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ABSTRACT
We consider the core blocks corresponding to the Hecke algebras of type B
over a field of arbitrary characteristic. To each core block, we associate two non-
negative integers which determine the indexing of the Specht modules and
simple modules in the block, the weight of the block, the multicharge of the
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1. Introduction

Let H = Hr,n(q, Q) denote an Ariki-Koike algebra over a field F of characteristic p with quantum char-
acteristic e ∈ {2, 3, . . .} ∪ {∞}. Each of these algebras decomposes into a direct sum of indecomposable
two-sided ideals, its blocks, and so in order to try to understand the algebras one may study certain types
of block in the hope that they are more manageable.

There is an important class of H-modules which are indexed by the r-multipartitions of n and which
are known as Specht modules. The composition factors of each Specht module all lie in the same block
and so we may think of partitioning the Specht modules into blocks. One may consider the block
decomposition matrix, which records the composition factors of the Specht modules belonging to a given
block. In general, computing block decomposition matrices is hard. There exist recursive algorithms
which compute the transition coefficients for a highest weight module of the Fock space representation
of Uq(ŝle); by Ariki’s theorem [1], these coefficients coincide with the decomposition numbers for the
Ariki-Koike algebras when p = 0. When p > 0, the transition coefficients give a lower bound for the
decomposition numbers, and may be considered as a first approximation to them. It is reasonable to
ask when this approximation is precise, or when the block decomposition matrix is independent of the
characteristic of the field.

In this paper, we look at the core blocks for the Hecke algebras of type B, that is, the Ariki-Koike
algebras H = H2,n(q, Q). These core blocks, which were initially introduced and studied by Fayers [11],
are blocks in which none of the bipartitions indexing the Specht modules have any removable e-rim
hooks. If e = ∞ or e > n, all blocks are core blocks. To each core block B, we associate two non-negative
integers nB and pB. We show that these two integers determine the indexing of the Specht modules and
simple modules in the block, the weight of the block, the multicharge of H (up to a shift) and the block
decomposition matrix. We present a result of George Witty [27] that shows that in some situations they
also determine the homomorphism space between pairs of Specht modules in the block. All these results
are independent of the characteristic of the field.

When e = ∞ or e > n, decomposition numbers for the Hecke algebras of type B, or the
corresponding cyclotomic q-Schur algbras, are not new. When e = ∞ and the parameters of the

CONTACT Sinéad Lyle s.lyle@uea.ac.uk School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK.
© 2023 The Author(s). Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article
has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

https://doi.org/10.1080/00927872.2023.2278669
https://crossmark.crossref.org/dialog/?doi=10.1080/00927872.2023.2278669&domain=pdf&date_stamp=2023-11-10
mailto:s.lyle@uea.ac.uk
http://creativecommons.org/licenses/by/4.0/


2 S. LYLE

multicharge are weakly increasing, Leclerc and Miyachi [19, Theorem 3] give a closed formula for the
canonical basis elements of the irreducible highest weight representation V(�); by Ariki’s theorem [1],
this gives the graded decomposition numbers for the Hecke algebras when e = ∞ and p = 0. When
e = ∞ and p = 0, Brundan and Stroppel [7, Section 9] apply the theory they have developed earlier
in their paper to construct a basis for the radical of their cell module S(λ), thus determining the graded
dimension of the simple modules. When e = ∞ or e > n, Hu and Mathas [14, Appendix B] give a
formula for the graded decomposition numbers of the quiver Schur algebras of level two in terms of
tableaux combinatorics; this is independent of the characteristic of the field. In current work [2, 3], the
authors determine full submodule structures for the Specht modules of the core blocks of the Hecke
algebras and the Weyl modules for their Schur algebras.

Each paper above uses a different notation. In this paper, we index the (bipartitions corresponding to)
Specht modules in a core block by sign sequences, sequences containing elements from {0, −, +} with a
fixed number of entries of each type, where the 0 entries are essentially redundant. The integers nB and
pB above count the numbers of −s and +s respectively. The structure of the core blocks means that our
combinatorics feels extremely natural. When e = ∞, it is straightforward to pass from our notation to
that of [19] or [2].

The structure of this paper is as follows. In Section 2 we introduce the background material:
Section 2.1 defines the relevant combinatorics and Section 2.2 introduces the Ariki-Koike algebras. For
more information on the Ariki-Koike algebras and their combinatorics, we refer the reader to the survey
paper of Mathas [23] and for more information on their connections with the cyclotomic KLR algebras
of type A, we refer them to the survey paper of Kleshchev [17].

In Section 3, we move on to considering the core blocks, as introduced by Fayers [11], when r =
2. In Section 3.1 we define the sign sequences and in Section 3.2 we show how they index the block
decomposition matrices for core blocks. In Section 3.3 we briefly introduce the Fock space representation
of Uv(ŝle) and describe its connection with the Ariki-Koike algebras; more details can be found in the
papers of Lascoux, Leclerc and Thibon [18] and Ariki [1]. In Section 3.4, we find the decomposition
numbers for the core blocks. We start with the special case that the base tuple is flat, which includes the
case that e = ∞, and then use what is essentially a focused version of Scopes equivalence [8, 25] to
generalize it to arbitrary core blocks. Finally, in Section 3.5 we summarize our results, present Witty’s
theorem and give some examples.

2. Background

Throughout this paper, we will use a parameter e ∈ {2, 3, . . .} ∪ {∞}. If e is finite, we define I =
{0, 1, . . . , e − 1} which we may identify with Z/eZ; otherwise we define I = Z. In both cases we take <

to be the usual total order on I.

2.1. Multipartitions and abacus configurations

Suppose that n ≥ 0. A partition of n is a sequence λ = (λ1, λ2, . . .) of non-negative integers such that
λ1 ≥ λ2 ≥ · · · and

∑
i≥1 λi = n. We write |λ| = n. We let �n denote the set of partitions of n

and � = ⋃
n≥0 �n denote the set of all partitions. Now suppose that r ≥ 1. An r-multipartition, or

multipartition, of n is an r-tuple of partitions λ = (λ(1), λ(2), . . . , λ(r)) such that
∑r

k=1 |λ(k)| = n. We
write |λ| = n. We let �r

n denote the set of r-multipartitions of n and �r = ⋃
n≥0 �r

n denote the set of
all r-multipartitions.

Suppose that λ ∈ �r . The Young diagram of λ is the set

[λ] = {(x, y, k) ∈ Z>0 × Z>0 × {1, 2, . . . , r} | y ≤ λ(k)
x }.

We say that a node n ∈ [λ] is removable if [λ] \ {n} is the Young diagram of a multipartition and we say
that n /∈ [λ] is addable if [λ] ∪ {n} is the Young diagram of a multipartition. The rim of [λ] is the set of
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nodes {(x, y, k) ∈ [λ] | (x+1, y+1, k) /∈ [λ]}. For h ≥ 1, a removable h-rim hook is a set of h connected
nodes in the rim such that removing those nodes gives the Young diagram of a multipartition.

Now fix e ∈ {2, 3, . . .}∪{∞}. Suppose that a ∈ Zr . To each noden = (x, y, k) ∈ Z>0×Z>0×{1, 2 . . . r}
we associate its residue resa(n) ∈ I. If e is finite (resp. e = ∞) we set resa(x, y, k) = ak + y − x
mod e (resp. resa(x, y, k) = ak + y − x). For λ ∈ �r we define the residue set of λ to be the multiset
Resa(λ) = {res(n) | n ∈ [λ]}. We define an equivalence relation ∼a on �r by saying that λ ∼a μ if
and only if Resa(λ) = Resa(μ) and we refer to the ∼a-equivalence classes of �r as blocks. Clearly if e
is finite and s ∈ Zr with sk ≡ ak mod e for 1 ≤ k ≤ r then λ ∼a μ if and only if λ ∼s μ.

Given a ∈ Zr , we define a subset �a ⊂ �r . For i ∈ I, we call an addable (resp. removable) node of
residue i an addable (resp. removable) i-node. Given μ ∈ �r and i ∈ I, we define a total order � on the
set of addable and removable nodes of [μ] by saying that (x1, y1, k1)� (x2, y2, k2) if k1 < k2 or if k1 = k2
and x1 < x2. We may then define the i-signature of μ by looking at all the addable and removable i-nodes
of [μ] ordered according to � and writing a for an addable i-node and r for a removable i-node. We
then construct the reduced i-signature of μ by repeatedly removing all adjacent (ra)-pairs until there
are no such pairs left. If there are anyr terms in the reduced i-signature of μ, the firstr term corresponds
to a removable i-node of [μ] which is called a good i-node.

It is usual to write + instead of a and − instead of r, however we want use those symbols for other
purposes in this paper. The set �a is defined recursively. Suppose that μ ∈ �r .
• If |μ| = 0 then μ ∈ �a.
• Otherwise, if μ does not contain a good i-node for any i ∈ I then μ /∈ �a.
• Otherwise, suppose that n is a good i-node of μ for some i ∈ I. Let μ̄ be the multipartition whose

Young diagram is obtained from [μ] by removing the node n. Then μ ∈ �a if and only if μ̄ ∈ �a.
The multipartitions in �a are known as Kleshchev multipartitions; they have the property that if

μ ∈ �a then μ(k) is e-restricted for all 1 ≤ k ≤ r. We set �a
n = �a ∩ �r

n.
Given an r-multipartition, it is convenient to represent it as a r-tuple of abacus configurations. If e is

finite, an e-abacus is an abacus with e vertical runners which are infinite in both directions and which are
indexed from left to right by the elements of I. The possible bead positions are indexed by the elements of
Z such that bead position b on the abacus is in row l of runner i where b = le + i and i ∈ I. If e = ∞, the
abacus has runners and bead positions indexed by the elements of I = Z, so that runner i ∈ Z contains
either one bead or no beads.

For λ ∈ � and a ∈ Z, define the β-set

Ba(λ) = {λx − x + a | x ≥ 1}.

We define the abacus configuration of λ with respect to a to be the abacus where we put a bead at position
b for each b ∈ Ba(λ). For λ ∈ �r and a ∈ Zr we define the abacus configuration of λ with respect to a

to be an r-tuple of abacus configurations, the kth one of which is the abacus configuration of λ(k) with
respect to ak.

Operations on the Young diagram of λ can be translated into operations on the abacus configuration
of λ.

Lemma 2.1. Let λ ∈ �r and a ∈ Zr. All residues below are with repect to a as are all abacus
configurations.
• Removing an i-node from component k of [λ] corresponds to moving a bead on runner i of the abacus

of λ(k) back by one position.
• Adding an i-node to component k of [λ] corresponds to moving a bead on runner i − 1 of the abacus of

λ(k) forward by one position.
• If e �= ∞ then adding (resp. removing) an e-rim hook to (resp. from) component k of [λ] corresponds to

pushing a bead on the abacus of λ(k) down one position (resp. up one position).

Example. Take e = 3. Let λ = ((6, 5, 2, 12), (6, 1)) and take a = (8, 6). Then the abacus configuration
of λ with respect to a is given by
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and [λ] has three removable e-rim hooks. For example, [((42, 2, 11), (6, 1))] is formed by [λ] by removing
an e-rim hook from [λ(1)] and has abacus configuration (with respect to a)

.

When drawing abacuses we truncate the runners and assume that the positions above the drawn portion
all contain beads while the positions below are empty.

We say that λ ∈ �r is a multicore if e = ∞ or if e < ∞ and no component of λ has any removable
e-rim hooks; equivalently, λ is a multicore if no bead in the abacus of any component has an empty space
above it. (This is independent of the choice of a used to draw the abacus configurations.) We say that a
∼a-equivalence class B is a core block if every λ ∈ B is a multicore. If λ is a multicore and a ∈ Zr then
for 1 ≤ k ≤ r and i ∈ I we define laik(λ) as follows. If e is finite, set

laik(λ) = max{l ∈ Z | le + i ∈ Bak(λ
(k))};

in other words, laik(λ) is the lowest row of the abacus configuration for λ(k) with respect to ak which
contains a bead on runner i. If e = ∞, set laik(λ) to be 1 if i ∈ Bak(λ

(k)) and 0 otherwise.

Lemma 2.2. [11, Theorem 3.1] Let s ∈ Zr and suppose that B is a ∼s-equivalence class.

(1) Suppose e is finite. If B is a core block then there exists a = (a1, a2, . . . , ar) ∈ Zr, with ak ≡ sk mod e
for all 1 ≤ k ≤ r, and b = (b0, b1, . . . , be−1) ∈ Ze such that for each i ∈ I, 1 ≤ k ≤ r and λ ∈ B,
laik(λ) is equal to either bi or bi + 1.

(2) Suppose e = ∞. Then every block is a core block and if we set b = (. . . , 0, 0, 0, . . .) and take a = s

then for each i ∈ I, 1 ≤ k ≤ r and λ ∈ B, laik(λ) is equal to either bi or bi + 1.

Conversely, suppose that e is finite and that λ ∈ �r. If there exists a = (a1, a2, . . . , ar) ∈ Zr, with ak ≡ sk
mod e for all 1 ≤ k ≤ r, and b = (b0, b1, . . . , be−1) ∈ Ze such that for each i ∈ I and 1 ≤ k ≤ r, laik(λ) is
equal to either bi or bi + 1, then the ∼s-equivalence class of λ is a core block.

2.2. The Ariki-Koike algebra

Let r ≥ 1 and n ≥ 0 and let F be a field of characteristic p ≥ 0. Choose q ∈ F \ {0} and Q =
(Q1, . . . , Qr) ∈ Fr . The Ariki-Koike algebra H = Hr,n(q, Q) is the unital associative F-algebra with
generators T0, . . . , Tn−1 and relations

(Ti + q)(Ti − 1) = 0, for 1 ≤ i ≤ n − 1,
TiTj = TjTi, for 0 ≤ i, j ≤ n − 1, |i − j| > 1,

TiTi+1Ti = Ti+1TiTi+1, for 1 ≤ i ≤ n − 2,
(T0 − Q1) . . . (T0 − Qr) = 0,

T0T1T0T1 = T1T0T1T0.

Define e ≥ 2 to be minimal such that 1 + q + · · · + qe−1 = 0, or set e = ∞ if no such value exists.
Two parameters Qk and Ql are q-connected if Qk = qaQl for some a ∈ I. Each Ariki-Koike algebra H
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is Morita equivalent to a direct sum of tensor products of smaller algebras whose parameters are all q-
connected [9] and so we will assume that all our parameters are q-connected, in fact, that they are all
powers of q where q �= 1. If a = (a1, a2, . . . , ar) ∈ Zr satisfies Qk = qak for all 1 ≤ k ≤ r then we call a
a multicharge for H. If e is finite then qe = 1 so there are infinitely many possible multicharges for H.

The algebra H is a cellular algebra [10, 13] with the cell modules indexed by the r-multipartitions of
n. The cell module Sλ indexed by the multipartition λ is called a Specht module. Due to the properties
of cellular algebras, all the composition factors of Sλ lie in the same block, and so we can think of the
Specht modules as being partitioned into blocks.

Proposition 2.3. [21, Theorem 2.11] Suppose that a is a multicharge for H and that λ, μ ∈ �r
n. Then Sλ

and Sμ lie in the same block of H if and only if Resa(λ) = Resa(μ).

This result explains why we called the ∼a-equivalence classes blocks: two multipartitions of n are in
the same class if and only if the corresponding Specht modules lie in the same block.

From the properties of cellular algebras, we know that there is a bilinear form on each cell module. If
we define rad(Sμ) to be the radical of the Specht module Sμ with respect to this bilinear form then if a
is a multicharge for H then rad(Sμ) �= Sμ if and only if μ ∈ �a

n and so

{Dμ = Sμ/ rad(Sμ) | μ ∈ �a
n}

is a complete set of non-isomorphic irreducible H-modules. Given λ ∈ �r
n and μ ∈ �a

n we define
[Sλ : Dμ] to be the multiplicity of the simple module Dμ as a composition factor of the Specht module Sλ.

Brundan and Kleshchev [4] have shown that the Ariki-Koike algebras are isomorphic to certain
graded algebras defined by Khovanov and Lauda [15, 16] and by Rouquier [24]: the cyclotomic KLR
algebras of type A. Through this isomorphism, we may think of H as being graded. There is a grading
on the Specht modules [6], thus we can define [Sλ : Dμ]v ∈ N[v, v−1] to be the graded multiplicity
of the simple module Dμ as a composition factor of the Specht module Sλ; we recover the original
decomposition number by setting v = 1. For more details, we refer the reader to the survey paper [17].

We define the (graded) decomposition matrix of H to be the matrix whose rows are indexed by the
elements of �r

n and whose columns are indexed by the elements of �a
n with entries equal to [Sλ : Dμ]v,

for λ ∈ �r
n and μ ∈ �a

n . If B is a ∼a-equivalence class, where λ ∈ B is such that |λ| = n, we define the
block decomposition matrix of B to be the submatrix of the decomposition matrix of H whose rows and
columns are indexed only by elements of B.

3. Core blocks when r = 2

For the rest of this paper, we assume r = 2 so that our Specht modules are indexed by bipartitions and
we shall refer to multicores as bicores. We fix e ∈ {2, 3, . . .} ∪ {∞} and s = (s1, s2) ∈ I2. We shall take
a block to mean an s-equivalence class of �2 and a core block to be a block B in which each λ ∈ B is a
bicore.

Let F be a field of characteristic p ≥ 0. Fix q ∈ F where q is a primitive eth root of unity if e is finite
and ql �= 0, 1 for any l ∈ Z otherwise. Let Q = (qs1 , qs2). If B is a block then there exists n ≥ 0 such
that |λ| = n for all λ ∈ B and so we associate to B the block of the Hecke algebra Hn = H2,n(q, Q)

containing the Specht modules Sλ for λ ∈ B. We denote this corresponding block of Hn by B̂ so that we
have a correspondence B ↔ B̂ between s-equivalence classes and 2-sided indecomposable ideals of the
Hecke algebras Hn; we refer to both as blocks.

3.1. Sign sequences

Set

� = {δ = (δi)i∈I | δi ∈ {−, 0, +} and if e = ∞ then δi = δ−i = 0 for all i 
 0}.
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We say that δ, δ′ ∈ � are essentially the same if the two sequences obtained by removing all the 0s from
each of them are the same.

For δ ∈ �, we define sets R(δ) ∈ � and S(δ) ⊆ I2 as follows.

(1) Take R(δ) = δ and S(δ) = ∅.
(2) If there do not exist i, j ∈ I with i < j and δi = − and δj = +, end the process. Return R(δ) and

S(δ).
(3) Otherwise, choose i, j ∈ I with i < j and δi = − and δj = + with the property that δm = 0 for all

i < m < j. Add (i, j) to S(δ) and set R(δ)i = R(δ)j = 0. Go back to step (2).

Example. Suppose that e = 19 and δ = (−, 0, −, 0, +, −, 0, 0, +, −, +, +, 0, +, −, 0, +, 0, +). We find it
helpful to draw a diagram for δ as below.

− − − − −0 0 0 0 0 0 0+ + + + + + +
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Then
S(δ) = {(2, 4), (5, 8), (9, 10), (0, 11), (14, 16)},
R(δ) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +, 0, 0, 0, 0, +).

Set
�0 = {δ ∈ � | − /∈ R(δ) or + /∈ R(δ)}.

Suppose δ ∈ �0. For each S = {(i1, j1), . . . , (it , jt)} ⊆ S(δ), define δS ∈ � by setting

δS
m =

⎧⎪⎨⎪⎩
+, m = il for some 1 ≤ l ≤ t,
−, m = jl for some 1 ≤ l ≤ t,
δm, otherwise.

If δ′ = δS for some S ⊆ S(δ), we write δ′ δ and set �(δ′, δ) = |S|. We write δ′ δ if δ′ = δS

for some S ⊆ S(δ) where S has the property that if (i1, j1), (i2, j2) ∈ S(δ) with i1 < i2 < j2 < j1 then
(i1, j1) ∈ S �⇒ (i2, j2) ∈ S.

Example. Let e = 8 and δ = (−, −, +, −, −, +, +, −) ∈ �0. We write δ as

− − − − −+ + +
0 1 2 3 4 5 6 7

so that S(δ) = {(1, 2), (4, 5), (3, 6)}. Then we have

S δS �(δS, δ) δS δ

∅ (−, −, +, −, −, +, +, −) 0 �
{(1, 2)} (−, +, −, −, −, +, +, −) 1 �
{(4, 5)} (−, −, +, −, +, −, +, −) 1 �
{(3, 6)} (−, −, +, +, −, +, −, −) 1

{(1, 2), (4, 5)} (−, +, −, −, +, −, +, −) 2 �
{(1, 2), (3, 6)} (−, +, −, +, −, +, −, −) 2
{(4, 5), (3, 6)} (−, −, +, +, +, −, −, −) 2 �

{(1, 2), (4, 5), (3, 6)} (−, +, −, +, +, −, −, −) 3 �
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Informally, we can see that each element of the set {δS | S ⊆ S(δ)} is obtained by swapping some
pairs −+ that lie at either end of an arc in the diagram of δ.

3.2. Indexing the block decomposition matrices corresponding to core blocks

Let B be a core block. Suppose e is finite. By Lemma 2.2, we can find a = (a1, a2) ∈ Z2 and b =
(b0, b1, . . . , be−1) ∈ Ze with the property that ak ≡ sk mod e for k = 1, 2 and for any λ ∈ B we have
laik(λ) = bi or laik(λ) = bi + 1, for i ∈ I and k = 1, 2. If a, b satisfy these conditions we call r = (a, b) a
reduced pair for B. We define a total order ≺ (which depends on the choice of b) on I by saying that i ≺ j
if bi < bj or if bi = bj and i < j. If I = {i0, i1, . . . , ie−1} with i0 ≺ i1 ≺ . . . ≺ ie−1 we take π = πb(B)

be the permutation that sends j to ij for j ∈ I. If e = ∞, we define r = (s, b) where b = (. . . , 0, 0, 0, . . .)
to be the unique reduced pair for B. We then take ≺ to be the usual total order < on Z and π to be the
identity permutation on Z.

For λ ∈ B and r = (a, b) a reduced pair for B, define δr
λ = ((δr

λ)i)i∈I by setting

(δr
λ)i = laπ(i)2(λ) − laπ(i)1(λ)

for all i ∈ I. Our choice of r ensures that δr
λ ∈ �, where we abuse notation by identifying 1 with + and

−1 with −.
If e is finite, the reduced pair r is not uniquely determined by the conditions above. However we shall

see that unless |B| = 1, δr
λ and δr′

λ are essentially the same for any reduced pairs r and r′.

Example. Take e = 7 and s = (1, 6). Let B be the core block containing the bipartition

λ = ((13, 10, 8, 7, 6, 4, 3, 2, 16), ((13, 12, 10, 9, 8, 6, 53, 3, 23, 16)).

If r = (a, b) is a reduced pair for B then there exists l ∈ Z such that a is of the form a = (8 + 7l, 6 + 7l).

Taking a = (29, 27) we have two choices for b, each of which gives a different ordering ≺:

b = (3, 1, 6, 3, 5, 2, 5) �⇒ 1 ≺ 5 ≺ 0 ≺ 3 ≺ 4 ≺ 6 ≺ 2 �⇒ δr
λ = (−, −, −, +, +, −, 0),

b = (3, 1, 5, 3, 5, 2, 5) �⇒ 1 ≺ 5 ≺ 0 ≺ 3 ≺ 2 ≺ 4 ≺ 6 �⇒ δr
λ = (−, −, −, +, 0, +, −).

However, the only choice comes when we look at the third runner on the abacus configurations, that is,
when la22(λ) = la21(λ) = 6, and we note that the two choices for δr

λ are essentially the same.

Lemma 3.1. [11, Propn. 3.7] Suppose B is a core block and r = (a, b) is a reduced pair for B. Let λ ∈ B
and suppose i, j ∈ I with (δr

λ)i = − and (δr
λ)j = +. Define sij(λ) to be the bicore μ with

lamk(μ) =

⎧⎪⎨⎪⎩
lamk(λ) − 1, π(m) = i and k = 1 or π(m) = j and k = 2,
lamk(λ) + 1, π(m) = j and k = 1 or π(m) = i and k = 2,
lamk(λ), otherwise.

Then μ ∈ B and

(δr
μ)m =

⎧⎪⎨⎪⎩
+, m = i,
−, m = j,
(δr

λ)m, otherwise.
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Moreover, if ν ∈ B then we may form ν from λ by repeatedly applying operations of the form sij for some
i, j as above.

Corollary 3.2. Suppose that B is a core block and r is a reduced pair for B. Let λ, μ ∈ B. Then δr
μ can be

formed from δr
λ by permuting the entries equal to ±. Conversely, any sequence ε ∈ � formed by permuting

the entries equal to ± in δr
λ is equal to δr

ν for some ν ∈ B.
Consequently, |B| = 1 if and only if − /∈ δr

λ or + /∈ δr
λ.

Lemma 3.3. Suppose e is finite and that B is a core block with |B| > 1. Suppose that r = (a, b) and
r′ = (a′, b′) are reduced pairs for B with a = (a1, a2) and a′ = (a′

1, a′
2). Let λ ∈ B.

(1) There exists d ∈ Z with a′
k = ak + de for k = 1, 2.

(2) The sequences δr
λ and δr′

λ are essentially the same.

Proof.

(1) Since r and r′ are both reduced pairs for B, there exist d1, d2 ∈ Z such that a′
k = ak +dke for k = 1, 2.

As |B| > 1, there exist i, j ∈ I such that

lai2(λ) − lai1(λ) = −1 �⇒ la
′

i2 (λ) − la
′

i1 (λ) = d2 − d1 − 1,

laj2(λ) − laj1(λ) = 1 �⇒ la
′

j2 (λ) − la
′

j1 (λ) = d2 − d1 + 1.

so since |la′
m2(λ) − la′

m1(λ)| ≤ 1 for all m ∈ I, we must have d1 = d2.
(2) Using part (1) we may assume that a′

k = ak+de for k = 1, 2. If we set c = (b0+d, b1+d, . . . , be−1+d)

then r̂ = (a′, c) is a reduced pair for B and δr̂
λ = δr

λ. Let

I± = {i ∈ I | la
′

i2 (λ) �= la
′

i1 (λ)},

so that (δr̂
λ)i �= 0 if and only if i ∈ I±. If i ∈ I± then we must have b′

i = min{la′
i2 (λ), la′

i1 (λ)} = ci.
So restricting the order ≺ to the set I± we see that changing (a′, c) to (a′, b′) permutes the elements
of δr̂

λ while keeping the non-zero entries in the same order. Hence δr̂
λ and δr′

λ are essentially the
same.

If |B| = 1, Lemma 3.3 does not hold. If e is finite and B = {λ}, assume that we choose the reduced
pair r such that 0 ∈ δr

λ and 1 /∈ δr
λ. This choice is arbitrary; it is simply made so that for every element of

a core block we have an expression δr
λ which is essentially independent of the choice of the reduced pair

r. Recall that if e = ∞, there is a unique reduced pair for B. Unless we need to emphasize the reduced
pair, we will henceforth write δλ instead of δr

λ.
Suppose that B is a core block. Take λ ∈ B and hence define

nB = #{i ∈ I | (δλ)i = −}, pB = #{i ∈ I | (δλ)i = +}, mB = min{nB, pB}.

Given Corollary 3.2 and the discussion above, these parameters are well-defined and independent of the
choice of λ.

Lemma 3.4. There exists d ∈ Z such that if e is finite (resp. e = ∞) then s1 ≡ nB + d mod e and
s2 ≡ pB + d mod e (resp. s1 = nB + d and s2 = pB + d).

Proof. Suppose that r = (a, b) is a reduced pair for B and let λ ∈ B. Suppose e is finite. Then by [20,
Lemma 2.2], sk ≡ ak ≡ ∑

i∈I laik(λ) mod e for k = 1, 2. Hence

s2 − s1 ≡
∑
i∈I

(lai2(λ) − lai1(λ)) ≡
∑
i∈I

(δλ)i ≡ pB − nB mod e.
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Suppose e = ∞. Choose t � 0. Then sk = ak = t + #{i ∈ I | i ≥ t and laik(λ) = 1} for k = 1, 2. Hence

s2 − s1 =
∑
i≥t

(lai2(λ) − lai1(λ)) =
∑
i≥t

(δλ)i = pB − nB.

In [12, Section 2.1], Fayers introduced the weight of a multipartition. Two multipartitions in the same
block have the same weight and so for a block B we define wt(B) to be the weight of any multipartition
belonging to B. We define the weight of the corresponding block B̂ as wt(B̂) = wt(B). We do not give
Fayers’ definition here, but we note that, roughly speaking, the blocks B̂ of small weight tend to be easier
to understand. We have |B| = 1 if and only if wt(B) = 0 which holds if and only if B̂ is simple.

Lemma 3.5. [12, Propn. 3.8] Suppose that B is a core block. Then wt(B) = mB.

Corollary 3.6. Let B be a core block. If e is finite then

0 ≤ wt(B) ≤
⌊ e

2

⌋
.

For a core block B, we have seen that the Specht modules in B̂ can be indexed by a subset of �. The
next problem is to decide which μ ∈ B index simple modules. We will see that this can be determined by
looking at δμ. Let b = (bi)i∈I be the sequence where bi = 0 for all i ∈ I. We first show that it is sufficient
to consider the case where r = (a, b) is a reduced pair for B. Note that in this case, we have ≺ equal to
the usual total order < on I.

Lemma 3.7. [22, Proposition 2.10] Suppose that B is a core block with (a, b) a reduced pair for B. Let
μ ∈ B. Then for i ∈ I and k = 1, 2 we have laik(μ) = bi + xik where xik ∈ {0, 1}. We define μ̄ ∈ �2 and
ā ∈ Z2 so that

lāik(μ̄) = xik

for i ∈ I and k = 1, 2; note that this abacus configuration does uniquely define both ā and μ̄ and that
δaμ = δāμ̄, so that if B̄ is the ā-equivalence class containing μ̄ then (ā, b) is a reduced pair for B̄. Then
μ ∈ �s if and only if μ̄ ∈ �ā.

Lemma 3.8. Suppose that B is a core block and r = (a, b) is a reduced pair for B. Let μ ∈ B. Suppose that
i − 1, i ∈ I with i − 1 < i and let ν be the bipartition whose Young diagram is formed by removing all
removable i-nodes from [μ]. Then unless (δμ)i−1 = + and (δμ)i = − we have that μ ∈ �s if and only if
ν ∈ �s.

Proof. Since r = (a, b), each component of [μ] has at most one removable i-node. If [μ] has no
removable i-nodes, the lemma is trivial. So suppose that [μ] has one removable i-node. Then the i-
residue sequence of μ is either r, ar or ra. In the first two cases, this removable node is good, and so
the lemma holds. In the third case, the first component of [μ] has a removable i-node and the second
has an addable i-node. Given r = (a, b), this is only possible if (δμ)i−1 = + and (δμ)i = −.

Now suppose that [μ] has two removable i-nodes so the i-residue sequence of μ is rr and the
removable i-node in the first component is good. Removing this node gives a bipartition, σ say, with
μ ∈ �s if and only if σ ∈ �s. By the last paragraph, the one removable i-node in [σ ] is good, so that
σ ∈ �s if and only if ν ∈ �s.

Lemma 3.9. Suppose that B is a core block with |B| > 1 and (a, b) is a reduced pair for B. Let μ ∈ B.
There is a bipartition ν which satisfies the following conditions.
• ν lies in a core block B′ and (a, b) is a reduced pair for B′.
• δν is essentially the same as δμ.
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• There exist i1, i2 ∈ I with i1 ≤ i2 such that
– For k = 1, 2, lamk(ν) = 1 for all m < i1 and lamk(ν) = 0 for all m > i2.
– (δν)m ∈ {−, +} for i1 ≤ m ≤ i2.

Then μ ∈ �s if and only if ν ∈ �s.

Before proving this result, we give an example of bipartitions μ and ν which satisfy the lemma.

Example. Below, we have δμ = (+, 0, +, 0, −, −, +, 0, +, 0, −) and δν = (0, 0, +, +, −, −, +, +, −, 0, 0).

μ = ,

ν = ,

Proof of Lemma 3.9. Suppose there exist i, j ∈ I with j < i and laik(μ) = 1 for k = 1, 2 while lajk(μ) = 0
for k = 1 or k = 2. Choose i minimal with this condition. Then following Lemma 3.8, we may remove
all the removable i-nodes of [μ] to obtain the Young diagram of a bipartition σ̃ with σ̃ ∈ �s if and only
if μ ∈ �s. Then the abacus configuration of σ̃ is formed from that of μ by swapping runners i − 1 and
i, so that δσ̃ is formed from δμ by swapping the entries in the positions indexed by i − 1 and i; note that
(δμ)i = 0 so that δμ and δσ̃ are essentially the same. We continue in this way until we reach a bipartition
σ where there do not exist i, j as above.

Now consider σ . Suppose there exist i′, j′ ∈ I with i′ < j′ and lai′k(σ ) = 0 for k = 1, 2 while laj′k(σ ) = 1
for k = 1 or k = 2. Choose i′ maximal with this property. Again following Lemma 3.8, we may remove
all the removable (i′ +1)-nodes of [σ ] to obtain the Young diagram of a bipartition ν̃ with ν̃ ∈ �s if and
only if σ ∈ �s. Similarly to the case above, δν̃ is formed from δσ by swapping the entries in the positions
indexed by i′ and i′ + 1, and (δσ )i′ = 0 so that δσ and δν̃ are essentially the same. We continue in this
way until we reach a bipartition ν where there do not exist i′, j′ as above. Then ν satisfies the conditions
of the lemma and μ ∈ �s if and only if ν ∈ �s.

Proposition 3.10. Suppose that B is a core block and μ ∈ B. Then μ ∈ �s if and only if δμ ∈ �0.

Proof. Suppose that (a, b) is a reduced pair for μ. By Lemma 3.7, we may assume that b = b. If |B| = 1
then the block B̂ is simple and so μ ∈ �s. So assume that |B| > 1. By Lemma 3.9, we may assume that
there exist i1, i2 ∈ I with i1 ≤ i2 such that
• For k = 1, 2, lamk(μ) = 1 for all m < i1 and lamk(μ) = 0 for all m > i2.
• (δμ)m ∈ {−, +} for i1 ≤ m ≤ i2.
We prove Proposition 3.10 by induction on |S(δμ)|. First suppose that |S(δμ)| = 0. If δμ ∈ �0 then
|B| = 1, which we have assumed is not true. So suppose that δμ /∈ �0 so that there are entries equal to
both − and + in δμ with the + terms occurring before the − terms. The abacus configuration of μ with
respect to a looks like:

, .

Then μ has only one removable node which is not good, hence μ /∈ �s.
Now suppose that |S(δμ)| > 0 and Proposition 3.10 holds for any σ in a core block with |S(δσ )| <

|S(δμ)|. Then there exist i, i + 1 ∈ I with i < i + 1 and (δμ)i = − and (δμ)i+1 = +. By Lemma 3.8,
we can remove the removable i + 1-node from [μ] to obtain the Young diagram of a bipartition σ with
σ ∈ �s if and only if μ ∈ �s. Furthermore, we have (δσ )i = (δσ )i+1 = 0 and (δσ )m = (δμ)m for
m �= i, i + 1 so that δσ ∈ �0 if and only if δμ ∈ �0. Hence

μ ∈ �s ⇐⇒ σ ∈ �s ⇐⇒ δσ ∈ �0 ⇐⇒ δμ ∈ �0

where the middle step follows from the inductive hypothesis.
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In this section, we have shown that if B is a core block then we can index the Specht modules
corresponding to bipartitions in B by a subset of the set of sequences δ ∈ � with nB entries equal to
− and pB entries equal to +, with the simple modules indexed by sequences δ ∈ �0. The next step is to
determine the entries in the block decomposition matrix. To do this, we begin by introducing the Fock
space representation of Uv(ŝle).

3.3. The Fock space representation

Let U denote the quantized enveloping algebra U = Uv(ŝle). This is a Q(v)-algebra with generators ei, fi
for i ∈ I and vh for h ∈ P∨; the relations may be found in [18]. Let Fs be the Q(v)-vector space with
basis {sλ | λ ∈ �2}. This becomes a U-module under the action described in [18]; we call Fs the Fock
space representation of U . The U-submodule Ms generated by s∅2 (where ∅2 is the unique bipartition
of 0) is isomorphic to the irreducible highest weight module V(ϒ) for some dominant integral weight
ϒ of U . This module has a canonical basis (in the sense of Lusztig and Kashiwara) which is indexed
by the elements of �s; we write Pμ for the canonical basis element indexed by μ ∈ �s. We define the
transition coefficients dλμ(v) so that they satisfy the equation

Pμ =
∑
λ∈�2

dλμ(v)sλ;

then dλμ(v) = 0 unless λ ∼s μ. Ariki’s Theorem and its graded analogue, below, relate the transition
coefficients to the graded decomposition numbers.

Theorem 3.11. [1, 5] Suppose that Hn = H2,n(q, Q) is defined over a field of characteristic 0. Suppose
that λ, μ ∈ �r

n with μ ∈ �s. Then
[Sλ : Dμ]v = dλμ(v).

The transition coefficients give us the decomposition numbers when p = 0 and can be considered as a
first approximation to the decomposition numbers when the field is arbitrary; as we shall see below, there
are situations when this first approximation is correct. In order to compute the transition coefficients,
we now consider the action of fi ∈ U on a basis element sλ ∈ Fs.

If d > 0 and ν, λ ∈ �2, write ν
d:i−→ λ if [λ] is formed from [ν] by adding d nodes all of residue i ∈ I.

If ν
d:i−→ λ set

N(ν, λ) =
∑

n∈[λ]\[ν]
#{m an addable i-node of ν with n�m}−#{m a removable i-node of λ with n�m}.

For d > 0 and i ∈ I, define f (d)
i = f d

i / [d]! ∈ U , the quantum divided power of f d
i . Then if ν ∈ �2,

f (d)
i sν =

∑
ν

d:i−→λ

vN(ν,λ)sλ.

Lemma 3.12. [22, Proposition 2.3] Suppose ν ∈ �s is such that if σ ∼s ν then [Sσ : Dν]v = dσν(v). Let
i1, . . . , it ∈ I and d1, . . . , dt > 0. Suppose

f (dt)
it . . . f (d1)

i1 Pν = sμ +
∑
λ�=μ

cλμ(v)sλ

where cλμ(v) ∈ vN[v] for all λ �= μ. Then μ ∈ �s and if λ �= μ then [Sλ : Dμ]v = cλμ(v).

The statement of Lemma 3.12 given in [22] is only for the case when Pν = sν , but the proof for the
slightly more general situation above is identical. Suppose i, j ∈ I. If i ≤ j, define

fi,j = fjfj−1 . . . fi+1.
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If e is finite and i > j, define

fi,j = fjfj−1 . . . f0fe−1 . . . fi+2fi+1.

Suppose that B is a core block and that (a, b) is a reduced pair for B. We say that b is flat if e = ∞ or
if e is finite and there exists m′ ∈ I and b ∈ Z such that bm = b if m ≥ m′ and bm = b + 1 otherwise.
Note that if e is finite then in this case,

m′ ≺ m′ + 1 ≺ · · · ≺ e − 1 ≺ 0 ≺ 1 ≺ · · · ≺ m′ − 1.

Lemma 3.13. Suppose that B is a core block and that r = (a, b) is a reduced pair for B with b flat. Let
ν ∈ B. Suppose that i ≺ j with

laik(ν) = bi + 1, lajk(ν) = bj, lam1(ν) = lam2(ν), for k = 1, 2 and i ≺ m ≺ j.

Let I1 = {i � m ≺ j | lam1(ν) = lam2(ν) = bm + 1} = {i1, i2, . . . , it}, where i1 ≺ . . . ≺ it . Set it+1 = j and
define

f = fi1,i2 . . . fit−1,it fit ,it+1 ∈ U .

Then

fsν = sλ2 + vsλ1

where

lamk(λ1) =

⎧⎪⎨⎪⎩
lamk(ν) − 1, m = i and k = 1,
lamk(ν) + 1, m = j and k = 1,
lamk(ν), otherwise,

lamk(λ2) =

⎧⎪⎨⎪⎩
lamk(ν) − 1, m = i and k = 2,
lamk(ν) + 1, m = j and k = 2,
lamk(ν), otherwise,

so that

(δλ1)m =

⎧⎪⎨⎪⎩
+, m = i,
−, m = j,
(δν)m, otherwise,

(δλ2)m =

⎧⎪⎨⎪⎩
−, m = i,
+, m = j,
(δν)m, otherwise.

Proof. For 1 ≤ s ≤ t and k = 1, 2, define σ s
k by

lamk′(σ s
k) =

⎧⎪⎨⎪⎩
lamk′(ν) − 1, m = is and k = k′,
lamk′(ν) + 1, m = j and k = k′,
lamk′(ν), otherwise,

so that λk = σ 1
k for k = 1, 2. We claim that if 1 ≤ s ≤ t then

fis,is+1 . . . fit ,it+1 sν = sσ s
2
+ vsσ s

1
.

Since b is flat, [ν] has exactly two addable (it + 1)-nodes, one in the first component and one in the
second, and no removable (it + 1)-nodes. If we add an (it + 1)-node to component k, for k = 1, 2, then
the subsequent bipartition has exactly one addable (it + 2)-node, in component k, and no removable
(it + 2)-nodes. Continuing in this way, we see that

fit ,it+1 sν = sσ t
2
+ vsσ t

1
.

Now suppose 1 ≤ s ≤ t − 1 and consider fis,is+1 sσ s+1
k

, where k = 1, 2. If is + 1 = is+1 then [σ s+1
k ]

has exactly one addable is+1-node, which is in component k, and no removable is+1-nodes, and so
fis+1 sσ s+1

k
= sσ s

k
. Otherwise, as above,

fis,is+1−1sσ s+1
k

= sτ 2 + vsτ 1 ,
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where [τ k′ ] is obtained by successively adding nodes to component k′ of [σ s+1
k ], for k′ = 1, 2. However,

if k′ �= k, [τ k′ ] does not have any addable is+1-nodes so fis+1 sτ k′ = 0. If k = k′ = 1 (resp. k = k′ = 2)
then [τ k] has an addable is+1-node on component 1 (resp. on component 2) and a removable is+1-node
on component 2 (resp. on component 1) and so fis+1 sτ k′ = v−1sσ k′ (resp. fis+1 sτ k′ = sσ k′ ). So in both
cases we have

fis,is+1 sσ s+1
k

= sσ s
k
.

The lemma follows.

3.4. Decomposition matrices

Theorem 3.14. Let B be a core block and suppose that r = (a, b) is a reduced pair for B with b flat. Let
λ, μ ∈ B with μ ∈ �a. Then

[Sλ : Dμ]v = dλμ(v) =
{

v�(δλ,δμ), δλ δμ,
0, otherwise.

Proof. We work by induction on |S(μ)| = mB. If |S(μ)| = 0 then B is simple and the result holds. So
suppose |S(μ)| > 0 and the theorem holds for all core blocks B′ with mB′ < mB. Choose (i, j) ∈ S(μ)

such that there does not exist (i′, j′) ∈ S(μ) with i < i′ < j′ < j. Let ν be the bipartition defined by

lamk(ν) =

⎧⎪⎨⎪⎩
lamk(μ) + 1, m = i and k = 2,
lamk(μ) − 1, m = j and k = 2,
lamk(μ), otherwise.

Then ν ∈ B′ for some core block B′ such that (a, b) is a reduced pair for B′. Also S(ν) = S(μ) \ {(i, j)}
so ν ∈ �s. Hence ν satisfies the conditions of the inductive hypothesis, so by Theorem 3.11,

Pν =
∑

δσ δν

v�(σ ,ν)sσ .

The bipartition ν with reduced pair (a, b), together with the pair (i, j) described above, satisfies the
conditions of Lemma 3.13. We define f as in that lemma and compute each term fsσ that appears in
the sum above, so that

fPν =
∑

δλ δμ

v�(λ,μ)sλ.

Since �(λ, μ) > 0 for all λ �= μ which appear in the sum, we have satisfied the conditions of Lemma 3.12
and so the theorem holds.

Since there is always a reduced pair (s, b) with b flat when e = ∞ or n < e, this describes the block
decomposition matrices for core blocks in these cases, recovering previous results; we note in particular
the similarity between Theorem 3.14 and [19, Theorem 3]. For the rest of this section, we assume that
e is finite. Suppose that B and B′ are any two core blocks with nB = nB′ and pB = pB′ . Then we have
a bijection � : B → B′ such that δλ and δ�(λ) are essentially the same for all λ ∈ B. If μ ∈ B then by
Lemma 3.10, we have that μ ∈ �s if and only if �(μ) ∈ �s.

Given two core blocks B and B′, we say that B and B′ are δ-equivalent if nB = nB′ and pB = pB′
and if the map � defined above preserves the block decomposition matrix of B, that is, if λ, μ ∈ B with
μ ∈ �s then [Sλ : Dμ]v = [S�(λ) : D�(μ)]v. In fact, we will show that any two core blocks B and B′ with
nB = nB′ and pB = pB′ are δ-equivalent. Theorem 3.14 shows that this also holds when e = ∞.
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Lemma 3.15. Let B be a core block and suppose that r = (a, b) is a reduced pair for B. Suppose that i ∈ I
and

bi+1 > bi + xi where xi =
{

1, i = e − 1,
0, otherwise.

Define a map �i : B → �2 which sends λ ∈ B to the bipartition whose Young diagram is obtained by
removing all possible (i + 1)-nodes from [λ]. Then �i gives a bijection between B and a core block B′ such
that if λ ∈ B then δλ = δ�i(λ).

Proof. Suppose λ ∈ B. From our assumptions on b, [λ] has no addable (i + 1)-nodes. If ν ∈ B then
by Lemma 3.1, lsm1(λ) + lsm2(λ) = lsm1(ν) + lsm2(ν) for all m ∈ I so that the number of removable
(i + 1)-nodes on both [λ] and [ν] is

lsi+11(λ) − lsi1(λ) − xi + lsi+12(λ) − lsi2(λ) − xi = lsi+11(ν) − lsi1(ν) − xi + lsi+12(ν) − lsi2(ν) − xi.

Hence �i(λ) and �i(ν) lie in the same block, B′ say. If i �= e − 1, �i acts on the abacus configurations
by swapping the runners i and i + 1 on each component, so that δλ = δ�i(λ) and so by Corollary 3.2, �i
is a bijection between B and B′. If i = e − 1, then (a, b′) is a reduced pair for B′, where

b′
m =

⎧⎪⎨⎪⎩
be−1 + 1, m = 0,
b0 − 1, m = e − 1,
bm, otherwise.

It is straightforward to check that if m �= 0, e − 1 then

bm ≺ be−1 ⇐⇒ b′
m ≺ b′

0, be−1 ≺ bm ≺ b0 ⇐⇒ b′
0 ≺ b′

m ≺ b′
e−1, b0 ≺ bm ⇐⇒ b′

e−1 ≺ b′
j,

so that again δλ = δ�i(λ) and �i is a bijection between B and B′.

Lemma 3.16. Suppose that we have the conditions of Lemma 3.15. Keep the notation of that lemma so that
B′ = �i(B). Suppose B′ is such that if σ , τ ∈ B′ with τ ∈ �s then [Sσ : Dτ ]v = dστ (v). Then B′ and B
are δ-equivalent.

Proof. Suppose that if λ ∈ B then λ has t removable (i + 1)-nodes; equivalently if σ ∈ B′ then σ has t
addable (i + 1)-nodes and no removable (i + 1)-nodes. Let �i = �−1

i . If σ ∈ B′ then

f (t)
i+1sσ = s�i(σ ).

Let τ ∈ B′ be such that τ ∈ �s. Then

f (t)
i+1Pτ = f (t)

i+1
∑
σ

dστ (v)sσ =
∑
σ

dστ (v)s�i(σ ).

Hence by repeated application of Lemma 3.12, [S�i(σ ) : D�i(τ )]v = dστ (v) = [Sσ : Dτ ]v for σ ∈ B′.
Since δσ = δ�i(σ ) for all σ ∈ B′, the lemma follows.

Lemma 3.17. Suppose that B is a core block with reduced pair (a, b). Then there exists a core block B′ with
reduced pair (a, b′) such that B and B′ are δ-equivalent and b′ is flat.

Proof. Following Lemma 3.15, if there exists i ∈ I \ {e − 1} with bi < bi+1 then we may apply the
map �i to B. If b0 − be−1 > 1 then we may apply the map �e−1 to B. By repeatedly applying these
maps, we obtain a core block B′ = �i1�i2 . . . �iz B where (a, b′) is a reduced pair for B′ and b′ is flat. By
Theorem 3.14, [Sσ : Dτ ]v = dστ (v) for all σ , τ ∈ B′ with τ ∈ �a. Hence by Lemma 3.16, we have that
B and B′ are δ-equivalent.
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Corollary 3.18. Suppose that B and B′ are core blocks. If nB = nB′ and pB = pB′ then B and B′ are
δ-equivalent.

Theorem 3.19. Let B be a core block and suppose λ, μ ∈ B with μ ∈ �s. Then

[Sλ : Dμ]v =
{

v�(δλ,δμ), δλ δμ,
0, otherwise.

Proof. Following Lemma 3.17, we know that B is δ-equivalent to a core block B′ with reduced pair (a, b′)
where b′ is flat. The theorem then follows from Theorem 3.14.

3.5. Summary and examples

We collect together the main results of this paper.

Theorem 3.20. Let B be a core block and let B0 = B ∩ �a. Let n = nB, p = pB and m = min{n, p}.

1. We can identify a bipartition λ ∈ B with a sequence δλ ∈ � which contains n entries equal to − and p
entries equal to +. If ν ∈ B then δν is formed by permuting these n + p entries. Hence

|B| =
(

n + p
m

)
.

2. Suppose μ ∈ B. Then μ ∈ B0 if and only if δμ ∈ �0. Hence

|B0| =
(

n + p
m

)
−

(
n + p
m − 1

)
.

3. We have wt(B) = m.
4. There exists d ∈ Z such that if s = (s1, s2) then if e is finite (resp. e = ∞) then s1 ≡ n + d mod e and

s2 ≡ p + d mod e (resp. s1 = n + d and s2 = p + d).
5. Suppose that λ, μ ∈ B with μ ∈ B0. Then

[Sλ : Dμ]v =
{

v�(δλ,δμ), δλ δμ,
0, otherwise.

Proof. All these results appear in the previous section, apart from the formula for |B0|. To see that this
holds, first suppose that n ≥ p. Identify each sequence with n entries equal to − and p entries equal
to + with a (n, p)-tableau by putting the entries corresponding to − in the top row and to + in the
bottom row. The tableau is standard if and only if the sequence lies in �0. Since the number of standard
(n, p)-tableaux is given by the formula above, we are done. The case that n < p follows by symmetry.

For λ, ν in a core block B, let dim(Hom(Sλ, Sν))v denote the graded dimension of the homomorphism
space between Sλ and Sν . The next result appears in George Witty’s 2020 thesis [27]. Although Witty
only proves the case where (a, b) is a reduced pair for B, he conjectures that the result holds for an
arbitrary reduced pair [27, Conjecture 4.32]. It is possible that one could prove this conjecture using
Scopes equivalence [26].

Theorem 3.21. [27, Theorem 4.27] Suppose that B is a core block and that (a, b) is a reduced pair for B.
Suppose that e �= 2 or that nB �= pB. Let λ, ν ∈ B. Then

dim(Hom(Sλ, Sν))v =
{

v�(δλ,δν ), δλ δν ,
0, otherwise.

If e = 2 or nB = pB then the formula above gives a lower bound for dim(Hom(Sλ, Sν))v.
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Witty’s theorem is an application of results proved in his thesis about homomorphisms between
Specht modules. His proofs involve very intricate calculations within the cyclotomic KLR algebras.

It is likely that a formula similar to that of Theorem 3.20 (5) holds for the graded decomposition
numbers for the type B Schur algebras when μ /∈ B0 and it seems to us that an argument via induction
on |S(δμ)|, using the techniques developed in this paper, would prove the result. We thank the referee
for asking this question, since our assumption when writing the paper was that our methods would not
work for the Schur algebras.

We end this paper with some examples.

Example. Suppose that e = 5 and s = (3, 1). Let λ = ((7, 5, 4, 32, 2, 12), (14, 10, 6, 4, 3, 22, 1)) and let
B be the core block containing λ. Then ((18, 16), (2, 4, 3, 1, 5)) is a reduced pair for B. By drawing the
abacus configurations, we can see that nB = 3 and pB = 1. The four bipartitions in the block are given
by the abacus configurations below.

λ1 : λ2 :

(−, 0, −, −, +) (−, 0, −, +, −)

λ3 : λ4 :

(−, 0, +, −, −) (+, 0, −, −, −)

Then the decomposition matrix for B is

λ1 (−, 0, −, −, +) 1
λ2 (−, 0, −, +, −) v 1
λ3 (−, 0, +, −, −) v 1
λ4 (+, 0, −, −, −) v

Example. Suppose that B is a core block with nB = 2 and pB = 3. Then |B| = 10 and by removing the
0s from the sequences {δλ | λ ∈ B} we get Specht modules indexed by the 10 elements below. The block
decomposition matrix for B is equal to

(−, −, +, +, +) 1
(−, +, −, +, +) v 1
(+, −, −, +, +) v 1
(−, +, +, −, +) v 1
(+, −, +, −, +) v v2 v v 1
(+, +, −, −, +) v2 v
(−, +, +, +, −) v
(+, −, +, +, −) v2 v
(+, +, −, +, −) v v2

(+, +, +, −, −) v2

Note that this is the matrix that appears in [19, Example 6].
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