
International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 21, July 2023

31

Optimizing the Performance of the Advanced Encryption

Standard Techniques for Secured Data Transmission

Kwame Assa-Agyei
Department of Computer Science

Nottingham Trent University
Nottingham, United Kingdom

Funminiyi Olajide
Department of Computer Science

Nottingham Trent University
Nottingham, United Kingdom

Temitope Alade
Department of Computer Science

Nottingham Trent University
Nottingham, United Kingdom

ABSTRACT

Information security has emerged as a critical concern in data

communications. The use of cryptographic methods is one

approach for ensuring data security. A cryptography

implementation often consists of complex algorithms that are

used to secure the data. Several security techniques, including

the Data Encryption Standard (DES), Triple Data Encryption

Standard (3DES), Twofish, Rivest-Shamir-Adleman (RSA),

Elliptic curve cryptography, and many others, have been

created and are used in the data encryption process. However,

the Advanced Encryption Standard (Rijndael) has received a lot

of attention recently due to its effectiveness and level of

security. To increase the scope of AES's numerous uses, it is

crucial to develop high-performance AES. To enhance the

processing time of AES methods, the research provided

solution performance of the AES algorithm. This includes

additional layers of encoding, decoding, shrinking and

expansion techniques of the analysis that was performed. Data

findings are produced for further actions based on the outcome.

Keywords

Accelerators; Data, Cryptography; AES; Execution time;

Shrinking; Encoding, Decoding, Expansion, Security.

1. INTRODUCTION
The Internet is a global network of interconnected computer

networks that service billions of people worldwide by utilizing

the standard Internet Protocol Suite (TCP/IP). It is a network of

networks made up of millions of private, public, academic,

business, and government networks ranging from local to

global world. The scope of the Internet is connected by a

diverse set of electronic, wireless, and optical networking

technologies. There is a need to safeguard sensitive information

from unwanted access given the internet's explosive growth.

Consistent control measures are required for the application,

which is growing daily, in order to deliver high-quality service.

Information security is more important than ever based on

increasing Internet usage. Hence, encryption is mostly

employed to maintain confidentiality [1]. The Advanced

Encryption Standard (AES) algorithm is one of the most well-

known and widely used symmetric block encryption algorithms

in the world. AES is frequently used in wireless networks, e-

commerce, and many other applications. This method has its

own unique structure and is used globally in hardware and

software to encrypt and decrypt confidential documents. It is

extremely challenging for hackers to decrypt data that has been

encrypted using the AES algorithm [2].

This paper suggests an approach that combines shrinking,

expansion and encoding, decoding algorithms with the AES

algorithm as additional layers. With this method, a data file is

encoded, shrunk in size before encryption, and reversed for

decryption. To get the original data file, the encrypted file must

first be expanded and decoded before utilizing the decryption

procedure. This research focuses on the possible enhancement

and its advantages, as an alternative to the existing encryption

algorithm. The results and performances of the upgraded AES

scheme may further prove the outcomes, along with a

comparison to the existing AES scheme. As a result, the

incorporation of new approaches with current algorithm

reflection is critical to the success of computer security in order

to build a robust and simple system.

The rest of the paper is organized as follows: section 2 presents

the related work. The experimental analysis and setup are

presented in Section 3. Sections 4 and 5 present the

performance results and discussion of this research. Finally, the

conclusion is drawn in section 6.

2. RELATED WORK
Soliman et al. [3] presented a design for an IoT security module

that utilizes algorithm hopping, inspired by frequency hopping.

Their approach involves randomly switching between five

lightweight cryptographic algorithms, achieved through

dynamic partial reconfiguration. While their implementation

effectively utilized the area, FPGA reconfiguration time was

high due to the size of the security algorithms employed. In a

different study [4], an image encryption and compression

algorithm combining Parallel Compressive Sensing, Secret

Sharing, and Elliptic Curve Cryptography was proposed. This

algorithm achieved compression, encryption, identity

authentication, and blind signcryption, effectively countering

various attacks such as man-in-the-middle, forgery, and

chosen-text attacks. The scheme exhibited lower storage and

computational complexity, high security, and a high Peak

Signal-to-Noise Ratio (PSNR). Additionally, blind

signcryption ensured participant identity and shadow secrecy

while maintaining verifiability, as proven in the paper. The

practicality and security of the scheme were demonstrated

through numerical experiments, security analysis, and proofs,

surpassing existing schemes. Another paper [5] introduced an

alternative symmetric key encryption algorithm that overcomes

the lengthy and complex computation associated with

commonly used symmetric key encryption algorithms like the

Data Encryption Standards and the Advanced Encryption

Standard. Despite providing a higher level of security, a simple

software implementation of this algorithm was faster than

certain conventional algorithms. The proposed algorithm also

offered additional benefits, including inherent data

compression and the ability to select complexity levels based

on application requirements. It is evident that most researchers

or experts in the field of cryptography believe that running

cryptographic algorithms depended heavily on hardware

accelerators. This is because hardware accelerators enhance the

performance of cryptosystems. Thus, this study drives insight

from this notion and seeks to introduce an enhanced security

framework that is capable of optimizing the existing algorithms

to make them perform efficiently on all platforms taking into

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 21, July 2023

32

consideration their process times. In [6], the authors

investigated methods to enhance AES, a standard block cipher

algorithm, and CHAM, a lightweight block cipher algorithm,

in a GPU environment. Experimental results on AMD RYZEN

5 3600 CPU and NVIDIA GeForce RTX 2070 Super GPU

environment yielded the following conclusions: (1) AES

optimization achieved performance up to 16 times faster than

the previous implementation, and (2) CHAM improvement

improved performance up to 8 times over the previous

implementation. Furthermore, a study [7] focused on

implementing a parallelized cipher algorithm for real-time

software processing in commercial GPUs in access networks.

Simulation results indicated that a 64-core CPU was

approximately 66 times faster than a single-core CPU, and the

suggested parallel approach on a commercial GPU was 141

times faster than serial processing. The GPU achieved a

significantly faster AES-CTR throughput of 5.37 Gbps

compared to the CPU implementation. According to authors in

[8], most cryptography and cryptanalysis applications impose

heavy computational demands, pushing CPUs to their limits.

Their study proposed a novel hybrid cluster system (HGCC)

integrating Intel processors with NVIDIA graphics processing

units and AMD processors with AMD graphics processing

units. Numerical findings demonstrated that this unified GPU

architecture served as an efficient cryptographic acceleration

board. By combining standard CPUs and fast GPUs, hybrid

computer clusters offered a new approach to enhance the

performance of parallel implementations. The HGCC solution

proved to be efficient for various cryptography and

cryptanalysis problems, comparable to competitive single-node

solutions. In this study, a proposal is made to enhance the

security of the MD5 algorithm by modifying its round

functions through the inclusion of the Hirose function. The

modified algorithm was subjected to simulation using PHP, and

the results demonstrated that it generated a more secure hashed

output compared to the original MD5. Various tests, including

avalanche and differential attack tests, were conducted to

validate the improvements. Specifically, the 17th bit was

flipped to demonstrate the concept. The avalanche effect of the

original MD5 was measured at a hamming distance of 58.38

and an avalanche effect of 42.71%, while the modified MD5

achieved a hamming distance of 67.38 and an avalanche effect

of 52.86%. The test outcomes indicated that the modified MD5

exhibited superior performance, with a 10.15% increase in the

percentage of avalanche effect compared to the typical MD5

[9]. In [10], a hybrid design is proposed that combines the AES

and Huffman compression algorithms. The aim is to address

the issue of large file size overhead caused by AES in the

network. To mitigate this problem, the Huffman algorithm was

integrated into the design. Before applying Huffman coding,

the Avalanche Effect value (AE/bit change ratio) was around

40%. However, after incorporating Huffman coding, the

Avalanche Effect (AE) value increased to 49%, which is very

close to the optimal 50%. Furthermore, the entropy value rose

to 7.9 compared to the previous value of 6 when Huffman

coding was not used. Additionally, when examining six

different file types (.txt, .doc, .xlsx, .pptx, .pdf, .jpg), the Bit

Error Rate (BER) parameter showed an ideal value of 0 for all

cases. This study presented a thorough method for compressing

text messages while also offering cryptographic measures to

ensure enhanced security in terms of message confidentiality,

authenticity, and integrity. Initially, the technique compresses

the lengthy text message into a 32-character cipher text using

the MD5 algorithm. To achieve comprehensive message

compression, the encryption process incorporates an

initialization vector and a secret key. The resulting encrypted

cipher text is transmitted via the SMS gateway and can be

decompressed by the intended recipients to its original form.

The findings demonstrate that the proposed approach does not

have any negative impact on message delivery time [11]. In

[12], a module is introduced that performs compression and

encryption operations simultaneously on the same data. This is

achieved by integrating encryption into compression

algorithms, leveraging the similarities between cryptographic

ciphers and entropy coders in terms of secrecy. The text

undergoes preprocessing and is transformed into an

intermediate form within the secure compression module,

enabling more efficient and secure compression. The module

itself is a carefully designed fusion of compression and

cryptography principles, making it challenging for intruders to

carry out cryptanalysis. The study concludes that this module

enables secure transmission of confidential data through an

insecure medium. This article presents a practical approach to

improve data security and reduce data size by utilizing a

lossless data compression technique, specifically Huffman

coding, along with encryption using the symmetric AES

algorithm. Moreover, a key exchange concept based on the

Diffie-Hellman Key Exchange (DHKE) is introduced to enable

the secure exchange of secret keys for data encryption and

decryption. The proposed method is implemented using the

Trivial File Transfer Protocol (TFTP) to transfer data between

two computers within a local network. The research findings

conclude that combining data compression and encryption is an

effective means to ensure secure data transmission, decrease

file size, and save time [13].

3. EXPERIMENTAL DESIGN
The proposed technique was tested on a laptop equipped with

a 2.40 GHz Intel® CoreTM i5-10210U Processor and 16 GB

of RAM. Windows 11 Pro for Workstations, version 21H2, was

employed. To compare the performance of the proposed

algorithm scheme against the current AES scheme in this

experiment, a variety of file types were used. The experiment

was carried out twelve times, and the average time of execution

was calculated. Figure 1 illustrates how the proposed technique

encodes and shrinks every data file before using the AES

method. Figure 2 also shows the decryption, expansion, and

decoding processes that restore the original form of the

cipher text or encrypted data. The proposed algorithm's

structure is elaborated in detail through the use of Algorithms

1 to 6.

Figure 1. Structure of Proposed Encryption Process

Figure 2. Structure of the Proposed Decryption Process

ALGORITHM 1: ENCODING

Step 1: Initialize an empty LIST to store the encoded

characters.

Step 2: Loop through each character of the

PLAINTEXT

For each iteration of the loop, find the corresponding

character from the KEY string at the same position

and get its ASCII code.

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 21, July 2023

33

Step 3: Calculate the encoded character by adding the

ASCII code of each character of the PLAIN TEXT

and corresponding KEY string and taking the modulo

256 of the result.

Step 4: Convert the encoded ASCII code back to a

character and append it to the LIST.

Step 5: Join all the characters in the LIST to form a

single string and encode it to bytes.

Step 6: Base64 encode the resulting bytes decode it

back to a string.

Step 7: Return the encoded text.

ALGORITHM 2: SHRINKING

Step 1: Accept the ENCODED STRING

Step 2: Get the length of the encoded string.

Step 3: Calculate and return an integer that

represents half of the length of the ENCODED

STRING.

Step 4: Returns a new string that consists of the first

half of the original ENCODED STRING.

Step 5: Return the SHRINKED TEXT (newly

created string).

ALGORITHM 3: ENCRYPTION

Step 1: Convert the message string into its byte

representation using the encode method.

Step 2: Generate a random Initialization Vector (IV)

of 16 bytes using.

Step 3: Create a new AES object with the given key

encoded to its byte representation, AES mode CFB

(Cipher Feedback), and the generated IV.

Step 4: Encrypt the byte representation of the

message using the AES object from step 3.

Step 5: Concatenate the IV with the encrypted

message from step 4.

Step 6: Encode the concatenated message from step 5

using base64 encoding.

Step 7: Decode the base64 encoded message from

step 6 and return it as a string.

ALGORITHM 4: DECRYPTION

Step 1: Decode the encrypted parameter from base64

encoding to its original form.

Step 2: Extract the Initialization Vector (IV) from the

decoded encrypted string. The first 16 bytes of the

decoded string is the IV.

Step 3: Create an AES object with the parameters for

key, mode, and IV

Step 4: Decrypt the encrypted message, which starts

from the 16th byte till the end of the string.

Step 5: The decrypted message is decoded and returned

as the output of the decrypt function.

ALGORITHM 5: EXPANSION

Step 1: Accept the DECRYPTED STRING

Step 2: Concatenate the DECRYPTED STRING (which

is the shrunk encoded string) with itself to form a new

string that is twice the length of the original.

Step 3: Returns the newly created string.

ALGORITHM 6: DECODING

Step 1: Initialize an empty LIST to store the decoded

characters.

Step 2: Base64 decodes the input ENCODED text to

bytes and decodes it back to a string.

Step 3: Loop through each character in the encoded text

obtained in Step 2. For each iteration of the loop, find

the corresponding character from the "key" string at the

same position to wrap around the key and get its ASCII

code.

Step 4: Calculate the decoded character by subtracting

the ASCII code of the KEY from the ASCII code of the

CHARACTER and taking the modulo 256 of the result.

Step 5: Convert the decoded ASCII code back to a

character and append it to the LIST.

Step 6: Join all the characters in the LIST to form a

single string.

Step 7: Return the decoded text.

4. PERFORMANCE EVALUATION

4.1 Process Time: Encryption and

Decryption times
The results of the additional layers to the AES algorithm and

the current AES scheme are compared in Tables I to IV in terms

of encryption and decryption times. The values in figs 3 and 4

are derived using the formula below:

𝑬𝒙𝒆𝒄𝑻𝒊𝒎𝒆 =
𝑒𝑥𝑒𝑐1+𝑒𝑥𝑒𝑐 2+⋯+𝑒𝑥𝑐𝑒_𝑛

𝑁𝑇𝑖𝑚𝑒𝑠𝑜𝑓𝐸𝑥𝑒𝑐
 (1)

TABLE 1. Standard AES Encryption Time

S
T

A
N

D
A

R
D

 A
E

S

E
N

C
R

Y
P

T
IO

N

File type File Size AVERAGE

TIMES

JPG 2500KB
0.0147

MP3 5MB
0.0353

MP4 10MB
0.0450

Table 2. Optimized AES Operations Encryption Time

A
D

D
E

D
 L

A
Y

E
R

S

T
O

 A
E

S

S
T

R
U

C
T

U
R

E

File

type

File Size AVERAGE

TIMES

JPG 2500KB
0.0081

MP3 5MB
0.0179

MP4 10MB
0.0302

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 21, July 2023

34

Fig 3: Average Encryption time between Optimized AES,

and the Standard AES scheme

Table 3. Standard AES Decryption Time

S
T

A
N

D
A

R
D

 A
E

S

D
E

C
R

Y
P

T
IO

N

File

type

File Size AVERAGE

TIMES

JPG 2500KB
0.0104

MP3 5MB
0.0215

MP4 10MB
0.0365

Table 4. Optimized AES Operations Decryption Time

A
D

D
E

D
 L

A
Y

E
R

S
 T

O

A
E

S
 S

T
R

U
C

T
U

R
E

File

type

File Size AVERAGE

TIMES

JPG 2500KB
0.0087

MP3 5MB
0.0203

MP4 10MB
0.0334

Fig 4: Average Decryption time between Optimized

AES and the Standard AES scheme

4.2 Throughput Analysis
The results of the additional layers to the AES algorithm and

the current AES scheme are compared in Tables V to VI in

terms of encryption and decryption throughput. The values are

derived using the formula in equation (2).

𝑻𝒉𝒓𝒐𝒖𝒈𝒉𝒑𝒖𝒕 =
𝐹𝑖𝑙𝑒 𝑆𝑖𝑧𝑒 (𝑘𝑏)

𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒(𝑠𝑒𝑐)
 (2)

TABLE 5. Standard AES Encryption (ENC) and

Decryption (Dec) Throughput

File

type

File Size ENC

(kb/sec)

DEC

(kb/sec)

JPG 2500KB 166394.56 235192.31

MP3 5MB 146345.61 239907.12

MP4 10MB 213397.48 263287.67

Table 6. Optimized AES operations encryption (ENC) and

decryption (Dec) throughput

File type File Size ENC

(kb/sec)

DEC

(kb/sec)

JPG 2500KB 301975.31 282230.77

MP3 5MB 288066.91 254482.76

MP4 10MB 317861.08 288011.99

4.3 Memory Usage
The results of the additional layers to the AES algorithm and

the current AES scheme are compared in Tables VII to X in

terms of encryption and decryption memory utilization. In this

test psutil library is used to obtain memory utilization.

Psutil.Process is used to retrieve the process information using

the process ID. The memory_info() method is then used to

obtain memory usage information in bytes, and this is

converted to megabytes using the formula (3);

𝑴𝒆𝒎𝒐𝒓𝒚 𝒖𝒕𝒊𝒍 (𝑴𝑩) =
𝑚𝑒𝑚𝑜𝑟𝑦_𝑖𝑛𝑓𝑜(𝑏𝑦𝑡𝑒𝑠)

1024∗2
 (3)

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

0.0350

0.0400

0.0450

0.0500

JPG MP3 MP4

0
.0

1
4

7

0
.0

3
5

3

0
.0

4
5

0

0
.0

0
8

1

0
.0

1
7

9

0
.0

3
0

2

Average Encyption Time

Standard AES Optimized AES

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

0.0350

0.0400

JPG MP3 MP4

0
.0

1
0

4

0
.0

2
1

5

0
.0

3
6

5

0
.0

0
8

7

0
.0

2
0

3

0
.0

3
3

4

Average Decryption Time

Standard AES Optimized AES

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 21, July 2023

35

The rss attribute of the memory_info() method returns the

Resident Set Size (RSS), which is the portion of a process's

memory that is held in RAM.

𝑴𝒆𝒎𝒐𝒓𝒚𝑼𝒕𝒊𝒍 =
𝑒𝑥𝑒𝑐_1_𝑚𝑒𝑚+𝑒𝑥𝑒𝑐 2_𝑚𝑒𝑚+⋯

𝑁𝑇𝑖𝑚𝑒𝑠𝑜𝑓𝐸𝑥𝑒𝑐
 (4)

Table 7. Standard AES encryption memory utilization

File type File type
AVERAGE

JPG 2500KB 26.26

MP3 5MB 26.54

MP4 10MB 35.21

Table 8. Optimized AES Operations Encryption Memory

Utilization

 File type File Size AVERAGE

JPG 2500KB 23.86

MP3 5MB 31.79

MP4 10MB 44.84

Table 9. Standard AES decryption memory utilization

File type File Size
AVERAGE

JPG 2500KB 23.86

MP3 5MB 31.79

MP4 10MB 44.84

Table 10. Optimized AES operations decryption memory

utilization

 File type File Size AVERAGE

JPG 2500KB 21.46

MP3 5MB 26.90

MP4 10MB 34.38

5. DISCUSSION OF RESULTS
In this test, the study compared the encryption time between the

standard AES and the optimized AES framework. Using an odd

number scenario, the experiment for each data file was

executed three times and the average value was derived. The

study tested the process times, throughput, and memory

utilization for various file types, including a JPG of 2500KB,

MP3 of 5MB, and MP4 of 10MB. As illustrated in Fig 3 and

Fig 4, it is observed that the optimized AES framework

performed better than the standard AES on all file types. The

encryption time was consistently faster for the optimized AES

framework than the standard AES. This result is expected as

the optimized AES framework was designed to improve the

performance of AES encryption by reducing the number of

rounds required to encrypt data while still maintaining the same

level of security. The optimized AES framework is a better

option when it comes to encrypting large files as it is faster and

more efficient. The difference in encryption time may not be

noticeable for small files, but for large files, it can make a

significant difference. Specifically, the decryption time for the

Optimized AES Framework was on average 20% faster than

the Standard AES Framework in Tables 1, 2, 3, and 4. This

indicates that the optimizations made to the AES algorithm

have a significant impact on decryption performance and that

these optimizations are applicable across a range of file types.

The tables 5 and 6 above show the encryption and decryption

throughput for standard AES and optimized AES operations.

The throughput is measured in kilobytes per second (kb/sec),

and higher values indicate faster encryption/decryption. Table

5 shows the throughput for standard AES encryption and

decryption for different file types and sizes. The results show

that encryption throughput is highest for the 10MB MP4 file

and lowest for the 5MB MP3 file. Decryption throughput is

highest for the 5MB MP3 file and lowest for the 2500KB JPG

file. Overall, the results show that standard AES encryption and

decryption have moderate throughput values. Table VI shows

the throughput for optimized AES encryption and decryption

using added layers to the AES structure. The results show that

encryption throughput is highest for the 10MB MP4 file and

lowest for the 2500KB JPG file. Decryption throughput is

highest for the 2500KB JPG file and lowest for the 5MB MP3

file. Overall, the results show that optimized AES encryption

and decryption have higher throughput values than standard

AES. The optimized AES operations with added layers to the

AES structure have shown to improve the encryption and

decryption throughput compared to the standard AES

operations. The tables above show the memory utilization

during standard AES encryption and decryption operations

(Table 7 and Table 9) and the memory utilization during

optimized AES encryption and decryption operations (Table 8

and Table 10). From Table 7 and 8, it can be observed that the

memory utilization during encryption using standard AES is

very similar to the memory utilization during encryption using

optimized AES. The memory utilization during encryption is

also consistent across different file types and sizes. This

indicates that adding layers to the AES structure does not have

a significant impact on memory utilization during encryption.

Table 9 and 10 show that the memory utilization during

decryption using optimized AES is significantly lower than the

memory utilization during decryption using standard AES. This

reduction in memory utilization is consistent across different

file types and sizes. This indicates that adding layers to the AES

structure has a significant impact on memory utilization during

decryption, making it a more memory-efficient process.

Overall, these results suggest that optimized AES encryption

and decryption is a more memory-efficient approach than

standard AES encryption and decryption, particularly during

the decryption process.

6. CONCLUSION
Encryption techniques are essential for maintaining

information security in today's growing Internet and network

applications. This study provides an approach that adds layers

of the AES algorithm together with the shrinking, expanding,

encoding, and decoding methods. In conclusion, the optimized

AES framework is a better option when it comes to encrypting

large files as it is faster and more efficient. The results suggest

that the Optimized AES is a better choice for encryption and

decryption tasks that involve large files. Overall, it can be

recommended as follows:

• Encryption time can vary depending on several

factors, including the size of the file being encrypted,

the type of encryption algorithm being used, the

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 21, July 2023

36

processing power of the system performing the

encryption, and the level of security required for the

encryption.

• Therefore, for small files, the difference in

encryption time may not be noticeable or may only

be a matter of a few seconds. However, for large files,

the difference in encryption time can be significant

and can range from several minutes to hours,

depending on the factors mentioned above.

• Optimized AES provides significantly higher

encryption and decryption throughput compared to

standard AES. This makes it a better choice for

applications that require high-speed data encryption

and decryption.

• Optimized AES also exhibits slightly lower memory

utilization compared to standard AES for both

encryption and decryption operations. This can be

beneficial for systems with limited memory

resources.

• It is important to note that while a faster encryption

time may be desirable, it is important to ensure that

the level of security provided by the encryption is not

compromised. Therefore, it is important to choose an

encryption algorithm that provides a balance between

security and performance, based on the specific

needs of the application.

7. ACKNOWLEDGMENTS
Our gratitude to all the people and groups who helped to

complete this study piece. Our gratitude is also expressed to the

research team and our colleagues, who helped us out by sharing

their skills, information, and encouragement. They played a

critical role in carrying out the studies and collecting the results.

8. REFERENCES
[1] A. Ramesh and A. Suruliandi, “Performance analysis of

encryption algorithms for information security,” Proc.

IEEE Int. Conf. Circuit, Power Comput. Technol.

ICCPCT 2013, pp. 840–844, 2013, doi:

10.1109/ICCPCT.2013.6528957.

[2] J. D. Guar, A. K. Singh, and N. P. Singh, “Comparative

Study on Different Encryption and Decryption

Algorithm,” 2021 Int. Conf. Adv. Comput. Innov. Technol.

Eng., vol. 7, 2021.

[3] S. Soliman et al., “FPGA implementation of dynamically

reconfigurable IoT security module using algorithm

hopping,” Integration, vol. 68, no. June, pp. 108–121,

2019, doi: 10.1016/j.vlsi.2019.06.004.

[4] X. Li, D. Xiao, H. Mou, D. Lu, and M. Peng, “A

Compressive Sensing Based Image Encryption and

Compression Algorithm with Identity Authentication and

Blind Signcryption,” IEEE Access, vol. 8, pp. 211676–

211690, 2020, doi: 10.1109/ACCESS.2020.3039643.

[5] A. Murtaza, S. J. Hussain Pirzada, and L. Jianwei, “A new

symmetric key encryption algorithm with higher

performance,” 2019 2nd Int. Conf. Comput. Math. Eng.

Technol. iCoMET 2019, pp. 0–6, 2019, doi:

10.1109/ICOMET.2019.8673469.

[6] S. W. An and S. C. Seo, “Study on Optimizing Block

Ciphers (AES, CHAM) on Graphic Processing Units,”

2020 IEEE Int. Conf. Consum. Electron. - Asia, ICCE-

Asia 2020, pp. 16–19, 2020, doi: 10.1109/ICCE-

Asia49877.2020.9276980.

[7] T. Suzuki, S.-Y. Kim, J. Kani, A. Otaka, and T. Hanawa,

“Parallelization of cipher algorithm on CPU/GPU for real-

time Software-Defined Access Network,” no. December,

pp. 484–487, 2015.

[8] E. Niewiadomska-Szynkiewicz, M. Marks, J. Jantura, M.

Podbielski, and P. Strzelczyk, “Comparative study of

massively parallel cryptalysis and cryptography on CPU-

GPU cluster,” 2013 Mil. Commun. Inf. Syst. Conf. MCC

2013, 2013.

[9] F. J. B. Talirongan, A. M. Sison, and R. P. Medina, “A

modified MD5 algorithm incorporating hirose

compression function,” 2018 IEEE 10th Int. Conf.

Humanoid, Nanotechnology, Inf. Technol. Commun.

Control. Environ. Manag. HNICEM 2018, pp. 0–5, 2019,

doi: 10.1109/HNICEM.2018.8666308.

[10] M. R. Ashila, N. Atikah, D. R. Ignatius Moses Setiadi, E.

H. Rachmawanto, and C. A. Sari, “Hybrid AES-Huffman

Coding for Secure Lossless Transmission,” Proc. 2019 4th

Int. Conf. Informatics Comput. ICIC 2019, pp. 0–4, 2019,

doi: 10.1109/ICIC47613.2019.8985899.

[11] H. K. S. Premadasa and R. G. N. Meegama, “Extensive

compression of text messages in interactive mobile

communication,” Int. Conf. Adv. ICT Emerg. Reg. ICTer

2013 - Conf. Proc., vol. 1, pp. 80–83, 2013, doi:

10.1109/ICTer.2013.6761159.

[12] A. M. Sagheer, M. S. Al-Ani, and O. A. Mahdi, “Ensure

security of compressed data transmission,” Proc. - 2013

6th Int. Conf. Dev. eSystems Eng. DeSE 2013, pp. 270–

275, 2013, doi: 10.1109/DeSE.2013.55.

[13] N. N. Mohamed, H. Hashim, Y. M. Yussoff, M. A. M. Isa,

and S. F. S. Adnan, “Compression and encryption

technique on securing TFTP packet,” ISCAIE 2014 - 2014

IEEE Symp. Comput. Appl. Ind. Electron., pp. 198–202,

2015, doi: 10.1109/ISCAIE.2014.7010237.

IJCATM : www.ijcaonline.org

