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Abstract

The problem of steady two-dimensional open channel free surface flow over

topography is studied. The focus here is on the inverse problem of recovering

the profile of the topography given prescribed surface data. This thesis explains

the ill-posed nature of the inverse problem and develops a method based on the

truncated singular value decomposition to obtain regularised inverse solutions

for the topography given free surface data. It is shown how discretisation of the

inverse problem yields a linear system to be solved and how regularisation can

be applied to temper the ill-posed nature of the problem such that useful

solutions can be obtained. This method is much less computationally expensive

than previous approaches using the Newton method which enables a rapid

exploration of the solution space. The developed method is trialled against

input data from computed solutions to the forward problem to give a

benchmark against which the performance of the model can be assessed, and it

is found that it is able to accurately reconstruct the topography. We then show

that the method can recover the topography even with substantial noise added

to the surface. Finally we use the model to explore the solution space of the

inverse problem.
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1

Introduction

The subject of this thesis is the study of the inverse problem of water waves

over topography. The inverse problem is the problem of calculating the

topography when the surface profile of the fluid is known, contrasting the

forward problem which is to calculate the free surface given knowledge of the

underlying topography. The motion of fluids is modelled by the Navier Stokes

equations. We shall focus on two dimensional steady flow under gravity of an

incompressible, irrotational and inviscid fluid over a localised topographical

forcing such that we insist that the topography is level outside of a finite

interval. Steady means here that, while the fluid itself is still moving, the

surface profile remains fixed in time. Under these assumptions the governing

equations are simplified to the steady Euler equations.

An asymptotic expansion of the water wave equations leads to the Korteweg-de

Vries (KdV) equation, a weakly nonlinear model based on the assumptions that

the surface waves are of a sufficiently long wave length relative to their height.

The derivation of this equation was later modified by Akylas, 1984 to include

a term that takes into account incident surface pressure that forces the flow,

known as the forced KdV (fKdV) equation. Later work showed that the same

equation could be derived for fluid forced instead by the topography or even by

a combination of the two types of forcing (Cole, 1985; Grimshaw and Smyth,

1986; Shen, 1995; Wu, 1987). Binder, 2019 identified 11 different basic flow types

for the fKdV over a two parameter solution space, these parameters were the
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Figure 1.0.1: As the flow moves from left-to-right over uneven topography
yb or past a pressure distribution P the shape of the free surface yf will be
affected. Seeking solutions for one of these quantities, with the other two known
simultaneously, defines a family of problems. When the free surface is one of the
known quantities we are considering an inverse problem. The focus of this thesis
is on the inverse problem for the topography.

amplitude of the forcing and the Froude number. The Froude number, F , is the

ratio of the typical fluid speed to the propagation speed of linear gravity waves,

F = U√
gH

, where U is the typical flow speed, g the acceleration due to gravity

and H the typical flow depth. The KdV permits nonuniqueness in the forward

problem by way of the well known solitary wave when F > 1 and this extends to

the fKdV for which there are solutions that can be considered as perturbations

to the uniform stream and those that can be considered as perturbations to the

solitary wave occurring for the same Froude number and amplitude of forcing.

The fKdV acts as a useful guide in both the forward and inverse problems to

inform exploration of the fully nonlinear solution space. The solution to the

inverse problem using the fKdV can be written as an exact formula.

In looking to calculate fully nonlinear forward solutions over a semi-circular

topography Forbes and Schwartz, 1982 cast the problem as a boundary integral

equation via complex mappings, a technique used by Vanden-Broeck, 1987 to
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calculate perturbation to solitary wave type solutions in the fully nonlinear

problem. This method has been extended to consider topographies more

complicated than a semi-circle, see for example the work of Binder, Dias, and

Vanden-Broeck (2008), Binder, Vanden-Broeck, and Dias (2005), Keeler,

Binder, and Blyth (2018), and Lustri, McCue, and Binder (2012), and limiting

configurations of the free surface (Hunter and Vanden-Broeck, 1983;

Vanden-Broeck, 1997; Wade, Binder, Mattner, and Denier, 2017), where waves

approach what is known as the Stoke’s limiting configuration at the point

beyond which the wave would break if it were any steeper (Stokes, 1880). The

boundary integral method can also be used for purely pressure forced flows

(Binder and Vanden-Broeck, 2007) or for combined forcing types (Binder and

Vanden-Broeck, 2011).

The boundary integral method was used by Binder, Blyth, and McCue, 2013

to compute forward and inverse solutions for problems forced by either a either

a pressure distribution or non-uniform topography over a finite support. These

results were compared to the predictions of the fKdV and it was found that, while

accurate near F = 1, not only the fKdV does not predict so well the results of

the fully nonlinear problem when F is not near one but that the topography and

pressure inverse problems deviate more greatly form one another than predicted

by the fKdV, especially for the Froude number not close to one. This highlights

the need for a robust fully nonlinear methodology to be found in order to better

study the fully nonlinear solution space. The authors found that, while at low

resolution they could output good inverse results, when the resolution of the

model was increased the model would not converge. The authors worked around

this by computing inverse solutions at low resolution before interpolating them

to higher resolution to be used as input into the forward problem, this way they

ensured that the prescribed free surface could be recovered in the forward sense

from their inverse solutions.

This same sensitivity to the model resolution was reported by Tam, Yu, Kelso,

and Binder, 2015. The authors here established channel flows over Gaussian
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and semi-circular topographies of known form producing free surface featuring a

hydraulic fall and then tested the boundary integral method in both the

forward and inverse sense against the experimental free surface data collected.

The authors found good agreement in the forward problem and also, when the

model resolution was taken low enough to not be problematic, in the inverse

problem. They noted that the inverse method was less accurate at points of

slope discontinuity, for example the boundary of the semi-circular regions. The

model was not sensitive to small perturbations in input data at low resolution,

it only began to act in an ill-posed sense at higher resolution.

The sensitivity of the inverse model to mesh size is not unique to steady flows

and was reported for time dependent periodic flows by Vasan and Deconinck,

2013. The authors here sought solutions in the form of truncated Fourier series

and solved the resultant system by way of the Levenberg-Marquardt algorithm,

which is a least squares solver. The authors state the ill-posed nature of the

inverse problem and relate this to the appearance of hyperbolic functions in their

formulation and subsequent issues with machine precision. They avoided this by

truncating their Fourier modes to avoid high wave numbers and allow for smooth

solutions to be converged upon, however these solutions struggle to capture finer

detail in the topography at the lowered resolution.

Keller, 1976 gives an introduction to inverse problems, with some simple examples

highlighting issues like non-uniqueness that may come about from trying to solve

them. Kabanikhin, 2008 addresses the subjects of inverse provlems and ill-posed

problems more generally and rigorously. In this paper we find a statement of

the three conditions required for ”Hadamard well-posedness” of a problem, these

are that the system: has a solution; the solution is unique; small changes to

input data result in only small changes to the output solution (stability). For

problems that aren’t well-posed the author details regularisation methods that

seek approximate solutions to these systems. One such method is the Levenberg-

Marquardt algorithm previously mentioned, details of which can be found in

Croeze, Pittman, and Reynolds, 2012. While we do not employ this algorithm
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in the present work it was useful to gain a broader understanding of the need for

regularisation methods and what they achieve.

In Chapter 2 of this thesis we lay out the required background for understanding

the boundary integral method and some general theory of ill-posed problems. In

Chapter 3 we discretise the boundary integral equations and show how the inverse

problem can be viewed as solving a Fredholm integral equation of the first kind,

a type of problem known to be ill-posed (Hansen, 1990b, 1992b). The method

of regularisation we choose to employ is truncated singular value decomposition

(TSVD) as the discretisation of the boundary integral equations lead to an ill-

posed system of linear equations, naturally represented in matrix form. This

method is explained and examples given in Chapter 2 before it is applied to the

full problem in Chapter 3. It is found to be much faster than the Newton method

and with appropriate regularisation can handle resolutions for which the inverse

Newton method would not converge.

Having developed our tools, in Chapter 4 we test the methodology by prescribing

a topography, consisting of either one or two Gaussians, calculating solutions

to the forward problem and then using these solutions as input into the inverse

problem in order to recover the originally prescribed topography. We do this for

different types of forward solution in both supercritical and subcritical flows and

find that good regularised results can be obtained for flows that decay in the

far-field.

In Chapter 5 we test the limits of the regularisation of our model by adding

large amounts of white noise to the forward solutions before attempting to again

recover the topography used as input into the forward problem. We show how

our solutions to noisy problems could be improved by repeating ‘experiments’

and averaging the results by simulating multiple sets of noisy data for the same

surface.

Finally in Chapter 6 we prescribe free surfaces directly, using the developed

inverse method to explore the solution space of the inverse fully nonlinear
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problem, making use of the speed of the method to explore the response of the

topography to particular features being prescribed on the surface, like trapped

waves, while parameters like the wave length of the wave are varied.



2

Background

2.1 Notation

Cauchy Principle Value Integral

Throughout this document we make use of the Cauchy principle value integral

and distinguish it from the usual integral by use of the dashed integral symbol −
∫
.

For a function f(x), containing a singularity at x = b, the principle value integral

of the function over the interval [a, c] with a < b < c is defined as

−
c∫
a

f(x) dx = lim
ϵ→0+

 b−ϵ∫
a

f(x) dx+

c∫
b+ϵ

f(x) dx

 .

Norms

We use the notation ∥ · ∥ to denote the L2-norm when applied to continuous

functions. For the function f(x) this is defined to be

∥f∥ =

√√√√√ ∞∫
-∞

(f(x))2 dx .

Most of the vectors contained in this document will represent discrete

approximations of continuous functions over an interval [a, c]. Let the vector f

be such a vector, dividing the interval [a, c] into N equally spaced mesh-points,
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the vector f approximates the scalar function f by having each of its N

elements correspond to the value of function f evaluated at that mesh-point.

We shall reserve the notation ∥ · ∥ when applied to vectors to mean

∥f∥ =

√
(c− a)

N
(f · f) (2.1.1)

such that this vector norm approximates the L2-norm of the underlying

continuous function enabling better comparison between continuous and

discrete results. The absolute value notation |f | will be used to refer to the

usual vector L2-norm, given by

|f | =
√

(f · f) .

The Frobenius norm of the (m× n) matrix M with entries mi,j is defined as

∥M∥F =

√√√√ m∑
i

n∑
j

|mi,j |2 .

Fourier Transforms

The Fourier transform of a function f(x), denoted by the addition of a tilde, i.e.

f̃(w), is defined as

f̃(w) =
1√
2π

∞∫
-∞

f(x)eiwx dx . (2.1.2)

The inverse Fourier transform is then defined by

f(x) =
1√
2π

∞∫
-∞

f̃(w)e−iwx dw . (2.1.3)

The Dirac Delta function, δ(x), can be expressed in terms of the Fourier transform

of unity as

√
2πδ(w) =

1√
2π

∞∫
-∞

1 · eiwx dx . (2.1.4)
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2.2 Fluid Mechanics

2.2.1 Potential flow model

The motion û of an inviscid and incompressible fluid under the influence of a

gravitational field g and of constant density ρ0 with pressure p̂ is modelled by

use of the Euler equations and a statement of conversation of mass:

Dû

Dt
= − 1

ρ0
∇̂p̂+ g ; (2.2.1)

∇̂ · û = 0 , (2.2.2)

where ∇̂ = ( ∂∂x̂ ,
∂
∂ŷ ). We consider a 2D fluid flow of velocity û = (û, v̂) in the

(x̂, ŷ) plane bounded above by the free surface, ŷ = H + η̂(x̂), and below by the

impermeable topography, ŷ = ŷb(x̂). The gravitational acceleration is g = (0,−g)

and a pressure field P̂ = P̂ (x̂) acts on the free surface. We assume that the flow

far downstream approaches a horizontal uniform stream of depth H and speed

U , that is û → U and P̂ , v̂, η̂, ŷb → 0 as x̂ → ∞. We restrict our attention to

irrotational flows, therefore ω = ∇̂× û = 0, and seek steady solutions such that

any time dependence is removed from the problem. Using this information, and

the vector identity (û · ∇̂)û = 1
2∇̂(û · û) − û × (∇̂ × û), (2.2.1) may now be

rewritten as

∇̂
(
1

2
(û2 + v̂2) +

P̂

ρ0
+ gŷ

)
= 0 . (2.2.3)

Integrate this equation then to obtain the Bernoulli condition

1

2
(û2 + v̂2) +

P̂

ρ0
+ gŷ = constant . (2.2.4)

The boundary conditions on the free surface and topography require that flow

does not pass through them, i.e. the component of the velocity field normal to

the boundary must be zero. Mathematically, the flow must satisfy û ·n = 0 when

evaluated on either boundary, where n is the normal vector to the boundary. For

example on the free surface we have ŷ = H+ η̂(x̂) and so n = ∇̂(ŷ−H− η̂(x̂)) =
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(−dη̂
dx̂ , 1). The boundary condition on the surface can then be written as

v̂ = û
dη̂

dx̂
on ŷ = H + η̂(x̂). (2.2.5)

The process of finding the boundary condition on the topography is identical,

yielding

v̂ = û
dŷb
dx̂

on ŷ = ŷb(x̂). (2.2.6)

Introduce into (2.2.4) the nondimensional velocities u = 1
U û, lengths

(x, y, η, yb) = 1
H (x̂, ŷ, η̂, ŷb) and pressure P = 1

ps
P̂ , with the scaling ps to be

chosen shortly, to give

1

2
U2(u2 + v2) + ps

P

ρ0
+ gHy = constant . (2.2.7)

First dividing by U2 we see that by letting ps = gHρ0 we balance the order of the

pressure and gravity terms and obtain the nondimensionalised Bernoulli equation

in the form

1

2
(u2 + v2) +

1

F 2
(y + P ) = B (2.2.8)

where F = U√
gH

is the Froude number associated with the flow and B is a constant

value. Applying this condition on the far downstream surface we find

1

2
(12 + 02) +

1

F 2
(1 + 0) = B (2.2.9)

and therefore at any point in the flow we must satisfy

1

2
(u2 + v2) +

1

F 2
(y + P ) =

1

2
+

1

F 2
(2.2.10)

Now, as we have ∇̂×û = 0 we may introduce a nondimensional velocity potential

ϕ such that u = ∇ϕ and therefore ∇2ϕ = 0, where ∇ = ( ∂∂x ,
∂
∂y ) = H∇̂. We

also introduce a stream function ψ whose relation to our velocity components



2.2 Fluid Mechanics 37

and ϕ is given by the Cauchy-Riemann equations

u =
∂ϕ

∂x
=
∂ψ

∂y
,

v =
∂ϕ

∂y
= −∂ψ

∂x
.

A consequence of introducing ψ and ϕ is that (2.2.2) is now automatically

satisfied. The free surface problem can now be stated in terms of

nondimensional variables as

∇2ϕ = 0, in σ < y < 1 + η (2.2.11)

−∞ < x <∞ ,

1

2
(u2 + v2) +

1

F 2
(y + P ) =

1

2
+

1

F 2
on y = 1 + η , (2.2.12)

∂ϕ

∂y
=
∂ϕ

∂x

dη

dx
on y = 1 + η , (2.2.13)

∂ϕ

∂y
=
∂ϕ

∂x

dyb
dx

on y = yb , (2.2.14)

u→ 1 and P, v, η, yb → 0 as x→ ∞ . (2.2.15)

The formulation here only requires that the free surface decays in the far field

in one direction, i.e. as x → ∞. As we consider flow to be from left to right

surfaces that have waves on their upstream portion would represent flows with

energy being added to them as the incident waves arrive. Whenever a solution

is calculated with waves on its upstream it will subsequently be mirrored so as

to have its waves appear instead on the downstream portion of the flow, making

use of the fact that potential flows are reversible. This is to ensure that the flow

satisfies the Sommerfeld radiation condition (see e.g. Schot, 1992), which requires

that there is no additional energy coming from infinity in order for the model to

represent a physical flow.
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2.2.2 The forced Korteweg-De Vries equations (fKDV)

The forced Korteweg-de Vries (fKdV) equation for a forcing f(x) is given by

ηxxx + 9ηηx − 6µηx = −3fx , (2.2.16)

where µ = F − 1, first derived by Akylas, 1984 for a moving pressure field. The

forcing can represent either a pressure forcing, topographical forcing, or some

combination of these forcings (Cole, 1985; Shen, 1995; Grimshaw and Smyth,

1986). In the absence of forcing, i.e. f = 0, then we obtain from the fKdV

equation the usual KdV equation

ηxxx + 9ηηx − 6µηx = 0 . (2.2.17)

Integrating the fKdV once with respect to x yields

ηxx +
9

2
η2 − 6µη = −3f +A ,

for the constant of integration A; the conditions f → 0 and η → 0 as x→ ∞ set

A = 0. The forcing from the fKdV in the inverse problem is then easily obtained

as

f(x) = 2µη − 1

3
ηxx −

3

2
η2 . (2.2.18)

For example, prescribing surface to take the form of a typical Gaussian as η =

ae−(bx)2 , the forcing can be immediately written as

f(x) = ae−(bx)2
(
2(F − 1) +

2b2

3
(1− 2b2x2)− 3a

2
e−(bx)2

)
. (2.2.19)

2.2.3 Derivation of the governing equations for the boundary

integral method

The boundary integral method we employ follows closely the work of Vanden-

Broeck, 1997 and its subsequent developments, see Binder, Blyth, and McCue,
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Figure 2.2.1: As the flow moves from left-to-right over uneven topography
yb or past a pressure distribution P the shape of the free surface yf will be
affected. Seeking solutions for one of these quantities, with the other two known
simultaneously, defines a family of problems. When the free surface is one of the
known quantities we are considering an inverse problem.

2013 and Tam, Yu, Kelso, and Binder, 2015. We begin our derivation from the

potential flow model (2.2.11-2.2.15).

First we let z = x+iy, and then we introduce the complex potential f, an analytic

function given by f = ϕ + iψ, and subsequently the complex velocity w = df
dz .

Applying the Cauchy-Riemann relations we then find w as

w =
df

dz
=
∂ϕ

∂x
+ i

∂ψ

∂x
= u− iv ,

satisfying |u| = |w|. The streamlines of the flow are the family of curves given

by ψ = C with each streamline corresponding to taking different values for the

constant C. We let the surface streamline be defined by ψ = 0, it then follows

the relation u = dψ
dy and the nondimensionalised unit uniform depth and fluid

velocity u → (1, 0) in the far field as x → ∞ that the streamline following

the topography will be given by ψ = −1. By considering the problem in the

(ϕ, ψ) plane the curves describing the free surface and the topography have been
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ψ = 0

ψ = −1

A B C

D E F

P

Q

R

φ

ψ

(a)

A B CDEF

P

QR

α

β

(b)

Figure 2.2.2: How the applied complex mappings transform the fluid domain,
bounded by the free surface (blue) and the topography (red). Examples of points
in the fluid domain are marked and tracked through the mapping: A, B and C
are points on the free surface with A representing a point far upstream and C
one far downstream; D, E and F are points on the topography analogous to those
on the free surface; P represents a point inside flow far upstream, whereas Q and
R are points far downstream. (a) The fluid domain in the (ϕ, ψ) plane. (b) The
fluid domain in the (α, β) plane.

mapped to parallel straight lines; our domain is now an infinite rectangular strip

(Figure 2.2.2(a)).

A further mapping is now introduced, described by ξ = eπf = eπϕeiπψ with

ξ = α+ iβ, transforming the domain from the rectangular strip in the complex f

plane to the lower half of the complex ξ plane (Figure 2.2.2(b)). This mapping

takes the free surface and maps it to the positive real axis in the ξ plane, whereas

the topography is flipped before being mapped to the negative real axis in the

ξ plane. Points far downstream inside the flow are mapped to arcs in the lower

half plane connecting the topography and free surface; points far upstream are

collapsed onto the origin. Further, we introduce the analytic function given by

τ − iθ, with τ = τ(α, β) and θ = θ(α, β) such that

w = u− iv = eτ−iθ = eτe−iθ .

These introduced variables can be related back to physical features of the flow,

indeed we find that the speed of the flow is given by eτ as |u| = |w| = |eτ−iθ| = |eτ |
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and by equating the real and imaginary parts of u− iv = eτ−iθ we find:

u = eτ cos(θ) ;

v = eτ sin(θ) ,

and as such we can consider θ as the angle between the streamlines and the x

axis. In this sense, we are looking to paramaterise the fluid flow in terms of the

speed and angle of the fluid’s motion. A direct result of the above equations is

that we may now write

u2 + v2 = e2τ , (2.2.20)

substitution of which into Bernoulli’s equation gives

1

2
e2τ +

1

F 2
(y + P ) =

1

2
+

1

F 2
on y = yf = 1 + η . (2.2.21)

We will now apply Cauchy’s integral theorem to the analytic function τ − iθ in

the ξ plane, selecting the contour Γ formed by the real axis and the arc in the

lower half-plane of a semi-circle of radius R centred at the origin. To avoid a

pole on the real axis at ξ = α0 we take a semicircular indentation connecting

the points (α0 − ϵ, 0) and (α0 + ϵ, 0) for a small value ϵ (Figure 2.2.3). As such,

with no poles contained within the contour Γ, application of Cauchy’s integral

theorem results in ∮
Γ

τ − iθ

ξ − α0
dξ = 0 .

In order to evaluate this integral the contour Γ is split into four subsections

(Figure 2.2.3), allowing for the integral to be expressed, with a slight abuse of

integral notation, as

[∫
Γ1

+

∫
Γ2

+

∫
Γ3

+

∫
Γ4

](
τ(α, β)− iθ(α, β)

ξ − α0

)
dξ = 0 . (2.2.22)

Both Γ1 and Γ3 lie on the real axis (ξ = α) and so on these segments we have
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−R Rα0 − ε α0 + ε

Γ1

Γ2

Γ3

Γ4

α

β

Figure 2.2.3: A diagram of the contour Γ and how this contour is is then
subdivided in order to compute the contour integral around Γ.

dξ = dα, as such the integrals over these segments may be rewritten as:

∫
Γ1

τ(α, β)− iθ(α, β)

ξ − α0
dξ =

α0−ϵ∫
−R

τ(α, 0)− iθ(α, 0)

α− α0
dα ; (2.2.23)

∫
Γ3

τ(α, β)− iθ(α, β)

ξ − α0
dξ =

R∫
α0+ϵ

τ(α, 0)− iθ(α, 0)

α− α0
dα . (2.2.24)

Now consider the sum of (2.2.23) and (2.2.24) and take the limit of the sum as

ϵ → 0 and R → ∞. Noting the definition of a Cauchy principle value integral

then the resulting expression can be written as

lim
R→∞

lim
ϵ→0

{[∫
Γ1

+

∫
Γ3

](
τ(α, β)− iθ(α, β)

ξ − α0

)
dξ

}
= −

∞∫
−∞

τ(α, 0)− iθ(α, 0)

α− α0
dα .

(2.2.25)

In order to evaluate the integral along Γ2 we introduce the substitution

ξ = α0 + ϵeit =⇒ dξ = iϵeit dt. Converting the limits of integration, ξ = α0 − ϵ

and ξ = α0 − ϵ, to expressions in terms of t we find:

ξ = α0 − ϵ = α0 + ϵeit =⇒ t = −π ;

ξ = α0 + ϵ = α0 + ϵeit =⇒ t = 0 .
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Following this, α and β are also found in terms of t by equating the real and

imaginary parts of

α+ iβ = ξ = α0 + ϵeit = α0 + ϵ(cos(t) + i sin(t)) ,

which gives:

α = α0 + ϵ cos(t) , β = ϵ sin(t) .

We are now ready to rewrite the integral along Γ2 in terms of t as

∫
Γ2

τ(α, β)− iθ(α, β)

ξ − α0
dξ

=

0∫
−π

τ(α0 + ϵ cos(t), ϵ sin(t))− iθ(α0 + ϵ cos(t), ϵ sin(t))

α0 + ϵeit − α0
iϵeit dt

= i

0∫
−π

τ(α0 + ϵ cos(t), ϵ sin(t))− iθ(α0 + ϵ cos(t), ϵ sin(t)) dt .

Taking the limit ϵ→ 0 of the above expression we find it simplifies to

lim
ϵ→0

∫
Γ2

τ(α, β)− iθ(α, β)

ξ − α0
dξ = i

0∫
−π

τ(α0, 0)− iθ(α0, 0) dt

= i

(
τ(α0, 0)− iθ(α0, 0)

) 0∫
−π

dt = iπ

(
τ(α0, 0)− iθ(α0, 0)

)
. (2.2.26)

Finally we turn to evaluating the integral along the remaining contour segment

Γ4. Consulting again Figure 2.2.2 recall that, in the limit R→ ∞, points on the

arc Γ4 correspond to points that are in the far-field downstream of the physical

flow. In the far-field we have 1 = u − iv = w = eτ−iθ, this implies that we have

τ = θ = 0. Hence,

lim
R→∞

∫
Γ4

τ(α, β)− iθ(α, β)

ξ − α0
dξ = 0 . (2.2.27)

We are now prepared to take the limit of (2.2.22) as R → ∞ and ϵ→ 0. Taking
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these limits and substituting in the results of (2.2.25 - 2.2.27) we obtain

iπ(τ(α0, 0)− iθ(α0, 0)) + −
∫
τ(α, 0)− iθ(α, 0)

α− α0
dα = 0 . (2.2.28)

Now noting that we have not specified the value of α0, which is nothing but a

real number and can be thought to act as a variable in the above equation, we

swap the symbols α and α0. Equating real and imaginary parts of (2.2.28) we

obtain:

θ(α, 0) = − 1

π
−
∫
τ(α0, 0)

α0 − α
dα0 ; (2.2.29)

τ(α, 0) =
1

π
−
∫
θ(α0, 0)

α0 − α
dα0 . (2.2.30)

We will now denote the values of τ and θ on the free surface, where α > 0,

as τf and θf respectively. Similarly we denote the values of τ and θ along the

topography, where we have α < 0, as τb and θb.

Consider (2.2.29) and (2.2.30) for values of α > 0; splitting the integrals and

writing in terms of surface and topography variables we find

θf (α) = − 1

π

0∫
−∞

τb(α0)

α0 − α
dα0 −

1

π
−
∞∫
0

τf (α0)

α0 − α
dα0 ,

τf (α) =
1

π

0∫
−∞

θb(α0)

α0 − α
dα0 +

1

π
−
∞∫
0

θf (α0)

α0 − α
dα0 .

Introduce into the first integral terms of each of the above equations the change

of variables α = eπϕ and α0 = −eπϕ0 , and then into the second integral terms the

change of variables α = eπϕ, α0 = eπϕ0 . Rearranging the result, this yields

θf (ϕ) =

∞∫
-∞

τb(ϕ0)

1 + eπ(ϕ−ϕ0)
dϕ0 − −

∞∫
−∞

τf (ϕ0)

1− eπ(ϕ−ϕ0)
dϕ0 , (2.2.31)

τf (ϕ) = −
∞∫

−∞

θf (ϕ0)

1− eπ(ϕ−ϕ0)
dϕ0 −

∞∫
-∞

θb(ϕ0)

1 + eπ(ϕ−ϕ0)
dϕ0 . (2.2.32)

By a similar process we take (2.2.29) and (2.2.30) with α < 0 and split the
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integrals to obtain

θb(α) = − 1

π
−
0∫

−∞

τb(α0)

α0 − α
dα0 −

1

π

∞∫
0

τf (α0)

α0 − α
dα0 ,

τb(α) =
1

π
−
0∫

−∞

θb(α0)

α0 − α
dα0 +

1

π

∞∫
0

θf (α0)

α0 − α
dα0 .

Now we make the change of variables α = −eπϕ and α0 = −eπϕ0 to the first

integral terms of each of the above equations. To the second integral terms we

make the change of variables α = −eπϕ and α0 = eπϕ0 . As before these equations

are simplified to read

θb(ϕ) = −
∞∫

−∞

τb(ϕ0)

1− eπ(ϕ−ϕ0)
dϕ0 −

∞∫
-∞

τf (ϕ0)

1 + eπ(ϕ−ϕ0)
dϕ0 , (2.2.33)

τb(ϕ) =

∞∫
-∞

θf (ϕ0)

1 + eπ(ϕ−ϕ0)
dϕ0 − −

∞∫
−∞

θb(ϕ0)

1− eπ(ϕ−ϕ0)
dϕ0 . (2.2.34)

Because the function df
dz = w = eτ−iθ is an analytic function we have also that

its reciprocal dz
df = 1

w = e−τ+iθ is analytic. Hence, we can write

xϕ + iyϕ =
dz

df
= e−τ+iθ .

Finally, applying this relation to the free surface and topography and then

equating the real and imaginary components gives:

∂xb
∂ϕ

= e−τb cos(θb) ;
∂xf
∂ϕ

= e−τf cos(θf ) ;

∂yb
∂ϕ

= e−τb sin(θb) ;
∂yf
∂ϕ

= e−τf sin(θf ) .

Collecting together the equations derived above the boundary integral method

gives the system of equations to be solved as:

1

2
e2τ +

1

F 2
(yf + P ) =

1

2
+

1

F 2
(2.2.35)
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θf (ϕ) =

∞∫
-∞

τb(ϕ0)

1 + eπ(ϕ−ϕ0)
dϕ0 − −

∞∫
−∞

τf (ϕ0)

1− eπ(ϕ−ϕ0)
dϕ0 ; (2.2.36)

θb(ϕ) = −
∞∫

−∞

τb(ϕ0)

1− eπ(ϕ−ϕ0)
dϕ0 −

∞∫
-∞

τf (ϕ0)

1 + eπ(ϕ−ϕ0)
dϕ0 ; (2.2.37)

τf (ϕ) = −
∞∫

−∞

θf (ϕ0)

1− eπ(ϕ−ϕ0)
dϕ0 −

∞∫
-∞

θb(ϕ0)

1 + eπ(ϕ−ϕ0)
dϕ0 ; (2.2.38)

τb(ϕ) =

∞∫
-∞

θf (ϕ0)

1 + eπ(ϕ−ϕ0)
dϕ0 − −

∞∫
−∞

θb(ϕ0)

1− eπ(ϕ−ϕ0)
dϕ0 ; (2.2.39)

∂xb
∂ϕ

= e−τb cos(θb) ; (2.2.40)
∂xf
∂ϕ

= e−τf cos(θf ) ; (2.2.41)

∂yb
∂ϕ

= e−τb sin(θb) ; (2.2.42)
∂yf
∂ϕ

= e−τf sin(θf ) . (2.2.43)

2.3 Linear algebra

2.3.1 Solutions to linear equations

Consider the matrix equation

Ax = b (2.3.1)

and the general problem of seeking all possible solutions for the unknown (n× 1)

vector x = (x1, . . . , xn)
T given the known quantities A, an (m × n) matrix,

and b = (b1, . . . , bm)
T , an (m × 1) vector, such that (2.3.1) is satisfied. This is

equivalent to solving a system of m simultaneous linear equations in n variables.

If there exists at least one vector x such that (2.3.1) is satisfied, i.e. all m

equations may be simultaneously satisfied, then the system is referred to as

consistent. If no such solutions exist then the system is inconsistent. A

consistent system may have either exactly one solution or instead an infinite

number of them, in which case it is called an indeterminate system.
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A set of N vectors V = {vi | i = 1, . . . , N} is called linearly independent if no

one element can be expressed as a linear combination of the others, that is to say

that the only solution to ∑
i

civi = 0

for the coefficients ci is given by ci = 0 ∀ i. If the set is not linearly independent

then it is called linearly dependent.

The span of the set of vectors V is given by the set of all possible linear

combinations of the elements vi or

span(V ) =

{∑
i

civi | ci ∈ R,vi ∈ V

}
.

By denoting the ith column ofA by ai define the column space ofA as colsp(A) =

span({ai | i = 1, . . . , n}). The row space of A may be defined similarly. Now

define the rank of A to be equal to the dimension of its column space which may

be expressed as

rank(A) = dim(colsp(A))

and can be shown to be also equal to the dimension of the row space. The rank is

bounded above by rank(A) ≤ min(m,n) with the case of equality being referred

to as a full-rank matrix. If this is not the case it is rank deficient.

Expanding the left-hand side of (2.3.1) as

Ax = x1a1 + . . .+ xnan = b

it becomes clear that the system is consistent only if b ∈ colsp(A).

The (m × n + 1) matrix formed by appending the vector b as an extra column

to the matrix A is known as an augmented matrix and is written [A|b]. For a

consistent system we can see that rank(A) = rank([A|b]); because b ∈ colsp(A)

the addition of this column leaves the number of linearly independent columns
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unchanged.

The Rouché-Capelli theorem (Capelli, 1892) states that the linear system given

by (2.3.1) is consistent if and only if rank(A) = rank([A|b]). Further, if we also

have rank(A) = n then the solution is unique, otherwise an infinite number of

solutions may be found.

Let us now consider the different possibilities for systems of m equations in n

unknowns for various m,n.

Underdetermined, m < n: A system with fewer equations than unknowns

is referred to as an underdetermined system and has m < n. Therefore, in

an underdetermined system, we have rank(A) ≤ min(m,n) = m < n giving

rank(A) ̸= n. Applying the Rouché-Capelli theorem the system will either: have

an infinite number of solutions if rank(A) = rank([A|b]) i.e., b ∈ colsp(A); or

else be inconsistent with no solutions.

Square, m = n: A system with an equal number of equations and unknowns is

referred to as a square system and has m = n. Hence, a square system has

rank(A) ≤ n. Let us consider the two separate cases of rank(A) = n and

rank(A) < n:

• Square full rank, rank(A) = n: In the case of a full rank square matrix there

always exists an unique solution. This can be seen by either: simply multiplying

(2.3.1) by the inverse of A, which will exist as A is of full rank; or combining the

relations that the rank of a matrix is both bounded above by the minimum of the

number of rows and columns and bounded below by the rank of any contained

sub-matrix (namely A for the augmented matrix [A|b]) to obtain the relation

n = rank(A) ≤ rank(A|b) ≤ min(m,n + 1) = m = n which requires that

rank(A) = rank([A|b]) = n and so by application of the Rouché-Capelli theorem

the system has a unique solution.
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• Square rank deficient, rank(A) < n: In the case of a rank deficient square

matrix our system acts effectively as an underdetermined system; if rank(A) =

rank([A|b]) then an infinite number of solutions exist, otherwise no solutions

exist.

Overdetermined, m > n: A system with more equations than unknowns is

referred to as an overdetermined system and has m > n. As for square and

underdetermined systems we treat this with the Rouché-Capelli theorem: if

rank(A) ̸= rank([A|b]) then no solutions exist; if rank(A) = rank([A|b]) and

the matrix A has full rank then we also have rank(A) = n so there is a unique

solution, whereas if A is rank deficient but we still have rank(A) = rank([A|b])

then there are an infinite number of solutions.

A powerful and commonly employed tool in the analysis of matrix equations is

the study of the eigenvalues, λ, and corresponding eigenvectors, v, of the matrix

A which satisfy

Av = λv ,

however, these are only defined when A is a square matrix. A related and more

general notion is that of the singular value decomposition (SVD) (e.g. Griffel,

1989), which is defined for all matrices regardless of size. We limit ourselves here

to the consideration only of real matrices, however the SVD analysis holds for

matrices with complex entries if the transpose operation is replaced with that of

the conjugate transpose. The SVD of any (m× n) matrix A may written in the

form

A = UΣV T ,

where U ,V are respectively (m×m) and (n×n) unitary matrices whose columns

consist of the eigenvectors of the matrices AAT and ATA. The (m×n) matrix Σ

has along its leading diagonal the singular values σn, n = 1, . . . , r ≤ min(m,n),

corresponding to the positive square roots of the eigenvalues of AAT , and all

other elements zero. The number of singular values that are not zero, r, is the
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same as the rank of the matrix A. The singular values are ordered by size starting

with the largest in the (1, 1) position.

While the inverse A−1 of A is defined only if A is a full rank square matrix the

idea can be generalised to all (m × n) matrices regardless of rank. The Moore-

Penrose inverse (MP-inverse), A+, is uniquely defined for all matrices A (James,

1978; Penrose, 1955) as the matrix that satisfies the properties:

AA+A = A ; A+AA+ = A+ ;(
AA+

)T
= AA+ ;

(
A+A

)T
= A+A .

If A is invertible then we have A+ = A−1. The MP-inverse can be written in

terms of the SVD of A as

A+ = V Σ+UT , (2.3.2)

where Σ+ is formed by taking the reciprocal of all non-zero entries of Σ and then

transposing (e.g. Ben-Israel and Greville, 2003, p.207).

The solvability condition for (2.3.1) gives that solutions exist if

A+Ab = b (2.3.3)

is satisfied. Where solutions exist they can all be constructed by use of the

MP-inverse as

x = A+b+ (In −A+A)w , (2.3.4)

where w is an arbitrary column vector of length n. The second term on the RHS

of in (2.3.4) represents solutions in the null space of A. If A is of full column

rank then the solution

xp = A+b (2.3.5)

will be unique; in this case we have A+A = In and so there is a cancellation

of the second term of (2.3.4), i.e., the null space of M contains only the zero

vector. This corresponds to the cases of a unique solution existing for consistent
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overdetermined and square systems. WhenA is not of full rank an infinite number

of solutions can be constructed, this is the case of a consistent underdetermined

system.

If the solvability condition fails then b /∈ ImM , the system (2.3.1) is inconsistent.

Numerically the solvability condition will often fail due to rounding errors. It

can be shown both that (2.3.4) now provides the solutions to the related least

squares minimisation problem of

min
x

∥Ax− b∥2 . (2.3.6)

and that from these minimising solutions there is a unique vector of minimum

Euclidean norm, given by xp = A+b (Planitz, 1979).

The condition number of the matrix A is defined as the ratio of the largest and

smallest singular values of A as cond(A) = maxσi
minσi

. If A is square and not of full

rank then it will necessarily have at least one singular value be zero and so have an

infinite condition number. While a sqaure matrix with finite condition number

is technically invertible, the more poorly conditioned (the larger the condition

number) a matrix is the more difficult it is to invert and poorly conditioned

matrices often are problematic in a numerical setting as the errors inherent to

working in finite precision will be magnified when trying to invert the matrix.

This makes trying to solve poorly conditioned matrix problematic and an example

of an ill-posed problem in the sense that a small change in input data can lead

to a disproportionate change in the output.

The method of truncated singular value decomposition circumvents the issue of

ill-conditioning by seeking to obtain instead only approximate solutions to (2.3.1)

by solving a related system formed by replacing the matrix A with a lower rank

approximation Aκ. At a chosen rank κ the (m × n) matrix Aκ can we written

in terms of the SVD of A as

Aκ = UΣ+
κV

T , (2.3.7)
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where κ ≤ rank(A) and Σκ is formed by retaining the largest k singular values

in Σ and setting the others to zero. By the Eckart–Young–Mirsky theorem the

matrix Aκ is the matrix that minimises ∥A −Aκ∥F (Eckart and Young, 1936).

The resulting rank k approximate problem has least squares solutions of the form

as that of (2.3.4), from which the unique solution xκ that also minimises ∥xκ∥ is

chosen as

xκ = A+
κ b . (2.3.8)

2.4 Newton Method

2.4.1 One equation in one variable

The Newton method is an iterative method for solving nonlinear, allowing us to

numerically seek a root, xs, of a function, F (x) such that

F (xs) = 0 . (2.4.1)

Given an estimate Xi to the root xs we can write xs = Xi+ ϵi, or ϵi = xs−Xi, so

that ϵi represents the error between our current estimate and the true solution.

A linear approximation is made by taking the Taylor expansion of (2.4.1), as

F (xs) = F (Xi + ϵi) = F (Xi) + ϵiF
′(Xi) +O(ϵ2i ) = 0 , (2.4.2)

and omitting the O(ϵ2i ) terms to yield

F (Xi) + ϵiF
′(Xi) ≈ 0 . (2.4.3)

We use (2.4.3) to obtain an approximation for ϵi, which is then used to form the

improved estimate, Xi+1 ≈ Xi + ϵi = xs, defined as

Xi+1 = Xi −
F (Xi)

F ′(Xi)
. (2.4.4)
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From an initial estimate X0 the process is iterated until the magnitude of the

residual |F (Xi)| falls below some defined tolerance.

2.4.2 Systems of equations

Newton’s method can be generalised to solve a system of equations n equations

in n unknowns. Consider instead the system

F (x) = 0 (2.4.5)

where F (x) = (F1(x), . . . , Fn(x))
T and x = (x1, . . . , xn)

T . For a given iteration

we have an estimate Xi = (X1, . . . , Xn)
T to the true solution

xs = (x[s,1], . . . , x[s,n])
T and a corresponding error ϵi = xs −Xi. Proceeding as

in the single variable case we take the first order Taylor expansion of F (x)

around x = xs, now written in matrix form as

F (Xi) + JF ϵi ≈ 0 , (2.4.6)

where JF , the Jacobian matrix of F evaluated at x = Xi, is given by

JF =


∂F1
∂x1

. . . ∂F1
∂xn

...
. . .

...

∂Fn
∂x1

. . . ∂Fn
∂xn


∣∣∣∣∣∣∣∣∣∣
x=Xi

.

Rearranging to find an approximation for ϵi, we then define the improved estimate

Xi+1 ≈ Xi + ϵi = xs as

Xi+1 = Xi − J−1
F F (Xi) (2.4.7)

and iterate until |F (Xi)| falls below a defined tolerance. A consequence of (2.4.7)

is the requirement that we consider only square systems, with an equal number

of equations as there is variables, else the inverse of JF will not exist.
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2.5 Inverse problems

While the term inverse problem is somewhat loosely defined it can be helpful

to think of this type of problem as determining a question given an answer or

finding a set of causes given their effects. A good review on the topic is found

in Keller, 1976. A typical example is X-ray tomography where it is attempted

to construct a 3D image of the inside of object from information obtained at its

surface about the transmission of X-rays through the object along radial slices.

Further examples can be found in Kabanikhin, 2008 and in Groetsch, 2007. By

their nature they are often ill-posed problems in the sense of Hadamard well-

posedness in that they permit multiple solutions or depend discontinuously on

their input data. Relevant to the topic at hand are matrix inverse problems and

Fredholm equations of the first kind.

2.5.1 Matrix equations and examples

Consider the matrix equation given by Ax = b where

A =

4.5 3.1

1.6 1.1

 , b =

19.25

6.84

 .

The solution to this equation can be calculated as x = (2.9, 2)T . However, the

matrix A is poorly conditioned with cond(A) = σ1
σ2

≈ 5.799
1.72×10−3 ≈ 3363. As such

we expect that small perturbation to the entries of A or b will cause a larger

change in the solution x. For example, introducing the perturbed quantities

A =

4.51 3.1

1.6 1.1

 and b =

19.25

6.83

 ,

allows for three possible perturbed systems: a perturbation to only b giving

the system Ax = b; a perturbation to only A giving the system Ax = b; a

perturbation to both A and b giving the system Ax = b. The solutions to these
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System: Ax = b Ax = b Ax = b Ax = b

Solution
by direct
inversion:

2.9

2

 −0.2

6.5

 −29

48.4

  2

3.3


Truncated
system:

Akx = b Akx = b Akx = b Akx = b

Approximate
solution by
pseudoinverse:

2.901

1.999

 2.901

1.998

 2.899

1.993

 2.899

1.993



Table 2.1: A comparison of the direct solutions to a perturbed matrix
equation and the regularised solutions computed by way truncated singular value
decomposition (TSVD).

systems are shown in the second row of Table 2.1 and it can be seen that small

variations in the input data A and b cause a much larger variation in the output

x.

Now regularise the problem by applying the method of truncated singular value

decomposition. Form the matrices A1 and A1 by calculating their respective

SVDs and replacing their σ2 singular values with zero. By then taking the

Moore-Penrose pseudoinverse of these matrices the approximate solutions can

written in the form xκ = A+
κ b. The regularised solutions to these perturbed

systems are shown in the fourth row of Table 2.1, it is readily apparent that

there is significantly less variation in the regularised approximate solutions than

in those solutions found by direct inversion of the perturbed systems, and that

the regularised solutions all closely approximate the solution to the true

unperturbed problem.

2.5.2 Fredholm equations of the first kind and examples

A Fredholm equation of the first find is of the form

b∫
a

f(y)K(x, y) dy = g(x) (2.5.1)
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where the solution f(x) is sought and the functions K(x, y) and g(x) are known.

We first consider the example problem with K(x, y) = sin(x − y) and g(x) =(
sin(L) cos(L)− L

)
cos(x), that is

L∫
−L

f(y) sin(x− y) dy =

(
sin(L) cos(L)− L

)
cos(x) , (2.5.2)

which has been constructed so as to allow the solution f(x) = sin(x). Note

however that, depending on the choice for L, this solution can be non-unique;

consider substituting the trial solution fc(x) = sin(x) + c, for some constant c,

into the left-hand side of (2.5.2) to give

L∫
−L

(
sin(y) + c

)
sin(x− y) dy =

L∫
−L

sin(y) sin(x− y) dy + c

L∫
−L

sin(x− y) dy

=

(
sin(L) cos(L)− L

)
cos(x) + 2 sin(L) cos(x) .

From the above it can be seen that a choice of L = nπ for n ∈ N+ ensures that

the second term vanishes and as such fc is also a solution to (2.5.2) for any value

c when L = nπ. Similarly, taking m ∈ Z\{−1, 1} and defining fm(x) = sin(mx)

then the integral

L∫
−L

fm(y) sin(x− y) dy = sin(x)

L∫
−L

sin(my) cos(y) dy

− cos(x)

L∫
−L

sin(my) sin(y) dy

will vanish for values L = nπ due to the orthogonality properties of the sin and

cos functions. Accordingly, fc,m = sin(x) + cm sin(mx) + c will also solve (2.5.2)

when L = nπ. It can be shown that f(x) = sin(x) is the minimum norm solution

to (2.5.2).

In order to attempt to solve numerically (2.5.1) the N equally-spaced
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mesh-points xi = −L + ∆(i − 1) are introduced, where ∆ = 2L
N−1 , yi is defined

analogously, before approximating the integrals by the trapezoidal rule. Writing

gi = g(xi), fi = f(yi) and Ki,j = K(xi, yj) this methodology yields the matrix

system

Mf = g (2.5.3)

where f = (f1, . . . , fN )
T , g = (g1, . . . , gN )

T and the matrix M has entries mi,j

given by:

mi,1 =
∆

2
Ki,1 ; mi,N =

∆

2
Ki,N ; mi,j = ∆Ki,j .

Considering the system corresponding to (2.5.2) with K(x, y) = sin(x − y) it

can be found that, for N ≥ 2, rank(M) = 2 and so the system cannot be

solved by direct inversion of M . The rank is reflected in a plot of the computed

singular values ofM ; the first two singular values are O(1) whereas all subsequent

singular values are on the order of machine precision (Figure 2.5.1), an artifact

of their computation as they should be exactly zero. For this kernel there is a

clear separation in the singular values between the non-zero and numerically zero

singular values and so the choice of truncation rank κ = 2 is readily made (e.g.

Hansen, 1987). TSVD solutions for κ = 2 and κ = 3 are shown alongside the

true solution in Figure 2.5.2. Truncation of M with κ = 2 allows for recovery

of the original solution to Fredholm equation whereas the output for κ = 3

displays oscillations around the true solution. Further increasing κ would lead

to error quickly dominating the output with rapid oscillations occurring on the

mesh-spacing. Note that the output solutions are approximately sin(x), although

adding a constant or multiples of sin(mx) tot his solution would solve the system

the TSVD method selects the solution of minimum norm.

Often, inverse problems require solving an equation like (2.5.3) where g is not

known exactly but determined experimentally and so contains a certain level of

error. To simulate this the right-hand side of (2.5.3) was replaced with g
ϵ
where

g
ϵ
= g + ϵ and ϵ is a column vector whose entries are randomly drawn from a
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Figure 2.5.1: A plot of the singular values of the matrix corresponding to the
discretised kernel K(x, y) = sin(x− y) with L = π,N = 25.
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Figure 2.5.2: L = π,N = 25 A comparison of the true solution (red dashed) to
(2.5.2) to the truncated solutions fκ for truncation ranks κ = 2 (blue) and κ = 3
(black).
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Figure 2.5.3: L = π,N = 25 A comparison of the true solution (red dashed) to
(2.5.2) to the truncated solution fκ to the perturbed system for truncation rank
κ = 2 (blue). Top: Standard deviation of added noise ϵ = 2 × 10−4. Bottom:
Standard deviation of added noise ϵ = 2.

normal distribution of zero mean and fixed standard deviation ϵ.

Figure 2.5.3 shows the results of the solving by TSVD the perturbed system

Mf = g
ϵ
for two different values of ϵ. The clear separation in the singular values

means this system is numerically well-conditioned and the addition of noise does

not drastically alter the output as it would for an ill-conditioned system. By

truncating a matrix we are effectively improving its numerical conditioning to

improve the stability of output solutions with respect to perturbations at the

expense replacing the true system with an approximating one.

Now consider a Fredholm integral equation of the form (2.5.1) with the kernel

K(x, y) = 1
2

(
1 + tanh

(
π(x−y)

2

))
. It will be shown in Section 3.3.2 that the

inverse problem for the topography involves a Fredholm equation of the first

kind with this exact kernel but a different right-hand side. As before we shall

construct the problem so as to have the inverse solution f(x) = sin(x), for this

kernel however we are unable to perform the integration to obtain an expression

for the right-hand side, g(x), and instead these values must be computed first in



60 Chapter 2: Background

0 5 10 15 20 25

-6

-5

-4

-3

-2

-1

0

1

(a)

-4 -3 -2 -1 0 1 2 3 4

-1.5

-1

-0.5

0

0.5

1

1.5

(b)

Figure 2.5.4: (a) A plot of the singular values of the matrix corresponding to

the discretised kernel K(x, y) = 1
2

(
1 + tanh

(
π(x−y)

2

))
with L = π,N = 25.

(b) Inverse solutions for the truncation rank κ = 7 (blue) and κ = 25 (black)
compared to the true solution (red)

the forward sense before being used in the inverse problem.

For the discretised system resulting from this kernel there is no clear separation

in the singular values (Figure 2.5.4(a)), which now decay smoothly down to the

level of machine precision for a sufficiently large value of N (Figure 2.5.5(a)).

For lower values of N this system can be accurately solved by direct inversion

(Figure 2.5.4(b)), i.e. retaining all singular values, however for higher values of

N the retention of the smallest singular values leads to the appearance of large

oscillatory errors in the solution (Figure 2.5.5(b)) as the matrix becomes more

poorly conditioned. However, for these higher values of N , accurate solutions can

still be obtained given the correct choice of the truncation rank κ.

Hansen, 1990a develop on the concept of the Discrete Picard Condition (DPC)

for discrete ill-posed problems, first discussed in Varah (1979, 1983). The DPC

concerns the relative decay of what are referred to as the Fourier coefficients,

|uTi g|, and the singular values, σi. For the system Mf = g it is said that g

satisfies the DPC if for all the numerically nonzero singular values σi the

corresponding Fourier coefficients |uTi g| decay to zero faster than σi. The

authors bound the regularisation error in terms of the ratio
uT
i g

σi
such that

satisfaction of the DPC means that useful regularised approximate solutions can

be obtained. While the unperturbed underlying problem may satisfy the DPC,
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Figure 2.5.5: L = π,N = 81 (a) A plot of the singular values of the matrix

corresponding to the discretised kernel K(x, y) = 1
2

(
1 + tanh

(
π(x−y)

2

))
with

L = π,N = 81. (b) Inverse solutions for the truncation rank κ = 7 (blue) and
κ = 25 (black) compared to the true solution (red).

the authors note that in practice the errors in the entries of M and g often

mean that the DPC is found numerically to not be satisfied by all the Fourier

coefficients. However, if the DPC is satisfied by the underlying problem then a

proper selection of the truncation rank k yields a regularised system that also

satisfies the DPC. Conversely, if the underlying problem does not satisfy the

DPC then in general it can not be said if useful solutions can be obtained by

this method.

In order to numerically check satisfaction of the DPC Hansen, 1990a suggest

looking at the decay of the moving geometric mean ρi given by

ρi =
1

σi

 i+q∏
j=i−q

|uTi g|

 1
2q+1

, (2.5.4)

for i = q + 1, . . . , N − q and where q is a small integer, which should be

computed only for numerically nonzero σi and |uTi g|. When considering a

perturbed problem the perturbed Fourier coefficients will decay until they

reflect the level of noise present, for this reason the perturbed Fourier

coefficients for which |uTi gϵ| < ϵ should be considered numerically zero. The

authors recommend taking q to be equal to 1, 2 or 3 and for the course of the

present work we have taken q = 3. The authors then take the DPC to be
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satisfied when ρi decays ‘on average’ monotonically to zero. They suggest not

basing the choice for the truncation rank only on the ρi curve but using this

plot in conjunction with other strategies.

Another such tool useful in selecting a truncation rank is known as the L-curve,

which found its first use in least squares problems (Lawson and Hanson, 1974;

Miller, 1970). The L-curve is a plot of the norm of the solution |fκ| against the

residual norm |Mfκ − g|, parameterised by the truncation rank κ. In Hansen,

1992a and Hansen and O’Leary, 1993 the authors suggest using this curve for

helping to select the regularisation parameter for ill-posed problems. They show

the L-curve will feature a corner if it is assumed that the DPC is satisfied, the

perturbations to the right-hand side are normally distributed with zero mean

(white noise) and that the noise to signal ratio is not too large. The authors

suggest viewing this plot on a log - log scale. Figure 2.5.6 shows a highly idealised

L-curve, made for illustrative purposes, based on the numerical examples found

in Hansen, 1990b. As κ is increased the curve is traversed upwards from the

|Mfκ − g| axis moving from right to left. The horizontal flat region of the curve

is reached once the truncation rank is taken high enough that there is a enough

information retained to approximate the solution, however as the truncation rank

is further increased the inclusion of smaller singular values eventually leads to

magnification of errors on the right-hand side until these begin to dominate the

solution and so the norm of the solution rapidly grows with κ, leading to a steep

increase in |fκ|. It is where the curve transitions from near horizontal to near

vertical that is referred to as the L-curve’s corner. Hansen, 1992a and Hansen

and O’Leary, 1993 suggest choosing the regularisation parameter such that the

solution sits as close to the corner of the L-curve as possible while still being able

to satisfy the DPC. This solution balances the need to minimise both the residual

norm, such that the regularised solution is a good approximate solution to the

matrix equation (2.5.3), and the solution norm, as we seek a smooth solution

without large oscillations. The authors go on to show numerical examples of

how this method produces good regularised solutions. The use of the L-curve is
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Figure 2.5.6: An example of an idealised L-curve. Selection of κ corresponding
to a solution close to the corner on the horizontal leg of the L-curve attempts to
obtain a smooth regularised solution fκ while also ensuring that this regularised
solution does actually perform well as an approximate solution to (2.5.3).

further suggested for use in solving Fredholm integral equations of the first kind

in Hansen, 1992b.

In Figure 2.5.7(a) we consider the DPC for our given example problem with the

tanh kernel. Examining this plot it can be seen that if the truncation rank κ

is chosen such that κ < 55 then the regularised problem will satisfy the DPC.

For i ≥ 55 the Fourier coefficients are on the order of machine precision and

so these values should not be used to consider the DPC. Figure 2.5.7(b) shows

the L-curve calculated for this problem, the red cross marks the truncation rank

κ = 35 used to calculate the solution shown in Figure 2.5.7(d). The L-curve

presented here looks quite different to the illustrative example shown previously,

we will see shortly that once we have added noise to the problem’s input data

that this curve will display a clearer corner. Nonetheless, it can be seen that the

selection of a truncation rank, for which the DPC is satisfied, close to the end

of the horizontal part of the L-curve produces a good solution. Another aide we

have used in selecting the truncation rank κ is looking at the relation between the

norm of the solution and κ, in Figure 2.5.7(c) these quantities are plotted against
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Figure 2.5.7: L = π,N = 81 (a) Picard plot to help consider the satisfaction of
the DPC (b) The L-curve for the tanh kernel, the red cross indicates the solution
with κ = 35. (c) A plot of the norm of the solution to the inverse problem against
the truncation rank κ. (d) The inverse solution with κ = 35 (blue) compared to
the true solution (red).

one another. Initially, the norm of the solution rapidly rises with the truncation

rank until stabilising for an interval of κ, in this region a sufficient number of

singular vectors have been included in the solution to well approximate the true

solution. After this region the norm then rapidly rises again with κ, this is the

point at which numerical errors from the inclusion of the smaller singular values

begins to dominate the solution and oscillations on the grid scale begin to appear.

For this problem a choice of κ ∈ (20, 65) produces solutions identical to graphical

accuracy, a property that will not persist with the addition of perturbation.

We illustrate the use of these tools in selecting the truncation rank κ by

considering again the replacement of g with g
ϵ
= g + ϵ where ϵ is a vector

whose entries are drawn randomly from a normal distribution with zero mean

and standard deviation ϵ. Unlike the problem involving the sin kernel this
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problem is much more sensitive to this noise and as noted there is no clear

truncation rank based on any separation in their values.

In Figure 2.5.8 noise has been added to g with a standard deviation ϵ = 1×10−8.

Plotting the norm of fκ against κ the norm appears to be stable in the interval

κ ∈ (10, 35) (Figure 2.5.8(c)). The DPC is now only satisfied numerically for

i ≤ 27; we cannot comment on the DPC for greater values of i because the

perturbed Fourier coefficients |uTi gϵ| have decayed to the order of the added

noise ϵ, subsequently they cannot be distinguished numerically from zero and

should not be included in our calculations (Figure 2.5.8(a)). The position on

the L-curve of the solution corresponding to κ = 27 was calculated and found

to lie close to the L-curve’s corner (Figure 2.5.8(b)). Combining the information

gleaned from these three plots suggests that choosing κ = 27 as the truncation

rank would allow for a good approximate solution to the underlying problem to

be obtained, indeed the results at this rank are shown in Figure 2.5.8(d) with the

κ = 27 indistinguishable from the true solution at graphical accuracy. Note that

while in the unperturbed problem a truncation rank of κ = 40 provided a smooth

and accurate solution (see 2.5.5(b)) this is no longer the case in the perturbed

problem.
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Figure 2.5.8: L = π,N = 81, ϵ = 1× 10−8 (a) Picard plot for the noisy problem
showing that the DPC is not satisfied for i > 27. (b) The L-curve with the red
cross indiciating the solution with κ = 27 . (c) A plot of the norm of the inverse
solution against the truncation rank κ. (d) An inverse solution with a truncation
rank chosen to satisfy the DPC κ = 27 (blue) and one with the truncation rank
chosen too high κ = 40 (black) compared to the true solution (red).
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Figure 2.5.9: L = π,N = 81, ϵ = 1× 10−2 (a) Picard plot for the noisy problem
showing that the DPC is satisfied for i < 8. (b) The L-curve for this problem
witht he red cross indicating the solution with κ = 8. (c) A plot of the norm
of the inverse solution against the truncation rank κ. (d) Inverse solutions with
κ = 8 (blue) and κ = 12 (black) compared to the true solution (red).
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Forward and Inverse Methods

3.1 Discretisation of Boundary Integral equations

The boundary integral formulation gives the system of equations

e2τf (ϕ) +
2

F 2

(
yf (ϕ) + P (ϕ)

)
− 1− 2

F 2
= 0 ; (3.1.1)

τf (ϕ) = −
∞∫

−∞

θf (ϕ0)

1− eπ(ϕ−ϕ0)
dϕ0 −

∞∫
-∞

θb(ϕ0)

1 + eπ(ϕ−ϕ0)
dϕ0 ; (3.1.2)

τb(ϕ) =

∞∫
-∞

θf (ϕ0)

1 + eπ(ϕ−ϕ0)
dϕ0 − −

∞∫
−∞

θb(ϕ0)

1− eπ(ϕ−ϕ0)
dϕ0 ; (3.1.3)

∂yf
∂ϕ

= e−τf sin(θf ) ; (3.1.4)
∂yb
∂ϕ

= e−τb sin(θb) ; (3.1.5)

∂xf
∂ϕ

= e−τf cos(θf ) ; (3.1.6)
∂xb
∂ϕ

= e−τb cos(θb) ; (3.1.7)

subject to yf → 1 and yb, θf , θb, P → 0 as ϕ→ ∞.

To lay the ground for both approaches we introduce the Nf , Nb equally-spaced

mesh-points Φi, ϕj over the truncated domain [−L,L] for the surface and
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topography respectively:

Φi = −L+ (i− 1)∆Φ, ϕj = −L+ (j − 1)∆ϕ,

for i = 1, 2, ..., Nf and j = 1, 2, ..., Nb with ∆Φ = 2L/(Nf − 1) and ∆ϕ =

2L/(Nb − 1). We define the discretised variables at the mesh-points:

Θi = θf (Φi) ; Yi = yf (Φi) ; Xi = xf (Φi) ; Pi = P (Φi) ;

θj = θb(ϕj) ; yj = yb(ϕj) ; xj = xb(ϕj) ,

for i = 1, 2, ..., Nf and j = 1, 2, ..., Nb, and the mid-point values:

ΦMi =
Φi+1 +Φi

2
; YM

i =
Yi+1 + Yi

2
; PMi =

Pi+1 + Pi
2

;

ΘM
i =

Θi+1 +Θi

2
; ϕMj =

ϕj+1 + ϕj
2

; θMj =
θj+1 + θj

2
,

for i = 1, 2, ..., Nf − 1 and j = 1, 2, ..., Nb − 1.

The discrete forms of (3.1.2) and (3.1.3), evaluated at the midpoints and

approximating the integrals by the trapezoidal rule, are used these to define

TMi = τf (Φ
M
i ) and τMj = τb(ϕ

M
j ) respectively as

TMi ≡ τf (Φ
M
i ) =

Nf∑
k=2

(
∆Φ

2
(Gf [k−1,i]Θk−1 +Gf [k,i]Θk)

)

−
Nb∑
k=2

(
∆ϕ

2
(Gb[k−1,i] θk−1 +Gb[k,i] θk)

)
; (3.1.8)

τMj ≡ τb(ϕ
M
j ) =

Nf∑
k=2

(
∆Φ

2
(gf [k−1,j]Θk−1 + gf [k,j]Θk)

)

−
Nb∑
k=2

(
∆ϕ

2
(gb[k−1,j] θk−1 + gb[k,j] θk)

)
, (3.1.9)
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for i = 1, 2, ..., Nf − 1 and j = 1, 2, ..., Nb − 1, where:

Gf [k,i] =
(
1− eπ(Φ

M
i −Φk)

)−1
; Gb[k,i] =

(
1 + eπ(Φ

M
i −ϕk)

)−1
;

gf [k,j] =
(
1 + eπ(ϕ

M
j −Φk)

)−1
; gb[k,j] =

(
1− eπ(ϕ

M
j −ϕk)

)−1
.

Evaluating (3.1.4) and (3.1.5) at the mid-points, and using a central difference

approximation for the derivatives, we obtain:

Yi = Yi+1 −∆Φe−TM
i sin(ΘM

i ) ; (3.1.10)

yj = yj+1 −∆ϕe−τ
M
j sin(θMj ) , (3.1.11)

for i = 1, 2, ..., Nf − 1 and j = 1, 2, ..., Nb − 1. Consistent with the assumption of

a uniform stream downstream we set YNf
= 1 and yNb

= 0. Analogously, from

(3.1.6) and (3.1.7) we obtain:

Xi = Xi+1 −∆Φe−TM
i cos(ΘM

i ) ; (3.1.12)

xj = xj+1 −∆ϕe−τ
M
j cos(θMj ) , (3.1.13)

where we now set XNf
= xNb

= L. Finally, (3.1.1) is evaluated at the midpoints

yielding

e2T
M
i +

2

F 2

(
YM
i + PMi

)
− 1− 2

F 2
= 0 , (3.1.14)

for i = 1, 2, ..., Nf − 1.

3.2 Forward Problem Methods

Previous work on the forward problem has computed solutions via applying

Newton’s method to the set of boundary integral equations, for example see

Binder, Vanden-Broeck, and Dias, 2005; Binder, Blyth, and McCue, 2013;

Vanden-Broeck, 1997. In the present work when considering the forward

problem we prescribe the pressure, P (ϕ), and the topography yb(ϕ) = yT (ϕ).
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We look to solve for θf (ϕ) and θb(ϕ). During this process the surface yf (ϕ) will

be calculated and, once a solution is found, the quantities P, yb, yf can be

converted to be in terms of the physical variable x(ϕ).

Given the Nf +Nb unknowns Θi and θj we require a system of Nf +Nb equations

in order to apply Newton’s method. We obtain Nf −1 equations from Bernoulli’s

equation applied to the midpoints on the surface (3.1.14). Writing the known

values on the topography as yT,j = yT (ϕj) a further Nb−1 equations are obtained

by comparing these quantities to the values for yj calculated by (3.1.11) as

yT,j − yj = 0 (3.2.1)

for j = 1, ..., Nb − 1. Two further equations come from applying boundary

conditions to θf and θN . If the flow is supercritical, with F > 1, then the

condition applied is θ1 = Θ1 = 0. When the flow is subcritical, with F < 1, we

instead take θNb
= ΘNf

= 0 . We do not compute forward solutions to critical

flow (F = 1) in the present work, this will be discussed in Section 3.2.5.

Any further discussion of the forward problem will assume an equal number

of points to be taken on the surface and topography with Nf = Nb = N . The

standard forward problem in this work then is taken to mean solving by Newton’s

method the 2N equations:

e2T
M
i +

2

F 2

(
YM
i + PMi

)
− 1− 2

F 2
= 0 ; (3.2.2)

yT,i − yi = 0 ; (3.2.3)
θ1 = Θ1 = 0 if F > 1

θN = ΘN = 0 if F < 1

(3.2.4)

with i = 1, ..., N − 1, for the unknowns θj and Θj with j = 1, ..., N , where we

have the known values yT,j and Pj . The quantities Yj , yj and TMi are updated

during each iteration of Newton’s method by way of (3.1.8 - 3.1.11).
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Figure 3.2.1: L = 20, N = 641, F = 1.2, b = 0.3. Uniform stream perturbation
solutions to the forward problem for supercritical flow. These solutions η = yf−1
follow approximately the shape of the topography yT . The solid lines are plotted
as a function of the potential ϕ and the dashed lines are plotted as a function of
the physical variable x. (a) Gaussian topography of form (3.2.5) with a = −0.1.
(b) Decaying cosine topography of form (3.2.6) with a = −0.03.

3.2.1 Solutions as a perturbation to the uniform stream

The most basic, and easiest to calculate, solutions to the forward problem are

those corresponding to a perturbation to the uniform stream and in this section

we present some examples of these types of solution for illustrative purposes

before turning to other types of solution. For these examples we shall take either

a Gaussian topography,

yT = ae−(bϕ)2 , (3.2.5)

or a topography that results from taking a Gaussian and then multiplying it by

a cosine,

yT = ae−(bϕ)2 cos(ϕ) . (3.2.6)

For supercritical flow, with F > 1, the free surface typically follows the rough

form of the prescribed topography yT , see Figure 3.2.1. This is not the case for

subcritical flow where generally waves are found to be on the upstream side of

the surface, see Figure 3.2.2. In order to have the radiation condition satisfied

we must consider the flow in this example to be from right to left.
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Figure 3.2.2: L = 20, N = 641, F = 1.2, b = 0.3. Uniform stream perturbation
solutions to the forward problem for subcritical flow. The solid lines are plotted
as a function of the potential ϕ and the dashed lines are plotted as a function of
the physical variable x. (a) Gaussian topography of form (3.2.5) with a = −0.1.
(b) Decaying cosine topography of form (3.2.6) with a = −0.03.

3.2.2 Solutions as a perturbation to the solitary wave

Vanden-Broeck, 1987 found that in the fully nonlinear problem with a fixed non-

zero forcing there is a value F ∗ below which no steady solutions exist. For values

above F ∗ (but below the value for which the steepest limiting wave configuration

is reached) two solutions exist, one an analogue to the uniform stream and one

the solitary wave in the unforced problem (see Figure 3.2.3). Figure 3.2.4(a))

shows an example of the uniform stream solution and the unforced solitary wave

in the fully nonlinear problem, Figure 3.2.4(b) shows their respective analogues

in the forced problem. In order to compute solitary wave type solutions on the

upper branch of solutions we first computed a solution on the lower branch with

the desired forcing before using numerical continuation to travel along the lower

branch and around the corner until the desired point on the upper branch was

reached.

3.2.3 Hydraulic falls and jumps

Hydraulic falls occur when the flow transitions from being subcritical upstream

to supercritical downstream. If this flow is reversed it is instead referred to as a

hydraulic jump. A generalised hydraulic fall has waves on its upstream surface
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Figure 3.2.3: Bifurcation curve for forward solutions to forced flow showing the
solitary wave and uniform stream branches for multiple amplitudes of forcing
with L = 20, N = 641, b = 1.
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Figure 3.2.4: L = 20, N = 641, F = 1.1, b = 1. Nonuniqueness in the forward
problem over a topography of the form (3.2.5) results in free surface solutions
that are like a perturbation to the uniform stream (orange) or a perturbation to
the solitary wave (black). Solutions are plotted both as yf (ϕ) (solid line) and
as yf (x) (dashed line). (a) Unforced flow with a = 0. (b) Forced flow with
a = 2× 10−2.

while a hydraulic fall is wave-free. We shall restrict our attention to hydraulic

falls; in order to eliminate the upstream waves we must satisfy

F 2 =
2(yf (−∞))2

1 + yf (−∞)
.
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Figure 3.2.5: L = 20, N = 721, b = 1. Examples of hydraulic fall solutions to
flow past a Gaussian topography of the form (3.2.5). The solid lines are plotted
as a function of the potential ϕ and the dashed lines are plotted as a function
of the physical variable x. (a) a = 0.2. The Froude number was calculated as
F ≈ 1.4326. (b) a = 0.4. The Froude number was calculated as F ≈ 1.4326.

The above condition is derived from applying the conservation of mass and

Bernoulli’s equation to the uniform upstream and downstream flow. More

information on this condition and generalised hydraulic falls can be found in

Binder, Vanden-Broeck, and Dias, 2005; Dias and Vanden-Broeck, 2004; Dias

and Vanden-Broeck, 1989, 2002.

To compute these solutions by Newton’s method we allow the Froude number F

to come as part of the solution. We will have for this problem 2N +1 unknowns;

θi and Θi for i = 1, ..., N and now F , so we will need 2N+1 equations. Tweaking

the standard forward problem equations for Newton’s method we obtain 2N − 2

equations from (3.2.2) and (3.2.3), then supplement these with the two boundary

conditions θ1 = Θ1 = 0 and the discrete analogue to the above relation between

the Froude number and the upstream uniform depth Y1 given by

F 2 =
2(yf (−∞))2

1 + yf (−∞)
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3.2.4 Trapped wave solutions

As seen in Figure 3.2.2(a) flow past a Gaussian topography produced a solution

with a train of waves on its upstream surface. One natural question to ask is

can this train of waves be terminated at some point such that there is a uniform

surface both upstream and downstream. Forbes and Schwartz, 1982 found that

this could occur for flow past singular semi-elliptical topographical disturbances

of specific dimensions. Following their work on calculating generalised hydraulic

falls (Dias and Vanden-Broeck, 2002) it was shown by Dias and Vanden-Broeck,

2004 that by positioning a second topographical feature the waves appearing on

top of the hydraulic fall could be confined to a finite interval with the far field

surface being of uniform flow at each end. Binder, Vanden-Broeck, and Dias,

2005 subsequently calculated trapped wave solutions with supercritical flow at

each end where a hydraulic jump was matched to a hydraulic fall, each induced

by a triangular feature on the topography, where waves appeared only atop the

locally subcritical region between the obstacles. Trapped wave solutions were also

calculated by the authors in subcritical flow past two triangles and then, in a later

paper, Binder, Dias, and Vanden-Broeck, 2008 calculated solutions with trapped

waves past an inclined gate by using two pressure distributions to terminate the

wave train appearing on each side of the gate. Holmes, Hocking, Forbes, and

Baillard, 2013 then studied subcritical flow with trapped waves over a symmetric

topography featuring two Gaussians, showing that solutions could be found for

both elevations and depressions in the topography and that a discrete set of these

solutions could be found for different values of the separation between the two

topographical features (example surfaces shown in Figure 3.2.6). It is solutions of

this type that we chose to compute to later use as input in the inverse problem;

in order to calculate these solutions we prescribe the topography

yT = a
(
e−(b(ϕ−c))2 + e−(b(ϕ+c))2

)
, (3.2.7)
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Figure 3.2.6: L = 30, N = 641, F = 0.8, b = 1, a = −0.04. Examples of
trapped wave free surface solutions (blue) in subcritical flow over a two bumped
topography (red) given by (3.2.7) where the separation comes as part of the
solution. The solid lines are plotted as a function of the potential ϕ and the
dashed lines are plotted as a function of the physical variable x. Different profiles
are obtained for different initial guesses for c. (a) Solution with two wave peaks
with c ≈ 3.1334. (b) Solution with three wave peaks with c ≈ 5.4871. (c) Solution
with seven wave peaks with c ≈ 14.9021. (d) Solution with eight wave peaks with
c ≈ 17.2559.

where c, the parameter used to control the separation of the two Gaussians, is

left unknown and allowed to come as part of the solution. With 2N+1 unknowns

we obtain 2N − 2 equations from (3.2.2) and (3.2.3), keeping in mind that after

each Newton iteration we must use the new approximation for c to re-evaluate

yT in (3.2.7). The final three equations needed come from applying the boundary

conditions θ1 = Θ1 = ΘN = 0 to correspond to uniform flow both upstream and

downstream. By using different initial guesses for c solutions can be found with

a different number of trapped waves on the surface; in Figure 3.2.6 examples

are shown of forward solutions with varying numbers of trapped waves and their

associated underlying topographies.
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3.2.5 Forward solutions in critical flow

The steady fKdV, integrated once, is given by

ηxx +
9

2
η2 − 6(F − 1)η = −3f(x) . (3.2.8)

Keeler, Binder, and Blyth, 2017 studied the decay of the free surface for forced

critical flows by asymptotic analysis of a scaled fKdV equation. They considered

only even free surface solutions to flow over even an forcing term. We shall begin

with a modified form of this scaled equation

uξξ + u2 − F̂ u = αs(ξ) (3.2.9)

subject to u, uξ, uξξ → 0 as |ξ| → ∞, where u represents the free surface; ξ the

horizontal spatial variable; F̂ is a scaled measured of the Froude number, equal

exactly to zero for critical flow; α ≥ 0 is a constant derived from the scaling and

s(ξ) is the forcing term. This equation differs from that used in Keeler, Binder,

and Blyth, 2017 only in that we have retained the third term, which vanishes in

the case of critical flow. As only even solutions are sought the problem is solved

on ξ ∈ [0,∞) before being reflected about ξ = 0.

We consider the far field decay of the surface for flow over the Gaussian

topography s(ξ) = e−ξ
2
. For a flow that is not critical as we approach the far

field the first and third terms of (3.2.9) will balance one another as the the

second and fourth terms rapidly become of negligible size. This leaves the

approximate equation

uξξ − F̂ u = 0 . (3.2.10)

This is a linear O.D.E. with general solution

u = Ae

√
F̂ ξ +Be−

√
F̂ ξ

where A,B are arbitrary constants. Applying the condition u → 0 as ξ → ∞
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requires that A = 0, giving the solution

u = Be−
√
F̂ ξ (3.2.11)

from which it can be clearly seen that the solution in the far field decays

exponentially.

Considering instead a critical flow the governing equation reduces to

uξξ + u2 = αe−ξ
2
. (3.2.12)

There are two possible balances between the three possible combinations of the

terms in (3.2.12); assuming that the first term, that containing a second

derivative, is of negligible size compared to the other two terms leads to a

contradiction. Assuming as such means

u2 ∼ αe−ξ
2
=⇒ u ∼ ±√

αe−
1
2
ξ2 (3.2.13)

which, upon differentiating twice, gives

uξξ ∼ ±ξ2√αe− 1
2
ξ2 (3.2.14)

contradicting the original assumption that the second derivative was negligible

compared to the other terms.

If the balance in (3.2.12) occurs between the second derivative and the forcing

on the right-hand side we have instead

uξξ ∼ αe−ξ
2
. (3.2.15)

Applying the result of (B.0.13) and then (B.0.14) we can then state immediately
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that

uξ ∼
α

2ξ
e−ξ

2
and u ∼ α

4ξ2
e−ξ

2
, (3.2.16)

showing that decay of the free surface in the far field will be super-exponential.

Finally, if the balance in (3.2.12) occurs instead between the two terms on the

left-hand side we are left with the approximate equation

uξξ + u2 = 0 . (3.2.17)

By first multiplying by uξ this can be integrated to

1

2
uξ

2 = −1

3
u3 (3.2.18)

where the constant has been set to zero to satisfy the far field conditions. Taking

the square root, with u < 0, we are left with a separable first order ODE which

can be integrated and rearranged for u to find the large ξ behaviour as

u(ξ) ∼ −4(
A± ξ

√
2
3

)2 (3.2.19)

where A is a constant of integration. It can be seen that as ξ → ∞ we have u ∼ −6
ξ2

so u is in this case decaying algebraically like 1
ξ2
. Keeler, Binder, and Blyth, 2017

observed numerically that all calculated solutions in the (α, u) solution space

displayed algebraic decay except for those solutions corresponding exactly to the

termination point of a solution branch, these solutions instead displayed super-

exponential decay. The authors found numerically for this forcing a sequence of

nested solution branches and characterised these by the nature of the turning

point occurring at ξ = 0 and the number of local maxima/minima on the free

surface. The nature of the turning point can be investigated by evaluating (3.2.12)

at ξ = 0, giving

uξξ(0) = α− [u(0)]2 ; (3.2.20)
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the sign of uξξ(0) will depend on the relative sizes of u0 and α meaning that

u(0) could be either a local maximum or minimum. The authors found, that in

terms of the increasing value of α below which solutions branches cease to exist,

solution branches alternated between having maxima or minima at ξ = 0.

The (scaled) fKdV allows the inverse problem for the forcing to quickly be solved.

For critical flow the governing equation is

uξξ + u2 = αs(ξ) . (3.2.21)

We will now fix a free surface and value of α before calculating the forcing via

the inverse problem. This obtained inverse forcing will then be used as input

to the forward problem as α is allowed to vary in order to study the effects

on the decay of the resulting free surface. Setting α = 1 and prescribing the

free surface as u(ξ) = e−ξ
2
the forcing is given immediately by substitution as

s(ξ) = (4ξ2−2)e−ξ
2
+e−2ξ2 . Inserting this solution back into the forward problem,

allowing α to vary, yields the problem to be solved as

uξξ + u2 = α
(
(4ξ2 − 2)e−ξ

2
+ e−2ξ2

)
, (3.2.22)

subject to u, uξ, uξξ → 0 as |ξ| → ∞. An immediate difference in solutions to

this problem and the problem of solving (3.2.12) can be seen by considering the

behaviour of the free surface at ξ = 0. Evaluating we find

uξξ(0) = −α− [u(0)]2 ≤ 0 ; (3.2.23)

for this forcing it is not possible for ξ = 0 to be a local minimum. While we

have not attempted to locate any other solution branches for this forcing they

are expected to exist but they will only have maxima at ξ = 0.

There are two possible balances between the terms (3.2.22): one between uξξ and

u2; and one between uξξ and αs(ξ), as was the case for the Gaussian forcing.
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If the balance in the far field in (3.2.22) occurs between the second derivative and

the forcing term then we have that

uξξ ∼ α
(
(4ξ2 − 2)e−ξ

2
+ e−2ξ2

)
, (3.2.24)

which can be integrated to

uξ ∼ α

(
−2ξe−ξ

2
+

∫
e−2ξ2 dξ

)
. (3.2.25)

Making the substitution t = ξ
√
2 into the second term of the above integral and

applying the result of (B.0.13) we have that

∫
e−2ξ2 dξ =

1√
2

∫
e−t

2
dt ∼ −1

4ξ
e−2ξ2 . (3.2.26)

The dominant behaviour then of (3.2.25) is

uξ ∼ α(−2ξ)e−ξ
2
, (3.2.27)

which is easily integrated to give

u ∼ αe−ξ
2
. (3.2.28)

The decay of the free surface will be super-exponential when the balance occurs

between these terms.

If the balance in the far field in (3.2.22) occurs instead between the second

derivative and the squared term then the problem to be solved is identical to

that of the Gaussian forcing, see (3.2.17-3.2.19) for which solutions were found

to decay algebraically like 1
ξ2
.

Following the method of Keeler, Binder, and Blyth, 2017 solutions to (3.2.22)

were calculated first on ξ ∈ [0,∞), applying u, uξ, uξξ → 0 as ξ → ∞, before

reflecting the solution about the u-axis. The authors then recast the problem as
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a system of first order ODES, for the present forcing this system is:

uξ = v; (3.2.29)

vξ = α
(
(4ξ2 − 2)e−ξ

2
+ e−2ξ2

)
− u2. (3.2.30)

For a given u0 the system is treated as an initial value problem and integrated

forwards from ξ = 0 with initial values:

u(0) = u0 ; (3.2.31) v(0) = uξ(0) = 0 . (3.2.32)

The value u0 is then refined such that the trajectory in the phase space (u, uξ)

approaches the origin as ξ → ∞ as the trajectory connecting (u0, 0) to (0, 0)

corresponds to the solution u(ξ) that satisfies the original boundary value

problem. As noted in Keeler, Binder, and Blyth, 2017 the trajectory only enters

the origin as ξ → ∞ and so in computational practice u0 is refined such that the

trajectory approaching the origin would require integrating to larger and larger

values of ξ. Further details can be found in Keeler, Blyth, and J. R. King, 2021.

Some examples of the trajectories in the (u, uξ) plane of solutions to (3.2.22) are

shown for various values of α in Figure 3.2.7(c) with the corresponding surface

profiles and forcing terms plotted in Figure 3.2.7(a) and Figure 3.2.7(b)

respectively. The red dotted lines in Figure 3.2.7(c) are the curves

uξ = ±
√

−2

3
u3. (3.2.33)

It can be seen that as ξ → ∞ the trajectories for α > 1 approach the origin,

latching to the curve uξ =
√

−2
3u

3 along which we know that u decays

algebraically. However, by construction the solution corresponding to α = 1

experiences super-exponential decay. This behaviour suggests that α = 1 may

be a termination point for this solution branch as this matches the observations

of Keeler, Binder, and Blyth, 2017 on the termination of solution branches for
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Figure 3.2.7: (a) Solutions for the free surface for different amplitudes of forcing.
(b) Profiles of the forcing for different amplitudes. (c) Phase portrait for the
solutions for u showing how they approach the termination point with algebraic
decay for all solutions except that with α = 1.

the forcing they considered. This is further evidenced by the fact that we have

been unable to calculate any solutions with α < 1. Solutions corresponding to

branch termination points are difficult to find numerically, the construction of

the present problem has circumvented this issue as the exact solution for α = 1

is, having been prescribed originally, known in advance. Keeler, Binder, and

Blyth, 2017 showed that solutions to the fully nonlinear problem over Gaussian

forcing experience the same form of algebraic decay as ξ → ∞ as the solutions

to the weakly nonlinear problem. The authors write that they expect the same

shift in decay behaviour to represent the termination point of the fully

nonlinear solution branches.

For the purposes of validating solutions found to the fully nonlinear inverse

problem we have used the calculated topography as input to the forward

problem. This has not been possible for the inverse solutions found at F = 1
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and the results of this section help to illuminate the difficulties experienced;

forward solutions corresponding to the termination point of a solution branch

are hard to find numerically, any other solutions experience algebraic decay and

as such require increasing the size of the truncated domain or careful tweaking

of the boundary conditions.

3.3 Inverse Problem Methods

Sections of the remainder of this chapter have been submitted as part of a

manuscript, which is under review, to the Journal of Fluid Mechanics (Robbins,

Blyth, Maclean, and Binder, 2023).

Binder, Blyth, and McCue (2013) and Tam, Yu, Kelso, and Binder (2015) found

that using Newton’s method for the inverse topography problem leads to serious

convergence issues. While a sufficiently coarse grid yields numerical output that

appears smooth, as the grid resolution is increased a numerical instability occurs

that manifests as irregular grid-scale sawtooth oscillations on the topography

profile. In Figure 3.3.1 we show results for both the forward and the inverse

problem for the prescribed Gaussian topography,

yT (ϕ) = 0.05e−ϕ
2
, (3.3.1)

and in the absence of a surface pressure. The calculations are performed for

three different grid resolutions with N = {181, 359, 363} grid points. The surface

profiles for the forward problem shown in Figure 3.3.1(a) are in good agreement

for the three chosen resolutions. However, if these same surface profiles are used

as input for the inverse topography problem, we see in Figure 3.3.1b that yb

is not recovered in the higher resolution calculations, which exhibit sawtooth

oscillations. We note that this failure is not an artefact of using the numerical

output from the forward problem as the input to the inverse problem; the same

issue occurs when θf (ϕ) is prescribed directly in the inverse problem. The inverse
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problem therefore deserves special attention.
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Figure 3.3.1: Forward and inverse numerical solutions obtained by Newton’s
method, F = 1.2. (a) Solutions to the forward problem for the prescribed
topography yT given (3.3.1). (b) Prescribed topography, yT , compared to Tam,
Yu, Kelso, and Binder (2015) inverse Newton’s method, yb.

3.3.1 Inverse Pressure Problem

The inverse pressure problem is to solve for the pressure forcing given a fixed

free surface and topography, provided by prescribing θf and θb respectively. In

our results we will consider problems with θb = 0, i.e. with uniform topography,

however we retain θb in our formulae for generality of the result.

First, we note that, with θf and θb known, (3.1.2) allows for us to write an exact

expression for τf in terms of known variables,

τf (ϕ) = −
∞∫

−∞

θf (ϕ0)

1− eπ(ϕ−ϕ0)
dϕ0 −

∞∫
-∞

θb(ϕ0)

1 + eπ(ϕ−ϕ0)
dϕ0 .

This expression for τf may then be substituted into (3.1.4), which can then be

integrated to obtain

yf (ϕ) =

∞∫
ϕ

e−τf (ϕ′) sin(θf (ϕ′)) d(ϕ′) ,

an exact expression for yf . By now rearranging (3.1.1) to make P the subject we
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obtain

P (ϕ) = 1− yf (ϕ)−
F 2

2

(
e2τf (ϕ) − 1

)
, (3.3.2)

an expression for P (ϕ) given exactly and entirely in terms of known variables.

Numerical results for the pressure are obtained analogously. We first calculate

TMi by (3.1.8), then using (3.1.10) to find Yi, before calculating the midpoint

values YM
i and substituting these values into the rearranged form of (3.1.14)

given by

PMi = 1− YM
i − F 2

2

(
e2T

M
i − 1

)
. (3.3.3)

to give the pressure at the midpoints. Finally the pressure Pi is found by

combining the rearranged expression for midpoint values, Pi+1 = 2PMi − Pi for

i = 1, 2, ..., Nf − 1, with the decay condition in the far-field PNf
= 0 .

3.3.2 Inverse topography problem as a linear problem

We consider the inverse problem for topography with the surface fixed by

prescribing yf , rather than θf , and a fixed pressure forcing P . We begin by

rearranging (3.1.1) for τf to obtain an expression in terms of known quantities

as

τf (ϕ) =
1

2
ln

(
1− 2

F 2

(
yf (ϕ) + P (ϕ)− 1

))
. (3.3.4)

With τf known we can now take the derivative of yf and rearrange (3.1.4) for θf

as

θf = arcsin

(
eτf

∂yf
∂ϕ

)
. (3.3.5)

As such by prescribing yf we can simultaneously know θf , this was not possible

when instead prescribing θf and allows for us now to cast the problem in linear

terms. By equating (3.3.4) with (3.1.2) and rearranging we can now state the

inverse problem as solving

∞∫
-∞

θb(ϕ0)

1 + eπ(ϕ−ϕ0)
dϕ0 = −

∞∫
−∞

θf (ϕ0)

1− eπ(ϕ−ϕ0)
dϕ0 −

1

2
ln

(
1− 2

F 2

(
yf (ϕ) + P (ϕ)− 1

))
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for the unknown θb(ϕ), where everything on the right-hand side is known. By

introducing the notation

K(ϕ, ϕ0) =
1

1 + eπ(ϕ−ϕ0)
=

1

2

(
1− tanh 1

2π(ϕ− ϕ0)
)
, (3.3.6)

and

b(ϕ) = −
∞∫

−∞

θf (ϕ0)

1− eπ(ϕ−ϕ0)
dϕ0 −

1

2
ln

(
1− 2

F 2

(
yf (ϕ) + P (ϕ)− 1

))
(3.3.7)

the inverse problem is written more concisely as solving

∞∫
-∞

θb(ϕ0)K(ϕ, ϕ0) dϕ0 = b(ϕ) . (3.3.8)

Now, as stated in (3.3.8), the inverse problem for topography requires solving a

linear singular Fredholm equation of the first kind. Fredholm equations of the

first kind are ill-posed problems (e.g. Groetsch, 2007; Phillips, 1962).

Now, let us consider explicitly the discrete system formed by discretisation of the

inverse problem. The discrete form of (3.3.4), evaluated on Φi, is used to define

Ti ≡ τf (Φi) =
1

2
ln

(
1− 2

F 2

(
Yi + Pi − 1

))
, (3.3.9)

for i = 1, 2, ..., Nf , which is calculated from the known surface values Yi and Pi.

We then obtain the values Θi, inserting the values Yi and Ti into (3.3.5) and

using a central difference for the derivative, yielding

Θi = arcsin

(
eTi
(
Yi+1 − Yi−1

2∆Φ

))
(3.3.10)

for i = 2, 3, ..., Nf−1 and we set Θ1 = ΘNf
= 0. Now evaluating at the midpoints,

and approximating the integrals by the trapezium rule, the discretised form of
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the integral equation (3.3.8) is given by

Nb∑
k=2

(
∆ϕ

2
(Gb[k−1,i] θk−1 +Gb[k,i] θk)

)

=

Nf∑
k=2

(
∆Φ

2
(Gf [k−1,i]Θk−1 +Gf [k,i]Θk)

)
− 1

2
ln

(
1− 2

F 2

(
YM
i + PMi − 1

))
(3.3.11)

for i = 1, 2, ..., Nf − 1, where:

Gf [k,i] =
(
1− eπ(Φ

M
i −Φk)

)−1
; Gb[k,i] =

(
1 + eπ(Φ

M
i −ϕk)

)−1
.

Now the inverse problem for the unknowns θj may now be written more succinctly

as the linear matrix equation

Mθ = b , (3.3.12)

where θ = (θ1, θ2 . . . , θNb
)T is the vector of unknowns, b = (b1, b2 . . . , bNf

)T is a

vector of the known free-surface values

bi =

Nf∑
k=2

(
∆Φ

2
(Gf [k−1,i]Θk−1 +Gf [k,i]Θk)

)
− 1

2
ln

(
1− 2

F 2

(
YM
i + PMi − 1

))
(3.3.13)

for i = 1, 2, ..., Nf − 1, and M is an (Nf ×Nb) matrix with the known elements

mi,j given by:

mi,1 =
∆ϕ

2
Gb[1,i] ; mi,Nb

=
∆ϕ

2
Gb[Nb,i] ; mi,j = ∆ϕGb[j,i] ,

for i = 1, 2, ..., Nf−1 and j = 2, 3, ..., Nb−1. The final row of the matrix equation

is set to enforce a boundary condition. An obvious choice might be to set θNb
= 0;

however, this condition is already accounted for by the reliance of the conformal

mapping on uniform flow far downstream. As such, while it is not in practice

necessary to do so, we instead set mNf ,1 = 1 and bNf
= 0 to enforce the condition

that θ1 = 0. We found that this greatly improves the conditioning of the system,

as shown in Figure 3.3.2.
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Figure 3.3.2: Dependence of the condition number of M on N when L = 10.
Top: M with the final row set by the boundary condition θN = 0. Bottom: M
with the final row set instead by the boundary condition θ1 = 0.

To calculate the topography one would take the solution θ to (3.3.12) and use

these values to evaluate (3.1.3) at its midpoints, yielding

τMj ≡ τb(ϕ
M
j ) =

Nf∑
k=2

(
∆Φ

2
(gf [k−1,j]Θk−1 + gf [k,j]Θk)

)

−
Nb∑
k=2

(
∆ϕ

2
(gb[k−1,j]θk−1 + gb[k,j]θk)

)
, (3.3.14)

for j = 1, 2, ..., Nb − 1, with:

gf [k,j] =
(
1 + eπ(ϕ

M
j −Φk)

)−1
; gb[k,j] =

(
1− eπ(ϕ

M
j −ϕk)

)−1
.

Finally, by evaluating (3.1.5) at its mid-points and using a central difference for

the derivative, the equation

yj = yj+1 −∆ϕ e−τ
M
j sin(θMj ) (3.3.15)

can be used to recover the profile of the topography yb, working backwards from

yNb
= 0 which is set to be consistent with the assumption of a uniform stream

downstream.
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The matrix M is expected to be of full rank, see the appendix of Robbins,

Blyth, Maclean, and Binder, 2023. Calculating the rank of the matrix M via

MATLAB it was found to be full rank for N ≤ 367. MATLAB returns the

numerical rank of a matrix as the number of non-zero singular values satisfying

σi > max(size(M))*eps(norm(M)). Since the matrix M is expected to be

non-singular, we might follow a direct approach and simply pre-multiply both

sides of (3.3.12) by the matrix inverse to obtain the solution θ = M−1b. However,

the matrix M is very poorly conditioned. This is illustrated in Figure 3.3.2,

where we set Nf = Nb = N and plot the condition number cond(M) against

N for the truncation length L = 10. The ill-conditioning is considerably worse

for the choice of boundary condition θN = 0: even for N = 15 its condition

number is on the order of 1015! The ill-conditioning means that in computational

practice, for large enough N the matrices are effectively singular and, in the case

of non-square systems, they are effectively rank deficient. Accordingly, standard

approaches to solving (3.3.12) will be swamped with numerical error as the grid

resolution is increased. In particular, the norm of the inverse ∥M−1∥ will be large

and the solution will tend to align itself with the eigenfunction corresponding to

the smallest magnitude eigenvalue. Figure 3.3.3 shows the eigenfunction of M

associated with the eigenvalue 9.2 × 10−7, when N = 101 and L = 10. The

eigenfunction has a non-smooth sawtooth appearance.

To mitigate the difficulties with the ill-conditioning, we employ the truncated

singular value decomposition (TSVD) method (e.g. Hansen, 1990b; Varah, 1973)

to be discussed below. In the standard implementation of the singular value

decomposition (SVD) method e.g. Griffel, 1989, the (Nf × Nb) matrix M is

expressed in the form M = UΣV T , where U and V are, respectively, (Nf ×Nf )

and (Nb × Nb) unitary matrices whose columns are the eigenvectors of MMT

and MTM respectively. The (Nf ×Nb) matrix Σ has along its leading diagonal

the singular values σn, n = 1, . . . , r ≤ min(Nf , Nb), corresponding to the positive

square roots of the non-zero eigenvalues of MMT , and all other elements zero.

The singular values are ordered by size starting with the largest in the (1, 1)
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Figure 3.3.3: The eigenfunction of M corresponding to the eigenvalue with
magnitude 9.2× 10−7, when L = 10 and N = 101.

position.

Armed with the SVD we compute the Moore-Penrose inverse (Penrose, 1955)

M+ = V Σ+UT , where Σ+ is formed by replacing the non-zero entries of Σ with

their reciprocals and then transposing the matrix (e.g. Ben-Israel and Greville,

2003, p.207). (Note that if M−1 exists then M+ = M−1.) A solution to

(3.3.12) exists iff the solvability condition M(M+b) = b holds; this ensures that

b ∈ ImM . Then the complete set of solutions to (3.3.12) is given by e.g. James,

1978

θ = M+b+ z, (3.3.16)

where z = (I−M+M)w, with w an arbitrary (Nb×1) vector, and z ∈ kerM . If

the solvability condition fails then b /∈ ImM , the system (3.3.12) is inconsistent,

and (3.3.16) provides the linear least squares approximation of minimum norm

e.g. Planitz, 1979.

We will discuss results for the inverse topography problem allowing for different

numbers of grid points on the free surface and on the bottom, taking Nf > Nb

(overdetermined system), orNf < Nb (underdetermined system), or elseNf = Nb
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Figure 3.3.4: Results for the topography (3.3.1) at F = 1.2 when L = 20 and
N = 363. (a) ∥θκ∥ rises rapidly to a stable value for a range of the truncation
parameter κ before beginning to increase further as the model fails to output
smooth solutions. (b) Profiles of θκ for various κ, showing how the output varies
by selecting κ to correspond to the different sections of the (κ, ∥θκ∥) curve.

(square system). Since if Nf ≥ Nb we expect M to have full rank, its kernel

should be trivial so that the unique solution to (3.3.12) is given by (3.3.16) with

z set to zero. However, in computational practice M is effectively rank deficient,

as discussed above, so that the kernel is effectively non-trivial. Accordingly we

expect that artificial sawtooth irregularities, like those seen in the eigenfunction

in Figure 3.3.3, will become a dominant feature of the numerical solution as the

grid resolution is refined. To work around this we follow the TSVD method (e.g.

Hansen, 1990b; Varah, 1973) and replace M in (3.3.12) with Mκ = UΣ+
κV

T ,

where Σ+
κ is the rank κ matrix obtained by retaining the first κ largest singular

values and setting the others to zero. The resulting rank κ approximate problem

has least squares solutions of the form given in (3.3.16) with M+ replaced by

M+
κ . We find that the smoothest solution is that which minimises ∥θκ∥:

θκ = M+
κ b . (3.3.17)

To illustrate the procedure we return to the test topography (3.3.1) examined in

Figure 3.3.1. The free surface profile is computed first by solving the forward

problem using Newton’s method. Next the inverse problem is solved with the

forward solution as input using the TSVD approach just described.
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Figure 3.3.4(a) shows the logarithm of the norm ∥θκ∥ for the backwards

problem plotted against κ on a logarithmic scale. We see that ∥θκ∥ reaches a

plateau that extends over a wide range of κ values; thereafter the norm

increases as κ approaches N and the numerical problems discussed above

become prominent. The profile of θκ plotted against ϕ is found to be visually

smooth, and to remain the same, over the plateau region. Typical profiles for

various κ are shown in Figure 3.3.4(b). The characteristic sawtooth numerical

instability is evident for κ = 330. Typically when solving the backwards

problem we produce a graph similar to that shown in Figure 3.3.4(a) to confirm

the presence of a plateau. We then produce a Picard plot and plot the L-curve

for the problem to aide in choosing a truncation rank κ. Finally we compute

the topographic profile yb(ϕ) using (3.1.11).

Figure 3.3.5 shows a convergence study for the test topography (3.3.1) for a

square system with Nf = Nb = N . In Figure 3.3.5(a) we see good agreement

between the exact topography (3.3.1), shown with a thick solid line, and the

output from the backwards problem, shown for the two different discretisation

levels N = 101 and N = 721 with a thin solid and a dotted line, respectively.

In Figure 3.3.5(b) we plot the norm of the difference ∥yb − yT ∥ over the grid,

where yT is the prescribed topography given by (3.3.1), and yb is the inversely

computed topography. The error ∥yb − yT ∥ decreases like N−2 as N increases.

Unless otherwise stated, in each of the results presented in the next section, the

inversely found bottom profiles were used as input to the forward problem to

check that the original free surface is recovered. While it is straightforward to do

this for either subcritical or supercritical Froude number, the critical case F = 1

is computationally more challenging (Keeler, Binder, and Blyth, 2017).
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Figure 3.3.5: The case of topography (3.3.1) at F = 1.2 when L = 20 and
N = 101. (a) The originally prescribed topography compared to those found by
applying the TSVD method to the results of the forward Newton problem at two
resolutions (κ = 101;N = 101, 721). (b) The norm of the error ∥yb − yT ∥, where
yT is the prescribed topography (3.3.1), and yb is the TSVD solution.

3.4 Unforced Forward and Inverse Problems

3.4.1 Unforced forward problem

Forward solutions to the fKdV

In the absence of forcing the fKdV reduces to the usual KdV equation; namely

ηxxx + 9ηηx − 6µηx = 0 . (3.4.1)

It is well known that there are two possible forms of solution for the free surface

of the unforced problem (e.g. Whitham, 2011): the uniform stream η = 0, which

exists as a solution for all values of F , and in supercritical flow the solitary wave

solutions η = 2µ sech2
(√

3µ
2 (x− x0)

)
are also permitted, where x0 ∈ R shifts

the position of the crest of the wave.
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Forward solutions to the fully nonlinear BI model

The governing equations for the fully nonlinear problem are:

e2τf (ϕ) +
2

F 2

(
yf (ϕ) + P (ϕ)

)
− 1− 2

F 2
= 0 ; (3.4.2)

τf (ϕ) = −
∞∫

−∞

θf (ϕ0)

1− eπ(ϕ−ϕ0)
dϕ0 −

∞∫
-∞

θb(ϕ0)

1 + eπ(ϕ−ϕ0)
dϕ0 ; (3.4.3)

τb(ϕ) =

∞∫
-∞

θf (ϕ0)

1 + eπ(ϕ−ϕ0)
dϕ0 − −

∞∫
−∞

θb(ϕ0)

1− eπ(ϕ−ϕ0)
dϕ0 ; (3.4.4)

∂yf
∂ϕ

= e−τf sin(θf ) ; (3.4.5)
∂yb
∂ϕ

= e−τb sin(θb) ; (3.4.6)

∂xf
∂ϕ

= e−τf cos(θf ) ; (3.4.7)
∂xb
∂ϕ

= e−τb cos(θb) ; (3.4.8)

The absence of forcing means that we have P = yb = θb = 0. These values can

be substituted into (3.4.2) which may subsequently be rearranged for τf as

τf =
1

2
ln

(
1 +

2

F 2
(1− yf )

)
. (3.4.9)

Similarly treating (3.4.3) another expression for τf is obtained as

τf = −
∞∫

−∞

θf (ϕ0)

1− eπ(ϕ−ϕ0)
dϕ0 , (3.4.10)

which, upon equating equating with (3.4.9), allows for us to find the relation

−
∞∫

−∞

θf (ϕ0)

1− eπ(ϕ−ϕ0)
dϕ0 =

1

2
ln

(
1 +

2

F 2
(1− yf )

)
. (3.4.11)

Note first that the uniform stream with θf = 0 and yf = 1 is a solution to
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(3.4.11). Alternatively, one could integrate (3.4.5), keeping in mind that we

integrate backwards from the boundary condition at positive infinity, to yield

yf =
∫ ϕ
∞ e−τf (ϕ

′) sin(θf (ϕ
′)) dϕ′ into which substitution of (3.4.10) gives

yf =

ϕ∫
∞

exp
− −

∞∫
−∞

θf (ϕ0)

1− eπ(ϕ′−ϕ0)
dϕ0

 sin(θf (ϕ
′))

 dϕ′ , (3.4.12)

showing that yf can be expressed as a nonlinear function of θf . As such, the

right-hand side of (3.4.11) can also be considered to be a nonlinear function of θf

and so (3.4.11) represents a nonlinear Fredholm integral equation of the second

kind for θf . This allows for non-uniqueness in the solution, an expected result

as it is known that analogues to the KdV’s solitary wave solutions exist for the

fully nonlinear problem (see, for example, Figure 3.2.4).

3.4.2 Unforced inverse problem

Considering the inverse problem with no forcing means that we are considering

a uniform stream with no pressure acting on the surface, therefore we have

P = θf = η = 0 and yf = 1.

Inverse solution to the fKdV

The fKdV gives the forcing in the inverse problem as

f(x) = 2µη − 1

3
ηxx −

3

2
η2 , (3.4.13)

substituting for the flat free surface, η(x) = 0, it is immediately apparent that

the forcing must also be zero, i.e. f(x) = 0. As there is no pressure forcing acting

on the surface it follows that yb = 0.
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Inverse solutions to the fully nonlinear BI model

Substituting P = 0 and yf = 1 into (3.4.2) we obtain

e2τf = 1 =⇒ τf = 0 .

Insertion of this result for τf and that θf = 0 into (3.4.3) we find that

∞∫
-∞

θb(ϕ0)

1 + eπ(ϕ−ϕ0)
dϕ0 = 0 . (3.4.14)

Defining

g(ϕ0) =
1

1 + eπϕ0
,

we may represent (3.4.14) as the convolution

(θb ∗ g)(ϕ) =
∞∫

-∞

θb(ϕ0)g(ϕ− ϕ0) dϕ0 = 0 .

Application of the convolution theorem to the above equation yields

θ̃b(w) · g̃(w) = 0 , (3.4.15)

where the Fourier transform of a variable h, denoted by the addition of a tilde as

h̃, is defined by

h̃(w) =
1√
2π

∞∫
-∞

h(x)eiwx dx .

If θ̃b(w) = 0 then θb = 0 and we see that a flat topography is a solution to

the inverse problem for a flat free surface. We are interested in the question of

existence of other solutions and so instead we turn our attention to g̃(w). First,

we note that by subtracting one half from g(ϕ0) we find

g(ϕ0)−
1

2
=

1

2

(
1− eπϕ0

1 + eπϕ0

)
= −1

2
tanh

(
πϕ0
2

)
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and can therefore obtain the alternate expression

g(ϕ0) =
1

2

(
1− tanh

(
πϕ0
2

))
.

While the Fourier transform of g(ϕ0) doesn’t classically exist, it can still be

calculated in terms of distributions (e.g. Griffel, 2002), so we shall proceed to

write

g̃(w) =
1√
2π

∞∫
-∞

1

2

(
1− tanh

(
πϕ0
2

))
eiwϕ0 dϕ0 ,

alternatively we may write

2g̃(w) =
1√
2π

∞∫
-∞

1 · eiwϕ0 dϕ0 −
1√
2π

∞∫
-∞

tanh

(
πϕ0
2

)
eiwϕ0 dϕ0 ,

or

2g̃(w) =
√
2πδ(w)− 1√

2π

∞∫
-∞

tanh

(
πϕ0
2

)
eiwϕ0 dϕ0 , (3.4.16)

where we have used (2.1.4) to express the Fourier transform of unity in terms of

the Dirac delta function. In order to proceed we must obtain the Fourier

transform for the tanh(πϕ02 ) term. First, consider the simpler form

T (x) = tanh(x), the Fourier transform of which is then given by

T̃ (w) =
1√
2π

∞∫
-∞

tanh(x)eiwx dx .

Now define S(x) = sech2(x) and note that S(x) = d
dx(T (x)). By the properties

of the Fourier transform of derivatives we have the relation

S̃(w) = −iw · T̃ (w) ,

which allows for T̃ (w) to be found as

T̃ (w) =
−1

iw
S̃(w) =

−1

iw

1√
2π

∞∫
-∞

sech2(x)eiwx dx . (3.4.17)
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In order to evaluate S̃(w) we denote Θ(z) = sech2(z)eiwz and consider the

complex contour integral

I =

∮
Γ
sech2(z)eiwz dz

where z = x + iy and Γ is a contour lying in the complex plane. The function

Θ(z) has an infinite number of poles occurring at z = zn such that

cosh(zn) = 0 =⇒ zn =
iπ(2n+ 1)

2
for n ∈ Z.

We construct the contour Γ as the rectangular region bounded by y = π, the

−S R

π

z0 = iπ
2

Γ1

Γ2

Γ3

Γ4

x

y

Figure 3.4.1: A diagram of how the curve Γ is subdivided for reference in
computing the contour integral around Γ. This contour contains one pole at
z = z0 =

iπ
2 .

real axis, and the lines x = −S and x = R for R,S > 0 and R,S ∈ R (see Figure

3.4.1). This region contains only one pole at z0 =
iπ
2 and so by Cauchy’s residue

theorem we may write

I =

∮
Γ
sech2(z)eiwz dz = 2πiRes

[
Θ(z), z =

iπ

2

]
. (3.4.18)

To calculate the residue we introduce the variable ξ = z − iπ
2 and consider the

series expansions

eiwz = eiw(i
π
2
+ξ) = e−

wπ
2 eiwξ = e−

wπ
2
(
1 + iwξ +O(ξ2)

)
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and

cosh(z) = cosh

(
ξ +

iπ

2

)
= i sinh(ξ) = i

(
ξ +

ξ3

3!
+O(ξ5)

)
.

By taking the reciprocal square of the cosh(z) expansion in order to obtain

sech2(z) =
1

i2ξ2
(
1 + ξ2

3! + . . .
)2 =

−1

ξ2

(
1− 1

3
ξ2 +O(ξ4)

)

we can then find the series expansion for Θ(z) as

Θ(z) = eiwz sech2(z) = −e−
wπ
2

ξ2

(
1− 1

3
ξ2 + . . .

)
(1 + iwξ + . . .)

=− e−
wπ
2

ξ2
(1 + iwξ + . . .) = −e−

wπ
2

(
1

ξ2
+
iw

ξ
+O(ξ0)

)
.

Now that we have written Θ(z) in the form of a Laurent expansion around the

pole as

Θ(z) =

∞∑
n=−∞

an

(
z − iπ

2

)n
=

∞∑
n=−∞

anξ
n ,

the residue is given simply as being equal to the coefficient a−1 = −iwe−wπ
2 ,

substitution of which into (3.4.18) yields

I =

∮
Γ
sech2(z)eiwz dz = 2πwe−

wπ
2 . (3.4.19)

Defining Ij to be

Ij =

∫
Γj

Θ(z) dz ,

where Γj are the path segments of Γ, as shown in Figure 3.4.1, then (3.4.19) can

be expressed as

I =

4∑
j=1

Ij = 2πwe−
wπ
2 . (3.4.20)
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On Γ1 we have z = x, dz = dx and so

I1 =

R∫
−S

sech2(x)eiwx dx . (3.4.21)

Now, on Γ2 we have instead z = R+ iy, dz = i dy and so

I2 =

π∫
0

sech2(R+ iy)eiw(R+iy)i dy =

π∫
0

4i eiwRe−wy

(eReiy + e−Re−iy)2
dy ,

the absolute value of which is bounded by

|I2| ≤
π∫

0

4|e−wy|∣∣∣(eR + e−Re−2iy)2
∣∣∣ dy . (3.4.22)

The factor (eR + e−Re−2iy) appearing in the denominator of the integrand can

be bounded below by

0 < eR − e−R ≤ eR + e−Re−2iy

where the strict inequality arises as a consequence of R > 0. Further, by squaring

and inverting these terms, we may write

1

(eR + e−Re−2iy)2
≤ 1

(eR − e−R)2
.

This result is then used alongside (3.4.22) to give a bound on the absolute value

of I2 as

|I2| ≤
π∫

0

4|e−wy|∣∣∣(eR − e−R)2
∣∣∣ dy = | cosech2(R)|

π∫
0

|e−wy| dy . (3.4.23)

From the above we can then conclude that in the limit R→ ∞ we have

lim
R→∞

I2 = 0 . (3.4.24)
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On Γ4 we have z = −S + iy , dz = idy and so

I4 =

0∫
π

sech2(−S + iy)eiw(−S+iy)idy =

0∫
π

4i e−iwSe−wy

(e−Seiy + eSe−iy)2
dy ,

with which an analogous process to that applied to Γ2 can be followed to show

that

lim
S→∞

I4 = 0 . (3.4.25)

On the remaining path segment, Γ3, we have z = x+ iπ , dz = dx and so

I3 =

−S∫
R

sech2(x+ iπ)eiw(x+iπ) dx .

Making use of the result cosh(x + iπ) = − cosh(x) and exchanging the limits of

integration we have

I3 = −e−wπ
R∫

−S

sech2(x)eiwx dx = −e−wπI1 . (3.4.26)

We may now rewrite (3.4.20) as

I =

4∑
j=1

Ij = (1− e−wπ)I1 + I2 + I4 = 2πwe−
wπ
2 .

Taking the limit as R,S → ∞ the contributions from I2 and I4 vanish, with the

expression simplifying to

lim
R→∞

lim
S→∞

I = (1− e−wπ) lim
R→∞

lim
S→∞

I1 = 2πwe−
wπ
2

which can be rearranged to yield

∞∫
-∞

sech2(x)eiwx dx =
2πwe−

wπ
2

(1− e−wπ)
.

Noting the left-hand side of the above equation is
√
2πS̃(w) then, after
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multiplying the right-hand side by e
wπ
2 /e

wπ
2 , we arrive at

S̃(w) = w

√
π

2
cosech

(wπ
2

)
,

which, by (3.4.17), allows us to find at last the Fourier transform of T (x) =

tanh(x) to be

T̃ (w) = i

√
π

2
cosech

(wπ
2

)
.

The scaling property of the Fourier transform states that given the function

Tc(x) = T (cx) then its transform is given by T̃c =
1
|c| T̃

(
k
c

)
; as such we find

1√
2π

∞∫
-∞

tanh

(
πϕ0
2

)
eiwϕ0 dϕ0 = i

√
2

π
cosech(w) .

Finally, inserting this result into (3.4.16), we obtain the Fourier transform of g

to be

g̃(w) =

√
π

2
δ(w)− i√

2π
cosech(w) . (3.4.27)

There are no values w for which g̃(w) = 0. We find then that, for (3.4.15) to hold

we have

θ̃b ·
(√

π

2
δ(w)− i√

2π
cosech(w)

)
= 0 (3.4.28)

and so the only allowable inverse solution for a flat free surface with no applied

pressure is for the topography to also be flat, i.e.

θ̃b(w) = 0 =⇒ θb(ϕ) = 0 =⇒ yb(ϕ) = 0 .



4

Results: Inversely Retrieving

Topography from Computed Forward

Solutions

In this chapter we will investigate the performance of the TSVD method for

different types of free surface and the use of the L-curve and the DPC in helping

to select a suitable truncation rank. Flow over a topography made of a single

Gaussian will be considered first before then adding second Gaussian. By first

computing solutions to the forward problem for flow over a prescribed topography

yT we obtain sets of surface data to be used in the inverse problem for which we

know the solution to compare against the calculated inverse solutions. For an

overview of the forward method and its solutions see Section 3.2.

4.1 Topography consisting of one Gaussian

For the purposes of this section we prescribe a topography of the form

yT (ϕ) = ae−(bϕ)2 (4.1.1)

to then be used to solve the forward problem, by Newton’s method, providing

a free surface yf (ϕ). This free surface is subsequently used as the input in the

inverse TSVD method to output a solution yb(ϕ) for the topography. The output
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yb can then be directly compared to the prescribed yT in order to assess the

performance of the TSVD method. We will look first at solutions to supercritical

flow; considering both free surface solutions that are perturbations of the uniform

stream and those of solitary waves; nonlinearity in the forward problem means

that both the perturbations to the uniform stream and to the solitary wave

solutions can be obtained from the same topography (see Figure 3.2.3). The

method will then be tested on an unforced solitary wave solution, the limit of

the forced solitary wave as a → 0, to investigate how well the inverse TSVD

method can recover a flat topography from a non-zero input. Turning then to

solutions to forward problems that are not everywhere supercritical we analyse

the inverse problem for hydraulic falls before a brief consideration of subcritical

flows featuring a train of surface waves.

4.1.1 Supercritical flow as a perturbation of the uniform stream

We first consider supercritical flow over a Gaussian dip in the topography

(Figure 4.1.1). The output from the forward problem is displayed in

Figure 4.1.1(a) alongside the prescribed topography yT . The output topography

yb of the inverse problem using yf as an input is then compared more closely

against yT in Figure 4.1.1(b). The truncation rank κ = 89 was chosen by

consideration of Figure 4.1.1(c), which shows that the DPC will be satisfied for

this choice of κ, and Figure 4.1.1(d), where it can be seen that this solution lies

on the segment of the L-curve on which the norm of the solution is stable to a

small change in κ. In fact, it was found that outputs yb to this particular

problem do not start to display, at graphical accuracy, the typical erroneous

oscillations until the truncation rank is taken with κ > 150.

The process above was repeated for flow over a larger Gaussian, a = 0.2 at the

higher Froude number of F = 1.5, which produces a greater response on the free

surface (Figure 4.1.2(a)). For this problem the truncation rank κ = 146 was

selected by study of the ρi curve as for i ≤ 146 the problem satisfies the DPC, see
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Figure 4.1.1: Inverse results for a perturbation to the uniform stream solution
over a Gaussian topography (4.1.1) with the parameter values a = 0.02, b =
1, L = 20, N = 641, F = 1.1. (a) Profiles of the prescribed topography and
computed forward solution. (b) The inverse solution for the topography with
κ = 89 (black) compared to the true topography (red). (c) Picard plot for use
in selecting the truncation rank. (d) The L-curve for this problem with the red
cross indicating the solution with κ = 89.

Figure 4.1.2(c). The result for the inversely computed topography is displayed

in Figure 4.1.2(b), showing that a good inverse solution can be obtained for flow

past larger amplitude topographies; the agreement found in Figure 4.1.1 was not

simply due to having picked such a diminutive forcing.

4.1.2 Supercritical flow as a perturbation of the solitary wave

The forward solution presented in Figure 4.1.1 is an example of a free surface

that is a perturbation of the uniform stream. For the same topography it is

possible to instead calculate the corresponding forced solitary wave solution (see

Figure 3.2.3 and Figure 3.2.4). This solution is then used as the input to then
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Figure 4.1.2: Inverse results for a perturbation to the uniform stream solution
over a Gaussian topography (4.1.1) with the parameter values a = 0.2, b =
1, L = 20, N = 641, F = 1.5. (a) Profiles of the prescribed topography and
computed forward solution. (b) The inverse solution for the topography with
κ = 146 (black) compared to the true topography (red). (c) Picard plot for use
in selecting the truncation rank. (d) The L-curve for this problem with the red
cross indicating the solution with κ = 146.

attempt to recover the originally prescribed topography through the inverse

method (Figure 4.1.3). The prescribed topography yT and computed free

surface yf are shown in Figure 4.1.3(a). The inverse solution, yb, for the

topography is compared to yT in Figure 4.1.3(b) showing that the TSVD

method has been able to accurately recover the topography from the surface

data of the solitary wave. Figure 4.1.3(c) informs our choice of the truncation

rank, κ = 73, as the DPC is seemingly satisfied until this point with the

monotonic decay of ρi for 16 ≤ i ≤ 73. A choice of κ ≈ 90, corresponding to the

second local minimum in ρi, yielded results that matched, to graphical

accuracy, those of truncation rank κ = 73. Solutions from this range of κ all lie

before the corner of the L-curve where the norm of the solution should be stable
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Figure 4.1.3: Inverse results for a perturbation to the solitary wave solution over
a Gaussian topography (4.1.1) with the parameter values a = 0.02, b = 1, L =
20, N = 641, F = 1.1 (These are the same parameters as for the uniform stream
solution of Figure 4.1.1). (a) Profiles of the prescribed topography and computed
forward solution. (b) The inverse solution for the topography with κ = 73 (black)
compared to the true topography (red). (c) Picard plot for use in selecting the
truncation rank. (d) The L-curve for this problem with the red cross indicating
the solution with κ = 73.

to a small change in κ (Figure 4.1.3(d)).

Keeping the topography fixed an increase in the Froude number will lead to an

increase in the maximum height achieved by the solitary wave. The solitary

wave profile found in Figure 4.1.3 was used as the start point from which to

slowly increase F , using each iteration’s solution as an initial guess for the next

iteration, until the profile shown in Figure 4.1.4(a) was calculated for F = 1.3.

There is a very clear choice of κ = 41 for the truncation rank based on the ρi curve

shown in Figure 4.1.4(c) and the size and position of the underlying topography

are well captured by the TSVD method. There is a disagreement between the
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Figure 4.1.4: Inverse results for a perturbation to the solitary wave solution over
a Gaussian topography (4.1.1) with the parameter values a = 0.02, b = 1, L =
20, N = 1241, F = 1.3 (a) Profiles of the prescribed topography and computed
forward solution. (b) The inverse solution for the topography with κ = 41 (black)
compared to the true topography (red). (c) Picard plot for use in selecting the
truncation rank. (d) The L-curve for this problem with the red cross indicating
the solution with κ = 41.

maximum height of the true topography and that output by the model, further

some small oscillations appear at the base of the topography, however it was

found that the size of these disagreements, both the height discrepancy and the

oscillations, could be reduced by increasing the value of N . We did not push

higher than N = 1241 due to the time taken for the forward problem to converge

to this solution to provide input data for the inverse problem.
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Figure 4.1.5: Inverse results for an unforced solitary wave solution with the
parameter values a = 0, L = 20, N = 841, F = 1.1 (a) Profiles of the prescribed
topography and computed forward solution. (b) The inverse solution for the
topography with κ = 41 (black) compared to the true topography (red). (c)
Picard plot for use in selecting the truncation rank. (d) The L-curve for this
problem with the red cross indicating the solution with κ = 103. (e) The
maximum displacement of the topography from the zero level decays with N−2

(red) Reference line of gradient -2 (black dotted) (f) The norm of the right-hand
side of the matrix equation approaches zero like N−2 (blue) and a reference line
of gradient -2 (black dashed).
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4.1.3 Unforced solitary wave

Consider instead the surface data of an unforced solitary wave (Figure 4.1.5(a)).

Distinct now from the case of the forced solitary wave the decay of ρi for the

unforced solitary wave is less smooth and does not decay purely monotonically

although it is, on average, tending downwards until κ = 103 (Figure 4.1.5(c))

which is the truncation rank we have taken for the solution for the topography

displayed in Figure 4.1.5(b). The sharp, but small, central feature appearing in

the solution for the topography can not be eliminated in this case by a different

choice of κ, persisting for all possible truncation ranks that produce solutions

not dominated by error (i.e., large amplitude sawtooth oscillations). With the

maximum displacement of the topography from y = 0 being O(10−4) these

features are not visible when plotted on a scale like that of Figure 4.1.5(a). In

Figure 4.1.5(e) the dependence of the maximum displacement of the topography

from the zero level, max(|yb|), on the number of input data, N , was studied by

calculating the inverse solution at different resolutions and plotting the results

on a log-log scale, revealing that that for the range of N tested this maximum

displacement decays approximately with N−2. It was shown in 3.4.2 that in the

absence of forcing and no surface disturbance that the inverse method gave a

flat topography with the right-hand side of the Fredholm equation becoming

zero. Evaluating the norm of the right-hand side of the discretised system

Mθ = b for given the input data of unforced solitary waves calculated at

different values of N we find that right-handside appears to be decaying like N2.

4.1.4 Hydraulic falls

When the flow transitions from subcritical to supercritical due to its interaction

with the topography a hydraulic fall solution occurs, the surface profile

calculated for this example and the corresponding prescribed topography are

shown in Figure 4.1.6(a). Consideration of Figure 4.1.6(c) suggests that the

underlying problem satisfies the DPC for κ ≤ 115 and plotting the L-curve finds



4.1 Topography consisting of one Gaussian 113

-20 -15 -10 -5 0 5 10 15 20

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a)

-20 -15 -10 -5 0 5 10 15 20

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

(b)

0 100 200 300 400 500 600 700 800

-16

-14

-12

-10

-8

-6

-4

-2

0

2

(c)

-9 -8 -7 -6 -5 -4 -3 -2 -1 0

-6

-4

-2

0

2

4

6

8

10

(d)

Figure 4.1.6: Inverse results for a hydraulic fall solution over a Gaussian
topography (4.1.1) with the parameter values a = 0.1, b = 1, L = 20, N = 721.
The Froude number is calculated as part of the solution and was found to be
F ≈ 1.3005. (a) Profiles of the prescribed topography and computed forward
solution. (b) The inverse solution for the topography with κ = 115 (black)
compared to the true topography (red). (c) Picard plot for use in selecting the
truncation rank. (d) The L-curve for this problem with the red cross indicating
the solution with κ = 115.

that κ = 115 corresponds to a solution close to the L-curve’s corner

(Figure 4.1.6(d)) and as such this should be a good choice of the truncation

rank. The topography output for κ = 115 is shown in Figure 4.1.6(b) and is

found to accurately capture the topography originally prescribed in the forward

problem. This process has been repeated for a hydraulic fall over a larger

topographical disturbance, leading to a greater change in uniform stream depth,

in Figure 4.1.7. The model again performs well with a choice of κ = 123 based

on Figure 4.1.7(c) allowing the topography to be recovered (Figure 4.1.7(b)).
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Figure 4.1.7: Inverse results for a hydraulic fall solution over a Gaussian
topography (4.1.1) with the parameter values a = 0.4, b = 1, L = 20, N = 721.
The Froude number is calculated as part of the solution and was found to be
F ≈ 1.6171. (a) Profiles of the prescribed topography and computed forward
solution. (b) The inverse solution for the topography with κ = 123 (black)
compared to the true topography (red). (c) Picard plot for use in selecting the
truncation rank. (d) The L-curve for this problem with the red cross indicating
the solution with κ = 123.

4.1.5 Subcritical flow with a train of waves

In general, solving the forward problem with the flow being subcritical

everywhere will produce a surface with an upstream train of waves created by

the interaction of the flow with the channel obstruction (Figure 4.1.8(a)). In

order to satisfy the radiation condition we must consider the flow to be from

right to left for these solutions. For this problem the decay of the Fourier

coefficients uTi b occurs slowly, after an initial interval of oscillation, and as such

there is not a large interval of κ for which this problem might be said to satisfy

the DPC (Figure 4.1.8(c)). Although the position and approximate dimensions
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Figure 4.1.8: Inverse results for a subcritical solution with a train of waves over
a Gaussian topography (4.1.1) with the parameter values a = −0.05, b = 1, L =
21, N = 561, F = 0.8. (a) Profiles of the prescribed topography and computed
forward solution. (b) The inverse solution for the topography with κ = 25 (black)
compared to the true topography (red). (c) Picard plot for use in selecting the
truncation rank. (d) The L-curve for this problem with the red cross indicating
the solution with κ = 25.

of the topography could be obtained through application of the TSVD method

for flows of this type (Figure 4.1.8(b)) it was not possible to remove the spurious

oscillations occurring around the zero-level by selection of κ. In Figure 4.1.8(d)

the L-curve for this problem is plotted. It can be seen that this L-curve does

have a corner and that the selection of κ = 25 based on the DPC corresponds

with a solution just prior to this corner. However, unlike the L-curves presented

previously in this chapter, there is no flattened region before this corner

corresponding to an interval of κ in which θκ is stable with respect to κ. It was

found that increasing N did not lead to a reduction in the amplitude of these

oscillations about the zero-level, nor did changes to the domain truncation L.
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4.2 Topography consisting of two Gaussians

Let us now consider a topography with two identical Gaussian features, described

by

yT = a
(
e−(b(ϕ−c))2 + e−(b(ϕ+c))2

)
, (4.2.1)

where c is a parameter that allows for the separation of these features to be

varied. We will compute a free surface both in the supercritical and subcritical

flow regimes and attempt to then solve the inverse problem for the topography,

the results of which large agree with those of a single Gaussian feature. We will

then look at the case of trapped waves in subcritical flow, achieved by careful

positioning of the topography, and how the inverse problem fares with this input.

4.2.1 Supercritical flow

The forward solution over a two bumped topography topography with the

separation c = 10 was computed in order to be used as an input to the inverse

problem (Figure 4.2.1(a)). A truncation rank of κ = 158 due to the decay of the

ρi curve suggesting that the DPC is satisfied for i ≤ 158. This produced an

output for the topography that is in good agreement with the true topography

yT (Figure 4.2.1(b)).

4.2.2 Subcritical flow with a train of waves

As might be expected from the results of Figure 4.1.8, the case of subcritical flow

over a single Gaussian, attempts to solve the inverse problem for the subcritical

flow over two dips in the topography with waves on the surface as for ϕ < 5

is substantially more challenging than for supercritical flow. It appears from

Figure 4.2.2(c) that the DPC is not satisfied for any values i ≥ 14 and the result

corresponding to κ = 13 is a poor approximation to the underlying topography.

Interestingly, taking larger values for κ, say κ = 40, can accurately capture the
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Figure 4.2.1: Inverse results for a supercritical solution with a train of waves
over a Gaussian topography (4.2.1) with the parameter values a = 0.05, b =
1, L = 20, N = 541, F = 1.2 (a) Profiles of the prescribed topography and
computed forward solution. (b) The inverse solution for the topography with
κ = 158 (black) compared to the true topography (red). (c) Picard plot for use
in selecting the truncation rank. (d) The L-curve for this problem with the red
cross indicating the solution with κ = 158.

size and positioning of the Gaussian dips on the topography although spurious

oscillations appear in the solution.

4.2.3 Subcritical flow with trapped waves

The trapped waves on the surface of a subritical flow studied in this section can be

considered as the matching of two subcritical wave trains such that their effects

on the fluid are ”cancelled out” at either end of an interval on which surface

waves are apparent. Looking again at Figure 4.2.2(a) one can imagine varying c

in (4.2.1), changing the relative positions of the topographical features, until this

cancellation of the train of waves occurs. For this purpose the separation of the
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Figure 4.2.2: Inverse results for a subcritical solution with a train of waves over
a Gaussian topography (4.2.1) with the parameter values a = −0.04, b = 1, L =
20, N = 641, F = 0.8 (a) Profiles of the prescribed topography and computed
forward solution. (b) The inverse solution for the topography with κ = 13 (black)
and κ = 40 (blue) compared to the true topography (red). (c) Picard plot for
use in selecting the truncation rank. (d) The L-curve for this problem with the
red cross indicating the solution with κ = 13.

two topographical features is allowed to come as part of the solution, different

initial guesses for the separation allows for solutions with different numbers of

trapped waves (i.e., by increasing the separation we can calculate solutions with

more wave peaks).

In Figure 4.2.3 we consider an example of this problem where there are two

wave peaks on the free surface, for which the separation was found to be c ≈

3.116 (Figure 4.2.3(a)). It can be seen from Figure 4.2.3(c) that the Fourier

coefficients |uTi b| are on average decaying but oscillating as they do so, this is

reflected in ρi which does not decay monotonically. The truncation rank κ = 87

has been chosen because for i ≤ 87 the decay of ρi is greater on average and
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Figure 4.2.3: Inverse results for a subcritical solution with trapped waves over
a Gaussian topography (4.2.1) with the parameter values a = −0.04, b = 1, L =
30, N = 1241, F = 0.8, c ≈ 3.116 (a) Profiles of the prescribed topography and
computed forward solution. (b) The inverse solution for the topography with
κ = 87 (black) compared to the true topography (red). (c) Picard plot for use
in selecting the truncation rank. (d) The L-curve for this problem with the red
cross indicating the solution with κ = 87. (e) Profiles with increasing N showing
that as N is increased the inverse solution gets closer to the true solution.
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the oscillations are a less dominant feature. The output for this κ is shown in

Figure 4.2.3(b) and it agrees well graphically with the prescribed topography yT .

However, not visible at this scaling, small oscillations appear in the topography.

Considering Figure 4.2.3(d) we see that the flat segment of the L-curve we have

found to precede the corner in previous examples instead slopes upwards towards

the corner, with the norm of the solution still displaying some sensitivity here to

the truncation rank κ. We experimented with different values of N to study how

the amplitude of these oscillations were affected; because the true topography is

known in advance we are able to then select the truncation rank so as to give

the “best” solution in that it minimises the norm ∥yb − yT ∥. In Figure 4.2.3(e)

these solutions are displayed for different values of N , it can be seen that for

increasing values of N the amplitude of these oscillations decreases, although it

was not possible to discern a relationship between these quantities like that of

the quadratic decay found previously for the unforced solitary wave previously

(Figure 4.1.5(e)).

Figure 4.2.4 shows the results of repeating the procedure described above for a

surface with five trapped wave peaks, for which the separation c was calculated

as c ≈ 10.147 with N = 1241. The discussion for this case remains almost

unchanged to that of the case of two trapped wave peaks of the previous

paragraph. Small undulations can be seen in the output for the topography

between the two Gaussians however the size and position of the topography has

been accurately captured (Figure 4.2.4(b)). It can be seen from Figure 4.2.4(e)

that, as in the case of two trapped wave peaks (see Figure 4.2.3(e)), the size of

these oscillations appearing in the output is related to the number of grid points

used. The exact relation between these quantities was not found.

4.3 Discussion

In this chapter we have explored the ability of the TSVD method to recover the

underlying topography from surface data input computed by way of the forward
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Figure 4.2.4: Inverse results for a subcritical solution with trapped waves over
a Gaussian topography (4.2.1) with the parameter values a = −0.04, b = 1, L =
30, N = 1241, F = 0.8, c ≈ 10.147 (a) Profiles of the prescribed topography and
computed forward solution. (b) The inverse solution for the topography with
κ = 89 (black) compared to the true topography (red). (c) Picard plot for use
in selecting the truncation rank. (d) The L-curve for this problem with the red
cross indicating the solution with κ = 87. (e) Profiles with increasing N showing
that as N is increased the inverse solution gets closer to the true solution.
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problem over Gaussian topography and the use of both the DPC and the L-curve

in deciding a reasonable truncation rank for the system.

The method has performed well for forced supercritical flows, accurately

predicting the amplitude and positioning of the topography. Selection of a

truncation rank for these flows has been made by consideration of plots of ρi,

choosing a rank as high as possible while satisfying the DPC has produced

smooth solutions that lie close to the corner of the L-curve as one would like to

find e.g. (Hansen, 1992a; Hansen and O’Leary, 1993). Output for the

topography in supercritical flow has been more accurate as the number of points

used in the model is increased, in the case of the unforced solitary wave we saw

that the right-hand side of the matrix equation to which we are applying TSVD

approaches zero and so accordingly does the output for the topography. This

agrees with our earlier analysis concerning the unforced problem with a flat free

surface; when the right-hand side is zero we found a flat topography to be the

only allowable solution. Similarly to supercritical flows the results for hydraulic

fall solutions have been found to be accurate reconstructions of the topography.

Application of this method to subcritical flows with surfaces featuring

semi-infinite wave trains has proved more challenging. Increasing the number of

mesh-points used did not lead to a reduction in the oscillations appearing in the

output and these problems do not seem to satisfy the DPC. Still, outputs for

the topography have seen the approximate size and positioning captured but

contain errant oscillations that appear to grow as ϕ → −∞. The inverse results

for forward solutions that instead feature trapped waves in subcritical flow

rather than semi-infinite wave trains have been markedly better behaved, with

oscillations in the output again being reduced by increasing the model (and

input data) resolution. This suggests that the problem lies not in subcritical

flow but in the decay of the surface to the uniform stream in the far field.



5

Results: Inversely Retrieving

Topography from Perturbed

Computed Forward Solutions

In the previous chapter input to the inverse problem was obtained by first

computing solutions to the forward problem. In practice, input to the inverse

problem would instead constitute measurements made of the free surface and so

be subject to measurement uncertainty. Given that the inverse problem has

been identified to be an ill-posed problem, taking the form of solving a

Fredholm integral of the first kind, it should be expected that errors introduced

to the input data by this measurement uncertainty will be magnified and

without appropriate regularisation it may not be possible to obtain a

meaningful solution.

In Figure 5.0.1 an example of the care that must be taken is shown; Figure 5.0.1(a)

displays both a solution to a forward problem (see Figure 4.1.2 for details) and

plotted on top of this the same surface onto which perturbations of O(10−5) have

been added. Despite the fact that these perturbations are, to graphical accuracy,

imperceptible the inverse problem is affected starkly, Figure 5.0.1(b) shows the

inverse results for the two surfaces using the truncation rank κ = 146.

In this chapter we will consider we will consider the problem of recovering

topography from noisy input data, to simulate this data we will take computed



124
Chapter 5: Results: Inversely Retrieving Topography from Perturbed Computed

Forward Solutions

-20 -15 -10 -5 0 5 10 15 20

0.95

1

1.05

1.1

1.15

1.2

1.25

(a)

-20 -15 -10 -5 0 5 10 15 20

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(b)

Figure 5.0.1: (a) Free surface solution for a topography of the form (5.0.1) with
a = 0.2, b = 1, F = 1.5, N = 641, L = 20 (blue). Free surface solution with
noise of standard deviation ϵ = 10−5 added (black). (b) TSVD solution for yb
in unperturbed problem with κ = 146 (blue), TSVD solution for yb in perturbed
problem with κ = 146 (black).

forward problem solutions and add to every interior grid point a random value

independently drawn from a normal distribution with mean zero and standard

deviation ϵ. The first and last grid points are left unperturbed such that the

conditions of decay in the far field are satisfied, alternatively one could append

to each end of the input data another data point to represent the unperturbed

far field behaviour. While this is not necessary it was found that the output is

drastically improved by doing so; all presented results are for input data with

unperturbed endpoints. We will continue to add greater and greater amounts of

noise until we can no longer retrieve the topography accurately before then

discussing how taking a larger number of measurements can further push the

utility of the TSVD method when given noisy data. We will at this point look

at solutions for different types of free surface other than supercritical

perturbation to the uniform stream type solutions past a Gaussian.

The computed forward problem solutions will be selected from those presented in

the previous chapter and so the true underlying topography will be of the form

yT = ae−(bϕ)2 (5.0.1)
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or, for the trapped wave solutions presented previously,

yT = a
(
e−(b(ϕ−c))2 + e−(b(ϕ+c))2

)
(5.0.2)

5.1 Inverse results for a single surface measurement
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Figure 5.1.1: Inverse results for a supercritical perturbation to the uniform stream
type free surface solution over a topography of the form (5.0.1) with a = 0.2, b =
1, F = 1.5, N = 641, L = 20. (a) Free surface solution without perturbation
(blue). Free surface solution with noise of standard deviation ϵ = 10−5 added
(black). (b) The true topography (red) and the TSVD result for the perturbed
problem with ϵ = 10−5 (c) Picard plot for perturbed problem. (d) L-curve for
perturbed problem, the red cross corresponds to κ = 69.

In order to examine how the addition of noise affects the choice of truncation rank

let us return to the previous example and plot the L-curve and values relevant to

the DPC for this perturbed problem with ϵ = 10−5. From Figure 5.1.1(c) it can

be seen that the addition of noise has meant that the DPC cannot be satisfied if

a truncation rank is picked with κ ≥ 70. Further, taking κ = 69 corresponds to a
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solution on the L-curve just prior to the corner being reached (Figure 5.1.1(d)).

Combined these observations suggest that κ = 69 would be a good truncation

tank and indeed it can be seen from the result of doing so, in Figure 5.1.1(b), that

a good approximation for the underlying topography can be recovered despite the

addition of noise. There are still some small undulations present in the solution

for the topography that we have not been able to eliminate but they are almost

unnoticeable at this scale.
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Figure 5.1.2: Inverse results for a supercritical perturbation to the uniform stream
type solution over a topography of the form (5.0.1)with a = 0.2, b = 1, F =
1.5, N = 641, L = 20. (a) Free surface solution without perturbation (blue).
Free surface solution with noise of standard deviation ϵ = 10−3 added (black).
(b) The true topography (red) and the TSVD result for the perturbed problem
with ϵ = 10−3 (c) Picard plot for perturbed problem. (d) L-curve for perturbed
problem, the red cross corresponds to κ = 42.

For the same problem let us further increase the level of noise to ϵ = 10−3

(Figure 5.1.2). The DPC is now only satisfied for κ ≤ 42 (Figure 5.1.2(c)) with

κ = 42 sitting right on the corner on the L-curve (Figure 5.1.2(d)). The horizontal

segment of the L-curve seen in the previous example is now sloping upwards and
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turns to become vertical at a greater value of the residual norm. Nonetheless, as

can be seen in Figure 5.1.2(b) this truncation still gives a good approximation to

the underlying topography using the noisy surface data.

The results of applying the same approach to a hydraulic fall solution with added

noise drawn from a distribution with ϵ = 10−3 are shown in Figure 5.1.3. The

Picard plot shown in Figure 5.1.3(c) suggests the truncation rank κ = 50 and

consulting the L-curve for this problem we see that the solution for this truncation

sits at the corner of the L-curve as one would hope to see. The recovered profile

for the topography is contrasted to the true topogrpahy yT in Figure 5.1.3(a) and

we find that it is much like the result of the perturbation to the uniform stream

solution in that the Gaussian on the topography has been accurately captured by

there are small oscillations appearing on the flat regions either side that cannot

be eliminated.

Increasing the standard deviation of the noise one more time to ϵ = 10−2 we see

that in the current implementation the model is begging to struggle.

Figure 5.1.4(c) shows that there is now no clear choice of truncation rank based

on the DPC, although there is an interval in which ρi is decreasing this is for

values of i at which the Fourier coefficients |uTi b| are at the level of the noise in

the system and so should not be used for assessing the DPC (see, for example,

Hansen, 1990b). The L-curve has now lost any semblance of having a corner

(Figure 5.1.4(d)). Despite this, in Figure 5.1.4(b) we plot the solution when the

truncation rank is κ = 40 is chosen. This output still captures approximately

the height and position of the Gaussian on the topography however there are

large undulations in the solution and it does not correctly predict the average

level of the topography away from the disturbance to be at yb = 0. However,

comparing the input data (Figure 5.1.4(a) and output of this problem with that

of Figure 5.0.1 which had ϵ = 10−5 it is clear that the quality of the output is

still greatly improved by the regularisation of the problem gained by truncation.

Figure 5.1.5 shows the results of adding perturbation with standard deviation ϵ =
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Figure 5.1.3: Inverse results for a hydraulic fall solution for a topography of
the form (5.0.1) with a = 0.4, b = 1, N = 721, L = 20, F ≈ 1.617. (a) Free
surface solution without perturbation (blue). Free surface solution with noise of
standard deviation ϵ = 10−3 added (black). (b) The true topography (red) and
the TSVD result for the perturbed problem with ϵ = 10−3 (c) Picard plot for
perturbed problem. (d) L-curve for perturbed problem, the red cross corresponds
to κ = 50.

10−2 to a hydraulic fall solution instead. Inspection of Figure 5.1.5(c) leads us to

try the truncation rank κ = 31, the output for which is shown in Figure 5.1.5(b),

finding that the approximate form of the topography can be recovered from one

measurement.

5.2 Inverse results for multiple surface measurements

The results of the previous section relied on the results of a single measurement.

Ideally in an experimental set-up the surface would be measured multiple times.

The usual approach would then be to average the set of surface measurements
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Figure 5.1.4: Results for a supercritical perturbation to the uniform stream type
solution for a topography of the form (5.0.1) with a = 0.2, b = 1, F = 1.5, N =
641, L = 20. (a) Free surface solution without perturbation (blue). Free surface
solution with noise of standard deviation ϵ = 10−2 added (black). (b) The true
topography (red) and the TSVD result for the perturbed problem with ϵ = 10−2

(c) Picard plot for perturbed problem. (d) L-curve for perturbed problem, the
red cross corresponds to κ = 40.

in an attempt to smooth the noise and approximate the true underlying values

before using this averaged surface as input. A different approach would be to

instead calculate the inverse solution for each singular measurement and to then

average the resultant outputs for the topography afterwards. When taking the

former approach there is only one inverse problem to solve and we find that

it better approximates yT than directly inverse solving from one set of noisy

data. When taking the latter approach we will have many realisations of the

topography and find that while any individual realisation may be a poor estimate

of the topography when repeated and averaged they better approximate yT as

more samples are taken. For these repeated measurements we choose to fix the

truncation rank at κ = 40 so that we do not need to consider Picard plots for
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Figure 5.1.5: Results for a hydraulic fall solution for a topography of the form
(5.0.1) with a = 0.4, b = 1, N = 721, L = 20, F ≈ 1.617. (a) Free surface
solution without perturbation (blue). Free surface solution with noise of standard
deviation ϵ = 10−2 added (black). (b) The true topography (red) and the TSVD
result for the perturbed problem with ϵ = 10−2 (c) Picard plot for perturbed
problem. (d) L-curve for perturbed problem, the red cross corresponds to κ = 40.

each simulation.

Simulating 1000 measurements for the problem considered so far, a

perturbation to the uniform stream solution for flow over a Gaussian, the two

methods produce very similar answers for the topography (Figure 5.2.1),

however it was found that computing the inverse problem for each individual

measurement before averaging afterwards, i.e. taking a point-wise average of

the grey curves, better approximated the true topography close to ϕ = 0 than

first averaging the noisy surface data and then solving the inverse problem once.

Similarly, Figure 5.2.2 shows the results for simulating 1000 noisy measurements

of a solitary wave solution. We find again that the two averaging strategies
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Figure 5.2.1: Inverse results for a perturbation to the uniform stream solution
over a Gaussian topography (5.0.1) based on 1000 simulated measurements with
the parameter values a = 0.2, b = 1, L = 20, N = 641, F = 1.5, κ = 40, ϵ = 10−2.
Plotted are the true topography yT (red), the inverse solutions (grey) to 1000
individual noisy measurements, the solution when all 1000 individual realisations
for the topography are averaged point-wise (black) and the inverse solution when
all simulated surface measurements are first averaged to give input data to a
singular inverse problem (blue).

provide very similar results almost everywhere but deviate from one another

close to ϕ = 0. Here we find that first averaging the surface data and then

solving the inverse problem using the averaged data as input better captures the

true topography, however both strategies give results that closely follow the true

topography.

Considered next is the case of a hydraulic fall (Figure 5.2.3). The two strategies

once again are in close agreement with one another for ϕ > 1, it is only close to the

peak of the wave that they begin to deviate when following the curves from right

to left. These two curves rejoin briefly on the upstream side of the obstacle but

they then deviate again, with the solution found by averaging all noisy outputs

for topography following the same pattern as the output for first averaging all
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Figure 5.2.2: Inverse results for a perturbation to the solitary wave solution over
a Gaussian topography (5.0.1) based on 1000 simulated measurements with the
parameter values a = 0.02, b = 1, L = 20, N = 641, F = 1.1, κ = 40, ϵ = 10−2.
Plotted are the true topography yT (red), the inverse solutions (grey) to 1000
individual noisy measurements, the solution when all 1000 individual realisations
for the topography are averaged point-wise (black) and the inverse solution when
all simulated surface measurements are first averaged to give input data to a
singular inverse problem (blue).

surfaces and then inverse solving but translated upwards for ϕ < −1. While

averaging the noisy topographies that are output for each noisy surface appears

to better capture the peak height of the topographical disturbance it incorrectly

predicts a change in the level of the topography upstream with the average level

of the topography as predicted being non-zero. Looking at the individual noisy

solutions on the right-hand side they are distributed somewhat evenly about the

line y = 0, leading to the mean being around zero, however on the left-hand side

there is a positive bias with fewer noisy solutions reaching below the zero line.

While the results are not displayed here this does not occur if the simulations are

repeated with ϵ = 10−3 or lower.

Inverse solutions based on noisy measurements of trapped waves in subcritical
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Figure 5.2.3: Inverse results for a perturbation to the hydraulic fall solution over
a Gaussian topography (5.0.1) based on 1000 simulated measurements with the
parameter values a = 0.4, b = 1, L = 20, N = 721, F ≈ 1.617, κ = 40, ϵ = 10−2.
Plotted are the true topography yT (red), the inverse solutions (grey) to 1000
individual noisy measurements, the solution when all 1000 individual realisations
for the topography are averaged point-wise (black) and the inverse solution when
all simulated surface measurements are first averaged to give input data to a
singular inverse problem (blue).

flow are shown in Figure 5.2.4. Once again a good estimate of the topography can

be obtained employing either strategy and, while there is a separation between

the two solutions for the topography, the two curves track one another’s path.

Finally let us consider adding perturbation onto the uniform free stream and

performing the same process of averaging. Figure 5.2.5(a) shows the inverse

result to a single perturbed measurement of the surface, while the maximum

disturbance to the topography is found to be small there are oscillations over the

entire topography which does not accurately reflect the true solution of yT = 0.

Figure 5.2.5(b) shows the results for the topography when repeated measurements

are made, both averaging strategies produce a result far better than that of a

single simulation, the amplitude of oscillations has been decreased and the mean
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Figure 5.2.4: Inverse results for a perturbation to a trapped wave solution
between two Gaussian topographical features (5.0.2) based on 1000 simulated
measurements with the parameter values a = −0.04, b = 1, L = 30, N = 641, F =
0.8, κ = 40, ϵ = 10−2. Plotted are the true topography yT (red), the inverse
solutions (grey) to 1000 individual noisy measurements, the solution when all 1000
individual realisations for the topography are averaged point-wise (black) and the
inverse solution when all simulated surface measurements are first averaged to
give input data to a singular inverse problem (blue).

level is now at y = 0.

5.3 Discussion

In this chapter we have seen that even a small amount of noise added to the

free surface can drastically alter the output for the topography as compared to

the unperturbed problem if care is not paid to properly selecting the truncation

rank so as prevent magnification of the error. When this error is small we are

able to recover the topography simply by proper selection of the truncation rank.

When the added perturbation is so great that an output for the topography may

not resemble the true topography we have been able to improve our estimate by
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Figure 5.2.5: Inverse results for a perturbed uniform free stream with F =
1.2, L = 20, N = 641, κ = 40, ϵ = 10−2 (a) The true topography (red) and
the TSVD result for a single realisation of the perturbed problem. (b) Plotted
are the true topography yT (red), the inverse solutions (grey) to 1000 individual
noisy measurements, the solution when all 1000 individual realisations for the
topography are averaged point-wise (black) and the inverse solution when all
simulated surface measurements are first averaged to give input data to a singular
inverse problem (blue).

taking further surface measurements and either repeatedly running the heavily-

truncated inverse problem and averaging the resultant outputs or by averaging

the surface data first.



6

Inverse Results for Prescribed

Surfaces

In this chapter the free surface yf will be prescribed directly rather than

calculated as the solution to a forward problem. This enables for the inverse

solution space to be explored in a way that wouldn’t be easily facilitated by first

having to compute forward solutions. We will first look at prescribing a

Gaussian surface and then explore the response of the inverse solutions when

the Froude number and the amplitude are changed, comparing these results to

those of the fKdV. We will quantify the response of the inverse solution by

tracking the norm of the topography and also the height achieved by the point

yb(0).

In the second section we will prescribe a trapped wave on the free surface then

analyse how the inverse solutions respond to the frequency of the wave on the

surface being varied by taking Fourier transforms and considering the energy

contained in each mode. Again we will use the fKdV as a guide and as a point

of comparison.



6.1 Inverse results for a Gaussian free surface 137

6.1 Inverse results for a Gaussian free surface

For this section we take the free surface as prescribed in the form

yf = 1 + αe−(βϕ)2 , (6.1.1)

where α and β > 0 are parameters that control the amplitude and width of the

free surface disturbance respectively.

6.1.1 Response of the topography to changing Froude

Figure 6.1.1 displays the fully nonlinear inverse results for the topography given

a fixed free surface for different values of the Froude number. Each panel

corresponds to a different value of α: the left-hand panels have α > 0 with the

free surface surface being elevated; the right-hand panels have α < 0 with the

free surface depressed. Taking first the case of α > 0, it can be seen that the

presented solutions at F = 0.8 for yb all have yb(0) < 0. As the Froude number

is increased this value increases, eventually becoming positive. In the panels

where α < 0 the opposite is true; the solutions for F = 0.8 have a yb(0) > 0 and

this value then decreases and becomes negative for increasing F . Integration of

the fKdV shows that for F = 1 steady solutions can only exist for a forcing f(x)

that satisfies
∞∫
-∞
f(x) dx < 0 (see Keeler, Binder, and Blyth, 2017); every fully

nonlinear solution found here satisfies this inequality. The norm ∥yb∥ provides a

measure of the total displacement of material to construct the topography

relative to the undisturbed level y = 0. All solutions displayed have this total

displacement initially decrease before then starting to increase again as F is

further increased.

The fKdV provides a model for predicting how the quantities ∥yb∥ and yb(0) vary

with F in the fully nonlinear problem. The inverse forcing predicted by the fKdv
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for a free surface given by (6.1.1), where ϕ is replaced with x, is

f(x) = αe−(βx)2
(
2(F − 1) +

2β2

3
(1− 2β2x2)− 3α

2
e−(βx)2

)
. (6.1.2)

From this equation the central value f(0) is easily obtained as

f(0) = α

(
2(F − 1) +

2β2

3
− 3α

2

)
. (6.1.3)

This is a linear equation in F and predicts that, for a fixed α and β, the height

of the centre of the topography will change sign as the curve passes f(0) = 0.

Solving for the Froude number at which this occurs provides, for α ̸= 0,

F0 = 1 +
9α− 4β2

12
. (6.1.4)

The norm of the forcing, ∥f∥, for a Gaussian free surface (see Appendix A) is

∥f∥ =
∣∣∣απ 1

4

∣∣∣√4(F − 1)2

β
√
2

+
4β(F − 1) + β3

3
√
2

− 6α(F − 1)

β
√
3

− 4αβ

3
√
3
+

9α2

8β
,

(6.1.5)

excluding again the case α = 0, for which both ∥f∥ and f(0) vanish, a minimum

occurs in the norm of the forcing, for fixed α and β, when the Froude number

takes the value

Fmin = 1 +
α
√
6

4
− β2

6
. (6.1.6)

Figure 6.1.2(a) compares the results of (6.1.5) for the forcing in the fKdV (dashed

lines) to computed values for the fully nonlinear inverse problem (solid lines) for

different values of α > 0 as the Froude number is varied. The fKdV closely

predicts the value of the Froude number for which the minimum of ∥yb∥ occurs in

the fully nonlinear problem. The actual value the norm takes is well approximated

near this minimum and for values of F close to, but higher than, Fmin. The

prediction of the fKdV for the value of ∥yb∥ diverges much more rapidly from

the true value for F < Fmin and underestimates the true value in this range.

Figure 6.1.2(b) plots instead the computed values yb(0) (solid lines) and the
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Figure 6.1.1: Inverse results for the topography as the Froude number is varied
with parameters β = 0.3, L = 20, N = 641 (a) α = 0.1, κ = 92. (b) α = −0.1, κ =
92. (c) α = 0.15, κ = 104. (d) α = −0.15, κ = 104. (e) α = 0.2, κ = 110. (f)
α = −0.2, κ = 96.

values predicted by (6.1.3) against the Froude number. The value F0 given by

(6.1.4) predicts well the Froude number at which y(0) changes sign in the fully

nonlinear problem with the greatest discrepency between the predicted value and

the calculated value being less than 0.004 for these amplitudes. As was the case

for the norm ∥yb∥ the fully nonlinear results are, for these parameters and this

range of F , much better predicted for F > F0 than they are for F < F0.
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Figure 6.1.2: Inverse solutions for a fixed free surface as the Froude number is
varied with β = 0.3, L = 20, N = 641, κ = 92 (a) The norm of the inverse solution
against F . (b) The central value yb(0) of the inverse solution against F .

Figure 6.1.3 repeats the above comparison of the norm and central values of the

fKdV forcing (dashed lines) and computed fully nonlinear (solid lines) as the

Froude number is varied, this time taking α < 0. In Figure 6.1.3(a) we can see

that, similar to the case of α > 0, the fKdV gives a good approximation for

the position of the minimum in the norm ∥yb∥, however now the behaviour seen

in Figure 6.1.2(a) is reversed with better agreement in general for F < Fmin.

There is an intersection between the norms of the fKdV and fully nonlinear for a

value of F larger than Fmin however beyond this value the two solutions diverge

from one another with the fKdV now overestimating the value of the norm. In

Figure 6.1.3(b) it is shown how the predictions of the fKdV for the height of

the centre of the topography compare to those of the fully nonlinear. The fKdV

does relatively well at approximating this value for F < F0 and the quality of this

prediction breaks down as F is increased too far. There is a maximum discrepancy

in the predicted values of F0 about four times greater than in the case of positive

forcing, with the largest difference here being approximately 0.017. We note that

in all panels of both Figure 6.1.2 and Figure 6.1.3 the difference between the fully

nonlinear and fKdV solutions at F = 1 becomes smaller as the absolute value of

the surface amplitude is reduced, this is an expected result as the fKdV is derived

by an expansion around F = 1 for small amplitude waves.

Returning to Figure 6.1.1 we focus on the curves corresponding to F = 1.1 in
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Figure 6.1.3: Inverse solutions for a fixed free surface as the Froude number is
varied with β = 0.3, L = 20, N = 641, κ = 92 (a) The norm of the inverse solution
against F (b) The central value yb(0) of the inverse solution against F .

the left-hand column of panels and to F = 0.9 in the right-hand panels. Moving

downwards through the panels corresponds to an increase in the absolute value

of the amplitude of the prescribed surface. The solution for F = 1.1 with α = 0.1

(Figure 6.1.1(a)) is an elevation in the topography with one maximum which

occurs at ϕ = 0 with yb(0) > 0. However, for the same Froude number the

solution with α = 0.2 now has a local minimum at ϕ = 0 and one maximum on

each side; at this minimum we now have yb(0) < 0. The solution for F = 0.9 with

α = 0.1 shown in Figure 6.1.1(b) has a local minimum at ϕ = 0 with yb(0) < 0.

Looking down the column of panels it can be seen that increasing the amplitude

is causing yb(0) to become more negative. We know that as α → 0 we will have

yb(0) → 0 because α = 0 =⇒ yb(ϕ) = 0, but not if it will become positive before

going to zero.

We look again at the expression for f(x = 0) given by (6.1.3), we now fix F and

β, considering f0 = f(x = 0) to be a function of the amplitude we note that it is

a quadratic in α with a negative leading coefficient and with roots

α1 = 0 and α2 =
4(F − 1)

3
+

4β2

9
.

There are three distinct cases to consider here which depend on the relative size

of the terms in α2. For each of these cases an example of the (α, f(0)) curve

(dotted line) is shown and compared to the fully nonlinear (α, yb(0)) curve (solid
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Figure 6.1.4: Plots of the central response of the inverse solution for a fixed Froude
number as the amplitude of the prescribed surface is varied. β = 0.3, L = 20, N =

641, κ = 58 (a) F = 1.1 > 1− β2

3 (b) F = 0.9 < 1− β2

3 (c) F = 0.97 = 1− β2

3 .

line) in Figure 6.1.4. The three cases are as follows:

� Case 1: F > 1 − β2

3 =⇒ α2 > 0. We find in this case two distinct values

of α satisfying f(0) = 0. If 0 < α < α2 then we must have f(0) > 0 and if

α < 0 or α > α2 then f(0) < 0 (Figure 6.1.4(a)).

� Case 2: F < 1 − β2

3 =⇒ α2 < 0. We find again in this case two distinct

values of α satisfying f(0) = 0. In this case we find that the topography has

f(0) > 0 if α2 < α < 0 and f(0) < 0 if α < α2 or α > 0 (Figure 6.1.4(b)).

� Case 3: F = 1 − β2

3 =⇒ α2 = 0. Now there is only one value, α = 0,

satisfying f(0) = 0. In this case for any non-zero α the fKdV predicts that

f(0) < 0 (Figure 6.1.4(c)).

Figure 6.1.4(a) shows good agreement between results predicted by the fKdV and

the fully nonlinear calculations; finding that yb(0) > 0 for 0 < α < 0.168 where
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the fKdV suggested 0 < α < 0.173. Similarly, Figure 6.1.4(a) finds yb > 0 for

−0.086 < α < 0 where the fKdV predicts −0.093 < α < 0. For the values of α

tested there is very good agreement for α < 0. Figure 6.1.4(c) shows that the

fKdV has correctly predicted that there is not a value α for which yb(0) > 0.

Figure 6.1.5 plots the corresponding norms to their respective panels in

Figure 6.1.4. The behaviour of each of these cases is quite different.

Figure 6.1.5(a) shows that for α < 0 the fKdV overestimates the value of ∥yb∥

until the two curves intersect at the global minimum positioned at

(α, ∥yb∥) = (0, 0). For α > 0 the fKdV then underestimates ∥yb∥, both curves

increase with α until α ≈ 1 before falling again with increasing α to a local

minimum that occurs for α ≈ 1.79. All cases see a global minimum at the

origin, however this is the only case for which a minimum occurs for a different

value of α. This happens close to the value α = 1.68 for which yb(0) was found

to change sign from positive to negative. Figure 6.1.4(b) has the fKdV globally

(except for at the origin) underestimate the true value of ∥yb∥, although for

α < 0 the two curves closely match. There are no minima present apart from

the origin and any reduction in the value of |α| causes a reduction in ∥yb∥.

Figure 6.1.4(c), the case for which yb(0) ≤ 0, appears almost as a hybrid of the

behaviour of the previous two panels, similar to Figure 6.1.4(b) for α < 0 and

Figure 6.1.4(b) for α > 0.

6.2 Inverse results for artificial trapped waves

6.2.1 KdV

The forced KdV is given by

ηxxx + 9ηηx − 6µηx = −3fx , (6.2.1)
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Figure 6.1.5: Plots of the norm of the inverse solution for a fixed Froude number as
the amplitude of the prescribed surface is varied.β = 0.3, L = 20, N = 641, κ = 58
(a) F = 1.1 (b) F = 0.9 (c) F = 0.97 .

We shall consider inverse solutions to the fKdV where the surface, η, takes a

sinusoidal form given by

η = A cos(νx) . (6.2.2)

Integrating the fKdV and then rearranging we arrive at

f = −1

3
ηxx −

3

2
η2 + 2µη + C , (6.2.3)

where previously we have set the constant C = 0 by applying the condition of the

decay of η as the flow approaches the uniform stream in the far field; however,

this condition does not now apply. Substituting for η into the above expression

and expanding the squared term by way of the double angle formula then leads



6.2 Inverse results for artificial trapped waves 145

to the expression for the forcing being written as

f(x) = A

(
2µ+

ν2

3

)
cos(νx)− 3A2

4
cos(2νx) + C̃ (6.2.4)

where the new constant C̃ is defined as C̃ = C − 3A2

4 . It is at this point we set

C̃ = 0, this can be performed without loss of generality as solutions will differ

only by the addition of a uniform height level to the surface (Binder, Blyth, and

Balasuriya, 2015). As such we have

f(x) = A

(
2µ+

ν2

3

)
cos(νx)− 3A2

4
cos(2νx) . (6.2.5)

There are two modes to the topography and so if we Fourier transform the

topography we expect to see peaks at the (angular) frequencies ν and 2ν with

the energies we shall call c1 and c2 respectively, which are given by:

c1 =

∣∣∣∣A(2µ+
ν2

3

)∣∣∣∣ ; c2 =

∣∣∣∣3A2

4

∣∣∣∣ . (6.2.6)

We shall refer to the mode with energy c1 the first mode and that with energy

c2 the second mode.

Which of these modes will be most energetic and at what frequencies can be

separated into the following cases (a schematic diagram is shown in Figure 6.2.1):

1. Supercritical flow, i.e. µ > 0

� If µ > 3|A|
8 the most energetic mode is c1 for all values of ν.

� If µ ≤ 3|A|
8 then c1 and c2 intersect at ν =

√
9|A|
4 − 6µ. The most

energetic mode is c1 for ν >

√
9|A|
4 − 6µ and c2 for ν <

√
9|A|
4 − 6µ .

2. Critical flow, i.e. µ = 0

� An intersection always exists at ν =

√
9|A|
4 , the most energetic mode

is c1 for ν >

√
9|A|
4 and c2 for ν <

√
9|A|
4 .

3. Subcritical flow, i.e. µ < 0
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Figure 6.2.1: Schematic of the ci curves against frequency ν for different regimes
of flow. The solid lines represent the possible forms of the c1 curves, depending
on the Froude number, and the broken lines represent c2 for different arbitrary
values of A, plotted only to show how the value of A can alter the number of
possible intersections between the c1 and c2 curves and the values of ν for which
one mode will be dominant over the other.

� If |µ| < 3|A|
8 then c1 and c2 interact once at ν =

√
9|A|
4 − 6µ with c1

being the most energetic mode for ν >

√
9|A|
4 − 6µ and c2 the most

energetic mode for ν <

√
9|A|
4 − 6µ

� If |µ| ≥ 3|A|
8 an additional intersection occurs at ν =

√
−
(
9|A|
4 + 6µ

)
and the most energetic mode is c1 for ν <

√
−
(
9|A|
4 + 6µ

)
and

ν >

√
9|A|
4 − 6µ whereas c2 is the most energetic mode for√

−
(
9|A|
4 + 6µ

)
< ν <

√
9|A|
4 − 6µ.

In order to compare these results to those of the fully nonlinear problem a free

surface was prescribed in the form

yf = 1 +
A

2

(
tanh(b(c− ϕ)) + tanh(b(c+ ϕ))

)
cos(νϕ) (6.2.7)

where b is constant controlling how quickly these waves are forced to decay at

the edge of their interval of support and c controls how large that interval is.
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Figure 6.2.2: The energies carried in the Fourier modes of the inverse solution for
the fully nonlinear (solid) and fKdV (dashed) models with F = 1.2, N = 1624.

No intersection occurs in supercritical flow when µ > 3|A|
8 . (a) A = 0.05 (b)

A = 0.1.

Due to the assumption of uniform flow as ϕ → ∞ in the fully nonlinear model

it was not possible to take an infinite train like it was for the fKdV. To still be

able to compare the results c was taken large enough that multiple wave cycles

would be seen in the interval of support and then the inverse solution truncated

to [l, l] with l < c in order to remove edge effects from the tanh functions used.

The resultant truncated wave was then Fourier transformed in order to find the

energy carried in each mode and to compare to the predictions of the fKdV.

The fKdV predicted two possible scenarios for supercritical flow, the first of which

was that there would be no intersections between c1 and c2 with the first mode

being dominant everywhere. This behaviour is reflected in the fully nonlinear

calculations with Figure 6.2.2 displaying this for two values of the amplitude

that were chosen to satisfy µ > 3|A|
8 .

The other possibility for supercritical flow was that if µ ≤ 3|A|
8 an intersection

occurs, this scenario is plotted in Figure 6.2.3. We can see that an intersection

does indeed occur, it was predicted by the fKdV, for the parameters chosen, to

happen at ν =
√

3
20 ≈ 0.3873 with energy c1 = c2 = 0.03 and found in the fully

nonlinear calculations to occur with ν ≈ 0.76 and c1 = c2 ≈ 0.0466.

For critical flow the fKdV predicts that the c1 and c2 modes will share the same

energy for ν =

√
9|A|
4 with c1 most energetic for greater frequencies and c2 most
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Figure 6.2.3: The energies carried in the Fourier modes of the inverse solution
for the fully nonlinear (solid) and fKdV (dashed) models with A = 0.2, N =

1624, F = 1.05. An intersection occurs in supercritical flow when µ ≤ 3|A|
8 .

energetic for lower frequencies. In Figure 6.2.4 the predicted fKdV energies are

compared to those found by the fully-nonlinear method for A = 0.1. The

intersection point was predicted by the fKdV to occur at ν =
√
0.225 ≈ 0.4743

with c1 = c2 = 0.0075, whereas the intersection calculated for the fully

nonlinear problem occurred for ν ≈ 0.615 with c1 = c2 ≈ 0.011 .

Remaining is the case of subcritical flow with µ < 0. We have been unable to find

a set of parameters satisfying |µ| < 3|A|
8 , such that the prediction of the fKdV

is that there is only one intersection point, that yield an inverse solution that

when then used as input into the forward problem would converge and return

the originally prescribed surface . This leaves only the case µ ≥ 3|A|
8 to be able

to test against the predictions of the fKdV (Figure 6.2.5). The fKdV predicts

the left-hand intersection to happen at ν ≈ 0.7450 with energy c1 = c2 ≈ 0.0003

where it is found in the nonlinear calculations to happen for ν ≈ 0.7925 with an

energy of c1 = c2 ≈ 0.00077. The fKdV predicts the right-hand intersection to

occur for ν ≈ 0.8032 with the same energy c1 = c2 ≈ 0.0003, the fully nonlinear

calculations find this to occur for ν ≈ 0.935 with energy c1 ≈ 0.00092. Most



6.2 Inverse results for artificial trapped waves 149

0.4 0.5 0.6 0.7 0.8 0.9 1

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

Figure 6.2.4: Comparison of the energy in the Fourier modes between nonlinear
(solid) and fkdv (dashed) for critical flow with A = 0.1, N = 1624. One
intersection occurs between the two energies.

interesting about this case is that because µ < 0 the fKdV predicts that the

energy of the first mode can go exactly to zero for µ = −ν2

6 . It can be seen from

Figure 6.2.5) that the energy in the first mode does indeed sharply decrease for

some value of ν.

To understand where this energy goes to zero the fully nonlinear problem consider

the dimensional surface η̂ = A cos(kx̂) where A has units of length and k of inverse

length. We nondimensionalise this surface with x̂ = Hx and η̂ = Hη where H is

the typical depth of the dimensional flow. This leads to the nondimensional form

η = ϵ cos(νx) where k = ν
H and ϵ = A

H . The unforced steady fKdV was given by

µηx −
3

2
ηηx −

1

6
ηxxx = 0 . (6.2.8)

Integrate the above expression once to obtain

µη − 3

4
η2 − 1

6
ηxx = 0 (6.2.9)

before substituting in for the small amplitude surface eta = ϵ cos(νx) with ϵ≪ 1
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Figure 6.2.5: Comparison of the energy in the Fourier modes between nonlinear
(solid) and fkdv (dashed) for subcritical flow with A = 0.02, N = 1624, F = 0.9
Two intersections occur in subcritical flow and the energy in the c1 mode appears
to go to zero for a particular value of ν.

causing the η2 term to vanish leaving

cos(νx)

(
ν2

6
+ µ

)
= 0 (6.2.10)

or

ν =
√
−6µ . (6.2.11)

The dispersion relation for linear gravity waves in the absence of surface tension

(see, for example, Billingham and A. C. King, 2001 or Vanden-Broeck, 2010) is

c2 =
g

k
tanh(kH) =

gH

ν
tanh(ν) . (6.2.12)

With the Froude number given by F = U√
gH

we can square the F and use the

typical fluid speed U = c to obtain

F 2 =
U2

gH
=

c2

gH
=

gH

νgH
tanh ν . (6.2.13)
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Now we find that the solution to the transcendental equation

νF 2 = tanh(ν) (6.2.14)

predicts the root for nonlinear curve in Figure 6.2.5 as ν ≈ 0.8589.
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Conclusion

In Chapter 2 we explored how to perform truncated singular value

decomposition and the use of the discrete Picard condition and L-curve in

selecting an appropriate truncation rank in order to try get good approximate

solutions to ill-posed problems based on the discretisation of Fredholm integral

equations of the first kind.

In Chapter 3 we showed how prescribing yf (ϕ) lets the inverse problem for the

topography be expressed as a linear problem in θb(ϕ) albeit an ill-posed problem

due to its nature as a Fredholm integral equation of the first kind. We introduced

a discretisation to the problem and showed how we can apply our knowledge of

truncated singular value decomposition and the Moore-Penrose psuedoinverse

to obtain least squares solutions to a regularised problem that, so long as the

discrete Picard condition is satisfied, should be a good approximation to the

true underlying problem allowing for the grid scale issues that were present in

applying Newton’s method to the problem, experienced by Binder, Blyth, and

McCue, 2013; Tam, Yu, Kelso, and Binder, 2015; and Vasan and Deconinck,

2013.

Chapter 4 saw us test the truncated singular value decomposition method by

attempting to retrieve a known topography featuring one or two Gaussians from

computed forward solutions. We found that when the free surface decayed in

the far field we were able to achieve good results for the topography by our

method for multiple types of free surface solutions, namely solutions that are
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perturbations to the uniform stream and those that are perturbations to the

solitary wave solutions, the unforced solitary wave, hydraulic falls and trapped

waves in subcritical flow.

In Chapter 5 the ability of the truncated singular value decomposition to give

good regularised solutions when the input data is perturbed with white noise was

trialled for differing amounts of noise. It was found that while the problem is

sensitive to noise the regularisation of solutions achieved by the method meant

solutions were still relatively accurate for reasonable amount of noise. When very

noisy input data was given we found that repeating the problem for a different sets

of perturbed data, akin to taking more set of experimental measurements, and

averaging the output still allowed for the primary characteristics of the Gaussian

topography to be recovered, albeit with some smalls undulations persisting about

the zero line. In the case of the hydraulic fall with a large amount of added noise

we found that the Gaussian was captured well in the inverse solution but that

the level of the undisturbed topography was not predicted correctly as ϕ→ −∞.

In Chapter 6 we saw how being able to prescribe a surface directly and then

quickly obtain inverse solutions enables exploration of the inverse problem’s

solution space that would have been difficult before as we can now directly alter

properties of the surface. To this purpose we considered how changing

individually the amplitude of a Gaussian free surface or the Froude number

affects the output for the topography. We then studied trapped wave solutions

via Fourier transforms of the inverse solutions finding that the fKdV can help to

predict which mode will carry the most energy, while it did not correctly predict

the frequencies at which one mode becomes dominant it does correctly predict

that the dominant mode will change as the frequency is changed. We also found

that the energy in the first mode in fully nonlinear subcritical flow has a

frequency at which the energy contained goes to zero, making the second mode

the only mode present, and that the frequency at which this occurs is predicted

by the dispersion equation for linear waves.
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Future work would include further exploration of the inverse solution space now

that the truncated singular value decomposition method has been shown provide

fast and accurate results, although it is important that the outputs are confirmed

to be physical and converge again in the forward sense as the inverse method is

quite indifferent to if the input data it is fed corresponds to a physical surface. It

would be interesting to explore the combined problem where a non-zero pressure

is imposed on the flow, certainly to explore how the developed method could

be used to construct topographies such that the effects of the non-zero pressure

and the topography cancel one another to produce a flat free surface despite the

presence of forcing.



A

Norm of inverse fKdV forcing for a

Gaussian free surface

The inversely found forcing from the fKdV was given by the equation

f(x) = 2µη − 1

3
ηxx −

3

2
η2 . (A.0.1)

For a Gaussian free surface given by

η = αe−(bϕ)2 (A.0.2)

the forcing is then given explicitly by

f(x) = ae−(bx)2
(
2(F − 1) +

2b2

3
(1− 2b2x2)− 3a

2
e−(bx)2

)
. (A.0.3)

Seeking ∥f∥, the norm of the forcing, we use the definition

∥f∥2 =
∞∫

-∞

f2dx . (A.0.4)

and first find

f2 =

[
ae−(bx)2

(
2µ+

2b2

3
(1− 2b2x2)− 3a

2
e−(bx)2

)]2
,
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expanding before collecting powers of x to give

f2 =

[(
4µ2 +

4b4

9
+

8µb2

3

)
−
(
16b6

9
+

16µb4

3

)
x2 +

16b8

9
x4

−
(
6µa+ 2ab2

)
e−(bx)2 + 4ab4x2e−(bx)2 +

9a2

4
e−2(bx)2

]
a2e−2(bx)2 .

Substituting f2 into (A.0.4) we first note that a = 0 =⇒ ∥f∥ = 0 and so

exclude this case as we use the linearity of the integral to divide by a2, expand

the integrals and factor out constants to yield

∥f∥2
a2

=

(
4µ2 +

4b4

9
+

8µb2

3

) ∞∫
-∞

e−2(bx)2 dx−
(
6µa+ 2ab2

) ∞∫
-∞

e−3(bx)2 dx

+
9a2

4

∞∫
-∞

e−4(bx)2 dx−
(
16b6

9
+

16µb4

3

) ∞∫
-∞

x2e−2(bx)2 dx

+ 4ab4
∞∫

-∞

x2e−3(bx)2 dx+
16b8

9

∞∫
-∞

x4e−2(bx)2 dx . (A.0.5)

Now, in order to evaluate the integrals in (A.0.5) we will need to consider integrals

of the form

Im =

∞∫
-∞

x2me−n(bx)
2
dx (A.0.6)

the solution for which shall be proved by induction. We propose that

Im =

(
1

2nb2

)m (2m)!

2mm!

√
π

nb2
. (A.0.7)

for m ∈ N where b ∈ R and n > 0. For the base case we make use of the result

that

I0 =

∞∫
-∞

e−n(bx)
2
dx =

√
π

nb2

and check that

I0 =

(
1

2nb2

)0 (0)!

200!

√
π

nb2
=

√
π

nb2
. (A.0.8)

Assume now that (A.0.7) is true for m = k and consider integrating (A.0.6)

by parts with u = x2k−1 and dv = xe−n(bx)
2
, and so du = (2k − 1)x2k−2 and
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v = − 1
2nb2

e−n(bx)
2
, giving

Ik =

(
x2k−1 −1

2nb2
e−n(bx)

2

) ∣∣∣∣∞
−∞

+
(2k − 1)

2nb2

∞∫
-∞

x2k−2e−n(bx)
2
dx

= 0 +
(2k − 1)

2nb2

∞∫
-∞

x2(k−1)e−n(bx)
2
dx =

(2k − 1)

2nb2
Ik−1 ,

or alternatively

Ik+1 =
(2k + 1)

2nb2
Ik . (A.0.9)

Then by the assumption on Ik we have

Ik+1 =
(2k + 1)

2nb2

(
1

2nb2

)k (2k)!
2kk!

√
π

nb2

and by noting that

(2k + 1)
(2k)!

2kk!
= (2k + 1)

(2k)!

2kk!

2k + 2

2(k + 1)
=

(2k + 2)!

2k+1(k + 1)!

we find

Ik+1 =

(
1

2nb2

)k+1 (2(k + 1))!

2k+1(k + 1)!

√
π

nb2

and so given that the assumption holds for m = k it also holds m = k + 1. As

(A.0.7) is for m = 0 it must then be true for m ∈ N.

Returning to (A.0.5) we can now evaluate

∥f∥2
a2

=

(
4µ2 +

4b4

9
+

8µb2

3

)√
π

2b2
−
(
6µa+ 2ab2

)√ π

3b2

+
9a2

4

√
π

4b2
−
(
16b6

9
+

16µb4

3

)√
π

2

1

4b3

+ 4ab4
√
π

3

1

6b3
+

16b8

9

√
π

2

3

16b5
.

Collecting terms and rearranging we obtain an expression for the norm of the
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forcing as

∥f∥ = |aπ 1
4 |
√

4µ2

b
√
2
+

4bµ+ b3

3
√
2

− 6aµ

b
√
3
− 4ab

3
√
3
+

9a2

8b
. (A.0.10)

It is not obvious that the quantity contained within the square root above should

always be positive as the parameters a, b and µ are varied. A contradiction here

may indicate a surface that is non-physical. Let

h(a, b, µ) =
4µ2

b
√
2
+

4bµ+ b3

3
√
2

− 6aµ

b
√
3
− 4ab

3
√
3
+

9a2

8b
(A.0.11)

We would like to show that h ≥ 0 given b > 0, so we shall suppose instead that

somewhere h < 0. Collecting terms in h to highlight how it is quadratic in a as

h =

(
9

8b

)
a2 −

(
6µ

b
√
3
+

4b

3
√
3

)
a+

(
4bµ+ b3

3
√
2

+
4µ2

b
√
2

)
(A.0.12)

we see that as the coefficient of a2 is positive then there must be real roots to

the equation obtained by setting (A.0.12) equal to zero as we have assumed that

somewhere h < 0. We call h1 the discriminant of applying the quadratic formula

to h = 0 finding

h1 =

(
6µ

b
√
3
+

4b

3
√
3

)2

− 4

(
9

8b

)(
4bµ+ b3

3
√
2

+
4µ2

b
√
2

)
.

For real roots to exist we must have that h1 ≥ 0. We expand h1 and collect

powers of b to write

h1 =
1

36b2

(
(64− 81

√
2)b4 + (576− 324

√
2)µb2 + (1296− 972

√
2)µ2

)
(A.0.13)

which is a positive number multiplying a quadratic in b2. Writing B = b2 and

introducing h2 for the bracketed terms then for h1 ≥ 0 we must have

h2 = (64− 81
√
2)B2 + (576− 324

√
2)µB + (1296− 972

√
2)µ2 ≥ 0 . (A.0.14)
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We see that for h2 ≥ 0 to be true somewhere then the equation h2 = 0 must

have real roots as the coefficient of B2 is negative. However, writing h3 as the

discriminant of applying the quadratic formula to h2 = 0 we find

h3 = ((576− 324
√
2)µ)2 − 4(64− 81

√
2)(1296− 972

√
2)µ2

which rearranges to

h3 =
(
295488− 419904

√
2
)
µ2 ≈ −2021µ2 < 0 .

As h3 is negative there are no real roots to the equation h2 = 0. This means

that h2 < 0 and therefore h1 < 0 which in turn implies that there are no real

roots to the equation h = 0 and therefore we cannot have values of h < 0. This

contradicts our initial assumption and as such we may conclude that h ≥ 0.

The fKdV predicts that a minimum will occur in the norm for a value F = Fmin.

To see this differentiate (A.0.11) with respect to µ to obtain

dh

dµ
=

8µ

b
√
2
+

4b

3
√
2
− 6a

b
√
3
. (A.0.15)

Setting the above equal to zero and substituting for µ = F −1 a stationary point

is found for the value

Fmin = 1 +
a
√
6

4
− b2

6
. (A.0.16)

This is easily shown to be a minimum as

d2h

d2µ
=

8

b
√
2
> 0 . (A.0.17)



B

Repeated integration by parts of a

Gaussian

Consider integrating by parts the expression

G(ξ) =

∫
e−ξ

2
dξ =

∫ −2ξ

−2ξ
e−ξ

2
dξ (B.0.1)

N times giving an expression of the form

G(ξ) =

(
N∑
m=0

Em(ξ)

)
+ IN+1(ξ) (B.0.2)

where Em, which represent the boundary terms, and Im, the resultant integral

term, are functions to be found. Observe that for N = 0 from (B.0.1) we have

E0 = 0 and

I1 =

∫
e−ξ

2
dξ .

By definition the different Im (for m ≥ 1) are related by the recursive formula

Im = Em + Im+1. (B.0.3)

We propose that

Ir =

(
r∏

m=1

2m− 3

)
(−1)r

2r−1

∫
ξ−(2r−2)e−ξ

2
dξ (B.0.4)
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and prove it by induction. We shall make use of the result (obtained by integrating

by parts once) that

∫
ξ−(2k−2)e−ξ

2
dξ =

∫
ξ−(2k−2)−2ξ

−2ξ
e−ξ

2
dξ

= −ξ
−(2k−1)

2
e−ξ

2 −
∫

(2k − 1)ξ−2k

2
e−ξ

2
dξ . (B.0.5)

For r = 1, i.e. after integrating by parts zero times, this formula yields:

I1 =

(
1∏

m=1

2m− 3

)
(−1)1

21−1

∫
x−(2−2)e−x

2
dx =

∫
e−x

2
dx (B.0.6)

and so we see the base case is verified. Let us assume now that (B.0.4) holds for

r = k such that

Ik =

(
k∏

m=1

2m− 3

)
(−1)k

2k−1

∫
x−(2k−2)e−x

2
dx . (B.0.7)

Now, applying the result of (B.0.5)

Ik =

(
k∏

m=1

2m− 3

)
(−1)k

2k−1

[
−x

−(2k−1)

2
e−x

2 −
∫

(2k − 1)x−2k

2
e−x

2
dx

]
.

(B.0.8)

Expanding, using (2k − 1) = (2(k + 1)− 3) to rewrite the product in the second

term and then simplifying we find

Ik =

(
k∏

m=1

2m− 3

)
(−1)k+1

2k
x−(2k−1)e−x

2
+

(
k+1∏
m=1

2m− 3

)
(−1)k+1

2k

∫
x−2ke−x

2
dx

(B.0.9)

By comparison with Ik = Ek + Ik+1 we then find

Ek =

(
k∏

m=1

2m− 3

)
(−1)k+1

2k
x−(2k−1)e−x

2
(B.0.10)

Ik+1 =

(
k+1∏
m=1

2m− 3

)
(−1)k+1

2k

∫
x−2ke−x

2
dx . (B.0.11)

Now, (B.0.11) shows that if (B.0.4) is true for r = k then it is also true for
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r = k+1. As we have shown it to be true for r = 1 we can conclude by induction

that it is true for r ∈ N. Importantly, in the process of proving this result, we

have derived (B.0.10) which gives an exact expression for each term Ek.

For k ≥ 1 we find that

Ek+1

Ek
=

(1− 2k)

2ξ2
(B.0.12)

and so as ξ → ∞ we have Ek+1 ≪ Ek and therefore

G(ξ) =

∫
e−ξ

2
dξ ∼ E1(ξ) =

−1

2ξ
e−ξ

2
. (B.0.13)

The behaviour of
∫
G(ξ) dξ for large ξ can be found by similar argument to be

∫
G(ξ) dξ ∼

∫ −1

2ξ
e−ξ

2
dξ ∼ 1

4ξ2
e−ξ

2
. (B.0.14)
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