
   
   
 

Monitoring and Characterising Grain Scale 

Fluvial Bed-load Transport Behaviour Using 

Passive and Active Sensors 

 

A thesis submitted to the School of Environmental 

Sciences of the University of East Anglia in partial 

fulfilment of the requirements for the degree of Doctor of 

Philosophy 

 

Miles Clark 

January 2023 

 

 

 

 

 

 

This copy of the thesis has been supplied on condition that anyone 

who consults it is understood to recognise that its copyright rests 

with the author and that use of any information derived therefrom 

must be in accordance with current UK Copyright Law. In addition, 

any quotation or extract must include full attribution. 

 



   
   
 

Abstract 

Bedload transport is a fundamental process by which coarse sediment is 

transferred through landscapes by river networks. Understanding how 

individual grains move within fluvial systems is essential for accurately 

modelling and predicting sediment fluxes and the evolution of sedimentary 

environments.  Large wood is a major component of many forested 

rivers and to date, the impact of the presence of in stream wood on grain-

scale bedload transport has not been well studied. In this thesis, passive 

(RFID) and active tracers (smart stones) are used to investigate and model 

the influence of wood on grain-scale bedload transport during long term 

deployment. In addition, this research examines the effectiveness of novel, 

Internet of Things (IoT) enabled smart stones for monitoring bedload 

transport.  

First, 957 RFID tracers were inserted into a wood-loaded stream in 

Colorado and monitored over three years. Statistical modelling revealed a 

significant influence of wood on transport behaviour, where a reduction in 

entrainment likelihood, shorter transport distances, and premature 

deposition were recorded in tracers interacting with wood pieces. Next, a 

smart stone was designed embedded with 9-axis IMU sensors, integrated 

into an IoT network with Long Range Wide Area Network (LoRaWAN) 

capabilities. Laboratory experiments were conducted with the smart stones 

to replicate typical bedload movement behaviour, building unique IMU 

signatures associated with specific movement types. Smart stones were 

subsequently deployed at a range of field sites for remote real-time 

monitoring of transport behaviour. 57% of deployed tracers captured IMU 

data for tracer movement events, including one entrainment event 

captured by LoRaWAN, though the limited interaction between in stream 

wood and tracers precluded analysis of wood-sediment interaction. 

Overall, this research highlights the role of wood in altering the transport 

distances and entrainment likelihood of sediments. Furthermore, it 

demonstrates the potential for an integration of LoRaWAN networks and 

smart stones for remotely monitoring fluvial bedload dynamics. 
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CHAPTER 1 

1 Introduction 

 

1.1 The Importance Sediment Transport in Fluvial Environments 

 

Fluvial sediment transport is a crucial process in controlling the 

morphology of rivers (Best, 1988), maintaining ecological habitats (Greig 

et al., 2005), transporting nutrients (Walling et al., 2001), and is essential 

for the health and long-term stability of channels. Concurrently, the 

morphology of rivers is an intrinsic control on subsequent transport 

behaviour. Therefore, understanding and quantifying sediment transport 

is essential for a comprehensive interpretation of fluvial systems and is of 

primary importance in river engineering and management (Apitz & White, 

2003; Wang et al., 2015). 

Despite decades of flume and field research attempting to characterise and 

estimate sediment transport, challenges remain in accurately quantifying 

the transport behaviour of sediments. This derives from the complexities 

involved when accounting for the multivariate factors influencing 

transport. These range from physical sediment properties (Fenton & Abbott 

1977), the formation of bedforms (Bridge & Best, 1988), hydraulic 

conditions (Nelson et al., 1995), and a range of chemical (Packman & 

Jerolmack 2004) and biological factors (Ryan et al., 2014). These 

complexities explain why, despite early research investigating sediment 

transport (e.g., du Boys, 1879, Gilbert & Murphy, 1914), researchers are 

still tackling this problem today (e.g., Hodge et al., 2011; Maniatis et al., 

2017). 

 

1.2 Transport as Bedload and Suspended Load 

 

Fluvial sediments can be divided into suspended load and bedload (Figure 

1.1) based on the mechanics of their transport (Sear et al., 2004). The 

bedload subdivision of transport may be defined as sediment that travels 

within a few grain diameters from the bed surface (Einstein, 1950), and 
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involves particles directly interacting with the bed. During bedload 

transport, if lift forces acting on grains only marginally exceed those 

necessary to initiate motion, then sediments will be transported as a part 

of the traction carpet (Allen, 2012). Traction carpet transport is limited to 

sliding, jostling, and rolling along the bed, with regular contact with the 

bed’s surface. If lift forces increase, then sediments may begin to leave 

the traction carpet and begin bouncing on the bed in the process of 

saltation (Wiberg and Smith, 1985). 

The suspended sediment subdivision of transport typically comprises of 

finer material, such as clays, silts, and sands, typically < 0.2 mm in 

diameter (Gomez and Church 1989). Material is transported suspended in 

flow as turbulent eddies outweigh the settling forces of particles (Parsons 

et al., 2015). 

This research focuses on the bedload subdivision of fluvial sediment 

transport, and the movement of individual coarse-sized clasts (e.g., 

gravels, pebbles, and cobbles), investigating incipient movement, 

subsequent transport behaviour, and depositional characteristics. 

 

 

Figure 1.1: The different modes of fluvial sediment transport 

demonstrating rolling, sliding, and saltating movement behaviour within 

bedload transport, and particles being transported in suspension within 

the suspended load after entrainment. 
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1.3 Estimations of Incipient Motion  

 

In principle, all formulae created to describe bedload transport are based 

on the premise that specific relationships exist between sedimentological 

parameters, hydraulic variables, and transport rates (Gomez 1991). These 

are typically developed either by deriving theoretical relations based on 

known physical principles or by using experimental data to derive empirical 

relationships.  

Historically, analysis of particle transport on riverbeds has been described 

deterministically. This is where a critical threshold of shear stress is 

reached, which then initiates the movement of sediments of a specific size 

(e.g., Gilbert and Murphy, 1914; Shields, 1936; Yalin, 1963; Wiberg and 

Smith, 1987; Dey, 1999). The primary example of this approach in the 

literature is the shields’ parameter 𝜏 ∗  which is given by: 

𝜏 ∗ =
𝜏

(𝜌ₛ −  𝜌)𝑔𝐷ₛ
 

Where 𝜏 is the hydrodynamic shear stress exerted on the bed, 𝜌ₛ and 𝜌 are 

the densities of the sediments and the water, respectively, 𝑔 is 

gravitational acceleration and 𝐷ₛ is the mean diameter of the particles. 

This parameter is the foundation of many deterministic approaches in 

calculating a threshold for the incipient motion of sediments (Miller et al., 

1977; Wiberg & Smith, 1987), although determining precisely when the 

threshold of sediment movement has been achieved is rather subjective 

(Komar and Miller, 1973). Furthermore, subsequent research has shown 

significant variability in the value of this criterion (Lavelle & Mofjeld 1977; 

Buffington & Montgomery, 1997), partially relating to its inability to 

account for turbulent fluctuations in fluvial systems which have nonuniform 

topography or roughness elements (Nelson et al., 1995). Modifications to 

this threshold approach incorporate the fluctuating nature of turbulent flow 

processes, with more recent research addressing shortcomings by 

considering the duration of turbulent impulses acting upon grains (e.g., 

Diplas et al. 2008; Valyrakis et al., 2010). While research continues 

towards deterministic approximations of a critical threshold value, 
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stochastic estimations may be more appropriate for characterising 

sediment transport (e.g., Niño & García 1998). 

Unlike deterministic calculations, individual grain transport was first 

described as intermittent and probabilistic by Einstein (1937). This was in 

recognition of the difficulties involved when measuring the deterministic 

forces driving the movement of individual particles. This stochastic 

approach uses a probability function and a transport rate equation, where 

bedload transport occurs as a series of steps, resulting from turbulent 

fluctuations when hydrodynamic lift forces are greater than a particle’s 

weight. Consequently, bedload transport of coarse-grained sediments is 

not continuous. Particles predominantly remain at rest, even when fluid 

stress is above the threshold of movement, with the sum of particle steps 

representing the total travel distance of sediments. These stochastic 

descriptions of motion likely better capture the turbulent forces acting 

upon sediments during bedload transport (e.g., Hubbell and Sayre 1964; 

Yang and Sayre, 1971; Papanicolaou et al., 2002; Ancey, et al., 2008; 

Bradley, et al., 2010; Ancey and Bohorquez, 2018). Despite this, 

geomorphic complexity in natural fluvial systems further complicates 

estimates of incipient motion, where variables, such as the presence of 

large wood, can have a major influence on transport processes (Wohl & 

Scott 2017). 

 To assist in the development of estimations of incipient motion (both 

deterministic and probabilistic) and for accurate predictions of transport 

behaviour, measurements accurately quantifying sediment transport 

should be taken. These would facilitate the verification of assumptions and 

test the performance of existing bedload transport models (Pähtz et al., 

2020). Suitable methodologies and technologies are also required to test 

theoretical predictions. These need to be applied in a range of 

environments, with differing geomorphic features, across various sediment 

sizes. Historically, a wide variety of techniques are used to capture 

sediment transport, each with their own advantages and disadvantages 

and suitability for laboratory and field settings. 
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1.4 Bedload Transport Measurements 

 

Methodologies for bedload measurements can be categorised into direct 

and indirect approaches (Gomez 1991; Sear et al., 2000a). Direct methods 

consist of sampling bed material, capturing sediments during transport. 

Indirect methods typically involve the use of tracers to monitor individual 

particles, or by detecting bulk sediment transport remotely, with the choice 

of the technique being situationally based. 

Direct methods include samplers installed into the bed, such as pit and 

trough samplers, and manual portable samplers (e.g., Hubbell & Sayre 

1964; Helley & Smith 1971; Milhous, 1973; Batalla et al., 2010). While 

these have relatively low operational costs and are cheap to install, they 

risk influencing their surrounding environment. This can result in 

anthropogenic distortions to transport data. Furthermore, the ability of 

trap-type samplers to accurately estimate total transport is hindered by 

variability in sampler efficiencies and the oscillatory behaviour of bedload 

discharge. Therefore, single short-term measurements from samplers can 

produce unrepresentative mean values of bedload discharge (Hubbell, 

1964). While attempts to account for instrument errors through calibration 

have been made (e.g., Hubbell et al., 1985; Sear et al., 2000b; Bunte et 

al., 2010), uncertainties remain in accounting for the deviations observed. 

To overcome these limitations, researchers have developed indirect 

methods of measuring bedload. These include bulk bedload sensing 

methodologies, such as the use of seismometers (Hsu et al., 2011; Krein 

et al., 2016; Anthony et al., 2018) and geophones (Rickenmann et al., 

2012; Tsakiris et al., 2014), the use of tracers to track the movement of 

individual particles. Different tracer methodologies include the painting of 

rocks (Keller, 1970; Laronne & Carson, 1976; Petit et al., 2005), radio 

transmitters (Habersack, 2001; McNamara & Borden, 2004), and the use 

of magnetic clasts (Hassan et al., 1991; Schmidt & Ergenzinger, 1992; 

Ferguson & Wathen, 1998). Indirect tracer methods can have a range of 

disadvantages, including difficulties recognising individual clasts, loss of 

sediments due to burial, and anthropogenic interference, and the impact 

of tracer mixing time (Ferguson & Hoey, 2002). See Gray et al., (2010) for 
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a summary of the range of modern indirect monitoring techniques in use 

today by researchers, their respective reliability, and ease of use. 

  

1.5 RFID Tracer Studies 

 

Tracers in sedimentological research have become progressively more 

sophisticated over the last 50 years, with radio frequency identification 

(RFID) tracer technology becoming the most favoured technique for 

tracking coarse grained particles (see Table 1.1 for an extensive list of 

recent RFID tracer studies). 

The technology enabling RFID tagging has been available since the mid-

20th century. It has been applied in a range of environmental science 

applications, from bio tracking (Floyd, 2015), wood tracking (Schenk et 

al., 2013), and studying soil erosion (Parsons, 2014). It provides the ability 

to remotely identify individual items of interest, as ID codes are associated 

with individually tagged objects. This makes it ideal for studying the 

movement of individual clasts during bedload transport, as radio signals 

can penetrate riverbed surfaces, reducing tracer loss from burial (see 

section 2.1 for an explanation of sediment loss to burial during tracer 

experiments). Furthermore, unique IDs associated with individual 

sediments prevents misinterpreting signals from conflicting sources, as 

observed from magnetic clasts (Hassan et al., 1991).  

The technology relies primarily on two pieces of hardware: a passive 

integrated transponder (PIT tag), which is used to mark an object of 

interest, and a reader (or antenna) which acts as a transmitter and a 

receiver. The PIT tag is comprised of a semiconductor chip, a capacitor, 

and an internal antenna. These are responsible for the storage of the ID, 

powering the tag, and sending transmissions respectively. The tags have 

resonant circuits which are energised by the electromagnetic field 

produced by an external reader. This provides power to the transponder 

allowing the return ID signal to be broadcast. In this way, the tags are 

passive, and are powered by the battery within the external reader. The 

lack of an internal battery provides tags with extended lifespans and a 
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compact size. With tracers currently down to 8 mm x 1.4 mm in size. This 

functionality makes RFID tagging ideal for long term fluvial research, with 

life span estimates of tags of > 50 years (Allan, 2006). 

The earliest examples of its use in fluvial transport research are from 

Nichols (2004) and Lamarre et al., (2005). Their research covers the 

specific implementation and fundamentals of the technology for particle 

tracking in detail. Briefly, the process involves embedding RFID tags into 

existing sediments, or by placing artificial tracers with tags in fluvial 

environments. Initially, accurate recordings of deployment positions are 

made, with subsequent resurveys updating tracer locations after regular 

time intervals (often annually), or after specific events of interest (e.g., 

floods). 
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Table 1.1: The range of published RFID tracer experiments both in fluvial 

and coastal environments since the technique’s inception. 

1.5.2 Advantages and Disadvantages of Passive Tracers  

 

In addition to the compact size and extended lifespan, the ability for RFID 

radio waves to penetrate the subsurface allows the detection of sediments, 

even when buried (estimated depth detection of 0.5 m, Bradley & Tucker, 

2012). This improves recovery rates compared to previous tracing 

techniques (e.g., painting clasts). Additionally, the low costs of PIT tags 

(typically < £2), allows large scale deployment with 100s – 1000s of 

tagged particles. Large sample sizes provide robust statistical analysis of 

bedload transport data. Moreover, using RFID tracers removes the need to 

disturb tracer cobbles from their natural bed position, reducing 

anthropogenic interference during surveys. 
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While there are many benefits to deploying RFID tracers, the detailed 

movement behaviour of individual particles is difficult to monitor using a 

passive approach. It is laborious and time consuming to manually relocate 

all clasts, especially with large scale deployments (e.g., Bradley & Tucker, 

2012; Olinde & Johnson, 2015; Clark et al., 2022). Consequently, 

resurveys of particle positions are infrequent, with the technique only 

providing a snapshot of movement, giving the total particle step lengths 

since the previous survey only. Therefore, the number of unique periods 

of entrainment and deposition are unknown. Additionally, estimating 

particle rest times in between periods of transport is difficult. Furthermore, 

from infrequent surveys it is not possible to determine detailed transport 

characteristics of particles (e.g., rolling, sliding, or saltating), which can be 

directly recorded in flume settings (e.g., Lee et al., 2002).  

Additionally, the use of RFID tracing is constrained by the minimum size 

requirements of clasts, where only coarse sediment particles can be 

effectively embedded. Despite the reduction in PIT size from 32 mm 

(Bradley & Tucker, 2012) to 12 mm (Cain & MacVicar, 2020) in recent 

years, and the availability of 8 mm tags (Oregon RFID, 2021), the need 

for drilling natural sediments limits their use to cobble and pebble sized 

sediments. To circumvent this, researchers have produced synthetic 

sediments which house the tags (e.g., Papangelakis et al., 2019), although 

these incur additional production costs and require artificial weights to 

replicate natural sediments. 

 

1.6 Active “Smart” Tracers  

 

With recent technological developments, it has become possible to directly 

monitor the step and rest behaviour of sediments with embedded inertial 

measurement unit (IMU) sensors and integrated wireless technology, 

(Olinde and Johnson, 2015). Advances in monitoring technology and 

micro-electro-mechanical systems, or MEMS, over the last couple of 

decades have resulted in “smart” active sediment tracers being developed. 

The distinguishing characteristic of active tags is the requirement for a 
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built-in power supply, usually in the form of commercially available 

batteries. Active tracers monitor the dynamics of individual sediments 

using internal IMU sensors enclosed within an artificial casing. These are 

designed to directly monitor the forces experienced by sediments, and in 

some cases, relay positional information using a combination of 

gyroscopes and magnetometers (Kok et al., 2017).   

Early examples of this approach include Spazzapan et al. (2004) which 

used accelerometers embedded within a brass sphere and Kularatna et al. 

(2006) which used both accelerometers and gyroscopes to track 

movement. This allowed both linear acceleration and angular motion to be 

measured in six degrees of freedom. Smart sediment tracer development 

has rapidly evolved with multiple examples in recent years (e.g., Akeila et 

al., 2010; Abeywardana et al., 2012; Šolc et al., 2012; Frank et al., 2015; 

Olinde and Johnson, 2015; Gronz et al., 2016; Gimbert et al., 2019; Dost 

et al., 2020; Ravindra et al., 2020; Maniatis et al., 2020; Xie et al., 2023). 

Devices are enclosed in a variety of grain shaped containers made from 

brass to plastic, all of which aim to replicate natural sediments. 

Additionally, IMU smart tracking devices are being deployed to monitor 

other geomorphic features in fluvial systems, such as large woody debris 

(Spreitzer et al., 2019), to track sediments in coastal environments (Frank, 

et al., 2015), and to monitor boulder movement on landslides (Dini et al. 

2021). 

 

1.6.2 Smart Sediments Potential and Current Limitations 

 

Data derived from IMU’s could, in theory, allow calculations of grain 

velocity through the integration of acceleration data, and subsequently 

dead reckoning estimations of tracer positions after transport, provided 

the precise deployment location and the subsequent reference frame is 

known and integrated accurately (Grewal et al., 2007). However, IMU 

sensor data contains various sources of uncertainty, for example, even 

minor misalignment of device axes will accumulate into significant errors 

given a long enough recording period without verification. In addition, 
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signal noise and inherent bias in sensors mean devices are not suitable for 

applications requiring perfect dead reckoning calculations. This is 

highlighted in the pioneering smart sediment work of Akeila et al. (2010), 

where validations of their calculated trajectories from IMU devices show 

significant inaccuracies. 

Despite the limitations highlighted above, the potential for real time 

monitoring of tracer movements using smart sediments presents an 

opportunity to further our understanding of incipient motion, interactions 

between flow and transport, and the impact of geomorphic variables where 

direct comparisons between flow rates, moment of entrainment, and 

subsequent tracer transport behaviour can be evaluated. In addition, 

recognising known IMU signals produced during specific transport 

behaviours in laboratory environments may help inform future field 

deployments with the devices. IMU data may ultimately be used to infer 

transport behaviour, even when tracers cannot be directly observed (e.g., 

during flood events). Although, similar to RFID tagging, with current 

battery and device size requirements its applicability is constrained to 

coarse grain particle tracing. However, with advances in compact IMU 

designs and more power efficient sensors, the space requirements will 

likely decrease over time as the technology matures.  

 

1.6.3 Integrating Smart Sediments with LoRaWAN 

 

While many recent studies using smart stones have been undertaken, they 

are often based in laboratory settings (e.g., Gimbert et al., 2019; Dost et 

al., 2020) or deployed only for a short time in field settings (e.g., Maniatis 

et al., 2020). This limits their applications in long term studies, which 

require monitoring of natural processes which may occur rarely and 

unpredictably (Wolman & Miller, 1960). 

In this research, smart stones are developed alongside the UKRI-funded 

SENSUM project (NE/V003402/1) and are believed to be unique in their 

capability for long term deployment, with remote active monitoring across 

multiple sites. This is possible due to their integrated ultra-low powered 
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IMU sensors, provided by the software engineering firm, Miromico, and the 

LoRaWAN functionality of the devices. 

LoRaWAN is a Long Range, Low Power, Wide Area Networking protocol 

which is integrated with the increasing diversity of IOT (internet of things) 

enabled devices (Augustin et al., 2016; Khutsoane et al., 2017). LoRa is a 

radio modulation technique. It manipulates radio waves to encode 

information using a chirped multi-symbol format. This conversion allows 

the transfer of data packets over large distances with minimal bandwidth 

and energy requirements, making it ideal for remote environmental 

science solutions. Encoded data is transferred over the unlicensed ISM 

radio spectrum, which is typically used for industrial, scientific, and medical 

purposes. Data produced by sensor devices is received by a single, or 

series of gateways, which can subsequently transmit data via the GSM 

mobile network to online servers. 

LoRaWAN is a networking protocol built on top of the LoRa radio 

modulation technique. It provides point-to-multipoint communication 

across multiple devices, gateways, and network servers (Ibrahim 2019). 

This allows a range of sensors with two-way communication to be 

controlled by a single end user after deployment, using a network of 

gateways (Figure 1.2). 

The functionality of the LoRaWAN network allows smart stones, and other 

sensors on the network, to transmit data in real time, without the need for 

human oversight. Furthermore, this network approach allows the 

monitoring of multiple devices over a large area, with estimates of the 

operational range of LoRa of up to 15 km (Petajajarvi et al., 2015; 

Adelantado et al., 2017). In addition, LoRa gateways have been shown to 

function reliably even in conditions with poor line of site up to 2 km (Harris 

& Curry, 2018). Therefore, LoRa could offer significantly higher detection 

ranges for tracer surveys compared to traditional wireless technologies, 

such as Bluetooth (e.g., Grottoli et al., 2019). This extended range allows 

the natural mobilisation of sediments to be captured across a wide 

catchment area in a variety of flow conditions, in addition to allowing the 

continuous monitoring of tracers after downstream transport. Additionally, 
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the storage of data on an external server removes the risk of reaching on 

device data capacity (e.g., Akeila et al. 2010; Šolc et al., 2012; Dost et 

al., 2020) allowing analysis to be performed across multiple months of 

monitoring provided transmission of sensor data to gateways remains 

greater than collection rates over time.  

In addition to tracers, other LoRaWAN enabled devices can connect to 

existing gateways and transmit real time environmental information. In 

this way, a series of environmental sensors become integrated into a large 

IoT node network all monitoring a single site. For instance, flow meters at 

field sites can provide real time discharge information that can be directly 

correlated with movement events captured with tracers, all of which can 

be accessed via a single online database of sensors.   

Using sensor networks is essential for producing accurate Digital Twins of 

fluvial environments (e.g., Spreitzer et al., 2022), in addition to a range 

of monitored environments. These digital twins and progressive advances 

in monitoring and computational technology will lead to an overall 

improved understanding of fluvial systems. Developing smart stone tracers 

with the means to accurately monitor sediment transport behaviour, whilst 

being integrated into an array of IoT devices, is an important first step 

towards building digital environments. 
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Figure 1.2: LoRaWAN network architecture demonstrating point-to-

multipoint communication across multiple LoRa enabled sensor devices, 

LoRa gateways, transfer over the GSM network, and end user servers. 

Note that communication between devices is bilateral, enabling both send 

and receive data packets for over the air programming. 

 

1.7 Large Woody Debris Influence of Transport  

 

One of the main aims of this research is to apply modern tracing techniques 

(RFID and MEMS embedded smart tracers) in wood loaded rivers. This will 

help to better understand and model the dispersion of sediment pulses 

through fluvial systems that are geomorphically complex. Research with 

tracer sediments is often carried out in controlled environments, such as 

flume laboratories, or simple natural channels. This is intended to constrain 

variables but can result in difficulties replicating results when investigating 

complex natural environments with diverse morphologies and sediment 

sizes. 

The presence of wood is a common variable in fluvial systems and adds 

significant geomorphic complexity to rivers and their sediments 

(Montgomery et al., 2003). Wood can result in the formation of log steps, 

altering channel gradients, increasing bedload retention, and can influence 

grain sorting (Thompson, 1995; Faustini & Jones, 2003; Ryan et al., 2014). 
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Furthermore, wood is known to alter hydraulic flow regimes (Gippel, 1996; 

Slater et al., 2015), and increase sediment retention in stream (Keller & 

Tally, 1979; Megahan, 1982; Sullivan et. al., 1987). A more detailed 

discussion of the influence of wood is covered in Chapter 2 of this thesis. 

For a complete understanding of bedload transport, research in 

environments impacted by the presence of wood is necessary. This is 

becoming increasingly relevant as natural flood management practices 

(NFM) are seeing a rise in popularity for managing fluvial systems (e.g., 

Grabowski et al., 2019; Short et al., 2019; Black et al., 2021; Deane et 

al., 2021). For example, the Department for Environment Food and Rural 

Affairs in the UK allocated £5.2 billion in 2021 in a 6-year flood and coastal 

defence investment programme (Defra, 2021), which integrates NFM 

practices ranging from the reintroduction of beavers as ecosystem 

engineers (Puttock et al., 2018), to the anthropogenic addition of large 

wood into fluvial systems (Woodland Trust, 2016). While the reduction in 

flood risk from the use of woody debris in NFM is well documented (e.g., 

Short et al., 2019), alongside its ecological impacts (Dodd et al., 2016), 

there is limited research into the consequences of its implementation on 

the grain scale transport of sediments. Therefore, with the advances in 

both passive and active sediment monitoring techniques, there is an 

opportunity to use modern tracing technology to evaluate its impact and 

help inform future installations of large wood for NFM. 

 

1.8 Key Research Aims  

 

In this thesis, modern sediment tracing techniques are developed and used 

to assist in evaluating and quantifying fluvial bedload transport at the 

individual grain scale. Understanding how individual grains move within 

fluvial systems is essential for accurately modelling and predicting 

sediment fluxes and the evolution of sedimentary environments (Ancey, 

2020). This is of particular importance in areas where data are lacking 

(e.g., wood loaded rivers). Therefore, both passive radio frequency 

identification tracer studies and LoRaWAN capable smart stones are 
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deployed across a range of fluvial environments, with the techniques being 

applied in the context of investigating the influence of large woody debris 

on transport behaviour. 

 

The key objectives of this thesis are to: 

1. Demonstrate the impact large wood has on the bedload transport 

behaviour of coarse-grained particles at the individual grain-scale, 

using statistical modelling to determine the relative influence of 

wood in comparison to other known variables.   

 

2. Develop an “active” smart stone tracer which captures a range of 

transport behaviours from its embedded IMU. Using advances in low 

powered long range wireless transmission capabilities of modern 

MEMS to automatically transfer movement data in real time during 

long term deployment. 

 

3. Use laboratory and field data derived from smart stones to identify 

specific movement characteristic during deployment (e.g., 

entrainment, rolling, shaking in-situ) to attempt to estimate fluvial 

conditions remotely.  

 

4. Determine the capabilities and limitations of active tracer devices. 

To better integrate and inform their use as a part of wider sensor 

networks within the growing range of IoT devices in environmental 

science research. 

 

5. Integrate and combine both passive and active tracer data to assess 

the impact of large wood on bedload transport of sediments in fluvial 

environments.  
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CHAPTER 2 

2 Untangling the Controls on Bedload Transport in a Wood-

Loaded River With RFID Tracers and Linear Mixed Modelling 

  

Content in this chapter is partially derived from the published paper: Clark, 

M. J., Bennett, G. L., Ryan‐Burkett, S. E., Sear, D. A., & Franco, A. M. 

(2022). Untangling the controls on bedload transport in a wood‐loaded 

river with RFID tracers and linear mixed modelling. Earth Surface 

Processes and Landforms. 47(9), 2283-2298, but has been updated and 

integrated here. 

 

2.0.1 Chapter Overview 

 

This chapter describes a three-year fluvial RFID tracer study investigating 

the impact of large woody debris on bedload transport in an alpine stream. 

Measurements of tracer-step length of tracers were determined each year, 

following from methodologies applied in previous tracer studies in wood 

free fluvial systems. The relative influence of in-stream wood on both the 

entrainment likelihood and subsequent transport distance of sediments is 

investigated using linear mixed modelling, alongside the impact of other 

variables known to influence sediment transport. Furthermore, the impact 

wood has on the deposition location of tracer sediments is determined. In 

addition, the dispersion characteristics of tracers is analysed to determine 

the diffusion behaviour of sediments at the site. 
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2.0.2 Study Abstract 

 

Bedload transport is a fundamental process by which coarse sediment is 

transferred through landscapes by river networks and may be well 

described stochastically by distributions of grain step length and rest time 

obtained through tracer studies. To date, none of these published tracer 

studies have specifically investigated the influence of large wood in the 

river channel on sediment transport dynamics, limiting the applicability of 

stochastic sediment transport models in these settings. Large wood is a 

major component of many forested rivers and is increasing due to 

anthropogenic ‘Natural Flood Management’ (NFM) practices. This study 

aims to investigate and model the influence of large wood on grain-scale 

bedload transport. 

We tagged 957 cobble – pebble sized particles (D50 = 73 mm) and 28 

pieces of large wood (> 1 m in length) with RFID tracers in an alpine 

mountain stream. We monitored the transport distance of tracers annually 

over three years, building distributions of tracer transport distances with 

which to compare with published distributions from wood free settings. We 

also applied linear mixed modelling (LMM), to isolate the influence of wood 

from other controls on likelihood of entrainment, deposition, and the 

transport distances of sediments.   

Tracer sediments accumulated both up and downstream of large wood 

pieces, with LMM analysis confirming a reduction in the probability of 

entrainment of tracers closer to wood in all three years. Upon 

remobilisation, tracers entrained from positions closer to large wood had 

shorter subsequent transport distances in each year. In 2019, large wood 

also had a trapping effect, significantly reducing the transport distances of 

tracer particles entrained from upstream, i.e. forcing premature deposition 

of tracers. This study demonstrates the role of large wood in influencing 

bedload transport in alpine stream environments, with implications for 

both natural and anthropogenic addition of wood debris in fluvial 

environments. 
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2.1 The Influence of Large Wood on Fluvial Systems 

 

Large wood (defined as pieces > 1 m length and 0.1 m diameter, Wohl et 

al. 2010), is a major component of many forested rivers and can increase 

following disturbances such as wildfire (Bendix & Cowell, 2010), insect 

infestations (Ryan et al., 2014), mass movements, bank erosion (Steeb et 

al., 2017), and the anthropogenic addition of wood as part of Natural Flood 

Management (NFM) (Grabowski et al., 2019). The latter has seen an 

increase in popularity to help regulate flow regimes, alter sediment 

dynamics, and support ecological habitats (e.g., Gippel et al., 1996; Klaar 

et al., 2011; Langford et al., 2012; Dixon & Sear, 2017; Dadson et al., 

2017). The presence of wood in a fluvial system has a major influence on 

sediment storage with Gregory et al. (1994) and Wohl and Scott (2017) 

finding a greater residual pool volume associated with increasing large 

wood loads. Large wood has also been observed to reduce overall sediment 

transport rates (Montgomery et al., 2003), significantly altering the 

geomorphological characteristics of streams through the formation of log 

steps (Ryan et al., 2014), in addition to strengthening channel‐hillslope 

coupling (Golly et al., 2019) and adding geomorphic complexity to 

streams. However, there has been a lack of research into the influence of 

large wood on stochastic grain-scale sediment transport, which is 

fundamental for understanding and modelling the dispersion of sediment 

pulses through the fluvial system. 

Pulses of sediment may enter fluvial systems through a range of 

anthropogenic processes, including mining (Pickup et al., 1983; Ferguson 

et al., 2015), dam removal (East et al., 2015), and road runoff (Lane and 

Sheridan, 2002), in addition to natural processes, including logjam break 

up (Umazano & Melchor, 2020), landsliding (Sutherland et al., 2002) and 

the cyclic erosion of bedforms (Dhont and Ancey, 2018). These pulses have 

a range of impacts on the fluvial system as they disperse or translate 

downstream. They can cause changes in channel capacity, with impacts on 

flood hazard (e.g., Slater et al., 2015) and risk to people who live near or 

depend on fluvial environments. Furthermore, understanding both the 

dispersion of pulses of sediment and individual grain transport is essential 
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for the progression of engineering approaches and fluvial research in a 

range of applications, including contaminant transportation (Reneau et al., 

2004; Malmon, 2005), fluvial sediment budgets (Kelsey, 1987; Malmon et 

al., 2003) and the restoration of rivers (Sear, 1994; Kinzel, 2009; 

Gaeuman et al., 2017). 

The dispersion of a pulse of sediment can be modelled using a stochastic 

approach in which bedload transport is described and modelled 

probabilistically, in recognition that bedload transport is characterized by 

cyclic sequences of particle motion and rest (e.g., Cui et al., 2003; Ancey 

et al., 2008; Lajeunesse, 2018). Individual grain transport was initially 

recognised to be intermittent and probabilistic by Einstein (1937), with the 

development of a probability function and a transport rate equation in 

which bedload transport occurs in a series of steps resulting from the 

turbulent fluctuations caused when hydrodynamic lift forces are greater 

than a particle’s weight. Consequently, the transport of coarse-grained 

sediments is not continuous, with particles predominantly remaining at 

rest, even when fluid stress is above the threshold of movement. 

Numerous tracer studies have characterised the stochastic behaviour of 

bedload transport by measuring distributions of grain step lengths and rest 

times of tracer particles (e.g., Bradley and Tucker, 2012; Ancey et al., 

2014; Olinde and Johnson, 2015; Ancey and Bohorquez, 2018). Different 

methodologies of tracers include the painting of rocks, radio transmitters, 

and the use of magnetic clasts (e.g., Keller, 1970, Laronne & Carson, 

1976; Hassan et al., 1991; Ferguson & Wathen, 1998). These methods 

have limitations including difficulties recognising individual clasts, loss of 

sediments due to burial, and anthropogenic interference. However, each 

approach counterbalances its limitations with corresponding advantages, 

such as cost-effectiveness, non-intrusiveness, and varying degrees of data 

accuracy. Tracer experiments have become progressively more 

sophisticated over the last 50 years, with radio frequency identification 

(RFID) tracer technology becoming the most favoured technique (Sear et 

al., 2003; Hassan & Ergenzinger, 2003; Cassel et al., 2020; MacVicar & 

Papangelakis, 2022).  
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Previous studies evaluating bedload sediment transport and its dispersion 

characteristics with tracers of various kinds have found step length 

frequency distributions to most closely fit an exponential or gamma 

distribution (e.g., Habersack, 2001; McNamara and Borden, 2004; Bradley 

and Tucker, 2012), where the majority of particles have small step lengths 

and progressively fewer have longer displacement distances. Additionally, 

the diffusion of bedload sediments is determined by the tail character of 

the exceedance probability plots, and are typically seen to be heavy or 

thin, which is indicative of anomalous diffusion (e.g., Olinde and Johnson, 

2015; Bradley, 2017). This type of diffusion is determined by the 

probability distributions of the step scaling, step lengths, and resting 

times. Where distributions, in combination, control the migration of 

particles, and the variance of displacement increases more rapidly or 

slowly with time than in non-linear diffusion and is therefore anomalous 

rather than Fickian (Martin et al., 2012). This can be expressed by σ2~tγ, 

with γ > 1 and γ < 1 representing superdiffusion and subdiffusion 

respectively (Weeks & Swinney, 1998). This can be observed where 

particles moving with superdiffision experience more rapid and irregular 

displacement and particles moving with subdiffusion move more slowly 

than during typical diffusion. A detailed explanation of the dispersion 

characteristics of bedload is found within Nikora (2002), which covers 

particles in motion through sliding, rolling, and saltation but not total 

suspension.  

In environments with high wood loading, the influence of large wood pieces 

on rock step lengths, rest times, and subsequent dispersion characteristics 

is currently unknown, limiting the applicability of stochastic sediment 

transport models in these settings. It is theorised that the presence of 

large wood increases bed surface roughness (e.g., Buffington & 

Montgomery, 1999), subsequently reducing the mean shear stress on the 

riverbed and subsequent sediment transport distances. Furthermore, 

geomorphic features formed due to woods presence, such as scour pool 

structures, can increase particle burial rates (e.g., Wohl & Scott, 2017) in 

addition to wood physically blocking sediment movement. 
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In this study, we aimed to evaluate the impact of large wood on grain-

scale stochastic bedload transport dynamics. We undertook a sediment 

tracer study at a wood-loaded reach using passive RFID tags embedded in 

individual clasts to quantify sediment transport distances, and investigate 

their distribution over a three-year period with respect to wood loading, 

allowing comparisons with previous studies in wood-free fluvial settings 

(e.g., Bradley, 2017).  

Additionally, we applied linear mixed modelling (LMM) to tease out the 

influence of wood on sediment transport dynamics from the myriad of 

other controls. This technique is commonly used in ecological and 

biological research to determine the controls on animal behaviour (e.g., 

McDermott-Long et al., 2017; Dunnink et al., 2019) and while this 

approach is novel in earth sciences, the principle of treating tracers as 

individuals within a larger population with varying but similar influencing 

variables is analogous to individual animals within a population of a species 

in ecological sciences. Specifically, we used LMM to untangle the influence 

of wood on the probability of tracer entrainment, deposition and transport 

distance, from other controls including tracer size and location relative to 

the thalweg, boulders and steps. 

Our findings have implications for predicting bedload sediment transport 

and downstream deposition. Additionally, field data assists in determining 

the effectiveness and potential side effects of introducing engineered log 

jams in river management schemes (Bennett et al., 2015), as well as 

providing information for their installation. Finally, we demonstrate the 

potential of the LMM technique for tracer studies attempting to untangle 

the multiple controls on bedload transport.  

 

2.2 Study Site 

 

The study site is St. Louis Creek, Colorado, USA (Figure 2.1), a gravel bed 

subalpine stream characterised primarily by a step pool morphology with 

small sections of pool riffle at the upstream segment of the investigated 

area.  The bed grain-size distributions has D16, D50, and D84 of 30, 53, and 
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77 mm respectively measured from the bed surface. Steps are primarily 

formed from a combination of boulders and pieces of wood incorporated 

into the bed (Figure 2.2). The subsection of the reach investigated is 220 

m in length and has an average slope of 0.046. There are 4 log and 10 

boulder steps present along the study area in addition to small patches of 

vegetation and gravel bars. The site is located within the Fraser 

Experimental Forest (FEF), Colorado. The FEF is located approximately 80 

km northwest of Denver with an elevation above ~2700 m, and is an 

experimental area managed by the U.S. Forest Service. Its watershed is 

underlain mostly by granite, gneiss, and schist bedrock (Green, 1992). 
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Figure 2.1: Overview of St Louis Creek with: (a) ArcMap spatial 

representation of study site with final (2019) locations of tracer sediments, 

with colour representing cumulative total tracer transport distance since 

the study began demonstrated by total cobble distance moved, and the 

location of large wood pieces that are interacting with bedload transport; 

(b) original seed locations of tracer sediments in 2016, known as the 

‘seeded reach’ (seed locations appearing to overlapping channel bank are 

a result of bank overhang); (c) location of study site within the Fraser 

Experimental Forest; (d) image representing area within seeded reach, 

which includes a wood piece that fell into the stream between 2016 and 

2017; (e) buried wood (dashed yellow line) forming a log step and log jam 

approximately 100 m downstream of seeded reach; (f) a build-up of 

sediments behind large wood located just beyond the final tracer position. 

(Flow direction is approximately north in (c) and is represented by the 

white arrows on images).
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Figure 2.2: (a) Morphological features surveyed at St Louis Creek 

including large wood, boulders, vegetation, gravel bars, and locations of 

steps. Area highlighted in dashed line as an image displays a typical section 

of the study area beyond the seeded reach with an example of a typical 

boulder step and large wood piece observable. (b) Longitudinal profile of 

reach derived from tracer cobble elevations, with steps of interest labelled 

on feature map and profile (e.g., Supporting Information Table A.1). Note 

the change to a steeper gradient slope from the end of the seeded reach 

into the wooded reach, with the seeded and wooded reach having slopes 

of 0.0328 and 0.0502 respectively. 
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St. Louis Creek is a second order stream, with a flow regime characterised 

by snowmelt run off, with flow rates generally beginning to rise during 

April, typically peaking throughout May, June, and July and returning to 

base flow in late summer (Figure 2.3). Because of this, the field season 

surveys took place during late summer, when water levels are low enough 

for particle relocation and the winter snows have yet to begin restricting 

access to the site.  

 

Figure 2.3: Annual discharge data from St Louis Creek for 2017–2019 

during periods of discharge gauge deployment upstream of study reach. 

Dashed line represents calculated discharge value of 1.02 m3 s−1 required 

to exceed estimated critical threshold (Ferguson, 2005). Note the 

oscillation from June to August likely represent periods of snowmelt and 

associated increases in runoff. 

 

The site is ideal for studying the influence of large wood on sediment 

transportation as it is undergoing an increase in wood loading due to the 

death of the majority of the old growth Lodgepole pine (P. contorta), 
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resulting from infestations of the mountain pine beetle (Dendroctonus 

ponderosae) (Raffa et al., 2008). The site therefore acts as a natural case 

study for the impact of wood loading, its influence on geomorphic change, 

and sediment transport. Wood at the site is present in the form of log 

steps, ramps, bridges, and incorporated jams (Wohl et al., 2010), with > 

75 % of surveyed pieces attached or incorporated into the banks.  

The study area is subdivided into two main reaches, distinguished by 

morphology and channel slope (Figure 2.2b). Firstly, the “seeded” reach 

which covers the area of initial instillation of tracer sediments (Figure 

2.1b). It extends 35 m downstream streamwise, with channel widths 

ranging from 3 to 10 m (average 6.8 m) and has a slope of 0.0328. 

Morphology here is less complex than further downstream, with small 

gravel bars and pool riffle sequences. The channel here is unconfined. 

Secondly, the “wooded” reach is downstream of the seeded reach and has 

significant wood loading. It extends 185 m downstream streamwise, with 

channel widths ranging from 3.2 to 9.7 m (average 5 m) and a slope of 

0.0502. Morphology here is more complex with pools and steps formed 

from a combination of boulders and wood pieces (e.g., Figure 2.1e). 

Downstream sections of the reach become confined due to the narrowing 

of the river channel by adjacent slopes. 

 

2.3 Methods 

 

RFID is a wireless identification system with a variety of applications in 

environmental science (e.g., biotracking (Floyd, 2015), wood tracking 

(Schenk et al., 2014), and sediment transport (Nichols, 2004; Lamarre et 

al., 2005). It provides the ability to remotely identify individual items of 

interest, making it ideal for studying individual clasts during bedload 

transport. The technology relies primarily on two pieces of hardware: a 

passive integrated transponder (PIT tag), which is used to mark objects of 

interest, and a reader (or antenna) which acts as a transmitter and a 

receiver. This study used a long-range Oregon RFID mobile reader kit 

(Oregon RFID, 2021), with 32 x 3.65 mm PIT tags weighing 0.8 g each, 

which can be embedded into clasts with a b-axis as small as 47 mm with 
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minimal effect on shape and density of clasts. See Nichols (2004) for 

detailed description of RFID particle tracking methodology.  

Initially, 957 cobble to pebble sized clasts were selected, due to their 

similarity in composition and size to bed materials, in addition to their 

suitability for tagging. Clast weight and axes size were recorded (Table 

2.1), and the selected clasts were drilled to allow space for the implanting 

of the passive RFID PIT tags. Once tags were inserted, silicone was used 

to seal the tags within the clasts, producing tracer sediments that 

appeared unchanged compared to the natural sediments of the study site. 

As a failsafe in case of tag failure, and initial identification of tracers, the 

corresponding RFID identification numbers were written on the surface of 

tagged clasts. 

Table 2.1: Key size and weight statistics of sediments selected for RFID 

tagging. 

 

 

In addition to sediments, pieces of large wood (typically trunks from 

adjacent riparian areas) were tagged and measured, and an inventory of 

their defining characteristics, including length, diameter and structural 

associations, was collected based on agreed definitions (Wohl et al., 2010) 

and are available in supplementary information (A.1). While many pieces 

of large wood classified as bridges were characterised and tagged, they 

were not included in subsequent sediment transport analysis due to their 

current lack of interaction with the bed, even during high flow. Finally, the 

US Forest Service installed a discharge gauge at the upstream end of the 

study site. This gauge collected flow data from May to October between 

 
Weight (g) B - axis (mm) 

Mean 636.1 74.2 

Median 
(range) 

605.5 
(201.1 - 1483.3) 

74.0 
(47.0 - 110.0) 

Mode 465.7 78 

Standard deviation (σ) 208.7 10.3 
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2017 and 2019. It used the depth and width of the channel, in addition to 

internal calibrations, to calculate the flow rate. There are no substantial 

tributaries located along the study reach, therefore flow rates characterize 

the whole site. Flow rates recorded in St. Louis Creek (Figure 2.3) match 

well with another gaged river, Bobtail Creek (see appendix A.2), whose 

record extends from 1986 – 2019, facilitating estimation of the recurrence 

interval of transporting flows within the study stream, assuming the flows 

have always been analogous due to proximity, similar forest cover, aspect 

and altitude of sites. We calculated related stream power using surveyed 

bed slope, channel width, and discharge (Petit et al., 2005). The discharge 

gauge was installed and discontinued in the spring and autumn, 

respectively, due to the environmental conditions over the winter period 

potentially damaging the device. 

Tracer clasts were seeded in summer 2016, in a 0.5 m grid across the 

channel from bank to bank. This channel segment is referred to as the 

“seeded” reach (Figure 2.1b) that extended from the location of the 

discharge gauge to ~ 35 m downstream. Deployment of tracers was on 

the surface of the bed, resulting in tracers beginning in highly mobile 

positions (e.g., Bradley and Tucker, 2012), analogous to the most mobile 

surface grains of the pre-existing bed surface (i.e., existing sediments 

protruding from the bed surface). Spatial locations of tracer sediments 

were recorded to an estimated accuracy of < 50 mm using a Leica total 

station with a known GPS location and a reflector placed above tracer 

sediment locations. It has been established that both clustering and 

orientation of transponders can add uncertainty to detection ranges 

(Chapuis et al., 2014; Arnaud et al., 2015). However, we conducted burial 

experiments of the tagged clasts and established that tracer identifiers 

(IDs) could be read from ~0.70 m, with minimum interference from water 

or surrounding and overlying sediments. 

Tracer sediments and wood locations were resurveyed on an annual basis 

after annual snowmelt in 2017, 2018 and 2019 using an Oregon RFID 

mobile reader setup. This included a backpack, antenna, and mobile 

reader. Tracers were considered mobile, and their new deposition location 

recorded if transport was > 1 m to account for the potential variation in 
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detection distances each year. Wood debris was classified as significant 

and surveyed if it is at least 10 cm in diameter and > 1 m in length 

following the parameters suggested by Wohl et al. (2010). Additional 

characteristics such as size, classification (e.g., ramp or bridge type), and 

state of decay was recorded annually to determine if these characteristics 

impacted interaction with sediment transport or subsequent wood 

transport (e.g., Dixon & Sear, 2016). Additionally, other geomorphic 

features within the study site were surveyed, such as the location of banks, 

steps, and boulders. All spatial data was recorded in ArcGIS10, alongside 

supplementary information (e.g., size or defining characteristics of wood 

pieces) producing a spatially accurate map of the area which was updated 

every year (e.g., Figure 2.1a). Annual spatial locations of tracers are 

available in supplementary information (A.3).  

To produce accurate tracer transport data, cartesian GPS locations of 

tracers were converted into a channel-based coordinate system, as the 

spatial referencing of river channels is complicated by bending. 

Coordinates were converted following the methods of Legleiter & Kyriakidis 

(2006), which consider the channel centre line as the streamwise axis (i.e. 

relative distance downstream), allowing travel distances to be corrected 

for channel curvature. 

Annually resurveying tracer locations after high flow conditions during 

snowmelt resulted in a dataset spanning 3 years of tracer transport 

distances. This was used to investigate and evaluate any disruption to 

“typical” transport behaviour introduced by the presence of large wood. 

 

2.3.2 Burial Experiments  

 

For the successful communication of the RFID tags, sufficient power is 

required to charge the device capacitor to allow transmission of the ID 

(Finkenzeller, 2010). The distance that the minimum power requirements 

of the tags are met is effectively the device read range. This is primarily 

governed by direct linear distance, as the emitted strength of the reader 

decays by a factor of the inverse cube of the distance between the tag and 
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the power source (Lehpamer, 2012). We wished to investigate the 

influence of other variables, such as burial, submersion in water, and the 

angle of the reader on read range, to determine how resurveying may be 

affected. 

To test the maximum range of the antenna, a RFID tagged cobble was 

initially used on the surface of the bed. The maximum scanning distance 

was found to be 0.7 m. This was possible at multiple angles with only slight 

variations in scanning distance (< 0.05 m). This was repeated underwater 

(approximately 0.4 m submerged) with no effect on scanning distance 

identified. These detection distances were slightly improved from previous 

research estimates of 0.5 m (Lamarre et al., 2005; Schneider et al., 2010). 

Next, upstream of the seeded reach, a hole was dug in the gravel bed of 

approximately 0.3 m. Both large cobbles, gravel, and sand was removed 

until the water table was reached, preventing the further removal of 

material. The RFID tagged cobble was placed at the base of the hole and 

removed material was used to infill the space, making sure to follow its 

original stratigraphic composition (Figure 2.4). Additionally, pieces of 

woody material and large cobbles were placed on top of the hole to further 

bury the tag.  

Again, the antennas maximum read range was approximately 0.7 m, 

suggesting that burial, at least out of water, does not affect read range at 

these depths. This suggested that the burial would not prevent successful 

resurveys of tracer sediments up to these depths. 
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Figure 2.4: RFID read range experiments, showing successful detection 

of tracers buried at depths of up to 0.7 m under sediments, water, and 

woody debris. This indicates that tracer burial has minimal impact on 

detection. 

 

2.3.3 Statistical Analysis and Modelling 

 

Quantifying and modelling tracer-step length and rest time distributions 

allows accurate predictions to be made of bedload transport in fluvial 

environments using established statistical estimation methods of previous 

tracer studies (e.g., Hassan, et al., 2013; Olinde and Johnson, 2015). The 

length of our study of 3 years precluded analysis of particle rest time but 

we are able to plot tracer transport distance distributions for comparison 

with published studies in wood-free settings. Exponential and gamma 

distributions were fitted to the tracer transport distance frequency data 

(Figure 2.5). In order to identify the likely type of sediment diffusion (super 

or sub diffusive), we quantified the exponent on the tail of the exceedance 

probability distribution of tracer transport distances. This was conducted 

in MATLAB (R2018B) by fitting a power-law distribution model to the tail 

of the distribution following the methods of Clauset et al. (2009), where 
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𝑥min for 2017, 2018, and 2019 was calculated to be 33.45, 5.77, and 41.06 

respectively.  

 

 

Figure 2.5: Probability density functions of tracer transport distances, 

with overlain exponential (blue) and gamma (red) curves. Additionally, the 

annual exceedance probability graphs are displayed, fitted with a power 

law exponent line and a β value, representing the tail character of the data. 
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Linear mixed modelling was used for determining the influence that 

individual variables (e.g., proximity to large wood) have, on a continuous 

dependent variable (e.g., transport distance of tracers) or a binary 

dependent variable (e.g., entrainment or deposition of tracers). This 

approach was implemented as it can account for the characteristics of a 

given population (e.g., weight, size, location of tracers in channel, etc…) 

and determine if their levels of influence on sediment transport are 

significant. Furthermore, interactions between variables and their level of 

significance can also be determined. 

Investigating the influence that large wood has on tracer entrainment, 

deposition, and transport distances required an analysis of all the potential 

variables that influence transport behaviour, as well as producing a 

testable variable for the influence of wood. The distance of tracer 

sediments to large wood in both their deposition and entrainment positions 

was determined in ArcGIS 10.6.1 using the Near (Analysis) proximity 

toolset, by mapping all mobile tracers to their nearest piece of large wood 

using their GPS locations for each annual dataset. This generated an 

inventory of spatial data that was used to determine the relative influence 

of distance to wood on sediment transport.  Other key variables considered 

and determined were distance to channel thalweg (calculated using the 

same approach of distance to wood), distance to boulders and non-wood 

steps, and tracer sediment size (represented by b-axis length). The 

influence of differing river discharge year on year was not included directly 

in the LMM analysis, with each year being considered separately to isolate 

the effect of variables such as wood from annual changes in hydrology. 

Analysis of yearly LMM results is subsequently discussed in the context of 

associated flow rates, estimates of stream power, and degree to which 

critical thresholds are exceeded.  

The relative influence of other geomorphic features, including the spatial 

location of boulders and non-wood steps, were found to not be significant 

using LMM analysis and therefore were not included in subsequent 

analysis. Insignificant LMM results are available in supplementary 

information (A.4).  
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To isolate the influence of large wood pieces and remove anthropogenic 

bias from initial ‘hypermobility’ seen in previous tracer studies (e.g., 

Bradley and Tucker, 2012), tracers were selected for LMM analysis if their 

deposition location was downstream from the seeded reach after each year 

of the study from 2017. This area of the reach was also selected due to 

the abundance of large wood providing greater interaction with transported 

sediments. Finally, wood pieces classified as bridges were not included in 

the LMM analysis due to their lack of interaction with the bed.  

The lme4 package in R (Bates et al, 2015) was used for LMM analysis. We 

used a binomial LMM model to investigate the relative influence of 

variables on the likelihood of entrainment and deposition of tracer 

sediments, and a gamma model to investigate a given variable’s influence 

on tracer transport distance. 

 

2.4 Results 

 

The discharge data for 2017 – 2019 show peak flow to be occurring during 

the summer months of May, June, and July (Figure 2.3). 2017 flow rates 

initially rise in late May from a base level of ~ 0.5 m3 s-1, to peak conditions 

of 1.4 – 2.2 m3 s-1 over June, followed by a continuous return to base flow 

during July. 2018 flow rates were consistently the lowest of the three years 

surveyed, with flow rising from the base rate of ~ 0.5 m3 s-1 in May to peak 

conditions ranging from 1.1 - 1.6 m3 s-1 over June before again dropping 

to base conditions. 2019 flow rates were substantially higher, with two 

distinctive periods of increasing and lowering flow rates over June and July, 

peaking at 2.9 m3 s-1.  The recurrence interval for the peak flow rates 

recorded in 2019 at the analogous stream Bobtail Creek are 1.9 years 

based on annual maxima of historical flow rates, suggesting even our 

highest measured flow rates are relatively common. 

Stream power at annual peak flow was calculated for the average channel 

width of 5.5 m and average channel slope of 0.046 and was found to be 

180.5, 131.3, and 237.9 W m-2 for 2017, 2018, and 2019 respectively. 

Stream power exceeded the estimated critical threshold (Ferguson 2005) 
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for the D50 of tracer sediments of 83.93 W m-2 in all years surveyed, where 

a discharge value exceeding 1.02 m3 s-1 was required to initiate movement. 

Thresholds were therefore exceeded for approximately 26, 24, and 45 days 

in 2017, 2018, 2019 respectively (Figure 2.3). When subdividing the reach, 

the gentler sloping and wider seeded reach critical threshold (88.90 W m-

2) is still exceeded by estimated stream power in 2017 and 2019 (104.10 

W m-2 and 137.22 W m-2), although the 2018 stream power (75.70 W m-

2) is slightly lower than estimated from the threshold. Despite this, tracers 

were still entrained and transported within the seeded reach, although at 

a lower rate and shorter transport distances than other survey years. 

Discharge each year showed an expected correlation with the mean 

transport distance of tracer sediments and the likelihood of tracer 

movement (Table 2.2), with 2019 and 2018 having the highest and lowest 

percentage of tracers transported respectively, and the highest and lowest 

maximum transport distances respectively. However, estimating the direct 

influence of flow rate on the likelihood of movement and distance moved 

is cautioned as retrieval rates differed between years, meaning the total 

population of tracer sediments is not accounted for. Furthermore, in 2017, 

sediments have the potential to be hypermobile, as they were artificially 

placed on the bed surface without replacement of original sediments and 

are therefore not fully incorporated into the bed. 

 

Table 2.2: Key statistics of tracer sediment movement, showing annual 

and cumulative results of transported sediments.  

 

Year 
Retrieval 
Rates (%) 

Cobbles 
Moved (%) 

Median B-
Axis and 
range (m) 

Maximum 
Transport 
Distance 
(m) 

Peak river 

discharge 

(m
3

 s
-1

) 

Mean 
Transport 
Distance 
(m) 

2017 88 22 
73 

(50 – 110) 
109 

2.217 
29.96 

2018 75 11 
73 

(51 – 110) 
58 

1.634 
9.63 

2019 80 35 
73 

(48 – 102) 
133 

2.938 
28.14 

Total 81* 49 N/A 193 N/A 
 

* = Mean retrieval rates 
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Observed changes to the overall geomorphology of the reaches are 

minimal over the 3 years of study. There was, however, an accumulation 

of sediments, including our tracers, around pieces of large wood (e.g., 

Figure 2.1d) and some reworking of gravel bars observed. Wood transport 

was limited to only one tagged piece falling into the channel and moving 

downstream 25 m. No additional wood was recruited after the 2017 study 

year. This demonstrates that the majority of sediment-wood interaction 

over the three years of the study was related to immobile wood and 

therefore, wood classification had no observable impact on wood transport 

during our study. 

Tracer retrieval rates were comparable to previous studies (Hassan and 

Bradley, 2017), between 75% in 2018 and 88% in 2017 (Table 2.2). The 

tracer population has a grain size distribution range of 47 – 110 mm with 

a median b axis diameter of 73 mm. This is larger than the D50 (53 mm) 

of the bed surface material, giving the majority of tracer sediments a Di / 

D50 of > 1 relative to bed material. 

Maximum tracer transport distances in 2017, 2018, and 2019 were 109, 

58, and 133 m respectively, with one clast travelling a cumulative 193 m 

downstream over the study period (Table 2.2). Of the 49% of cobbles that 

became mobile during our study 73% of these travelled beyond the seeded 

reach. The tracer transport distance probability density functions in 2017 

and 2019 fit a gamma distribution, although the data from 2018 show a 

weaker gamma distribution fit that is interrupted between tracer transport 

distances of ~ 15 – 25 m (Figure 2.5). The associated power law exponent, 

β, is > 2 for all three years, representing superdiffusive behaviour, 

although the 2018 β value of 2.3 is close to the threshold of β = 2 for this 

characterisation, matching with the interruption seen in the gamma 

distribution fit. This is suspected to be caused by a clustering of tracers 

around a piece of large wood (the fallen tree) that entered the seeded 

reach in 2017 (Figure 2.6). This wood piece was initially transported 

downstream 20 m to its deposition location and was subsequently 

incorporated into the bed with increasing burial occurring every year. The 

increased density of tracer deposition in close proximity to this wood piece 
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gives an initial indication of the impact of large wood on bedload transport. 

This is further investigated using LMM analysis.  

 

 

 

Figure 2.6: Clustering of tracer sediments from 2018 data around a large 

wood piece within the seeded reach (as shown in Figure 2.1d). Note that 

the reversal of the trend in the probability density function calculated for 

2018 (Figure 2.5) appears to match location of large wood piece (e.g., 15 

– 25 m). 
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2.4.2 Linear Mixed Modelling of Influence of Wood and Other 

Variables on Tracer Transport 

 

Probability of Tracer Entrainment 

Linear mixed modelling (LMM) provides a statistical assessment of the 

influence of large wood on sediment transport. LMM of sediment 

entrainment likelihood in relation to distance to wood of tracer entrainment 

location across all years is significant to at least a 99% level of confidence 

using the binomial modelling approach, with 2018 and 2019 reaching > 

99.9% levels of confidence (Table 2.3). This confirms that proximity to 

wood pieces has a significant influence on entrainment likelihood, where 

tracers closer to wood pieces are less likely to be entrained. Clasts residing 

at > 5 m from wood are 37.5% more likely to be entrained than those < 

1 m on average over the study (Figure 2.7). 

The tracer b-axis and relative distance to channel thalweg were also 

investigated for their influence on entrainment likelihood. The influence of 

b-axis on entrainment likelihood was found to be significant in 2018 and 

2019 with smaller tracers more likely to be entrained. Distance to channel 

thalweg was found to be significant in 2017 and 2019 with tracers closer 

to the channel thalweg more likely to be entrained. Clasts found at > 3 m 

from the thalweg are at least 55% and 27% less likely to move in 2017 

and 2019 respectively (Table 2.3, Figure 2.7). 
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Table 2.3: Linear mixed model output data for the likelihood of tracer 

sediment entrainment within the wooded reach, including the coefficient, 

standard error, z-value and p-value for all variables. P values indicated 

with a *, **, and *** represent a 95%, 99%, and 99.9% level of 

confidence respectively. 

 

 

 

 

 

 

 

2017 Binomial Coefficient Standard Error Z P 

Distance to 

thalweg 
-0.574 0.221 -2.603 0.0093** 

Distance to wood 0.533 0.163 3.261 0.0111** 

B – Axis -0.015 0.015 -0.954 0.3398 

2018 Binomial     

Distance to 

thalweg 
-0.056 0.233 -0.240 0.81019 

Distance to wood 0.664 0.155 4.293 <0.001*** 

B – Axis -0.034 0.017 -2.012 0.0442* 

2019 Binomial     

Distance to 

thalweg 
-0.321 0.144 -2.227 0.026* 

Distance to wood 0.458 0.012 3.950 <0.001*** 

B – Axis -0.035 0.011 -3.313 0.0017** 
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Figure 2.7: Relative influence of distance to thalweg at point of tracer entrainment (top), and distance to wood at point of 

tracer entrainment (bottom) on probability of tracer movement each year based on the binomial LMM prediction frame, with 

upper and lower bounds represented by dotted lines. Significant (> 95%) relationships between probability of movement and 

wood distances, or probability of movement and thalweg distances are plotted. Relationships below a 95% level of confidence 

are omitted (e.g., 2018 thalweg). 
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Influence of Entrainment Location on Tracer Transport Distance 

A first LMM gamma model investigated the relationship between 

entrainment location variables and subsequent tracer transport distances. 

The influence of proximity to wood on tracer transport distance is 

significant to at least a 95% level of confidence in each year, with 2017 

and 2018 reaching 99.9% levels of confidence (Table 2.4, Figure 2.8). The 

closer a tracer is located to wood when it is entrained, the shorter its 

subsequent transport distance. Unsurprisingly, shorter distances from the 

channel thalweg were also significant for longer rock transport distances 

in 2018 and 2019 with at least a 99% level of significance. The b-axis of 

tracers was significant every year to at least a 95% level of significance, 

where shorter b-axis size resulted in longer transport distances of tracers 

(Table 2.4). 
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Table 2.4: Linear mixed model output data for the influence of distance 

to wood, thalweg, and b-axis on the transport distance of tracer sediments 

at the point of entrainment within the wooded reach, including the 

coefficient, standard error, z-value and p-value for all variables. P values 

indicated with a *, **, and *** represent a 95%, 99%, and 99.9% level 

of confidence respectively. 

 

 

2017 

Entrainment 
Coefficient Standard Error Z P 

Distance to 

thalweg 
-0.100 0.058 -1.721 0.00878 

Distance to wood 0.034 0.008 3.799 0.0002*** 

B – Axis -0.019 0.007 -2.890 0.0046** 

2018 

Entrainment 
    

Distance to 

thalweg 
-0.323 0.091 -3.633 <0.001*** 

Distance to wood 0.074 0.014 5.387 <0.001*** 

B – Axis -0.020 0.009 -2.132 0.0369* 

2019 

Entrainment 
    

Distance to 

thalweg 
-0.118 0.044 -2.720 0.0067** 

Distance to wood 0.016 0.007 2.241 0.0258* 

B – Axis -0.021 0.004 -4.686 <0.001*** 
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Figure 2.8: Relative influence of distance to thalweg at point of tracer entrainment (top), and distance to wood at point of 

tracer entrainment (bottom) on tracer transport length each year based on the gamma LMM prediction frame, with upper and 

lower bounds represented by dotted lines. Significant (> 95%) years relationships between tracer transport length and wood 

distances, or tracer transport length and thalweg distances are plotted, whilst relationships below a 95% level of confidence 

are omitted (e.g., 2017 thalweg). 
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Downstream Factors Influencing Rock Transport Distance 

A final LMM gamma model investigated the relationships between location 

in which tracers were deposited and tracer transport distance prior to 

deposition. This analysis reveals a trapping influence of wood on sediment 

when comparing rock transport distance with depositional proximity to 

large wood (i.e., large wood is associated with a shortening in transport 

distance). This is significant in 2019 at a 95% level of significance (Table 

2.5, Figure 2.9) The same relationship occurs in 2017 and 2018, though is 

not significant above a 95% level of confidence. Clasts deposited closest 

to the thalweg had the longest transport distances, with at least a 95% 

level of significance. Finally, the b-axis of tracers was significant every year 

to at least a 95% level of significance, with the largest clasts having shorter 

transport distances. 
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Table 2.5: Linear mixed model output data for the influence of distance to 

wood, thalweg, and b-axis on the transport distance of tracer sediments 

at the point of deposition within the wooded reach, including the 

coefficient, standard error, z-value and p-value for all variables. P values 

indicated with a *, **, and *** represent a 95%, 99%, and 99.9% level 

of confidence respectively. 

 

 

 

 

 

 

2017 Deposition Coefficient Standard Error Z P 

Distance to 

thalweg 
-0.112 0.066 -1.752 0.0823 

Distance to wood -0.115 0.059 -1.936 0.0552 

B – Axis -0.018 0.007 -2.723 0.0074** 

2018 Deposition     

Distance to 

thalweg 
-0.220 0.105 -2.105 0.039* 

Distance to wood -0.130 0.104 -1.245 0.2177 

B – Axis -0.023 0.011 -2.013 0.0485* 

2019 Deposition     

Distance to 

thalweg 
-0.191 0.052 -3.690 <0.001*** 

Distance to wood 0.073 0.031 2.400 0.017* 

B – Axis -0.002 0.004 -4.149 <0.001*** 
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Figure 2.9: Relative influence of distance to thalweg upon tracer 

deposition (top), and distance to wood upon tracer deposition (bottom) on 

tracer transport length each year based on the gamma LMM prediction 

frame, with upper and lower bounds represented by dotted lines. 

Significant (> 95%) years relationships between tracer transport length 

and wood distances, or tracer transport length and thalweg distances are 

plotted, whilst relationships below a 95% level of confidence are omitted 

(e.g., insignificant relationships in 2017). 

 

2.4.3 Making Predictions of Sediment Transport from Linear 

Mixed Models  

 

Figure 2.8 displays the positive relationship between increased tracer 

transport distance and greater distances of tracers entrainment positions 

from wood for all years based on the gamma LMM output. This approach 

can be used to estimate a tracer’s transport distance based on its initial 

distance from large wood before entrainment. For instance, in 2019, a clast 
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located approximately 5 m from a large wood piece will move downstream 

approximately 30 m streamwise on average, with transport distance 

increasing the further a tracer is entrained from large wood.  Conversely, 

Figure 2.8 displays the inverse relationship between increasing tracer 

transport distance and increased tracer distance from channel thalweg at 

entrainment position. Additionally, Figure 2.7 displays the relatively 

negative correlation between the distance of the tracer from the thalweg 

and probability of entrainment. These models can both be used to estimate 

a tracer’s transport distance and movement likelihood in relation to this 

variable. For example, a tracer 2 m from thalweg is predicted to have a 

transport distance of 6 m on average from its entrainment position.  

While these estimations can give an approximate transport distance or 

probability of movement based on the single variable dataset, direct 

extrapolation from the graphs does not include the influence of other 

variables, limiting the applicability outside of the general correlation and 

relative influence of each variable. However, they do provide a clear 

indication that proximity to large wood, distance from channel thalweg, 

and sediments b-axis all play an influential role on transport behaviour. 

2.5 Discussion 

 

2.5.1 Influence of Wood on Stochastic Sediment Transport 

Dynamics 

 

Stochastic sediment transport dynamics may be described with a 

combination of tracer transport distances and rest time distributions. We 

were unable to return to the field site to resurvey in 2020 due to Covid 19 

restrictions on travel for two years, hence are limited to 3 years of resurvey 

data of the planned 5. In addition, implementation of active tracers (smart 

stones) with embedded accelerometers, gyroscope, and magnetometers 

(Gronz et al., 2016; Dost, 2020; Maniatis, 2020; Dini et al., 2021) was 

interrupted. Therefore, data was insufficient to build a distribution of 

particle rest times and thus fully characterize sediment transport 

behaviour. However, we have been able to build distributions of tracer 
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transport distances for the three resurvey years and observed deviations 

in these distributions as a result of wood-loading. 

Qualitatively, large wood appears to alter the spatial deposition of 

sediments. One example observed was a dead tree that fell from the bank 

during runoff in 2017, floating roughly 20 m and being deposited in the 

downstream end of the seeded reach. Sediments were subsequently 

observed accumulating around the wood piece, with ramping of sediments 

up the root wad in 2018 (Figure 2.1d) and progressively incorporating the 

wood further into the bed by 2019.  Additionally, our RFID tracer sediments 

were deposited more densely in close proximity to the wood piece in 2018 

and 2019 comparatively to the rest of the seeded reach (Figure 2.7), which 

displays otherwise similar morphological characteristics. In addition, 

tracers were observed to accumulate in the pools of log steps (e.g., Figure 

2.1e), supporting Wohl and Scott’s (2017) finding that rivers with wood 

see an increase in pool sediment volume, alongside accumulating behind 

log steps forming a ramp (e.g., Figure 2.1f). 

The tracer transport distance probability density functions for 2017 and 

2019 in Figure 2.5 appear to match well with the overlain expected gamma 

distribution (Bradley and Tucker, 2012). Additionally, the associated 

exceedance probability displays the expected super diffusive behaviour 

(e.g., β > 2), although the 2018 plot breaks from this trend, and its β 

value of 2.3 is closer to the super - sub diffusive threshold of β = 2. This 

change could suggest a quantifiable influence of wood is observable, at 

least in 2018, where lower shear stress due to a more moderate flow year 

(Figure 2.3) increases wood’s impact on tracer movement as the blocking 

effect is more difficult to overcome. However, these changes could be 

attributed to alterations in the vertical mixing of sediments (Hassan et al., 

2013). While channel morphology’s impact on transport distributions could 

offer another explanation (e.g., Pyrce and Ashmore, 2003), the visual and 

recorded observations of clustering sediments around the large wood piece 

located within the seeded reach (Figure 2.6) supports wood as a 

particularly important factor for the disruption in transport distributions.  
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Whilst the influence of wood on the distribution of tracer transport distance 

is not definitive, LMM modelling helped to demonstrate the trapping 

influence of wood more clearly. LMM modelling in 2019 (Table 2.5, Figure 

2.9) showed that tracers deposited closer to wood had shortened transport 

distances prior to being deposited, suggesting a trapping effect. The cause 

of trapping and reduced transport distances is likely related to wood 

loading increasing roughness within the fluvial system (Buffington and 

Montgomery, 1999) and its impact on local hydraulic conditions (Matheson 

et al., 2017). This agrees with other sediment transport investigations 

where roughness was found to be a key influencing factor on reducing 

transport distances of sediments (e.g., Roth et al., 2020).   

The lack of statistical significance for the influence of wood on shortening 

rock transport distances in 2017 and 2018 is potentially related to the lack 

of wood found in the areas 1 to 10 m downstream of the seeded reach 

(Figure 2.1), where the majority of tracers were deposited during the first 

two years of the study. By 2019 the number of tracers deposited within 

the wooded reach is greatly increased, alongside more tracers interacting 

with wood throughout the length of the study area as seen in Figure 2.1a. 

This resulted in a population of tracers large enough to demonstrate a 

significant interaction, and positive correlation (e.g., Figure 2.9), between 

deposition location of tracers in relation to wood and transport distance of 

tracers. 

Results from the binomial LMM analysis demonstrate how the presence of 

wood in St. Louis Creek is reducing entrainment likelihood of sediment 

(Table 2.3, Figure 2.7). This result is significant every year, however there 

is a slight decrease in significance in 2019. We suspect that the higher 

proportion of tracer sediments moved in 2019, resulting from the higher 

flow rates and subsequent stream power, could lessen the impact wood 

has on entrainment, where higher shear stress from stronger flows 

negates the limiting effect wood has on sediment entrainment likelihood. 

In addition, many immobile clasts from previous years were entrained by 

reworking of the bed during higher flow rates, independent of the spatial 

location of wood pieces. Despite this, these results agree with the findings 

of previous studies that an abundance of wood causes fluvial systems to 
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retain a greater proportion of sediment in storage, in addition to reducing 

overall sediment transport rates (Buffington & Montgomery, 1999; 

Montgomery et al., 2003; Wohl and Scott, 2017).  

The LMM gamma model showed that the influence of distance to wood on 

subsequent tracer transport distance is significant for all years (Table 2.4, 

Figure 2.7), with a 99.9% degree of certainty in 2017 and 2018, dropping 

to 95% in 2019. This reduction in statistical significance is likely related to 

the proposed reduction of the influence of large wood in 2019 due to 

greater flow rates, where wood has reduced impact on tracers due to 

higher water levels causing tracers to more easily pass over wood pieces. 

Additionally, the accumulation of sediments along the upstream side of 

pre-existing large wood may have resulted in an easier passage of logs by 

2019. Finally, it is possible for large wood to float during higher periods of 

runoff (Wohl and Scott, 2017), which may have allowed a larger proportion 

of particles to pass underneath in 2019 given the relatively higher flow 

rates that year.   

Additional data would be needed to further assess the influence of wood 

on transport distance distributions, but this initial data indicates that wood 

is having a disruptive effect (Figure 2.6). The potential for prediction of 

sediment transport distance and entrainment likelihood shown in Figure 

2.8 and Figure 2.9 is an example of how linear mixed modelling could be 

used to predict sediment transport in such settings. This study exemplifies 

how distances to wood from either depositional, or entrainment location 

can be used to predict sediment transport distances with a large enough 

population of tracers, while accounting for other influential variables such 

as distance to thalweg, and size of surveyed tracers. 

 

2.5.2 Other Controls on Particle Entrainment 

 

Key variables identified to significantly influence particle entrainment with 

the binomial LMM approach included particle size (represented by b-axis 

in this study). This agreed with conventional understanding of the 

correlation between sediment size and entrainment likelihood (e.g., 
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Ashworth and Ferguson, 1989; Wilcock and Crowe, 2003), with smaller 

grain sizes having a greater probability of entrainment. This suggests, in 

our study area, that the role of protrusion on entrainment likelihood (e.g., 

Fenton & Abbott 1977; Hodge et al., 2020) is minimal, assuming that 

smaller grain sizes protrude less but yet were more likely to be entrained 

in our sample of pebble – cobble sized tracer sediments.  Additionally, the 

distance of tracer sediments to channel thalweg has an influential role on 

entrainment likelihood, with sediments with closer proximity to channel 

thalweg having higher entrainment likelihoods, due to increased shear in 

the thalweg (Petit et al., 1987).  

While b-axis size was found to be significant in influencing entrainment 

likelihood in 2018 and 2019, the results from the 2017 output were not 

significant (Table 2.4). This is potentially related to the ‘hypermobility’ of 

sediments in the first year of the study, where sediments are not naturally 

incorporated into the channel bed (Bradley and Tucker, 2012). A caveat to 

b-axis tracer results would be that the D50 value of the tracer sediments 

(73 mm) is larger than that of the bed material (53 mm), where the D50 

tracer / D50 bed = 1.38, potentially making them unrepresentative of the total 

sediment population of the stream. The larger D50 of tracer sediments were 

unavoidable due to the size of the embedded RFID tags requiring clasts 

large enough to drill. However, results likely well characterise the pebble 

– cobble proportion of sediments transport behaviour in gravel bed 

streams. 

 

2.5.3 Limitations and Future Work 

 

While multiple researchers have used RFID technology in tagging coarse 

particle transport, there is a lack of a consistency in the methodologies 

applied (e.g., standard procedures for tagging and detection methods). 

This may lead to differences in retrieval rates and detection location 

accuracy due to experimental setup, rather than environmental conditions. 

Therefore, future research should adopt a standardized approach in the 

use of RFID equipment, the depth of tag embedding, and the placement 

of tracers in order to reduce operational interference. 
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Retrieval rates of tracers consistently stayed above 75% every year and 

even increased from 2018 to 2019, demonstrating the success and 

longevity of the approach, even in complex environments such as wood 

loaded rivers. For instance, Liébault et al. (2012) and Olinde & Johnson’s 

(2015) recovery rates decreased annually over their studies from 78%, 

45%, 25% and 83%, 50% respectively, with burial being highlighted as a 

particular issue. This highlights the effectiveness of the RFID scanning 

technique implemented, as multiple tracers which were buried without 

visual confirmation were subsequently identified and located.  

While these studies suggest a poor recovery rate, the technique is still 

relatively new, with developments in the technology ongoing. The use of 

ultra-high frequency tags (Cassel et al., 2017; Brousse et al., 2020; Cassel 

et al., 2021) are overcoming many of the limitations with traditional (low 

frequency) PIT tags, such as difficulties separating signals and short 

detection ranges (e.g., Lamarre et al., 2005). This may allow tracer studies 

to occur in previously inaccessible environments, such as wide braided 

rivers. 

Including stream power directly in the LMM analysis for individual clasts 

was beyond the scope of this study due to uncertainties in subdividing the 

reach into multiple distinct sections with justifiable stream power 

estimates. Only including clasts that have entered the wooded reach in the 

LMM accounts for the change in average slope and channel width between 

the two reaches, but future work would require more detailed measures of 

driving force to accurately assess forces acting on individual clasts. Despite 

this, we were still able to determine the influence of large wood on tracer 

transport, probably because the critical stream power threshold was 

exceeded throughout the study reach. Any relatively small changes in 

stream power between clasts within the wooded reach were unable to 

mask the impact of wood on sediment transport dynamics.  

Deploying subsequently developed smart stone tracers could have helped 

determine relationships between flow rate and entrainment thresholds. 

Although unfortunately this was not possible due to travel restrictions 
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surrounding the covid-19 pandemic from 2020 onwards, preventing 

further visits to the field site. 

 

2.6 Conclusions 

 

We conducted a RFID tracer study in a wood-loaded, alpine stream in 

Colorado USA over three years to investigate the influence of large wood 

on stochastic sediment transport dynamics. We investigated the influence 

of wood on aspects of sediment transport, including transport distance and 

entrainment probability, and used the novel approach of linear mixed 

modelling to untangle the influence of wood from other controls and build 

predictive models of sediment transport. Over three years, the tracer 

transport distance frequency distributions of tracers were found to match 

previous tracer research, with an expected gamma distribution and 

dispersion characteristics of sediments remaining superdiffusive, as 

indicated by a power law exponent on the tail of the distribution, β > 2 

(e.g., Bradley and Tucker, 2012). However, flattening of the power law tail 

of the transport distance distribution in 2018 (Figure 2.6), is suspected to 

result from the interception of tracers by a large wood piece during lower 

flows, bringing it closer to more subdiffusive behaviour, i.e. with a β < 2. 

The LMM results support this clustering effect. It was found that large wood 

trapped sediments and forced premature deposition and reduced transport 

distances. Furthermore, tracers with a closer proximity to large wood had 

a significantly reduced likelihood of entrainment, in addition to smaller 

transport distances, compared to tracers entrained from wood free areas. 

Meanwhile, as expected, LMM found that both tracer transport distance 

and entrainment likelihood both decrease with increasing distance of 

tracers from the channel thalweg. Additionally, LMM found that smaller b-

axis resulted in greater likelihood of entrainment and subsequent transport 

distances. These results indicate that streams undergoing increased wood 

loading would experience a significant reduction in entrainment and 

subsequent transport distances of cobble – pebble sized clasts in alpine 

environments. 
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The approaches implemented in this research can help inform future river 

management schemes by providing a methodology to determine the 

effectiveness, and potential side effects, of introducing engineered large 

wood structures (e.g., log jams) in NFM practices. The collection of 

additional data sets, with different volumes and configurations of large 

wood under a broader range of grain size and discharge regimes, is 

necessary to determine if the observations reported in this study are 

consistent. This would allow for a further understanding of grain-scale 

bedload transport behaviour in wooded reaches. 
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CHAPTER 3 

 

3 Production and Development of LoRaWAN Smart Stones 
 

3.0.1 Chapter Overview  

 

The development of a smart autonomous observing system was an integral 

aspect of this research as funding was provided by the NEXUSS CDT, which 

prioritised novel technological approaches to environmental science 

challenges. Therefore, this chapter describes the process of designing, 

producing, and the initial stress testing of the LoRaWAN enabled smart 

stone tracers. It covers the manufacture of artificial sediment housing, 

from silicone moulding of existing sediments, to concrete production and 

design. It also covers the capabilities of the Miromico sensor module 

embedded in the smart stones, alongside the development and 

optimisations of device firmware over time. Furthermore, the results from 

battery longevity experiments and gateway range testing are also 

described. 
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3.1 Introduction 

 

Using passive RFID tracers, it was possible to quantify the relative 

influence of the proximity to wood on entrainment, deposition likelihoods, 

and tracer step lengths. This is pivotal in furthering our understanding of 

the consequences of large woody debris in rivers, helping to inform its 

installation as a part of NFM techniques. The work described in chapter 2 

built upon a growing literature investigating grain scale transport 

characteristics in fluvial systems (e.g., Nichols 2004; Bradley & Tucker 

2012; MacVicar & Papangelakis, 2022). However, the requirement for 

manual relocation of tagged sediments limited data collection to once per 

annum at St. Louis Creek. Therefore, calculating the precise rest times of 

sediments, and capturing detailed transport behaviour was not possible. 

Furthermore, flow rates and entrainment likelihood could only be 

compared using the recorded peak flow values, with the exact timing of 

incipient motion of sediments remaining unknown. 

To better characterise the bed load transport of sediments, and the role of 

wood in influencing movement, real-time data collection is required. With 

advances in MEMS, active IMU tracers (e.g., Gronz et al., 2016), and the 

integration of Internet of Things technological approaches in 

environmental science (Hart & Martinez 2015), I aimed to develop smart 

stone tracers which could monitor transport in real time remotely. It was 

hoped that these LoRaWAN enabled smart stones would overcome the 

limitations of infrequent data collection observed in RFID studies, and by 

integrating the devices into a wider network of environmental sensors, 

fluvial conditions at deployment sites could be continuously monitored. 

This would facilitate a greater understanding of the relationships between 

individual grain motions and environmental conditions, providing valuable 

datasets for both researchers interested in the grain-scale dynamics of 

sediment transport, and for informing hazard risk monitoring. 
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3.1.2 The SENSUM Project  

 

The smart SENSing of landscapes Undergoing hazardous hydrogeologic 

Movement, or SENSUM, is a UKRI funded project under the Constructing a 

Digital Environment programme (NE/V003402/1) (Roskilly et al., 2022).  

The project involves the use of integrated technological approaches to 

tackle challenges related to monitoring natural hazards. SENSUM is taking 

advantage of advances in wireless sensor networks, and the development 

of Internet of Things technologies, as well as the ability to embed 

microelectronic devices within the natural environment. Hazards from 

landslides and flooding are the primary focus of the SENSUM project, with 

smart tracking devices being used to monitor large woody debris and 

boulders at high-risk sites. Sensor networks are also being tested for their 

feasibility as early warning systems.  

My research, focused on tracing the bedload transport of fluvial sediments, 

was a natural fit for collaboration alongside the SENSUM project. As many 

of the technological approaches applied, such as continuous long-term 

monitoring using wireless LoRaWAN networks, also showed great promise 

for advancing sediment tracing techniques. Furthermore, many of the 

fluvial sites planned for hazard monitoring within the SENSUM project had 

flow conditions not dissimilar to St. Louis Creek, with coarse-grained 

transport of sediments being observed (pebble – cobble). Therefore, active 

tracer sediments, or smart stones, were developed in tandem with the 

SENSUM project, to evaluate the feasibility of using LoRaWAN networks 

alongside the active tracing of sediments. In this way, similar technological 

approaches were applied to track sediment transport to those implemented 

to monitor hazards, with eventual goal of integrating smart stones into 

wider hazard monitoring solutions. 

 

3.2 Production of Smart Stone Tracers 

 

Typically, during tracer surveys existing sediments are drilled, and tracing 

devices are embedded (e.g., Bradley & Tucker, 2012; Olinde & Johnson, 

2015; Clark et al., 2022). This approach is not feasible with smart stones 
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during long term deployment (> 2 months) due to the battery size 

requirements (e.g., C cell). Drilling pebble to cobble sized sediments with 

a bit diameter wide enough to fit device components (~ 35 mm) often 

caused sediments to shatter.  

To circumvent this, a design for an artificial sediment, or purpose-built 

SENSUM smart stone, was produced. The design involved moulding an 

existing natural cobble, matching its size and shape, and included a 

predesignated cavity to contain the device components. This removes the 

need for drilling existing sediments, preventing the risk of shattering 

tracers, and allowed the most efficient use of space within the cobble. 

To most closely match natural sediments during deployment, concrete was 

used as the construction material for the replica sediments. Other 

materials were evaluated, such as silicone, and brass, but these did not 

sufficiently reproduce the characteristics of natural sediments (e.g., 

density, shape, texture, strength, etc…). Concrete also has the advantage 

of being relatively cheap, simple to use, and easy to produce at scale. This 

allowed multiple artificial sediments to be produced for testing and 

deployment for a range of laboratory and field settings. 

 

3.2.2 Silicone Mould Production 

 

For the artificial sediment mould, one of the tracers from St. Louis Creek 

was used as the base. This clast was chosen as its size (90 mm b-axis) 

represented the coarse-grained portion of bedload, in addition to its 

subrounded shape matching the majority of tracers used in previous 

research. In addition, the artificial sediment would be large enough to 

contain the tracking device and have a battery with sufficient capacity for 

long term monitoring. The original intension was to deploy the smart 

stones in St. Louis Creek in order to build rest time distributions of tracers 

at the site, although this was not possible. However, the use of a mould 

based on sediments that had been previously investigated facilitated 

comparisons between previous research utilizing RFID tags and 

deployments in the UK.  
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To produce the mould, a Polycraft GP 3481-F general purpose RTV silicone 

rubber kit was used. The kit comprised of liquid silicone, materials for 

mixing, and a catalysis to harden the material. The silicone had both high 

strength and high elasticity, which allowed the easy removal of the original 

clast once the mould was fully set. 

For production, a container was chosen that was slightly larger than the 

selected sediment, which allowed for efficient use of material (Figure 3.1a). 

The silicone was mixed with the catalyst and added to the container, 

surrounding the sediment (Figure 3.1b), The poured silicone was left to 

cure in a fume cupboard for 24 hours. Once fully cured, the sediment was 

removed from the hardened silicone using a retractable utility knife, 

preserving the shape and texture of the original sediment in the mould. 

The resulting cavity was therefore identical to the original sediment and 

was subsequently filled with concrete to replicate the original clast. This 

process was repeated twice, producing two identical moulds of the original 

sediment (Figure 3.1c).  

 

3.2.3 Concrete Production 

 

Concrete was produced by mixing blue circle general-purpose cement and 

building sand at a 1:1 ratio. This ratio was used after strength testing 

determined that a lower sand-to-cement concentrations provided the most 

robust sediments. These withstood the greatest impacts tested, ensuring 

durability during deployment. Furthermore, the increased density from a 

higher cement ratio resulted in an increased overall weight of the concrete 

casing. This helped achieve an overall density more closely replicating 

natural sediments, without altering the fundamental properties of the 

artificial sediment. This additionally allowed the finished tracers to more 

closely match pre-existing tracers deployed in hardness, providing 

longevity during deployment.    

Before pouring concrete, the silicone mould was sealed with tape to 

prevent leaks (Figure 3.1d). To ensure space within the sediment to embed 

the IMU sensor board and battery, a purpose-built iron plug was designed 
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and produced by the technicians at the University of East Anglia. This 

matched the size requirements for the sensor housing, which included all 

device components, in addition to a cylindrical C-cell battery (35 x 70 mm). 

The plug was wrapped in clingfilm before use and lubricated to prevent 

concrete sticking to the plug. This was lowered into the freshly poured 

concrete, displacing excess material (Figure 3.1e). This plug allowed 

concrete to be partially formed around it before removal. After 

approximately 24 hours of curing, the plug was removed leaving the 

artificial sediment to finish curing. 

With the iron plug removed and the concrete partially cured, the tape and 

silicone mould were carefully peeled away from the concrete. At this stage, 

any imperfections were cleaned from the surface, with the artificial 

sediment resembling the original sediment (Figure 3.1f). The concrete was 

left to cure for at least two weeks to ensure the artificial sediments reached 

their maximum strength. After this time, they could be used in laboratory 

testing or for field deployment. 
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Figure 3.1: Production process for the artificial sediments, from silicone 

moulding of original sediment to concrete fabrication displaying: (a) the 

Polycraft general purpose silicone rubber kit used; (b) the hardened 

silicone surrounding the original cobble forming sediment shape; (c) the 

finished mould after sediment extraction; (d) the sealed silicone mould 

ready for concrete production; (e) the metal plug displacing concrete to 

produce cavity for device components and; (f) finished concrete cobble 

beside original sediment. 

3.2.4 Case Production 

 

Typically, environmental sensors in fluvial research are protected by a 

housing made from bulky metal or PVC components. Due to size limitations 

when embedding sensors inside artificial sediments, the sensor case 

design needed to be as small as possible, while still being sufficiently 

robust to protect the electronics. Additionally, the case needed to be 

lightweight, so that the density of the completed smart stone was not 

significantly affected. It also needed to enable easy access to the device 

for manually uploading data. Furthermore, if smart stones are to be 

deployed across multiple sites, the cost to produce individual tracers 

needed to be relatively low, so production could be cost effective at scale. 

15 cm 
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With these criteria in mind, a custom case was designed and was produced 

to store all device components and a C-cell battery.  

3D printing of case materials was initially attempted, following previous 

examples during smart stone enclosure development (e.g., Maniatis et al., 

2013). Unfortunately, unreliable production quality and associated 

material costs resulted in a shift from a custom 3D printed design, to a 

design with prefabricated components which could be ordered in mass.  

The cases comprised of an ultra-thin MoCap tube container, resized to fit 

all components efficiently (32 x 65 mm). After fixing components in place, 

the tubes  were padded with foam to prevent the movement of device 

components within the container, limiting experimental noise caused by 

the rattling of loose items. The cases were plugged with matching MoCap 

caps, sealing components within the cases. During deployment, containers 

were additionally sealed with PTFE tape to further minimise the risk of 

moisture leakage as a failsafe in the case of a leak inside the sediment 

housing. Additionally, containers within smart stones that were deployed 

for extended periods of time (> 24 hours) were sealed using black epoxy. 

The embedded IMU sensor board was positioned as close as possible to 

the centre of mass of the artificial sediment, whilst still providing access to 

the device. This was to facilitate more accurate measurements of the 

forces acting upon the grain from all angles (Maniatis et al., 2020). It 

should be noted that due to imperfections during the manufacturing 

process of tracer cobbles, there will be slight deviations between sensor 

board positions within individual cobbles.  

3.2.5 Finalised Smart Stone Prototype 

 

A scaled structure from motion model of the finalised smart stone 

prototype is displayed in Figure 3.2. Accounting for all components making 

up the artificial sediment (e.g., concrete, case, battery, and IMU module) 

the total weight of the prototype smart stone was 673.14 g. There are 

likely minor deviations between subsequently produced sediments, but 

materials and process remained consistent across all replicas produced. 

The sediments have an estimated density of 2169 kg/m3. This is less dense 
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when compared to expected sedimentary material in streams (e.g., 

density of quartz = 2650 kg/m3, and density of shale = shale 2430 kg/m3). 

However, density more closely represents surrounding sediments after 

deployment in the field due to saturation of the concrete with water. This 

increases estimated density to approximately 2313 kg/m3 based on data 

from soaking experiments of finished artificial sediments. 

In total, 22 artificial sediments, with their associated sensor cases, were 

produced over the course of the research. These were distributed for both 

laboratory testing, field deployment, and for use by researchers on the 

SENSUM project at the University of Plymouth.  

 

 

Figure 3.2: 3D structure from motion model stills of smart stone 

sediment, demonstrating sediment size and cavity space within concrete 

housing for embedding the battery and sensor module. 

 

3.3 Prototype Stress Testing 

 

Upon the production of a prototype, stress testing of artificial sediments 

was undertaken. This was intended to evaluate if the design could 

withstand impacts typical of those experienced during deployment in the 

field and laboratory. Stress testing consisted of dragging artificial 

sediments along various concrete surfaces, colliding with other sediments, 
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and drop testing. The prototypes were monitored for damage throughout 

testing. 

Across all stress testing activities, sediments retained their structural 

integrity, with no sediments shattering or cracking. During drop testing, 

sediments were dropped from progressively increasing heights onto a 

concrete surface in intervals of 0.25 m, up to a maximum height of 1.5 m. 

Even at the maximum heights tested, damage observed was minimal, with 

only minor scratches on the surface of the sediments. As impacts in the 

laboratory and during deployment were unlikely to reach levels withstood 

during stress testing, it was concluded that the design was fit for purpose.     

In addition to impact testing, underwater experiments evaluated the ability 

of the prototypes to withstand submersion. Multiple sediments were 

submerged in water depths of 0.5 m for > 48 hours before retrieval. The 

interior of all cases remained dry, suggesting that water could not 

penetrate the device housing. 

  

3.4 LoRaWAN®-RF-Module Tracking Devices 

 

The sensor module (Nomad, https://miromico.ch/miro-nomad) used for 

tracking movement within the artificial sediments was initially developed 

by Miromico AG in collaboration with the Movetech Telemetry project. Their 

first use case was to study animal movement behaviour (e.g., Soriano-

Redondo et al., 2021; Acácio et al., 2022), using known movement 

patterns and geographical location to understand animal behaviour. The 

devices are based on standard FMLR LoRaWAN®-RF-Modules produced by 

Miromico, but are adapted to fit ongoing research needs. Identical 

hardware is used across multiple research projects and is adapted to fit 

specific environmental conditions through firmware alterations.   

The devices are low powered and compact, with the circuit board module 

measuring 23 x 13 x 1 mm, and weighing 1.3 g (Figure 3.3a). The module 

contains a range of sensors including a GPS, a barometer, a thermometer, 

an internal clock, an ultra-low powered accelerometer, and a 9-DOF IMU 
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sensor. They are also equipped with flexible GNSS and LoRa antennas for 

communication with GPS and LoRa gateway networks. 

Collected sensor data can be stored on the device’s 16MBit FLASH memory, 

which can contain > 10,000 payloads (data package containing all sensor 

data) of sensor information. Additionally, data can be transmitted 

wirelessly from devices using LoRa. They have the capability to transmit 

data on the 868 Mhz band in near real time to any LoRaWAN gateways 

(Figure 3.3b). LoRa gateways (e.g., Multitech IP67) can connect to internet 

service providers either through ethernet, Wi-Fi, or mobile GSM networks. 

Additionally, they can be powered through direct mains supply or by using 

integrated batteries, providing functionality in a range of environments.  

 

Figure 3.3: (a) Miromico Nomad LoRaWAN®-RF-Module with Molex 

Flexible GNSS Antenna and Omni Directional LoRa antenna with example 

C cell battery used during deployment; (b) LoRaWAN gateway with USB 

type C power connector, LoRa antenna and USB GSM dongle.  

Gateways are programmed to send device payloads via GSM to the 

LoRaWAN network server provider LORIOT®. LORIOT® is a third-party 

network operator which hosts a range of IOT applications. From the LoRa 

server, data packets are exported to a local server (e.g., Movetech 

Telemetry server) which decodes the data back into a readable format for 

end user analysis (Figure 3.3). Maximum communication ranges of LoRa 
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devices are estimated to be over 15 km, with only minor data packet loss 

at these distances (Petajajarvi et al., 2015). Dini et al. (2021) had real 

world deployment ranges of over 800 m, with deployment inside boulders, 

and noted that the upper limit of communication range was likely not 

reached. 

In addition to sensor data, devices can transmit descriptive information on 

battery level, and hardware status. This supports ongoing maintenance 

and monitoring of deployed devices. Transmitted data packets also contain 

a server time stamp, and an internal time stamp. This indicates any 

differences between data collection being triggered and the time of data 

upload. This is essential for determining data transfer speeds during 

hazard monitoring applications. The internal device time stamps also 

support the synchronisation of data with other IoT enabled devices on the 

wider network (e.g., river flow gauges). 

 

3.4.2 Device Programming 

 

The devices are programmable via a USB cable with any serial terminal 

software, with a wide variety of commands to alter device behaviour and 

optimize performance. Miromico have installed a rudimentary text-based 

interface to assist in programming devices but have planned for an 

updated graphical UI for future applications. 

The ability to change sensor module behaviour allows further 

customisation of the devices to adapt to a variety of use cases. 

Notable device settings which can be altered include: 

- Individual sensor activation      

- Data collection frequency 

- IMU data ranges  

- Triggering thresholds for data collection 

- Start and stop conditions during data collection 

- Rate of status messages 

- LoRa connectivity and upload settings  
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A full list of settings implemented for both the laboratory experiments and 

field deployments is included in the appendices (Appendix B.1). 

These settings allow devices to adapt to a range of deployment and 

laboratory environments. For instance, to isolate specific movements (e.g., 

rolling), it is possible to limit data collection to occur only after a threshold 

of angular velocity change or linear acceleration is exceeded. Furthermore, 

it is possible to activate and deactivate individual components of the 

sensors when data trimming is preferred. 

With LoRa capabilities activated, the devices also have two-way 

connectivity and can be programmed remotely using over the air downlinks 

through the LoRa network. This provides further adaptability after 

deployment, to respond to changing experimental or environmental 

conditions, and for device maintenance. Additionally, stored data on the 

devices can be exported via a serial USB connection. This can be 

advantageous when attempting to retrieve thousands of data packets over 

a short time period (e.g., during laboratory experiments), as to not be 

limited by the slower wireless upload speeds of LoRaWAN when not 

necessary.  

 

3.4.3 Inertial Measurement Unit for Tracking Sediment Movement 

 

The IMU is a combination of sensors that measure orientation and motion 

with respect to an inertial reference frame. The Miromico device uses a 

LSM9DS1 9-degree of freedom (DOF) IMU module, which comprises an 

accelerometer, gyroscope, and magnetometer, each with 3 axes. 

The accelerometer converts accelerational forces impacting the device into 

measurable quantities along the X, Y and Z axis. It achieves this as 

piezoelectric materials within the device create an electrical charge that is 

proportional to the force exerted upon it. As the mass of this material 

remains constant, it is possible to infer the acceleration applied from the 

electrical charge to calculate linear acceleration. It should be noted that 

due to the accelerational force of gravity on earth (9.81 m/s-2), if the 

device is stationary, a reading of 1 g across the direction of gravitational 
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force will be recorded by the sensor. The accelerometer measures 

accelerations within the range of ± 16 g (1 g = 9.81 m s-2) at up to a 

sampling rate of 238 Hz.  

The gyroscope measures the degree of rotational change experienced by 

the device. It measures angular velocity within the range of ± 2000 ° s-1, 

again at a sampling rate of up to 238 Hz. Gyroscope measurements are 

often referred to as pitch, roll and yaw in previous literature, but will be 

referred in terms of X, Y, and Z for continuity with the accelerometer 

henceforth.   

The magnetometer measures orientation with respect to magnetic north 

by detecting fluctuations in the Earth's magnetic field strength along its X, 

Y, and Z axes. Specifically, the Y-axis corresponds to changes relative to 

magnetic north, the X-axis to magnetic east, and the Z-axis to magnetic 

up, pointing away from the Earth's core. This stands in contrast to the 

gyroscope's coordinate system, which is body-fixed and relies on the initial 

position of the device for its measurements. Therefore, any subsequent 

references to the X, Y, and Z axes in the context of the magnetometer 

pertain to these magnetic coordinates. A schematic demonstrating the 

differences between the three sensors X, Y, Z axis is included in appendix 

B.2  The magnetometer has a range of 16 G (1 G = 10−4 T), and a sampling 

rate of up to 40 Hz.  

The device also makes use of an ultra-low power accelerometer (LIS2DH), 

used previously in landslide research (Dini et al., 2021) and in ecological 

research (Acácio et al., 2022). This component can collect lower frequency 

accelerometer data (2 Hz). In this research high frequency, 9-DOF data 

sets are required, therefore, the LIS2DH is only used to trigger data 

collection while the device is in power saving mode.  

Devices have an active mode and a low power mode to maximise 

efficiency. In low power mode, the devices are programmed to check for 

connectivity and send a routine status payload every hour if movement 

has not been detected. The status payload contains date, time, GPS, and 

battery information. This informs the user that the devices are working 

correctly and are within gateway range. The LSMDS1 9-DOF IMU sensor 
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remains in hibernation until triggered. The active mode is triggered upon 

movement detection with the LIS2DH accelerometer above a specified 

threshold (e.g., 0.2 g), where full IMU data is subsequently collected. Only 

activating the more power intensive sensors on the IMU board when 

movement is initially detected extends the potential deployment length of 

the devices.  

After data collection is complete, the device will attempt to establish 

gateway connectivity. If successful, it will continuously send payloads until 

all data is uploaded, and then return to low power mode. If gateway 

connectivity is not available, then data is stored on the 16 MBit flash drive, 

and the device will return to low power mode. The devices can be 

programmed to check for gateway connectivity at a specified frequency, 

with a 1-hour time span being used for the smart stones. When the 

gateway is in range again, any data stored is then transferred to the LoRa 

server, and the device storage is cleared. 

While data collection is triggered using the LIS2DH accelerometer, the 

behaviour of the device can be modified to suit specific data collection 

modes. For instance, during all laboratory and field testing the device was 

programmed to collect data continuously until movement was stopped in 

this research. However, it is possible to alter the device settings to collect 

data for specified periods of time after triggering (collect data for five 

minutes after triggering event) or periodically activate over a certain 

frequency (i.e., active every hour for one minute of data collection). These 

modes of data collection could be potentially beneficial in instances where 

movement is common and snap shots of transport behaviour over long 

periods of time are preferable to save both battery life and data bandwidth.    

It should be noted that the storage of the IMU data is split across two data 

packets, which are encoded for LoRa transmission separately. The first 

contains the accelerometer and gyroscope data and has priority during 

LoRa transmission. The second contains the magnetometer data and is 

transferred after all accelerometer and gyroscope data is successfully 

uploaded. This can cause problems if large amounts of movement data are 

transferred in a single instance, as the magnetometer data can be delayed 
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significantly, or even interrupted if gateway connectivity fails during 

transfer.  

 

3.4.5 Firmware Development 

 

The devices were actively being developed in collaboration with Miromico 

AG during the research. Consequently, multiple iterations of the devices 

were available for testing at different stages of laboratory work and during 

field deployment. The device capabilities described above are from the final 

firmware version, used during most laboratory experimentation and field 

deployment in 2022. 

Hardware remained unchanged throughout the research, but device 

functionality was altered multiple times in response to the needs of the 

SENSUM project, the requirements of the smart stones, and as a result of 

user feedback. For instance, the initial firmware tested, and that installed 

on devices during research by Dini et al. (2021), was limited to data 

collection using the LIS2DH accelerometer only. This capped acceleration 

data collection frequency to 2 Hz and did not have gyroscope and 

magnetometer functionality. This lacked the movement information 

desired when tracking tracer sediments, preventing the capture of specific 

movement behaviours seen during bedload transport.  

Subsequent iterations of device firmware brought new functionality, but 

also changed device behaviour, often in unintended ways. This resulted in 

the need for repeated verification of device functionality, to confirm 

usability for laboratory testing and field deployment. Furthermore, 

firmware bugs occasionally lead to unexplained data loss, so a period of 

bug fixing would be required after each update. See appendix C.1 for 

timeline of firmware updates in relation to research activities. 

In January 2021, a firmware update allowed the activation of the device 

LSM9DS1 IMU sensor. Functionality was limited to the gyroscope and the 

high frequency accelerometer, giving only 6-DOF IMU data. Additionally, 

the maximum capacity of the gyroscope and accelerometer was limited to 

245 ° s-1 and 2 g respectively. Regardless, initial laboratory testing was 
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conducted, with experiments at the University of Plymouth dry granular 

slope using this firmware version (see chapter 4). 

In August 2021, a further firmware update introduced the functionality of 

the magnetometer. Additionally, the caps on capacity were removed, 

allowing data collection of up to ± 2000 ° s-1 and ± 16 g for the gyroscope 

and accelerometer. Deployment of smart stones at the Tebay field site in 

November 2021 used this firmware version (see Chapter 4). However, 

firmware bugs were subsequently discovered, preventing data collection 

across some deployed devices. 

In February 2022, a firmware update resolved many of the issues causing 

loss of data in the previous version, in addition to adding various 

improvements regarding the programming of devices. 

Whilst there have been further updates to firmware, devices throughout 

the remaining research in this thesis use the February 2022 firmware. This 

is to allow comparisons across laboratory experimentation and field 

deployment using an identical setup. This should prevent differences in 

firmware potentially altering data outcomes. This does risk newly 

discovered bugs in the February firmware, and limits further development 

of device capabilities, but for data continuity, and relative stability, the 

device firmware remained unchanged for the remained of work. 

 

3.5 Battery Optimisation 

 

Various battery setups were tested for feasibility with the sensor modules. 

A balance had to be established between battery capacity and physical 

size. While much smaller batteries (e.g., AA) had the advantage of 

requiring less space within the sediments, their limited capacity (e.g., LS 

14500 = 2.45 Ah) raised concerns regarding their longevity during 

extended deployment in the field. Furthermore, as the physical size of the 

circuit board is larger than an AA battery, the compact size is less relevant 

at these sizes.  
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High-capacity D cells (e.g., LS 33600 = 17.0Ah) were considered, although 

the size of the cavity required to contain the battery and device 

components was excessive for desired tracer size. Artificial sediments 

would have to be produced significantly larger than the D50 grain size of 

most field sites, so a smaller battery was selected. 

A compromise between physical size and capacity resulted in the Saft LS 

26500 high energy density C cell being used during field deployment. The 

battery has dimensions of 50 x 35 mm, weighs 48.2 g, and has a capacity 

of 7.7Ah. For laboratory testing, a RS PRO 3.7 V (2.0 Ah) rechargeable 

battery was used, allowing extended short-term use. 

Testing of C cell longevity was undertaken by installing a device with 

typical deployment settings and leaving the device for > 1 month. 

Additionally, the device was periodically moved to trigger data collection 

over this time, this simulated periods of movement expected during 

deployment. The device continued to function throughout testing, with cell 

voltage remaining consistent. This matched the manufacturers expected 

power discharge profiles given known device power requirements and 

confirmed C cell batteries to be appropriate for long term deployment. 

Subsequent deployment of smart stones at field sites (Chapter 5) have 

proven the potential battery life of the C cells in the devices to be at least 

5 months. However, the lifespan of an individual device is contingent upon 

the frequency and intensity of usage during deployment, where frequent 

activation of the IMU will more rapidly drain battery voltage. Multiple 

deployment periods in a range of conditions are necessary to estimate an 

overall average, and site-specific averages of C cell lifespans. This will 

additionally help constrain the impact of changing temperatures on battery 

life.   

 

3.6 LoRaWAN Gateway Experiments 

 

The Miromico devices embedded within the smart stones are connected to 

the wider sensor network via LoRaWAN gateways. Before deployment at 

field sites, the capabilities of these gateways needed to be evaluated for 
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their suitability in forested fluvial environments. To simulate a gateway 

located at a typical vantage point over a fluvial catchment area, gateways 

were installed on the roof of the University of East Anglia Environmental 

Science Building. Following this, range, line of site, and submersion 

experiments were undertaken (Figure 3.4). This was intended to replicate 

potential environmental interruptions encountered in the field, and to test 

the limits of device transmission. 
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Figure 3.4: LoRaWAN gateway experiments investigating the impact of 

Line-of-Sight (LoS) interruptions and submersion in water on transmission 

range with: (a) map of the LoRaWAN gateway and deployment locations 

of devices across the University of East Anglia Campus; (b) deployment of 

device in woodland clearing providing good LoS; (c) deployment site with 

poor LoS under forest canopy and placement under large wood piece; (d) 

additional poor LoS deployment site with placement under multiple wood 

debris pieces. 

The University of East Anglia campus is ideally suited for these 

experiments as the campus contains a large, forested area 500 - 900 m 

from the gateway location. Additionally, the nearby River Yare provides an 

opportunity for submersion testing at a range of depths. 

For the initial range experiments, devices were transported > 800 m from 

the gateway, into a densely forested area on the university campus. Three 
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deployment sites were chosen. Two in forested areas, to test differing 

angles and canopy densities impact on gateway transmission (Figure 3.4c, 

3.4d), and one in a clearing with limited canopy cover (Figure 3.4b). At all 

locations, devices were tucked under or placed inside wood pieces, to 

further simulate line of site interruptions expected in the field. At all sites, 

gateway communication was uninterrupted, and devices successfully 

transmitted data in real time. 

The impact of different depths of water submersion on device connectivity 

was also tested. The River Yare provides an ideal site to test connectivity 

as there is a reasonable line of site to the rooftop gateway. This isolates 

the variable of water submersion on connectivity. The test site was located 

~ 500 m from the gateway. The device was sealed in a waterproof casing 

ready for submersion experiments. 

Initially, connectivity was established to be of high quality above the 

water’s surface, with direct line of site to the gateway. Following this, the 

device was lowered at 5 cm intervals. Communication with the gateway 

was evaluated at each depth, by comparing server upload time stamps 

with internal device time. Connectivity and data transfer speeds remained 

high until depths of 15 cm, when connectivity became intermittent, but 

communication was still possible. At depths of > 30 cm connectivity 

became problematic, with devices unreliably sending data. 

Analysis of the submersion experiments demonstrated that devices could 

transmit underwater, but become unreliable at depths greater than 30 cm. 

This suggests that in deep water devices could struggle to transmit 

movement information in real time. Devices would still function and 

continue to collect movement data until they are positioned closer to the 

water’s surface, when saved data would be transmitted. This may be 

analogous to tracers storing movement data during high flows over winter 

and subsequently transmitting during drier summer months. 

However, the GPS accuracy of the submerged devices was consistently > 

10 m. While unfortunate, the result was not surprising due to known 

difficulties with radio signals propagating underwater accurately 

(Taraldsen et al., 2011). Furthermore, the unreliability of tag GPS 
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embedded in boulders previously (Dini et al., 2021) suggested poor 

performance with limited line of sight to satellites. Consequently, the GNSS 

sensor was disabled in subsequent deployments underwater, as the 

additional drain on the battery could not be justified. 

These results demonstrate the success of using the smart stone devices in 

a range of environmental conditions. Although, the gateway being located 

at a high location on top of a building potentially has an advantageous 

vantage point in comparison to those expected in the field. Additionally, 

gateway to server connectivity through GSM service is likely to be more 

reliable at the university site, although gateways are installed with large 

antennas to compensate for decreased mobile coverage in remote areas. 

 

3.7 Summary 

 

With the successful completion of the smart stone prototypes, stress 

testing of the sediment design, and the completion of battery longevity 

and gateway range experiments, the production of multiple smart stones 

could begin. These would initially be applied in laboratory experiments, 

capturing movement data in controlled environments (Chapter 4), but later 

be deployed at multiple field sites across the UK once COVID-19 Pandemic 

related travel restrictions had lifted (Chapter 5). Additionally, many 

devices would be, and continue to be, used for concurrent research 

alongside the SENSUM project. 
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CHAPTER 4 

4 Characterising Transport Behaviour Using Smart Stones in 

the Laboratory 

 

4.0 Chapter Overview 

 

This chapter describes the application of the LoRaWAN enabled smart 

stones in laboratory settings. First, it covers initial laboratory 

experimentation, where the capabilities of the devices are determined, and 

the ideal firmware settings for capturing sediment movement are 

established for future deployments (e.g., frequency of data collection). 

Second, the experiments undertaken at the University of Plymouth’s dry 

granular slope are described, attempting to match high speed video 

recordings to motion captured through the IMU module within the smart 

stones. These experiments also helped to identify improvements still 

required in the sensor firmware. Finally, experiments with updated 

firmware are undertaken to replicate typical transport behaviour. These 

are used to build an inventory of known “expected” movement data, for 

comparison and verification of subsequent field data in Chapter 5.  
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4.1 Introduction 

 

Smart stones have the potential to significantly enhance our understanding 

of sediment transport behaviour and its controlling factors. Sediment 

transport theory is covered in Chapter 1 of this thesis, with Figure 1.1 

showing the different modes of behaviour (shaking, sliding, saltating, and 

rolling). With existing technologies it remains challenging to detect the 

point of entrainment of individual grains (Dey & Ali, 2017), and even with 

advances in embedded IMU tracers, calculating precise trajectories of 

tracer sediments remains difficult (e.g., Gronz et al., 2016; Dost et al., 

2020). Therefore, the ultimate aim of the rest of this thesis is to use the 

smart stone described in Chapter 3 to broadly characterize bedload 

transport in the field and detect the point of entrainment of grains. The 

next step towards this aim is to characterise different bedload behaviours 

in the laboratory. 

This chapter aims to use experiments replicating typical transport 

behaviour to build a library of known “expected” movement data, for 

comparison and verification of subsequent field data obtained in Chapter 

5. It was hypothesised that specific movement modes would produce 

unique signatures within the IMU data. Once these signatures were known, 

they could be recognised, and interpreted within field data to infer the 

movement behaviour of deployed sediments, without direct observation. 

For instance, data captured from a tracer experiencing a rolling motion 

would have specific identifiers within its accelerometer, gyroscope, and 

magnetometer data. This would be distinct from, for example, a tracer 

sliding along the bed surface during transport, or simply shaking on the 

bed in-situ pre-entrainment. These unique signatures could then be used 

to infer sediment transport behaviour at the field sites in Chapter 5 and 

compare these to hydraulic condition over time, potentially helping to 

establish approximate threshold discharge for entrainment at the sites.   

The following chapter details a range of experiments which correspond to 

the development of the LoRa enabled smart stone, from initial laboratory 

experimentation with each new firmware update (section 4.2 & 4.4), the 

optimisation of device settings for capturing transport behaviour (section 
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4.5), the testing of the capabilities of the smart stones (section 4.3, 4.7) 

and finally covering the characterisation of specific movement behaviours 

using IMU data (section 4.9). 

 

4.2 Initial Laboratory Movement Experiments  

 

With the smart stones produced, and confirmed to be functional in Chapter 

three, initial laboratory experiments were carried out to improve the 

understanding of the device’s response to basic motions within the IMU 

data. This would establish a foundation for recognizing movement 

signatures in field deployments (as outlined in Chapter 5). 

First, simple rotational movements along each directional axis were 

completed, with the relationship between motion, rotational speed, and 

data output being determined. Additionally, progressive impact tests were 

undertaken to test the capabilities of the device, where the maximum force 

needed to exceed IMU read range were determined. 

At the time of these initial experimental runs, the devices were running an 

earlier firmware version (January 2021). This update already provided 

improvements from the sensors used in Dini et al. (2021) by activating the 

accelerometer and gyroscope on the LSM9DS1 IMU sensor. This firmware 

version enabled data collection ranges of up to 2 g and 245 ° s-1 for the 

accelerometer and gyroscope respectively. This restricted interpretations 

of data sets produced by movements with accelerational forces and 

angular velocities above these threshold values (e.g., Figure 4.1) in these 

initial experiments and the subsequent dry lab experiments (section 4.3). 

Additionally, it was not possible to enable the magnetometer, limiting 

orientation tracking of the smart stones. These experiments are still 

described here as they were pivotal in informing future firmware 

modifications, developing experimental setups, and understanding the 

expected behaviour of the smart stones during various transport modes. 
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Following IMU response experiments, initial runs of specific movement 

behaviours (rolling, shaking, sliding) were carried out. These were 

feasibility experiments to determine if data output was quantitatively 

distinct during different movement modes. Additionally, these 

experimental runs established uniform laboratory methodologies across all 

future firmware updates, which considered the ideal device settings and 

limitations in the laboratory. 

 

Figure 4.1: Example data collection using original device firmware 

(January, 2021), with dashed lines representing upper limit of recording 

capabilities at the time (2 g and 245 ° s-1, for the accelerometer and 

gyroscope respectively). 

 

One of the key end-user functionalities of the Nomad devices is the 

flexibility to alter device settings. For instance, the minimum accelerational 

forces needed or the degree of rotation required to exceed the triggering 

threshold of data collection can be set (e.g., 0.2 g, 10 ° s-1). This prevents 



Chapter 4 

 

114 
 

unwanted activation of the device between experiments, or isolates data 

capture from only significant movement events (e.g. Dini et al., 2021). 

Similarly, the duration of data collection, IMU sensor range, and data 

collection frequency were adjusted to fit the needs of the experiments. The 

devices were originally designed to capture animal movement and 

therefore default movement detection settings needed to be adapted to 

capture the transport dynamics of sediments. 

The ability to modify device behaviour was beneficial when formulating 

experimental design, although a large portion of time during these initial 

experiments was dedicated to refining settings to enable the devices to 

capture and send the signature of movement accurately. This process 

needed to be repeated after future firmware updates, to account for 

changes in device behaviour (see appendix C.1 for timeline of firmware 

update availability). Once device behaviour, settings, and expected data 

outputs were better understood and reliably being captured by the devices, 

smart stones were used in a controlled laboratory environment. 

 

4.3 Dry Granular Slope Experiments: University of Plymouth 

 

It was not possible to place smart stones in available flumes as water 

velocities are insufficient to move cobble sized sediment. However, in July 

2021, the smart stones were tested at the University of Plymouth dry slope 

laboratory in collaboration with members of the SENSUM team. The goal 

was to capture rolling and sliding sequences down a slope in a more 

controlled laboratory setting. The laboratory was comprised of a fully 

adjustable granular flow experimental slope (Figure 4.2). The angle of the 

slope could be altered through a winch system, producing different 

transport conditions for the smart stones. Furthermore, a manual release 

mechanism was synchronised with multiple high frequency video recording 

surrounding the slope, allowing the initiation of motion to be matched with 

tracer transport footage.  
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Figure 4.2: University of Plymouth Dry Granular Slope with: (a) a 

simplified sketch of the adjustable slope, demonstrating the winch system, 

camera setup, and release mechanism in the laboratory; (b) lateral view 

from high-definition camera; (c) birds eye view from high frame rate 

camera, displaying the ruled surface for calculating transport velocity. 

 

Recordings were taken with a triple camera setup. Two high definition 

(1920 x 1080 pixels) cameras captured movement from the front and side 

of the slope, with a high frame rate camera (120 frames per second) 

capturing transport from above the slope. This facilitated the verification 

of motion data, by tracking tracer movement and enabling comparison 

with the IMU data output. To support this, the slope surface was ruled, 

which allowed precise transport speed estimations. 

In the laboratory, a range of rolling experiments were undertaken with 

slope angles of 6.5, 10, 15, and 20 degrees. This replicated the movement 
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behaviour expected at the point of entrainment and during subsequent 

transport within the smart stones.  At each change in gradient, multiple 

experimental runs provided a range of movement behaviours. Rolling was 

observed to be qualitatively distinctive across all gradients. With transport 

speeds being positively correlated with increased gradient. As expected, 

increases in slope angle also resulted in greater angular velocity and 

acceleration values recorded by the gyroscope and accelerometer. 

However, due to the device range limitations, maximum capacity values 

were exceeded in all cases, with the rate of change, and duration of missed 

data being longer for higher slope gradients (Figure 4.3). 

As gyroscope and accelerometer values experienced were greater than the 

firmware limits of 245 ° s-1 and 2 g respectively, it was not possible to 

accurately determine a relationship between the IMU data collected and 

the video footage of sediment transport above these thresholds. Therefore, 

it was unfeasible to distinguish between the forces experienced by the 

smart stones during movement, as the extent of the angular velocity and 

linear acceleration experienced by the smart stones could not be 

interpreted. This highlighted the need for an expanded sensor range, as 

forces regularly exceeded the maximum detectable capacity of the 

accelerometer and gyroscope.  

Collision experiments between multiple smart stones were also undertaken 

at the Plymouth laboratory. These experiments expanded upon previous 

experimental runs by adding smart stones that collected IMU data at the 

base of the slope, in addition to the stones that were rolling. These 

attempted to replicate impact forces experienced by sediments associated 

with grain-to-grain collisions during transport, or while resting on the bed 

surface. Impacts from other sediments, or interruptions to transport by 

objects such as wood, or large grains, were simulated. Similar to rolling 

experiments, these involved a range of slope gradients, but with smart 

stones positioned at the base and top of the slope. Sediments were 

intermittently released, and the resultant forces experienced during impact 

between the two tracer groups were calculated from both the rolling and 

stationary sediments. 
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Figure 4.3: Example accelerometer and gyroscope data outputs from 5 ° and 15 ° slope gradients at the University of 

Plymouth’s dry granular slope. The figure demonstrates the extent of missing data due to linear acceleration and angular 

velocity exceeding threshold values of 2 g and 245 ° s-1 and the relative rate of change difference between the slope gradients. 

Threshold values are indicated by red dashed lines. 
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Again, it was not possible to accurately infer a relationship between smart 

stone movement captured from video footage and that recorded by the 

IMU devices as maximum threshold values for the accelerometer and 

gyroscope were exceeded. However, the timing of impact events could be 

established from the data by observing the rapid increase and decrease in 

linear acceleration surrounding the event, although the peak values 

reached remained unknown. This could be achieved both within the 

transported tracers, where a distinctive spike in linear acceleration was 

captured, and within the stationary smart stones, where both gyroscope 

and accelerometer briefly exceed the measurement thresholds 

immediately following impact. 

Overall, experiments undertaken at the Plymouth laboratory had mixed 

success. Video footage of the granular flow slope could not be used to 

directly compare to IMU data sets, primarily due to firmware capacity 

limitations. However, the runs were helpful to inform future laboratory 

work by establishing experimental procedures (e.g., section 4.7). They 

also highlighted the need for an upgraded sensor range. Continued 

laboratory work was put on hold due limitations in sensor capacity, until 

new firmware extending the device capacity became available.    

 

4.4 Updated Firmware  

 

The updated version of the Miromico firmware was available in August 

2021. Updates included the enabling of the magnetometer, increasing the 

range of the accelerometer, gyroscope, and magnetometer to 16 g, 2000 

° s-1, and 16 G (Gauss) respectively, in addition to various software bug 

fixes. As with all new firmware updates, experiments were undertaken to 

test the capabilities of the tags, verify that previous settings continued to 

function correctly, and gain experience with the magnetometer. The 

impact and rotation experiments outlined in section 4.2 were successfully 

replicated and verified consistent device behaviour. This ensured that data 

collection remained unchanged between the firmware versions. 

Subsequently, given the enhancement of the sensor capabilities, a series 

of experiments were conducted to determine the optimal settings for data 
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collection. The primary objective of these experiments was to identify the 

configuration that would yield the highest level of detail in terms of data 

collection, whilst remaining functional during deployment.  

 

4.5 Data Collection Frequency Experiments 

 

The IMU can collect data at a range of frequencies. This allowed devices to 

adapt to different environmental and laboratory conditions. When 

monitoring detailed movement behaviour, high frequency data collection 

is required, although this needs to be balanced with storage requirements. 

At higher frequencies, the smart stones are limited to shorter collection 

periods before reaching maximum flash memory space. Conversely, low 

frequency data collection may not fully characterise movement behaviour 

and could miss important events, such as the precise timings of impacts 

or the moment of tracer entrainment. High-frequency data collection also 

results in large quantities of data, requiring longer upload times via the 

LoRa network. This is often impractical for many applications, such as 

laboratory testing and early warning of movement in the field. This was an 

important consideration when accounting for the objectives of the SENSUM 

project, as rapid response times are needed for hazard management. 

Therefore, different frequency settings were evaluated for the IMU 

sensors. The magnetometer can collect data at seven frequencies (0.625, 

1.25, 2.5, 5, 10, 20, and 40 Hz), while the gyroscope and accelerometer 

can collect data at four frequencies (14.9, 59.5, 119, and 238 Hz) in 

unison. The ideal collection frequency setting would balance providing 

comprehensive interpretations of motion, while collecting the minimal 

amount of data to do so. High frequency data collection using smart tracers 

has been achieved previously. For instance, Šolc et al. (2012) and 

Valyrakis et al. (2010), collected accelerometer data at frequencies of 2832 

and 500 Hz respectively during their smart tracer experiments. However, 

there are limited advantages in increasing data collection frequency to 

these high values, demonstrated by Maniatis et al., (2020) where lower 

frequencies (50 Hz) were found to be adequate for capturing the dynamics 

of particle movements. Higher frequencies are only beneficial in instances 
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of rapid movement where events occur over short time periods (e.g. < 10 

ms). However, most movements in natural environments rarely reach 

speeds that require this level of detail to capture movement (e.g. Drake et 

al., 1988). 

To evaluate the ideal frequency settings to implement in the smart stones 

to capture bedload transport behaviour, experiments were undertaken to 

test the level of detail each frequency setting could achieve. A movement 

arc, transporting the device 180 degrees and 30 cm along the same axis, 

was initially used as an easily identifiable signal within the IMU data. By 

repeating an identical movement pattern (the movement arc), at altering 

data collection frequencies, differences between the level of detail of data 

captured could be easily compared (as demonstrated in Figure 4.4). 

 

Figure 4.4: 180-degree arc used during data frequency experiments to 

distinguish between level of detail captured during movements with: (a) 

example low frequency data collection, with minimal movement detail 

captured; (b) example higher frequency data collection, with greater 

movement detail captured. (See figure 4.5 and 4.6 for example data 

outputs). 
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For the gyroscope and accelerometer, 14.9 Hz was determined to be ideal. 

Increasing to higher collection frequencies (e.g., 59 Hz or 119 Hz) provided 

limited additional insight into device trajectory (Figure 4.5). Rather, it 

increased experimental noise, and at 238 Hz erroneous values emerged in 

the gyroscope data. While there may be advantages to collecting data 

above 14.9 Hz in complex high velocity events, the reduced storage 

capacity, and increased LoRa upload time, did not support its increase in 

the context of bedload transport during extended field deployment periods.  

For the magnetometer 5 Hz was found to be ideal. This frequency allowed 

a sufficient understanding of the device position relative to magnetic north. 

Increasing above 5 Hz added additional experimental noise and did not 

provide further insight into positional information. Frequency settings 

below 5 Hz (e.g., 2.5 and 1.25 and 0.625 Hz) did not fully capture 

movement (Figure 4.6), missing the timing of the initiation of movement 

events during data collection.   

Similarly, basic movements (e.g., rolling, sliding, shaking) were also 

evaluated at a range of collection frequencies, to determine if frequency 

settings matched level of detail requirements.  Based on the analysis 

conducted, it was determined that for optimal data collection, devices 

should be configured to acquire data at 14.9 Hz for the accelerometer and 

gyroscope and 5 Hz for the magnetometer. This frequency was determined 

to be the optimal balance between capturing sufficient detail and 

maintaining efficient storage capacity within the device. These settings 

were applied for all subsequent laboratory experiments and during field 

deployments of smart stones. 
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Figure 4.5: IMU frequency experimental results, demonstrating the range 

of data outputs recorded using an identical movement at differing 

collection frequencies. Data output supports the assessment of ideal 

collection settings which balance level of detail and available device 

storage. With (a) and (b) showcasing collection frequencies for the 

gyroscope and accelerometer respectively. Minimal improvements in level 

of detail are obtained increasing above 14.9 Hz on repeated experiments, 

suggesting increasing collection frequency further is not required.  
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Figure 4.6: IMU frequency experimental results for the magnetometer, 

demonstrating the range of data outputs recorded using an identical 

movement at differing collection frequencies. Output supports the 

assessment of ideal collection settings which balance level of detail and 

available device storage. 5 Hz was found to collect sufficient level of detail 

while requiring minimal storage space. Note the poor detail captured at 

0.625 and 2.5 Hz, missing the initiation of movement, and the minimal 

improvement seen when increasing to 20 Hz. 

 

4.6 IMU Drift and Noise  

 

For an accurate interpretation of data, an understanding of the baseline 

behaviour and any irregularities of the devices needed to be evaluated. All 

IMU sensors experience some degree of drift (Zhao, 2018). Small 

miscalculations during the measurement of linear acceleration and angular 

velocity can accumulate into larger errors, as measurements recorded are 

relative to those previously calculated (Kok et al., 2017). Therefore, it was 

imperative to quantify to what extend this was occurring within the Nomad 

IMU sensors. This could then inform the likely degree of uncertainty during 

interpretations of movement data.  

Baseline IMU data (no activity) was needed to evaluate the extent of drift 

measured by the smart stones. To produce this, data collection was 
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triggered, and devices were programmed to continuously record for ≥ 30 

seconds. After triggering, data was collected without subsequent 

movement. This captured any internal deviations recorded by the device, 

unrelated to movement. This provided examples of background IMU values 

and allowed gyroscope drift from 0 ° s-1 to be estimated.  

Averaging deviations from baseline, gyroscope drift was found to be 

minimal. Drift typically was within ± 3 ° s-1 across all test runs. This 

suggested that gyroscope data interpreted during laboratory experiments, 

or data derived from field deployment, can be assumed to be roughly 

within 3 ° s-1 of true rotational values. Therefore, drift was likely negligible 

when interpreting sediment movement, where associated changes in 

angular velocity were usually an order of magnitude larger than 3 ° s-1. 

Additionally, magnetometer drift was analysed. Recorded deviations from 

baseline were also found to be minimal (± 0.0232 G). While sensor drift is 

unlikely to be a significant source of error within the magnetometer, 

objects containing ferrous metal, in the laboratory, or environment, could 

potentially distort data (McFee et al., 1994). At the field deployment sites, 

there is little that can be done regarding eliminating ferrous materials, 

although in the laboratory, experiments are conducted away from 

magnetic objects to preserve magnetometer accuracy. 

Due to the natural gravitational forces experienced by the accelerometer 

when stationary, baseline linear acceleration values consistently display 

readings of approximately 1 g across the device axes. The primary axis 

experiencing this is dependent on the position of the device relative to the 

direction of gravitational force. These results suggest when interpreting 

laboratory and field data, and the absolute position of the device is not 

known, it must be assumed that any raw data values < 1 g could be 

resulting from gravitational force, rather than resulting from changes in 

linear acceleration. Filtering this gravitational effect is theoretically 

possible, if alignment relative to gravity is known. Unfortunately, when 

dealing with long term deployments in the field, without direct 

observations, absolute estimations of device positions become unfeasible. 

As a result, it becomes difficult to continuously correct the acceleration 
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values. Therefore, when interpreting linear acceleration data sets, a 1 g 

threshold must be considered. 

 

4.7 LoRa Data Transfer 

 

Data transfer from the Nomad sensor board can be achieved through two 

main methodologies. Direct upload from the device, using a USB serial 

connector, or data transfer wirelessly, using LoRaWAN transmission. 

Within the laboratory, multiple gateways were available for testing the 

capability of LoRaWAN transmission, and the relative speed of data 

transfer. This provided an opportunity to compare wirelessly uploading 

data to transferring data directly via the USB serial cable. 

Each transfer approach was evaluated for its effectiveness in a laboratory 

environment, with the unique advantages and disadvantages of both 

methods being determined. Using LoRaWAN removes the need for device 

extraction from the smart stone case between tests, as both data transfer 

and setting alterations can be performed over the air. Furthermore, real 

time data retrieval via LoRa allowed device performance to be instantly 

evaluated, as time stamps are embedded within collected IMU data. These 

conditions also most similarly matched the methodology planned during 

long term deployment in the field. 

Despite this, LoRaWAN was found to have an increased risk of erroneous 

data during testing, as there is the potential for data corruption during 

payload transfer. Although, this appears to be minimal with the most up 

to date version of the firmware. Additionally, data transfer speeds are 

significantly slower, particularly when using high frequency data collection. 

While this is not problematic during field deployment, it can be detrimental 

when in a time constrained laboratory setting. For instance, single 

experimental runs, with less than one minute of movement activity, can 

take multiple hours to fully upload.  

Transferring data via the USB serial cable is comparatively faster, only 

requiring 2 – 10 seconds to upload the contents of the device’s memory. 

In addition, there is no risk of data corruption. However, between 
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experimental runs, additional time is needed for setup, as the module must 

be removed from the smart stone before connecting the serial cable. This 

can also cause unwanted triggering of data collection, with experimental 

noise being captured by the devices when removing the smart stone 

housing. Therefore, transferring data via USB requires more time during 

analysis to filter movement not associated with experimental runs, and 

any problems with the devices or data are only discovered after upload. 

With both approaches being evaluated in the laboratory, the USB serial 

cable approach became the standard method, primarily due to time 

constraints. LoRaWAN transfer is applicable in field environments, as 

movement is often sporadic, with long static periods allowing time for data 

transfer. This contrasts with the needs of laboratory experimentation, 

where multiple individual movement events needed to be triggered and 

recorded over short time periods. 

Difficulties in isolating experimental runs from background setup noise 

within the data were resolved using a known rotational signal performed 

immediately prior to and following each experimental run (Figure 4.7). This 

double rotation is distinct from the surrounding experimental noise and 

laboratory data and was effective for indicating the initiation and end of 

the data collection. 
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Figure 4.7: Double rotational signal used to indicate the beginning and 

end of individual experiments, with the distinctive double peak in the 

accelerometer data and the associated changes in the gyroscope and 

magnetometer. Periods of rotation highlighted in red with transition to 

second rotation highlighted in blue. 

 

4.8 Revised Laboratory Experimentation  

 

Once device settings were optimised, the LoRa gateways tested, and an 

understanding of sensor baseline behaviour was established, drop tests 

and high velocity rolling experiments were completed. These were used to 

assess if the expanded range of the devices (16 g and 2000 ° s-1) would 

capture all movement smart stones would potentially experience in the 
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field. Across all experiments, the extended maximum ranges were not 

exceeded, with maximum angular velocity and linear acceleration recorded 

being 1217 ° s-1 and 12.12 g respectively. 

The behaviour of the updated magnetometer was also investigated. 

Rotational experiments along a single axis were used to determine the 

relative response of the magnetometer. Following this, rolling experiments 

were used to achieve values closer to those expected during deployment. 

Once these initial feasibility tests were completed, the experiments 

characterising individual transport behaviours could begin. 

 

4.9 Transport Behaviour Replication in the Laboratory  

 

The rationale behind laboratory experiments was to build an IMU data 

inventory of specific movement types, typical of coarse-grained sediments 

in natural fluvial environments. These ranged from the simple shaking of 

sediments, i.e. replicating protruding clasts in flow conditions prior to 

entrainment, to transport conditions after incipient motion, via rolling or 

sliding. These data sets are intended to inform the analysis of field data, 

providing a greater understanding of tracer movements captured during 

deployment.  

To simulate high velocity movement events where sediments are abruptly 

interrupted, e.g., by a stationary object, drop and collision experiments 

were carried out. These were designed to emulate the conditions of a 

tracers clashing with other coarse-grained particles, or by being 

interrupted during transport by large wood pieces. In addition, dropping 

motions experienced by smart stones in the laboratory were intended to 

simulate the deposition of tracers into scour pools, where tracers were 

dropped from a range of heights from 15 – 30 cm. 

Shaking experiments were used to simulate environmental conditions 

before entrainment where individual grains will shake in the bed pocket as 

they approach the energy required to initiate entrainment (e.g., Garcia et 

al., 2007). This was achieved either with individual sediments being 



Chapter 4 

 

129 
 

manually vibrated, or through a collection of sediments being vibrated at 

a set frequency in a container. 

To simulate the conditions of a tracer being transported along a bed 

surface through rolling, a similar setup to the Plymouth experiments was 

used. A slope was designed and constructed with an adjustable height, and 

a high frame rate camera was set up to capture transport. This allowed a 

range of rolling speeds to be captured by altering the slope gradient, 

emulating different fluvial conditions. Velocities of transported tracers 

ranged from 0.6 - 0.9 m s−1 across all experiments. Additionally, barriers 

were implemented to impede sediment movement and confine rolling to 

simulate bed conditions.   

The transport of sediments via a sliding motion was also investigated. This 

was replicated through dragging smart stones across a simulated bed 

surface with consistent contact with the ground, maintaining the original 

orientation of the sediment by pulling the tracer via a taped string attached 

to the face of the smart stone.  

Across all laboratory experiments, qualitative descriptions of the data 

output from the IMU sensors were beneficial for identifying distinct 

responses to movement events within the smart stones. i.e. the qualitative 

description of overall shape, length, and distinct peaks within recorded 

data can be used to initially understand tracer movements and interpret 

transport mode. Furthermore, the rate and magnitude of change in each 

individual sensor can be unique to specific movement behaviours (e.g., 

continuous oscillations within the magnetometer indicating rotation). 

These initial interpretations are further supported by quantitative data 

(e.g., linear accelerational values recorded during shaking are less than 

those recorded during sediment collisions). By combining qualitative and 

quantitative information derived during laboratory experimentation, 

unique signatures can be produced for each movement mode experienced 

by the smart stones. 
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4.10 Laboratory Methodology 

 

4.10.1 Impact Experiments  

 

In total, 30 impact events were recorded and evaluated. Collision forces 

were replicated by allowing smart stones to drop under gravitational force 

from a range of heights. Events were categorised into medium impacts, 

simulated by dropping tracers at a height of 15 cm, and high impacts, 

which were simulated with drop heights of 30 cm. 

All events were captured using video recordings, which provided a direct 

comparison between observed tracer movement and IMU data, allowing 

verification. All resultant forces, from free fall, impact, and subsequent 

motion were recorded until the cessation of movement, with the moment 

of collision observed to be distinct within the data.   

 

4.10.2 Rolling Simulation Experiments   

 

Rolling experiments were designed to replicate typical bedload transport 

conditions experienced by the smart stones, immediately following 

entrainment. They also provided a direct comparison to the granular slope 

experiments undertaken at the University of Plymouth (section 4.3), but 

with updated device firmware capable of capturing the full range of forces 

experienced by the smart stones. 

Each experimental run on the UEA laboratory slope was recorded using a 

stationary high-definition camera, recording at 60 frames per second. This 

was located at the base of the slope and captured all transport within its 

field of view. Barriers were installed along the perimeter of the slope, 

ensuring sediments would be transported down its full length. In total, the 

slope had a length of 1.2 m and a gradient of 10 ° was used during all 

recorded experiments. 

 

4.10.3 In-Situ Shaking Experiments  
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Shaking experiments emulated environmental conditions before the 

initiation of entrainment, from minor vibrations caused from low flow 

conditions to forces experienced immediately prior to incipient motion. To 

simulate these, different experimental setups had varying intensity levels 

of shaking, categorised into low, moderate, and high, based on the 

vibrational force applied during each experimental run. Where, increasing 

intensities of shaking intended to simulate sediments in conditions 

progressively closer to the threshold of entrainment. 

 

4.10.4 Sliding Experiments  

 

Transport without particles pivoting can occur when drag force from 

streamflow is applied to particles uniformly (Dey and Ali, 2017). Sliding 

experiments were designed to simulate the transport of individual 

sediments without a rotational component, where constant contact 

between the bed surface and smart stones remains throughout movement.  

 

4.11 Experimental Results  

 

 4.11.1 Impact Results 

 

A rapid spike, or cluster of activity, from the accelerometer are a prominent 

feature seen during collision response (Figure 4.8). These are observable 

immediately after tracer freefall, which is identified by 0 g being recorded 

across all accelerometer axes. At impact, accelerational forces of > 2 g 

were recorded during every collision and are followed by a rapid return to 

baseline values. These spikes of activity are also replicated within the 

gyroscope data, where background values rapidly increase to over 200 ° 

s-1 followed by a return to base line (Figure 4.8). The relative size of these 

spikes differs on average between the medium and high impact events, 

where tracers dropped from greater heights have distinctly larger peaks. 

In contrast, magnetometer data is not an ideal indicator of impacts, as the 

relative position of tracers are not consistent between individual 

experiments following impact.  



Chapter 4 

 

132 
 

Peak accelerometer and gyroscope values recorded were 4.24 g and 

510.79 ° s-1 respectively (Table 4.1). As expected, these values were 

produced during one of the high impact experiments. In each case, a 

change from baseline, to peak values occurred in < 500 ms, with the rapid 

rate of change being indicative of the point of impact. Not every axis 

experienced a rapid increase in recorded values during impact (i.e., across 

X, Y, and Z). Although at least one axis experienced a rapid increase in 

both the gyroscope and accelerometer during every collision. Additionally, 

on average, gyroscope peak values were greater during the high impact 

experiments for every axis. Whereas the accelerometer peak values were 

greater in the X and the Y axis (Table 4.1). 

Changes in the magnetometer values lack a distinctive signature during 

impact experiments, as their values represent orientation relative to 

magnetic north, rather than a change from a baseline value. Despite this, 

the moment of impact can often be interpreted from a rapid change of > 

1 G in at least two of the magnetometer axes. This often resulted from the 

smart stone rotating immediately after a collision, but this effect was not 

consistent across all impact events.  

 

Table 4.1: Peak and mean values recorded during impact experiments, 

displaying maximum and average values for the X, Y, and Z axis, separated 

into 15 and 30 cm experimental sets. N.B. Overall maximum forces 

measured boldened, and mean values adjusted for negative results. 
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Figure 4.8: Resultant data output from smart stone impact experiments, 

highlighting the rapid spike in the accelerometer of > 2 g at moment of 

impact and its associated gyroscope activity. (a) and (b) represent 

examples of medium impacts (15 cm free fall), and (c) represents an 

example of high impact (30 cm free fall). Note the 0 g readings in the X, 

Y, and Z axis of the accelerometer prior to impact resulting from the lack 

of gravitational force readings on the accelerometer during freefall. 

 

 4.11.2 Rolling Results 

 

All three sensor components of the IMU device provided distinctive signals 

during rolling experiments. Gyroscope measurements were unique due to 

the progressive increase in collected values, stabilisation, and return to 

baseline (Figure 4.9). This represents the relative acceleration immediately 

after entrainment, reaching a peak transport velocity, followed by a 

gradual deceleration at the base of the slope. As the gyroscope measures 

relative change in angular velocity, these single large peaks are indicative 

of constant movement, and therefore can be used to infer full tracer step 

length. 

The magnetometer results were equally distinctive, as the rapid shifting of 

values in an oscillatory pattern matches the relative position of the tracer 

as it rotated down the slope. The rate of positional change, as 

demonstrated by the magnetometer, is unique to transport via rolling. For 

example, magnetometer alone can be used to estimate the number of 

rotations experienced by the tracer. This is achieved by observing the 

number of peaks and troughs along a single axis in the data sets. This was 

verified from observations from video recordings of the rolling events. For 
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example, the seven main peaks recorded in the Y axis (Figure 4.9) align 

with seven full rotations experienced by the smart stone as it was 

transported downslope. 

The data output from the accelerometer during rolling was also distinctive. 

Linear acceleration was the highest recorded across all movement 

behaviours replicated in the laboratory. Relative size of individual 

accelerometer peaks matched gyroscope intensity, with a rapid increase 

at the initiation of entrainment, followed by a progressive decrease as 

transport speeds reduce.  

Peak accelerometer values recorded throughout rolling experiments all 

exceed 4.5 g in at least one axis during transport (Table 4.2). Similarly, 

recorded peak gyroscope values all exceed 1000 ° s-1 on at least one axis 

(Table 4.2). While rolling was initiated from identical positions at the top 

of the slope, the preferred axis of rotation deviated after each experimental 

run. This is reflected in both the gyroscope and accelerometer data, where 

the primary axis with the highest recorded values alternates each run. For 

example, the gyroscope data during run 2 and run 5, Xg > Yg, Zg, and in 

the accelerometer during run 3 and run 6 Xa > Ya, Za. Although, in run 1 

the Z axis dominates across both the gyroscope and accelerometer. This 

suggests a diversity in rolling behaviour, where tracers are unlikely to 

always be transported along the same axis. 
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Table 4.2: Maximum accelerometer and gyroscope values recorded during 

each rolling experiment.  

 

*Xg and Xa indicate X axis gyroscope and X axis accelerometer respectively 

 

 

 

Figure 4.9: Example data outputs of rolling experiments demonstrating 

key distinctive features of movement behaviour. With a single large peak 

in gyroscope representing continuous rolling, with gradual increase, 

stabilisation, and progressive return to original values, peak accelerometer 

values matching maximum transport speeds, and oscillatory pattern within 
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the magnetometer data matching the position of the tracer rotating down 

the slope.  

 4.11.3 Shaking Results  

 

The accelerometer, gyroscope, and magnetometer all displayed distinctive 

characteristics during the shaking experiments. Particularly, the gyroscope 

and accelerometer sensors produced repeated spikes from data baseline. 

These matched the frequency of the shaking experienced by the smart 

stones and aligned with video recordings. Additionally, the peak values 

measured were positively correlated with the intensity of the shaking 

experienced by the smart stones. A clear, rapid, oscillation pattern is 

observed within the plotted data, this repeated sequence is distinct to 

tracer shaking behaviour (Figure 4.10).  

The magnetometer is ideal for identifying shaking without entrainment, as 

values recorded remain relatively constant, as orientation change is 

limited. This is a distinctive feature compared to other movement 

behaviours replicated in the laboratory. 

These characteristic signals within the IMU data, in combination, produced 

a unique signature of shaking. This suggested it was possible to determine 

if a tracer is remaining stationary on a riverbed pre-entrainment, with only 

minor vibrations being experienced, and without rotation occurring. 

Peak accelerometer and gyroscope values recorded during shaking are 

typically lower than other movement types recorded.  During these 

experiments accelerometer and gyroscope values do not exceed 3.50 g 

and 175 ° s-1 across all experimental runs. As expected, the maximum 

accelerometer and gyroscope values of 3.31 g and 163.87 ° s-1 were 

recorded during the higher intensity shaking experiments (Table 4.3). 

Similarly, the lowest intensity shaking experiments had peak values as low 

as -0.61 g and -15.4 ° s-1, demonstrating the distinction between shaking 

intensity levels observed in the data. 

The magnetometer data during shaking does not deviate significantly (< 

0.2 G) from original baseline values. This, alongside other characteristics 

described, appears to be the ideal identifier for this type of movement. 
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Table 4.3: Maximum values recorded during each shaking experiment, 

demonstrating the relative relationship between shaking intensity and 

accelerometer values. 

 

*Xg and Xa indicate X axis gyroscope and X axis accelerometer respectively 

 

Figure 4.10: Accelerometer, gyroscope, and magnetometer response 

during shaking experiments with varying intensities of shaking. With clear 

oscillating patterns observed in gyroscope and accelerometer data and 

distinctive lack of change in magnetometer values. (a), (b), and (c) 

represent light, moderate, and intensive shaking respectively. 

 

 4.11.4 Sliding Results  

 

Transport of the smart stone across the experimental surface was not 

continuous and smooth, where changes in friction between the tracer and 

surface periodically increased and decreased transport velocity. This was 

reflected within the gyroscope and accelerometer data sets, where periodic 
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spikes of activity matched moments of trapping and release observed 

during transport (Figure 4.11). 

Similar to shaking experiments, magnetometer measurements were 

relatively stable, with only minor deviations in orientation over time. This 

clearly distinguishes this form of transport from rolling, where orientation 

change is a primary indicator. 

Linear acceleration and angular velocity remained relatively low 

throughout sliding experiments, with peak gyroscope and accelerometer 

values recorded reaching 271 ° s-1 and 2.88 g respectively.  

Magnetometer data during sliding did not deviate significantly from pre-

entrainment values, with < 0.2 G change typical during most transport 

periods, although limited orientation change is observed during some 

experiments (Figure 4.11). 

Minimal magnetometer activity, in addition to relatively low linear 

acceleration and angular velocity values recorded during transport, 

appeared to be the ideal identifier for this mode of movement. With the 

smaller range of values captured specifically distinguishing sliding from 

rolling behaviour. 
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Figure 4.11: Resultant data output from a selection of sliding 

experiments, highlighting the distinctive lack of change within the 

magnetometer, and the periodic trapping and release observed during 

transport being reflected as spikes of activity in both the gyroscope and 

accelerometer. 

 

4.12 Summary Characteristics and Unique Movement Signatures 

 

Distinctive responses from the IMU sensor could be characterised and 

linked to specific transport behaviour of the smart stones (Table 4.4). 

Unique signals within the accelerometer, gyroscope, and magnetometer, 

either individually, or in combination, was indicative of all movement 

modes investigated (e.g., Rolling, sliding, shaking, and impacts). Both 

qualitative interpretations from data, (e.g., patterns in device response), 

in addition to quantitative evaluations (e.g., range of values, rate of 

change, and thresholds) were used to initially identify and categorise 

movement. Subsequent experimental runs verified these IMU signatures 

and built an inventory of data sets available for comparisons to field 

deployment data. 
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Table 4.4: Distinctive characteristics of IMU data output, derived from 

laboratory experiments of specific movement types. 

 

 

Comparative analysis between data sets simulating tracer transport, and 

those replicating pre-entrainment conditions were typically differentiated 

by the range of accelerational and rotational forces experienced (Figure 

4.12). Furthermore, rapid changes in orientation interpreted by the 

magnetometer were highly indictive of transport events. Although, 

transport by sliding retained tracer orientation, but exceeded the typical 

accelerational values expected from a stationary sediment (e.g., during 

shaking). 

These laboratory experiments suggested that it should be possible to 

review data sets obtained from the field and interpret the likely movement 

mode without direct observations. Particularly, data collection caused by 

pre-entrainment conditions (shaking) appears to be unique compared to 

other transport conditions, supporting the estimation of the timing of 

incipient motion for IMU data. While it is possible for smart stones to 

experience collision forces while stationary, the signature within the 

 ACC GYRO MAG 

Collision 

Rapid spike at 

impact 

(0 – 4.37 g in < 

0.5 s) 

Rapid spike at impact 

(0 – 510.79 °/s in < 

0.5 s) 

Not distinctive 

Shaking 

Oscillating peaks 

and troughs 

(max = 3.3 g) 

Oscillating peaks and 

troughs 

(max = 156 °/s) 

Typical change 

in value (< 0.2 

G) 

Rolling 

Multiple high value 

peaks during 

motion (max = 

11.81 g) 

Single large GYRO peak 

(max = 1580.74 °/s) 

Rapid 

continuous 

oscillations 

Sliding 
Low peak values 

(max = 2.88 g) 

Low peak values 

(max = 271 °/s) 

Typical change 

in value (< 0.2 

G) 
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gyroscope and accelerometer is always short-lived and can be 

distinguished from data derived from transport. 

Threshold values could be determined for the gyroscope and accelerometer 

to distinguish between movement categorised as entrainment via rolling 

and other movement modes (e.g., 6 g and 600 ° s-1, Figure 4.12). 

However, its applicability to data derived from field deployment may be 

limited due to the differences in the laboratory setting and natural 

environments. 

 

Figure 4.12: Range of gyroscope and accelerometer data experienced in 

the laboratory for each movement mode investigated, demonstrating the 

divide between transport and non-transport movement modes. N.B. values 

have been adjusted for negative values to allow full comparison all data 

collected (absolute values have been used).  
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4.13 Limitations of Laboratory Experimentation  

 

Simulating expected modes of transport, and the associated accelerational 

and rotational forces experienced by the smart stones, can only 

approximate natural environments. Data sets derived from laboratory 

experimentation only provide analogous information to those obtained 

during field deployment (Recking, 2012). It was not possible to replicate 

all variables expected, primarily the forces associated with the natural 

mobilisation of sediments, and the influence of water on transport 

behaviour. Additionally, the impact of transport over natural bed material, 

the process of sediments saltating, and the full range of flow conditions 

could not be accurately reproduced in a laboratory environment. This 

highlighted the need for smart stone deployment in the field. Despite this, 

by accumulating an inventory of data sets associated with specific 

movement modes of the smart stones, interpreting field data without 

direct observation becomes potentially possible.  
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CHAPTER 5 

5 Deployment of Smart Stones at UK Field Sites 

 

5.0 Chapter Overview 

 

This chapter describes the deployment of the smart stone tracers at three 

UK field sites, the data obtained during deployment, the challenges and 

limitations encountered, and comparisons to the dry laboratory library of 

data sets discussed in chapter 4. Firstly, short term experimentation at the 

“controlled” field site, Branscombe Beach, is covered. Where the natural 

mobilisation of tracers is achieved and recorded in a wood free 

environment, replicating dry laboratory transport experiments in a non-

simulated setting. Secondly, the long-term deployment of smart stones at 

a Natural Flood Management (NFM) research site with anthropogenically 

placed woody debris (Tebay Gill) during the winter of 2021 – 2022. Finally, 

I present the long-term deployment of LoRaWAN-enabled smart stones at 

Yarner Woods throughout 2022, allowing for monitoring of natural woody 

debris in combination with the smart stones. This final site is also used to 

assess the functionality of real time continuous monitoring of tracer 

movement behaviour relative to flow conditions throughout the year.  
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5.1 Introduction 

 

The smart stone dry laboratory experiments described in chapter 4 yielded 

an inventory of tracer movements, each with unique identifying 

characteristics within the IMU data. These characteristics represented 

specific movement types; shaking, rolling, sliding, and collisions. This was 

an essential first step in understanding how smart stones could help 

characterise typical bedload transport behaviour and detect the point of 

entrainment of grains. However, these findings need to be verified with 

data from the transport of tracers in natural flows, as forces experienced 

in geomorphologically complex environments may not be apparent in the 

laboratory. Therefore, this chapter covers a range of deployment sites that 

were selected for their varying environmental conditions. These sites 

include those with natural woody debris (section 5.6), anthropogenically 

placed woody debris (section 5.4), and a wood-free site (section 5.2) for 

controlled natural transport experiments (Figure 5.1). By studying these 

differing sites, it is possible to gain a more complete understanding of the 

effects of different types of woody debris on the transport of grains. This 

is critical for developing effective strategies for managing bedload 

transport using NFM techniques across a range of environments. 

To validate laboratory data sets, smart stones were initially deployed at 

Branscombe Beach, a wood-free site chosen to replicate controlled 

laboratory conditions but with natural flows over short-term deployment 

periods. This allowed for a direct comparison between the laboratory data 

and the field data, providing a means of verifying the accuracy and 

reliability of the laboratory results. By conducting experiments at a wood-

free site, it was possible to isolate the effects of the natural flow conditions 

on the movement of the tracer particles, without the complicating factors 

introduced by the presence of woody debris. This provided a useful control 

for the subsequent deployment at sites with varying amounts and types of 

woody debris. 

For the second field experiments, the smart stones had long term 

deployment at two different sites and compared two different data storage 

methods: one using LoRaWAN-enabled smart stones, and the other using 



Chapter 5 

146 
 

direct storage of data on the devices. At the first site, Tebay Gill, the smart 

stones were configured to store data directly on the devices, rather than 

transmitting it wirelessly. At the second site, the smart stones were 

equipped with LoRaWAN technology, which allowed for the wireless 

transmission of data to a central server. This enabled real-time monitoring 

and analysis of the tracer particle movements, and allowed for rapid 

detection of any changes in flow conditions. Both methods had their 

advantages and encountered specific challenges, which are described in 

this chapter. 

The findings within this chapter contribute to a better understanding of the 

use of smart stone devices within an integrated IoT LoRaWAN network, 

and have implications for their successful implementation in early warning 

systems in remote environments. By studying the performance of these 

devices under different conditions, it is possible to identify key factors that 

affect their reliability and accuracy. This information can be used to 

optimize the design and deployment of smart stone networks, improving 

their effectiveness at tracking movement behaviour and as early warning 

systems in remote environments. 
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Figure 5.1: Location of the three UK smart stone sites, from the wood 

free Branscombe Beach, to the natural woody debris site Yarner woods, 

and the anthropogenic wood site Tebay Gill. Examples of deployment 

streams segments are embedded onto the map.  
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5.2 Branscombe Beach, South Devon   

 

 5.2.1 Site Overview 

 

The Branscombe Beach deployment site was selected to test the 

capabilities of the smart stones in a controlled natural environment. The 

site, located approximately 30 km southeast of Exeter, is an incised stony 

beach intersected by a stream that flows through 20 - 25 m of pebble-

cobble sized grain material before reaching the ocean (see Figure 5.1). By 

deploying the smart stones at this site, it is possible to gain a better 

understanding of their capabilities and limitations in a natural 

environment. 

The morphology of the stream changes over time in response to tides and 

current flow rates. However, it was consistently observed that particles of 

a similar size range to the smart stones (pebble - cobble) were transported 

downstream. This natural flume is therefore an ideal laboratory for testing 

the smart stones in a controlled environment where deployment, 

transport, and recovery can be completed over a short period. This allows 

for the study of the movement of the tracer particles under a range of flow 

conditions, without the need for complex and time-consuming 

experiments. The controlled conditions of the natural flume make it a 

useful tool for studying bedload transport and the performance of smart 

stone devices in natural flows. 

The data obtained from the Branscombe experiments built upon the 

knowledge gained from dry laboratory experiments by allowing 

correlations between IMU data and specific movement characteristics 

observed at the site. Compared to dry laboratory experiments, the 

Branscombe site has several advantages. For example, it is difficult to 

replicate the effects of water resistance and lift forces on tracer sediments 

in the laboratory, or to study how LoRa connectivity will perform in an 

uncontrolled environment. Additionally, the site allows for the study of 

non-anthropogenically produced step-and-rest transport behaviour. These 

factors make the Branscombe site a valuable resource for expanding our 
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understanding of bedload transport and the use of smart stone devices in 

natural flows. 

 

 5.2.2 Methodology 

 

Device settings applied to smart stones deployed at Branscombe Beach 

were identical to those used during subsequent field deployments (e.g., 

Yarner Woods).  This facilitated direct comparisons of data between all 

deployment sites. The full list of settings applied is provided in the 

appendices (B.1). 

To establish the feasibility of using the smart stones at the deployment 

site, a portable gateway was deployed to establish LoRa connectivity to 

the study area. The smart stones were activated, and data collection was 

triggered on the devices to confirm that they would capture movement 

data and that mobile coverage was sufficient for data transfer and upload. 

Additionally, the smart stones were initially added to the stream to confirm 

that flow rates were sufficient for the natural mobilization of the tracer 

sediments. 

Once these initial tests were completed, a segment of the stream was 

selected for smart stone deployment, providing a potential transport 

distance of more than 20 m between the starting location and the ocean. 

The smart stones were positioned at their deployment locations and 

cleared of data in preparation for the first experiment. Each experimental 

run involved securing the tracer in place prior to recording, then 

simultaneously initiating recording and releasing the smart stone into the 

flow. 

High definition (1920 x 1080) footage of transport was taken using a 

Oneplus AC2003 camera, recording at 60 frames per second. The 

movement of the tracers was continuously monitored and recorded until 

movement stopped naturally, or until manual interruption of transport was 

required to prevent tracer loss to the ocean. 
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Due to the step-and-rest behaviour of sediments during bedload transport, 

movement was considered the end of the experimental run if transport did 

not occur for more than 1 minute. The smart stone was again secured in 

place at its final depositional location, preventing further data collection 

from being triggered that was not associated with recorded movements. 

After securing the smart stones, they were allowed sufficient time between 

runs for data upload via the LoRaWAN network. Once the IMU data had 

been transmitted to the server, a command downlink was sent to reset 

and clear the smart stone of data, preparing the device for subsequent 

experimental runs. This process was repeated for all the smart stones 

deployed at Branscombe. In time-constrained circumstances, where LoRa 

upload was not feasible (e.g., the final run of a day), data was extracted 

from the smart stones using a USB serial cable. 

Aligning the retrieved IMU data from the smart stones with the video 

recordings was possible by matching the moment of the initiation of 

movement, the length of the run, and the frequency of data collection. This 

was supported by verification with time stamps embedded within the IMU 

data and camera. This allowed specific movement patterns observed (e.g., 

rolling, steps, and rests) to be matched with their associated response 

within the data. 

The site was visited on three occasions in 2022 (February, May, and 

October), repeating experimental runs in different flow conditions. 

Consistent methodologies were employed during each visit, with individual 

movement events being recorded by a single smart stone, before resetting 

the device upstream for the next movement event. However, on the final 

visit, the methodology for data transfer deviated due to limitations in data 

transfer speeds (see section 5.2.7). 

 

5.2.3 February Site Visit  

 

The field site was first visited on February 28, 2022. This initial visit allowed 

for the evaluation of the stream, determining its feasibility for use in smart 

stone transport experiments and as an analogous natural laboratory for 
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comparison to the dry slope experiments. Entrainment and transport of 

sediments larger than the smart stones were observed in the current flow 

conditions, supporting the decision to deploy smart stones at the site. 

Sediments were observed exhibiting step-and-rest behaviour, with 

transport primarily by rolling along the bed surface, although smaller 

pebble-sized sediments were observed saltating along the bed.  

On this initial visit, the LoRa gateway had intermittent mobile coverage 

dropouts and unreliable connectivity with the smart stones. It was later 

determined that the connectivity issues were a result of a faulty mobile 

gateway, although this was not understood at the time. Despite these 

challenges, multiple experimental runs were attempted to test the 

feasibility of deploying at the site. Although the connectivity issues limited 

the success of the experiments. 

Deploying the smart stones into the flow did result in entrainment and 

transport, with some transport events lasting more than 15 m. The tracers 

primarily rolled downstream along a single axis, while also displaying step-

and-rest behaviour. However, the smart stones only successfully 

transmitted data packets infrequently, making it difficult to match the 

recordings of transport with the data packets. It is likely that the failure of 

data transfer was due to the gateway connectivity problems experienced, 

making it impossible to interpret the data obtained as a specific movement 

behaviour. 

Despite the difficulties faced during the initial experimental runs, these 

experiments confirmed that the site was ideal for further investigation. The 

bed conditions and flow rates were sufficient to transport the smart stones, 

and the sediments displayed a range of movement characteristics that 

were difficult to replicate in the dry laboratory (e.g., step-rest movements, 

saltation). Additionally, the deployment methodology did not damage the 

devices, confirming that the smart stones could withstand the 

environmental conditions likely to be encountered during field deployment. 

These findings supported the decision to continue with the experiments at 

the site, in order to gain a better understanding of the capabilities and 

limitations of the smart stones in a natural environment. 
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Data derived from experiments in February appears to be erroneous. Only 

27 lines of gyroscope and accelerometer data were successfully uploaded 

to the online server for extraction. The data that was transferred displays 

minimal movement, covering only a few seconds of transport and does not 

reflect any recognizable movement modes. It is assumed that the faulty 

gateway either resulted in data packets being received but not uploaded 

to the storage server, or that the smart stones could not transmit due to 

an internal fault with the gateway. The connection between the gateway 

and the online servers is assumed to be the point of failure, as no data 

was left available on the tags for cable upload following the experimental 

runs. Mobile coverage was independently verified to be sufficient with 

other devices in the area, so a return to the site with a new gateway was 

necessary to repeat the experiments. These issues highlighted the 

importance of reliable GSM connectivity in the field, as potential data loss 

is possible in the case of connection failure partway through data transfer. 

 

 5.2.4 May Site Visit  

 

On the 6th of May 2022, the Branscombe Beach site was again used for 

natural mobilisation experiments using the smart stone tracers. At the site, 

gateway connectivity was established, mobile coverage was confirmed, 

and initial testing demonstrated that data was successfully being 

transmitted to the online server. This confirmed that the gateway issues 

encountered during the previous visit were resolved. This allowed the 

experiments to proceed without interruptions, ensuring that data was 

collected and transmitted reliably, and allowing for more accurate and 

meaningful analysis of the transport data obtained. 

Flows were still entraining pebble to cobble size particles. Initial test runs 

without data collection successfully confirmed that the flow rates were 

sufficient to transport the smart stones.   

In total, three experimental runs were conducted at the site. The first and 

second runs utilized LoRaWAN transmission for data transfer, while the 

final run was time-limited and therefore data was completed using the 
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cable upload approach in combination with LoRa. LoRaWAN transfer 

speeds at the site were slower than expected, dropping to as low as one 

data packet per minute at times. Since the magnetometer stores data in a 

separate packet for transmission to the gyroscope and accelerometer, and 

the sensors had recording frequencies of 5 Hz and 14.9 Hz, it became clear 

that the upload times of the experimental runs would become extensive 

with transport distances of up to 20 m. Furthermore, as magnetometer 

data is only transferred after gyroscope and accelerometer data 

transmission is complete, there is a risk of magnetometer data loss given 

limited transfer times.  

Consequently, the downstream length of tracer transport was capped at 3 

m in the second and third experimental runs. Despite this, some data was 

lost at the end of the experimental runs at Branscombe due to the slow 

transfer speeds. However, enough data was obtained to characterise 

specific movement behaviour of the tracers during transport. 

 

5.2.5 Qualitative Descriptions of Experiments  

 

During the first experimental run, the total transport time was 55 seconds. 

The run was primarily characterised by rapid transport and rolling 

downstream. Approximately 3 seconds after deployment, the tracer 

became trapped and rested on the bed for 10 seconds before being nudged 

to return to the flow. The sediment was then transported without 

interruptions until reaching its final resting position approximately 20 m 

downstream. 

Due to concerns regarding the lengthy upload times and ease of data 

interpretation (see section 5.2.7), the subsequent experimental runs were 

interrupted approximately 3 meters downstream of their deployment 

locations. The second run lasted for 8 seconds and had a relatively slower 

transport rate. The movement was characterised by rolling with 

intermittent steps and rests. Notably, the sediment collided with, and 

rolled over, a large cobble at approximately 6 seconds, with a high impact 

observed. After reaching 3 meters, the cobble was held in place for 30 



Chapter 5 

154 
 

seconds to prevent further data collection. This indicated the end of the 

experimental run in the data. 

The third and final run was undertaken on the same stream segment as 

the previous run. In total, the run lasted 8 seconds, with the first 3 seconds 

representing the movement of the smart stone into the flow. The run is 

characterised by moderate transport speeds, with the tracer sediment 

rolling up and over small cobble-sized clasts. The sediment was again 

interrupted and held for 30 seconds to indicate the end of the run within 

the data. 

 

5.2.6 May Experimental Results 

 

Run 1 

Due to the limited transfer speeds, only gyroscope and accelerometer data 

were successfully uploaded to the online server via LoRa. The data that 

was uploaded was interpreted as the rolling motion of the smart stone 

surrounding the trapping event observed three seconds after deployment. 

As recorded in laboratory experiments, rapid oscillations are observed in 

the accelerometer data, with maximum peak values of 2.30 g observed in 

the Z axis during transport. Additionally, large smooth peaks of up to 703 

°/s are recorded from the gyroscope, representing a rolling motion 

primarily along a single axis (Figure 5.2). A reduction of gyroscope values 

to close to 0 °/s is observed halfway through the dataset. This likely 

represents the period of trapping, which is supported by the flatlining of 

the accelerometer data over the same period, suggesting that 

accelerational forces have stopped. This suggested that step and rest 

behaviour can be interpreted from accelerometer and gyroscope data 

outputs. 
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Figure 5.2: Accelerometer and gyroscope data output during run 1 (May) 

at Branscombe beach, with two large peaks in gyroscope data indicating 

continuous movement and rapid oscillating accelerometer data indicating 

rotational movement downstream. Note the period of reduced activity 

approximately halfway through the data set (highlighted in red), 

representing the trapping of the tracer observed during the run. 

 

Run 2 

Again, limited transfer speeds resulted in only gyroscope and 

accelerometer data being available, as magnetometer data was not 

successfully uploaded via LoRa in time. Figure 5.3 shows a peak 

accelerometer value of 3.3 g towards the end of the data collection period. 

This spike in acceleration is interpreted as the large impact that was 

qualitatively observed during the run. It matches the typical acceleration 

values from laboratory collision experiments and is distinct from the 

surrounding dataset. Rotation of the smart stone primarily occurred along 

the X axis, with consistently elevated values peaking at 606 ° s-1, indicating 

continued rotation. 
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Figure 5.3: Accelerometer and gyroscope data output during run 2 (May) 

at Branscombe beach, with accelerometer spike of 3.3 g interpreted as 

impact observed during the run. 

 

  Run 3  

Due to time constraints in the field, only 29 packets of gyroscope and 

accelerometer data were successfully uploaded via LoRa during the final 

experimental run. This only represents a few seconds of data collection. 

Significant gyroscope activity only included a single peak of 348 ° s-1, with 

peak value of 0.8 g in the accelerometer. This likely only represents the 

initiation of movement of the smart stone immediately following data 

collection triggering. However, the limited dataset makes it difficult to 

make confident interpretations of transport conditions. 

It was hoped that the remaining data could be retrieved through a cable 

upload. Unfortunately, the cable data only included measurements 

recorded after transport had ended. This was determined because the first 

750 data packets (approximately 50 seconds) displayed little to no 

movement. It is assumed that the missing movement data was converted 

to a LoRa payload but did not upload in time. Since the devices were 
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subsequently disconnected from the LoRa gateway, the later stages of the 

experimental run data were lost. 

 

 5.2.7 May Data Summary 

 

The May experimental runs further highlighted the limitations of using 

LoRa for data transfer over limited time periods, as 1-2 hours of upload 

time was insufficient to transfer all movement data collected during the 

runs. As a result, it was not possible to fully match the data with video 

recordings for the entire length of the experiments. However, specific 

movement events (e.g., step and rest behaviour of tracers) were captured 

in both the data and video (see appendix D5 for examples of step and rest 

behaviour). This suggested calculating step length and rest times of smart 

stones should be possible (e.g., Olinde & Johnson, 2015), improving upon 

what was achieved using RFID tags at St. Louis Creek (Chapter 2). Based 

on these results, it was determined that a final site visit would be 

necessary, with deployment not relying on LoRa gateways for short-term 

data transfer. 

 

 5.2.8 October Site Visit  

 

On October 10th, 2022, the site was revisited. However, due to the lack of 

recent precipitation, flows onto Branscombe Beach had been severely 

reduced, with the stream traveling below the surface of the beach, rather 

than the beach being incised by the flow. This removed the segment 

previously used for experimental runs. As a result, another suitable site 

was located further upstream where flow could produce incipient motion 

of the smart stones. 

The experimental design was replicated from previous visits to the field 

site, but without using a LoRaWAN gateway. This allowed for faster 

experimental runs and did not risk data loss during transmission. In total, 

five movement experiments were undertaken and recorded directly onto 
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the device memory storage. Flows were lower than during the previous 

runs, resulting in a reduced variety of movement behaviours.  

Of the five experimental runs, all were characterised primarily by rolling 

behaviour. During the first and second runs, the smart stones travelled 2.1 

and 1.7 m downstream, respectively, while the latter three runs were 

deposited in the same location, with transport at approximately 3.5 m. 

While transport velocities were generally consistent, some variation was 

observed. In particular, run four had variable transport rates, and run two 

had significantly slower transport rates overall (Table 5.1). 

 5.2.9 October Experimental Results 

 

Complete sets of accelerometer, gyroscope, and magnetometer data were 

available for all five experimental runs, with clearly defined start and end 

times for movement caused by natural mobilization in the stream. This 

improved the precision of interpreting and matching specific movements 

observed qualitatively with the data, compared to previous experiments at 

Branscombe. For a summary of the peak linear acceleration and angular 

velocity with respect to transport speed for the October runs, see Table 

5.1. 

Table 5.1: Experimental results for the 5 runs at Branscombe in October, 

showing measured peak values for angular velocity, peak linear 

acceleration, and estimated transport speed of smart stones. 

 

* Transport speeds were estimated using the total time of data collection from 

entrainment to deposition, and the step length of tracers 

 

Experiment 

Number 

Angular 

Velocity (° s-

1) 

Peak Linear 

Acceleration (g) 

Estimated 

Transport Speed* 

(m s-1) 

1 501 4.68 0.33 

2 588 2.1 0.28 

3 764 6.3 0.38 

4 524 6.3 0.30 

5 639 3.6 0.34 
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  Run 1 

Data recorded during the first run is representative of typical rolling 

behaviour previously simulated in the dry laboratory. With oscillating 

accelerometer data (maximum peak of 4.68 g), large smooth peaks in the 

gyroscope (maximum peak of 501 ° s-1) and oscillating magnetometer 

values (Figure 5.4). The magnetometer data reveals five distinct full 

rotational movements during the 6.1 seconds of transport time, as 

indicated by the five peaks in each axis. These rotations can be 

corroborated by matching the data with observations of transport. 

Furthermore, the gyroscope data shows a transition from rotational 

movement primarily on the Y-axis to the X-axis, which is consistent with 

qualitative observations from the video. 

Figure 5.4: Full IMU data output during Branscombe natural mobilisation 

(run 1). Typical rolling data observed, with large peaks produced from the 

gyroscope and spikes in activity from the accelerometer. Note the 5 peaks 

in the Z axis of the magnetometer match the number of rotations observed 

during the run. 
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  Run 2 

Run 2 yielded IMU data consistent with the results of the rolling 

experiments and previous runs (Figure 5.5). The peak accelerometer value 

recorded during this run was 2.1 g, lower than those observed in previous 

runs, likely due to the slower transport rate, which reduced the 

accelerational forces acting on the sediment. The peak rotational 

acceleration measured was 588 ° s-1. 

 

Figure 5.5: Full IMU data output during Branscombe natural mobilisation 

(run 2) 
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  Run 3  

The IMU data from the third experimental run was consistent with the 

results of the rolling experiments and previous runs (Figure 5.6). The 

longer transport distance and extended data collection period are reflected 

in the longer recording time of the accelerometer and gyroscope. The 

higher transport rate of 0.38 m.s-1 is also evident in the increased peak 

values recorded by the accelerometer (6.3 g) and gyroscope (764 ° s-1). 

However, the magnetometer data does not appear to be synchronized with 

the other sensors, suggesting a possible delay in the triggering of data 

collection in this sensor. The cause of this discrepancy is unknown and has 

not been observed in previous or subsequent experiments or deployments. 

 

Figure 5.6: Full IMU data output during Branscombe natural mobilisation 

(run 3). Note the misalignment of the magnetometer data collection 

period, suggesting a delay in data collection of this sensor. 
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Run 4  

Again, IMU data is consistent with the rolling experiments, and from 

previous experimental runs. Unique to this run, tracer speed reduces for 

approximately 5 seconds post-entrainment for two seconds before 

returning to the previous velocities. The change is evident in the 

magnetometer data, where the frequency of rotational oscillations 

decreases, and the wavelength of these oscillations increases (Figure 5.7). 

It is also possible to match the individual peaks in the magnetometer data 

to observed rotations, with the smart stone fully rotating 8 times before 

deposition. Relative to the other runs, peak accelerometer and gyroscope 

values are moderate, at 6.3 g and 524 ° s-1 respectively. This matches 

with the moderate sediment transport speeds observed during this run. 

 

Figure 5.7: Full IMU data output during Branscombe natural mobilisation 

(run 4). Notably, the oscillation frequency of the magnetometer reduces 

approximately halfway through the data collection period (highlighted in 

red). This represents the reduction in transport speeds of the smart stone 

tracer. 
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  Run 5 

The full set of IMU data was collected and is generally consistent with that 

observed in the rolling experiments and previous runs. However, the 

magnetometer data does not exhibit the smooth oscillatory waves seen in 

earlier runs (Figure 5.8), potentially due to rotations along different axes 

or at a higher rate. The run had moderate gyroscope and accelerometer 

max values of 639 ° s-1 and 3.6 g respectively. 

 

Figure 5.8: Full IMU data output during Branscombe natural mobilisation 

(run 5) 
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5.3 Branscombe Experiments Summary 

 

The Branscombe field site is an effective natural laboratory, allowing for 

direct comparisons to data from dry lab experiments. However, some 

aspects of the experiments needed refining, particularly the use of 

LoRaWAN to retrieve data from the tracers, which led to data loss due to 

slow transfer speeds during the first two visits to the field site. 

By the field visit in October, the refined methodology was successfully 

capturing detailed movement. However, time restrictions resulted in this 

being the last visit possible to the location. Issues surrounding LoRa 

connectivity and transmission time during the first two visits make it 

difficult to precisely match movement with sensor data. Despite this, these 

provided a foundation for future experimentation once problems had been 

resolved. Additionally, these initial field experiments helped field 

deployment at the Yarner Woods site, with sources of errors being known. 

They helped inform appropriate changes to the device settings before 

remote deployment in the field.  

The success of the data sets retrieved using the cable upload method 

demonstrates that movement can be captured in controlled field settings 

using the smart stones. This shows the capability of the devices to capture 

detailed transport behaviour and serves as a case study for the type of 

data that can be expected during long-term field deployment. However, 

the lower flow conditions at the time of the experiment resulted in minimal 

variation in the movement behaviours observed. Multiple examples of 

transport via rolling were captured, but the step rest sequences and 

saltating behaviours seen during earlier site visits (e.g., Figure 5.2) were 

not repeated in the data. However, rolling captured during field 

experiments matched those produced in the laboratory environment (e.g., 

Figure 4.9) across all three IMU sensors. This suggested data obtained 

during long term deployment should be recognisable as behaviours 

previously replicated in the laboratory. 

Regardless, unique observations can be interpreted from the data, with 

the entrainment and deposition of sediments easily identifiable. 

Furthermore, it was possible to precisely match individual rotations 
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observed to the sensor data (Figure 5.4). In addition to observations of 

positive correlations between higher accelerometer values and generally 

faster transport rates (Table 5.1). 

5.4 Tebay Catchment, Cumbria  

 

 5.4.1 Site Overview  

 

The Tebay Catchment is one of the key SENSUM field sites and the location 

of previous research monitoring NFM techniques using woody debris 

(Chappell et al., 2017). The catchment area is approximately 5 km2 and 

receives an average annual rainfall of 1600 mm. The main river, Tebay 

Gill, is located at the eastern edge of the Lake District National Park (Figure 

5.1), and was the chosen location for smart stone deployment. 

Flow rates at the site are monitored using a combination of a water level 

gauge staff and a camera trap. The camera takes photos every 5 minutes, 

and water height is used to accurately estimate flow rates in cubic meters 

per second (cumecs). 

As part of a previous NERC-funded project that aimed to quantify the 

potential benefits of nature-based flood mitigation measures across large 

catchments (Chappell et al., 2017), 77 engineered log dams were installed 

in the main channel of the Tebay catchment site by November 28, 2020. 

However, during the initial site visit in late 2021, it was observed that some 

of the installed dams had already been damaged, likely due to high flow 

events during the winter months. 

The debris dams are typically made up of imported single or stacked logs 

that span the width of the river (Figure 5.9a). The logs are secured to the 

sides of the channel by cables wrapped around posts embedded into the 

banks. The leaky design of the dams at the site allows for space between 

the riverbed and the base of the wood pieces ranging from 50 to 300 mm, 

which facilitates the bedload transport of sediment and reduces the 

accumulation of sediments at the base of the barriers. In addition, the flow 

of water is maintained through the dam, and during high flow events, 

water can flow around and over the dams. 
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This site was chosen for smart stone deployment as a case study in 

evaluating the impacts of woody debris on bedload transport. Specifically, 

the site was picked to investigate if more engineered natural flood 

management approaches caused observable changes in the typical 

transport behaviour of sediments. This could then be compared to more 

natural NFM techniques at Yarner Woods (Section 5.6) and sediment 

transport in wood free environments (e.g., section 5.2). 

 

 

Figure 5.9: Tebay Gill deployment site with: (a) example of the leaky 

debris dams installed as a of part natural flood management effectiveness 

monitoring, with its associated water height gauge; and (b) deployment of 

smart stones at the site, in November 2021 

 

5.4.2 Smart Stone Deployment at Tebay  

 

Smart stones were deployed in the Tebay catchment on the 3rd of 

November 2021 (Figure 5.9b). At the time of deployment, a LoRaWAN 

enabled gateway had not been installed at the site due to the need for 

permissions to be obtained from the land owner. Despite the lack of a 

LoRaWAN gateway at the site, it was decided to deploy smart stones at 

the location in order to capture the high flows expected during the coming 

winter months (December – February). Without LoRa connectivity, data 

was stored directly in device memory. This had the disadvantage of not 
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allowing for precise monitoring of the timing of movement events, as 

constant monitoring was not possible. However, this approach allowed for 

the capture of movement data during the typically higher winter flows. It 

also served as an initial feasibility test for the long-term deployment of the 

smart stones in the field, providing insight into the design, methodology, 

and device settings that would be most effective for future deployment. 

The deployment location of the seven tracers was chosen to be 2 meters 

downstream of the water level gauge, allowing for accurate estimation of 

the flow velocity directly affecting the tracers. The smart stones were 

placed on top of the bed in a grid pattern, with 0.5 meter spacing between 

each stone and the grid centred on the channel bed. 

 

 5.4.3 Grain Size Analysis  

 

To evaluate the relationship between the smart stones and the surrounding 

bed material, grain size was measured at the site. Samples of the bed 

material surrounding the smart stone deployment site were investigated 

for their range of particle sizes. To improve the randomness of grain size 

sample location selection, and to remove bias, a random number generator 

was used to select a specific section within a transect grid which covered 

the bed surface. A stratified random sampling approach was also 

implemented, dividing the chosen transect grid into sub-grids. The final 

transect size was 1 x 1 m, with all sediments being measured within the 

grid. A ruled calliper was used to take the measurements, recording the b-

axis of the sediments. In the selected transect 33 sediments were sampled, 

with the D50 of the bed being estimated as 70 mm (D16 = 30 mm, D84 = 

140 mm). This suggests that the smart stones fit well within the normal 

range of sediment sizes at the Tebay site with a b-axis of 80 mm. The 

particle grain size distribution for measured sediments within the Tebay 

Catchment are included in Appendix D.4. 
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5.4.4 Tebay Discharge Data  

 

Discharge data covering the period of deployment from November 2021 to 

retrieval in June 2022 was provided by Nick A Chappell from the Q – NFM 

project (Appendix D.2, Chappell and Page, 2020). As expected, flows were 

higher during the winter months with significant peaks identified on the 

following dates: 19/10/21, 31/12/21, and 20/02/22 (Appendix D.1). These 

are associated with prolonged periods of increased flow, with the final date 

corresponding to the major flood event of Storm Eunice in February 2022. 

Although it cannot be confirmed due to the lack of an internal clock, 

entrainment and transport of the deployed smart stones likely occurred 

from November 2021 to March 2022 during these peak flow periods. 

 

5.4.5 Smart Stone Recovery 

 

On June 26th, 2022 (235 days after deployment), the site was visited to 

recover the tracer sediments and extract the collected transport data. The 

site's morphology remained stable, with all previous debris dams still in 

place with no observable damage to the structures since the initial visit to 

the site. 

The new locations of the smart stones were surveyed using an Oregon 

RFID kit (see chapter 2), and through visual identification when possible. 

Some difficulties were encountered with the RFID tags embedded in the 

smart stones. Although all of the tracers were visually identified, some of 

the RFID tags were not detected. The reason for the failure of RFID 

detection is unclear, as the tags appeared to be undamaged upon recovery 

and the burial conditions should not have been sufficient to impede signal 

transmission. Despite the difficulties with RFID detection, all 7 deployed 

smart stones were successfully recovered, and their transport distances 

were accurately measured. 

All tracers were found to have been transported downstream since 

deployment. The transport distances ranged from 2.60 m to 11.40 m, with 

a mean distance of 7.97 m. Furthermore, it was observed that 5 of the 
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smart stone tracers had passed under and interacted with at least one 

debris dam. For the purposes of clarity, each smart stone was assigned an 

ID from A to G based on the order of their recovery, and these IDs will be 

used throughout the remainder of this chapter to refer to the smart stone 

devices. 

The smart stones were found to be integrated into the bed in their resting 

positions. Upon recovery, some of the sediments were partially buried, 

with tags C and G being wedged into the bank. The depositional locations 

of the sediments were recorded, and the smart stones were extracted from 

the catchment. As in the laboratory testing, a double rotation was 

immediately applied to indicate the end of the data collection period on the 

devices (see figure 4.7). After this, the seal was removed from the smart 

stones and the batteries were extracted from the devices to prevent 

further data collection. 

The data was uploaded using the cable transfer method, with tags C and 

G containing a full array of IMU data and smart stone E containing 

accelerometer and gyroscope data. However, tags A, B, D, and F either 

collected no data or stopped functioning during deployment due to damage 

or unresolved firmware bugs. 

It is assumed that the damage to some of the tags resulted from the inner 

casing cracking due to temperature changes during the winter (tags A and 

D had visible cracks after extraction). This appears to have allowed water 

to penetrate the inner casing of the devices. Some corrosion was observed 

on tag D, indicating that water damage had occurred. It is uncertain 

whether this issue is a result of a design flaw or if environmental conditions 

at the Tebay site (such as temperature fluctuations or high impact events) 

caused the cracking and subsequent water penetration. Temperatures at 

the site frequently dropped below freezing over the winter months, so 

there is potential of freeze thaw damage to the devices, although no visible 

damage was apparent on the cobble surface. 

Devices B and F were functional but had not collected any movement data. 

The reason for this failure is unknown, as all of the tags had identical 

hardware, firmware, and settings. It is possible that undiscovered firmware 
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bugs at the time of deployment could explain the failure of the devices, as 

they were using an older iteration of the software (See appendix C.1). It 

is expected that more recent firmware versions will not include the same 

firmware bugs that were present in the version used during deployment. 

 

5.4.6 Tebay Smart Stone Deployment Data 

 

Since the smart stones were not connected to LoRaWAN, they did not have 

a calibrated internal clock, making it difficult to precisely match the timings 

of movement events with the IMU data. This also made it more challenging 

to distinguish between the movement data associated with the placement 

and extraction of the smart stones, and the data from natural movements 

during deployment. 

The timing of natural movement was estimated by utilizing known stages 

of deployment. The data associated with device setup can be distinguished 

from those recorded during deployment by analysing the IMU values, 

which tend to spike chaotically and do not accurately represent expected 

movements from a natural environment. Additionally, the start and end of 

deployment periods were identified using a double rotation pattern, similar 

to the one used in dry laboratory testing. This signal can be identified 

within the data and indicates the beginning and end of the relevant data. 

Data collected outside of this period is considered experimental noise and 

is discarded. Furthermore, experience gained from analysing data derived 

from laboratory experiments and deployment at Branscombe helped 

inform the evaluation of field data, enabling the identification of natural 

sediment movement. 

 

5.4.7 Descriptions of Tebay Data 

 

Smart Stone C  

The accelerometer data of smart stone C shows a consistent deviation from 

baseline throughout the collection period (Figure 5.10). Occasional spikes 

in activity are observed, with the maximum recorded acceleration being - 
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2.23 g. These spikes coincide with peak activity in the gyroscope data. 

Additionally, oscillations of accelerometer activity across all three axes, 

similar to those observed during laboratory rolling experiments are 

present. These may indicate periods of sediment transport. Periods of 

reduced activity are also recorded, with only minor changes in acceleration 

over time (< ± 1 g). At the end of the data collection period, a reduction 

in accelerometer activity is observed, suggesting that the tracer was in its 

final resting position. This is supported by the concurrently reduced activity 

in the magnetometer and gyroscope data. The minor deviation from 0 g 

during this period may be due to minor shaking without entrainment 

and/or impacts from transported sediment. 

 

Figure 5.10: Full IMU data output derived from Tebay smart stone C since 

deployment in November 2021 to extraction in June 2022. With estimated 

periods of movement, shaking in-situ, and resting on the bed highlighted 

in red, yellow, and blue respectively.  
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Data derived from the gyroscope of smart stone C is characterised by short 

spikes in activity with varying intensities, followed by periods of reduced 

activity (Figure 5.10). These spikes align with the activity observed in the 

accelerometer. Of these movement events, the maximum gyroscope value 

recorded is 382° s-1, with many activity periods exceeding 100° s-1, 

indicating significant movement. The gyroscope data at the end of the 

collection period remained within the range of ± 50 ° s-1, supporting the 

hypothesis that the tracer has reached its final resting position. This 

reduced activity is consistent with the accelerometer readings. 

The magnetometer data extracted from smart stone C is characterised by 

consistent orientation changes after deployment, suggesting movement 

via rolling throughout the recorded period. The most rapid shifts in 

orientation correspond with data spikes within the gyroscope and 

accelerometer data. Towards the end of the data, the magnetometer 

values stabilize (as seen in Figure 5.10), indicating that movement activity 

has stopped, and the tracer is remaining stationary. A final rapid shift in 

orientation is observed at the end of the data, which is likely experimental 

noise resulting from tracer extraction. 

 

  Smart Stone G 

The accelerometer data derived from smart stone G displays many similar 

characteristics to those observed from smart stone C, such as consistent 

deviation from 0 g for the majority of the data collection period, and a final 

segment of reduced activity. In comparison to smart stone C, peak 

accelerometer activity of up to 3.9 g is recorded, potentially indicating 

higher energy transport conditions. The oscillation pattern observed within 

the accelerometer data also suggests transport is occurring (as seen in 

Figure 5.11). 

The gyroscope data derived from Smart stone G exhibits periods of varying 

intensity, with maximum values recorded at 524 ° s-1. This suggests fast 

relative rotation, indicating faster rolling and transport behaviour 

compared to smart stone C. Additionally, a significant portion of the larger 
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spikes in gyroscope activity coincide with relatively larger spikes in the 

accelerometer data. 

Magnetometer data recovered from smart stone G is also characterised by 

consistent change. Transport is inferred through the change in orientation 

observed within the magnetometer, which indicates a rolling motion. 

Again, the stabilisation of magnetometer values at the end of the data 

period suggests the tracer has reached its final resting position. The rapid 

change in orientation recorded at the end of the data collection period 

likely results from movement caused by tag recovery.  

Figure 5.11: Full IMU data output derived from Tebay smart stone G since 

deployment in November 2021 to extraction in June 2022. With estimated 

periods of movement, shaking in-situ, and resting on the bed highlighted 

in red, yellow, and blue respectively. 
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  Smart Stone E  

While Smart stone E appeared to be functioning normally after retrieval, 

the device collected minimal data during deployment at Tebay, with only 

8 lines of accelerometer and gyroscope data recorded. This suggests that 

an error occurred in the device firmware, causing the tag to stop collecting 

data after setup. As these devices were deployed in November, they are 

running an older firmware version known to have bugs (see appendices 

C.1). It is therefore assumed that one of these errors in the firmware 

caused the failure of data collection to occur as intended. 

Despite the limited data collected, a brief spike in acceleration of -2.5 g in 

the Z axis is observed, which subsequently reduces to below ± 1 g for the 

remainder of the collection period. Additionally, the gyroscope data 

suggests rotation occurred, but it is limited to < 50 ° s-1. However, it is 

difficult to draw any definitive conclusions from this data due to the lack 

of information regarding the time of recording, the absence of 

magnetometer data, and the limited number of data points collected (< 10 

lines). 

 

5.4.8 Comparisons to Laboratory Data   

 

  Smart stone C 

The absence of a continuously changing single large peak within the 

gyroscope data, as observed in the rolling experiments, suggests that the 

movement from the tracer's deployment location to its resting position did 

not occur in a single event. Instead, it appears that the smart stone made 

multiple steps, with intermittent shaking in bed pockets, before reaching 

its final resting position on the bed. The oscillations seen in the 

accelerometer data match those observed in the dry lab shaking 

experiments (section 4.11.3), indicating that these reflect periods of non-

transport, but with flows causing shaking behaviour. The simultaneous 

spikes in activity across all three sensors match the data observed in the 

rolling experiments just after the initiation of movement (Figure 5.10), 
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suggesting that these moments indicate entrainment and subsequent 

sediment transport.  

The accelerometer and gyroscope recorded highs of 2.23 g and 382 ° s-1, 

respectively, which is consistent with the lower end of values recorded 

during dry laboratory rolling experiments. This suggests that laboratory 

rolling is typically faster than that observed at the Tebay site, potentially 

due to differences in air and water resistance during movement, where the 

presence of water dampens impacts on the sediments and slows rotation. 

However, these values are in line with the lower peak values recorded 

during the Branscombe experimental runs. 

The reduction in accelerometer and gyroscope activity and the stabilization 

of the magnetometer values are interpreted as the smart stones reaching 

their final resting position, wedged at the side of the channel. This parallels 

what is observed at the end of the rolling experiments, where both 

gyroscope and accelerometer values lower to near zero during the final 

seconds of the experiment. While the tracer sediment still exhibits some 

gyroscope activity (± 50 ° s-1), this is likely due to the continuous impact 

of the flow, causing minor shaking. 

 

  Smart stone G 

Many of the same comparisons to both the shaking and rolling experiments 

are apparent in the smart stone G data. Again, it appears that the 

movement from the deployment location to the final resting position did 

not occur in a single large event, but rather involved intermittent steps 

and rests, as indicated by multiple spikes in activity within the gyroscope 

and accelerometer followed by rapid reductions in activity. This contrasts 

with the single spike observed in the gyroscope data during the rolling 

experiments. Additionally, oscillations in the accelerometer and gyroscope 

data without significant changes in the magnetometer values suggest 

shaking within a bed pocket without transport, matching the laboratory 

data. Finally, the reduction in gyroscope and accelerometer values 

observed towards the end of data collection matches what is seen at the 
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end of the rolling experiments, indicating that the tracer had reached its 

final resting position. 

The accelerometer and gyroscope recorded highs of 3.90 g and 524 ° s-1, 

respectively, which are greater than those recorded by smart stone C and 

more closely resemble the average peak values observed in laboratory 

rolling experiments and deployment at Branscombe Beach. This further 

suggests that smart stone G experienced faster transport than smart stone 

C. 

 

5.5 Tebay Summary  

 

The results from the Tebay site represent the first instance of field data 

captured using the smart stones, featuring full IMU data captured from at 

least two devices over the 2021-2022 period. Although deployment 

occurred before many technical aspects of the device firmware had been 

resolved (e.g., bugs preventing data collection in some of the smart 

stones) and before gateway connectivity could be established at the site, 

it was deemed necessary to attempt to capture flows strong enough to 

cause transport over the winter months. 

All three smart stones that collected data were transported through a 

debris dam at Tebay, with smart stone E being deposited just upstream of 

a second debris dam, indicating that its transport was interrupted. It was 

hypothesized that a distinctive "wood signature" may be observable in the 

data from Tebay, either as an impact signal or another departure from 

expected data output, by comparing it to the wood-free data from 

Branscombe. However, due to the limited number of data sets retrieved 

from Tebay, it is difficult to identify any specific signals that would 

correspond to wood impact or general interaction. Further deployment of 

multiple additional smart stones could potentially capture a wood-stone 

interaction, however resources and time were limited at the site.   

Regardless, IMU data from devices C and G reflects expected transport 

values based on dry laboratory experiments and field experiments at 

Branscombe. The accelerometer and gyroscope values observed in these 
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devices fall within the expected ranges for entrainment and transport via 

rolling downstream, with step and rest behaviour interpreted. Also, periods 

of shaking without entrainment are identified. 

It was hoped that the timing of movement of the Tebay smart stones could 

be estimated, despite the absence of an internal clock, by correlating peak 

flow values and individual movement periods in the data. However, 

distinguishing individual movement events in the IMU data is difficult, as 

transport activity is rarely clearly separated, with distinct individual peaks 

in flow rates not matching individual peaks in IMU activity. 

The size of the smart stones (80 mm b-axis) is approximately 

representative of the rest of the bed material (D50 = 70 mm). However, 

the tracer sediments may initially be hypermobile due to the anthropogenic 

placement of the sediments onto the bed surface, before becoming 

integrated into the bed after transport. This is because greater grain 

protrusion from the bed is a major control on critical shear stress required 

for entrainment (Fenton & Abbott, 1977; Hodge et al., 2020). 

 

5.6 Yarner Woods, Devon  

 

5.6.1 Site Overview  

 

Yarner Woods is a key field site for the SENSUM project. Located in the 

Bovey Valley within the East Dartmoor National Nature Reserve (see Figure 

5.1), the site is managed by Natural England and has been used for a 

range of environmental science research projects (e.g., Brookes et al., 

1980; Loveland & Clayden, 1987). A series of “natural” debris dams were 

installed in Yarner Woods in 2020 (Figure 5.12a, b). These dams are 

constructed from one or more logs collected from local riverbanks, or even 

formed from felled trees to dam the channel. This approach contrasts with 

the methods employed at the Tebay site (section 5.4), where larger logs 

were imported from off site and anchored in place using cable. Yarner 

Woods is therefore an ideal site for measuring the influence of more natural 

woody debris dams on sediment transport.  
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Figure 5.12: Overview of Yarner Woods field site, with natural woody 

debris acting as leaky barriers with: (a) examples of SENSUM tagged wood 

pieces; (b) stacked logs forming natural barrier and; (c) relatively wood 

free segment of the field site. 

 

As part of the SENSUM project, debris classified as large wood at the site 

(Wohl et al., 2010) both in and between leaky dams was tagged with RFID 

and Miromico tags, similar to those used in the smart stones. These tags 

were installed to monitor changes in the position of the wood throughout 

the year and to capture any significant transport events with detailed IMU 

information. Additionally, a water level meter with LoRa connectivity was 

installed downstream of the site, providing real-time flow rate information. 

Two LoRaWAN gateways were installed at the site to provide full area 

coverage. One was attached to the Natural England office at the entrance 

to the field site. This mains-powered gateway provides reliable coverage 

for the water level meter, as well as coverage for the lower segment of the 

catchment. The second gateway is located further upstream on a valley 

slope with reliable mobile coverage. It had a good field of view for sensor 

communication throughout the catchment area and was solar powered. 

Wildlife camera traps were also set up at the site to capture major 

sediment transport events or the movement of wood pieces. 

The stream at the Yarner Woods site is primarily characterised by pool-

riffle sequences, with pools often forming downstream of large wood pieces 

interrupting flow. Channel cross sections were taken at the site, with 
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measurements taken every 2 meters from the deployment locations of the 

smart stones for 20 meters downstream. The channel widths ranged from 

1.1 to 3.2 meters, with an average width of 2.02 meters along the 

investigated area. The slope of the channel was measured to be 0.050 over 

the same area, corresponding to a gentle to moderate gradient of 5% 

(Rosgen, 1994).  

 

5.6.2 Large Wood at Yarner Field Site 

 

A survey of wood characteristics was conducted at the site of smart stone 

deployment of woody debris classified as large wood (> 1 m, Wohl et al, 

2010). Of the surveyed wood, 2 pieces were associated with debris dams, 

4 were at least partially buried in bed sediment, and 4 were fixed on 

channel banks. All surveyed wood was partially decayed, with needles, 

bark, and the majority of limbs absent. This suggests a significant amount 

of time has passed since the wood entered the channel. No new wood 

pieces were observed being added to the debris dams in the investigated 

segment of the channel throughout the deployment period of the smart 

stones. The large wood pieces comprising the debris dams varied in size, 

with lengths ranging from 1.3 to 6 m. 

Further downstream, a segment of the channel lacked the presence of 

wood (e.g., Figure 5.12c). This provided an opportunity to directly 

compare sediment transport within two segments of the study site, a wood 

loaded segment, and a wood free segment. 

 

5.6.3 Grain size Analysis  

 

To estimate the smart stones’ relation to the rest of the bed, the grain size 

of natural sediments was measured at the site. Following the methodology 

of sample selection at Tebay, random transects were used to select an 

area for sampling grain size. Again, a transect of 1 m2 was used, with all 

sediments falling within the grid being sampled. Measurements were taken 

using a ruled calliper, with sediments B-axis being recorded. At the site 
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112 sediments were sampled in total, with the D50 of the bed being 

estimated as 53 mm based on these measurements (D16 = 6 mm, D84 = 

83 mm). The b-axis grain size of the smart stone is 80 mm, therefore the 

D50 of sediments of the Yarner site is smaller than the grain size of our 

tracers. 

While the tracers may not ideally fit within the medium grain size, it was 

not possible to produce artificial sediments smaller than 80 mm while 

containing a C-cell battery for long term deployment. Additionally, deposits 

of mobile sediments larger than the smarts stone were observed in the 

channel, suggesting that entrainment of smart stones was possible from 

the flows experienced at the site. Furthermore, within gravel bed rivers 

the largest grains in the bed likely control morphological stability more 

than the D50 portion of the bed (MacKenzie et al., 2018), suggesting the 

artificial tracer size is appropriate for the deployment environment.        

 

5.6.4 Smart Stone Deployment 

 

In total, 7 smart stones were deployed at Yarner woods on the 2nd of March 

2022. All devices deployed at the site had identical firmware settings (see 

appendix B.1) and their functionality was tested prior to use to confirm 

connectivity with the LoRaWAN gateways at the site. Smart stones were 

allocated a label from A1 – A7 corresponding to their device ID, with these 

values being added to the surface of the stones for rapid visual 

identification in the field in addition to their embedded RFID tags. 

To allow comparison between the wood loaded segment of the study site 

and the wood free segment, sediments were separated into two groups. 

The control group, which included A5 and A6, was deployed further 

downstream in a wood free environment (Figure 5.13a). It was hoped that 

data derived from these devices would act as a wood free comparison to 

the sediments interacting with wood at the upstream segment.  

Smart stones A1, A2, A3, A4, and A7 were deployed at the upstream 

segment of the site (Figure 5.13b). This area is dominated by woody debris 

in the stream, and it was hoped that smart stones would interact with wood 
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and be distinct from the control group. Once deployed, all devices were 

reset via a LoRaWAN uplink. This cleared any pre-existing movement data 

produced during placement onto the bed.  

After deployment, data collection continued on an irregular basis, with 

devices sending status messages intermittently. This may have been 

caused by poor connectivity between the tags and the gateway, or by the 

gateway receiving a weak GSM signal. In some cases, multiple weeks 

would pass without responses from the tags before connectivity was re-

established and data could be transmitted again. Considering these 

irregularities, a return visit to the site was planned to evaluate the field 

setup and assess the condition of the smart stones. 

 

 

Figure 5.13: Deployment of smart stones at Yarner Woods field site, with 

wood free control group (a) and wood loaded group (b) separated at the 

two different deployment areas. 

5.6.3 Return Field Site Visit 

 

On May 6, 2022, a field site visit was conducted with the addition of a 

portable gateway. This portable gateway was designed to retrieve data 

from devices that were previously out of range of the two existing 

gateways, enabling an evaluation of sediment and wood movement since 
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deployment. The return visit also presented an opportunity to address 

connectivity issues with the existing gateways and redeploy any 

malfunctioning devices. 

The transport of the smart stones was initially visually evaluated. All 

tracers were relocated, and except for tracer A3, all displayed some degree 

of transport or orientation change from their original deployment positions.   

Smart stones that had been unresponsive for over a month at the time of 

the field site visit, and were not detected by the portable gateway, were 

removed from the channel (A1, A2, A3, A5, and A6). This was done to 

check for device functionality, battery life, and any signs of damage. All 

devices extracted from the channel appeared to function correctly when 

tested, with no signs of damage from deployment. Additionally, device 

battery life was still sufficient upon extraction, although their C cells were 

replaced to maximize the deployment length of the smart stones. As no 

problems with the devices were detected, it was concluded that the 

unresponsiveness of the devices was likely due to either minimal 

movement from April to May not triggering data collection or connectivity 

issues with the gateway. Extracted devices had their remaining data 

manually downloaded via a USB serial cable and were reset and redeployed 

for continued monitoring at the site. 

The movement activated cameras installed at the site were also checked 

for evidence of wood or sediment movement captured. Unfortunately, no 

significant movement events were captured at the site. The camera traps 

were then reinstalled for subsequent monitoring. 

 

5.6.4 Final Field Site Visit 

 

A final visit to the field site was conducted on October 10, 2022. This 

allowed for a final assessment of large wood at the site, determining any 

transport, deposition of additional wood, and overall characterisation of 

wood at the site (e.g., width, length, state of decay, geomorphological 

relationships, etc.). No large wood pieces had been transported 

downstream since the deployment of the smart stones, and no additional 



Chapter 5 

183 
 

pieces had entered the area studied. Consequently, at the time of writing, 

no relevant IMU data was available for processing from the tagged wood 

pieces. 

Additionally, the updated resting positions and condition of the smart 

stones were assessed, with transport distances being measured. Tracers 

were found resting on the surface of the bed in all cases, without 

incorporation into the surrounding bed sediments. Furthermore, not all 

tracer sediments appeared to have been transported or changed resting 

position since their deployment in February. Some were rotated without 

transport (e.g., A7), and others only transported a small distance (< 1 m).   

The stationary gateway overlooking the catchment was stolen from the 

site in late July 2022. This was scheduled to be replaced in late November. 

Therefore, a portable gateway was again taken to the site to check if 

additional data could be collected from the devices. Particularly, the smart 

stones out of gateway range from July – October while the gateway was 

missing.  

Flows during the summer months are typically lower, consequently it 

appeared minimal tracer movement had occurred since the site visit in 

May. Therefore, it was unsurprising that additional transport data was not 

collected via the portable gateway during this final visit.  

Tracers were left in place to continuously monitor any further transport at 

the site. A new gateway was installed in late November, providing gateway 

coverage for all devices going into the autumn and winter months, when 

flows are likely to increase.  

 

5.6.5 Yarner Woods Smart Stone Data  

 

The data detailed below was obtained from the deployed smart stones at 

the Yarner Woods field site using the installed LoRaWAN gateways from 

February to October 2022. It should be noted that in May 2022, tracers 

(A1, A2, A3, A5, A6) had any remaining data still stored on the devices 

uploaded via the USB serial cable before redeployment at the site. To 
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distinguish differences between data derived from wireless LoRa transfer 

and manual cable upload, they are described separately. 

 

5.6.6 Flow Rates 

 

Flow rates at the site are estimated through a combination of data from a 

LoRa enabled water level gauge located at the downstream end of the site, 

and high-frequency measurements taken at an analogous stream within 

the catchment area (the River Bovey). This allows estimations of the timing 

of changes in discharge flux, supporting prediction of conditions sufficient 

to initiate movement. Flows at Yarner are typically higher during the winter 

months, particularly during the months of February and March in 2022. 

Flow rate peaks are succeeded by a gradual reduction in flows until 

subsequent peaks occur (Figure 5.14). From April 2022, peaks occurred 

with decreasing frequency and flow rates remained mostly stable and < 2 

cumecs over the remaining recorded period.  

The highest flows recorded were on the 2nd of March 2022. The timing of 

peak flows is associated with smart stone movement where devices A2, 

A5, and A6 were all triggered from the 2nd – the 6th of March 2022. Flows 

peaked at 14 cumecs, up from 2.5 – 3 cumecs 48 hours prior (Figure 5.14, 

Table 5.2). Flows remained high over this period, with an average of 6.15 

cumecs and lows of 4.44 cumecs. Other peak flow rates associated with 

smart stone movement include 0.839 cumecs from the 7 - 9th of May and 

0.997 cumecs from the 14th – 25th of May. These values are significantly 

lower than those observed in March, but nevertheless, are associated with 

triggering smart stone data collection (A1, A2, A3, A5, and A6). 

The discharge gauge located downstream of the field site was activated in 

late February 2022, thus missing a significant portion of the peak flows 

that occurred during the winter months. Despite the temporal limitation, 

comparisons of peak flows between the Yarner Wood and River Bovey data 

sets revealed correlation, indicating that meaningful comparisons may still 

be made using the available data. The complete discharge gauge data set 

can be found in Appendix D.3. 



Chapter 5 

185 
 

Figure 5.14: Estimated flow rates at Yarner Woods during deployment of smart stones derived from the River Bovey flow 

calculations with; (a) analogous flow rates over 2022 covering smart stone deployment in February, to lower flows during 

summer months; (b) flow rates associated with tracer movements in March with the timing of activated smart stones identified; 

(c) flow rates associated with tracer movement in May with the timing of activated smart stones identified. The full list of smart 

stones dates associated with data collection are also highlighted in Table 5.2. 
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Table 5.2: Date of data collection of all smart stones deployed at the 

Yarner Woods field site. 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.6.7 LoRaWAN Data Descriptions 

 

Smart stones A1, A2, and A3 all had data collection triggered by minor 

rotational signals throughout the month of May (Figure 5.14c). Movement 

was detected on the 14th, 15th, and 17th for A1, the 8th for A2, and 17th, 

18th, and twice on the 23rd for A3. Gyroscope values recorded a range from 

60 ° s-1, as seen in A1, to 5 ° s-1 recorded by A3. In each case, where 

gyroscope data spikes are observed, there is minimal associated 

accelerometer and magnetometer activity (e.g., Figure 5.15). This 

suggests that in all cases transport is unlikely, as tracers do not display 

the typical accelerational forces and orientation changes expected from 

entrainment. While river flows at this time are lower than during the winter 

months, occasional increases in flow are observed throughout May (Figure 

5.14c). These increases in flow rate often precede the triggering of data 

Movement Date Smart Stone 

3rd March A2, A5, A6 

4th March A2, A5, A6 

15th March A1 

16th March A1 

8th May A2 

14th May A1 

15th May A1 

17th May A1, A2 

18th May A2, A5, A6 

23rd May A3 

31st May A6 
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collection and are potentially associated with the minor movement 

recorded by the smart stones.  

Smart stone A5 sent a full array of IMU data on May 18th. The peak 

gyroscope values recorded were 86.1° s-1, with a shift from ~1 to -1 g in 

the accelerometer Z axis and rapid changes in magnetometer orientation 

(Figure 5.16). These values are within the range observed during 

laboratory shaking experiments. Additionally, the magnetometer values 

returning to their original position suggest that the tracer was not 

entrained at this time. Like A1 - A3, small gyroscope spikes were also 

recorded on May 31st with minimal associated accelerometer or 

magnetometer activity, suggesting minor shaking.  

 

Figure 5.15: Example IMU data transmitted via LoRa from on the 14th of 

May from smart stone A1, demonstrating the minor gyroscope spikes 

which trigged data collection with minimal associated accelerometer and 

magnetometer activity. 
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Figure 5.16: Smart stone A5 movement data transmitted on the 18th of 

May with peak gyroscope values recorded of 86.1 °/s, and a shift from ~ 

1 to –1 g in the accelerometer. The relatively small forces captured suggest 

only minor shaking was experienced by the tracer sediment.   

 

On the 18th of May, smart stone A6 also displayed shaking behaviour. With 

peak gyroscope values recorded of 83.7 ° s-1, a shift from ~ 1 to –1 g in 

the accelerometer X axis, and changes in the orientation displayed from 

the magnetometer before returning to original values. Similar to A5, this 

event is interpreted as shaking without entrainment. 

On the 31st of May, data that was indicative of entrainment and subsequent 

transport was transmitted by A6. The full IMU data set matched the 

expected values observed during experiments at Branscombe and the 

rolling experiments in the dry laboratory. Gyroscope data displayed a 

single large peak (> 1000 ° s-1), with multiple oscillating spikes of up to 

5.8 g in the accelerometer data (Figure 5.17). Rapid changes of 
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magnetometer values in an oscillating pattern are also indicative of 

transport via rolling downstream. 

Smart stones A4 and A7 were not triggered for data collection and did not 

send IMU data over the deployment period. The tracers did send status 

messages, confirming they were active, but no movement was detected 

and uploaded to the online database. 

 

 

Figure 5.17: Data output of smart stone A6 on the 31st of May at Yarner 

Woods, with rapid acceleration spikes, a large single peak in recoded 

angular velocity and the clear rotational signal in the magnetometer 

supporting the interpretation of entrainment and subsequent transport of 

the tracer. 
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5.6.8 Cable Data Descriptions 

 

Smart stones A1, A2, A3, A5 and A6 all had data collection triggered during 

March (Figure 5.14b), this was extracted via the USB serial cable during 

the initial return visit to the site. These events correlate with some of the 

highest estimated flow rates observed at Yarner Woods. Specifically, 

movement was captured in tracers A2, A5 and A6 on the 3rd and 4th, which 

matches with the maximum flow peaks observed since the deployment of 

the tracers (Figure 5.14b). Additionally, movement was captured by tracer 

A1 on the 15th and 16th of March which corresponds to the end of the high 

flow period during the month.  

In all cases, small spikes and repeated pulses of gyroscope values are 

observed (e.g., Figure 5.18), matching those recorded from the LoRa data. 

These range from 35 ° s-1 to 10 ° s-1 and are associated with only minor 

changes in the accelerometer and magnetometer values. This suggests 

minimal movement, and likely only represents shaking behaviour without 

full entrainment.  

The Smart Stone A3 lacked stored movement data on the device for cable 

transfer and was redeployed in the stream for continued monitoring. 
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Figure 5.18: Example of minor gyroscope spikes extracted from activity 

periods during the 3rd and 4th of March, matching those recorded from the 

LoRa data. Minimal accompany activity is recorded by the accelerometer 

or magnetometer. 

 

5.6.9 Data Summary  

 

Data derived from the smart stones deployed at the Yarner Woods field 

site displayed a range of tracer movement behaviour. Except for tracers 

A4 and A7, all tracers recorded movements interpreted as shaking. Smart 

stone A6 recorded movement data which was interpreted as entrainment 

and subsequent transport downstream by rolling. Data collection was 

triggered following peak flows in March, and following periods of increased 

flow rate in May. 

Due to the limited number of tracers which displayed full transport data, it 

was not possible to distinguish between the smart stones allocated to the 
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wood-free control group segment of the study site, and those within the 

wooded group. Furthermore, it is not possible to determine points of wood–

sediment interaction within the data, as tracers were not transported past 

any large wood pieces, and no wood pieces were transported to the 

deployment area of the smart stones over the study period. 

 

5.6.10 Yarner Woods Summary 

 

Yarner Woods was the key field site investigating the effectiveness of the 

long-term deployment of the smart stone tracers using LoRaWAN remote 

data collection. It acted as a case study for the implementation of the 

devices, providing an opportunity to assess the potential limitations of the 

smart stones and to resolve any problems that arose. It also allowed the 

quality of data derived during long-term deployment to be evaluated. 

Furthermore, the site had various examples of natural woody debris in the 

channel, contrasting with the hard-engineered dams at the Tebay site. It 

was hoped that a comparison between the two deployment sites could 

provide insight into the impact of soft and hard-engineered natural flood 

management techniques on bedload sediment transport. 

Deployment was a mixed success. While data from the movement of smart 

stones was captured, there was minimal transport of tracers over the 

monitored period (May – October), with only one of the deployed smart 

stones successfully sending full IMU values which are interpreted as 

entrainment and bedload transport. Other smart stones which uploaded 

data were not transported but displayed shaking behaviour, typically seen 

in flows below entrainment thresholds. The low flows during the spring and 

summer months are less likely to cause movement, so it is unfortunate 

that winter deployment in 2021 was delayed due to COVID restrictions.  

Despite this, the data that was received matched well with the analogous 

data derived from the dry laboratory experiments, and the Branscombe 

field site. Furthermore, the methodology proved to be feasible over the 

long term, with smart stones remaining active over many months 

unsupervised. It is believed with greater flow rates, more typical over the 
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winter months, many more tracers would have been transported. This 

would have provided a greater selection of data sets, allowing comparisons 

between wood loaded and wood free environments. However, with the 

data sets available, it was not possible to directly compare wood loaded 

and wood free segments of the Yarner site. In addition, with more 

instances of transport being recorded, it may be possible to derive 

estimates for discharge entrainment thresholds at the site. 

Ongoing issues with gateway connectivity appear to have limited the 

potential inventory of data sets retrieved at the site. Many smart stones 

were relocated with at least some movement visually identified, but some 

lacked associated movement data on the LoRaWAN server. Mobile 

coverage at the site had been intermittent, despite the gateway being 

positioned on high ground. This could have prevented the successful 

transfer of movement data. In addition, it may explain why some devices 

only transferred gyroscope and accelerometer data packets but did not 

successfully upload the associated magnetometer data packets for the 

same time period. This further highlights the need for reliable GSM 

coverage when deploying LoRaWAN devices for environmental science 

applications.  

A possible future development for the Smart Stone software that could 

prevent data loss could involve waiting for a confirmation from the 

LoRaWAN network to signal a successful transfer before clearing the 

device's memory. This would take the form of a data packet command 

dispatched from the online server after a predetermined period of 

inactivity, i.e., not receiving data packets from the devices. However, this 

approach risks overloading the device's memory in cases of continuous 

movement and might be best suited for fluvial environments where 

intermittent movement is anticipated. The data that was collected is 

promising for the development and use of LoRaWAN smart stones. With 

additional time for deployment, a new gateway with better mobile 

coverage, and updated bug free firmware, it is thought that the devices 

could be implemented successfully, providing a continuous collection of 

bedload transport data for many months to years, depending on battery 

longevity.  
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5.7 Performance of LoRaWAN Smart Stone  

 

Data collected from the smart stones across all sites revealed that of the 

14 stones deployed for an extended period, only 3 collected transport data. 

Notably, 4 stones stopped functioning at the Tebay site, and 2 have 

appeared to have stopped functioning at the Yarner site, although these 

have not been extracted at the time of writing for confirmation. A 

combination of physical damage to the devices (water infiltration) and 

software issues, appears to be responsible. This resulted in a success rate 

of 57% for the smart stones during their long-term deployment, 

accounting for all devices that at least captured some movement activity. 

However, it is important to note that only 21% (3 out of 14) of the smart 

stones deployed were able to collect entrainment and transport data. This 

low percentage is likely due to the low flow conditions experienced after 

deployment at the sites, rather than a failure in device performance. 

Future deployments during winter months with peak flows, in conjunction 

with an optimized casing design to avoid damage, may enhance the tracer 

success rate, bringing it closer to the efficacy observed in other tracer 

methodologies such as magnetic and RFID tracers. 

Smart stones hold significant promise for supporting the monitoring 

bedload transport of sediments. As advancements continue to be made in 

both MEMS embedded sensors and wireless data transfer technology, 

smart stones offer a powerful tracing tool for advancing the understanding 

of individual grain motions and overall sedimentary processes. 
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CHAPTER 6 

 

6 Conclusions, Limitations and Outlook 
 

6.0 Chapter Overview 

 

This chapter summarises the overall conclusions and key results covered 

in the previous chapters in the context of the key research aims outlined 

in section 1.7. The limitations of the study are discussed and potential 

avenues for future research are identified, along with an outlook on the 

potential impact and implications of the findings for research on sediment 

transport dynamics. 

 

6.1 Conclusions 

 

The aim of this thesis was to examine the feasibility of utilising 

contemporary sediment tracing techniques, namely embedded RFID tags 

and MEMS IMU embedded smart stones, to study the effect of woody 

debris on the grain scale dynamics of sediment transport in fluvial systems. 

In doing so, this thesis also evaluated the capabilities of novel LoRaWAN 

enabled smart stone tracers during long term deployment periods, and 

investigated the possibility of integrating these devices into wireless 

Internet of Things networks to remotely monitor sediment transport 

dynamics in the field with minimal human intervention. 

Chapter 2 presents the first study of the impact of wood on fluvial bedload 

sediment transport dynamics, where > 950 Tracer sediments embedded 

with RFID tags were seeded into a wood-loaded alpine stream. Wood 

pieces were observed to alter the spatial distributions of sediments by 

causing localised clustering of tracers. However, the nature of the 

dispersion of sediments remained superdiffusive, matching wood free 

environments (e.g., Bradley and Tucker 2012; Phillips et al., 2013; 

Bradley, 2017). In addition, the distribution of travel distances were 

accurately described by gamma and exponential functions, in agreement 
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with prior research on bedload tracer movement (e.g., Hassan et al., 1991; 

Gintz et al., 1996). Linear Mixed Modelling was used to investigate the 

impact of wood relative to other controls on transport. A statistically 

significant reduction in both entrainment likelihood and tracer transport 

distances were recorded for sediments in close proximity to wood pieces. 

Additionally, a trapping effect of wood was observed where tracers were 

significantly more likely to have shorter transport steps if deposited near 

large wood. These statistical approaches provided quantitative data 

supporting the hypothesis that fluvial systems with wood have increased 

particle deposition rates (Wohl and Scott 2017) and may explain the 

observed increases in overall sediment retention rates in wood loaded 

rivers (Keller & Tally, 1979; Megahan, 1982; Sullivan et. al., 1987). 

Chapter 3 presents the development of a new smart stone design intended 

for use in sediment transport experiments and field monitoring. This active 

tracer represents an advancement over other similar smart stones (e.g., 

Gronz et al., 2016; Dost et al., 2020; Maniatis et al., 2020) due to its 

integration of a novel ultra-low power IMU sensor and LoRaWAN wireless 

communication capabilities. The IMU, comprising of an accelerometer, 

gyroscope, and magnetometer sensors, captures detailed high-frequency 

movement data with low power consumption, enabling long-term field 

deployment at remote field sites wirelessly. This chapter focused on the 

testing of the sensor and the design of a concrete cobble to house the 

device. Not only did the development of this smart stone form the basis of 

subsequent laboratory and field deployment in this thesis, but it was also 

utilized in laboratory experiments on the SENSUM research project, in 

which I served as a graduate research assistant alongside my PhD studies. 

Chapter 4 presents the creation of a library of IMU signatures used for 

categorising different modes of bedload movement during laboratory 

experiments at the University of East Anglia. Unique signatures were 

determined for rolling, sliding, collisions, and for tracers vibrating in-situ.  

These experiments complement work using the smart stones undertaken 

on the SENSUM project at the University of Plymouth, which also found 

that rolling can be distinguished from sliding (Sgarabotto et al., 2022). 

These signatures were crucial for interpreting IMU data collected from 
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smart stones deployed in the field without direct observations (e.g., 

Chapter 5), and for any future field deployments using LoRaWAN. 

Chapter 5 presents data from smart stones deployed at a range of UK field 

sites, demonstrating the devices long-term monitoring capabilities and the 

collection of data representing natural entrainment events. Deployment at 

the Tebay field site validated the devices extended lifespan over several 

months of monitoring. Furthermore, the use of smart stones at the 

Branscombe site provided a natural transport dataset, allowing comparison 

with the laboratory results. Additionally, smart stones in Yarner Woods 

captured and transferred movement data via LoRaWAN for the first time, 

demonstrating their potential for remote data collection without the need 

for retrieval. Tracer movement was compared with discharge data where 

possible. Movement typically occurred within the 24 hours surrounding 

peak flow events, with the detection of movement being closely correlated 

with instances of peak flow at the site. However, the discharge data 

collection frequency from the gauge installed in the Yarner Woods sensor 

network was not frequent enough to accurately quantify threshold 

discharge conditions for entrainment. Additionally, the limited sample size 

of tracers interacting with wood precluded the analysis of woods influence 

on smart stone transport behaviour. Regardless, this chapter contributed 

to the refinement of the methodology for using smart stones equipped with 

LoRaWAN capabilities for tracking bedload, helping to inform future efforts 

of its implementation in field environments and highlighting areas where 

further optimisation may be required.  

 

6.2 Limitations and Outlook  

 

6.2.1 Sediment-Wood Interaction  

 

Insights From Passive Sensors 

Due to travel restrictions related to the COVID-19 pandemic, it was not 

possible to return to St Louis Creek after the 2019 field season, limiting 

the length of the tracer transport data sets to 3 years (2017 – 2019). This 
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was not sufficient to characterise distributions of particle rest times, which 

are needed in combination with distributions of particle transport distances 

to fully characterise the nature of diffusion. Typically, timeseries of several 

years of tracer transport data are needed to quantify rest times in between 

transport at a data collection frequency of 1 year (e.g. Bradley and Tucker, 

2012). A return visit was intended after the pandemic to deploy smart 

stones in St Louis Creek, to enable the collection of rest time data to 

compliment the RFID step length data sets, following Olinde and Johnson 

(2015), but ultimately this was not feasible due to continued travel 

disruption. Instead, efforts were focused on investigating bedload 

interaction with wood in UK field settings alongside the SENSUM research 

project. 

The analysis of passive tracer data from St Louis Creek revealed the impact 

of wood on transport behaviour and effectively demonstrated Linear Mixed 

Modelling as a technique for isolating the influence of wood on sediment 

transport from other key variables. However, a larger dataset spanning 

multiple years would have been beneficial to enhance the statistical validity 

and further examine specific subgroups of tracers. For instance, it would 

have been beneficial to analyse and compare the mobility of tracers located 

upstream and downstream of wood pieces, in order to evaluate the relative 

upstream and downstream effects of woody debris on sediment transport, 

taking into account different geomorphic features that tend to form, such 

as the upstream formation of backwater areas and downstream plunge 

pools (Montgomery et al., 2003; Wohl et al., 2016). Future investigations 

on the influence of in-stream wood could focus on determining if the 

position of tracer sediments relative to wood pieces influences subsequent 

transport behaviour. 

Future studies on wood-sediment interactions could also consider channels 

with more mobile wood pieces. The limited amount of large wood 

transported in St. Louis Creek during the three years of investigation 

precluded the evaluation of the effects of wood movement events, such as 

collapse of log-jams, on sediment transport. It has been documented that 

log jam breakages lead to a rapid release of impounded sediment (Abbe 

and Montgomery, 2003), but the movement behaviours of individual clasts 
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during these events have not yet been investigated through tracer studies. 

The implementation of RFID tracer sediments, or smart stones, prior to log 

jam breakage could inform transport processes immediately after release.  

The apparent lack of wood mobility at St. Louis Creek may be due to the 

relatively low flow rates observed during the study period. The recurrence 

interval for the peak flows experienced in 2019 was 1.9 years, indicating 

average to below average flow rates over the course of the study. It is 

possible that higher flow events in the future may mobilise key wood pieces 

and release tracer sediments, allowing for the tracking of post-log jam 

breakage sediments. Continued monitoring would have been necessary to 

fully assess the relationship between flow rates, wood mobility, and 

subsequent sediment transport at the site. 

Fully characterising wood-sediment interaction is essential for evaluating 

the impact of the addition of woody debris in Natural Flood Management 

(NFM). As public perception evolves (Piégay et al., 2005), and 

implementation of NFM practices becomes more widespread (Cooper et al., 

2021), it is crucial to fully understand the consequences at both the 

catchment scale (Dadson et al., 2017), and the specific sedimentological 

implications of introducing woody debris to fluvial systems. The successful 

utilization of RFID tracers in this research demonstrated the impact of large 

wood on grain transportation, suggesting potential future research 

avenues for assessing NFM's impacts prior to widespread adoption, helping 

to inform landowners and policy makers (Bark et al., 2021). Furthermore, 

the development of active smart stone tracers has the potential to 

automate the tracking of sediment behaviour, improving both the detail 

and ease of data collection. 

 

Insights From Active Sensors  

The utilisation of smart stone data in UK sites in Chapter 5 was initially 

envisioned as a means to gain deeper insight into the impact of large 

woody debris on the transport dynamics of sediments, with the aim of 

supplementing the findings of the RFID tracer transport study presented 

in Chapter 2. Unfortunately, the limited movement of the smart stones 
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over 2022 resulted in a scarcity of observations of wood-sediment 

interactions. However, data collection during this period demonstrated the 

potential for the capturing of modes of movement from field data using 

smart stones over extended deployment periods. Despite the detection of 

tracer movement at Yarner Woods in Dartmoor, the transport distances 

recorded were insufficient to reveal interaction with large woody debris. 

Future deployments could benefit from tagging a combination of wood 

pieces and smart stones in more active channels with mobile wood. This 

would enable the direct tracking of the interaction between log jam break 

up and subsequent tracer transportation upon the release of impounded 

sediment. 

In addition, the low transport rates and small tracer sample size at Yarner 

Woods precluded the calculation of tracer step and rest times, which would 

have enabled comparisons to the St. Louis Creek data sets and other 

bedload studies (e.g., Olinde and Johnson, 2015; Pretzlav et al., 2021). 

Continued monitoring over 2022 - 2023 at Yarner Woods may produce 

further transport data sets enabling these calculations, provided tracers 

continue to function at the site over the winter months.   

Future investigations into bedload transport dynamics could combine 

passive and active tracer deployments, to benefit from both the continuous 

and detailed transport data provided by smart stones and the reliability of 

radio transmitters. In addition, incorporating a range of LoRa enabled 

sensors to collect environmental data in real time could facilitate the 

identification of the conditions required for entrainment and transport, 

providing further insights into the underlying mechanisms of sediment 

transport behaviour and its interaction with wood. 

 

6.2.2 Smart Stone Design  

 

The design of the smart stone proved successful in acquiring movement 

data from the deployment sites at Tebay and Yarner Wood in Chapter 5. 

However, it should be noted that some devices sustained damage upon 

retrieval from the Tebay site, due to water infiltration into the inner casing 
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of the artificial sediments. Although the majority of tracer sediments 

remained operational following eight months of submersion during 

deployment, future versions of the smart stone design should incorporate 

additional redundancy measures to mitigate the risk of damage. An 

internal design that prioritises waterproofing and incorporates stronger 

internal support structures (e.g., Maniatis et al., 2013), could significantly 

reduce the likelihood of damage occurring during future deployments. 

 

6.2.3 Smart Stone Laboratory Experiments  

 

Chapter 4 focused on using smart stones to characterise signatures of 

different modes of movement from IMU data. The range of movement 

behaviours that could be differentiated within the laboratory environment 

was limited to collisions, shaking, rolling, and sliding of the smart stones. 

Further laboratory research has the potential to broaden the scope of 

identifiable transport behaviours within the IMU data by exploring 

specialised movement patterns, such as transportation in temporary 

suspension or via saltation. This would require a more advanced laboratory 

setup than that was available during this research, but it would provide a 

more comprehensive understanding of the full range of movement types 

that are possible in natural environments. In addition, scaled down flume 

experiments incorporating geomorphic complexity, such as simulated 

woody debris (e.g., Mutz et al., 2007; Davidson, 2011), could contribute 

to a greater understanding of the effects of these factors on sediment 

transport. Simulated log jam breakage experiments could also replicate 

conditions immediately following the release of impounded sediments. This 

would provide laboratory transport data in controlled environments which 

would more closely replicate natural deployment sites. 

Prior smart stone research in the laboratory has focused on producing 

precise trajectory estimates of tracer movements in the process of dead-

reckoning, with estimated trajectories verified using high-speed camera 

setups (e.g., Dost et al., 2020). Although, Maniatis (2016) highlights that, 

due to limitations in the accuracy of sensors and measurement noise, 

obtaining accurate particle trajectory estimations using sensor data from 
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the IMU devices is not feasible beyond a few seconds of movement. 

Therefore, attempts to precisely predict transport and depositional 

locations of tracers have resulted in deviations from true depositional 

positions when verified, even in highly controlled laboratory settings (e.g., 

Gronz et al., 2016; Dost et al., 2020). As a result, smart stone data 

obtained from the laboratory focused solely on characterising movement 

patterns in this research, given the emphasis on long-term deployment 

and obtaining remote measurements in the field (Chapter 5). Although, 

parallel experiments conducted on the SENSUM project using the smart 

stone produced in Chapter 3, presented by Scarabotto et al. (2022), 

demonstrated an approach to filter data to more precisely derive reliable 

values of the position, orientation, velocity and acceleration of smart 

stones.  

 

6.2.4 Smart Stone Field Deployments 

 

Deployment of the smart stones at the Branscombe field site provided the 

first examples of natural mobilisation data and confirmed device 

functionality during submersion. Despite this, deployment at the site 

demonstrated that the use of LoRa transmission for the transfer of high-

frequency data is not optimal, given the short experimental time frames 

and the large quantity of IMU data required for movement 

characterisation. Initial attempts to capture and transmit transport data 

were hindered by prolonged upload times from sensors to the gateway, 

often resulting in data loss. Despite possible LoRaWAN transfer speeds of 

2 Kbit/s (Mikhaylov et al., 2016), increasing distance and obstructions 

between sensors and gateways have been shown to reduce data transfer 

speeds to as low as 100 bits/s (Gambiroža et al., 2019). Whilst this is not 

an issue during longer term deployment of devices, the problems faced at 

the Branscombe field site suggest that the use of LoRa for time-limited 

applications, such as repeated laboratory experimentation, should not be 

implemented. 

The persistent issue of intermittent communication between the smart 

stones, LoRa gateways, and GSM network was a consistent factor 
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encountered during the deployment at the Yarner Woods site, despite the 

distance between the gateways and sensors being < 1 km. This suggests 

that the claims of a 15 km read range of LoRa devices (Petajajarvi et al., 

2015) is an overestimation when accounting for the range of obstacles 

typically encountered in remote field deployment (e.g., diverse 

topography, poor line of sight due to vegetation). Furthermore, the 

gateway GSM connectivity issues experienced reflected those encountered 

by Dini et al. (2021), suggesting a future emphasis on improving gateway 

reliability is required for successful continued long-term monitoring.  

Currently, the dependence on mobile network coverage for the functioning 

of LoRaWAN technology impairs its ability to fully serve remote 

environmental science applications. However, the technology is still in its 

infancy, with new gateways in development likely overcoming the 

shortcomings of range and intermittent connectivity encountered 

(Manchev et al., 2019). It is estimated that by 2025, 25% of all IoT devices 

will be integrated with low-power wide-area networks, such as LoRaWAN 

(Ikpehai et al., 2018). As such, there is much potential for the further 

development of smart tracer devices to monitor fluvial systems, and for 

environmental monitoring more generally, combining advances in 

microelectromechanical systems and LoRa capabilities. 

Despite encountering challenges, such as limited sediment transport and 

inconsistent gateway connectivity during the study period, the deployment 

of smart stones in the field served as a successful pilot study for the larger-

scale implementation of tracers integrated in a LoRaWAN network, for the 

automatic monitoring of fluvial processes. The feasibility and effectiveness 

of the methodology was evaluated, with potential issues being highlighted 

and addressed over the course of the research, informing future 

deployments. 

The deployment of LoRa networks with improved gateways that have a 

greater consistency in their GSM connectivity would facilitate more reliable 

comparisons of transport conditions across field sites. The integration of 

additional LoRa-enabled environmental sensors into future stable gateway 

networks would also allow for the real time collection of various data sets 
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(e.g., temperature, precipitation, flow rates), which could aid in the 

interpretation of the overall conditions influencing transport behaviour. 

This would provide a more comprehensive understanding of these 

environments, enabling a more accurate analysis of risk for decision 

making in instances of hazard management (Sayers et al., 2002). The 

implementation of such networks would reflect recent developments in the 

use of environmental sensors integrated into LoRa networks in both urban 

areas to monitor air quality (Candia et al., 2018; Howerton & Schenck, 

2020) and in the agricultural sector to monitor soil health (Ma & Chen, 

2018; Ramson et al., 2021).  

As the technology matures, large-scale LoRa networks could provide cost-

effective solutions for the remote monitoring of field sites. Ongoing 

expenses would primarily consist of infrequent replacement of batteries for 

sensor devices. Such networks could continuously provide data without 

incurring the costs associated with travel and labour, which are inherent 

in current remote manual data collection approaches.  

 

6.3 Advancing Sediment Transport Research with Smart Stone 

Technology 

 

The precise determination of entrainment thresholds has been a persistent 

challenge in sedimentology (Dey & Ali, 2018). The complexity of factors 

influencing particle entrainment, including grain protrusion (Fenton & 

Abbott 1977; Hodge et al., 2020), have hindered a satisfactory resolution 

of the problem. Smart stones, however, present a promising opportunity 

for providing field data to verify theoretical models, provided the 

limitations of the technology are considered when interpreting IMU data 

(Maniatis, 2021). Unfortunately, discharge data collected at Yarner Woods 

lacked sufficient detail to estimate an entrainment threshold for the 

transport event detected. Future research on the SENSUM project plans to 

improve the discharge gage installed in Yarner Woods to better constrain 

approximations of entrainment thresholds at the site. 
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Another advancement in the use of smart stones to enhance the 

understanding of sediment transport would be the automatic classification 

of smart stone movements from laboratory and field data using machine 

learning. By compiling a sufficiently large data inventory of verified smart 

stone movement patterns from IMU outputs, it should be possible to utilise 

and train machine learning algorithms to automatically recognise specific 

movement characteristics. This approach is similar to the characterisation 

of various physical activity movement types using accelerometers from 

commercial fitness trackers (e.g., Nunavath et al., 2021). 

It is possible that, the utilisation of neural networks in conjunction with 

LoRa capabilities could enable the deployment of smart stones, the upload 

of their data to an online database, followed by the automatic 

characterisation of movement behaviours. This would fully automate the 

process of tracking bedload transport. However, this would require a high 

level of accuracy and success rate of characterisation, which, with the 

current limitations of embedded IMU’s (Maniatis, 2021), has the potential 

risk of data misinterpretation. Regardless, this approach could offer a novel 

method for monitoring river sediments with minimal human oversight to 

enhance our understanding of fluvial systems.  

By utilising an automated process, it may be feasible to integrate risk 

management solutions whereby the entrainment and rapid transport of 

multiple tracers could signal the occurrence of flood events. This could be 

integrated with early warning systems to alert downstream authorities, 

similar to approaches being developed on the SENSUM project for the 

monitoring of hazardous movement events such as landslides (Dini et al., 

2021; Roskilly et al., 2022). 
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Appendix A 
 

Supplementary material for chapter two 

 

Table A.1: Key recorded characteristics of tagged wood at St. Louis Creek. 

Note that not all wood pieces tagged with metal tags were also tagged with 

RFID tags 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tag D1 (cm) D2 (cm) Age Stab R-Wad Func Chan. Structure Key/categories 

213 7 15 4 1 1 3 5 8,3

204 9 20 4 1 1 3 5 8,2,3 Age Class

201 8 29 3 1 0 3 5 8 0 Rotten 3 Limbs

203 8 29 2 1 0 3 5 8,3 1-Decayed 4 Bark

202 37 29 2 1 0 3 5 3,2 2 Bare 5 Needles 

214 13 2 2 0 1 3 5 3

215 12 9 2 1 1 3 5 38 Stabillity 

205 27 12 2 1 0 1 5 23 0 No ends 2 Two ends

206 18 47 1 2 1 1 5 8 1 one end

207 36 14 0 0 1 4 5 0

212 8 37 4 1 1 3 5 8,3

208 11 33 2 2 1 1 5 3,8,2 Root wad

211 13 31 2 1 0 1 4 8 0 no 1 Yes

209 14 27 2 1 0 1 4 8,2

210 14 5 4 1 0 2 4 8 Structural Association

216 32 50 0 1 0 3 4 8 1 Debris Jam 6 Bedrock

217 43 55 4 1 0 3 4 8 2 Tree/Rootwad 7 Beaver Dam

218 44 40 4 1 0 3 4 8,2 3 Boulder 8 Bank

219 16 N/A 2 1 0 3 4 8 4 Meander 9 Log step

220 19 13 4 1 0 3 4 8,3 5 Bar 10 Burial in bed

221 19 24 4 1 0 3 4 8,2 0 none

222 44 9 5 1 1 1 4 8,2

223 15 6 5 2 1 1 4 2,8 Function

224 11.5 5 1 1 0 3 4 8 0 Drift 2 Collapsed Bridge 

225 165 15 2 1 0 3 4 8 1 Bridge 3 Ramp

233 20 10 2 1 0 3 4 1 4 Incorporated 

245 25 15 2 1 0 3 5 1,8

244 31 15 2 1 1 3 5 1,2,8 Channel Type 

251 14 5 2 1 0 3 5 1,8 1 Pool 5 step/pool

246 43 13 2 1 0 1 5 1,8 2 Riffle 6 Cascade

248 12 10 2 0 0 4 5 1,10,9 3 Glide 7 Other

242 23 17 2 0 0 0 4 3 4 Rapid 

249 14 11 2 0 0 4 5 1,10,9

247 22 19 2 1 0 4 5 1,10,9

252 17 10 2 1 0 3 5 8

253 27 21 2 1 0 3 5 8

254 19 16 2 1 0 3 5 8

255 26 14 1 1 0 4 5 10,8

256 27 24 1 1 0 3 5 8

257 39 32 2 1 1 3 5 3,8

258 19 17 2 1 0 3 5 3,8

259 27 26 2 1 0 3 5 3,8

260 30 23 1 1 0 3 5 3,8,10

261 36 11 5 2 1 4 5 2,8,9,10

262 26 25 1 0 0 0 5 1

263 19 18 2 1 0 4 5 1,3,8

264 16 13 2 0 0 0 5 1

265 13 7 2 0 0 0 5 1

266 15 11 2 0 0 0 5 1,9

267 30 17 1 1 0 0 5 1

268 24 22 2 1 0 0 5 1

269 28 27 2 1 0 3 5 1,8

270 17 13 1 1 0 4 5 9,10

271 75 11 3 2 1 1 5 8

272 14 7 3 1 1 3 5 1,8

273 15 6 3 1 0 3 5 1,8

274 13 4 4 1 0 3 5 1,8

275 15 14 4 1 0 3 5 1,8

276 25 4 4 1 1 3 5 1,8

277 18 21 2 1 0 4 5 1,8

278 20 12 1 1 0 4 5 1,8

279 33 14 1 1 0 0 5 1,8

280 24 23 0 2 0 1 5 2

226 21 3 3 0 1 0 4 8,10

237 21 18 2 1 0 0 4 5,10

234 16 17 1 1 0 0 4 8

235 27 14 1 1 0 3 4 8

236 21 20 0 1 0 3 4 1

232 15 10 5 1 1 3 4 1,8

228 19 4 3 0 0 0 4 9,8

229 20 14 3 1 0 3 4 10,8

239 20 8 3 2 0 4 4 5

238 20 18 2 1 0 4 4 8

241 20 16 2 0 0 0 4 1
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221 19 24 4 1 0 3 4 8,2 0 none

222 44 9 5 1 1 1 4 8,2
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224 11.5 5 1 1 0 3 4 8 0 Drift 2 Collapsed Bridge 

225 165 15 2 1 0 3 4 8 1 Bridge 3 Ramp

233 20 10 2 1 0 3 4 1 4 Incorporated 

245 25 15 2 1 0 3 5 1,8

244 31 15 2 1 1 3 5 1,2,8 Channel Type 

251 14 5 2 1 0 3 5 1,8 1 Pool 5 step/pool

246 43 13 2 1 0 1 5 1,8 2 Riffle 6 Cascade
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253 27 21 2 1 0 3 5 8

254 19 16 2 1 0 3 5 8

255 26 14 1 1 0 4 5 10,8

256 27 24 1 1 0 3 5 8

257 39 32 2 1 1 3 5 3,8

258 19 17 2 1 0 3 5 3,8

259 27 26 2 1 0 3 5 3,8

260 30 23 1 1 0 3 5 3,8,10

261 36 11 5 2 1 4 5 2,8,9,10

262 26 25 1 0 0 0 5 1

263 19 18 2 1 0 4 5 1,3,8

264 16 13 2 0 0 0 5 1

265 13 7 2 0 0 0 5 1

266 15 11 2 0 0 0 5 1,9

267 30 17 1 1 0 0 5 1

268 24 22 2 1 0 0 5 1

269 28 27 2 1 0 3 5 1,8

270 17 13 1 1 0 4 5 9,10

271 75 11 3 2 1 1 5 8

272 14 7 3 1 1 3 5 1,8

273 15 6 3 1 0 3 5 1,8

274 13 4 4 1 0 3 5 1,8

275 15 14 4 1 0 3 5 1,8

276 25 4 4 1 1 3 5 1,8

277 18 21 2 1 0 4 5 1,8

278 20 12 1 1 0 4 5 1,8

279 33 14 1 1 0 0 5 1,8

280 24 23 0 2 0 1 5 2

226 21 3 3 0 1 0 4 8,10

237 21 18 2 1 0 0 4 5,10

234 16 17 1 1 0 0 4 8

235 27 14 1 1 0 3 4 8

236 21 20 0 1 0 3 4 1
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Appendices 

215 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix A.2: Discharge data from Bobtail Creek for 2017-2019, showing 

peak flow during summer following snowmelt, which aligns with peak flow 

at St Louis Creek (as shown in Figure 3). The site was selected for its 

proximity, similar forest cover, and matching altitude to the study site (US 

Geological Survey, 2019). 
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Figure A.3: Annual tracer transport distance progression from 2017 to 2019 with grey dots representing unmoved cobbles 

from the previous year. Colour represents distance moved over the last year of the study. 



Appendices 

217 
 

Table A.4: Linear mixed model output data for the likelihood of tracer 

sediment entrainment (Binomial) within the wooded reach, and tracer 

sediment transport distances (Gamma), including the coefficient, standard 

error, z-value and p-value for distance to steps. All P values are below the 

95% confidence interval and are considered insignificant 

 

 

 

  

 

 

 

 

 

 

2017 Binomial Coefficient Standard Error Z P 

Distance to Step 0.01763 0.08712 0.202 0.83961 

2018 Binomial     

Distance to Step -0.004752 0.089074 -0.053 0.95745 

2019 Binomial     

Distance to Step 0.0537 0.05293 1.015 0.3103 

 

2017 Gamma Coefficient Standard Error Z P 

Distance to Step 0.03952 0.07072 0.559 0.5763 

2018 Gamma     

Distance to Step 0.02087 0.07589 0.275 0.7833 

2019 Gamma     

Distance to Step -0.014925 0.022476 -0.664 0.50724 
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Figure A.5: Bed grain size distribution of measured natural surface 

particles at St. Louis Creek deriving the D50 of the reach.  
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Appendix B 
 

Supplementary material for chapter three 

 

Appendix B.1: Standard deployment settings for Nomad LoRaWAN IMU 

devices 

 

AT+SERIAL=3737333151377201 

AT+VERFW=5.6.2 

AT+VERGIT=959b28215c435d9a016d258a8932e538ea3ba90d 

AT+DEVEUI=10ce45fffe0077a4 

AT+APPEUI=41db0a44d4979de9 

AT+APPKEY=AT_NO_ACCESS 

AT+DADDR=d1a00008 

AT+NWKSKEY=AT_NO_ACCESS 

AT+APPSKEY=AT_NO_ACCESS 

AT+NWKID=0x0800A1A5 

AT+ADR=1 

AT+DR=0 

AT+DCS=0 

AT+NJM=1 

AT+AUTONJM=0 

AT+JOINED=0 

AT+ABPON=1 

AT+REQJOIN=1 

AT+JOINCYC=120000 

AT+JOINATT=10 

AT+JOINSTRAT=0 

AT+LORAFAIL=0 

AT+FLASH= 

AT+FLASHSETFF= 

AT+FLASHWRITE= 

AT+PWRMODE=1 

AT+PWRCYC=300000 
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AT+LORAEN=1 

AT+LORAMODE=2 

AT+LORATX=60000 

AT+LORATXF=1800000 

AT+PLDDELTA=0 

AT+PLDCYC=300000 

AT+BUFMODE=0 

AT+GPSEN=1 

AT+GPSSIM=0 

AT+GPSTRIG=3 

AT+GPSCYC=86400000 

AT+GPSHOLD=300000 

AT+GPSHOLDFAIL=300000 

AT+GPSTO=120 

AT+GPSEA=1 

AT+GPSNMEA=0 

AT+GPSFAIL=1 

AT+GPSMAXDOP=500 

AT+GPSDISCARD=0 

AT+ACCEN=1 

AT+ACCRNG=0 

AT+ACCTHD=24 

AT+ACCDUR=1 

AT+ACCAVG=32 

AT+ACCANGEN=1 

AT+ACCANGCYC=5000 

AT+ACCANGTHD=5000 

AT+ACCTIME=0 

AT+ACCSE=0 

AT+ACCSC=32 

AT+ACCSF=0x30 

25 Hz 

AT+ACCSA=4 

AT+GYREN=1 

AT+MAGEN=1 
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AT+GYREXPERT=0 

AT+GYRFREQ=14.9 Hz 

AT+MAGFREQ=5 Hz 

AT+GYRSCALE=2000 DPS 

AT+GYRASCALE=16g 

AT+MAGSCALE=16 G 

AT+GYRSTOP=1 

AT+GYRSAMPLES=38527 

AT+GYRTIME=10000 

AT+GYRHOLD=0 

AT+STAEN=1 

AT+STACYC=3600000 

AT+AUXEN=0 

AT+AUXCYC=15000 

AT+AUX=21710 

102240 

176 

-880 

432 

AT+LED=1 

AT+LOG=1 

AT+DEVTYPE=1 

AT+DEVSUBTYPE=1 

AT+BAT=3003 

AT+BATTYPE=0 

AT+SUPTYPE=0 

AT+HWCFG=95 

0x5F 

AT+TESTCW=0 

AT+TIME=101822 

AT+RTC=010100,000219 

AT+TIMESYNC=3 

 

 

 



Appendices 

222 
 

 

 

 

 

Figure B.2: IMU sensor schematic demonstrating the distinction between 

the accelerometer, gyroscope, and magnetometer X, Y and Z axis.  
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Appendix C 

Supplementary material for chapter four 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.1: Timeline of Miromico firmware update availability in relation to the range of field deployments and experiments. 
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Appendix D 

Supplementary material for chapter five 

 

 

  

  

 

 

 

 

 

 

 

 

 

Figure D.1: Discharge measured at Tebay field site covering the peak flows during the winter months of 2021 – 2022, with 

the peak flow events suspected to initiate movement highlighted using blue stars (adapted from Chappell and Page, 2020). 
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Figure D.2: Discharge measured at Tebay field site covering the deployment period of the smart stones (adapted from Chappell 

and Page, 2020). 
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Figure D.3: Discharge data from the Yarner Wood field site's discharge gauge, which began operation at the end of the winter 

period (late February 2022). Note the peak in the data matches that of the nearby River Bovey data series. 
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Figure D.4: Grain size distribution of measured sediments of the surface of the Tebay catchment demonstrating the range of 

natural sediment sizes in the reach.  

 

 



Appendices 

228 
 

 

Figure D.5: Video stills from Branscombe experiments in May. 

Demonstrating step and rest behaviour of the tracer sediments where: 

(a) captures the period of tracer movement during initial step; (b) 

captures the resting period of the tracer where movement ceased and; 

(c) captures the movement period during the following tracer movement 

step. 
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