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Abstract— In this paper, a data-driven algorithm to identify 
the eccentricity fault in induction motors is proposed. The 
algorithm is based on the Kalman Filter (KF) and utilizes 
experimental data collected from healthy and faulty three-phase 
stator currents at different speeds and load conditions. 
Additional data processing techniques including Discrete 
Wavelet Transform (DWT), Power Spectral Density (PSD), and 
cepstrum are used to extend the dataset. A feature extraction 
process involving a few statistical measures is applied to this 
dataset. For each feature, a State-Space Model (SSM) and a KF 
are formulated. By comparing the resulting output of the SSMs 
with the estimated output from KFs, a measure to identify an 
eccentricity fault is obtained. This method was tested on various 
operating modes of an induction motor, demonstrating its 
effectiveness in distinguishing healthy data from those 
indicating an eccentricity fault.  

Keywords—Eccentricity fault, Kalman filter, data-driven 
state-space model, induction motor. 

I. INTRODUCTION  
Electric machines are a key element in all kinds of 

industries. Among all types of electrical motors, induction 
motors (IM) due to their reliability, robustness and low cost, 
are considered a first choice for several applications. Although 
these induction motors are highly reliable, they are susceptible 
to various types of faults. A machine fault can greatly impact 
the system performance, cause sudden interruptions and even 
provoke catastrophic failures. In order to improve the safety 
of the system, it is necessary to diagnose the faults. Faults in 
IMs can be categorized into electrical and mechanical faults. 
The common mechanical faults in IM are bearing failure, 
eccentricity and broken rotor bars. Approximately 40% of all 
failures arose due to these faults during the operation of 
industrial processes [1]. There are a large number of 
publications on mechanical fault detection and diagnostics.  

Generally, detection methods can be classified into 
physics-based, data-driven and hybrid approaches [2]. 
Physics-based methods employ a mathematical model to 
describe the behaviour of failure is available. In this approach, 
the physical model with measurement results is combined to 
design model parameters and predict future states. Data-
driven methods use previous information from training data to 
recognize the feature of the current failure state and predict the 
future states without using any specific physical model. 
Hybrid techniques are the combination of the two methods 
above mentioned which improve the prediction performance 
[3].   

In this paper, eccentricity fault detection has taken 
attention due to its disastrous consequences. Several 
techniques have been developed regarding the diagnosis of 
eccentricity faults for induction motors using model-based 

and data-driven schemes. Model-based approaches are 
divided into MMF-permeance analysis [4,5], simulation 
analysis [6-8], instantaneous power analysis [9,10], auxiliary 
voltage injection [11], and sensor-based and observer-based 
methods [12,13]. The model-based method has advantages in 
forecasting long-term behaviour of failure. However, 
modelling of induction motors is difficult to work especially 
when the motor is used to power electronic converters and 
such models include many approximations and assumptions.  

The data-driven fault detection approach covers a wide 
range of schemes in the literature. Some of the most important 
techniques are neural networks [14], fuzzy logic [15] and 
hybrid methods [16]. However, the performance of this 
method is dependent on adequate data; it has advantages in 
feature extraction and classification without complicated 
modelling and IM parameters [2]. In addition, advances in 
data acquisition technologies and sensor systems introduce a 
large number of raw data for numerous applications. In this 
paper, a Kalman filter (KF) was proposed for fault detection. 
This method can approximate the past, present and future 
states of a system through recursive equations, even when the 
measurement date is not precise enough [17]. It is have been 
used in various applications widely, especially fault detection 
and monitoring.  

There are various successful cases of mechanical fault 
detection based on vibration signals. Although vibration 
signature analysis is an efficient method for finding 
mechanical failures, the sensors commonly used for vibration 
measurement are costly. Compared with other methods, the 
current signal has many advantages. The inverters can 
measure the current signal easily and it is an inexpensive 
approach and suitable for eccentricity fault detection [18].  

In this paper, a fault detection algorithm is proposed using 
the three-phase stator current data of both healthy and faulty 
conditions. For this purpose, first, a feature set is derived 
based on both time and frequency signals such as the DWT, 
PSD and cepstrum. Corresponding to each feature, an SSM 
and a KF are formulated to predict the fault occurrence. The 
measure to detect the eccentricity fault is based on the residual 
vector, which is the difference between the outputs of SSMs 
and KFs.  

The rest of the paper is organised as follows: In section Ⅱ, 
the proposed methodology to identify eccentricity fault is 
described. Section Ⅲ presents the experimental setup to 
gather the instantaneous three-phase stator currents. The 
feature extraction process is described in Section IV. In 
Section V, the mathematical procedure to obtain the state 
space model for the KF is presented. Section ⅤI gives a 
background of the KF. Sections ⅥI and VIII present the fault 
detection results and conclusion. 



II.   METHODOLOGY 
The proposed approach to detect the eccentricity fault in 

the induction motor involves extending a KF based on a data-
driven state-space model using a set of statistical features. The 
initial dataset is collected by measuring instantaneous three-
phase stator currents of both healthy and faulty motors at ad 
different speeds and load conditions. To incorporate both time 
and frequency contents of the measured data, both 
approximation and detail coefficients of Discrete Wavelet 
Transform (DWT), Power Spectral Density (PSD), and 
cepstrum signals are calculated from the stator currents. Then, 
a feature set is provided by computing five statistical features: 
mean, standard deviation, skewness, kurtosis, and crest factor. 
These features are extracted from both time and frequency 
signals.  

To simplify the structure of the fault detection algorithm, 
a state-space model and its associated KF are extended 
corresponding to each feature. To detect the effects of the 
eccentricity fault, the state-space model and it's associated KF 
first are developed using only healthy features. Then, faulty 
features are applied as a part of the measurement to both 
model and KF. A significant difference between the output of 
the model and the estimated output using the KF is considered 
as a sign of fault.  

The benefits of this methodology include its capacity to 
detect changes in system behaviour caused by the fault and 
evaluate the severity of the fault. Furthermore, using a data-
driven approach allows for a more accurate representation of 
the system's behaviour and helps the system to adapt to 
changes over time. To consider the effects of measurement 
noise on the fault detection algorithm, a Gaussian distribution 
with zero mean and small variance is added to both state-space 
dynamics and measurement equation. The KF is the optimal 
estimator in the presence of noise. Figure 1 shows the structure 
of the proposed method from collecting the initial dataset to 
detect the eccentricity fault in the induction motor. 

 
Fig. 1. Block diagram of the proposed fault detection algorithm 

III. EXPERIMENTAL SETUP 
In the proposed method, only three-phase stator currents 

are analysed to detect the eccentricity fault. Figure 2 shows 
the experimental setup involving two similar 4 KW induction 
motors coupled throughout a torque transducer, a power 
meter, and a data acquisition system. The instantaneous 
current signals are measured using three similar LEM LA 100-
P current sensors. They operate based on the Hall effect and 

can measure both AC and DC currents up to 100 A. A target 
machine which is known as Speedgoat along with an FPGA 
Input/Output (I/O) module is used to collect data in the 
computer. The target machine's operating system is Simulink 
Real-Time, a powerful MATLAB software toolbox.  

 
Fig. 2. Experimental setup to measure healthy and faulty stator currents 

The specifications of the different components of the test 
rig are given in Table I. 

TABLE I.  SPECIFICATION OF TEST RIG COMPONENTS 

Component 
Name Specification 

Induction 
motor 

4 KW, 4 poles, 415V, star connection, 1500 rpm rated 
speed 

Target 
machine 

Speedgoat, Intel 2.0 GHz quad-core CPU, 4GB DDR3 
RAM memory, 4 I/O slots 

I/O module Configurable FPGA, 13 differential I/O lines 

Current 
sensors 

Hall effect sensors, measure current up to 100 A 

Toque 
transducer 

200 Nm rated torque, less than 0.1% accuracy  

Power 
meter 

A three-phase device, up to 10 readings per second, 0.1 
KHz to 100 KHz bandwidth 

 

IV. FEATURE EXTRACTION 
In various practical scenarios, the information gathered to 

identify faults has a high dimensionality, characterised by a 
wide range of factors that can potentially affect the monitored 
system. However, the fault detection task may not require all 
these variables. Indeed, some of them may cause unwanted 
interference or undesired results. Feature extraction helps to 
overcome this challenge by identifying and selecting only the 
most relevant features, thereby reducing the dimensionality. 
The goal is to detect faults by analysing the extracted features 
and identifying patterns and trends that indicate their presence 
in an induction motor. This improves the accuracy and 
efficiency of the process, requiring fewer computational 
resources to be used. 

Techniques such as Principal Component Analysis (PCA), 
Independent Component Analysis (ICA), Wavelet Analysis 



and others can be used for feature extraction. These strategies 
look for patterns, trends and links in the data to help 
distinguish between normal and abnormal behaviour. The 
primary dataset involves three-phase stator currents as well as 
three different signal characteristics including approximation 
and detail wavelet coefficients, PSD and cepstrum. Five 
statistical measures involving mean, standard deviation, 
kurtosis, skewness, and crest factor are considered to form the 
final feature set.  

The first feature is the mean (𝜇), which represents the 
expectation of a dataset by finding its average value through 
the addition of all observations and dividing by their total 
number. As a reference value, the mean can be used to detect 
anomalies in the data. There may be a fault in the system if the 
mean value suddenly deviates significantly from its expected 
value. The standard deviation (𝜎 ) indicates the degree of 
dispersion in a dataset from its mean, calculated by taking the 
square root of the variance. It is an essential measure to 
describe the variability and uncertainty of data, with higher 
values indicating greater dispersion and unpredictability.  

Skewness (s) is a measure of how asymmetric a dataset is 
around its mean, indicating whether it is skewed towards 
higher or lower values. Positive skewness shows an increase 
towards the right skewness, with a longer tail to higher values. 
Negative skewness, on the other hand, implies a higher skew 
to the left, with a longer tail towards lower values. Kurtosis 
(𝛾) is a statistical measure that compares a data set's peakiness 
or flatness to a normal distribution. It indicates whether the 
data has more or fewer extreme values than would normally 
be expected. Higher kurtosis values suggest more peakiness 
and a greater frequency of outliers, whereas lower kurtosis 
values indicate flatter distributions with a lower frequency of 
outliers. An increase in skewness or a decrease in kurtosis can 
be used to detect changes in the shape or distribution of the 
data. It may indicate a shift in the underlying process or system 
if the skewness or kurtosis values suddenly change. 

The crest factor (c) calculates a signal's peak-to-average 
power ratio by comparing its peak amplitude to its RMS 
amplitude. This metric is commonly used in signal processing 
and electrical engineering. A high crest factor indicates 
increased variability since there are more peaks. Indeed, an 
increase in the crest factor may be indicative of a sudden 
increase in signal amplitude, which may be the result of a fault 
or anomaly in the system. 

For a given dataset {x!, . . . , x"} , these features are 
calculated as follows [19]: 
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Figure 3 shows the three-phase stator currents and their 
approximation wavelet coefficients, PSD and cepstrum, 
during a limited period of time. Figure 4 shows an example of 
extracted features from the primary dataset. 

 
Fig. 3. An example of three-phase currents of the faulty motor, their 

DWT, PSD and cepstrum   

 
Fig. 4. An example of the extracted features from the primary dataset 

V. DATA-DRIVE STATE-SPACE MODEL  
The present study investigates the application of KF for 

detecting eccentricity defects in induction motors. Extending 
the KF for fault prediction requires constructing of an accurate 
state-state model. The Auto-Regressive (AR) model can be 
used as the state-space model. AR models capture time 
dependence in a variable, which is crucial for analyzing time-
varying data. The natural temporal order of many variables 
and the informative value of past values are taken into 
account. The idea behind the AR model is to calculate the 
present value of the time-varying series,	𝑋1, by a function of p 
past values, 𝑋1(!. 𝑋1(2. … . 𝑋1(3, where p is the order of AR(p) 
model and can be determined by the Akaike Information 
Criterion (AIC) [20].  

Moreover, increasing the order of the AR(p) model can be 
found the same precision as the Auto-Regressive Moving 
Average ARMA model [21]. To establish the estimated 
algorithm of fault detection using the KF, first, the AR model 
is built based on the historical data including the extracted 
features. An autoregressive model of order p is written as 

𝑋1 = 𝜙!𝑋1(! + 𝜙2𝑋1(2 +⋯+𝜙3𝑋1(3 + 𝜀1         (6)    

where 𝜙 = (𝜙!. 𝜙2. … . 𝜙3)  is the vector of model 
coefficients, p is a non-negative integer, and	
𝜀1~𝑁(0. 𝜎2) is the zero mean Gaussian white noise with the 



variance 𝜎2 . There is a direct correlation between these 
coefficients and the covariance function of the process, and 
this correlation can be reversed to determine the coefficients 
from the autocorrelation function. This is done using the 
Yule–Walker equations []:  

𝛾4 = ∑ 𝜙5𝛾4(5 + 𝜎62𝛿4.8
3
5$!                (7)    

where, 𝑚 = 0.… . 𝑝, 𝛾4 is the autocovariance function of 𝑋1, 
𝜎6   is the standard deviation of the input noise system and 
𝛿4.8 is the kronecker delta function. The equations can be 
solved for all coefficients {𝜙4;𝑚 = 1.… . 𝑝} in matrix form: 
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Therefore, the procedure of fault detection based on KF 
can be summarized as follows: 

• Consider the n values of a feature and construct the 
time series 𝑥(1). 𝑥(2). … . 𝑥(𝑛)  from zero to the 
length of n. 

• select the order p of the model and determine the 
autoregressive model with respect to historical data.  

• Calculate the Yule–Walker equations to obtain the 
coefficients(𝜙!. 𝜙2. … . 𝜙3) , and establish the AR 
model. 

• Based on the AR coefficients p, the matrices A and 
C of the state-space model are defined as 
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               (9)    

• The state space model of the system can be 
described below: 

𝑋(𝑘 + 1) = 𝐴𝑋(𝑘) + 𝑤(𝑘) 

𝑦(𝑘) = 𝐶	𝑋(𝑘) + 𝑣(𝑘)               (10)    

where, 𝑋(𝑘) represents the system state at the time k, 𝑦(𝑘) is 
the observed value,  𝑤(𝑘) and 𝑣(𝑘) are the white noises with 
zero mean and covariance Q and R, respectively. 

• According to the obtained state space model, the KF 
equations to predict future states will be conducted. 

To verify the performance of the AR model, the first 300 
data points from a healthy feature are analyzed. The results are 
drawn in Figure 5. It can be observed that the initial data points 
are estimated by the proposed AR model and the remaining 
data have discrepancies between the original signal and the 
AR model. 

VI. KALMAN FILTER- BASED FAULT DETECTION  
 

The Kalman filter is a widely used mathematical algorithm 
in the field of estimation theory. It provides an efficient way 
to estimate the state of a system by processing measurements 
taken over time. In particular, it has proven effective for fault 
detection applications where it can detect deviations from 
expected behaviour or potential faults in systems. 

 
a) 

 
b) 

Fig. 5. a) Simulation data points, b) Auro-Regressive model 

The KF uses a model of the system's behaviour to predict 
the next state of the system based on past observations. The 
predicted state is then compared to the actual measurement, 
and the difference is used to modify the model and increase 
the accuracy of the next prediction [22]. The KF can be used 
in fault detection to monitor system behaviour and discover 
deviations from expected behaviour. The filter detects faults 
in the system by comparing the predicted state of the system 
to the actual measurement. 

In this paper, a residual-based fault detection technique, in 
which the difference between the expected state and the actual 
measurement is employed to generate a residual signal, is 
proposed. This signal can then be analysed to discover system 
faults. If the residual signal, for example, reaches a specific 
threshold, it may indicate the presence of the eccentricity fault. 

After the initialisation process including initial conditions 
of predicted states, and covariance matrix, The KF predicts the 
state of the system at the next time step using the following 
prediction equation: 

𝑥V(𝑘 + 1, 𝑘) = 𝐴𝑥V(𝑘, 𝑘) + 𝜂(𝑘)               (11)    

where xV(k, k)  is the state vector at time k and 𝜂(k)  is the 
process noise with zero mean and covariance matrix 𝑄:. Then, 
KF corrects the predicted state based on new measurements 
using the following update equation: 

𝑥V(𝑘, 𝑘) = 𝑥V(𝑘, 𝑘 − 1) + 𝐾5(𝑧(𝑘) − 𝐻𝑥V(𝑘, 𝑘 − 1))  (12)    

where 𝑧(𝑘)  is the measurement vector at time k, 𝐻  is the 
measurement matrix at time k, 𝐾5 is the Kalman gain at time 
k. The measurement vector is obtained as follows: 

𝑧(𝑘) = 𝐻𝑥(𝑘)   (13)    

The error covariance, which is the uncertainty in the state 
estimate is updated below: 

𝑃(𝑘, 𝑘) = (𝐼 − 𝐾&𝐻)𝑃(𝑘, 𝑘 − 1)(𝐼 − 𝐾&𝐻)' +𝐾&𝑅&𝐾&'(14)    

where I is the unity matrix. The Kalman matrix gain is 
calculated as follows: 

𝐾5(𝑘) = 𝑃(𝑘, 𝑘 − 1)𝐻;(𝐻𝑃(𝑘, 𝑘 − 1)𝐻; + 𝑅5)(!  (15)    



To detect the eccentricity fault, first, a sequence of data 
including healthy and faulty features are gathered and applied 
as the measurements to the KF. The residual (𝑟5) at time k, is 
the difference between the predicted measurement and the 
actual measurement, which is given below: 

𝑟5(𝑘) = 𝑧(𝑘) − 𝐻𝑥V(𝑘, 𝑘)     (16)    

The fault detection measure is comparing the norm of the 
residual vector through a limited period of time with a 
predefined threshold.  

VII. RESULTS AND DISCUSSION 
To evaluate the feasibility of the proposed method in this 

paper, the current data measurement is analysed. We use the 
five different features in order to predict the eccentricity fault 
based on the KF. These features are mean, standard deviation, 
kurtosis, skewness and crest factors. There are 1500 data 
points for each feature value achieved from the experimental 
test.  The fault prediction curve for the mean feature is drawn 
in Fig. 6. It can be seen the estimated state has less ripple than 
the actual state. The occurrence of the failure can be detected 
at the 1400th point. The same simulation is done for the 
kurtosis feature. The predicted result is drawn in Fig. 6. It 
illustrates that the proposed method has effective tracking 
when the kurtosis feature from the 10th to 500th data points is 
changed. 

 

 
Fig. 6. Prediction result of mean feature using the KF 

 
Fig. 7. Prediction result of kurtosis feature using the KF 

The prediction results based on the standard deviation, 
skewness and crest features are also simulated and shown in 
Figures 7, 8, 9 and 10. As shown in these figures, the 
prediction results at the beginning data points have the error, 
but after a bit, the estimated values coverage to the actual 
values. They have illustrated the failure starts at the 1400th 
point. In these simulations, all the 1500 data points are used to 
test the proposed method of fault prediction. The first 80 data 
points are employed to establish the autoregressive model 
with order p=12. The obtained prediction results of the 
different features compared to the true values indicate success 
in the tracking of the prediction method based on KF. 

 
Fig. 8. Prediction result of standard deviation feature using the KF 

 
Fig. 9. Prediction result of skewness feature using the KF 

 
Fig. 10. Prediction result of crest factor feature using the KF 



VIII. CONCLUSION 
In this paper, eccentricity fault in the induction motor is 
detected using a data-driven Kalman filter. Based on 
experimental data including three-phase stator currents and 
their approximation and detail wavelet components, PSD and 
cepstrum, a primary dataset is established. Then, through a 
feature extraction process, a new feature set is obtained. 
Using AR models, state-space dynamics are developed 
corresponding to each feature. Then, using the prediction and 
update equations of the Kalman filter, a measure to detect the 
eccentricity fault is defined as the norm of the residual vector. 
The results demonstrated the efficiency of the proposed 
method for different prediction models. After applying the 
faulty data, the norm of the residual vector has a significant 
change indicating the presence of the eccentricity fault.   
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