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Abstract

Two-dimensional periodic travelling hydroelastic waves on water of infinite depth are
investigated. A bifurcation branch is tracked that delineates a family of such solutions
connecting small amplitude periodic waves to the large amplitude static state for which
the wave is at rest and there is no fluid motion. The stability of these periodic waves is
then examined using a surface-variable formulation in which a linearised eigenproblem
is stated on the basis of Floquet theory and solved numerically. The eigenspectrum
is discussed encompassing both superharmonic and subharmonic perturbations. In the
former case the onset of instability via a Tanaka-type collision of eigenvalues at zero is
identified. The structure of the eigenvalue spectrum is elucidated as the travelling-wave
branch is followed revealing a highly intricate structure.

This is dedicated to Professor Jean-Marc Vanden-Broeck on the occasion of his 70th birthday

1. Introduction

The study of two-dimensional hydroelastic waves has received an increasing amount of
attention in recent years. Aside from pure scientific interest, the motivation comes in part from
various applications in engineering, such as off-shore floating structures, as well as from the
desire to understand certain natural phenomena, for example the dynamics of ice covers on
the ocean. For a review of hydroelastic wave dynamics, see [1]. Steadily propagating periodic
waves and solitary waves have been found, for example by [2], [3], [4], [5] and [6]. Questions
of existence and well-posedness have also been addressed, for example by [7] and [8]. The
aforementioned studies included the effect of gravity. Studies that focus purely on hydroelastic
effects include [9] and [10].

The stability of periodic travelling waves has also been examined building on the voluminous
literature dealing with the stability of pure gravity waves initiated by Benjamin & Feir [11].
Relevant studies include those by [12] and by [13], who analysed the stability of two-dimensional
flexural-gravity waves using the AFM method.

In the present article we consider the stability of hydroelastic waves on fluid of infinite
depth in the absence of gravity. We compute two-dimensional periodic waves which represent
the infinite-depth counterparts of the finite-depth waves computed by [9]. The linear stability
of these waves is examined by linearising about the steady states and using the Floquet-Fourier-
Hill method [14] to formulate an eigenvalue problem which is solved numerically. We identify
a single branch of periodic travelling-wave solutions that bifurcates from the state in which
the free surface is flat. The wave speed decreases as this branch is followed to large amplitude
waves, and ultimately the branch terminates when the wave speed reaches zero and the wave
profile adopts that for a static elastic sheet.

Notably the wave energy along the bifurcation branch exhibits a local maximum before the
static state is reached. At this point we observe the onset of a Tanaka [9] type superharmonic
instability via a collision of eigenvalues at zero. We also investigate subharmonic perturbations
and demonstrate a highly intricate structure for the eigenspectrum. This includes figure-of-
eight type patterns such as those seen in traditional gravity wave stability computations [15,
16, 17, 18, 19].
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The outline of the paper is as follows. In section 2 we present the governing equations which
are formulated following the approach of Dyachenko [20] to express the problem in terms of
surface variables only. In section 3 we discuss periodic travelling-wave solutions. In section 4
we formulate the linear stability problem, which is then solved numerically in section 5. Finally
we summarise our findings in section 6.

2. Problem formulation

We consider the flow of water of infinite depth and of density ρ beneath an elastic sheet
with the particular goal of examining periodic waves on the surface. The elastic sheet has
bending modulus EB which, according to thin-shell theory, is related to the Young’s modulus
E by EB = Ed3/[12(1− ν2)], where d is the thickness of the sheet and ν is the Poisson ratio.
We use a Cartesian coordinate system (x, y) such that in the simplest state when the surface
is flat it is described by y = 0. More generally the surface is deformed and our interest lies in
calculating steadily propagating waves and determining their stability. In this case we analyse
the dynamics in a frame of reference that is moving at the wave speed c > 0.

Assuming inviscid, irrotational and incompressible flow, the governing equation for the
velocity potential in the fluid is Laplace’s equation, namely

∇2ϕ = 0. (2.1)

The velocity potential is subject to the far-field condition

ϕ ∼ −cx as y → −∞. (2.2)

The kinematic condition at the surface requires that

xt · n = ∇ϕ · n, (2.3)

where n is the unit normal to the surface and x describes the location of a material point in
the surface at time t. Neglecting gravity, the dynamic condition at the surface requires

ϕt +
1

2
|∇ϕ|2 + EB

ρ

(
κss +

κ3

2

)
= B(t), (2.4)

where s denotes arclength along the surface. We note that the arbitrary function B(t) can
be subsumed into ϕ. Condition (2.4) includes the jump in pressure across the surface that is
balanced by the elastic force prevailing in the flexible sheet. The latter is represented by the
final term on the left hand side and has been derived by considering an equilibrium balance of
forces in the flexible sheet (see, for example, [9]). The same form is formally derived by [21].

In the sequel we will need to compute the kinetic energy in the stationary lab frame. This
can be done using the formula [22]

Ek =
1

2
ρc

∫ −cλ

0

Y dϕ̃ =
1

2
ρc

∫ −cλ

0

Y dϕ+
1

2
ρc2

∫ λ

0

Y dx, (2.5)

where Ek is the kinetic energy per unit length in the transverse direction, and λ is the wave
length. Here y = Y corresponds to the free surface, and ϕ̃ = ϕ+ cx is the velocity potential in
the stationary lab frame. We shall also want to compute the elastic energy per unit length in
the transverse direction, defined to be (see, for example, [23, 5])

Ee =
1

2
EB

∫ L

0

κ2ds, (2.6)

where L is the total arclength of the deformed plate in one wave period, and s is arclength
along the plate.

In the limit of small amplitude travelling waves, the dispersion relation relating the wave
speed c to the wave length λ is (see [24])

c2 =
EB

ρ

(
2π

λ

)3

. (2.7)
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We make all quantities dimensionless using λ/2π as the length scale and (ρ/EB)
1/2(λ/2π)5/2

as the time scale. In dimensionless units the wavelength is 2π and the dispersion relation (2.7)
reduces to c = 1. Henceforth all quantities will be assumed to have been non-dimensionalised
in this way. We reformulate the governing equations in terms of surface variables using the con-
formal mapping approach developed by [25], [20] and [26] for water waves. Briefly the potential
flow problem in the physical plane is mapped to the lower half image plane and the governing
equations for the flow are manipulated to yield a coupled set of partial differential equations
in terms of surface variables only. If the location of the surface is described parametrically by
(x(ξ, t), y(ξ, t)), where t is time and −∞ < ξ <∞, and if ϕ(ξ, t) and ψ(ξ, t) are, respectively, the
velocity potential and stream function on the surface, then the non-local system of governing
equations is

yt = yξH (ψξ/J)− xξψξ/J , xt = xξH (ψξ/J ) + yξψξ/J , (2.8)

and

ϕt +
1

2J
(
ϕ2
ξ − ψ2

ξ

)
− ϕξH (ψξ/J ) + Pe = B(t), (2.9)

where

Pe =
κξξ

2J +

(
κξ

2J

)
ξ

+
κ3

2
, (2.10)

B(t) is the Bernoulli constant, and

xξ = 1− H [yξ], ϕξ = −c− H [ψξ]. (2.11)

Here J = x2ξ + y2ξ and the curvature

κ =
xξyξξ − xξξyξ

J 3/2
. (2.12)

The Hilbert transform is defined to be

H [f(ξ)] =
1

π
−
∫ ∞

−∞

f(ξ′)

ξ′ − ξ
dξ′. (2.13)

3. Travelling waves

In this section we construct steadily propagating periodic travelling-wave solutions. To this
end we remove the time derivatives from (2.8) and (2.9) and write

ϕ = −cξ, ψξ = 0. (3.1)

Representing the surface profile as x = X(ξ) and y = Y (ξ), where X(ξ + 2π) = 2π+X(ξ) and
Y (ξ + 2π) = Y (ξ), the dynamic boundary condition (2.9) requires that

c2

2J
+
κξξ

2J
+

( κξ

2J

)′
+
κ3

2
=
c2

2
, (3.2)

where J = X2
ξ + Y 2

ξ and

κ =
YξXξξ −XξYξξ

J3/2
, (3.3)

where a prime indicates a derivative with respect to ξ.
We can compute a solution numerically using a suitably truncated form of the Fourier

representation for the surface profile,

Y (ξ) =

∞∑
n=−∞

αne
inξ, (3.4)
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Figure 1: Travelling-wave solutions: (left, upper) the bifurcation curve showing wave height H ≡
max(Y )−min(Y ) versus the wave speed c; (left, lower) wave profiles corresponding to the filled circle
symbols in the upper panel. The red dots show the limiting static profile corresponding to c = 0;
(right) the solution curve for the elastic energy Ee, shown with a solid line, together with the Stokes
wave expansion approximation (3.11), shown with a broken line.

taking α0 = 0 without loss of generality, that is∫ 2π

0

Y (ξ)dξ = 0. (3.5)

Then X(ξ) is obtained by integrating (2.11) and fixing the integration constant so that X =
ξ − H (Y ). Note that

H
(
einξ

)
= i sgn(n) einξ (n ̸= 0). (3.6)

We use a collocation point method to compute the Fourier coefficients in (3.4). Fixing the
collocation points at

ξj =
2π(j − 1)

2N + 1
, (3.7)

for j = 1, . . . , 2N+1 for some integer N , we truncate the Fourier series at |n| = N and evaluate
(3.2) at each collocation point to yield the required number of nonlinear algebraic equations
for the unknowns comprising the 2N Fourier coefficients αn (n ̸= 0) and c. The nonlinear set
of equations is solved numerically using Newton’s method with finite differences employed to
approximate the necessary derivatives.

The branch of nonlinear travelling wave solutions bifurcates from the flat free surface so-
lution at the wave speed corresponding to the linear dispersion relation noted above, namely
c = 1. This is evident from the bifurcation curve shown in the left upper panel of Figure 1. This
plot shows how the wave height H ≡ max(Y )−min(Y ) varies with the wave speed. As can be
seen the bifurcation curve approaches c = 0 in the limit. Wave profiles at various points along
the bifurcation curve are shown in the left lower panel of Figure 1, together with the static
profile. The latter was computed using the method described by [9]. The total dimensionless
wave energy E varies with the wave speed. Here the total dimensionless wave energy is defined
to be

E = Ee + Ek, (3.8)

where

Ee =
1

2

∫ 2π

0

κ2J1/2 dξ, (3.9)

is the dimensionless elastic energy. The kinetic energy defined in (2.5) is most conveniently
computed using the equivalent (and dimensionless) formula

Ek =
1

2
c2
∫ 2π

0

Y (1 +Xξ) dξ. (3.10)
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The computed energy will be discussed later when we come to the linear stability results.
The numerical results can be corroborated by performing a classical Stokes expansion near

to the point of bifurcation. The details are given in Appendix C, where the first approximation
to the elastic energy is found to be (see (C.38))

Ee = −14π

11
(c− 1). (3.11)

This formula is compared with the numerical result in the rightmost panel of Figure 1 demon-
strating excellent agreement between the two.

4. Linear stability

To examine the linear stability of the travelling wave solutions presented in section 3, we
perturb about the basic state by writing

x = X(ξ) + x̃(ξ, t), y = Y (ξ) + ỹ(ξ, t), ϕ = −cξ + ϕ̃(ξ, t), ψ = ψ̃(ξ, t), (4.1)

where the tilde decorated terms are assumed to be small. Substituting into (2.8)–(2.11) and
neglecting products of small terms, we obtain

ỹt = Yξ H (ψ̃ξ/J)−Xξψ̃ξ/J, (4.2)

ϕ̃t = −cH (ψ̃ξ/J) + c
ϕ̃ξ

J
+ c2

Xξx̃ξ + Yξỹξ
J2

− P̃e (4.3)

together with

x̃ξ = −H (ỹξ), ψ̃ξ = H (ϕ̃ξ). (4.4)

Here J = X2
ξ + Y 2

ξ and

P̃e(ξ, t) =
1

J
Fξξ x̃ξ +

2

J
Fξ x̃ξξ +

1

J
F x̃ξξξ −

1

J

(
Yξ

J3/2

)
ξξ

x̃ξξ −
2

J

(
Yξ

J3/2

)
ξ

x̃ξξξ

− Yξ

J5/2
x̃ξξξξ −

1

J
Gξξ ỹξ −

2

J
Gξ ỹξξ −

1

J
G ỹξξξ +

1

J

(
Xξ

J3/2

)
ξξ

ỹξξ

+
2

J

(
Xξ

J3/2

)
ξ

ỹξξξ +
Xξ

J5/2
ỹξξξξ −

Jξ
2J2

Fξ x̃ξ −
Jξ
2J2

F x̃ξξ +
Jξ
2J2

(
Yξ

J3/2

)
ξ

x̃ξξ

+
YξJξ
2J7/2

x̃ξξξ +
Jξ
2J2

Gξ ỹξ +
Jξ
2J2

G ỹξξ −
Jξ
2J2

(
Xξ

J3/2

)
ξ

ỹξξ −
XξJξ
2J7/2

ỹξξξ

+
3κ2

2
F x̃ξ −

3κ2

2

Yξ

J3/2
x̃ξξ −

3κ2

2
G ỹξ +

3κ2

2

Xξ

J3/2
ỹξξ −

κξXξξ

J2
x̃ξ −

κξXξ

J2
x̃ξξ

−κξYξξ

J2
ỹξ −

κξYξ

J2
ỹξξ −

(κξ

J

)
ξ

2Xξ

J
x̃ξ −

(κξ

J

)
ξ

2Yξ

J
ỹξ .

where

F =
Yξξ

J3/2
− 3Xξκ

J
, G =

Xξξ

J3/2
+

3Yξκ

J
. (4.5)

Following Tiron & Choi [27] we express the perturbations in the form of Fourier expansions,
writing

x̃(ξ, t) = eσt eipξ
∞∑

j=−∞

aj e
ijξ + c.c., ỹ(ξ, t) = eσt eipξ

∞∑
j=−∞

bj e
ijξ + c.c., (4.6)

ϕ̃(ξ, t) = eσt eipξ
∞∑

j=−∞

cj e
ijξ + c.c., ψ̃(ξ, t) = eσt eipξ

∞∑
j=−∞

dj e
ijξ + c.c., (4.7)
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where p ∈ [0, 1) and ‘c.c.’ denotes the complex conjugate. Using (4.4) we find if (j + p) ̸= 0
that

aj = −i sgn(j + p)bj , dj = i sgn(j + p)cj . (4.8)

Note that although these relations do not specify a0 and d0 when j = 0 and p = 0, neither of
these constants will appear in the perturbation equations (4.2)-(4.4) once we have made the
substitutions (4.6), due to the differentiations involved.

Equations (4.2) and (4.3) become, respectively,

σ

∞∑
j=−∞

bje
i(j+p)ξ =

∞∑
j=−∞

αj(ξ)cj , (4.9)

σ

∞∑
j=−∞

cje
i(j+p)ξ =

∞∑
j=−∞

γj(ξ)cj +

∞∑
j=−∞

βj(ξ)bj , (4.10)

where

αj(ξ) = (Xξ/J) |j + p|ei(j+p)ξ − |j + p| H
(
ei(j+p)ξ

J

)
Yξ, (4.11)

γj(ξ) = i
c

J
(j + p)ei(j+p)ξ + c|j + p| H

(
ei(j+p)ξ

J

)
, (4.12)

βj(ξ) = i
c2

J2
(j + p)(Yξ − isgn(j + p)Xξ)e

i(j+p)ξ − P̂e(ξ)e
i(j+p)ξ, (4.13)

and where P̂e(ξ) is given in Appendix A. We note that P̂e(ξ) = 0 if j + p = 0.

4.1. Linear stability for a flat surface

Following the travelling wave branch shown in the left upper panel of Figure 1 in the limit
H → 0 (and c→ 1) we obtain the flat surface state

X0 = ξ, Y0 = 0, Ψ0 = 0, Φ0 = −ξ. (4.14)

Then (4.2) and (4.4) become

ỹt = −ψ̃ξ, ϕ̃t = −H (ψ̃ξ) + ϕ̃ξ + x̃ξ − ỹξξξξ (4.15)

together with

x̃ξ = −H (ỹξ), ψ̃ξ = H (ϕ̃ξ). (4.16)

We assume the normal mode forms for the perturbations,

(x̃, ỹ, ϕ̃, ψ̃) = (aj , bj , cj , dj) e
σt ei(p+j)ξ + c.c. (4.17)

for any integer j, and p ∈ [0, 1) as before. Assuming p + j ̸= 0 and inserting these forms into
(4.15) and (4.16), and making use of (3.6), we obtain

σbj = −i(p+ j)dj , σcj = |p+ j|dj + i(p+ j)cj + i(p+ j)aj − (p+ j)4bj , (4.18)

and

i(p+ j)aj = |p+ j|bj , i(p+ j)dj = −|p+ j|cj . (4.19)

Eliminating aj and dj , we have

σbj = |p+ j|cj , σcj = 2i(p+ j)cj +
[
|p+ j| − (p+ j)4

]
bj . (4.20)

A non-trivial solution arises provided that σ satisfies the quadratic equation

σ2 − 2i(p+ j)σ − |p+ j|
(
|p+ j| − (p+ j)4

)
= 0 (4.21)
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Figure 2: Superharmonic case, p = 0. (a) The imaginary part of the growth rate Im(σ) plotted against
the wave speed c. (b) Close-up near to c = 0.415 showing Re(σ) and Im(σ) with filled circles and empty
diamonds, respectively.

The solutions for p+ j ̸= 0 are

σ
(p,j)
± = −i

(
±|p+ j|5/2 − (p+ j)

)
. (4.22)

If p+ j = 0 then since p ∈ [0, 1) we must have p = 0 and j = 0. In this case (4.15) and (4.16)
reduce to σb0 = 0 and σc0 = 0 yielding the possibilities (b0, c0) = (1, 0) or (0, 1) both with
σ = 0 (but a0 and d0 cannot be determined). Examining (4.22) we see that σ = 0 also occurs

when p = 0 and j = ±1 (i.e. σ
(0,1)
+ and σ

(0,−1)
− ) with the corresponding eigenvectors

(x̃, ỹ, ϕ̃, ψ̃) = (∓i, 1, 0, 0) e±iξ + c.c. (4.23)

following from (4.20). Since the eigenvectors in (4.23) are clearly linearly dependent, we have in
summary that the zero eigenvalue can be constructed in four different ways with three distinct
eigenvectors.

4.2. Numerical method for arbitrary wave amplitude

For arbitrary amplitude travelling waves, the linear stability problem must be solved nu-
merically. We achieve this by truncating the infinite sums at N terms, for a suitable choice of
integer N , and we use the 2N + 1 equally-spaced collocation points defined in (3.7). Applying
(4.9) and (4.10) at the grid points we obtain a set of algebraic equations which we form into
the matrix system

Ax = σBx, (4.24)

where x = (b−N , . . . , bN , c−N , . . . , cN )T , and A and B are (4N + 2) × (4N + 2) coefficient
matrices. We solve (4.24) numerically to calculate the eigenvalues σ using the in-built Matlab
routine eigs. As has been noted by previous authors, in the superharmonic case of p = 0 the
system (4.24) has a zero eigenvalue with algebraic multiplicity four. Two of these stem from the
fact that, as was noted by [27], A has its (N+1)th and (3N+2)th columns both zero. Thus we
may constructed two eigenvectors corresponding to the eigenvalue σ = 0 which are filled with
zeros except in the (N + 1)th and (3N + 2)th entries, respectively. These correspond to the
eigenvectors (b0, c0) = (1, 0) and (0, 1) discussed in section 4.1. Two further null eigenvalues
appear due to the freedom to introduce a pure phase shift in the horizontal direction [28].
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Figure 3: (a) The wave energy E shown against wave speed c, shown with a solid line, with the
limiting static wave (c = 0) energy E = 1.827 shown with a dotted line. The local maximum occurs
at (c, E) = (0.415, 2.209) shown with a solid circle. (b) The Gram determinant G as defined in (5.1)
shown against c.

5. Numerical results for linear stability

In this section we present numerical results using the method described in section 4.2. In all
of the results shown the truncation level N was increased until converged results were obtained.
For the most challenging computations we took N = 2048 but typically fewer modes than this
are necessary. We discuss first results for superharmonic perturbations with p = 0. As was
indicated in section 4.1 the growth rates are all purely imaginary in the limit H → 0. In
Figure 2(a) we show how the imaginary part of σ varies as the wave speed c is decreased from

unity. The labels in the figure indicate branches which start at c = 1 at σ
(p,j)
± given by (4.22).

The eigenvalues on the branches labelled σ
(0,1)
− and σ

(0,−1)
+ collide at zero when c = 0.415.

This gives rise to what [29] have referred to as a Tanaka-type instability. This is characterised by
the vanishing of an eigenvalue at the point where the energy E attains a maximum as a function
of c; and, critically, by the fact that the eigenvectors corresponding to the colliding eigenvalues
become linearly dependent at the point of collision. To demonstrate such an occurrence here,
we must discuss carefully all of the possible zero eigenvalues and how their corresponding
eigenvectors behave as the point of collision is approached.

We denote by v1 and v2 the two linearly independent eigenvectors corresponding to the
branches labelled σ

(0,1)
− and σ

(0,−1)
+ in Figure 2: these two eigenvectors are in general linearly

independent. Also of interest are the two phase shift modes, whose eigenvectors we denote by
v3 and v′

3, which connect to the two flat state modes (4.23) at zero amplitude (however, v3 and
v′
3 are linearly dependent, and hence we ignore v′

3 in the following discussion). We must also
consider the two eigenvectors which are present due to the zero columns of the matrix A; we
call these v4 and v5, and we note that they are obviously mutually orthogonal. Also v4 and
v5 are both orthogonal to v3 since a pure phase shift mode has zero ξ-average.

Consider the set S = {v1,v2,v3} of generally mutually linearly independent vectors. We
find that this set collapses to a single eigenvector at the point c = 0.415. To see this we follow
[28] and construct the Gram determinant

G(x1,x2) = |x1|2|x2|2 − |(x1,x2)|2, (5.1)

where (x1,x2) = xT
1 x

∗
2 with the asterisk denoting the complex conjugate. Figure 3(b) shows

thatG(v1,v3) is non-zero except at c = 0.415 where it vanishes, meaning that v1 and v3 become
linearly dependent. Similar graphs can be produced for G(v1,v2) and G(v2,v3). Therefore
at c = 0.415 we have a zero eigenvalue of algebraic multiplicity six but geometric multiplicity
three, comprising the any one member of S (the other two being linearly dependent) and v4,
v5.
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Figure 4: Subharmonic instability at (from left to right) p = 0.175, p = 0.2, p = 0.392, and p = 0.5.
Each upper panel shows the imaginary part of σ corresponding to the real part of σ shown in the lower
panel.

We have also investigated higher frequency superharmonic modes, and have traced the
branches in a graph similar to that shown in Figure 2 for Im(σ) ∈ [−150, 150]. We do not find
any further collisions of eigenvalues, either at zero or away from zero. This suggests that there
are no other superharmonic instabilities that occur before the one we have described above.
Turning now to subharmonic modes we consider values of p ∈ (0, 1). Figure 4 shows the real
and imaginary parts of the complex growth rate σ for several values of p. The two intermediate
values p = 0.175 and p = 0.392 correspond to cases where there is a collision of eigenvalues at
zero wave amplitude. Specifically, these occur where, with reference to (4.22),

σ
(p,−2)
− = σ

(p,1)
− and σ

(p,1)
+ = σ

(p,−1)
+ . (5.2)

respectively. Many other similar examples can be readily constructed. These double, purely
imaginary, eigenvalues split apart for c < 1 as the wave amplitude increases. Since there is no
corresponding instability (the real part of σ remains zero as they split) we surmise that these
two eigenvalues have the same Krein signature. We refer here to the result due to [29] that
a necessary condition for instability is that colliding eigenvalues should have opposite Krein
signature. The Krein signature, sK , is confirmed by direct computation:

sK = sgn
[
−sIm

(
σ(p,j)
s

)]
= sgn

[
−s(p+ j) + |p+ j|5/2

]
, (5.3)

where s represents ±. (See [27] and [30] for similar calculations of the Krein signature for
capillary waves.) Figure 5 shows the Krein signature for a range of mode frequencies over the
range p ∈ [0, 1]. All of the modes have positive Krein signature except for those corresponding

to σ
(p,0)
+ and σ

(p,−1)
− , which have negative signature. Notably the double eigenvalues seen in

Figure 4 for p = 0.175 and p = 0.392 have the same Krein signature and so cannot produce
instability. The instability that occurs in the various panels in Figure 4 arise from the collision
at finite amplitude of two modes of opposite Krein signature. For example, the instability
that sets in at c = 0.974 for p = 0.175 occurs via a collision of the modes σ

(p,1)
+ and σ

(p,−1)
− .

Furthermore, since both modes of negative signature can be seen to collide with modes of
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Figure 5: The imaginary part of the growth rate and Krein signature. Eigenvalue collisions occur at
the crossing of the lines: two of these are illustrated by solid disks and correspond to the second and
third panels in figure 4. The solid lines indicate modes with positive Krein signature, sK = 1, and the
broken lines indicate modes with negative Krein signature, sK = −1. The blue broken line indicates

the mode σ
(p,0)
+ and the red broken line indicates the mode σ

(p,−1)
− .

positive signature in each panel in Figure 4, we know that there cannot be any other collisions
at higher frequencies than those shown in the panels which produce instability.

Figures 6 and 7 show the eigenvalue spectrum in the complex plane for a number of different
values of c. Evidently subharmonic instability occurs at any value of the wave speed. The
structure of the spectrum changes in a highly intricate manner as the travelling-wave branch is
followed. Just after the bifurcation point, at c = 0.99, we see two figure-of-eight type structures
superposed on each other. This may be contrasted with what is observed for pure gravity waves
in infinite depth, where a solitary figure-of-eight is seen for small wave amplitude [19]. As c
decreases the spectrum evidently undergoes a sequence of changes demonstrating a complex
and intricate structure. Note that the computations for the various panels in Figures 6 and 7
required an increasing number of collocation points up to N = 2048 for c = 0.035.

6. Summary

We have constructed a branch of periodic travelling-wave solutions for hydroelastic waves
on water of infinite depth and discussed the stability of these waves to small amplitude per-
turbations. For superharmonic perturbations we demonstrated that there occurs a collision
of eigenvalues that corresponds to the onset of superharmonic instability, but not to the ap-
pearance of a bifurcating solution branch. We also examined higher frequency superharmonic
modes and tracked the various branches. The absence of further collisions of eigenvalues, either
at zero or away from zero indicates that no further superharmonic instabilities occur prior to
the aforementioned one. This contrasts with the findings of [29] for gravity waves on water of
infinite depth. In the latter case ‘high’ frequency collisions occur before the one at zero. [27]
also found eigenvalue collisions for capillary waves on water of infinite depth but in this case
the relevant eigenvalues have the same Krein signature and hence, according to the theory of
[29], the collisions do not produce instability .

Additionally we have allowed for the presence of subharmonic perturbations and found
that the waves are always subharmonically unstable for any amplitude along the travelling-
wave branch. Moreover we have described the eigenspectrum for different wave speeds and
demonstrated that its structure becomes highly intricate, including the presence of figure-of-
eight type patterns as are seen in traditional gravity-wave calculations.

10



Figure 6: The eigenspectrum in the complex σ plane for a number of different values of the wave speed
c. In each case the plot focuses on the spectrum near the origin. Purely imaginary eigenvalues also
exist but may lie beyond the range shown.
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Figure 7: The eigenspectrum in the complex σ plane for a number of different values of the wave speed
c. In each case the plot focuses on the spectrum near the origin. Purely imaginary eigenvalues also
exist but may lie beyond the range shown.
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Appendix A. The form of P̂e(ξ).

We note that

P̂e(ξ) =
1

J
Fξξ |j + p|+ 2

J
Fξ i|j + p|(j + p)− 1

J
F |j + p|(j + p)2

− 1

J

(
Yξ

J3/2

)
ξξ

i|j + p|(j + p) +
2

J

(
Yξ

J3/2

)
ξ

|j + p|(j + p)2 +
Yξ

J5/2
i|j + p|(j + p)3

− 1

J
Gξξ i(j + p) +

2

J
Gξ (j + p)2 +

1

J
G i(j + p)3 − 1

J

(
Xξ

J3/2

)
ξξ

(j + p)2

− 2

J

(
Xξ

J3/2

)
ξ

i(j + p)3 +
Xξ

J5/2
(j + p)4 − Jξ

2J2
Fξ |j + p| − Jξ

2J2
F i|j + p|(j + p)

+
Jξ
2J2

(
Yξ

J3/2

)
ξ

i|j + p|(j + p)− YξJξ
2J7/2

|j + p|(j + p)2 +
Jξ
2J2

Gξ i(j + p)

− Jξ
2J2

G (j + p)2 +
Jξ
2J2

(
Xξ

J3/2

)
ξ

(j + p)2 +
XξJξ
2J7/2

i(j + p)3 +
3κ2

2
F |j + p|

−3κ2

2

Yξ

J3/2
i|j + p|(j + p)− 3κ2

2
G i(j + p)− 3κ2

2

Xξ

J3/2
(j + p)2 − κξXξξ

J2
|j + p|

−κξXξ

J2
i|j + p|(j + p)− κξYξξ

J2
i(j + p) +

κξYξ

J2
(j + p)2 −

(κξ

J

)
ξ

2Xξ

J
|j + p|

−
(κξ

J

)
ξ

2Yξ

J
i(j + p) . (A.1)

Appendix B. The form of the kinetic energy

The dimensional kinetic energy defined in the stationary lab frame is

Ẽk =
1

2
ρ

∫ λ

0

∫ Y

−∞
|∇ϕ̃|2 dxdy, (B.1)

where y = Y is the wave surface, and we use a tilde to indicate that a variable is defined in the
stationary frame. Applying the divergence theorem over the region 0 ≤ x ≤ λ, −∞ < y ≤ Y ,
we obtain

Ẽk =
1

2
ρ

∫ λ

0

ϕ̃(n · ∇ϕ̃) ds, (B.2)

where s is arclength along the surface, and we have applied periodicity at the side boundaries
and we have used the fact that ϕ̃→ 0 as y → −∞.
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Appendix C. Stokes wave expansion

In a frame of reference moving with the wave speed c the steady form of the governing
equations (2.1)-(2.4) are in dimensional form

ϕxx + ϕyy = 0 , for y < η(x)

ϕ→ −cx , as y → −∞
ϕy = ηxϕx , at y = η(x)
1
2

(
ϕ2
x + ϕ2

y

)
+ EB

ρ

(
κss +

κ2

2

)
= B at y = η(x)

(C.1)

An exact solution corresponding to a flat free surface is

ϕ = −cx , η = 0 , B =
c2

2
. (C.2)

Non-trivial traveling waves can be obtained by perturbing the solution (C.2). To achieve this,
we introduce a small parameter ϵ, which is a measure of the amplitude of the wave, and write
the expansions

ϕ = −cx+ ϵϕ1(x, y) + ϵ2ϕ2(x, y) + ϵ3ϕ3(x, y) + · · · , (C.3)

η = ϵη1(x) + ϵ2η2(x) + ϵ3η3(x) + · · · , (C.4)

c = c0 + ϵc1 + ϵ2c2 + ϵ3c3 + · · · , (C.5)

B = B0 + ϵB1 + ϵ2B2 + ϵ3B3 + · · · , (C.6)

where B0 = c20/2. This expansion was pioneered by [31] for pure gravity waves, and later
generalized to capillary-gravity waves by [32] and to flexural-gravity waves by [33].

The difficulty due to the unknown free surface can be overcome by writing the potential
function on the free surface as a Taylor series,

ϕ(x, η) = ϕ(x, 0) + ϕy(x, 0)η +
1

2
ϕyy(x, 0)η

2 + · · · , (C.7)

and expanding the kinematic and dynamic boundary conditions around y = 0. Substituting
the expansions into the governing system and equating the powers of ϵ leads to a succession of
linear problems. At O(ϵ) we have

ϕ1xx + ϕ1yy = 0 for y < 0 , (C.8)

ϕ1y → 0 , as y → −∞ , (C.9)

ϕ1y + c0η1x = 0 , at y = 0 , (C.10)

−c0ϕ1x +
EB

ρ
η1xxxx = B1 − c0c1 , at y = 0 , (C.11)

together with the periodicity conditions

η1(x+ λ) = η1(x) , ∇ϕ1(x+ λ, y) = ∇ϕ1(x, y) , (C.12)

and the constraints ∫ λ

0

η1(x) dx = 0 ,
1

λ

∫ λ

0

ϕ1x dx = 0 , (C.13)

where λ is the wave length. The solution to equations (C.8)–(C.13) is

η1 = A11 cos(kx) , ϕ1 = c0A11e
ky sin(kx) , c20 =

EB

ρ
k3 , B1 = c0c1 (C.14)
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where k = 2π/λ is the fundamental wavenumber, and c1 will be determined at the next order.
At O(ϵ2) we find

ϕ2xx + ϕ2yy = 0 , for y < 0 , (C.15)

ϕ2y → 0 , as y → −∞ , (C.16)

ϕ2y + c0η2x = −η1ϕ1yy − c1η1x + η1xϕ1x , at y = 0 , (C.17)

−c0ϕ2x +
EB

ρ
η2xxxx = B2 −

c21
2

− c0c2 −
1

2
|∇ϕ1|2 + c1ϕ1x + c0η1ϕ1xy , at y = 0 , (C.18)

with

η2(x+ λ) = η2(x) , ∇ϕ2(x+ λ, y) = ∇ϕ2(x, y) , (C.19)

(C.20)

and ∫ λ

0

η2(x)dx = 0 ,
1

λ

∫ λ

0

ϕ2xdx = 0 . (C.21)

Eliminating the secular terms yields c1 = 0 and hence B1 = c0c1 = 0. Then we find

η2 = − k

28
A2

11 cos(2kx) , ϕ2 = −15

28
c0kA

2
11e

2kx sin(2kx) , B2 = c0c2 . (C.22)

At O(ϵ3) we have

ϕ3xx + ϕ3yy = 0 for y < 0 , (C.23)

ϕ3y → 0 , as y → −∞ , (C.24)

η3(x+ λ) = η3(x) , ∇ϕ3(x+ λ, y) = ∇ϕ3(x, y) , (C.25)∫ λ

0

η3(x)dx = 0 ,
1

λ

∫ λ

0

ϕ3xdx = 0 , (C.26)

and the kinematic and dynamic boundary conditions at y = 0

ϕ3y + c0η3x = η2xϕ1x + η1x(η1ϕ1xy + ϕ2x − c2)− η2ϕ1yy − η1ϕ2yy − 1

2
η21ϕ1yyy , (C.27)

and

− c0ϕ3x +
EB

ρ
η3xxxx = B3 − c0c3 − ϕ1x(η1ϕ1xy + ϕ2x − c2)− ϕ1y(η1ϕ1yy + ϕ2y)

+ c0

(
η1ϕ2xy + η2ϕ1xy +

1

2
η21ϕ1xyy

)
+
EB

ρ

(
5

2
η21xη1xxxx + 10η1xη1xxη1xxx +

5

2
η31xx

)
.

(C.28)

To eliminate the secular term, we substitute η3 = A31 cos(kx) + A33 cos(3kx) + · · · and ϕ3 =
D31e

ky sin(kx) + D33e
3ky sin(3kx) + · · · into equations (C.27) and (C.28). Collecting terms

associated with sin(kx) and cos(kx) gives

D31 − c0A31 =
5

28
c0k

2A3
11 + c2A11 (C.29)

−D31 + c0A31 =
17

28
c0k

2A3
11 + c2A11 (C.30)

The solvability condition implies that c2 = − 11
28
c0k

2A2
11, and thus

c = c0 −
11

28
c0k

2ϵ2A2
11 + · · · . (C.31)
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Collecting terms associated with sin(3kx) and cos(3kx) yields

D33 − c0A33 =
3

7
c0k

2A3
11 (C.32)

D33 − 27c0A33 =
11

7
c0k

2A3
11 (C.33)

The solution is

A33 = − 4

91
k2A3

11 , D33 =
5

13
c0k

2A3
11 (C.34)

Upon noticing that

η(x) = ϵA11 cos(kx)−
k

28
ϵ2A2

11 cos(2kx)−
4

91
k2ϵ3A3

11 cos(3kx) + · · · , (C.35)

we denote by a the first Fourier coefficient of η(x), i.e.,

a =
2

λ

∫ λ

0

η(x) cos(kx)dx = ϵA11 . (C.36)

If we define the parameter ϵ as ϵ = a/λ, it then follows that A11 = λ. We may then compute
the first approximation to the elastic energy is

Ee =
7

11
k2λEB

(
1− c

c0

)
. (C.37)

In dimensionless units this becomes

Ee = −14π

11
(c− 1). (C.38)
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