accessibility usually correlate with enhancer activity. Therefore, chromatin accessibility assays have
been used to identify cis-regulatory elements and active chromatin regions. Micrococcal nuclease sequencing
(MNase-seq) is an indirect assay in which the enzyme digests any unprotected DNA. Nucleosomes can be puri-
fied and the bound DNA sequenced, generating an occupancy map of nucleosomes. Where there is a lack of
nucleosomes, it is inferred that chromatin was more accessible. A direct method of chromatin accessibility
includes formaldehyde-assisted isolation of regulatory elements (FAIRE-seq), which crosslinks DNA–protein
complexes. Subsequent shearing by sonication, and phenol–chloroform extraction isolates nucleosome free
regions, which can then be sequenced. Deoxyribonuclease I sequencing (Dnase-seq) and assay for transposase
accessible chromatin sequencing (ATAC-seq) methods both work by utilising enzymes that recognise and
cleave nucleosome depleted regions. For comparison of these methods, see [14].
Compared with these assays, which require a large starting cell count and are time consuming (∼50 million

cells, 2–4 days), ATAC-seq [15] takes less than a day and works well with ultra-low input material, as few as
500 cells for a mini-bulk sequencing experiment. The simplicity of the protocol improves success rates and
reproducibility of experiments and decrease probability of errors. The use of paired-end sequencing adaptors
makes alignments of reads more accurate, for example mapping against repetitive regions of the genome.
In brief, the ATAC-seq protocol utilises a hyperactive prokaryotic transposase 5 (Tn5) enzyme to cleave open

regions of chromatin and insert sequencing adaptors, a process known as tagmentation (Figure 1). Samples do
not require fixation and the native chromatin state is analysed. DNA fragments are purified, amplified into a
library using barcoded primers and directly sequenced using next-generation sequencing [15]. Sequencing
reads are visualised in a genome browser and read number positively correlates with accessibility of that region
of chromatin. With sufficient sequencing depth, footprints of bound TFs are also detectable in silico, within
accessible peaks; see for example [16]. The protocol is useful when sample cell populations are small, rare, or
difficult to obtain, such as specific cell populations within an embryo. Indeed, ATAC-seq can be performed on
single cells [17] (see below). Limitations of ATAC-seq include the potential contamination of data with mito-
chondrial DNA and potential sequence or structural biases of the Tn5 enzyme [18,19]. Overall however, the
speed, scalability and ease of experiment makes ATAC-seq a popular approach for studying chromatin in
dynamic systems.

Development of single cell ATAC
Whilst bulk ATAC-seq has many advantages, it cannot determine chromatin accessibility of individual cells
within a heterogenous population. To overcome this issue, ATAC-seq has been adapted for single cells
(scATAC-seq), with two protocols published at the same time. One relies on the physical isolation of individual
cells by microfluidic chambers (C1, Fluidigm), followed by tagmentation, library generation and sequencing
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[17]. Alternatively, combinatorial barcoded primers mark individual cells. Pools of isolated nuclei undergo tag-
mentation with unique barcoding primers in 96 well plates. This is followed by re-pooling, sorting into new
96-well plates, to which a second round of barcoded primers are added during PCR amplification. Each of
these pools are sequenced, and there is a low probability that cells within the same pool share the same

Figure 1. Identification of accessible chromatin regions using ATAC-seq.

(1) Tn5 transposase (brown) inserts sequencing adaptors (red and blue) into regions of open chromatin. Nucleosomes are

shown in light blue, DNA-bound transcription factors (TF) are shown in grey. (2) The chromatin is fragmented and

simultaneously tagmented with sequencing adaptors. (3) DNA is purified and PCR-amplified into a library using barcoded

primers. (4) The library can then be analysed by qPCR or next-generation sequencing (NGS). Data analysis is performed and

accessible regions of chromatin show as peaks. Within peaks, lower read coverage indicates TF footprints and allows

prediction of TF binding in silico.

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 1169

Biochemical Society Transactions (2022) 50 1167–1177
https://doi.org/10.1042/BST20210834

D
ow

nloaded from
 http://portlandpress.com

/biochem
soctrans/article-pdf/50/3/1167/934278/bst-2021-0834c.pdf by U

niversity of East Anglia user on 23 January 2024

https://creativecommons.org/licenses/by/4.0/


combination of barcodes [20,21]. Both methods have relatively low throughput and provide lower complexity
data, however, recent optimisations resulted in increased cell number, enhanced recovery of nuclear fragments
per cell and improved data quality [21–23].
As it is technically more demanding, fewer scATAC-seq experiments have been performed. In addition,

minor sub-populations can be hard to detect and the bioinformatic analysis of scATAC-seq is more time con-
suming [24] — for a review of analytical procedures see [25,26]. An excellent alternative is mini-bulk
ATAC-seq, for example on FACS-isolated cells or on affinity purified nuclei, which can provide novel insights
into discreet sub-populations of cells, such as avian neural crest cells [27,28], zebrafish endothelial cells [29] or
Drosophila blastoderm cells [30].
Despite quickly and accurately identifying regions of open chromatin, ATAC-seq cannot on its own identify

the type of regulatory element, such as an enhancer, silencer, or promoter region. However, coupled with other
genomic techniques ATAC-seq is very useful to identify active regulatory elements in different cell types.

Using ATAC-seq with other genome-wide approaches
Epigenetic marks that characterise enhancer regions include various histone modifications. Mapping these fea-
tures by ChIP-seq, or Cut and tag techniques [31], can determine genome wide protein–DNA interactions.
Histone acetylation is generally associated with active chromatin, whereas mono-methylation of histone H3 at
lysine 4 (H3K4me1) marks inactive regions. Acetylation can destabilise nucleosome-DNA interactions. In par-
ticular, acetylation of histone H3 at lysine 27 (H3K27ac) by P300 and CREB marks active enhancers. ChIP-seq
datasets for P300, CREB and histone marks accurately identified novel enhancers in mouse [32,33]. Additional
post-translational modifications are increasingly observed for different enhancer states and other histone marks
are associated with subsets of enhancers [34]. While future work is required for complete annotation of all
histone modifications that are indicative of CREs, correlating independent ATAC-seq and ChIP-seq datasets
can increase the likelihood of identifying active enhancer regions [5].
Furthermore, multi-omic experiments can combine ATAC-seq with other genomic techniques in the same

sample. This is advantageous when working from limited starting material. For example, combining RNA-seq
with ATAC-seq enables simultaneous profiling of chromatin dynamics and changes in gene expression patterns.
Sci-CAR uses a pooled barcode method [35], other methods that do a similar comparison have also been pro-
duced [36,37]. ATAC-ME is an integrated method to investigate accessibility or TF binding and DNA methyla-
tion from a single DNA preparation [38]. EpiMethylTag also combines ATAC-seq or ChIP-seq with bisulfite
conversion to examine accessibility and methylation patterns in the same sample [39,40].
ATAC-seq is a powerful tool in assessing the chromatin landscape of different cell and tissue types. When

used in combination with other genomic approaches, it can provide insight into the epigenome of specific cell
populations. Since its introduction, ATAC-seq has been optimised for different purposes. For example, the
Omni-ATAC protocol has been adapted for use with a wide variety of tissue types, including snap-frozen
tissues, and yields a higher number of peaks and reduced mitochondrial reads [14,41].

Dynamic patterning processes in developing embryos
Investigating the accessible chromatin landscape is of particular interest when looking at dynamic changes. For
example, during the complex process of embryo development gene expression patterns are changing rapidly
and are associated with changes in cell states during cell fate acquisition and differentiation programmes. With
ATAC-seq it is possible to generate sufficient replicates for comparisons between different samples, such as
developmental time points or tissues. This facilitates atlas-projects for multiple tissues, as for example in mouse
[42] and zebrafish [43]. The differential analysis of chromatin accessibility can highlight regions of interest for
validation and functional testing. The following sections give selected examples where ATAC-seq has provided
insights into chromatin accessibility during normal development, tissue differentiation and regeneration, or in
mutant or disease scenarios. These are summarised in Table 1.

Early events: gastrulation, germ layer formation and axis
patterning
In Drosophila embryos, gene-regulatory networks (GRN) that pattern the anterior–posterior axis are well char-
acterised and involve gap and pair-rule genes. ATAC-seq was performed on cellular blastoderm-stage embryos,
shortly after zygotic genome activation. Seven well characterised enhancers were used to tag blastoderm nuclei
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for affinity purification. The regional variation in chromatin accessibility observed, correlated with regulatory
activity of axis patterning enhancers, suggesting mechanisms by which transcriptional activator and repressor
proteins modulate enhancer accessibility [30].
Chromatin accessibility dynamics have also been investigated using a developmental series of Drosophila

embryos. Three major embryonic stages were examined using scATAC [44]. Interestingly, differential chromatin
accessibility revealed that cellular heterogeneity was already present in the blastoderm, and individual cell types
could be inferred before the major lineages are specified during gastrulation. Among a large number of candi-
date regulatory elements with tissue-specific accessibility (>30 K) a subset was validated in transgenic embryos.
Importantly, the germ-layer specific activity of these predicted enhancers was accurate in 90% of cases, demon-
strating the power of this approach.
ATAC-seq during early zebrafish development, from zygotic genome activation to the onset of lineage speci-

fication, showed that chromatin accessibility increased at regulatory elements, often preceding transcription of
the associated genes [45]. Loss of maternal TFs (Pou5f3, Sox19b, Nanog) led to decreased accessibility suggest-
ing that they open up chromatin during genome activation.
An important transition, discovered in Xenopus, is the loss of competence to respond to dorsalising Wnt

signals in late blastula stages [46]. This is associated with reduced accessibility at Wnt-responsive promoters
[47]. Integration of ChIP-seq, ATAC-seq and transcriptomics data using machine learning uncovered novel TFs
involved in mesendoderm formation during Xenopus gastrulation [48].
In mammalian systems, chromatin accessibility also increases during genome activation in bovine embryos

[49]. In both bovine and mouse blastocysts, differences in accessibility patterns were identified between those
generated in vitro and in vivo, providing insights into features that could be important for successful preim-
plantation development [49,50]. The differential accessibility in mouse correlated with differential expression of
genes related to stress signalling and cardiac hypertrophy signalling, consistent with the idea that effects on

Table 1 Studies using ATAC-seq in model organisms for development

Species Biological context Reference

Drosophila Domain-restricted analysis for anterior–posterior patterning of blastoderm to identify
accessible regions

[30]

Tissue-specific accessibility during three embryonic stages with germ-layer enhancer
validation

[44]

Zebrafish Chromatin accessibility atlas of embryonic and adult tissues [43]
Identification of key elements during zygotic genome activation [45]
Neural crest and melanoma development [53,56]
Heart regeneration [64,67]
Liver development and response to injury [68]
Fin regeneration [69]
Endothelial enhancers [29]

Xenopus Wnt signalling in dorsal–ventral patterning in comparison with mesoderm and neural crest
development

[47]

Mesendoderm specification [48]

Chicken Neural crest development, GRN reconstruction and identification of specific enhancers [27,28]
Anterior–posterior axis elongation and paraxial mesoderm development, differential TF
occupancy and in vivo enhancer validation

[16]

Mouse Chromatin accessibility atlas of adult tissues [42]
Sex-specific accessibility of in vivo and IVF inner cell mass [50]
Chromatin accessibility preconfigures region-specific neural fates along anterior–posterior axis [52]
Sinoatrial node development [65]
Heart development of key developmental stages [66]

Mouse/
Pig

Limb development and digit adaptation [63]

Bovine Chromatin accessibility in oocytes and early embryos, and comparison of in vivo and in vitro
blastocysts

[49]

Human Chromatin accessibility of inner cell mass and trophectoderm of blastocysts [51]
Human ESC differentiation into neural crest identifies disease enhancer [5]
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health could originate at preimplantation stages with exposure to environmental stress [50]. Finally, differences
in chromatin accessibility have been characterised in human embryos between embryonic inner cell mass and
extra-embryonic trophectoderm tissues [51].

Epigenome regulation of ectoderm-derived tissues
Several studies have examined chromatin accessibility during vertebrate neural and neural crest differentiation
using embryonic stem cells, zebrafish, mouse and chick embryos [27,28,52–54]. ATAC-seq identified differen-
tially accessible regions in mouse embryonic stem cells (ESC) differentiated into neural progenitors with differ-
ent anterior–posterior identities. These regions were similar to those present in vivo, in hindbrain or spinal
cord progenitors suggesting that chromatin accessibility preconfigures region-specific neural fates [52].
The dorsal-most aspect of the neural tube generates the neural crest (NC), a vertebrate-specific population of

cells. Different NC sub-populations arise along the axis, characterised by distinct migratory patterns and devel-
opmental potential, generating diverse cell types, including craniofacial bones, septa of the heart, neurons and
glia of the peripheral nervous system, and pigment cells of the skin. Multiple genomics approaches, including
ATAC-seq and RNA-seq, have elucidated the epigenomic mechanisms that govern (NC) formation and estab-
lish their axial level identity (see reviews by [54,55]). Work in chick embryos used FACS to isolate cranial NC
cells at different stages of migration [27], as well as vagal NC cells which generate the enteric nervous system
[28]. Chromatin and transcriptional landscapes were characterised at different time points, this identified
regions of differential chromatin accessibility and allowed reconstruction of NC-specific GRNs. Both studies
validated several NC specific enhancers in vivo, by chick embryo electroporation. The differential activity of
these enhancers uncovered heterogeneity at the regulatory level and distinct vagal NC populations already pre-
determined prior to neural tube delamination.
The same group used genetic labelling in zebrafish combined with FACS isolation of NC populations from

wildtype or FoxD3 mutants. These were subjected to RNA-seq, ATAC-seq and H3K27ac ChIP-seq. Combining
in vivo biotinylation of FoxD3 with ChIP-seq showed that FoxD3 initially acts as a pioneer factor for NC speci-
fication genes, before switching to a transcriptional repressor function [53].
The importance of enhancer discovery and functional characterisation is illustrated by a study looking at the

congenital craniofacial disorder, Pierre Robin Syndrome (PRS) [5]. In vitro differentiation of human ESC into
cranial NC cells combined with detection of epigenome marks highlighted differentially accessible ATAC-peaks
that were overlapping with p300 and H3K27ac/H3K4me histone marks. This identified three putative NC spe-
cific enhancers located 1.45 Mbp distant to the chondrogenic TF, Sox9, in a region that is deleted in PRS
patients. Transgenic LacZ-reporters confirmed enhancer activity in mouse craniofacial development, and
ATAC-seq of hESC-derived cranial NC cells confirmed accessibility during a restricted window of development
prior to chondrogenic differentiation.
Similarly, ATAC-Seq analysis of multiple zebrafish melanoma tumours identified a developmental enhancer

that is also important in cancer [56]. Accessible peaks were validated using EGFP reporter constructs in trans-
genic zebrafish. This demonstrated activity in vivo, of a region 23 kb upstream of Sox10, a key TF for NC devel-
opment that is also up-regulated in melanoma initiation.

Chromatin accessibility in paraxial mesoderm and limb
buds
As highlighted in the examples above, ESC differentiation protocols and transgenic reporter systems in
Drosophila, zebrafish and mouse provide excellent assays for validation of candidate enhancers and their func-
tional analysis. The avian system is also very useful for this purpose due to the ease with which embryos can be
obtained and manipulated. Following identification of differentially accessible candidate regulatory elements,
electroporation of enhancer-reporter plasmids [57,58] combined with live imaging [16] allows the rapid ana-
lysis of spatio-temporal enhancer activity in vivo. Mutagenesis of TF binding sites in enhancer-reporter plas-
mids, followed by epigenome editing of endogenous enhancer elements confirms their functional importance
[16,59].
We recently characterised the open chromatin landscape in vertebrate paraxial mesoderm in the chicken

embryo [16]. As the body axis extends, the mesoderm on either side of the neural tube produces paired seg-
ments, termed somites. Developmental signals control somite differentiation and the emergence of cell lineages
of the musculoskeletal system, such as chondrocytes and skeletal muscle cells. This process generates a
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spatiotemporal gradient of differentiation, by using a combination of ATAC-seq and RNA-seq we identified
changes in gene expression signatures and accessible chromatin that occur in paraxial mesoderm along the
axis. Differentially accessible chromatin regions within HOX clusters were associated with axial identities and
in silico footprint analysis revealed the differential coverage for a number of TFs, known to be involved in axis
patterning or cell differentiation, such as CDX2, HOX paralogs, PAX3, TWIST2 or LEF1. Correlation of access-
ible chromatin with expressed genes helped to identify candidate regulatory elements, which were validated in
vivo. Electroporation of fluorescent enhancer reporters into early chick embryos demonstrated the restricted
activity of enhancers located upstream of TCF15 and MEOX1 genes. Time-lapse imaging could detect the
onset of enhancer activation in vivo and the importance of candidate TF motifs was confirmed by mutation
analysis. CRISPR-mediated epigenome editing led to loss of gene expression and phenotypic changes confirm-
ing the importance of the enhancers for vertebrate axis development [16].
Morphological changes in the skeletal elements of tetrapod limbs are a fascinating model for evolutionary

adaptations, and GRNs underlying limb outgrowth and development have been studied extensively in chick
and mice [60,61]. The polarised expression of Shh in the posterior limb bud mesenchyme is particularly
important for digit patterning [62]. A recent study examined the molecular mechanisms leading to digit adap-
tations in pigs versus mice [63]. Interspecies comparison of ATAC-seq data was used to examine regulatory
changes associated with the morphological changes in these two species. Whilst many accessible chromatin
regions were conserved, there were some divergent regions associated with genes encoding components of sig-
nalling pathways required for limb development. This is intriguing, however, the functional relevance of these
elements for species-specific digit patterning remains to be confirmed.

Epigenome regulation in the heart, endothelial cells and
during regeneration
The heart and associated vessels are crucial for survival, and several studies have examined epigenetic changes
driving cell fate transitions during cardiovascular development and regeneration [29,64–67]. Cardiac progenitor
cells (CPC) marked by Nkx2–5 and Isl1 expression were examined in early mouse embryos, between E7.5 to
E9.5 [66]. Combining single-cell RNA sequencing with bulk- and scATAC-seq allowed better characterisation
of GRNs that govern cell fate transitions and identified cardiac sub-populations and their developmental trajec-
tories. CPCs expressing Nkx2–5 committed to a cardiomyocyte fate and open chromatin states, which depend
on both Isl1 and Nkx2–5, were associated with CPC fate transitions.
Postnatally, Isl1 is also expressed in cardiac pacemaker cells (PC) a specialised type of cardiomyocyte located

in the sinoatrial node (SAN) and critical to initiate the heartbeat. Comparative ATAC-seq was used to investi-
gate accessible chromatin that governs PC-specific gene expression [65]. FACS of dissected neonatal mouse
SAN was used to isolate PCs, which were compared with right atrial cardiomyocytes. This identified differen-
tially accessible peaks and SAN-specific enhancers, which were confirmed by transgenic enhancer
LacZ-reporter mice.
In the mouse, cardiac regenerative capacity is limited to neonatal stages. However, in adult zebrafish several

tissues can regenerate, and this has been used to determine chromatin accessibility, including in the heart fol-
lowing cryoinjury or ventricular resection injury [64,67], or the liver [68], or tail fin [69]. In regenerating cardi-
omyocytes, chromatin accessibility changes extensively [64], this may be regulated by the AP-1 TFs, Junb and
Fosl1, found to be enriched in ATAC-seq peaks. Thus, the AP-1 TFs may promote the regenerative process by
activating gene expression programmes important for cardiomyocyte dedifferentiation, proliferation and migra-
tion. Additional ATAC-peak-enriched motifs were identified in epicardium after ventricular resection [67],
including TFs known to regulate epicardium development and/or regeneration, such as Tcf21, Runx1, TEAD,
C/EBPb, Smad2/3/4 and Gli2. This study also highlighted TFs not previously linked to epicardial functions.
Several candidate enhancer regions correlated with enriched H3K27ac marks and nearby genes showed
increased gene expression in epicardial cells after injury. In addition, transgenic EGFP-reporters confirmed
injury-induced activity for these regulatory elements. Enhancers important for zebrafish fin regeneration were
also recently identified by comparing ATAC-seq data from uninjured and regenerating caudal fins [69]. This
identified regions of DNA with dynamic accessibility during regeneration. The differential peaks were assigned
to nearby genes through association with corresponding gene expression changes detected by RNA-seq.
Experiments in transgenic zebrafish validated several novel regulatory sequences near fin regeneration genes.
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Transgenesis in zebrafish is a versatile approach and fluorescently labelled endothelial cells (fli1a:egfp) were
recently used to discover active enhancers [29]. ATAC-seq was performed on sorted nuclei, and fluorescent and
non-fluorescent populations were compared. This identified more than 5000 elements that were differentially
accessible in endothelial cells and located in the vicinity of genes known to be important for vascular develop-
ment. Functional experiments in zebrafish embryos then validated enhancers controlling endothelial-specific
gene expression.

Conclusion
Here we highlighted the ease with which chromatin accessibility can be characterised using ATAC-seq.
Combination of ATAC-seq with other genome wide approaches, in particular transcriptomics and epigenome
modifications, enhances its power. The chosen examples illustrate detection of differential chromatin accessibil-
ity in a number of dynamic biological systems. We emphasise the importance to validate candidate regions of
interest, which is crucial to confirm their functional relevance, but is inevitably more involved when using in
vivo models.

Perspectives
• The genome-wide capture and analysis of chromatin accessibility by ATAC-seq is highly feas-

ible across many species and tissue types. Differential analyses identify regions with restricted
spatio-temporal accessibility. Contingent on sufficient sequencing depth, ATAC-seq can eluci-
date TF footprints in silico and thus provide information for further functional testing and
validation.

• ATAC-seq in combination with transcriptomics and computational analyses can indicate
epigenome-transcriptome interactions to elucidate gene regulatory networks (GRN). Isolation
of cells by tagging or FACS limits heterogeneity and helps to define discreet sub-populations
for analysis.

• The combined use of multiple genomics techniques, such as ATAC-seq for chromatin accessi-
bility, ChIP-seq for epigenome marks and RNA-seq for gene expression profiling, is a powerful
approach to study the regulation of the epigenome during dynamic processes. The
approaches can be applied to study normal embryo development or in scenarios where there
is an experimental treatment, genetic mutation or disease model.
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