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Abstract

This thesis is concerned with the representation theory of the symmetric groups

and related algebras, in particular the combinatorics underlying the

representations of Ariki-Koike algebras. The Ariki-Koike algebras generalise

Iwahori-Hecke algebras of the symmetric group, and so in turn generalise the

symmetric groups themselves.

The representation theory of these algebras is the subject of a great deal of

research, with the most important outstanding problem being the determination

of the decomposition numbers, i.e. the composition multiplicities of the simple

modules Dµ in the Specht modules Sλ. The aim of this thesis is to contribute

and make progress on the decomposition number problem.

We shall first develop some combinatorial lemmas related to the abacus

display of multipartitions. Then, we will use these to examine blocks of the

Ariki-Koike algebras. In particular, we prove a sufficient condition such that

restriction of modules leads to a natural correspondence between the

multipartitions of n whose Specht modules belong to a block B and those of

n − δi(B) whose Specht modules belong to the block B′, obtained from B

applying a Scopes’ equivalence. This bijection gives us an equivalence for the

decomposition numbers of the corresponding Ariki-Koike algebras.

We will then define the addition of a runner full of beads for the abacus

display of a multipartition and investigate some combinatorial properties of this

operation. We focus our attention on the q-decomposition numbers, i.e. the

polynomials arising from the Fock space representation of the quantun group

Uq(ŝle) that coincide with the decomposition numbers for q = 1. Using an LLT-

type algorithm for Ariki-Koike algebras, we relate q-decomposition numbers for

different values of e for the class of e-multiregular multipartitions, by adding a

full runner of beads to each component of the abacus displays for the labelling

multipartitions.

i



Access Condition and Agreement 
 
Each deposit in UEA Digital Repository is protected by copyright and other intellectual property rights, 
and duplication or sale of all or part of any of the Data Collections is not permitted, except that material 
may be duplicated by you for your research use or for educational purposes in electronic or print form. 
You must obtain permission from the copyright holder, usually the author, for any other use. Exceptions 
only apply where a deposit may be explicitly provided under a stated licence, such as a Creative 
Commons licence or Open Government licence. 
 
Electronic or print copies may not be offered, whether for sale or otherwise to anyone, unless explicitly 
stated under a Creative Commons or Open Government license. Unauthorised reproduction, editing or 
reformatting for resale purposes is explicitly prohibited (except where approved by the copyright holder 
themselves) and UEA reserves the right to take immediate ‘take down’ action on behalf of the copyright 
and/or rights holder if this Access condition of the UEA Digital Repository is breached. Any material in 
this database has been supplied on the understanding that it is copyright material and that no quotation 
from the material may be published without proper acknowledgement. 
 



Contents

Abstract i

Acknowledgements iv

Introduction 1

0.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

0.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1 Preliminaries 6

1.1 Combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Partitions and tableaux . . . . . . . . . . . . . . . . . . . . 6

1.1.2 β-numbers and abacus . . . . . . . . . . . . . . . . . . . . . 9

1.1.3 Multipartitions . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 The Symmetric Group . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 The Iwahori-Hecke algebra of Sn . . . . . . . . . . . . . . . . . . . 19

1.3.1 The Iwahori-Hecke algebra . . . . . . . . . . . . . . . . . . 19

1.3.2 Representation theory of HF,q(Sn) . . . . . . . . . . . . . . 20

1.4 The Ariki-Koike algebras . . . . . . . . . . . . . . . . . . . . . . . 28

1.4.1 The Ariki-Koike algebras . . . . . . . . . . . . . . . . . . . 29

1.4.2 The representation theory of HF,q,Q(Wr,n) . . . . . . . . . . 30

1.4.3 Induction and restriction . . . . . . . . . . . . . . . . . . . 32

1.4.4 Weight and hub of multipartitions . . . . . . . . . . . . . . 33

1.4.5 Kleshchev multipartitions . . . . . . . . . . . . . . . . . . . 38

1.4.6 Blocks of Ariki-Koike algebras . . . . . . . . . . . . . . . . 43

1.4.7 Scopes isometries . . . . . . . . . . . . . . . . . . . . . . . . 44

1.4.8 Core blocks of Ariki-Koike algebras . . . . . . . . . . . . . . 45

2 Decomposition equivalence for blocks of Ariki-Koike algebras 47

2.1 Results about multicores . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2 Decomposition numbers for blocks of Hr,n . . . . . . . . . . . . . . 53

ii



Contents iii

3 Full runner removal theorem for Ariki-Koike algebras 60

3.1 An LLT-type algorithm for Ariki-Koike algebras . . . . . . . . . . 61
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Introduction

0.1 Background

The representation theory of the symmetric group is a fascinating study in its own

right, as well as being intrinsically linked to that of other fundamental objects,

including a wealth of diagram algebras and semigroups.

Representations of the symmetric group Sn on n letters over the complex

field are well understood since the algebra CSn is semisimple. Their study can

be traced back to the work of Young [You00], Frobenius [Fro03] and Specht

[Spe35], whose ideas are still present today. On the other hand, representations

of the symmetric group over fields of positive characteristic are more difficult.

A constructive approach to the topic over an arbitrary field, not just over

the complex numbers, was given by James [Jam78] who developed the use of

combinatorial tools, such as diagrams, tableaux and abacuses. James’s

approach generalises in a straightforward way to give techniques for studying

representations of algebras which include the symmetric group algebra as

special case. Some examples of these related algebras are the Iwahori-Hecke

algebras HF,q(Sn) of the symmetric group and the Ariki-Koike algebras

HF,q,Q((Z/rZ) ≀Sn).

The Iwahori-Hecke algebra HF,q(Sn) was introduced by Dipper and James

in [DJ86] as deformation of the symmetric group algebra. Hence, results in the

representation theory ofSn can be recovered from the corresponding results in the

representation theory of HF,q(Sn). Subsequently, a new approach for studying

the representations of the Iwahori-Hecke algebra took hold thanks to Murphy

[Mur92, Mur95] that discovered a basis for HF,q(Sn). The Murphy basis is an

example of a cellular basis, as defined later by Graham and Lehrer [GL96] and

so cellular theory can be used to study the representations of these algebras.

The Ariki-Koike algebra HF,q,Q((Z/rZ) ≀ Sn) was introduced by Ariki and

Koike in [AK94]. Its representation theory has many similarities with the one of

Iwahori-Hecke algebras, and in many aspects it can be seen as a generalisation

of it. For example, a cellular basis for Ariki-Koike algebras was constructed by

Dipper, James and Mathas in [DJM98] and thus cellular theory can be used for

such algebras as well. Furthermore, the indexing of HF,q(Sn)-modules by

1



Introduction 2

partitions generalises to an indexing of HF,q,Q((Z/rZ) ≀ Sn)-modules by

multipartitions, i.e. tuples of partitions.

Similarly to Iwahori-Hecke algebras, the main problem of interest in the

representation theory of Ariki-Koike algebras is the decomposition number

problem, which asks for the composition multiplicities of simple modules in the

so called Specht modules. The Specht modules arise as cell modules of the

cellular algebra. The decomposition matrix records these multiplicities.

It is known that computing the decomposition numbers in the case F = C
is an important first step in working out the decomposition numbers over any

field (see [Gec92, Gec98]). In fact, the following result holds. Let Dp be the

decomposition matrix of HFp,q,Q((Z/rZ) ≀ Sn) with Fp a field of characteristic

p > 0 and D be the decomposition matrix of HC,ζ,Q((Z/rZ) ≀ Sn). Then there

exists a square unitriangular matrix A, called adjustment matrix, such that

Dp = DA.

Fortunately, the decomposition numbers dλµ can be computed when F = C;
they are the values at q = 1 of certain polynomials dλµ(q), which have

accordingly become known as ‘q-decomposition numbers’. This result has first

been conjectured for Iwahori–Hecke algebras by Lascoux, Leclerc and Thibon

[LLT96] and proved for the wider class of Ariki-Koike algebras by Ariki [Ari96].

It is by far the most significant theorem in this regard. The q-decomposition

numbers arise from the Fock space representation of the quantum group Uq(ŝle).

This has a natural basis indexed by the set of partitions for HF,q(Sn)

(respectively, of multipartitions for HF,q,Q((Z/rZ) ≀Sn)), and a ‘canonical basis’

which is invariant under the bar involution. The q-decomposition numbers are

the entries of the transition matrix between these two bases.

For Iwahori-Hecke algebras of Sn, there is a fast algorithm due to Lascoux,

Leclerc and Thibon [LLT96] for computing the canonical basis and so the q-

decomposition numbers.

For Ariki-Koike algebras, there are different generalisations of this algorithm

due to Jacon [Jac05], Yvonne [Yvo07a] and Fayers [Fay10]. We will use the one

presented in [Fay10] because it adapts better to our purposes.

So, since the decomposition numbers in characteristic 0 can be computed by

the LLT algorithm and its generalisations, in effect the problem of determining

the decomposition matrices in arbitrary characteristic is equivalent to

computing adjustment matrices. However, not a great deal is known about

adjustment matrices; the most general statement we have about adjustment

matrices is James’s Conjecture.

Conjecture 0.1.1 (James’s Conjecture). Let F be a field of characteristic p > 0

and suppose that Dp = DA. If n < pe, then the adjustment matrix A is the



Introduction 3

identity matrix.

For Iwahori–Hecke algebras, this conjecture has been verified for blocks of

weight at most four, thanks to the work of Richards [Ric96] and Fayers [Fay07c,

Fay08a]. However, after being a central focus of research in representation theory

for thirty years, this conjecture was finally shown to be false by Williamson in

[WKM17].

0.2 Overview

In Chapter 1, we define the algebras that we will work with, along with giving

an overview of any background material that we will need in order to study their

representation theory. This will include both the algebraic setup we require and

some combinatorial definitions such as partitions, tableaux and abacuses together

with their generalisations for Ariki-Koike algebras. We also consider some recent

work by Fayers [Fay06, Fay07b] concerning the weight of a multipartition and the

core blocks of Ariki-Koike algebras.

Once the necessary background is set, in Chapter 2 we generalise what

Scopes proved in [Sco91] about the blocks of symmetric groups to the blocks of

Ariki-Koike algebras. Scopes gives a combinatorial description of two blocks of

symmetric groups that are Morita equivalent, using the abacus display of a

partition. In particular, Scopes establishes a natural correspondence between

Specht modules and simple modules in the blocks B and ϕi(B) of the

symmetric groups, where ϕi is the map swapping the runners i − 1 and i of the

abacus display of each partition in the block B. This leads to the blocks B and

ϕi(B) having the same decomposition matrices. This result was generalised to

Iwahori-Hecke algebras by Jost [Jos99]. So, taking inspiration from [Sco91] and

[Jos99], we find an analogous combinatorial way to establish in which cases two

blocks B and Φi(B) of Ariki-Koike algebras have the same decomposition

matrices. Here, Φi is the map ϕi acting componentwise, i.e., it swaps the

runners i− 1 and i in each component of the abacus display of a multipartition.

In particular, we find a sufficient condition such that the following result holds

for Ariki-Koike algebras.

Theorem 0.2.1 (Proposition 2.2.8). Fix i ∈ {0, 1, . . . , e − 1}. Suppose that in

each component of every r-multipartition that belongs to the block B of

HF,q,Q((Z/rZ) ≀ Sn) there is no abacus configuration of the type u in

runners i− 1 and i. If λ,µ ∈ B then,

dλµ = dΦi(λ)Φi(µ).

In order to prove this, we consider the multicore m obtained from the abacus

display of λ ∈ B by sliding all its beads as high as possible. Then, we give a
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lower bound for the minimal difference between the positions of the lowest beads

of two consecutive runners of m. To get this lower bound, we show the existence

of a particular sequence of multicores with non-increasing weights from m to a

multicore in its core block. Thus, we use this lower bound to get a condition on

the weight of the block B so that no configuration
i− 1 iu appears in the abacus

display of any multipartition in B. Finally, we show that there is a natural

correspondence between Specht modules and simple modules in the blocks B and

Φi(B) of Ariki-Koike algebras.

In Chapter 3, we introduce the Fock space representation of the quantum

group Uq(ŝle) and present the LLT-type algorithm for Ariki-Koike algebras

given in [Fay10]. This algorithm allows us to generalise the ‘full’ runner removal

theorem of Iwahori-Hecke algebras in [Fay07a] to Ariki-Koike algebras.

In the attempt of tackling the decomposition number problem, in [JM02]

James and Mathas proved the so called ‘empty’ runner removal theorem in

which they relate q-decomposition numbers of Iwahori-Hecke algebras for

different values of e, by adding empty runners to the abacus displays for the

labelling partitions. After that, in [Fay07a] Fayers proves a similar theorem,

which involves adding full runners to these abacus displays. For a class of

multipartitions, called e-multiregular, we generalise Fayers’ theorem to the

Ariki-Koike algebras showing that the q-decomposition numbers dλµ(q) and

dλ+µ+(q) coincide, where λ+ and µ+ are the multipartitions obtained from the

e-abacus display of λ and µ by adding a runner full of beads in each of their

components.

Theorem 0.2.2 (Theorem 3.2.32). Let λ,µ be r-multipartitions in a block B of

HF,q,Q((Z/rZ) ≀Sn) with µ e-multiregular. If the new inserted runners defining

λ+ and µ+ are ‘long enough’, then

dλµ(q) = dλ+µ+(q).

We first present this result for r = 2 and then we generalise it for any r ≥
2. Thus, we define the addition of a runner full of beads in each component

of an abacus display of a multipartition. We show that adding a runner full

of beads to an abacus display of the empty partition corresponds to a precise

sequence of induction operators. We then prove some results that describe how

the addition of a full runner interacts with the induction operators. Finally,

we use all these properties together with the Fayers’ LLT-type algorithm for

Ariki-Koike algebras [Fay10] to show that the coefficients of the canonical basis

element corresponding to the multipartition µ coincide with the coefficients of

the canonical basis element corresponding to the multipartition µ+.

Recent work has given us a new line of attack. The cyclotomic quiver Hecke

algebras of type A, known as KLR algebras (defined independently by Khovanov
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and Lauda and by Rouquier [KL09, Rou08]), have been shown to be isomorphic to

Ariki-Koike algebras by Brundan and Kleshchev in [BK09]. Via this isomorphism,

the Z-grading of the KLR algebras can be used in the setting of Ariki-Koike

algebras, and thus graded Specht modules [BKW11] and graded decomposition

numbers can be studied. However, this is beyond the scope of what we are going

to consider in this thesis.



1

Preliminaries

In this chapter we will state the necessary background information related to the

algebras that we will work with, and the relevant combinatorial ideas that we

will need. In particular, we will detail the definition of decomposition numbers

for an Ariki-Koike algebra and describe the combinatorics involved.

1.1 Combinatorics

1.1.1 Partitions and tableaux

Let n be a positive integer.

Definition 1.1.1. A composition of n is a sequence λ = (λ1, λ2, . . . ) of non-

negative integers such that |λ| :=
∑

b≥1 λb = n. The integers λb, for b ≥ 1, are

called the parts of λ.

A composition λ of n is a partition if λb ≥ λb+1 for all b ≥ 1.

Since n < ∞, there is a k such that λb = 0 for b > k and we write λ =

(λ1, . . . , λk). We write ∅ for the empty partition (0, 0, . . . , 0). If a partition

has repeated parts, for convenience we group them together with an index. For

example,

(4, 4, 2, 1, 0, 0, . . . ) = (4, 4, 2, 1) = (42, 2, 1)

Definition 1.1.2. If λ is a partition, we define the conjugate partition λ′ of

λ to be the partition with bth part λ′
b = #{c ≥ 1 | λc ≥ b}.

Definition 1.1.3. The Young diagram of a partition λ is the subset

[λ] = {(b, c) ∈ N>0 × N>0 | c ≤ λb}.

The elements of [λ] are called nodes of λ. The kth row (resp. column) of a

diagram consists of those nodes whose first (resp. second) coordinate is k.

It is useful to represent the Young diagram of a partition λ as an array of

boxes in the plane. For example, the partition λ = (42, 2, 1) can be represented

6
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as follows.

The set of partitions of n is partially ordered by the so-called dominance order

defined in the following way.

Definition 1.1.4. If λ and µ are partitions of n, we say that λ dominates µ,

and write λ ⊵ µ, if
i∑

b=1

λb ≥
i∑

b=1

µb

for all 1 ≤ i ≤ n. If λ ⊵ µ and λ ̸= µ, we write λ ▷ µ.

Example 1.1.5. The dominance relation on the set of partitions of 6 is shown

by the tree:

(6)

(5,1)

(4,2)

(3,3) (4,12)

(3,2,1)

(3,13) (23)

(22,12)

(2,14)

(16)

Definition 1.1.6. Let λ be a partition of n. A λ-tableau is a bijection t : [λ]→
{1, 2, . . . , n}. We say that t has shape λ and write shape(t) = λ.

Equivalently, a λ-tableau is one of the n! arrays of integers obtained by replacing

each node in [λ] by one of the integer 1, 2, . . . , n allowing no repeats.

Example 1.1.7. Consider λ = (4, 3, 1) a partition of 8. Then

1 2 4 5
3 6 7
8

and
4 5 7 3
2 1 8
6

are λ-tableaux.
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We distinguish two particular types of λ-tableaux.

Definition 1.1.8. We say a λ-tableau t is row standard if its entries increase

from left to right in each row of the Young diagram, and we say t is standard if,

in addition to being row standard, its entries increase down the columns of the

Young diagram. We write Std(λ) for the set of standard λ-tableaux.

Example 1.1.9. In the same notation of Example 1.1.7, we have that the first

tableau is standard, while the second one is neither row standard nor standard.

Definition 1.1.10. Suppose λ is a partition of n and (b, c) is a node of [λ].

1. The (b, c)-hook of λ is defined to be the set Hbc(λ) of nodes in [λ] directly

to the right of or below (b, c), including the node (b, c) itself. The (b, c)-

hook length hbc(λ) is the total number of nodes in Hbc(λ). Then if an

(b, c)-hook has length e, we call it an e-hook.

2. The rim of [λ] is defined to be the set of nodes

{(b, c) ∈ [λ] | (b+ 1, c+ 1) /∈ [λ]}.

3. Define an e-rim hook to be a connected subset R of the rim containing

exactly e nodes such that [λ] \R is the Young diagram of a partition.

Note that there is a one-to-one correspondence between hooks and rim hooks.

Let e ∈ {2, 3, . . .} ∪ {∞} and set I = Z/eZ (which we identify with

{0, 1, . . . , e− 1}) unless e =∞, in which case set I = Z.

Definition 1.1.11. Let λ be a partition of n.

1. Define the e-residue of a node (b, c) to be

res(b, c) =

c− b mod e if e = {2, 3, . . .},

c− b if e =∞.

Define the residue diagram of λ to be the diagram formed by filling in

the box of [λ] at node (b, c) with res(b, c).

2. Let i ∈ I, let ci(λ) be the number of nodes in [λ] of residue i. We define

the residue content of λ to be

cont(λ) =

(c0(λ), c1(λ), . . . , ce−1(λ)) if e = {2, 3, . . .},

(. . . , c−1(λ), c0(λ), c1(λ), . . .) if e =∞.

3. If λ has no e-rim hooks, or e =∞, then we say that λ is an e-core.
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4. We say that µ is the e-core of λ if µ is the e-core obtained from [λ] removing

all the possible e-rim hooks.

5. If we can remove w e-rim hooks from [λ] to produce an e-core, then we

say that λ has e-weight w and we write weight(λ) = w. In particular, an

e-core has weight 0.

Example 1.1.12. Let e = 4. Consider the partition λ = (3, 2). Then the residue

diagram is

0 1 2
3 0

.

We can remove a 4-rim hook, that is the yellow shaded one in the diagram. So,

λ has 4-weight 1 and its 4-core is (1).

Let e <∞. For each l ≥ 1, we define the lth ladder in N2 to be the set

Ll = {(b, c) ∈ N2
>0 | b+ (e− 1)(c− 1) = l}.

All the nodes in Ll have the same residue (namely, 1− l mod e), and we define

the residue of Ll to be this residue. If λ is a partition, we define the lth ladder

Ll(λ) of λ to be the intersection of Ll with the Young diagram of λ.

Example 1.1.13. Suppose e = 3, and λ = (4, 3, 1). Consider the Young diagram

of λ. Then in first diagram we label each node of [λ] with the number of the ladder

in which it lies, while in the second one we filled the nodes with their residues:

1 3 5 7
2 4 6
3

and
0 1 2 0
2 0 1
1

.

1.1.2 β-numbers and abacus

Here we introduce a new way for representing partitions. It is clear that a

diagram [λ] is uniquely determined by its first column hook lengths

hk1(λ), . . . , h21(λ), h11(λ). It is useful to extend this idea to the case where λ

has some zero parts at the end. Therefore, we define the set of β-numbers as

follows.

Definition 1.1.14. Let e ∈ {2, 3, . . .} ∪ {∞}. Let λ be a partition of n and let

a be an integer. For every i ≥ 1, we define the β-number βi to be

βi := λi + a− i

and we call the set of β-numbers associated to λ with respect to a to be

Ba(λ) = {βi | i ≥ 1}.
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Given a set of β-numbers for a partition λ, we can create an abacus display.

We take an abacus with e infinite vertical runners, which we label 0, 1, . . . , e− 1

from left to right (or . . . ,−1, 0, 1, . . . from left to right, if e = ∞), and we mark

positions on runner l and label them with the integers congruent to l modulo

e, so that (if e < ∞) then position (x + 1)e + l lies immediately below position

xe+ l, for each x. Then the e-abacus display, or the e-abacus configuration,

associated to λ with respect to a is the abacus display with a bead placed at

position βi for each i ≥ 1 and it is denoted by Abe(λ). If it is clear which e

we are referring to, we simply say abacus configuration. When we draw abacus

configurations we will draw only a finite part of the runners and we will assume

that above the drawn part the runners are full of beads and below the drawn

part there are no beads.

Example 1.1.15. Suppose λ = (3, 12), and a = 0. Then we have

B0(λ) = {2,−1,−2,−4,−5,−6, . . .}.

So the abacus display with e = 5 is

0 1 2 3 4qqq qqq qqq qqq qqq{ { { { {{ { { { {{ { { {{

qqq qqq qqq qqq qqq

,

while the abacus display with e =∞ is

−4 −3 −2 −1 0 1 2 3

qq q { { { { qq q .
If e <∞, an abacus display for a partition is useful for visualising the removal

of e-rim hooks. If we are given an abacus display for λ with β-numbers in a set

B, then [λ] has a e-rim hook if and only if there is a β-number βi ∈ B such

that βi − e /∈ B. Furthermore, removing a e-rim hook corresponds to reducing

such a β-number by e. On the e-abacus, this corresponds to sliding a bead up

one position on its runner. So, λ is an e-core if and only if every bead in the

abacus display has a bead immediately above it. Using this, we can see that the
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definition of e-weight and e-core of λ are well defined.

Lemma 1.1.16. Let λ be a partition. Then the e-core and e-weight of λ depend

only on λ (and e).

Moreover, if e < ∞ and a ∈ Z we say that the bead corresponding to the

β-number xe+ l with 0 ≤ l < e is at level ℓa(λ) = x for x ∈ Z.

Example 1.1.17. Consider λ = (4, 2) and a = 6. Then we have

B6(λ) = {9, 6, 3, 2, 1, 0,−1,−2,−3, . . .}.

So, an abacus display for λ when e = 3 is

0 1 2 levelqqq qqq qqq{ { { −1{ { {
0{
1{
2{
3

qqq qqq qqq

.

Finally, we can also notice that each bead corresponds to the end of a row of

the diagram of λ (or to a row of length 0).

1.1.3 Multipartitions

Let n and r be positive integers.

Definition 1.1.18. A multicomposition of n with r components is an ordered

r-tuple λ = (λ(1), . . . , λ(r)) of compositions such that

|λ| := |λ(1)|+ . . .+ |λ(r)| = n.

If, in addition, each λ(j) is a partition, then we say that λ is a r-multipartition

of n. We write the unique multipartition of 0 as ∅∅∅.

If r is understood, we shall just call this a multipartition of n. Note that a

partition of n is essentially a multipartition of n with one component, that is,

r = 1.

Also the set of r-multipartitions of n, as the set of partitions, is partially

ordered by the so-called dominance order defined in the following way.
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Definition 1.1.19. Given two r-multipartitions λ and µ of n, we say that λ

dominates µ, and write λ ⊵ µ, if

j−1∑
a=1

|λ(a)|+
i∑

b=1

λ
(j)
b ≥

j−1∑
a=1

|µ(a)|+
i∑

b=1

µ
(j)
b

for j = 1, 2, . . . , r and for all i ≥ 1.

The dominance order is certainly the ‘correct’ order to use for multipartitions,

but it is sometimes useful to have a total order, >, on the set of multipartitions.

The one we use is given as follows.

Definition 1.1.20. Given two r-multipartitions λ and µ of n, we write λ > µ

if and only if the minimal j ∈ {1, . . . , r} for which λ(j) ̸= µ(j) and the minimal

i ≥ 1 such that λ
(j)
i ̸= µ

(j)
i satisfy λ

(j)
i > µ

(j)
i . This is called the lexicographic

order on multipartitions.

It is simple to verify that λ ⊵ µ implies λ > µ. But the reverse implication

is false in general. For instance, λ = ((6, 3, 13), (22, 13)) > ((32, 23), (5, 2)) = µ,

but λ and µ are not comparable with the dominance order.

Definition 1.1.21. Given a multipartition λ = (λ(1), . . . , λ(r)) of n, we define

its Young diagram to be the subset

[λ] := {(b, c, j) ∈ N>0 × N>0 × {1, . . . , r} | c ≤ λ
(j)
b }.

The elements of [λ] are called nodes.

Definition 1.1.22. We say that a node n ∈ [λ] is removable if [λ]\{n} is also the
Young diagram of a multipartition. We say that an element n ∈ N2

>0×{1, . . . , r} is
an addable node if n /∈ [λ] and [λ]∪{n} is the Young diagram of a multipartition.

As for partitions, we can draw the Young diagram of an r-multipartition as

an r-tuple of the Young diagrams of its component partitions. For example, the

diagram of ((22, 1), (12), (3, 1)) is drawn as , ,

 .

Define a bijection ′ from N2
>0 × {1, . . . , r} to itself by

(b, c, j)′ = (c, b, r + 1− j).

Definition 1.1.23. Given a multipartition λ = (λ(1), . . . , λ(r)), define the

conjugate multipartition to have Young diagram

[λ′] = {n′ | n ∈ λ};
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that is, λ′ = (λ(r)′, . . . , λ(1)′), where λ(j)′ is the usual conjugate partition to λ(j).

Example 1.1.24. Consider λ = ((22, 1), (12), (3, 1)) as above. Then

λ′ = ((2, 12), (2), (3, 2)) and its Young diagram is , ,

 .

From the definition of conjugate multipartition, we have the following.

Lemma 1.1.25. [Fay08b, Lemma 1.2] If λ and µ are multipartitions, then λ ⊵ µ

if and only if λ′ ⊴ µ′.

Again, as for partitions, we can give the following definitions.

Definition 1.1.26. Let λ be an r-multipartition of n.

• A λ-tableau is a bijection t : [λ] → {1, . . . , n}. We can represent a λ-

tableau t by drawing [λ] and then filling in the box at position (b, c, j) with

its image under t.

• We say a λ-tableau t is (row) standard if each of its components

t(1), t(2), . . . , t(r) are (row) standard. We write Std(λ) for the set of

standard λ-tableaux.

Example 1.1.27. Let λ = ((3, 1), (22, 1)). Then 1 3 4
2

,
5 7
6 9
8

 ,

 1 2 3
4

,
5 6
8 9
7

 ,

 4 3 1
2

,
5 7
6 9
8


are λ-tableaux. The first one is standard, the second one is row standard, but

not standard and the last one is neither.

Finally, we may also generalise to multipartitions the definition of β-numbers

and the construction of an abacus display as follows.

Definition 1.1.28. Let λ = (λ(1), . . . , λ(r)) be a r-multipartition of n and let

a = (a1, . . . , ar) ∈ Zr. For every i ≥ 1 and for every j ∈ {1, . . . , r}, we define the

β-number βj
i to be

βj
i := λ

(j)
i + aj − i.

We refer to any r-tuple of integers a = (a1, . . . , ar) ∈ Zr as a multicharge.

The set Bj
aj = {βj

1, β
j
2, . . .} is the set of β-numbers (defined using the integer

aj) of partition λ(j). It is easy to see that any set Bj
aj = {βj

1, β
j
2, . . .} is a set

containing exactly aj +N integers greater than or equal to −N , for sufficiently

large N .
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For each set Bj
aj we have a corresponding abacus display. Hence, we can

define Abe(λ) the e-abacus display, or e-abacus configuration, for an r-

multipartition λ with respect to a to be the r-tuple of e-abacus displays associated

to each component λ(j) with respect to aj . Again, as for partitions, we can say

that the bead corresponding to the β-number xe+ i with 0 ≤ i < e in the β-set

Bj
aj is at level ℓaj (λ) = x for x ∈ Z.

Example 1.1.29. Suppose that r = 3, a = (−1, 0, 1) and λ = ((1),∅, (12)).

Then we have

B1
−1 = {−1,−3,−4,−5, . . .};

B2
0 = {−1,−2,−3, . . .};

B3
1 = {1, 0,−2,−3,−4, . . .}.

So, the abacus display with respect to the multicharge a for λ when e = 4 is

0 1 2 3qqq qqq qqq qqq{ { { {{ { {

qqq qqq qqq qqq

0 1 2 3qqq qqq qqq qqq{ { { {{ { { {

qqq qqq qqq qqq

0 1 2 3 levelqqq qqq qqq qqq{ { { { −2{ { { −1{ {
0

qqq qqq qqq qqq
.

1.2 The Symmetric Group

Let n be a positive integer. A permutation of the set {1, 2, . . . , n} is a bijection

π : {1, 2, . . . , n} → {1, 2, . . . , n}.

A permutation π that interchanges a and b with a ̸= b and fixes all the other

elements is called a transposition and it is written as π = (a, b). Following

[Jam78], any permutation can be written as a product of transpositions. Hence

there is a well-defined function

sgn : Sn → {±1}

such that sgnπ = (−1)j if π is a product of j transpositions.

Definition 1.2.1. For n ≥ 1, the set of all permutations of {1, 2, . . . , n} together
with the product operation given by composition is called the symmetric group

of degree n and it is denoted by Sn.
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Remark 1.2.2. For 1 ≤ i ≤ n, let si be the transposition (i, i+ 1). Then Sn is

generated by the elements s1, . . . , sn−1 subject to the relations:

s2i = 1, for 1 ≤ i ≤ n− 1,

sisj = sjsi, for 1 ≤ i < j − 1 ≤ n− 2,

sisi+1si = si+1sisi+1, for 1 ≤ i ≤ n− 2.

The second and the third relations are called braid relations of Sn.

Definition 1.2.3. Let w ∈ Sn such that w = si1 · . . . · sik . If k is minimal then

we say that si1 · . . . · sik is a reduced expression for w and we say that w has

length k and write ℓ(w) = k. The identity element 1 has length 0.

The representation theory of the symmetric group algebra FSn for any field F
was studied by James in [Jam78], and this is where we take most of our definitions

and results from. The approach is largely combinatorial, and although we will

be interested in more complicated algebras later on, many of the definitions and

ideas here will be important.

Let λ be a partition of n and let t be a λ-tableau. The symmetric group Sn

acts naturally on λ-tableaux on the right by permuting the entries.

Example 1.2.4. Let λ = (3, 2) be a partition of 5 and σ = (1, 2, 4)(3, 5) ∈ S5.

Then σ acts on the λ-tableau
1 2 3
4 5

as follows.

1 2 3
4 5

σ =
2 4 5
1 3

.

Definition 1.2.5. Let λ be a partition of n. The initial tableau tλ is defined

to be the tableau obtained by writing the numbers 1, 2, . . . , n in order from left

to right, going down the rows of each successive part of λ. Given a λ-tableau t

we define the permutation d(t) ∈ Sn by t = tλd(t).

Example 1.2.6. In the same notation of Example 1.2.4, let t =
2 4 5
1 3

. Then

tλ =
1 2 3
4 5

and d(t) = (1, 2, 4)(3, 5).

Definition 1.2.7. Define the row stabilizer of t by

Rt = {π ∈ Sn | for all i ∈ {1, . . . , n}, i and iπ are in the same row of t},

and similiarly define the column stabilizer of t by

Ct = {π ∈ Sn | for all i ∈ {1, . . . , n}, i and iπ are in the same column of t}.
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Definition 1.2.8. For each partition λ = (λ1, . . . , λk) of n, we associate aYoung

subgroup Sλ of Sn defined by

Sλ := S{1,2,...,λ1} ×S{λ1+1,...,λ1+λ2} × · · · ×S{λ1+...+λk−1+1,...,n}.

Remark 1.2.9. Note that:

1. for any partition λ, the row stabilizer of tλ is Rtλ = Sλ;

2. Rtπ = π−1Rtπ and Ctπ = π−1Ctπ. Indeed, for any permutation σ:

σ ∈ π−1Rtπ ⇐⇒ πσπ−1 ∈ Rt

⇐⇒ {t}πσπ−1 = {t}

⇐⇒ {t}πσ = {t}π

⇐⇒ {tπ}σ = {tπ}

⇐⇒ σ ∈ Rtπ.

Example 1.2.10. Let λ = (4, 3, 1) and let t =
1 2 4 5
3 6 7
8

be a λ-tableau, then

Rt = S{1,2,4,5} ×S{3,6,7} ×S{8} and Ct = S{1,3,8} ×S{2,6} ×S{4,7} ×S{5}.

We define an equivalence relation ∼ on the set of λ-tableaux by t ∼ s if and

only if tπ = s for some π ∈ Rt.

Definition 1.2.11. We call an equivalence class under ∼ a λ-tabloid and denote

it by {t}, where t is one of the tableaux contained in the equivalence class.

We draw a diagram for {t} by writing out the entries of t in the layout of

their diagram and then adding lines between the rows.

Example 1.2.12. If t =
1 3 5
2 4

, then {t} = 1 3 5
2 4

=
3 1 5
4 2

.

Definition 1.2.13. Sn acts on the set of λ-tabloids by {t}π = {tπ} for π ∈ Sn.

Remark 1.2.14. This action is well-defined, since {t1} = {t2} implies t2 = t1σ

for some σ ∈ Rt1 . Then π−1σπ ∈ π−1Rt1π = Rt1π by Remark 1.2.9, so {t1π} =
{t1ππ−1σπ} = {t1σπ} = {t2π}.

Definition 1.2.15. Let F be an arbitrary field and let λ be a partition of n.

DefineM(λ) to be the vector space over F whose basis elements are the λ-tabloids.

The action ofSn on tabloids has just been defined, by {t}π = {tπ} for π ∈ Sn.

Extending this action linearly on M(λ), this turns M(λ) into an FSn-module.
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Definition 1.2.16. Let t be a tableau. Then the signed column sum κt is the

element of FSn obtained by summing the elements of the column stabilizer of t,

attaching the signature of each permutation. That is,

κt =
∑
π∈Ct

(sgnπ)π.

The polytabloid et associated with the tableau t is given by

et = {t}κt.

Example 1.2.17. If t =
2 5 1
3 4

, then κt = 1− (2, 3)− (4, 5)+ (2, 3)(4, 5) and

et =
2 5 1
3 4

− 3 5 1
2 4

− 2 4 1
3 5

+
3 4 1
2 5

.

Now, we may define the main modules of interest that are the so-called Specht

modules.

Definition 1.2.18. Given a partition λ of n, the Specht module S(λ) is the

submodule of M(λ) spanned by the polytabloids et.

Examples 1.2.19.

• If λ = (n), there is a unique λ-tabloid that is 1 2 · · · n . So M(λ) and

S(λ) are equal and, since 1 2 · · · n π = 1 2 · · · n for all π ∈ Sn, we get

that M(λ) = S(λ) is the trivial FSn-module.

• If λ = (1n), each equivalence class {t} consists of a single λ-tableau, and

this tableau can be identified with a permutation. Since the action of Sn

is preserved,

M(λ) ∼= FSn,

that is, M(λ) is isomorphic to the regular FSn-module. Note that et is

the signed sum of all n! permutations regarded as tabloids and, for any

permutation π, we have etπ = etπ = (sgnπ)et. Thus, S(λ) is the alternating

FSn-module.

Moreover, we can find a basis for these fundamental modules, as stated in the

following result.

Theorem 1.2.20. [Jam78, Theorem 8.4] {et | t is a standard λ-tableau} is a

basis for S(λ).

Now, in order to determine all the irreducible modules of FSn, we define a
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bilinear form ⟨ , ⟩ on M(λ) by

⟨{t1}, {t2}⟩ =

1 if {t1} = {t2},

0 if {t1} ≠ {t2}.

This bilinear form together with the next two results will be crucial for

classifying all the irreducible FSn-modules, up to isomorphism.

Theorem 1.2.21 (Submodule Theorem). [Jam76] If U is a submodule of M(λ),

then U ⊇ S(λ) or U ⊆ S(λ)⊥.

Theorem 1.2.22. [Jam78, Theorem 4.9] The quotient module S(λ)/(S(λ) ∩
S(λ)⊥) is zero or absolutely irreducible. Furthermore, if this is non-zero, then

S(λ)∩S(λ)⊥ is the unique maximal submodule of S(λ) and S(λ)/(S(λ)∩S(λ)⊥)
is self-dual.

Using Maschke’s Theorem, we see that if char F = 0 we obtain S(λ)∩S(λ)⊥ =

0 and so M(λ) = S(λ)⊕ S(λ)⊥. This leads to the following theorems.

Theorem 1.2.23. [Jam78, Theorem 4.12] Let F be a field with char F = 0. The

Specht modules over F are self-dual and absolutely irreducible, and give all the

ordinary irreducible FSn-modules, up to isomorphism.

Theorem 1.2.24. [Jam78, Theorem 4.13] If char F = 0, the composition factors

of M(λ) are S(λ) (once) and some of {S(µ) : µ ▷ λ} (possibly with repeats).

Theorem 1.2.23 gives us the irreducible modules of Sn over a field F with

characteristic 0. However, if our field F has characteristic p > 0, then we cannot

use Maschke’s Theorem as above since the characteristic of F may divide |Sn|.
So, the next definition is needed in order to fully determine the irreducible FSn-

modules over a field of characteristic p.

Definition 1.2.25. A partition λ is p-singular if λi+1 = λi+2 = . . . = λi+p > 0

for some i. Otherwise, λ is p-regular.

Theorem 1.2.26. [Jam78, Theorem 11.1] Suppose that S(λ) is a Specht module

defined over a field of characteristic p. Then the quotient module S(λ)/(S(λ) ∩
S(λ)⊥) is non-zero if and only if λ is p-regular.

Suppose that F has characteristic p and that λ is p-regular. We define

D(λ) = S(λ)/(S(λ) ∩ S(λ)⊥).

We have a counterpart to Theorem 1.2.23 for F with characteristic p > 0.

Theorem 1.2.27. [Jam76, Theorem 6] {D(λ) | λ is p-regular} is a complete set

of non-isomorphic irreducible FSn-modules over a field F of characteristic p.
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Theorem 1.2.28. [Jam78, Corollary 12.2]

1. If λ is p-regular, then S(λ) has a unique top composition factor D(λ) =

S(λ)/(S(λ)∩S(λ)⊥). If D is a composition factor of S(λ)∩S(λ)⊥, then D

is isomorphic to D(µ) for some µ ▷ λ.

2. If λ is p-singular, then all the composition factors of S(λ) have the form

D(µ) with µ ▷ λ.

It is useful to record the composition multiplicities of the irreducible FSn-

modules in the following way.

Definition 1.2.29. Let λ and µ be partitions of n with µ p-regular. Define the

decomposition numbers of FSn

dλµ := [S(λ) : D(µ)]

to be the composition multiplicity of D(µ) in S(λ). We call the matrix D = (dλµ)

the decomposition matrix of Sn.

By Theorem 1.2.28 we have that

• dλλ = 1 for every p-regular partition λ.

• dλµ ̸= 0 only if µ ▷ λ.

So, we can conclude the following.

Corollary 1.2.30. D becomes lower unitriangular when the p-regular partitions

are placed in lexicographic order before all the p-singular partitions.

1.3 The Iwahori-Hecke algebra of Sn

This section introduces the Iwahori-Hecke algebras of the symmetric group and

deals with their representation theory.

1.3.1 The Iwahori-Hecke algebra

Definition 1.3.1. Let F be a field and let q be an arbitrary non-zero element

of F. The Iwahori-Hecke algebra HF,q(Sn) of Sn is the unital associative

F-algebra with generators T1, T2, . . . , Tn−1 and relations:

(Ti − q)(Ti + 1) = 0, for 1 ≤ i ≤ n− 1,

TiTj = TjTi, for 1 ≤ i < j − 1 ≤ n− 2,

TiTi+1Ti = Ti+1TiTi+1, for 1 ≤ i ≤ n− 2.
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For brevity, we may write Hn for HF,q(Sn). Note that when q = 1, the first

relation becomes T 2
i = 1, and so in this case HF,q(Sn) is isomorphic to the group

algebra FSn.

Definition 1.3.2. Define e to be the quantum characteristic of HF,q(Sn),

that is, the minimal integer e such that 1 + q + q2 + . . . + qe−1 = 0. If no such

integer exists, let e =∞.

Note that if q = 1 (as in the case of Sn) then e = char F.
Suppose w ∈ Sn and let w = si1 . . . sik be a reduced expression for w. We

define

Tw = Ti1 . . . Tik .

By Matsumoto’s Theorem ([Mat99], Theorem 1.8) for reduced expressions, we

have that Tw is independent of the choice of reduced expression for w and hence

is well defined. If w is the identity element of Sn, then we identify Tw with

the identity element of F. The following result tells us how we perform right

multiplication in HF,q(Sn).

Proposition 1.3.3. [Mat99, Lemma 1.12] Let w ∈ Sn. Then

TwTsi =

Twsi if ℓ(wsi) > ℓ(w),

qTwsi + (q − 1)Tw if ℓ(wsi) < ℓ(w).

Example 1.3.4. Let w = (1, 3, 2) = (1, 2)(2, 3) and consider s2 = (2, 3). Then

ws2 = (1, 2), so ℓ(ws2) = 1 < 2 = ℓ(w). Hence

T(1,3,2)T(2,3) = qT(1,2) + (q − 1)T(1,3,2).

If, instead, we consider s1 = (1,2), then ws1 = (1, 2)(2, 3)(1, 2) = (1, 3), so

ℓ(ws1) = 3 > 2 = ℓ(w). Hence

T(1,3,2)T(1,2) = T(1,3).

By Proposition 1.3.3, the elements {Tw | w ∈ Sn} certainly span Hn. In fact,

it can also be shown that they are linearly independent to obtain the following

theorem.

Theorem 1.3.5. [Mat99, Thoerem 1.13] The Iwahori-Hecke algebra HF,q(Sn) is

free as an F-module with basis {Tw | w ∈ Sn}.

1.3.2 Representation theory of HF,q(Sn)

There are different approches to study the representation theory of the Iwahori-

Hecke algebra of Sn. The one we chose uses the theory of cellular algebras (due to
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Graham and Lehrer [GL96]). The basic strategy is to construct a cellular basis for

HF,q(Sn) and then apply the theory of cellular algebras to produce the irreducible

Hn-modules. There are different cellular bases for HF,q(Sn). The one we use is

a very natural basis indexed by pairs of standard tableaux; it was discovered by

Murphy [Mur92, Mur95]. We decided to adopt this strategy because it allows

us to use only a small amount of work to obtain many useful properties of the

representation theory of HF,q(Sn), and moreover will set us up with a method to

use when considering the Ariki-Koike algebras later on.

We shall describe the main points which demonstrate how we apply the

cellular theory to the Iwahori-Hecke algebra, but many of the details will be

omitted. We take our definitions and results from [Mat99] and as such the

missing details can be found there. We begin by defining a cellular basis.

Definition 1.3.6. Let R be a commutative domain with 1 and let A be an

associative unital R-algebra that is free as an R-module. Suppose that (Λ,≥) is
a (finite) poset and that for each λ ∈ Λ there is a finite indexing set T (λ) and

elements cλst ∈ A for every s, t ∈ T (λ) such that

C = {cλst | λ ∈ Λ and s, t ∈ T (λ)}

is a (free) basis of A. For each λ ∈ Λ, let Ǎλ be the R-submodule of A with basis

{cµuv | µ ∈ Λ, µ > λ and u, v ∈ T (µ)}. Then the pair (C ,Λ) is a cellular basis

of A if

(i) the R-linear map ∗ : A → A determined by (cλst)
∗
= cλts, for all λ ∈ Λ and

all s and t in T (λ), is an algebra anti-isomorphism of A; and,

(ii) for any λ ∈ Λ, t ∈ T (λ) and a ∈ A there exist elements rv ∈ R such that

for each s ∈ T (λ)
cλsta ≡

∑
v∈T (λ)

rvc
λ
sv mod Ǎλ.

If A has a cellular basis then we say that A is a cellular algebra.

Note that each rv depends on v, t and a, but not on s. By applying ∗ to part

(ii), we get a similar formula for multiplying on the left: for s ∈ T (λ), a ∈ A, we

have that for every t ∈ T (λ)

a∗cλst ≡
∑

u∈T (λ)

ruc
λ
ut mod Ǎλ (1.3.1)

where the ru are the same as those determined in part (ii) above. Note that

(1.3.1) and (1.3.6)(ii) show that Ǎλ is a two-sided ideal.

Example 1.3.7. Let A = R[x] be the polynomial ring in an indeterminate x

over R. Let Λ be the set of non-negative integers with their natural order. For
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each n ∈ Λ set T (n) = {n} and set cnnn = xn. Then {xn | n ∈ N} is a cellular

basis of A, because

• ∗ : A→ A is just the identity on A; and,

• for any n ∈ N and a =
∑

i≥0 aix
i ∈ A we can take rn = a0 so that

cnnna = xna =
∑
i≥0

aix
n+i ≡ a0x

n = rnc
n
nn =

∑
v∈{n}

rvc
n
nv mod Ǎn,

since here Ǎn is the R-submodule of A with basis {xk | k > n}.

So A = R[x] is a cellular algebra.

Let A be an arbitrary cellular algebra and fix λ ∈ Λ. Let Aλ be the R-

submodule of A with basis {cµuv | µ ∈ Λ, µ ≥ λ and u, v ∈ T (µ)}. Thus, Ǎλ ⊂ Aλ

and Aλ/Ǎλ has basis cλst + Ǎλ where s, t ∈ T (λ).
If s ∈ T (λ) define Cλ

s to be the R-submodule of Aλ/Ǎλ with basis

{cλst + Ǎλ | t ∈ T (λ)}. Then Cλ
s is a right A-module by Definition 1.3.6(ii) that

determines the action of A on cλst. However, this action is independent of s; that

is, Cλ
s
∼= Cλ

t for any s, t ∈ T (λ). This motivates us to define the following

modules.

Definition 1.3.8. Define the (right) cell module Cλ to be the right A-module

with basis {cλt | t ∈ T (λ)} and action determined by

cλt a =
∑

v∈T (λ)

rvc
λ
v (1.3.2)

where rv is the element of R determined by Definition 1.3.6(ii).

Then, Cλ ∼= Cλ
s for any s ∈ T (λ) via the canonical R-linear map which sends

cλt to cλst + Ǎλ for all t ∈ T (λ).
Note that, by Definition 1.3.6 and by (1.3.1), for any u, v ∈ T (λ) we have

that there exists an element rst ∈ R such that

cλusc
λ
tv ≡ rstc

λ
uv mod Ǎλ.

Thanks to this result, we get that there is a unique symmetric, associative,

bilinear map ⟨ , ⟩ : Cλ × Cλ → R given by

⟨cλs , cλt ⟩ = rst.

Let radCλ = {x ∈ Cλ | ⟨x, y⟩ = 0 for all y ∈ Cλ}. This is an A-submodule

of Cλ, so we define Dλ = Cλ/radCλ.
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Define Λ0 = {µ ∈ Λ | Dµ ̸= 0}. Then we have the following results that allow

us to classify all the simple A-modules for A cellular algebra.

Proposition 1.3.9. [Mat99, Proposition 2.11(i)] Suppose that R is a field and

let λ ∈ Λ0. Then the right A-module Dλ is absolutely irreducible.

Theorem 1.3.10. [Mat99, Theorem 2.16] Suppose that R is a field and that Λ is

finite. Then {Dµ | µ ∈ Λ0} is a complete set of pairwise inequivalent irreducible

A-modules.

Now, we can define and describe the decomposition matrix of A.

Definition 1.3.11. Let µ ∈ Λ0 and λ ∈ Λ. Define dλµ = [Cλ : Dµ] to be

the composition multiplicity of the irreducible module Dµ in Cλ. The matrix

D = (dλµ) is the so called decomposition matrix of A.

The next results follows from the proof of Theorem 1.3.10.

Corollary 1.3.12. Suppose that R is a field. Then the decomposition matrix D

of A is unitriangular, that is

• dλλ = 1 if λ ∈ Λ0;

• dλµ ̸= 0 only if λ ⊵ µ.

Another interesting fact is how cell modules and blocks of a cellular algebra

are related. So, now, we give some definitions for a finite dimensional algebra in

order to explain the next results.

Definition 1.3.13. Let A be a finite dimensional algebra over a field F. Suppose

A = B1 ⊕ . . .⊕Bc

is a decomposition of A into a direct sum of indecomposable two-sided ideals

B1, . . . , Bc, called the blocks of A. An A-module is said to belong to the

block Bi if all of its composition factors lie in Bi.

Definition 1.3.14. Let A be a cellular algebra with cellular basis (C ,Λ). We

say that λ, µ ∈ Λ are cell-linked if there exists a sequence

λ = λ0, λ1, . . . , λk = µ

of elements of Λ such that the cell modules Cλi−1 and Cλi have a common

irreducible composition factor for all i = 1, . . . , k.

Remark 1.3.15. This defines an equivalence relation on Λ and, if µ ∈ Λ0 with

dλµ ̸= 0, then λ and µ are cell-linked.
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Hence we have the following results.

Proposition 1.3.16. [Mat99, Corollary 2.22] Suppose that F is a field and Λ is

finite. Let λ and µ be elements of Λ. Then λ and µ are cell-linked if and only if

Cλ and Cµ are in the same block. In particular, all the irreducible constituents

of a cell module belong to the same block.

Now we can show how the cellular theory can be applied to the

Iwahori-Hecke algebra. We aim to construct a cellular basis for HF,q(Sn), so

that we can exhibit cell modules and irreducible modules for it. We will

consider the results above when R = F that is a field, because we are working

with an F-algebra.

Let λ be a partition of n and Hn = HF,q(Sn). Let mλ :=
∑

w∈Sλ

Tw.

Define Mλ to be the right Hn-module generated by mλ.

Example 1.3.17. Let λ = (2, 2). Then tλ =
1 2
3 4

and Sλ = ⟨(1, 2), (3, 4)⟩ ∼=
S2 ×S2. So

mλ = 1 + T(1,2) + T(3,4) + T(1,2)T(3,4).

Proposition 1.3.18. [Mat99, Proposition 3.3] Suppose that λ is a composition

of n and let

Dλ = {d ∈ Sn | tλd is row standard}

Then Dλ is a complete set of right coset representatives of Sλ in Sn. Moreover,

if w ∈ Sn and d ∈ Dλ, then ℓ(wd) = ℓ(w) + ℓ(d) and Twd = TwTd.

Thus, each row standard λ-tableau corresponds to a right coset of Sλ in

Sn. By Proposition 1.3.18, d(t) is the unique element of minimal length in

the coset Sλd(t). Such coset representatives are called distinguished coset

representatives.

Corollary 1.3.19. [Mat99, Corollary 3.4] Let λ be a composition of n. Then

Mλ is a free F-module with basis

{mλTd(t) | t is a row standard λ-tableau}.

We call this basis the row standard basis of Mλ.

Hence, we know that Hn = M (1n) has a basis indexed by row standard (1n)-

tableaux. Now, we want to transform this basis ofHn into a cellular basis indexed

by pairs of standard tableaux of the same shape.

First of all, we need to introduce an involution on Hn. Let ∗ be the anti-

automorphism of Hn determined by T ∗
i = Ti for i = 1, 2, . . . , n − 1. Then T ∗

w =

Tw−1 for all w ∈ Sn. Now we define what will become the basis elements in our

cellular basis.



Chapter 1: Preliminaries 25

Let λ be a partition of n and suppose that s and t are standard λ-tableaux.

Define

mst := T ∗
d(s)mλTd(t).

Remark 1.3.20. Note, in particular, that

m∗
st =

(
T ∗
d(s)mλTd(t)

)∗
= T ∗

d(t)mλTd(s) = mts.

Proposition 1.3.21. [Mat99, Proposition 3.16] The Iwahori-Hecke algebra

HF,q(Sn) is free as an F-module with basis

M = {mst | s, t ∈ Std(λ) for some partition λ of n}.

We callM the Murphy basis of HF,q(Sn).

Let Λ+ be the partially ordered set of partitions with the dominance order ⊵.

Define Ȟn
λ
to be the F-module with basis

{muv | u, v ∈ Std(µ) for some partition µ of n such that µ ▷ λ} .

We can now state the most important result of this section.

Theorem 1.3.22. [Mur92, Mur95] The Iwahori-Hecke algebra HF,q(Sn) is free

as an F-module with basis

M = {mst | s, t ∈ Std(λ) for some partition λ of n}.

Moreover, the following hold.

(i) The R-linear map determined by mst 7→ mts, for all mst ∈ M, is an anti-

isomorphism of Hn.

(ii) Suppose that h ∈ Hn and t ∈ Std(λ). Then there exist elements rv ∈ R

such that for all s ∈ Std(λ)

msth ≡
∑

v∈Std(λ)

rvmsv mod Ȟn
λ
.

Consequently, (M,Λ+) is a cellular basis of Hn.

Looking at the definition of cellular algebra, in our case we have taken (Λ,≥)
to be Λ+, i.e., the set of partitions with the dominance order ⊵, and for each

λ ∈ Λ we have chosen T (λ) = Std(λ).

Example 1.3.23. Consider HF,q(S3). Let Λ
+ = {(3), (2, 1), (13)} be the ordered



Chapter 1: Preliminaries 26

set of partitions of 3 and let

s = 1 2 3 , t =
1 2
3

, u =
1 3
2

, v =
1
2
3

be the corresponding standard tableaux. Set T ((3)) = {s}, T ((2, 1)) = {t, u},
T ((13)) = {v} and d(s) = d(t) = d(v) = 1, d(u) = (2, 3). Then, by Theorem

1.3.22, {mss,mtt,mtu,mut,muu,mvv} is a cellular basis of H3, where

mss = T ∗
d(s)m(3)Td(s) = 1m(3)1 = 1 + T1 + T2 + T1T2 + T2T1 + T1T2T1,

mtt = T ∗
d(t)m(2,1)Td(t) = 1m(2,1)1 = 1 + T1,

mtu = T ∗
d(t)m(2,1)Td(u) = 1m(2,1)T2 = (1 + T1)T2,

mut = T ∗
d(u)m(2,1)Td(t) = T2m(2,1)1 = T2(1 + T1),

muu = T ∗
d(u)m(2,1)Td(u) = T2m(2,1)T2 = T2(1 + T1)T2,

mvv = T ∗
d(v)m(13)Td(v) = 1m(13)1 = 1.

To exhibit part (ii) of Theorem 1.3.22, we note that:

mttT2 = (1 + T1)T2 = mtu,

mutT2 = T2(1 + T1)T2 = muu,

and more interestingly,

mtuT2 = (1 + T1)T2T2

= (1 + T1)(q + (q − 1)T2)

= q(1 + T1) + (q − 1)(1 + T1)T2

= qmtt + (q − 1)mtu

and,

muuT2 = T2(1 + T1)T2T2

= T2(1 + T1)(q + (q − 1)T2)

= qT2(1 + T1) + (q − 1)T2(1 + T1)T2

= qmut + (q − 1)muu

As an example of when we require the definition of Ȟn
λ
, observe that

mvvT1 = T1 = (1 + T1)− 1 = mtt −mvv ≡ −mvv mod Ȟ3
(13)

.

Now that we have a cellular basis for HF,q(Sn), we can use the theory of
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cellular algebras to construct all its irreducible modules. The cell modules of Hn

are called Specht modules.

Definition 1.3.24. Let λ be a partition of n. We define the Specht module

Sλ to be the right Hn-module generated by Ȟn
λ
+mλ.

Given a standard λ-tableau t, let mt := Ȟn
λ
+ mtλt. Then Theorem 1.3.22

gives us the following basis of Sλ and shows that Sλ is isomorphic to the cell

module of Hn indexed by λ.

Proposition 1.3.25. [Mat99, Proposition 3.22] Let λ be a partition of n. Then

the Specht module Sλ is free as an F-module with basis {mt | t ∈ Std(λ)}.

An important note is that the Specht module Sλ defined above is isomorphic

to the dual of the Dipper and James Specht module S(λ) (see [DJ86]) defined in

Section 1.2; that is Sλ ∼= S(λ)⋄ where ⋄ denote the dual of an Hn-module (see

[Mat99, Exercise 2.7(ii)]). One can check that S(λ)⋄ ∼= S(λ′), so it is necessary

to replace λ with λ′ when comparing the previous results with those of Dipper

and James. In particular, this must be done when comparing the results here for

HF,q(Sn) with those for Sn given in Section 1.2. We will go into more details

about this in the case of the Ariki-Koike algebras.

Now translating the notation of the general cellular case, we have a unique

symmetric, associative bilinear form ⟨ , ⟩ on Sλ which allows us to define radSλ

and so the right Hn-module

Dλ := Sλ/radSλ.

By Theorem 1.3.10 we obtain the following result.

Theorem 1.3.26. {Dλ | λ is a partition of n such that Dλ ̸= 0} is a complete

set of non-isomorphic irreducible HF,q(Sn)-modules over F.

We want to classify those partitions λ for which Dλ ̸= 0. For clarity, we

will provide the two equivalent classification of simple Hn-modules both for the

definition of Specht module introduced above and for the one given in [DJ86].

Define the decomposition number of Hn

dλµ := [Sλ : Dµ]

to be the composition multiplicity of Dµ in Sλ.

For our definition of Specht modules, the partitions λ indexing the

Hn-modules Dλ ̸= 0, called e-restricted partitions, are defined as follows.

Definition 1.3.27. A partition λ is e-restricted if λi−λi+1 < e for every i ≥ 1.
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Theorem 1.3.28. [Mat99, Theorem 3.43]

{Dµ | µ is an e-restricted partition of n}

is a complete set of non-isomorphic irreducible Hn-modules. Moreover, if µ is an

e-restricted partition of n and λ is a partition of n, then dµµ = 1 and dλµ ̸= 0

only if λ ⊵ µ.

Now, we translate this result in terms of the Dipper and James’ definition of

Specht modules. Notice that a partition λ is e-regular if and only if its conjugate

λ′ is e-restricted. Hence, the Dipper and James’ classification of the simple Hn-

modules can be stated as follows.

Theorem 1.3.29. [DJ86, Theorem 7.6]

{D(µ) | µ is an e-regular partition of n}

is a complete set of non-isomorphic irreducible Hn-modules. Moreover, if µ is an

e-regular partition of n and λ is a partition of n, then dµµ = 1 and dλµ ̸= 0 only

if λ ⊴ µ.

Notice that e = char F in the case where q = 1; consequently, these results do

indeed agree with the corresponding results from the representation theory of Sn

In general, e is taking the place of p = char F in the Sn case, and the irreducible

Hn-modules depend only on e and not on the choice of F or q.

Finally, recall the notion of a block from the theory of cellular algebras above

and Lemma 1.1.16. Then we can state when two Specht modules lie in the same

block of HF,q(Sn).

Theorem 1.3.30 (The Nakayama conjecture). [DJ87, JM97] Suppose that λ

and µ are partitions of n. Then the Specht modules Sλ and Sµ belong to the

same block of HF,q(Sn) if and only if λ and µ have the same e-core.

The Nakayama conjecture can be stated also in the following way using

Theorem 2.7.41 in [JK81] that tells us two partitions of the same integer have

the same p-core if and only if they have the same residue content.

Theorem 1.3.31 (The Nakayama conjecture). Suppose that λ and µ are

partitions of n. Then the Specht modules Sλ and Sµ belong to the same block

of HF,q(Sn) if and only if cont(λ) = cont(µ).

1.4 The Ariki-Koike algebras

In this section, we introduce the Ariki-Koike algebras and see that most of the

previous results about representation theory of the Iwahori-Hecke algebra can be

extended to these algebras.
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1.4.1 The Ariki-Koike algebras

Let r ≥ 1 and let Wr,n be the complex reflection group (Z/rZ) ≀Sn. This has a

‘Coxeter-like’ presentation with generators s0, . . . , sn−1 and relations

sr0 = 1,

s0s1s0s1 = s1s0s1s0,

s2i = 1, for 1 ≤ i ≤ n− 1,

sisj = sjsi, for 0 ≤ i < j − 1 ≤ n− 2,

sisi+1si = si+1sisi+1, for 1 ≤ i ≤ n− 2.

Now, we can define the Ariki-Koike algebra as a deformation of the group algebra

FWr,n.

Definition 1.4.1. Let F be a field, and suppose q,Q1, . . . , Qr are elements of F,
with q non-zero. Let Q = {Q1, . . . , Qr}. The Ariki-Koike algebra

HF,q,Q(Wr,n) of Wr,n is defined to be the unital associative F-algebra with

generators T0, . . . , Tn−1 and relations

(T0 −Q1) · · · (T0 −Qr) = 0,

T0T1T0T1 = T1T0T1T0,

(Ti + 1)(Ti − q) = 0, for 1 ≤ i ≤ n− 1,

TiTj = TjTi, for 0 ≤ i < j − 1 ≤ n− 2,

TiTi+1Ti = Ti+1TiTi+1, for 1 ≤ i ≤ n− 2.

For brevity, we may write Hr,n for HF,q,Q(Wr,n). Notice that the subalgebra

of Hr,n generated by T1, . . . , Tn−1 is isomorphic to the Iwahori-Hecke algebra

HF,q(Sn).

We define the quantum characteristic e of the Ariki-Koike algebra

identically to that of the Iwahori-Hecke algebra. Hence, e ∈ {2, 3, 4, . . .} ∪ {∞}
and so set I = Z/eZ (which we identify with {0, 1, . . . , e − 1}) unless e = ∞, in

which case set I = Z.
Similarly, for w ∈ Sn we set Tw = Ti1 . . . Tik where si1 . . . sik is a reduced

expressions for w, and we have the same multiplication formula as given by

Proposition 1.3.3.

Definition 1.4.2. For every k ∈ {1, . . . , n}, define the elements Lk ∈ Hr,n by

Lk = q1−kTk−1 . . . T1T0T1 . . . Tk−1.

Hence we get the following fact.
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Theorem 1.4.3. [AK94] The Ariki-Koike algebra Hr,n is free as an F-module

with basis

{Lc1
1 Lc2

2 . . . Lcn
n Tw | w ∈ Sn and 0 ≤ ci < r for i = 1, 2, . . . , n}.

We say Q is q-connected if, for each j ∈ {1, . . . , r}, Qj = qaj for some

aj ∈ Z.

In [DM02], Dipper and Mathas prove that any Ariki-Koike algebra is Morita

equivalent to a direct sum of tensor products of smaller Ariki-Koike algebras,

each of which has q-connected parameters. Thus, we may assume that we are

always working with a Ariki-Koike algebra with each Qj being an integral power

of q. So we assume that we can find an r-tuple of integers κ = (κ1, . . . , κr) such

that Qj = qκj for each j. We call such κ a multicharge of Hr,n. If e is finite

then we may change any of the κj by adding a multiple of e, and we shall still

have Qj = qκj . Thus, for e finite we will consider a multicharge of Hr,n to be

(κ1 mod e, . . . , κr mod e).

If e =∞, then we have only one possible choice of multicharge κ.

1.4.2 The representation theory of HF,q,Q(Wr,n)

Here, we give some of the main ideas of the representation theory of the

Ariki-Koike algebra HF,q,Q(Wr,n). In particular, as for the Iwahori-Hecke

algebra the cellular theory helps us again in our aim. Indeed, we exhibit a

cellular basis for the Ariki-Koike algebras and then apply the theory of cellular

algebras to obtain cell modules and irreducible modules. Most of the results are

‘generalised versions’ of those for the Iwahori-Hecke algebra Hn. For example,

we use multipartitions instead of partitions, and have irreducible modules

indexed by Kleshchev multipartitions as opposed to e-restricted partitions.

As for Hn, there is more than one cellular basis for Hr,n. The first such basis

was given by Graham and Lehrer [GL96]. However, the cellular basis that we

use was constructed by Dipper, James and Mathas [DJM98] and, as with the

Murphy basis, its basis elements are indexed by pairs of standard tableaux - only

now our tableaux correspond to multipartitions. Our definitions and results are

taken from [Mat99].

Let λ = (λ(1), . . . , λ(r)) be a multipartition of n. Let tλ be the (row standard)

λ-tableau with the numbers {1, 2, . . . , n} entered in order along the rows of first

tλ
(1)
, and then tλ

(2)
and so on. Then the row stabilizer of tλ is the Young subgroup

Sλ = Sλ(1) × · · · × Sλ(r) . For each row standard λ-tableau t, let d(t) be the

element of Sn such that t = tλd(t). An argument similar to Proposition 1.3.18

shows that {d(t) ∈ Sn | t is row standard} is a complete set of (distinguished)
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right coset representatives of Sλ in Sn.

Let λ be a multicomposition of n. Let mλ := xλu
+
λ where

xλ =
∑

w∈Sλ

Tw and u+λ =
r∏

s=1

as∏
i=1

(Li −Qs)

with as = |λ(1)|+ . . .+ |λ(s−1)| for s = 1, . . . , r. Let ∗ be the anti-automorphism

of Hr,n determined by T ∗
i = Ti for 0 ≤ i ≤ n − 1. Then ∗ is an involution and

T ∗
w = Tw−1 for every w ∈ Sn, L∗

k = Lk and (h1h2)
∗ = h∗2h

∗
1 for every h1,

h2 ∈ Hr,n.

Suppose that s and t are standard λ-tableaux. Define

mst := T ∗
d(s)mλTd(t).

Note that, again, this agrees with our earlier definition in Subsection 1.3.2 of mst

when r = 1 and λ partition and that m∗
st = mts. Define Ȟλ

r,n to be the F-module

with basis

{muv | u, v ∈ Std(µ) for some multipartition µ of n such that µ ▷ λ} .

Theorem 1.4.4. [DJM98] The Ariki-Koike algebra Hr,n is free as an F-module

with basis

M = {mst | s, t ∈ Std(λ) for some multipartition λ of n}.

Moreover, the following hold.

(i) The F-linear map determined by mst 7→ mts, for all mst ∈ M , is an anti-

isomorphism of Hr,n.

(ii) Suppose that h ∈ Hr,n and t ∈ Std(λ). Then there exist elements rv ∈ F
such that for all s ∈ Std(λ)

msth ≡
∑

v∈Std(λ)

rvmsv mod Ȟλ
r,n.

Consequently, if Λ+ is the set of of multipartitions of n ordered by dominance,

then (M ,Λ+) is a cellular basis of Hr,n.

The basis M is often called the Murphy basis of Hr,n in the literature.

Now that we have a cellular basis for Hr,n, we can use the theory of cellular

algebras to construct all its irreducible modules in exactly the same way we did

for Hn.



Chapter 1: Preliminaries 32

Definition 1.4.5. Let λ be a multipartition of n. We define the Specht module

Sλ to be the right Hr,n-module generated by Ȟλ
r,n +mλ.

Given a standard λ-tableau t, let mt := Ȟλ
r,n + mtλt. Then Theorem 1.4.4

gives us the following basis of Sλ and shows that Sλ is isomorphic to the cell

module of Hr,n indexed by λ.

Proposition 1.4.6. Let λ be a multipartition of n. Then the Specht module Sλ

is free as an F-module with basis {mt | t ∈ Std(λ)}.

Now translating again the notation of the general cellular case, we have a

unique symmetric, associative bilinear form ⟨ , ⟩ on Sλ which allows us to define

rad Sλ and so the right Hr,n-module

Dλ := Sλ/radSλ.

By Theorem 1.3.10, without too much work, the cellular theory produces the

following result.

Theorem 1.4.7. Let F be a field. Then

1. For each multipartition λ, Dλ is either zero or absolutely irreducible.

2. {Dλ | λ is a multipartition of n such that Dλ ̸= 0} is a complete set of

non-isomorphic irreducible Hr,n-modules over F.

3. If Dµ ̸= 0, then the composition multiplicity [Sλ : Dµ] ̸= 0 only if λ ⊵ µ;

further, [Sµ : Dµ] = 1.

In particular, note that every field is a splitting field for Hr,n. Define, once

again as in Section 1.3.2, the decomposition numbers of Hr,n to be

dλµ := [Sλ : Dµ].

Therefore, we have that, by part 3. of Theorem 1.4.7, the decomposition matrix

(dλµ) of Hr,n is unitriangular when its rows and column are ordered in a way

that is compatible with the dominance order.

1.4.3 Induction and restriction

If n > 1, then Hr,n−1 is naturally a submodule of Hr,n, and in fact Hr,n is free as

an Hr,n−1-module. So there are well-behaved induction and restriction functors

between the module categories of Hr,n−1 and Hr,n. Given modules M , N for

Hr,n−1 and Hr,n, respectively, we write M ↑Hr,n and N ↓Hr,n−1 for the induced

and restricted modules. If B and C are blocks of Hr,n−1 and Hr,n, respectively,

then we may write M ↑C and N ↓B for the projections of the induced and

restricted modules onto B and C.
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Theorem 1.4.8. [Mat09, Corollary 3.7; Ari96, Lemma 2.1]

• Suppose λ is a multipartition of n − 1, and let n1, . . . , ns be the addable

nodes of [λ]. For each i = 1, . . . , s, let λ+i be the multipartition of n with

[λ+i] = [λ] ∪ {ni}. Then Sλ ↑Hr,n has a filtration in which the factors are

Sλ+1
, . . . , Sλ+s

.

• Suppose λ is a multipartition of n, and let n1, . . . , nt be the removable nodes

of [λ]. For each i = 1, . . . , t, let λ−i be the multipartition of n − 1 with

[λ−i] = [λ] \ {ni}. Then Sλ ↓Hr,n−1 has a filtration in which the factors are

Sλ−1
, . . . , Sλ−t

.

1.4.4 Weight and hub of multipartitions

Now, we turn to some combinatorial facts about mutipartitions that will be useful

in the study of representation theory of Ariki-Koike algebras. In particular, we

follow the work of Fayers in [Fay06], generalising the notion of weight and core

to multipartitions. As seen at the end of Subsection 1.3.2, the weight and core

of a partition λ play an important role in determining the block that Sλ belongs

to and its properties. In particular, we saw (Theorem 1.3.30) that two Specht

modules Sλ and Sµ belong to the same block if and only if λ and µ have the same

core. However, for r > 1 the natural generalisation of this is not necessarily true.

In Subsection 1.1.2, we defined the notion of weight and core for partitions

of n. We wish to generalise these notions to multipartitions of n. In order to do

this we need to introduce the notion of residue also for the multipartitions.

Definition 1.4.9. Let a = (a1, . . . , ar) ∈ Zr be a multicharge. Let

λ = (λ(1), . . . , λ(r)) be a multipartition of n and (b, c, j) be a node of [λ]. To

each node (b, c, j) ∈ [λ] we associate its residue

resa(b, c, j) =

c− b+ aj mod e if e = {2, 3, . . .},

c− b+ aj if e =∞.

We refer to a node of residue i as an i-node.

Moreover, for e finite, by the definition of the β-numbers in Subsection 1.1.3,

the node at the end of the row (if it exists) has residue i if and only if the

corresponding bead is on runner i of the abacus. Thus, in each component λ(j)

of a multipartition λ, if we increase any β-number by one, this is equivalent to

moving a bead from runner i to runner i+1 mod e which is equivalent to adding

a node of residue i + 1 to the Young diagram of λ(j). Similarly, decreasing a β-

number by one is equivalent to moving a bead from runner i to runner i−1 mod e

which is equivalent to removing a node of residue i from the Young diagram of

λ(j).
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We give now the definition of weight of a multipartition. Fix

a = (a1, . . . , ar) ∈ Ir a multicharge for Hr,n.

Definition 1.4.10. Let λ = (λ(1), . . . , λ(r)) be a multipartition of n. Let ci(λ)

denote the number of nodes in [λ] of residue i ∈ I. Define the weight w(λ) of λ

to be the integer

w(λ) =

 r∑
j=1

caj (λ)

− 1

2

∑
i∈I

(ci(λ)− ci+1(λ))
2.

We shall see later that w(λ) is a non-negative integer.

Example 1.4.11. Suppose r = 2, (a1, a2) = (0, 1) and λ = ((22), (2, 1)). If

e = 2, then the residues of the nodes in [λ] are(
0 1
1 0

,
1 0
0

)
.

So we have

w(λ) = ca1(λ) + ca2(λ)−
1

2
(c0(λ)− c1(λ))

2 − 1

2
(c1(λ)− c0(λ))

2

= 4 + 3− 1

2
(1 + 1)

= 6.

The definition of weight given above generalises the definition of the weight

of a partition. In order to justify this assertion, we must show first that it really

is a generalisation. Indeed, the following result holds.

Proposition 1.4.12. [Fay06, Proposition 2.1] Suppose r = 1. Let λ be a

partition, and let λ be the multipartition (λ). Then w(λ) = weight(λ).

Given a multipartition λ, it is also useful to define the hub of it. We will

see better in the following the importance of this definition. For each i ∈ I and

j ∈ {1, . . . , r}, define

δji (λ) =(the number of removable i-nodes of [λ(j)])

− (the number of addable i-nodes of [λ(j)]),

and put δi(λ) =
∑r

j=1 δ
j
i (λ). The collection (δi(λ) | i ∈ I) of integers is called

the hub of λ.

We summarise now some useful results from [Fay06], mostly concerning weight

and hub of a multipartition.

Recall that if λ is a partition, removing an e-rim hook from λ corresponds to

reducing the weight of λ by 1. The following result generalises this to the case of

multipartitions.
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Proposition 1.4.13. [Fay06, Corollary 3.4] Suppose λ = (λ(1), . . . , λ(r)) is a

multipartition, and that λ− is a multipartition obtained from λ by removing an

e-rim hook from some λ(j). Then w(λ) = w(λ−) + r.

So, using Proposition 1.4.13 we can calculate the difference in weight between

a multipartition and the multipartition formed by removing all e-rim hooks from

each of its components.

Now, recall the definition of an e-core from Subsection 1.1.2 and define its

generalisation to multipartitions.

Definition 1.4.14. An multipartition λ = (λ(1), . . . , λ(r)) is a e-multicore if

λ(j) is an e-core for each j ∈ {1, . . . , r}.

Note that when e = ∞, every multipartition is an e-multicore. Of course, if

r = 1 an e-multicore is an e-core, and has weight 0. But when r ≥ 2, calculating

the weight of a multicore is non-trivial. The next result shows us how to reduce

the calculation of weight for a multicore to the case r = 2.

Proposition 1.4.15. [Fay06, Proposition 3.5] Suppose that λ = (λ(1), . . . , λ(r))

is a multicore. Then

w(λ) =
∑

1≤j<k≤r

w((λ(j), λ(k))).

Example 1.4.16. Suppose r = 3, (a1, a2, a3) = (1, 0, 2), and

λ = ((12), (2), (2, 1)). If e = 4, then the 4-residue diagram of [λ] is(
1
0
, 0 1 ,

2 3
1

)
.

We can calculate, applying Definition 1.4.10,

w((λ(1), λ(2))) = 0,

w((λ(1), λ(3))) = 2,

w((λ(2), λ(3))) = 1.

Thus, by Proposition 1.4.15, w(λ) = 3.

Suppose e is finite, λ = (λ(1), . . . , λ(r)) is a multicore and a = (a1, . . . , ar) is

a multicharge of Hr,n. We construct the corresponding abacus display for λ as

in Section 1.1.3, and then for each i ∈ I and 1 ≤ j ≤ r we define baij(λ) to be the

position of the lowest bead on runner i of the abacus for λ(j); that is, the largest

element of Bj
aj congruent to i modulo e. When e =∞, we define

Bij(λ) =

1 if i ∈ Bj
aj ,

0 otherwise.
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Now, fix e ∈ {2, 3, 4, . . .} ∪ {∞}. Let i ∈ I and j, k ∈ {1, . . . , r}, we define

γjki (λ) =

1
e (b

a
ij(λ)− baik(λ)) if e <∞,

Bij(λ)−Bik(λ) if e =∞.

γjki (λ) may then be regarded as the difference in height between the lowest bead

on runner i of the abacus display for λ(j) and the lowest bead on runner i of

the abacus display for λ(k). If e is finite, then the integers γjki (λ) depend on the

choice of a if we change any aj by a multiple of e, but the differences

γjkil (λ) := γjki (λ)− γjkl (λ)

do not.

Now suppose λ = (λ(1), . . . , λ(r)) is a multicore, i, l ∈ I and j, k ∈ {1, . . . , r}.
If e = ∞ suppose also that γjkil (λ) = 2. We define sjkil (λ) to be the multicore

whose abacus configuration is obtained from that of λ by moving a bead from

runner i to runner l on the abacus for λ(j), and moving a bead from runner l to

runner i on the abacus for λ(k). It is worth noting that sjkil (λ) = skjli (λ) for all

i, l, j, k. Moreover, the following holds.

Proposition 1.4.17. [Fay07b, Proposition 1.6] Let λ be a multicore and let

sjkil (λ) be defined as above. Then

1. sjkil (λ) has the same hub as λ, and,

2. w(sjkil (λ)) = w(λ)− r(γjkil (λ)− 2).

Example 1.4.18. Recalling the multipartition λ from last example, we examine

the multicore (λ(1), λ(3)) = ((12), (2, 1)). So we are in the case r = 2, (a1, a2) =

(1, 2). If e = 4, then the residue diagram of [(λ(1), λ(3))] is(
1
0
,

2 3
1

)
.

An abacus display for (λ(1), λ(3)) is

λ(1) λ(3)

0 1 2 3qqq qqq qqq qqq{ { { {{ { {{ {
qqq qqq qqq qqq

0 1 2 3qqq qqq qqq qqq{ { { {{ { { {{ {
qqq qqq qqq qqq
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We may read off γ120 = 1, γ121 = 0, γ122 = 0 and γ123 = −2; in particular γ1203 = 3.

Then the abacus display for s1203((λ
(1), λ(3))) is

0 1 2 3qqq qqq qqq qqq{ { { {{ { { {{
qqq qqq qqq qqq

0 1 2 3qqq qqq qqq qqq{ { { {{ { { {{ {
qqq qqq qqq qqq

and we have

w(s1203((λ
(1), λ(3)))) = w((λ(1), λ(3)))− 2(γ1203((λ

(1), λ(3)))− 2)

= w((λ(1), λ(3)))− 2(3− 2)

= w((λ(1), λ(3)))− 2.

Using Proposition 1.4.17, in the case r = 2 we may reduce the calculation

of the weight of a multicore λ to the case where we have γjkil (λ) ≤ 2 because if

γjkil (λ) ≥ 3, we can obtain w(λ) from w(sjkil (λ)) inductively. The following result

tells us how to find the weight in this case for r = 2.

Proposition 1.4.19. [Fay07b, Proposition 1.7] Suppose that r = 2 and λ is a

multicore.

1. If γ12il (λ) ≤ 2 for all i, l, then w(λ) is the smaller of the two integers

#{i | γ12il (λ) = 2 for some l} and #{l | γ12il (λ) = 2 for some i}.

2. w(λ) = 0 if and only if γ12il (λ) ≤ 1 for all i, l.

Example 1.4.20. Returning to the example λ = ((12), (2), (2, 1)), we calculate

the weight of (λ(2), λ(3)) when e = 4. An abacus display for (λ(2), λ(3)) is

λ(2) λ(3)

0 1 2 3qqq qqq qqq qqq{ { { {{ { {{
qqq qqq qqq qqq

0 1 2 3qqq qqq qqq qqq{ { { {{ { { {{ {
qqq qqq qqq qqq
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We may read off γ120 = 0, γ121 = 0, γ122 = 0 and γ123 = −2. So γ12il ((λ
(2), λ(3))) ≤ 2

for all i, l. Then, using Proposition 1.4.19, we have

#{i | γ12il = 2 for some l} = #{0, 1, 2} = 3

and

#{i | γ12il = 2 for some l} = #{3} = 1.

Hence, w((λ(2), λ(3))) = 1.

So now we have an algorithm allowing us to calculate the weight of a

multipartition given its abacus configuration.

1. If necessary, slide all beads up their runners as far as they will go, and use

Proposition 1.4.13 to calculate the change in weight.

2. For j < k, calculate the weight of λjk = (λ(j), λ(k)):

(a) Calculate γ12i (λjk);

(b) If there is a choice of i and l such that γ12il (λjk) ≥ 3, replace λjk with

s12il (λjk) and use Proposition 1.4.17 to calculate the change of weight.

Repeat this step until γ12il (s
12
il (λjk)) ≤ 2 for all i and l.

(c) Use Proposition 1.4.19 to calculate w(λjk).

3. Finally, add together all the w(λjk) and use Proposition 1.4.15.

This enables us to prove the following result, which gives us further

reassurance that our definition of weight is an appropriate generalisation of the

weight of a partition.

Corollary 1.4.21. [Fay06, Corollary 3.9] Let λ be a multipartition. Then w(λ)

is a non-negative integer.

1.4.5 Kleshchev multipartitions

Residues of nodes are also useful in classifying the simple Hr,n-modules. Indeed,

the notion of residue helps us to describe a certain subset K of the set of all

multipartitions, which index the simple modules for Hr,n. We impose a partial

order > on the set of nodes of residue i ∈ I of a multipartition by saying that

(b, c, j) is above (b′, c′, j′) (or (b′, c′, j′) is below (b, c, j)) if either j < j′ or (j = j′

and b < b′). In this case we write (b, c, j) > (b′, c′, j′). Note this order restricts to

a total order on the set of all addable and removable nodes of residue i ∈ I of a

multipartition.

Suppose λ is a multipartition, and given i ∈ I define the i-signature of λ

with respect to > by examining all the addable and removable i-nodes of λ
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in turn from higher to lower, and writing a + for each addable node of residue

i and a − for each removable node of residue i. Now construct the reduced

i-signature by successively deleting all adjacent pairs −+. If there are any −
signs in the reduced i-signature of λ, the corresponding removable nodes are

called normal nodes of [λ]. The leftmost normal node is called a good node

of [λ] with respect to >.

Definition 1.4.22. We say that λ isKleshchev if and only if there is a sequence

λ = λ(n),λ(n− 1), . . . ,λ(0) = ∅∅∅

of multipartitions such that for each k, [λ(k − 1)] is obtained from [λ(k)] by

removing a good node with respect to the order >.

This definition depends on the multicharge a = (a1, . . . , ar) of Hr,n, and we

may use the term ‘(a1, . . . , ar)-Kleshchev’ if there is danger of ambiguity. We

write K(a1, . . . , ar) for the set of (a1, . . . , ar)-Kleshchev multipartitions.

Example 1.4.23. Suppose r = 2 and e = 4. Consider the multicharge a = (1, 0)

of H2,6. Then the multipartition λ = (∅, (16)) is Kleshchev. Indeed, we have the

following sequence of multipartitions obtained from λ by removing each time a

good node - we write [λ(k)]
i←−> [λ(k − 1)] to denote that [λ(k − 1)] is obtained

from [λ(k)] by removing a good i-node for i ∈ I with respect to the total order

>: 
1,

10
3
2
1
0
3
2


3←−>


1,

10
3
2
1
0
3


0←−>

1,

10
3
2
1
0


1←−>

1,
10

3
2
1

 2←−>

1,
10

3
2

 3←−>

1, 10
3

 0←−> (∅,∅).

Remark 1.4.24. [Fay08b] If r = 1, then the multipartition (λ) is Kleshchev if

and only if λ is e-restricted.

The importance of Kleshchev multipartitions lies in the fact (proved by Ariki

[Ari01, Theorem 4.2]) that if λ is Kleshchev, then Sλ has an irreducible cosocle

Dλ, and the set {Dλ | λ is a Kleshchev multipartition} is a complete set of non-

isomorphic simple Hr,n-modules.

As for Iwahori-Hecke algebras, also for the Ariki-Koike algebras there are two

different but equivalent classifications of the simple modules of Hr,n. One is the
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classification we presented here following [Mat04] for which a complete set of

non-isomorphic simple Hr,n-modules is given by

{Dλ | λ is a Kleshchev multipartition}.

In this case, as stated in Remark 1.4.24, for r = 1 a Kleshchev multipartition is

an e-restricted partition.

This will be the setting in which we will work in Chapter 2.

The other classification is the one arising when we define as Specht module

for the Ariki-Koike algebra Hr,n the so called dual Specht module S′(λ). The

module S′(λ) is defined in [Mat03] to be the cell module arising from a cellular

basis {nst} of Hr,n. The details of this definition can be found in [Mat03, §4].
This will be the setting in which we will work in Chapter 3.

In order to give a classification of the simple modules for Hr,n with the above

definition of Specht modules we need to introduce some definitions.

We can define another partial order ≻ on the set of nodes of residue i ∈ I

of a multipartition by saying that (b, c, j) is above (b′, c′, j′) (or (b′, c′, j′) is

below (b, c, j)) if either j > j′ or (j = j′ and b > b′). In this case we write

(b, c, j) ≻ (b′, c′, j′). Note again that also this order restricts to a total order on

the set of all addable and removable nodes of residue i ∈ I of a multipartition.

Suppose λ is a multipartition, and given i ∈ I define the i-signature of λ

with respect to ≻ by examining all the addable and removable i-nodes of λ

in turn from higher to lower, and writing a + for each addable node of residue

f and a − for each removable node of residue f . Now construct the reduced

i-signature with respect to ≻ by successively deleting all adjacent pairs −+.

If there are any − signs in the reduced f -signature of λ, the leftmost of these

nodes is called a good node of [λ] with respect to ≻.

Definition 1.4.25. We say that λ is a dual Kleshchev multipartition if and

only if there is a sequence

λ = λ(n),λ(n− 1), . . . ,λ(0) = ∅∅∅

of multipartitions such that for each k, [λ(k − 1)] is obtained from [λ(k)] by

removing a good node with respect to ≻.

We write K′(a1, . . . , ar) for the set of dual Kleshchev multipartitions with

multicharge (a1, . . . , ar).

Hence, with the same notation of [Mat03], when we define the Specht

modules as S′(λ), we set D′(λ) = S′(λ)/rad S′(λ) with rad S′(λ) the radical of

the bilinear form of S′(λ) (the form is defined in terms of the structural

constant of the basis {nst}). In this case, a complete set of non-isomorphic
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simple Hr,n-modules is given by

{D′(λ) | λ is a dual Kleshchev multipartition}.

Now, we want to clarify the link between these two classifications of simple

modules of Hr,n.

Following [Fay08b], we consider the Ariki-Koike algebra H′
r,n with standard

generators T ′
0, . . . , T

′
n−1 and parameters (q−1, Qr, . . . , Q1). Hence, if

a = (a1, . . . , ar) is a multicharge for Hr,n, then −a = (−ar, . . . ,−a1) is a

multicharge for H′
r,n. If λ is a Kleshchev multipartition of H′

r,n, we write

λ ∈ K(−ar, . . . ,−a1). Moreover, we have a bijection ⋄ from K(a1, . . . , ar) to

K(−ar, . . . ,−a1), with the properties that

• ∅∅∅⋄ = ∅∅∅, and

• if λ is a multipartition with a good i-node n, then λ⋄ has a good −i-node
m, and (λ \ {n})⋄ = λ⋄ \ {m}.

This is, indeed, a bijection between the two crystal graphs with vertices the sets

K(a1, . . . , ar) and K(−ar, . . . ,−a1), under which the label of arrows are negated.

The bijection ⋄ may be viewed as a generalisation of the Mullineux involution

[Mul79]. See [Fay08b] for details.

Example 1.4.26. Suppose r = 2 and e = 4. Consider the multicharge a = (1, 0)

ofH2,6 and the (1, 0)-Kleshchev multipartition λ = (∅, (16)). Then - see Example

1.4.23 - there is a sequence

λ
3←−> (∅, (15))

0←−> (∅, (14))
1←−> (∅, (13))

2←−> (∅, (12))
3←− (∅, (1))

0←−> (∅,∅).

We want to apply ⋄ to λ. By definition of ⋄, we have that λ⋄ is the (0, 3)-

Kleshchev multipartition of H′
2,6 obtained from the empty multipartition ∅∅∅ by

adding a −i-node if [λ(k)]
i←−> [λ(k − 1)] starting from the last good i-node

removed in the above sequence. Thus, we get

λ⋄ = ((3), (3)) =
(
0 1 2 , 3 0 1

)
.

We collect together some basic facts on conjugation in the following lemmas.

We will use these properties in order to give a combinatorial description of the

dual Kleshchev multipartitions.

Lemma 1.4.27. [Fay08b, Lemma 1.2]

1. If m and n are two nodes with m above n with respect to >, then m′ lies

below n′ with respect to >.

2. If n is a node of λ with residue i, then n′ is a node of λ′ with residue −i.
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3. If n is an addable (respectively, a removable) node of λ with residue i, then

n′ is an addable (respectively, a removable) node of λ′ with residue −i.

Lemma 1.4.28. If m and n are two nodes with m above n with respect to >,

then m′ lies above n′ with respect to ≻.

Proof. This follows directly from the definition of conjugate of a multipartition

and the definition of the two orders > and ≻.

Proposition 1.4.29. The map

ξ : K(a1, . . . , ar)→ K′(a1, . . . , ar)

λ 7→ (λ⋄)′

is a bijection such that for any two multipartitions µ,ν ∈ K(a1, . . . , ar),

µ
i←−> ν ⇐⇒ (µ⋄)′

i←−≻ (ν⋄)′. (1.4.1)

Proof. Consider a multipartition µ ∈ K(a1, . . . , ar). Then, by definition of ⋄, we

have that

µ
i←−> ν ⇐⇒ µ⋄ −i←−> ν⋄

for some i ∈ I. So, we want to prove that

µ⋄ −i←−> ν⋄ ⇐⇒ (µ⋄)′
i←−≻ (ν⋄)′. (1.4.2)

By Lemma 1.4.27, we know that γ = (b, c, j) is a removable (respectively, addable)

i-node if and only if γ′ = (c, b, r + 1 − j) is a removable (respectively, addable)

(−i)-node. Let wi be the i-signature of µ⋄ with respect to >. Similarly, let w′
−i

be the (−i)-signature of (µ⋄)′ with respect to ≻. Write wi = γ1 · · · γs where

for any m = 1, . . . , s, γm is an i-node that is addable or removable. Then by

definition of the orders > and ≻, we have

w′
−i = γ′1 · · · γ′s.

Write w̃i = (+)p(−)t for the reduced i-signature of µ⋄ with respect to >. We

deduce from Lemma 1.4.28 that w̃′
−i = (+′)p(−′)t coincides with the reduced

(−i)-signature with respect to ≻. In particular, γ is the good i-node for µ⋄ with

respect to > if and only if γ′ is the good (−i)-node for (µ⋄)′ with respect to ≻.
Hence, the bijection ξ satisfies (1.4.1).

Remark 1.4.30. Notice that Proposition 1.4.29 implies that a dual Kleshchev

multipartition for Hr,n is a multipartition that lies in the set

{(µ⋄)′ | µ ∈ K(a1, . . . , ar)}.
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In this case, for r = 1 a dual Kleshchev multipartition is an e-regular partition.

Indeed, if r = 1 then µ = (µ) ∈ K(a1) is an e-restricted partition by Remark

1.4.24. By definition of ⋄, (µ)⋄ = µ⋄ ∈ K(−a1) and so it is e-restricted as well

and µ⋄ is e-restricted if and only if (µ⋄)′ is e-regular.

In particular, we have the following result that explains why in the literature

(see [Fay10]), we often find stated that the dual Kleshchev multipartitions are

the conjugate of the Kleshchev multipartions.

Lemma 1.4.31. If λ ∈ K(a1, . . . , ar), then λ′ ∈ K′(−ar, . . . ,−a1).

Proof. Let λ ∈ K(a1, . . . , ar). As in the proof of Proposition 1.4.29, γ is the

good i-node for λ with respect to > if and only if γ′ is the good (−i)-node for λ′

with respect to ≻. Hence, λ′ ∈ K′(−ar, . . . ,−a1).

1.4.6 Blocks of Ariki-Koike algebras

It follows from the cellularity of Hr,n that each Specht module Sλ lies in one

block of Hr,n, and we abuse notation by saying that a multipartition λ lies in

a block B if Sλ lies in B. On the other hand, each block contains at least one

Specht module, so in order to classify the blocks of Hr,n, it suffices to describe

the corresponding partition of the set of multipartitions.

Recall the concept of a block from the theory of cellular algebras as defined

in 1.3.13. Hence, we have the following classification of the blocks of Hr,n.

Theorem 1.4.32. [LM07, Theorem 2.11] Let λ and µ be multipartitions of n.

Then, Sλ and Sµ lie in the same block of Hr,n if and only if ci(λ) = ci(µ) for all

i ∈ I.

Moreover, we can notice that an important feature of the weight and hub of

a multipartition is that they are invariants of the block containing λ, and in fact

determine this block.

Proposition 1.4.33. [Fay06, Proposition 3.2 & Lemma 3.3] Suppose λ is a

multipartition of n and µ is a multipartition of m. Then:

1. if λ and µ have the same hub, then m ≡ n mod e, and

w(λ)− w(µ) =
r(n−m)

e
;

2. if n = m, then λ and µ lie in the same block of Hr,n if and only if they

have the same hub.

In view of this result, we may define the hub of a block B to be the hub of

any multipartition λ in B, and we write δi(B) = δi(λ).
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1.4.7 Scopes isometries

Here we introduce maps between blocks of Ariki-Koike algebras analogous to

those defined by Scopes [Sco91] between blocks of symmetric groups. Suppose

i ∈ Z/eZ, and let ϕi : Z→ Z be the map given by

ϕi(x) =


x+ 1 x ≡ i− 1 mod e

x− 1 x ≡ i mod e

x otherwise.

If e is finite, then ϕi descends to give a bijection from I to I; we abuse notation

by referring to this map as ϕi also.

Now suppose λ is a multipartition, and that we have chosen an abacus display

for λ. For each j, we define a partition ϕi(λ
(j)) by replacing each β-number β

with ϕi(β). Equivalently, we simultaneously remove all removable i-nodes from

[λ(j)] and add all addable i-nodes of [λ(j)], or in terms of abacus configuration

we swap the runners (i − 1) and i of each abacus in the abacus display of λ. If

i = 0, we rearrange the order of the runners in λ so that each runner e− 1 is to

the left of each runner 0 and we add one bead to each runner e − 1 so that the

abacus display still represents the same multipartition λ. We define Φi(λ) to be

the multipartition (ϕi(λ
(1)), . . . , ϕi(λ

(r))).

Example 1.4.34. Here we give an example of the definition of ϕi for a partition.

For e = 3, consider the abacus configuration of the partition λ given below and

apply to λ the map ϕ1. Then,

λ ϕ1(λ)

0 1 2qqq qqq qqq{ { {{{ {{{ {{
qqq qqq qqq

−→

0 1 2qqq qqq qqq{ { {{ { {{{ {{
qqq qqq qqq

.

So, it can be seen that the removal of removable 1-nodes (represented by

beads in blue) and the addition of addable 1-nodes (represented by beads in red)

for λ due to the application of ϕ1 is simultaneous.

Proposition 1.4.35. [Fay06, Proposition 4.6] Suppose B is a block of Hr,n

and i ∈ I. Then there is a block B̄ of Hr,n−δi(B) with the same weight as B.
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Moreover, Φi gives a bijection between the set of multipartitions in B and the

set of multipartitions in B̄.

We write Φi(B) for the block B̄ described in Proposition 1.4.35.

1.4.8 Core blocks of Ariki-Koike algebras

Following the work of Fayers in [Fay07b], we want to generalise the notion of core

to multipartitions and so we introduce core blocks of Ariki-Koike algebras, giving

several equivalent definitions.

In order to introduce core blocks, we need to consider separately the case

e =∞, in this case, every block of Hr,n will be a core block. For the case where

e is finite, the definition is given by the equivalent statements in the following

theorem. It is straightforward to check that these statements, appropriately re-

phrased, all hold for every block of Hr,n when e =∞, with property (4) following

from Proposition 1.4.33.

Theorem 1.4.36. Suppose that e is finite, and that λ is a multipartition lying in

a block B of Hr,n. Let κ be a multicharge for Hr,n. The following are equivalent.

1. λ is a multicore, and there exist a multicharge a = (a1, . . . , ar) such that

aj ≡ κj mod e for all j and integers α0, . . . , αe−1 such that for each i, j,

baij(λ) equals either αi or αi + e.

2. λ is a multicore, and there exist a multicharge a = (a1, . . . , ar) such that

aj ≡ κj mod e for all j and integers s1, . . . , sr such that

baij(λ)− baik(λ)

e
≤ sj − sk + 1

for all i ∈ {0, . . . , e− 1}, j, k ∈ {1, . . . , r}.

3. λ is a multicore, and for any multicharge a = (a1, . . . , ar) such that aj ≡
κj mod e for all j there exist integers s1, . . . , sr such that

baij(λ)− baik(λ)

e
≤ sj − sk + 1

for all i ∈ {0, . . . , e− 1}, j, k ∈ {1, . . . , r}.

4. There is no block of any Hr,m with the same hub as B and smaller weight.

5. Every multipartition in B is a multicore.

Now we can make the definition of a core block for the Ariki-Koike algebra

Hr,n.

Definition 1.4.37. Suppose B is a block of Hr,n. Then we say that B is a core

block if and only if either
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• e is finite and the equivalent conditions of Theorem 1.4.36 are satisfied for

any multipartition λ in B, or

• e =∞.

Theorem 1.4.36 gives us several equivalent conditions for a multipartition to

lie in a core block. Moreover, condition (2) of Theorem 1.4.36 together with point

(2) of Proposition 1.4.33 implies that, of the blocks with a given hub, only the

one with the smallest weight is a core block. So, if λ is a multipartition with this

hub, then we may speak of this core block as the core block of λ.

Now, let e < ∞. Let λ be a multipartition and κ be a multicharge for Hr,n.

Recalling the definition of level for an e-core given in Subsection 1.1.2, define

ℓκij(λ) to be the level of the last bead on runner i of the abacus display for λ(j)

with respect to κ. Note that baij(λ) = ℓaij(λ)e + i and γjki (λ) = ℓaij(λ) − ℓaik(λ).

Using Theorem 1.4.36, we see that for λ corresponding to Sλ in a core block, we

have that there exist a multicharge a = (a1, . . . , ar) ∈ Zr such that aj ≡ κj mod e

and integers b0, b1, . . . , be−1 such that for each i ∈ I where I is defined as in

Subsection 1.4.1 and j ∈ {1, . . . , r}, ℓaij(λ) equals either bi or bi+1. We call such

an e-tuple (b0, b1, . . . , be−1) a base tuple for λ. Adapting Theorem 1.4.36 we have

the following result.

Proposition 1.4.38. Suppose e <∞, λ is a multicore and κ = (κ1, . . . , κr) is a

multicharge for Hr,n. Then Sλ lies in a core block of Hr,n if and only if there is

a = (a1, . . . , ar) ∈ Zr such that aj ≡ κj mod e and an abacus configuration for

λ such that

|γjki (λ)| = |ℓaij(λ)− ℓaik(λ)| ≤ 1 for each i ∈ I and j, k ∈ {1, . . . , r}.

Corollary 1.4.39. In the same setting of Proposition 1.4.38. If Sλ lies in a core

block of Hr,n, then there exists a = (a1, . . . , ar) ∈ Zr such that aj ≡ κj mod e

and an abacus configuration for λ such that

|δji (λ)− δki (λ)| ≤ 2 for each i ∈ I and j, k ∈ {1, . . . , r}.

Proof. By Proposition 1.4.38, for each i ∈ I and j, k ∈ {1, . . . , r} we have

|δji (λ)− δki (λ)| = |ℓaij − ℓai−1,j − (ℓaik − ℓai−1,k)|

= |ℓaij − ℓaik + ℓai−1,j − ℓai−1,k|

≤ |ℓaij − ℓaik|+ |ℓai−1,j − ℓai−1,k|

≤ 1 + 1 = 2.
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Equivalence of decomposition

matrices for blocks of Ariki-Koike

algebras

In [Sco91], under some conditions, Scopes establishes a natural correspondence

between Specht modules and simple modules in the blocks B and ϕi(B) of the

symmetric groups where ϕi is the map swapping the runners i − 1 and i of

each partition in the block B. This leads to an equivalence of decomposition

matrices for these two blocks, meaning that the blocks B and ϕi(B) have the same

decomposition matrices. In the last part of her paper Scopes proves Donovan’s

conjecture for blocks of the symmetric groups. In particular, given a partition λ

of n, the bijection ϕi gives a Morita equivalence between the blocks B of λ and

the block ϕi(B) of ϕi(λ) for the symmetric group algebra FSn.

This chapter is intended as the Ariki-Koike algebra version of Scopes’ paper

about decomposition numbers. In particular, we prove a sufficient condition

such that two blocks of the Ariki-Koike algebras have the same decomposition

matrices.

The generalisation of Donovan’s conjecture and hence of the Morita

equivalence between the blocks B and Φi(B) of Ariki-Koike algebras (with Φi

the map ϕi acting componentwise) can be seen as a special case of Theorem 3.3

in [Web23] where Webster proves this using t-exact Chuang-Rouquier

equivalences in the more general setting of highest weight categorifications.

This result shows as well that our generalisation of Scopes equivalence is the

natural one.

We would like to underline the fact that there are example of Morita

equivalences that do not imply the equivalence of decomposition matrices.

Indeed, if we consider n = 8 and p = 3, we have that the block of the partition

(8) and the block of the partition (18) for the symmetric group algebra F3S8 are

Morita equivalent, but they have different decomposition matrices. In the sense

that we cannot reorder the rows and the columns to get from one matrix to the

other because in the block of (18) there are two Specht modules indexed by

p-restricted partitions that are simple, i.e. S(18) and S(23,12); while in the block

47
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of S(8) there is only S(8) that is simple and indexed by a p-regular partition.

2.1 Results about multicores

In this section, we give some results concerning properties of multicores that play

a fundamental role in the proof of the main result of this chapter. We fix some

notation.

Let F be a field, and let q,Q1, . . . , Qr be non-zero elements of F. Assume

that (Q1, . . . , Qr) are q-connected parameters. Let e ∈ {2, 3, 4, . . .} ∪ {∞} be

the quantum characteristic of Hr,n. Set I = Z/eZ (which we identify with

{0, 1, . . . , e − 1}) unless e = ∞, in which case set I = Z. For i ∈ I and a

multicore m, denote by:

di(m) = min{δji (m) | j ∈ {1, . . . , r}},

where δji (m) is defined in Subsection 1.4.4. If the value of i is clear, we will write

d(m) instead of di(m).

Firstly, we notice an important and useful property of the abacus display of a

multicore µ lying in a core block C of Hr,n and then we give some results about

multicores not necessarily in a core block.

If µ is a multipartition lying in a core block C of Hr,n then, by the definition

of a base tuple, there exists a multicharge a = (a1, . . . , ar) of Hr,n and at least

one base tuple (b0, . . . , be−1) such that µ has abacus display where for i ∈ I, i ≥ 1

and j ∈ {1, . . . , r}

δji (µ) ∈ {bi − bi−1 − 1, bi − bi−1, bi − bi−1 + 1}. (2.1.1)

Notice that (2.1.1) holds for all the multicores in the core block C since the base

tuple is an invariant of a core block.

Fix i ∈ I, i ≥ 1 and a multicharge a = (a1, . . . , ar) such that (2.1.1) holds.

Let (b0, . . . , be−1) be the corresponding base tuple such that bi is as big as possible

and bi−1 is as small as possible between all the possible choices of base tuples

corresponding to a. Then we can define

Ki := bi − bi−1 − 1 (2.1.2)

If it is clear what i we are referring to, we will simply write K instead of Ki.

Note that

K ≤ d(µ) (2.1.3)

for all µ ∈ C.

Example 2.1.1. Suppose e = 5, r = 3 and (Q1, Q2, Q3) = (1, q3, q). So, κ =
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(0, 3, 1). Let µ be the multicore ((4, 3, 1), (4, 23), (3, 2)) which has abacus display

with respect to the multicharge a = (0,−2, 1)

0 1 2 3 4qqq qqq qqq qqq qqq{ { { { {{ { { { {{ { {{ {
qqq qqq qqq qqq qqq

0 1 2 3 4qqq qqq qqq qqq qqq{ { { { {{ { { {{ { {{
qqq qqq qqq qqq qqq

0 1 2 3 4qqq qqq qqq qqq qqq{ { { { {{ { { { {{ { { {{ {
qqq qqq qqq qqq qqq

.

Since |γjki (µ)| ≤ 1 for all j, k ∈ {1, 2, 3} and i ∈ {0, . . . , 4}, µ lies in a core block

C by Proposition 1.4.38. Then we can define a base tuple for µ and thus for C.

In particular, we can consider the following two base tuples:

1. (b0, b1, b2, b3, b4) = (2, 4, 2, 3, 1);

2. (b′0, b
′
1, b

′
2, b

′
3, b

′
4) = (2, 3, 2, 3, 1).

Take i = 1. In order to define K1 we need to choose

(b0, b1, b2, b3, b4) = (2, 4, 2, 3, 1) because b1 > b′1 and b0 = b′0, so we get K1 = 1.

Take i = 3. In order to define K3 we can choose either (b0, b1, b2, b3, b4) or

(b′0, b
′
1, b

′
2, b

′
3, b

′
4) because b3 = b′3 and b2 = b′2, so we get K3 = 0.

We now want to exhibit, for all multicores of Hr,n, a sequence of multicores

of non-increasing weight ending in a multicore lying in a core block. In order to

do this, we need a preliminary lemma adapted from the proof of Proposition 3.7

in [Fay07b] to the case of multicores.

Lemma 2.1.2. If λ is a multicore not lying in a core block of Hr,n, then there

is a sequence λ = λ0, . . . ,λu of multicores such that, for all t = 0, . . . , u− 1, we

have λt+1 = sjkil (λt) for some i, l, j, k and λu lies in a core block. Furthermore,

w(λt+1) ≤ w(λt) for all t = 0, . . . , u− 1.

Proposition 2.1.3. Let m be a multicore of Hr,n. Then there exist a multicore

µ in the core block C of m and a sequence of multicores

m = m0,m1, . . . ,ms−1,ms = µ

such that:

1) the core block of mt is C for all t = 0, . . . , s;
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2) mt+1 = sjkil (mt) for some j, k ∈ {1, . . . , r}, i, l ∈ {1, . . . , e − 1} for all

t = 0, . . . , s− 1;

3) there exists 0 ≤ v ≤ s such that

i) w(mt+1) < w(mt) for all t = 0, . . . , v − 1 and w(mt+1) ≤ w(mt) for

all t = v, . . . , s− 1;

ii) |γjkil (mv)| ≤ 2 for all i, l and j, k.

Proof. Letm0 := m be a multicore ofHr,n. Then, apply the following procedure

for t ≥ 0.

1. Calculate γjki (mt) for all i ∈ {0, . . . , e− 1} and j, k ∈ {1, . . . , r};

2. If there is a choice of i, l and j, k such that γjkil (mt) ≥ 3, setmt+1 = sjkil (mt).

By Proposition 1.4.17 we have

w(mt+1) < w(mt).

3. Repeat this step until we have mt+1 with γjkil (mt+1) ≤ 2 for all i, l and j, k.

Suppose that we stop for t + 1 = v. Notice that γjkil (mv) ≤ 2 for all i, l and

j, k implies |γjkil (mv)| ≤ 2 for all i, l and j, k. Indeed,

γjkil (mv) = −γjkli (mv) = −γkjil (mv).

Now, if mv is not in the core block C, apply Lemma 2.1.2 until we get a

multicore µ in the core block C.

Before stating the main result, we need some preliminary lemmas.

Lemma 2.1.4. Suppose that m is a multicore such that |γjkil (m)| ≤ 2 for all

i, l ∈ I and j, k ∈ {1, . . . r}. Fix ī ∈ I, and let d be the integer such that

d(m) = d− 1. Then

δj
ī
(m) ∈ {d− 1, d, d+ 1} for all j ∈ {1, . . . , r}.

Proof. Consider m a multicore such that |γjkil (m)| ≤ 2 for all i, l ∈ I and

j, k ∈ {1, . . . r}. Fix ī ∈ I. Then, since |γjkil (m)| ≤ 2 for all i, l ∈ I and

j, k ∈ {1, . . . r}, we have that

|γjk
(̄i−1)̄i

(m)| = |δkī (m)− δj
ī
(m)| ≤ 2.

Hence, since d(m) = d− 1, we get δj
ī
(m) ∈ {d− 1, d, d+1} for all j ∈ {1, . . . , r}.
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Lemma 2.1.5. Letm be a multicore with core block C and such that |γjkil (m)| ≤
2 for all i, l ∈ I and j, k ∈ {1, . . . r}. Suppose that µ is a multicore in the core

block C. Fix ī ∈ I. Then d(µ) ≤ d(m) + 1.

Proof. By Lemma 2.1.4, we know that δj
ī
(m) ∈ {d − 1, d, d + 1} and δj

ī
(µ) ∈

{d′− 1, d′, d′ +1} for some integers d and d′ for all j ∈ {1, . . . , r}. Let a, b, and c

be the number of δj
ī
(m) equal respectively to d− 1, d, and d+ 1. Let a′, b′, and

c′ be the number of δj
ī
(µ) equal respectively to d′− 1, d′, and d′ +1. Notice that

a > 0 and a′ > 0 by definition of d− 1 and d′ − 1. By Proposition 2.1.3, we can

go from the multicore m to the multicore µ in the core block C via a sequence of

multicores mt such that mt+1 = sjkil (mt) for some i, l ∈ I and j, k ∈ {1, . . . , r}.
By point (1) of Proposition 1.4.17, we know that each multicore mt occurring in

this sequence has the same hub of m, then m and µ have the same hub. So,

a(d− 1) + b(d) + c(d+ 1) = a′(d′ − 1) + b′(d′) + c′(d′ + 1), (2.1.4)

where a+b+c = a′+b′+c′ = r. Suppose by contradiction that d(µ) > d(m)+1.

Then d′ > d+ 1, and so looking at (2.1.4) we have

LHS ≤ r(d+ 1) with equality if and only if a = b = 0;

RHS ≥ a′(d+ 1) + b′(d+ 2) + c′(d+ 3) ≥ r(d+ 1)

with equality if and only if b′ = c′ = 0;

We must have equality in both terms, but this is a contradiction since a > 0.

Lemma 2.1.6. Let m be a multicore of Hr,n and m′ = sjkil (m) for some i, l, j, k.

Fix ī ∈ I. Then d(m′) ≥ d(m) − 2. Moreover, if γjkil (m) = 1, then d(m′) ≥
d(m)− 1.

Proof. The fact that d(m′) ≥ d(m) − 2 follows from the definition of sjkil and

that |δj
ī
(m)− δj

ī
(m′)| = 2 if and only if {i, l} = {̄i− 1, ī}.

Suppose γjkil (m) = 1. Then,

• if {i, l} ≠ {̄i − 1, ī}, then d(m′) ≥ d(m) − 1 since the only case in which

δj
ī
(m′) decreases by 2 with respect to δj

ī
(m) is when {i, l} = {̄i− 1, ī};

• if {i, l} = {̄i− 1, ī}, then

γjk
ī−1,̄i

(m) = 1⇔ δkī (m)− δj
ī
(m) = 1⇔ δkī (m) = δj

ī
(m) + 1.

Thus,

δj
ī
(m′) = δj

ī
(m) + 2 and,

δkī (m
′) = δkī (m)− 2 = δj

ī
(m) + 1− 2 = δj

ī
(m)− 1.
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Hence, d(m′) ≥ d(m)− 1.

Lemma 2.1.7. Let m be a multicore of Hr,n. Suppose that

m = m0,m1, . . . ,mv is a sequence of multicores such that mt+1 = sjkil (mt) for

some i, l, j, k and w(mt+1) < w(mt) for all t = 0, . . . , v − 1. Let

w(m) = w(mv) + hr with h > 0. Then d(m) ≥ d(mv)− h.

Proof. We proceed by induction on v. If v = 1, the sequence of multicores

consists of m0 = m and m1 = sjkil (m0) for some i, l, j, k with w(m0) = w(m1)+

hr for h > 0. Note that m0 = sjkli (m1). By Proposition 1.4.17(2), the weight of

m0 is w(m0) = w(m1)− r(γjkli (m1)− 2), so h = −γjkli (m1)+2. Moreover, h > 0

and so we have that γjkli (m1) ≤ 1. Hence, we just need to check the following

two cases.

• If γjkli (m1) ≤ 0, then d(m0) ≥ d(m1) − 2 by Lemma 2.1.6 and

h = −γjkli (m1) + 2 ≥ 2. Thus,

d(m0) ≥ d(m1)− 2 ≥ d(m1) + γjkli (m1)− 2 = d(m1)− h.

• If γjkli (m1) = 1, then h = 1 and d(m0) ≥ d(m1)−1 by Lemma 2.1.6. Thus,

d(m0) ≥ d(m1)− 1 = d(m1)− h.

Suppose v > 1. Let w(m) = w(mv−1) + h′r with 0 ≤ h′ < h and w(mv−1) =

w(mv) + h′′r with h′′ > 0 so that h = h′′ + h′. By induction hypothesis we

know that d(m) ≥ d(mv−1)−h′. In order to get the result we want to show that

d(m) ≥ d(mv)−h. We know from the base step that that d(mv−1) ≥ d(mv)−h′′.
Thus,

d(m) ≥ d(mv−1)− h′ ≥ d(mv)− h′′ − h′ = d(mv)− h.

Proposition 2.1.8. Fix ī ∈ {1, . . . , e − 1}. Let K = Kī be the integer defined

in (2.1.2) for a core block C. Suppose that m is a multicore with core block C

and weight

w(m) = w(C) + hr

with 0 ≤ h ≤ K. Then d(m) ≥ K − h.

Proof. Let

m = m0, . . . ,mv,mv+1, . . . ,ms = µ

be the sequence defined in Proposition 2.1.3, where v is such that |γjkil (mv)| ≤ 2

for all i, l, j, k, and µ ∈ C.
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By Lemma 2.1.7, we have that

d(m) ≥ d(mv)− h′, (2.1.5)

where 0 ≤ h′ ≤ h is such that w(m) = w(mv) + h′r.

If h′ = h, then mv = ms = µ ∈ C; therefore d(m) ≥ d(µ) − h ≥ K − h by

(2.1.3).

Otherwise h′ < h, and Lemma 2.1.5 can be applied to get that

d(mv) ≥ d(µ)− 1 ≥ d(µ)− (h− h′).

Combining this with (2.1.5), we have:

d(m) ≥ d(mv)− h′ ≥ d(µ)− (h− h′)− h′ = d(µ)− h ≥ K − h.

2.2 Decomposition numbers for blocks of Hr,n

Now, we want to generalise Lemma 2.1 of Scopes’ paper [Sco91] to the Ariki-

Koike algebras Hr,n. Thus, we want to show that, for i ∈ I, the decomposition

matrices of the blocks B and Φi(B) are the same, provided that

w(B) ≤ w(C) +Kir (2.2.1)

where

• C is the core block of B,

• Ki is the integer defined in (2.1.2).

Notice that this condition is a block condition, i.e., it is satisfied by all the

multipartitions in the block.

Remark 2.2.1. If r = 1, condition (2.2.1) is equivalent to Scopes’ condition for

the symmetric group in [Sco91, Section 2].

Moreover, note that Proposition 1.4.13 implies the following.

Corollary 2.2.2. Let µ be a multipartition in a core block and let 0 ≤ h ≤ Ki.

Let B be the block containing the multipartitions obtained by adding h e-rim

hooks to µ. Then B satisfies condition (2.2.1).

Lemma 2.2.3. Fix i ∈ I. Let B be a block of Hr,n such that (2.2.1) holds and

δi(B) ≥ 0. Then, in each component of every r-multipartition λ of n such that

Sλ belongs to the block B, there is no abacus configuration of the type u in

runners i− 1 and i.
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Proof. First of all, notice that

w(B)− w(C) = ℓr, for some ℓ ∈ {0, . . . ,Ki} (2.2.2)

since w(B)− w(C) can take as values only integral multiples of r.

Now, consider the multicore m associated to λ, that is the multicore whose

abacus display is obtained by the one of λ sliding all the beads up as high as

possible. Then m has the same core block C of λ and weight w(m) = w(C)+ sr

with 0 ≤ s ≤ ℓ. Thus, by Proposition 2.1.8 we can say that

d(m) ≥ Ki − s ≥ ℓ− s,

since ℓ ≤ Ki by (2.2.2). Moreover, in order to get λ from m we just need to

slide beads down of a total number of ℓ − s spaces. This implies that in each

component m(j) of m we need to slide beads down of at most ℓ− s spaces. Since

d(m) ≥ ℓ− s, similarly to the proof of [Sco91, Lemma 2.1] we can conclude that

each component λ(j) of λ has no configuration u in runners i− 1 and i.

Proposition 2.2.4. Fix i ∈ I. Let B be a block of Hr,n such that (2.2.1) holds

and δi(B) ≥ 0. Suppose that λ is an r-multipartition of n such that Sλ belongs

to the block B. Then the multipartition Φi(λ) of n − δi(B) is such that SΦi(λ)

belongs to Φi(B) and

Sλ ↓Φi(B) ∼ δi(B)!SΦi(λ),

SΦi(λ) ↑B ∼ δi(B)!Sλ.

Proof. Suppose that µ is a multipartition of n − δi(B) and Sµ is a factor of

Sλ ↓Hr,n−δi(B)
using the Specht filtration given in Theorem 1.4.8. The diagram

[µ] can be obtained from [λ] by removing δi(B) nodes. The multiplicity of Sµ as

a factor is the number of ways in which the node removal can be affected. The

abacus of µ is obtained from that of λ by successively moving δi(B) beads one

place to the left. The module Sµ belongs to Φi(B) if and only if µ has the same

hub as Φi(B) by point (2) of Proposition 1.4.33. This is equivalent to the fact

that µ is obtained from the abacus display of λ by moving a total of δi(B) beads

from runners i to runners i− 1.

By Lemma 2.2.3, in each component of the multipartition λ, we have no

abacus configuration of the type u in runners i− 1 and i. This implies that

λ has no addable i-nodes and so Φi consists only of removing i-nodes. Hence,

the number of ways in which the node removal can be effected is δi(B)! because

they have all the same residue i and so we can remove these nodes in any order.

This gives the first result about restriction. This also shows that there is exactly

one µ that can be found by removing δi(B) i-nodes.



Chapter 2: Decomposition equivalence for blocks of Ariki-Koike algebras 55

Similarly, the second result about induction can be proved by adding i-nodes

instead of removing i-nodes.

Definition 2.2.5. Let Λ = (Λ1, . . . ,Λr) and M = (M1, . . . ,Mr) be two r-tuple

of integers with Λj = {xj1, x
j
2, . . . } and Mj = {yj1, y

j
2, . . . } for all j. We write

Λ > M if and only if the minimal j ∈ {1, . . . , r} for which Λj ̸= Mj and the

minimal i ≥ 1 such that xji ̸= yji satisfy xji > yji .

Lemma 2.2.6. Let i ∈ I. If condition (2.2.1) holds, then Φi preserves the

lexicographic order of multipartitions.

Proof. Let λ and µ be multipartitions whose corresponding Specht modules

belong to block B. Let Λ = (Λ1, . . . ,Λr) andM = (M1, . . . ,Mr) be the associated

sets of β-numbers.

Let λ̄ = Φi(λ) and µ̄ = Φi(µ), and let their corresponding sets of β-numbers

be Λ̄ = (Λ̄1, . . . , Λ̄r) and M̄ = (M̄1, . . . , M̄r).

Now if λ > µ, then by Definition 2.2.5 we have Λ > M . Similarly Λ > M

implies that λ > µ and we obtain

λ > µ⇔ Λ > M ⇔ Λ \ (Λ ∩M) > M \ (Λ ∩M).

Assume λ > µ. Let j0 be the minimal j ∈ {1, . . . , r} such that

Λj \ (Λj ∩Mj) > Mj \ (Λj ∩Mj).

Let Λj0 \ (Λj0 ∩Mj0) = {x1, . . . , xt}, with xl > xl+1 for l = 1, . . . , t− 1, and

let Mj0 \ (Λj0 ∩Mj0) = {y1, . . . , ys}, with ym > ym+1 for m = 1, . . . , s− 1.

Then,

Λ̄j0 \ (Λ̄j0 ∩ M̄j0) = {ϕi(x1), . . . , ϕi(xt)}

and

M̄j0 \ (Λ̄j0 ∩ M̄j0) = {ϕi(y1), . . . , ϕi(ys)}.

Since λ > µ, it follows that x1 > y1. We have three cases to consider.

Case 1 x1 belongs to column i−1. In this case ϕi(x1) = x1+1 > ym+1 ≥ ϕi(ym)

for all m. Hence Λ̄ \ (Λ̄ ∩ M̄) > M̄ \ (Λ̄ ∩ M̄), so λ̄ > µ̄.

Case 2 x1 belongs to column i. Clearly ϕi(x1) = x1−1 ≥ ym+m−1 > ym+1 ≥
ϕi(ym) for all m ≥ 3 as x1 > y1 > y2 > y3 > · · · .

If y2 does not belong to column i− 1, then ϕi(y2) ≤ y2 and x1 − 1 > y2 as

x1 > y1 > y2. So ϕi(x1) = x1 − 1 > y2 ≥ ϕi(y2). If y2 belongs to column

i− 1 then ϕi(y2) = y2 +1. Since x1− 1 and y2 belongs to column i− 1 and

y2 < x1− 1 as above, so y2 ≤ x1− 1− e. Hence ϕi(x1) = x1− 1 > y2 +1 =

ϕi(y2).



Chapter 2: Decomposition equivalence for blocks of Ariki-Koike algebras 56

If y1 lies in column i, then ϕi(x1) = x1 − 1 > y1 − 1 = ϕi(y1). If y1 lies in

column k, where k ̸= i, i−1, then y1 ≤ x1−2, so ϕi(x1) = x1−1 > x1−2 ≥
y1 = ϕi(y1). Suppose y1 lies in column i−1. If y1 = x1−1, then the abacus

of µ(j0) presents a configuration u in runners i−1 and i where the bead

corresponds to y1. However, by Lemma 2.2.3 a multipartition in the block

B cannot have this configuration in runners i− 1 and i. Hence y1 ̸= x1− 1,

so y1+e < x1 and ϕi(y1) = y1+1 < x1−1 = ϕi(x1). Thus ϕi(x1) > ϕi(ym)

for all m, and Λ̄ \ (Λ̄ ∩ M̄) > M̄ \ (Λ̄ ∩ M̄), so λ̄ > µ̄.

Case 3 x1 does not belong to column i nor to column i−1. By similar arguments

we see that ϕi(x1) = x1 > ϕi(ym) for all m ≥ 2.

If y1 does not lie in column i − 1 then ϕi(y1) = y1 or ϕi(y1) = y1 − 1. So

ϕi(x1) = x1 > y1 ≥ ϕi(ym). If y1 lies in column i− 1, then ϕi(y1) = y1 + 1.

Since x1 is not in runner i − 1 or in runner i, then y1 < x1 − 1. So

again ϕi(x1) > ϕi(y1). Thus ϕi(x1) > ϕi(yl) for all l, and Λ̄ \ (Λ̄ ∩ M̄) >

M̄ \ (Λ̄ ∩ M̄), so λ̄ > µ̄.

Now we note that if condition (2.2.1) holds, Φi preserves the Kleshchev

property. Indeed, we have the following result.

Lemma 2.2.7. [Fay07b, Lemma 1.9] Suppose λ is a multipartition, and that [λ]

has no addable nodes of residue i for i ∈ I. Then λ is Kleshchev if and only if

Φi(λ) is.

Given that, we just need to notice that condition (2.2.1) implies that [λ] has

no addable nodes of residue i. Hence, we can conclude that if condition (2.2.1)

holds, then Kleshchev multipartitions are preserved by Φi.

Similarly to Lemma 2.4 in [Sco91], we have the following proposition. For

this, let λ,µ be Kleshchev multipartitions of n and define the Cartan matrix

C = (cλµ) of Hr,n where cλµ = [Pλ : Dµ] is the composition multiplicity of the

simple module Dµ in the principal indecomposable module Pλ. Recall that if we

denote by D the decomposition matrix of Hr,n, Graham and Lehrer in [GL96]

proved that

C = DtD (2.2.3)

where Dt is the transpose of the matrix D.

Proposition 2.2.8. Fix i ∈ {1, . . . , e − 1}. Let B be a block of Hr,n such that

(2.2.1) holds and δi(B) ≥ 0. Suppose that λ is a Kleshchev r-multipartition of n

such that Sλ belongs to the block B. Then

1. Dλ ↓Φi(B)∼ δi(B)!DΦi(λ).
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2. DΦi(λ) ↑B∼ δi(B)!Dλ.

3. The blocks B and Φi(B) have the same decomposition matrix.

4. The blocks B and Φi(B) have the same Cartan matrix.

Proof. Let λ1 > λ2 > . . . > λy be the Kleshchev multipartitions whose Specht

modules belong to B; then Φi(λ1) > Φi(λ2) > . . . > Φi(λy) are the Kleshchev

multipartitions whose Specht modules belong to Φi(B) by Lemmas 2.2.6 and

2.2.7. Suppose

Sλ ∼
y∑

j=1

dλλj
Dλj , dλλj

∈ N (2.2.4)

If λ ⊵ µ, then λ ≥ µ, that is equivalent to say if λ < µ, then λ ⋭ µ. Hence, by

point (2) of Theorem 1.4.7 we have that if λ < µ, then dλµ = 0.

Hence, (2.2.4) becomes

Sλ ∼
y∑

j=1

dλλj
Dλj , dλλj

=

1 if λ = λj

0 if λ < λj

. (2.2.5)

In particular, Sλy = Dλy . We want to prove points 1. and 2. for λ1, . . . ,λy.

By Proposition 2.2.4 we have

Sλy ↓Φi(B)∼ δi(B)!SΦi(λy) and SΦi(λy) ↑B∼ δi(B)!Sλy ,

so, since Sλy = Dλy we get the result:

Dλy ↓Φi(B)∼ δi(B)!DΦi(λy) and DΦi(λy) ↑B∼ δi(B)!Dλy .

Now, suppose that points 1. and 2. holds for λl, . . . ,λy with 1 < l ≤ y, that

is for l ≤ j ≤ y we have

Dλj ↓Φi(B)∼ δi(B)!DΦi(λj) and DΦi(λj) ↑B∼ δi(B)!Dλj .

Thus, we want to prove points 1. and 2. for λl−1. Then

(Sλl−1) ↓Φi(B)↑B∼
↑

by Prop. 2.2.4

(δi(B)!)2Sλl−1 ∼
↑

by (2.2.5)

(δi(B)!)2(

y∑
j=l

dλl−1λj
Dλj +Dλl−1),

and, applying first (2.2.5) and then Proposition 2.2.4 together with the hypothesis

on j ≥ l

(Sλl−1) ↓Φi(B)↑B∼
y∑

j=l

(δi(B)!)2dλl−1λj
Dλj + (Dλl−1) ↓Φi(B)↑B .
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So

Dλl−1 ↓Φi(B)↑B∼ (δi(B)!)2Dλl−1 . (2.2.6)

Now notice that for some αj , βj ∈ N

Dλl−1 ↓Φi(B) ∼
y∑

j=l−1

αjD
Φi(λj), (2.2.7)

DΦi(λl−1) ↑B ∼
y∑

j=l−1

βjD
λj . (2.2.8)

Then, by the hypothesis on j ≥ l and using (2.2.7), (2.2.8)

(Dλl−1) ↓Φi(B)↑B∼
y∑

j=l

(δi(B)!αj + αl−1βj)D
λj + αl−1βl−1D

λl−1 . (2.2.9)

Now combining (2.2.6) and (2.2.9), we get

(δi(B)!)2Dλl−1 ∼
y∑

j=l

(δi(B)!αj + αl−1βj)D
λj + αl−1βl−1D

λl−1 .

and so by the uniqueness of the composition series of (Dλl−1) ↓Φi(B)↑B we have

αl−1βl−1 = (δi(B)!)2 and αj = 0 = βj for all l ≤ j ≤ y. Thus, by (2.2.7) and

(2.2.8) we obtain

Dλl−1 ↓Φi(B)∼ αl−1D
Φi(λl−1) and DΦi(λl−1) ↑B∼ βl−1D

λl−1

with αl−1βl−1 = (δi(B)!)2. Hence, using Proposition 2.2.4 and (2.2.5) we have

that

(Sλl−1) ↓Φi(B)∼
y∑

j=l

δi(B)!dλl−1λj
DΦi(λj) + αl−1D

Φi(λl−1)

and,

δi(B)!SΦi(λl−1) ∼ δi(B)!

 y∑
j=l

dΦi(λl−1)Φi(λj)D
Φi(λj) +DΦi(λl−1)


and so we can conclude that dλl−1λj

= dΦi(λl−1)Φi(λj) for all l ≤ j ≤ y, αl−1 =

δi(B)! and so βl−1 = δi(B)!. Therefore,

Dλl−1 ↓Φi(B)∼ δi(B)!DΦi(λl−1) and DΦi(λl−1) ↑B∼ δi(B)!Dλl−1

and

SΦi(λl−1) ∼
y∑

j=l−1

dλl−1λj
DΦi(λj). (2.2.10)
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Thus, points 1. and 2. are proved for any λj with 1 ≤ j ≤ y, point 3. follows

immediately from (2.2.10), and point 4. follows from (2.2.3).



3

Full runner removal theorem for

Ariki-Koike algebras

One of the most important outstanding problems in the representation theory of

symmetric groups and related algebras is the determination of the decomposition

numbers.

Ariki’s theorem in [Ari96] tells us that the decomposition numbers for

Iwahori-Hecke algebras and Ariki–Koike algebras in characteristic 0 are the

q-decomposition numbers dλµ(q) evaluated at q = 1. The q-decomposition

numbers arise from the Fock space representation of the quantum group Uq(ŝle).

This has a natural basis indexed by the set of partitions for Hn (or

multipartitions for Hr,n), and a canonical basis which is invariant under the bar

involution. The q-decomposition numbers are the entries of the transition

matrix between these two bases and therefore can be deduced from the

computation of the canonical basis.

For Iwahori-Hecke algebras of Sn, there is a fast algorithm due to Lascoux,

Leclerc and Thibon [LLT96] for computing the canonical basis.

For Ariki-Koike algebras, there are different generalisations of this algorithm

due to Jacon [Jac05], Yvonne [Yvo07a] and Fayers [Fay10]. Yvonne’s algorithm

is very slow compared to the others, since it computes the canonical basis for

the whole of the Fock space. Jacon’s algorithm is faster, however it works in

a particular type of twisted Fock space. Fayers’ algorithm remains in the more

natural setting of the untwisted Fock space; although the twisted and untwisted

Fock spaces are isomorphic, so that in principle one canonical basis determines

the other, it is in practice very difficult to give an explicit isomorphism.

In this chapter we introduce the Fock space representation of the quantum

group Uq(ŝle) and present the Fayers’ LLT-type algorithm for Ariki-Koike

algebras. They are the background of the second main result of this thesis, i.e.

a ‘full’ runner removal theorem for Ariki-Koike algebras. As we outlined in the

introduction, James and Mathas in [JM02] and Fayers in [Fay07a] proved an

empty runner removal theorem and a full runner removal theorem for

Iwahori-Hecke algebras, respectively.

We generalise Fayers’ result to the case of Ariki-Koike algebras. For the class

60
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of e-multiregular multipartitions, we show that the q-decomposition numbers

dλµ(q) and dλ+µ+(q) coincide, where λ+ and µ+ are the multipartitions obtained

from the e-abacus display of λ and µ by adding a ‘long enough’ runner full of

beads to each of their components.

Throughout this chapter, we let e ≥ 2 be an integer and we identify I with

the set Z/eZ.

3.1 An LLT-type algorithm for Ariki-Koike algebras

In this section we consider the integrable representation theory of the quantised

enveloping algebra U = Uq(ŝle). For any dominant integral weight Λ for U , the
irreducible highest-weight module V (Λ) for U can be constructed as a submodule

Ms of a Fock space Fs (which depends not just on Λ but on an ordering of

the fundamental weights involved in Λ). Using the standard basis of the Fock

space, one can define a canonical basis for Ms. There is considerable interest

in computing this canonical basis (that is, computing the transition coefficients

from the canonical basis to the standard basis) because of Ariki’s theorem, which

says that these coefficients, evaluated at q = 1, yield decomposition numbers for

certain cyclotomic Hecke algebras. In the case where Λ is of level 1, there is a

fast algorithm due to Lascoux, Leclerc and Thibon [LLT96] for computing the

canonical basis. The purpose of this section is to present the generalisation of

this algorithm to higher levels given by Fayers in [Fay10]. The way Fayers does

this is to compute the canonical basis for an intermediate module M⊗s, which is

defined to be the tensor product of level 1 highest-weight irreducibles. It is then

straightforward to discard unwanted vectors to get the canonical basis for Ms.

3.1.1 The quantum algebra Uq(ŝle) and the Fock space

We use the following notation for multipartitions. If λ = (λ(1), . . . , λ(r)) is an

r-multipartition for r > 1, then we write λ− for the (r − 1)-multipartition

(λ(2), . . . , λ(r)). If ν is an (r − 1)-multipartition, we write ν+ for the

r-multipartition (∅, ν(1), . . . , ν(r−1)). Finally, if µ is an r-multipartition, we

write µ0 for the r-multipartition (µ−)+ = (∅, µ(2), . . . , µ(r)). We write Pr for

the set of r-multipartitions.

Definition 3.1.1. We say that a multipartition λ is e-multiregular if λ(j) is

e-regular for each j. We write R for the set of e-regular partitions and Rr for

the set of all e-multiregular r-multipartitions, if e is understood.

We let U denote the quantised enveloping algebra Uq(ŝle). This is a Q(q)-

algebra with generators ei, fi for i ∈ I and qh for h ∈ P∨, where P∨ is a free

Z-module with basis {hi | i ∈ I} ∪ {d}. Denote the dual basis of (P∨)∗ by
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{Λ0, . . . ,Λe−1, δ}. These generators are subjected to the following relations

qhqh
′
= qh+h′

, q0 = 1,

qhejq
−h = q⟨αj ,h⟩ej ,

qhfjq
−h = q−⟨αj ,h⟩fj ,

[ei, fj ] = δij
qhi − q−hi

q − q−1
,

1−⟨αi,hj⟩∑
k=0

(−1)k
[
1− ⟨αi, hj⟩

k

]
e
1−⟨αi,hj⟩−k
i eje

k
i = 0 (i ̸= j),

1−⟨αi,hj⟩∑
k=0

(−1)k
[
1− ⟨αi, hj⟩

k

]
f
1−⟨αi,hj⟩−k
i fjf

k
i = 0 (i ̸= j),

where αj = aΛi − λi−1 − Λi+1 + δi0δ for i = 0, 1, . . . , e − 1. Here we follow the

usual notation for q-integers, q-factorials and q-binomial coefficients:

[k] =
qk − q−k

q − q−1
, [k]! = [k][k − 1] · · · [1],

[
m

k

]
=

[m]!

[m− k]![k]!
.

For any integer m > 0, we write f
(m)
i to denote the quantum divided power

fm
i /[m]!.

There are various choices for a comultiplication which makes U into a Hopf

algebra (and hence allows us to regard the tensor product of two U-modules as a

U-module). We use the comultiplication denoted ∆ in [Kas02], which is defined

by

∆ : ei 7−→ ei ⊗ q−hi + 1⊗ ei,

fi 7−→ fi ⊗ 1 + qhi ⊗ fi,

qh 7−→ qh ⊗ qh

for all i ∈ I and all h ∈ P∨.

The Q-linear ring automorphism : U → U defined by

ei = ei, fi = fi, q = q−1, qh = q−h

for i ∈ I and h ∈ P∨ is called the bar involution.

Now we fix s ∈ Ir for some r ≥ 1, and define the Fock space Fs to be the

Q(q)-vector space with a basis {λ | λ ∈ Pr}, which we call the standard basis.

This has the structure of a U-module: for a full description of the module action,

we refer to [Fay10]. Here, we describe the action of the generators f0, . . . , fe−1.

Given λ, ξ ∈ Pr, then we write λ
m:i−−→ ξ to indicate that ξ is obtained from λ
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by adding m addable i-nodes. If this is the case, then we consider the total order

> on addable and removable nodes and so we define the integer

Ni(λ, ξ) =
∑

n∈ξ\λ

((number of addable i-nodes of ξ above n)

− (number of removable i-nodes of λ above n)). (3.1.1)

Now the action of f
(m)
i is given by

f
(m)
i λ =

∑
λ

m:i−−→ξ

qNi(λ,ξ)ξ.

Proposition 3.1.2. Let i ∈ I. Suppose λ and ξ are r-multipartitions such that

λ
m:i−−→ ξ. Then

Ni(λ, ξ) =
∑

n∈ξ\λ

Ni(λ
(Jn), ξ(Jn)) +

Jn−1∑
j=1

Ni(λ
(j), ξ(j))

 ,

where Jn is the component of n in ξ.

Proof. This follows from the definition of Ni(λ, ξ) and from the total order >

on the set of all addable and removable nodes in a multipartition (Subsection

1.4.5). Indeed, for each n ∈ ξ \ λ, a term of Ni(λ, ξ) consists of

#{addable i-nodes of ξ above n} −#{removable i-nodes of λ above n},

and the nodes above n are exactly those above n in the component Jn and all the

nodes in components j with j < Jn. So, for each n ∈ ξ \ λ, a term of Ni(λ, ξ)

consists of

Ni(λ
(Jn), ξ(Jn)) +

Jn−1∑
j=1

Ni(λ
(j), ξ(j))

where Ni(λ
(Jn), ξ(Jn)) is given by (3.1.1), and for j < Jn

Ni(λ
(j), ξ(j)) = #{addable i-nodes of ξ(j)} −#{removable i-nodes of λ(j)}.

The Fock space is of interest because the submodule Ms generated by ∅∅∅ is

isomorphic to the irreducible highest-weight module V (Λs1 + · · · + Λsr). This

submodule inherits a bar involution from U : this is defined by ∅∅∅ = ∅∅∅ and

um = um for all u ∈ U and m ∈Ms. This bar involution allows one to define a

canonical basis forMs; this consists of vectorsGs(µ), for µ lying in some subset

of Pr (with our conventions, this is what Brundan and Kleshchev [BK09] call the
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set of regular multipartitions). These canonical basis vectors are characterised by

the following properties:

• Gs(µ) = Gs(µ);

• if we write Gs(µ) =
∑

λ∈Pr dsλµ(q)λ with dsλµ(q) ∈ Q(q), then dsµµ(q) = 1,

while dsλµ(q) ∈ qZ[q] if λ ̸= µ; in particular, dsλµ(q) = 0 unless µ ⊵ λ.

A lot of effort has been put in computing the canonical basis elements (i.e.

computing the transition coefficients dsλµ(q)), because of the following theorem.

Theorem 3.1.3. [Ari96, Theorem 4.4] Let F be a field of characteristic 0 and

s ∈ Ir be a multicharge. Suppose λ, µ are r-multipartitions of n with µ dual

Kleshchev. Then

[S′(λ) : D′(µ)] = dsλµ(1).

This theorem, indeed, says that the coefficients dsλµ(q) specialised at q = 1

give the decomposition numbers of the corresponding cyclotomic Hecke

algebras. In fact, thanks to the work of Brundan and Kleshchev [BK09], the

coefficients dsλµ(q) (with q still indeterminate) can be regarded as graded

decomposition numbers where ‘graded’ is referred to the Z-grading that

Ariki-Koike algebras inherits by being isomorphic to certain quotients of KLR

algebras.

In [BK09], they also extend the bar involution on Ms to the whole of Fs. The

way of showing this involves using Uglov’s construction [Ugl99] of twisted Fock

spaces, and then taking a limit via Yvonne’s theorem [Yvo07b]. The extension

of the bar involution to Fs yields a canonical basis for the whole of Fs, indexed

by the set of all r-multipartitions. In particular we get the following result.

Theorem 3.1.4. [Fay10] For each multipartition µ, there is a unique vector

Gs(µ) =
∑
λ∈Pr

dsλµ(q)λ ∈ Fs with dsλµ(q) ∈ Q(q)

such that

• Gs(µ) = Gs(µ);

• dsµµ(q) = 1, while dsλµ(q) ∈ qZ[q] if λ ̸= µ;

• dsλµ(q) = 0 unless µ ⊵ λ.

In principle, Uglov’s construction gives an algorithm for computing the

canonical basis of Ms. However, in practice this algorithm is extremely slow.

So, we introduce and use Fayers’ algorithm that is much faster.
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Fayers’ approach is to compute the canonical basis for a module lying in

between Ms and Fs. The way Fs is defined and the choice of coproduct on U
mean that there is an isomorphism

Fs ∼−→ F (s1) ⊗ · · · ⊗ F (sr)

defined by linear extension of

λ 7−→ (λ(1))⊗ · · · ⊗ (λ(r)).

We will henceforth identify Fs and F (s1) ⊗ · · · ⊗ F (sr) via this isomorphism.

Since each F (sk) contains a submodule M (sk) isomorphic to V (Λsk), Fs contains

a submodule M⊗s = M (s1)⊗ · · ·⊗M (sr) isomorphic to V (Λs1) ⊗ . . . ⊗ V (Λsr).

This algorithm will compute the canonical basis of M⊗s.

For presenting Fayers’ LLT-type algorithm, we need the following result on

canonical basis coefficients, since it will allow us to apply one of the steps of the

algorithm. Recall that for any r-multipartition λ we define λ− = (λ(2), . . . , λ(r));

we also define s− = (s2, . . . , sr) for s ∈ Ir.

Corollary 3.1.5. [Fay10, Corollary 3.2] Suppose s ∈ Ir for r > 1 and µ ∈ Pr

with µ(1) = ∅. If we write

Gs−(µ−) =
∑

ν∈Pr−1

ds−νµ−ν,

then

Gs(µ) =
∑

ν∈Pr−1

ds−νµ−ν+.

3.1.2 The LLT algorithm for r = 1

Before presenting the Fayers’ LLT-type algorithm for Ariki-Koike algebras, we

restrict attention to the case r = 1, and explain the LLT algorithm for

computing canonical basis elements G(s1)(µ). (In fact, the superscript (s1) is

unnecessary here, because G(s1)(µ) is independent of s1; in general, Gs(µ)

should be unchanged if a fixed element of I is added to s1, . . . , sr

simultaneously.) The LLT algorithm was first described in the paper [LLT96],

to which we refer for more details and examples.

The canonical basis elements forM (s1) are indexed by the e-regular partitions.

To construct G(s1)(µ) when µ is e-regular, we begin by constructing an auxiliary

vector A(µ). Let l1 < · · · < lt be the values of l for which Ll(µ) is non-empty.

For each k, let mk denote the number of nodes in Llk(µ), and let ik denote the
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residue of Llk . Then the vector A(µ) is defined by

A(µ) = f
(mt)
it

. . . f
(m1)
i1

·∅.

A(µ) is obviously bar-invariant, and a lemma due to James [JK81, 6.3.54 & 6.3.55]

implies that when we expand A(µ) as

A(µ) =
∑
ν∈P

aνν,

we have aµ = 1, while aν = 0 unless µ ⊵ ν. This means that A(µ) must equal

G(s1)(µ) plus a Q(q+ q−1)-linear combination of canonical basis vectors G(s1)(ν)

with µ ▷ ν. Assuming (by induction on the dominance order) that these G(s1)(ν)

have been computed, it is straightforward to subtract the appropriate multiples

of these vectors from A(µ) to recover G(s1)(µ). Moreover, the fact that the

coefficients of the standard basis elements in A(µ) all lie in Z[q, q−1] means that

the coefficients of the canonical basis elements in A(µ) lie in Z[q + q−1]. A more

precise description of the procedure to strip off these canonical basis elements is

given in the algorithm in Section 3.1.3.

3.1.3 An LLT-type algorithm for r ≥ 1

Now, following [Fay10] we give an algorithm for Ariki-Koike algebras which

generalises the LLT algorithm for r = 1. As mentioned above, this algorithm

actually computes the canonical basis of M⊗s ∼= M (s1) ⊗ · · · ⊗M (sr).

Since the canonical basis elements G(sk)(µ) indexed by e-regular partitions

µ form a basis for M (sk), the tensor product M (s1) ⊗ · · · ⊗ M (sr) has a basis

consisting of all vectors G(s1)(µ(1)) ⊗ · · · ⊗ G(sr)(µ(r)), where µ(1), . . . , µ(r) are

e-regular partitions. Translating this to the Fock space Fs, we find that M⊗s

has a basis consisting of vectors

Hs(µ) =
∑
λ∈Pr

d
(s1)

λ(1)µ(1) . . . d
(sr)

λ(r)µ(r)λ

for all e-multiregular multipartitions µ. In fact, Fayers shows that

Proposition 3.1.6. [Fay07b, Proposition 4.2] The canonical basis vectors Gs(µ)

indexed by e-multiregular r-multipartitions µ form a basis for the module M⊗s.

This implies in particular that the span of these vectors is a U-submodule of

Fs, which will enable our recursive algorithm to work. Proposition 3.1.6 enables

us to construct canonical basis vectors labelled by e-multiregular

multipartitions recursively. As in the LLT algorithm, the idea is that to

construct the canonical basis vector Gs(µ), we construct an auxiliary vector

A(µ) which is bar-invariant, and which we know equals Gs(µ) plus a linear
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combination of ‘lower’ canonical basis vectors; the bar-invariance of A(µ),

together with dominance properties, allows these lower terms to be stripped off.

In our algorithm, we take additional care to make sure that A(µ) lies in M⊗s;

then we know by Proposition 3.1.6 that all the canonical basis vectors occurring

in A(µ) are labelled by e-multiregular multipartitions, and therefore we can

assume that these have already been constructed.

In fact, the proof of Proposition 3.1.6, combined with the construction in the

LLT algorithm for partitions, gives us an LLT-type algorithm for Ariki-Koike

algebras. We formalise this as follows.

Our algorithm is recursive, using a partial order on multipartitions which is

finer than the dominance order: define µ ≽ ν if either |µ(1)| > |ν(1)| or µ(1) ⊵ ν(1).

If r > 1, we assume when computing Gs(µ) for µ ∈ Rr that we have already

computed the vector Gs−(µ−), and that we have computed Gs(ν) for all ν ∈ Rr

with µ ≻ ν.

1. If µ = ∅∅∅, then Gs(µ) = ∅∅∅.

2. If µ ̸= ∅∅∅ but µ(1) = ∅, then compute the canonical basis vector Gs−(µ−).

Then Gs(µ) is given by

Gs(µ) =
∑

ν∈Pr−1

ds−νµ−(q)ν+.

3. If µ(1) ̸= ∅, then apply the following procedure.

(a) Let µ0 = (∅, µ(2), . . . , µ(r)), and compute Gs(µ0).

(b) Let m1, . . . ,mt be the sizes of the non-empty ladders of µ(1) in

increasing order, and i1, . . . , it be their residues. Define

A(µ) = f
(mt)
it

. . . f
(m1)
i1

Gs(µ0). Write A(µ) =
∑

ν∈Pr aνν.

(c) If there is no ν ̸= µ for which aν /∈ qZ[q], then stop. Otherwise, take

such a ν which is maximal with respect to the dominance order, let α

be the unique element of Z[q + q−1] for which aν − α ∈ qZ[q], replace
A(µ) by A(µ) − αGs(ν), and repeat. The remaining vector will be

Gs(µ).

The vector A(µ) computed in step 3 is a bar-invariant element of Ms, because

Gs(µ0) is. Hence by Proposition 3.1.6 A(µ) is a Q(q+q−1)-linear combination of

canonical basis vectors Gs(ν) with ν ∈ Rr. Furthermore, the rule for applying

fi to a multipartition and the combinatorial results used in the LLT algorithm

imply that aµ = 1, and that if aλ ̸= 0, then µ ≽ λ. In particular, the partition ν

appearing in step 3(c) satisfies µ ≻ ν; moreover, when αGs(ν) is subtracted from

A(µ), the condition that aµ = 1 and aλ is non-zero only for µ ≽ λ remains true
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(because of Proposition 3.1.4 and the fact that the order ≽ refines the dominance

order). So we can repeat, and complete step 3(c).

Example 3.1.7. Let us take e = r = 2, and write the set I = Z/2Z as {0, 1}.
Take s = (0, 0).

• First let us compute the canonical basis element Gs(((2, 1), (1))). In the

level 1 Fock space F (0), we have G(0)((1)) = (1), where the partition (1)

really stands for the 1-multipartition ((1)). The non-empty ladders of the

partition (2, 1) are L1 and L2, of lengths 1, 2 and residues 0, 1 respectively.

So we compute

A(((2, 1), (1))) =f
(2)
1 f0(∅, (1))

=((2, 1), (1)) + q((2), (2)) + q2((2), (12)) + q2((12), (2))

+ q3((12), (12)) + q4((1), (2, 1)).

Since the coefficients in A(((2, 1), (1))) (apart from the leading one) are

divisible by q, we have A(((2, 1), (1))) = Gs(((2, 1), (1))).

• Next we compute Gs(((4),∅)). This time our auxiliary vector is

A(((4),∅)) =f1f0f1f0(∅,∅)

= ((4),∅) + q((3, 1),∅) + q((2, 12),∅) + q2((14),∅)

+ (1 + q2)((2, 1), (1)) + 2q((2), (2)) + 2q2((2), (12))

+ 2q2((12), (2)) + 2q3((12), (12)) + (q2 + q4)((1), (2, 1))

+ q2(∅, (4)) + q3(∅, (3, 1)) + q3(∅, (2, 12)) + q4(∅, (14)).

And so we have

Gs(((4),∅)) =A(((4),∅))−Gs(((2, 1), (1)))

= ((4),∅) + q((3, 1),∅) + q((2, 12),∅) + q2((14),∅)

+ q2((2, 1), (1)) + q((2), (2)) + q2((2), (12)) + q2((12), (2))

+ q3((12), (12)) + q2((1), (2, 1)) + q2(∅, (4)) + q3(∅, (3, 1))

+ q3(∅, (2, 12)) + q4(∅, (14)).

3.2 Addition of a full runner

Here, we recall the definition presented in [Fay07a] of adding a runner ‘full’ of

beads to the abacus display of a partition. This will provide us the setting to

generalise this definition to the case of a multipartition.
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3.2.1 Truncated abacus configuration

To begin, consider the abacus configuration for a partition λ = (λ1, . . . , λt). The

set Ba(λ) of β-numbers used to define the abacus is an infinite set, and as such

we have an infinite amount of beads in the abacus configuration, in particular

there is a point where every row to the north of this point is completely full of

beads. Instead we can consider a truncated abacus configuration which has only

finitely many beads on each runner, which we associate to a partition by filling

in all the rows north of the highest beads with other beads. Conversely, if we

are given a partition λ we can fix a truncated abacus configuration associated to

it. Let N be an integer so that x ∈ Ba(λ) whenever x < Ne. Then we define

the truncated abacus configuration for λ to be the one corresponding to the set

Ba(λ)∩{Ne,Ne+1, . . .}. Notice that in terms of truncated abacus configuration,

it makes sense to talk about the number of beads in the abacus. In particular,

the truncated abacus configuration of λ constructed in this way consists of a−Ne

beads. Indeed,

Ba(λ) ∩ {Ne,Ne+ 1, . . .} = {λ1 + a− 1, . . . , λt + a− t, 0 + a− t− 1, . . . , Ne}.

Hence, the number of beads of the truncated abacus configuration is equal to

|{λ1 + a− 1, . . . , λt + a− t, 0 + a− t− 1, . . . , Ne}|,

that is t + a − t − 1 −Ne + 1 = λ′
1 + a − λ′

1 − 1 −Ne + 1 = a −Ne. Thus, we

will write Abe(λ)a−Ne for the truncated e-abacus configuration of λ with a−Ne

beads.

Example 3.2.1. Suppose λ = (7, 4, 22), e = 5 and a = 0. Then we take N = −1,
so that

B0(λ) ∩ {−5,−4,−3, . . .} = {6, 2,−1,−2,−5}.

So, the truncated abacus display is

0 1 2 3 4

{ { {{{
qqq qqq qqq qqq qqq

.
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If we take N = −3, then we have

B0(λ) ∩ {−15,−14,−13, . . .}

= {6, 2,−1,−2,−5,−6,−7,−8,−9,−10,−11,−12,−13,−14,−15}.

This choice of N gives the following truncated abacus configuration

0 1 2 3 4

{ { { { {{ { { { {{ { {{{
qqq qqq qqq qqq qqq

.

Notice that for partitions the label of a runner does not correspond in general

to the residue of the nodes represented by beads in that runner. Indeed, take

i, j ∈ I, the beads on runner j correspond to i-nodes of a partition λ with j ≡ i+b

mod e where b is the number of beads of the truncated abacus configuration of

λ.

Now, we want to have a closer look at the truncated e-abacus configuration

of the empty partition ∅.

Remark 3.2.2. Let e ≥ 2. Any truncated e-abacus configuration of ∅ has all

the beads as high as possible with the runners from 0 to i consisting of h + 1

beads and the runners from i + 1 to e − 1 consisting of h beads for some i ∈ I

and some h ≥ 0.

Proof. If µ = ∅ and a is an integer, then its set of β-numbers is

Ba(µ) = {a− 1, a− 2, a− 3, . . .}.

Write a− 1 = Me+ i with M ∈ Z and 0 ≤ i ≤ e− 1. Choosing N ≤M , we get

Ba(µ) ∩ {Ne,Ne+ 1, . . .} = {a− 1, . . . , Ne},

that gives a truncated abacus configuration with a − Ne = (M − N)e + i + 1

beads and with all the positions in the abacus lower than a− 1 filled with beads.

The positions in the abacus lower than a − 1 are all the positions in the rows

above the one of a − 1 and all the positions in the same row and to the left of

a − 1. In particular, setting h := M − N , there will be h + 1 beads in the first
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i+ 1 runners and h beads in the remaining e− i− 1 runners.

Example 3.2.3. Suppose µ = ∅ and e = 3.

1. We choose a = 2. Then we take N = −2, so that

B2(µ) ∩ {−6,−5,−4,−3, . . .} = {1, 0,−1,−2,−3,−4,−5,−6}.

So, the truncated abacus display is

0 1 2

{ { {{ { {{ {
qqq qqq qqq

.

2. If we choose a = 1, we get the following truncated abacus display

0 1 2

{ { {{ { {{
qqq qqq qqq

.

3.2.2 Addition of a full runner for r = 1 and empty partition

Following [Fay07a], we define the addition of a ‘full’ runner for the abacus display

of a partition.

Given a partition λ and a non-negative integer k, we construct a new partition

λ+k as follows. Let a,N ∈ Z such that a ≥ Ne. Construct the truncated abacus

configuration for λ with b := a−Ne beads as in Section 3.2.1. Write b+k = ce+d,

with 0 ≤ d ≤ e − 1, and add a runner to the abacus display immediately to the

left of runner d; now put c beads on this new runner, in the top c positions, i.e.

the position labelled d, d+ e+ 1, . . . , d+ (c− 1)(e+ 1) in the usual labelling for

an abacus with e+ 1 runners. The partition whose abacus display is obtained is

λ+k.

Remark 3.2.4. The beads in the new inserted runner of λ+k correspond to nodes

of residue k mod (e+ 1).
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Proof. Construct the truncated e-abacus configuration for λ with b beads as

above. Write b + k = ce + d with 0 ≤ d ≤ e − 1. So the new inserted runner is

labelled by d. We want to show that d ≡ k + (b + c) mod (e + 1), since b + c is

the number of beads in the truncated (e+ 1)-abacus configuration of λ+k. This

is true because k + b+ c = ce+ d+ c = c(e+ 1) + d.

We extend the operator +k linearly to the whole of the Fock space F . We can

now state the full runner removal theorem for the Iwahori-Hecke algebras of Sn

in terms of canonical bases.

Theorem 3.2.5. [Fay07a, Theorem 3.1] Suppose µ is an e-regular partition and

k ≥ µ1. Then Ge+1(µ
+k) = Ge(µ)

+k.

We want to focus our attention on the addition of a ‘full’ runner for the empty

partition ∅.

Remark 3.2.6. Let k be a non-negative integer. Notice that ∅+k is an (e+ 1)-

core. This follows by construction because in its abacus configuration all the

beads are as high as possible.

Proposition 3.2.7. Let k be a non-negative integer.

1. If k ∈ {0, . . . , e}, then ∅+k = ∅.

2. Let k > e and k = k1e+ k2 with k1 ≥ 1 and 0 ≤ k2 ≤ e− 1.

(a) If k2 = 0, then ∅+k = ((k1 − 1)e, (k1 − 2)e, . . . , e).

(b) If k2 ̸= 0, then ∅+k = ((k1 − 1)e+ k2, (k1 − 2)e+ k2, . . . , k2).

Proof. Take a, N ∈ Z such that a ≥ Ne and construct the truncated abacus

configuration of ∅ consisting of b := a − Ne beads. Let i be the label of the

runner of the last bead in Abe(∅), we have a − 1 = Me + i for some M ∈ Z.
Then b = he + i + 1 with h := M −N . By Remark 3.2.2, the truncated abacus

display of ∅ looks like the following:

0 1 . . . i i+ 1 . . . e− 1

. . . . . .{ {

. . .
{ {

. . .
{

qqq qqq qqq qqq qqq{ {
. . .

{ {
. . .

{{ {
. . .

{
. . .

. . . . . .qqq qqq qqq qqq qqq
with h+1 beads in runners from 0 to i and h beads in runners from i+1 to e−1.
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1. If k = {0, . . . , e}, then it is enough to show that the new inserted runner

has either h or h+1 beads because by Remark 3.2.2 the resulting truncated

(e+ 1)-abacus configuration of ∅+k represents ∅.

• If k ∈ {0, . . . , e− i− 2}, then b+ k = he+ i+ 1 + k with i+ 1 + k ∈
{i+ 1, . . . , e− 1}. Hence, the new inserted runner consists of h beads

and it is on the left of runner i+ 1 + k. By Remark 3.2.2, the runner

i of Abe(∅) has h+1 beads, and all the runners of Abe(∅) from i+1

to e− 1 has exactly h beads. So, Abe+1(∅+k) represents ∅.

• If k ∈ {e − i − 1, . . . , e}, then b + k = (h + 1)e + i + 1 + k − e with

i+ 1+ k− e ∈ {0, . . . , i+ 1}. Hence, the new inserted runner consists

of h+1 beads and it is on the left of runner i+1+ k− e. By Remark

3.2.2, all the runners of Abe(∅) from 0 to i has exactly h + 1 beads.

So, Abe+1(∅+k) represents ∅.

2. If k > e, write k = k1e+ k2 with k1 ≥ 1 and 0 ≤ k2 ≤ e− 1.

(a) If k2 = 0 and i ̸= e − 1, then b + k = (h + k1)e + i + 1. Hence, we

add the new runner to the left of runner i+1 with h+k1 beads in the

top positions. Reading off the partition from Abe+1(∅+k) we get the

partition ((k1 − 1)e, (k1 − 2)e, . . . , e). Indeed, there are k1 − 1 beads

after the first empty position in Abe+1(∅+k), and all of them are beads

of the new inserted runner, so between two consecutive beads there are

e empty positions.

If k2 = 0 and i = e − 1, then b + k = (h + k1 + 1)e. Hence, we add

the new runner to the left of runner 0 with h + k1 + 1 beads in the

top positions. As above, reading off the partition from Abe+1(∅+k)

we get the partition ((k1 − 1)e, (k1 − 2)e, . . . , e).

(b) If k2 ̸= 0 and k2 ∈ {0, . . . , e− i−2}, then b+k = (h+k1)e+ i+1+k2.

Hence, we add the new runner to the left of runner i+1+k2 with h+k1

beads in the top positions. Reading off the partition from Abe+1(∅+k)

we get the partition ((k1−1)e+k2, (k1−2)e+k2, . . . , k2). Indeed, the

first bead from the first empty position occurs after (b + k) − b mod

e = k2 empty spaces. Also, there are k1 beads after the first empty

position in Abe+1(∅+k), and all of them are beads of the new inserted

runner, so between two consecutive beads there are e empty positions.

If k2 ̸= 0 and k2 ∈ {e− i− 1, . . . , e− 1}, then b+ k = (h+ k1 + 1)e+

i + 1 + k2 − e. As above, reading off the partition from Abe+1(∅+k)

we get the partition ((k1 − 1)e+ k2, (k1 − 2)e+ k2, . . . , k2).
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Example 3.2.8. Consider the empty partition and e = 3. Consider the abacus

display in Example 3.2.3 with b = 7.

1. Take k = 8 = 2 · 3 + 2. Then ∅+8 has the following abacus configuration

0 1 2 3

{ { { {{ { { {{ {{{
qqq qqq qqq qqq

.

So, we have that ∅+8 = (5, 2).

2. Take k = 9 = 3 · 3 + 0. Then ∅+9 has the following abacus configuration

0 1 2 3

{ { { {{ { { {{ {{{
qqq qqq qqq qqq

.

So, we have that ∅+9 = (6, 3).

3. Take k = 10 = 3 · 3 + 1. Then ∅+10 has the following abacus configuration

0 1 2 3

{ { { {{ { { {{ {{{
qqq qqq qqq qqq

.

So, we have that ∅+10 = (7, 4, 1).
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Remark 3.2.9. All the removable nodes of ∅+k have the same residue because

if there are any removable nodes in ∅+k, they are the nodes corresponding to the

beads in the new inserted runner and they have all the same residue k mod (e+1)

as shown in Remark 3.2.4.

This remark is helpful because it allows us to find an induction sequence from

∅ to ∅+k, as shown in the following. From now on, given an integer j we denote

by j the residue of j modulo e + 1 and by Fi for i ∈ Z the generator fi of the

quantised enveloping algebra Uq(ŝle+1). For ℓ ≥ 1 and i ∈ Z, set

G(ℓ)
i

:= F
(ℓ)

i
F
(ℓ)

i−1
. . .F

(ℓ)

i−(e−1)
. (3.2.1)

Proposition 3.2.10. Let k be a non-negative integer. Write k = k1e+ k2 with

k1 ≥ 0 and 0 ≤ k2 ≤ e− 1. Then

F
(k1)

k
F
(k1)

k−1
. . .F

(k1)

k−k2+1
G(k1−1)

k−k2
G(k1−2)

k−k2+1
. . .G(1)

k−k2+k1−2
(∅) = ∅+k.

where F
(k1)

k
F
(k1)

k−1
. . .F

(k1)

k−k2+1
only occur if k2 ̸= 0.

Proof. We prove this by induction on k.

• If k < e, then ∅+k = ∅ by Proposition 3.2.7, so there is nothing to prove.

• Suppose k ≥ e and write k = k1e + k2 with k1 ≥ 1 and 0 ≤ k2 ≤ e − 1.

Then by Lemma 3.3 in [Fay07a] we have ∅+k = F
(m)

k̄
(∅+(k−1)) for some

constant m. In particular, by the proof of Proposition 3.2.7 we know that

– if k2 = 0, then m = k1 − 1;

– if k2 ̸= 0, then m = k1.

We study the two cases separately.

– If k2 = 0, then k − 1 = (k1 − 1)e + e − 1 and so by the induction

hypothesis we have

∅+(k−1) = F
(k1−1)

k−1
F
(k1−1)

k−2
· · ·F(k1−1)

k−1−e+1+1
G(k1−1−1)

k−1−e+1

G(k1−1−2)

k−1−e+1+1
. . .G(1)

k−1−e+1+k1−1−2
(∅)

= F
(k1−1)

k−1
F
(k1−1)

k−2
· · ·F(k1−1)

k−e+1
G(k1−2)

k+1
G(k1−3)

k+2
. . .G(1)

k+k1−2
(∅).

Hence,

∅+k = F
(k1−1)

k
F
(k1−1)

k−1
F
(k1−1)

k−2
· · ·F(k1−1)

k−e+1
G(k1−2)

k+1
G(k1−3)

k+2
. . .G(1)

k+k1−2
(∅)

= G(k1−1)

k
G(k1−2)

k+1
G(k1−3)

k+2
. . .G(1)

k+k1−2
(∅).
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– If k2 ̸= 0, then k− 1 = k1e+ k2− 1 and so by induction hypothesis we

have

∅+(k−1) = F
(k1)

k−1
F
(k1)

k−1−1
· · ·F(k1)

k−1−k2+1+1
G(k1−1)

k−1−k2+1

G(k1−2)

k−1−k2+1+1
. . .G(1)

k−1−k2+1+k1−2
(∅)

= F
(k1)

k−1
F
(k1)

k−2
· · ·F(k1)

k−k2+1
G(k1−1)

k−k2
G(k1−2)

k−k2+1
. . .G(1)

k−k2+k1−2
(∅).

Hence,

∅+k = F
(k1)

k
F
(k1)

k−1
F
(k1)

k−2
· · ·F(k1)

k−k2+1
G(k1−1)

k−k2
G(k1−2)

k−k2+1
. . .G(1)

k−k2+k1−2
(∅).

We give some examples of the induction sequence we want to deal with.

Example 3.2.11. With the same notation and choices of Example 3.2.8, the

induction sequence given in Proposition 3.2.10 from ∅ to ∅+k acts as follows.

Notice that at each step we apply the induction operators starting from the

rightmost one.

2. For k = 9, in terms of abacus configuration we have
0 1 2 3

{ { { {{ { { {{ { { {

qqq qqq qqq qqq

F2F1F0−−−−→

0 1 2 3

{ { { {{ { { {{ { {{
qqq qqq qqq qqq

F
(2)
1 F

(2)
0 F

(2)
3−−−−−−−→

0 1 2 3

{ { { {{ { { {{ {{{
qqq qqq qqq qqq

.

3. For k = 10, in terms of abacus configuration we have
0 1 2 3

{ { { {{ { { {{ { { {

qqq qqq qqq qqq

F2F1F0−−−−→

0 1 2 3

{ { { {{ { { {{ { {{
qqq qqq qqq qqq

F
(2)
1 F

(2)
0 F

(2)
3−−−−−−−→

0 1 2 3

{ { { {{ { { {{ {{{
qqq qqq qqq qqq
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F
(3)
2−−→

0 1 2 3

{ { { {{ { { {{ {{{
qqq qqq qqq qqq

.

Another useful result will be the next lemma that gives a way to establish

when a sequence of induction operators F
(m)

ī
for m, i ∈ Z with m ≥ 0 acts non-

zero.

Lemma 3.2.12. Let k ≥ e+1. Write k = k1e+k2 with k1 ≥ 1 and 0 ≤ k2 ≤ e−1.
Consider

F
(qe+1)

k+e+1
F
(qe)

k+e
. . .F

(q2)

k+2
F
(q1)

k+1
(∅+(k−e−1)), (3.2.2)

for some qj ≥ 0 for all 1 ≤ j ≤ e+ 1. Then (3.2.2) ̸= 0 if and only if

1. k1− 1 ≥ q1 ≥ q2 ≥ . . . ≥ qe+1−k2 , and qe+2−k2 ≥ qe+3−k2 ≥ . . . ≥ qe+1, and,

2. if qe+1−k2 = k1 − 1, then qe+1−k2 ≥ qe+2−k2 − 1;

if qe+1−k2 < k1 − 1, then qe+1−k2 ≥ qe+2−k2 .

Proof. We want to prove that (3.2.2) ̸= 0 if and only if conditions 1. and 2.

hold. This is equivalent to proving that

F
(qj)

k+j
. . .F

(q1)

k+1
(∅+(k−e−1)) ̸= 0 for all 1 ≤ j ≤ e+ 1 (3.2.3)

if and only if conditions 1. and 2. hold. Recall that if s is the runner

corresponding to nodes of residue k + j, then F
(qj)

k+j
moves qj beads from runner

s − 1 to runner s. Moreover, by Proposition 3.2.7, the addable nodes of residue

k + 1 of ∅+(k−e−1) are the nodes corresponding to beads in the new inserted

runner and there are k1 − 1 of them.

In particular, given the abacus configuration of ∅+(k−e−1), for each

j ̸= e + 2 − k2 the number of addable nodes of residue k + j of any term in

F
(qj−1)

k+j−1
. . .F

(q1)

k+1
(∅+(k−e−1)) is qj−1. For j = e + 2 − k2, the number of addable

nodes of residue k + j = k + e+ 2− k2 = k − k2 + 1 of any term in

F
(qe+1−k2

)

k−k2
. . .F

(q1)

k+1
(∅+(k−e−1)) is

• qe+1−k2 + 1 if qe+1−k2 = k1 − 1,

• qe+1−k2 if qe+1−k2 < k1 − 1.

We proceed by induction on j.

• If j = 1, then F
(q1)

k+1
(∅+(k−e−1)) ̸= 0 if and only if q1 ≤ k1 − 1 because the

number of addable nodes of residue k + 1 of ∅+(k−e−1) is k1 − 1.
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• If j > 1, then by induction hypothesis we know

Fj−1(∅+(k−e−1)) := F
(qj−1)

k+j−1
. . .F

(q1)

k+1
(∅+(k−e−1)) ̸= 0

if and only if conditions 1. and 2. hold for q1, . . . , qj−1. We want to prove

that

F
(qj)

k+j
Fj−1(∅+(k−e−1)) ̸= 0

if and only if the conditions 1. and 2. hold also for qj .

– If j ≤ e + 1 − k2, then the number of addable nodes of residue k + j

of any term in Fj−1(∅+(k−e−1)) is qj−1. So, F
(qj)

k+j
Fj−1(∅+(k−e−1)) ̸= 0

if and only if qj−1 ≥ qj .

– If j = e+2− k2, then the number of addable nodes of residue k + j =

k − k2 + 1 of any term in Fe+1−k2(∅+(k−e−1)) isqe+1−k2 + 1 if qe+1−k2 = k1 − 1,

qe+1−k2 if qe+1−k2 < k1 − 1.

So, if qe+1−k2 = k1 − 1 then F
(qe+2−k2

)

k−k2+1
Fe+1−k2(∅+(k−e−1)) ̸= 0 if and

only if qe+1−k2 ≥ qe+2−k2 − 1. If qe+1−k2 < k1 − 1 then

F
(qe+2−k2

)

k−k2+1
Fe+1−k2(∅+(k−e−1)) ̸= 0 if and only if qe+1−k2 ≥ qe+2−k2 .

– If j > e + 2 − k2, then the number of addable nodes of residue k + j

of any term of Fj−1(∅+(k−e−1)) is qj−1. So, F
(qj)

k+j
Fj−1(∅+(k−e−1)) ̸= 0

if and only if qj−1 ≥ qj .

Corollary 3.2.13. In the same notation of Lemma 3.2.12, if Equation (3.2.2) is

non-zero then it holds that

• if qe+1−k2 < k1 − 1, then qe+1 ≤ q1;

• if qe+1−k2 = k1 − 1, then qe+1 ≤ q1 + 1.

Proof. It follows directly from writing the inequalities of conditions 1. and 2. of

Lemma 3.2.12 one next to the other for the two cases.

3.2.3 Addition of a full runner for r ≥ 2

Let λ be a r-multipartition of n and κ = (κ1, . . . , κr) be a multicharge for Hr,n.

For each j ∈ {1, . . . r}, we represent each component λ(j) with a truncated abacus

consisting of nj beads such that nj ≡ κj mod e.

Given λ as above, we construct a new r-multipartition as follows. Let

0 ≤ d ≤ e− 1. For each j ∈ {1, . . . , r},
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• take nj determined as above and construct the abacus display for λ(j) with

nj beads;

• set k(j) a non-negative integer such that nj + k(j) ≡ d mod e for all j ∈
{1, . . . , r};

• write nj + k(j) = cje+ d for all j ∈ {1, . . . , r};

• add a runner to each component of the abacus display immediately to the

left of runner d;

• for each j, put cj beads on the new inserted runner of each component j,

in the top cj positions, i.e. the positions labelled by d, d + e + 1, . . . , d +

(cj − 1)(e+ 1) in the usual labelling for an abacus with e+ 1 runners.

The r-multipartition whose abacus is obtained is λ+k := λ+(k(1),...,k(r)).

Remark 3.2.14. Notice that choosing the number of beads (n1, . . . , nr) in order

to construct the abacus display of a multipartition λ corresponds to the choice

of the multicharge a = (n1, . . . , nr).

Examples 3.2.15. Suppose λ = ((4, 3, 2), (22), (3)) and e = 4. Choose n =

(n1, n2, n3) = (11, 9, 12), that corresponds to choose n as multicharge. So we get

the following abacus display:

0 1 2 3

{ { { {{ { { {{{ {
qqq qqq qqq qqq

,

0 1 2 3

{ { { {{ { {{ {

qqq qqq qqq qqq
,

0 1 2 3

{ { { {{ { { {{ { {{
qqq qqq qqq qqq

.

Then,

• if (k(1), k(2), k(3)) = (0, 2, 3), we obtain λ+(0,2,3) with abacus configuration

0 1 2 3 4

{ { { { {{ { { { {{{ {
qqq qqq qqq qqq qqq

,

0 1 2 3 4

{ { { { {{ { { {{ {

qqq qqq qqq qqq qqq
,

0 1 2 3 4

{ { { { {{ { { { {{ { { {{
qqq qqq qqq qqq qqq

and multicharge equals to (13, 11, 15);
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• if (k(1), k(2), k(3)) = (0, 6, 7), we obtain λ+(0,6,7) with abacus configuration

0 1 2 3 4

{ { { { {{ { { { {{{ {
qqq qqq qqq qqq qqq

,

0 1 2 3 4

{ { { { {{ { { {{ { {

qqq qqq qqq qqq qqq
,

0 1 2 3 4

{ { { { {{ { { { {{ { { {{ {
qqq qqq qqq qqq qqq

and multicharge equals to (13, 12, 16);

• if (k(1), k(2), k(3)) = (1, 3, 0), we obtain λ+(1,3,0) with abacus configuration

0 1 2 3 4

{ { { { {{ { { { {{ {{ {
qqq qqq qqq qqq qqq

,

0 1 2 3 4

{ { { { {{ { { {{ { {

qqq qqq qqq qqq qqq
,

0 1 2 3 4

{ { { { {{ { { { {{ { { {{
qqq qqq qqq qqq qqq

and multicharge equals to (14, 12, 15);

• if (k(1), k(2), k(3)) = (5, 3, 0), we obtain λ+(5,3,0) with abacus configuration

0 1 2 3 4

{ { { { {{ { { { {{ {{ { {
qqq qqq qqq qqq qqq

,

0 1 2 3 4

{ { { { {{ { { {{ { {

qqq qqq qqq qqq qqq
,

0 1 2 3 4

{ { { { {{ { { { {{ { { {{
qqq qqq qqq qqq qqq

and multicharge equals to (15, 12, 15);

• if (k(1), k(2), k(3)) = (2, 4, 1), we obtain λ+(2,4,1) with abacus configuration

0 1 2 3 4

{ { { { {{ { { { {{ {{ {
qqq qqq qqq qqq qqq

,

0 1 2 3 4

{ { { { {{ { { {{ { {

qqq qqq qqq qqq qqq
,

0 1 2 3 4

{ { { { {{ { { { {{ { { {{
qqq qqq qqq qqq qqq

and multicharge equals to (14, 12, 15);

• if (k(1), k(2), k(3)) = (3, 5, 2), we obtain λ+(3,5,2) with abacus configuration
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0 1 2 3 4

{ { { { {{ { { { {{ {{ {
qqq qqq qqq qqq qqq

,

0 1 2 3 4

{ { { { {{ { { {{ { {

qqq qqq qqq qqq qqq
,

0 1 2 3 4

{ { { { {{ { { { {{ { { {{
qqq qqq qqq qqq qqq

and multicharge equals to (14, 12, 15);

• if (k(1), k(2), k(3)) = (4, 6, 3), we obtain λ+(4,6,3) with abacus configuration

0 1 2 3 4

{ { { { {{ { { { {{ {{ {
qqq qqq qqq qqq qqq

,

0 1 2 3 4

{ { { { {{ { { {{ { {

qqq qqq qqq qqq qqq
,

0 1 2 3 4

{ { { { {{ { { { {{ { { {{
qqq qqq qqq qqq qqq

and multicharge equals to (14, 12, 15);

• if (k(1), k(2), k(3)) = (5, 7, 4), we obtain λ+(5,7,4) with abacus configuration

0 1 2 3 4

{ { { { {{ { { { {{ {{ { {
qqq qqq qqq qqq qqq

,

0 1 2 3 4

{ { { { {{ { { {{ { {{
qqq qqq qqq qqq qqq

,

0 1 2 3 4

{ { { { {{ { { { {{ { { {{ {
qqq qqq qqq qqq qqq

and multicharge equals to (15, 13, 16);

• if (k(1), k(2), k(3)) = (6, 8, 5), we obtain λ+(6,8,5) with abacus configuration

0 1 2 3 4

{ { { { {{ { { { {{ {{ { {
qqq qqq qqq qqq qqq

,

0 1 2 3 4

{ { { { {{ { { {{ { {{
qqq qqq qqq qqq qqq

,

0 1 2 3 4

{ { { { {{ { { { {{ { { {{ {
qqq qqq qqq qqq qqq

and multicharge equals to (15, 13, 16);

• if (k(1), k(2), k(3)) = (7, 9, 6), we obtain λ+(7,9,6) with abacus configuration
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0 1 2 3 4

{ { { { {{ { { { {{ {{ { {
qqq qqq qqq qqq qqq

,

0 1 2 3 4

{ { { { {{ { { {{ { {{
qqq qqq qqq qqq qqq

,

0 1 2 3 4

{ { { { {{ { { { {{ { { {{ {
qqq qqq qqq qqq qqq

and multicharge equals to (15, 13, 16);

• if (k(1), k(2), k(3)) = (3, 9, 6), we obtain λ+(3,9,6) with abacus configuration

0 1 2 3 4

{ { { { {{ { { { {{ {{ {
qqq qqq qqq qqq qqq

,

0 1 2 3 4

{ { { { {{ { { {{ { {{
qqq qqq qqq qqq qqq

,

0 1 2 3 4

{ { { { {{ { { { {{ { { {{ {
qqq qqq qqq qqq qqq

and multicharge equals to (14, 13, 16).

Notice that since we are considering another multicharge for λ+k, namely the

multicharge given by (n1 + c1, . . . , nr + cr) and we are labelling the runners in

the usual way for an abacus display with e + 1 runners, the label of the each

runner corresponds to the residue of the nodes corresponding to the beads in

each runner.

Lemma 3.2.16. Let e ≥ 2, and let n = (n1, . . . , nr) and ñ = (ñ1, . . . , ñr)

be two choices of number of beads for the e-abacus display of λ. Denote by

λ+k
n (respectively, λ+k

ñ ) the multipartition obtained applying +k to Abe(λ)n

(respectively, Abe(λ)ñ). If (ñ1, . . . , ñr) = (n1 + h1, . . . , nr + hr) with hj ∈ Z
and hj ≡ h1 mod e for all j ∈ {1, . . . , r}, then

1. λ+k
n = λ+k

ñ ;

2. the underlying multicharges are the same up to a shift, that is, if a =

(a1, . . . , ar) is the multicharge corresponding to λ+k
n and ã = (ã1, . . . , ãr) is

the multicharge corresponding to λ+k
ñ , then there exists s ∈ {0, . . . , e− 1}

such that

aj ≡ ãj + s mod (e+ 1).

Therefore, there is an isomorphism between the Ariki-Koike algebra with

multicharge a and the Ariki-Koike algebra with multicharge ã.

Proof. Consider an r-multipartition λ and construct two abacus displays for λ,
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one with n = (n1, . . . , nr) beads and the other with ñ = (ñ1, . . . , ñr) beads where

ñj = nj + hj and hj ∈ Z for each j ∈ {1, . . . , r}.
Suppose that h1 ≡ . . . ≡ hr mod e. Thus, write hj = chj

e+ dh with 0 ≤ dh ≤
e− 1 for j ∈ {1, . . . , r}. We want to show that λ+k

n and λ+k
ñ represent the same

multipartition. From the construction of λ+k
n and λ+k

ñ , we have for j ∈ {1, . . . , r}

nj + kj = cje+ d;

ñj + kj = c̃je+ d̃.

Hence, using ñj = nj + hj , we get

nj + hj + kj = cje+ d+ hj = c̃je+ d̃ (3.2.4)

for each j ∈ {1, . . . , r}. Now, we distinguish two cases:

• if hj ≡ 0 mod e, i.e. hj = chj
e for some chj

∈ Z, the abacus display Abe(λ)ñ

is obtained from the abacus display Abe(λ)n by adding or removing chj

entire rows of beads at the top of the abacus. Thus, by (3.2.4) we get

ñj + kj = cje+ d+ chj
e = (cj + chj

)e+ d = c̃je+ d̃.

This implies c̃j = cj + chj
and d̃ = d, so we add a runner to the abacus

display Abe(λ)ñ immediately to the left of runner d and put cj + chj
beads

on this new runner, in the top cj + chj
positions. Hence, λ+k

n and λ+k
ñ

represent the same multipartition because we add the runner in the same

position of each abacus and the level of the last bead of the inserted runner

is the same in both abacuses.

• if hj = chj
e+dh for some chj

∈ Z and dh ∈ {1, . . . , e−1}, the abacus display
Abe(λ)ñ is obtained from the abacus Abe(λ)n by adding or removing chj

entire rows of beads and a row with dh beads at the top of the abacus.

Thus, by (3.2.4) we get

ñj + kj = cje+ d+ chj
e+ dh = (cj + chj

)e+ (d+ dh) = c̃je+ d̃.

This implies c̃j = cj + chj
and d̃ = d+dh, so we add a runner to the abacus

display Abe(λ)ñ immediately to the left of runner d+ dh and put cj + chj

beads on this new runner, in the top cj+chj
positions. Hence, λ+k

n and λ+k
ñ

represent the same multipartition because, in order to get λ+k
ñ , we add the

runner in a position translated of dh compared to the one in λ+k
n and the

level of the last bead of the inserted runner is the same in both abacuses.

To conclude, the multicharge corresponding to λ+k
n is a = (n1 + c1, . . . , nr + cr)

and the multicharge corresponding to λ+k
ñ is ã = (n1 + h1 + c1 + ch1 , . . . , nr +
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hr + cr + chr). For all j ∈ {1, . . . , r}, we can write hj = chj
e+ s for some chj

∈ Z
and s ∈ {0, . . . , e− 1} since hj ≡ h1 mod e. Hence, for all j ∈ {1, . . . , r}

(nj + hj + cj + chj
)− (nj + cj) = hj + chj

= chj
e+ s+ chj

= chj
(e+ 1) + s

≡ s mod (e+ 1).

Thus, the isomorphism between the Ariki-Koike algebra with multicharge a and

the one with multicharge ã is given by

T0 7→ q−sT0

Ti 7→ Ti for all i = 1, . . . , n− 1.

Example 3.2.17. Let λ = ((4, 3, 2), (22), (3)) and e = 4, as in Example 3.2.15.

For k = (3, 9, 6),

• if we choose n = (n1, n2, n3) = (11, 9, 12), we get the abacus display of

λ+(3,9,6) as in Example 3.2.15 that represents the multipartition

((5, 3, 22), (5, 23), (32)).

• if we choose ñ = (ñ1, ñ2, ñ3) = (10, 8, 11), we have the following truncated

abacus for λ:

0 1 2 3

{ { { {{ { {{ {{
qqq qqq qqq qqq

,

0 1 2 3

{ { { {{ {{ {

qqq qqq qqq qqq
,

0 1 2 3

{ { { {{ { { {{ {{
qqq qqq qqq qqq

.

Hence, λ+(3,9,6) has the following abacus configuration
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0 1 2 3 4

{ { { { {{ { { {{ { {{
qqq qqq qqq qqq qqq

,

0 1 2 3 4

{ { { { {{ { {{ { {{
qqq qqq qqq qqq qqq

,

0 1 2 3 4

{ { { { {{ { { { {{ { {{ {
qqq qqq qqq qqq qqq

,

that represents again the multipartition ((5, 3, 22), (5, 23), (32)).

We extend the operator +k linearly to the whole Fock space.

Lemma 3.2.18. Let k be an r-tuple of non-negative integers. If λ is an

e-multiregular r-multipartition, then λ+k is an (e + 1)-multiregular

r-multipartition.

Proof. Suppose that λ is an e-multiregular r-multipartition. Then λ(j) is

e-regular for each j ∈ {1, . . . , r}, that is λ(j) has at most e − 1 equal parts,

equivalently it has at most e− 1 consecutive beads in its abacus display. Hence,

by construction each λ(j)+k(j)
has at most e consecutive beads in its abacus

display and so λ(j)+k(j)
is (e+ 1)-regular for each j ∈ {1, . . . r}.

3.2.4 Induction operators and addition of a full runner

In this section, we give some results that will be really helpful in the proof of

our main theorem (Theorem 3.2.32) in which we prove a runner removal-type

theorem for Ariki-Koike algebras.

We will work in the following setting. Let λ be an r-multipartition. Consider

the truncated abacus configuration of λ with n = (n1, . . . , nr) beads. Set k =

(k(1), . . . , k(r)) to be an r-tuple of non-negative integers such that for all j ∈
{1, . . . , r}

nj + k(j) = cje+ d (3.2.5)

with 0 ≤ d ≤ e− 1. Then λ+k is the r-multipartition obtained from λ by adding

a new runner with cj beads (as described in Section 3.2.3) to the left of runner d

in each component of λ. This determines that the new inserted runner is labelled

by d mod (e + 1). For our first lemma, following the proof of Lemma 3.5 in

[Fay07a], we need to define the following function:

g : (Z/eZ) \ {d} → (Z/(e+ 1)Z) \ {d, d+ 1}
d− i mod e 7→ d− i mod (e+ 1)

for any d ∈ I and i = 1, . . . , e− 1.
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Lemma 3.2.19. Let λ and ξ be r-multipartitions. Let k = (k(1), . . . , k(r))

be an r-tuple of non-negative integers and d ∈ {0, . . . , e − 1} be the label of

the new inserted runner of λ+k such that (3.2.5) holds. Suppose i ∈ I \ {d}.
Then λ

m:i−−→ ξ if and only if λ+k m:g(i)−−−−→ ξ+k, and if this happens then we have

Ni(λ, ξ) = Ng(i)(λ
+k, ξ+k).

Proof. We have λ
m:i−−→ ξ if and only if the abacus display for ξ may be obtained

by moving m beads from runner i − 1 to runner i, and in this case Ni(λ, ξ) is

determined by the configurations of these two runners in the two abacus displays.

The fact that i ̸= d means that in constructing the abacus displays for λ+k

and ξ+k the new runner is not added in between these two runners, and so the

condition λ+k m:g(i)−−−−→ ξ+k and the coefficient Ni(λ, ξ) = Ng(i)(λ
+k, ξ+k) are

determined from these two runners in exactly the same way.

Corollary 3.2.20. Suppose i ∈ I \{d}, m ≥ 1 and λ is any multipartition. Then(
f
(m)
i (λ)

)+k
= F

(m)
g(i)(λ

+k).

Proof. This is immediate from Lemma 3.2.19 and the description of the action

of f
(m)
i in Section 3.1.3.

For the next lemma, we introduce the following notation. If λ and ξ are

r-multipartitions, then we write λ
m:i+1−−−−→
m:i

ξ to indicate that ξ is obtained from

λ by adding first m addable (i + 1)-nodes and then m addable i-nodes. This

notation is just a shorter version of the following one:

λ
m:i+1−−−−→ ν

m:i−−→ ξ

where ν is an r-multipartition.

Lemma 3.2.21. Let λ and ξ be r-multipartitions. Let k = (k(1), . . . , k(r)) be

an r-tuple of non-negative integers and d ∈ {0, . . . , e− 1} be the label of the new

inserted runner of λ+k such that (3.2.5) holds. If the last bead in runner d− 1 of

each component λ(j) is at most in position (cj − 1)e + d − 1 for all j = 1, . . . , r,

then λ
m:d−−→ ξ if and only if λ+k m:d+1−−−−→

m:d
ξ+k.

Before proving this lemma, it is worth noticing the following.

Remark 3.2.22. In the assumptions of Lemma 3.2.21, every move of a bead b

at level ℓ from runner d to runner d + 1 in a component J of λ+k determines

uniquely a move of the bead b̄ at level ℓ from runner d − 1 to runner d in the

component J of ν where ν is an r-multipartition such that λ+k m:d+1−−−−→ ν.

Proof of Lemma 3.2.21. Suppose that λ
m:d−−→ ξ. This means that the abacus

display for ξ may be obtained by moving m beads from runner d − 1 to runner

d of λ. Notice that this moving of beads from runner d − 1 to runner d can
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occur simultaneously in different components of λ, say λ(j1), . . . , λ(js) are the

components of λ involved to get ξ. Let m(jt) be the number of beads moved in

λ(jt), for t = 1, . . . , s. So, in each of these components there are at least m(jt)

levels ℓ1, . . . , ℓm(jt) of the abacus that present a configuration of the type u
in runners d− 1 and d.

When we apply the operator +k to λ, by assumption we are going to add

a new runner in between runner d − 1 and runner d in each component of λ.

This new runner by hypothesis has the last bead that is at least at the same

level of the last bead in runner d − 1 of every component of λ. This implies

that in each component (λ(j1))+k(j1) , . . . , (λ(js))+k(jt) , at each level ℓ1, . . . , ℓm(jt)

for t = 1, . . . , s we have an abacus configuration of the type

d− 1 d d+ 1u u .

Now, consider the r-multipartition µ such that λ+k m:d+1−−−−→
m:d

µ where the a beads

that we move from runner d to runner d + 1 are in the components j1, . . . , js

and at levels ℓ1, . . . , ℓm(jt) for t = 1, . . . , s. Then µ is exactly the multipartition

ξ+k. Indeed, given our assumption on the position of the last bead in the new

runner, after moving a beads from runner d to runner d + 1 as above, the only

beads that we can move from runner d − 1 to runner d are the beads in the

components j1, . . . , js and at levels ℓ1, . . . , ℓm(jt) for t = 1, . . . , s. This last move

fills the empty spaces that we create with the first move in some runners d,

giving then an abacus display with all runners d full of beads and with the last

bead in position (cj − 1)(e+ 1) + d for j = 1, . . . , r.

Conversely, suppose that λ+k m:d+1−−−−→
m:d

ξ+k. We want to show that λ
m:d−−→ ξ.

This, again, follows by our assumption on the position of the last bead in each

runner d − 1 of λ. Indeed, this hypothesis implies that if we look at the abacus

configuration of an addable (d+1)-node in any component of λ+k, it will be one

of the following:

1.
d− 1 d d+ 1u u ,

2.
d− 1 d d+ 1u .

We do not need to consider the second type of abacus configuration, because

moving a bead from runner d to runner d+1 cannot be followed by moving a bead

from runner d− 1 to runner d. Thus, there is no chance of getting ξ+k from this
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abacus configuration since every move of a bead from runner d to runner d + 1

determines uniquely a move of a bead from runner d − 1 to runner d. Hence,

suppose that the abacus configuration of all addable (d + 1)-nodes of λ+k we

move to get ξ+k is of type 1. In this case, if we move a bead b from runner d

to runner d + 1 in λ+k, then we can only move the bead from runner d − 1 to

runner d in the same component and at the same level of the bead b. Hence, if

j1, . . . , js are the components of λ+k involved to get ξ+k and m(jt) is the number

of beads moved in the component jt, for t = 1, . . . , s, then ξ can be obtained

from λ moving m(jt) beads from runner d− 1 to runner d in the components jt,

for t = 1, . . . , s.

Lemma 3.2.23. With the same assumption of Lemma 3.2.21. We have

Nd(λ, ξ) = Nd+1(λ
+k,ν) +Nd(ν, ξ

+k)

where ν is the unique r-multipartition such that λ+k m:d+1−−−−→ ν
m:d−−→ ξ+k.

Proof. For j = 1, . . . , r, set g(j)e+ d− 1 to be the position of the last bead of λ

in runner d− 1 of the component λ(j). Notice that, instead of considering all the

r-multipartitions ν such that λ+k m:d+1−−−−→ ν, we can restrict to consider only those

r-multipartitions ν where no one of the m addable (d+ 1)-nodes of λ+k, added

to obtain ν, corresponds to a bead in position x(e+1)+ d with g(j) < x ≤ cj − 1

for each j = 1, . . . , r. Indeed, if we consider ν such that λ+k m:d+1−−−−→ ν where at

least one of the m addable (d+1)-nodes added to λ+k is in position x(e+1)+ d

with g(J) < x ≤ cJ − 1 for a component J , then there is no multipartition π for

which ν
m:d−−→ π because by Remark 3.2.22 we should move the bead in position

x(e+ 1) + d− 1 in the component J of ν, but there is no bead in that position.

This can be seen in terms of abacus display in the following way: the abacus

configuration at the level x of the component ν(J) in runners d− 1, d, d+ 1 is

d− 1 d d+ 1u ,

from which is clear that we have no chance of moving an addable d-node at level

x from runner d− 1 to runner d. Thus, when we restrict to such r-multipartition

ν, then we have

1. #{n ∈ ν \ λ+k} = #{n ∈ ξ \ λ};

2. #{n ∈ ξ+k \ ν} = #{n ∈ ξ \ λ} that is equivalent to

#{addable d-nodes of ν} = #{addable d-nodes of λ}.

Indeed, provided that we are considering the r-multipartitions ν satisfying the
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condition above we can conclude that these equalities holds for the following

reasons.

1. Since the new inserted runner of λ+k is full of beads and with the last bead

in a higher position than any last bead in every runner d − 1 of λ, the

addable (d+ 1)-nodes of λ+k consists of the addable d-nodes of λ and the

addable (d + 1)-nodes of λ+k at level x with g(j) < x ≤ cj − 1 for each

j ∈ {1, . . . r}, that is

#{addable (d+ 1)-nodes of λ+k}

= #{addable (d+ 1)-nodes of λ+k at level x ≤ g(j)}

+#{addable (d+ 1)-nodes of λ+k at level g(j) < x ≤ cj − 1}

= #{addable d-nodes of λ}

+#{addable (d+ 1)-nodes of λ+k at level g(j) < x ≤ cj − 1}.

Anyway, restricting to the r-multipartitions ν as above means that we are

excluding the r-multipartitions obtained from λ+k by adding addable (d+

1)-nodes at level x with g(j) < x ≤ cj − 1. So, in this case

#{addable (d+ 1)-nodes of λ+k} = #{addable d-nodes of λ}.

Hence, #{n ∈ ν \ λ+k} = #{n ∈ ξ \ λ}.

2. By Remark 3.2.22, there is a correspondence between the addable (d+ 1)-

nodes of λ+k and the addable d-nodes of ν and so we can state that #{n ∈
ξ+k \ ν} = #{n ∈ ν \ λ+k} = #{n ∈ ξ \ λ}.

Recall that by definition

Nd(λ, ξ) =
∑

n∈ξ\λ

(#{addable d-nodes of ξ above n}

−#{removable d-nodes of λ above n}),

Nd+1(λ
+k,ν) =

∑
n∈ν\λ+k

(#{addable (d+ 1)-nodes of ν above n}

−#{removable (d+ 1)-nodes of λ+k above n}),

Nd(ν, ξ
+k) =

∑
n∈ξ+k\ν

(#{addable d-nodes of ξ+k above n}

−#{removable d-nodes of ν above n}).

Now, consider λ and n ∈ ξ \ λ. Let J be the component of ξ of the node n. Set
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• r1 to be the number of rows of the abacus of λ(J) above n with a

configuration of the following type in runners d− 1 and d:

d− 1 du u,
• r2 to be the number of rows of the abacus of λ(J) above n with a

configuration of the following type in runners d− 1 and d:

d− 1 du ,

• r3 to be the number of rows of the abacus of λ(J) above n with a

configuration of the following type in runners d− 1 and d:

d− 1 du,
• b to be the number of removable d-nodes in ξ \λ above n in the component

J .

In order to make easier to visualise the abacus display, we can assume that the

rows of the abacus of λ(J) above n with the same configuration between the runner

d− 1 and d occurs as shown below:

d− 1 d

{
row of n{ {

qqq qqq r1{ {{
qqq qqq r2{ {
qqq qqq r3{



.

Then we can assume that the abacus display of component J of ξ has the following
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configuration in the row of n (with n in red) and those above n:

d− 1 d

{
row of n{ {

qqq qqq r1{ {{
qqq qqq r2 − b{ {
qqq qqq b{{
qqq qqq r3{



.

Notice that the assumption on the order of the rows is not necessary for the

scope of the proof, but it makes easier to represent the abacus display. Thus, for

n ∈ ξ \ λ we have that

Nd(λ
(J), ξ(J)) = (r2 − b)− r3.

Thus, when we consider the component J of the corresponding r-multipartitions

λ+k m:d+1−−−−→ ν
m:d−−→ ξ+k in terms of abacus display above the nodes n′ and n′′ (in

red) that are the nodes corresponding to the node n, we have the following

configurations between runners d − 1, d, d + 1:
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(λ(J))+k(J)
ν(J) (ξ(J))+k(J)

d− 1 d d+ 1

{ {
row of n′, n′′{ { {

qqq qqq qqq r1{ { {{ {{ {
qqq qqq qqq r2qqq qqq qqq{ {{ {{ {
qqq qqq qqq r4{ {{
qqq qqq qqq r5{



,

d− 1 d d+ 1

{ {
row of n′{ { {

qqq qqq qqq r1{ { {{ {
qqq qqq qqq r2 − b{ {{ {
qqq qqq qqq b{ {{ {
qqq qqq qqq r4{ {{
qqq qqq qqq r5{



,

d− 1 d d+ 1

{ {
row of n′′{ { {

qqq qqq qqq r1{ { {{ {
qqq qqq qqq r2 − b{ {{ {
qqq qqq qqq b{ {{ {
qqq qqq qqq r4{ {{
qqq qqq qqq r5{



,

where r4 + r5 = r3.

Thus, for n′ ∈ ν \ λ+k and n′′ ∈ ξ+k \ ν we have that

Nd+1((λ
(J))+k(J)

, ν(J)) = (r2 − b)− r5,

Nd(ν
(J), (ξ(J))+k(J)

) = 0− r4.

Hence, for the component J we have

Nd(λ
(J), ξ(J)) = Nd+1((λ

(J))+k(J)
, ν(J)) +Nd(ν

(J), (ξ(J))+k(J)
).

By Proposition 3.1.2, to conclude we just need to show that for each n ∈ ξ \ λ
and for each component j < J

Nd(λ
(j), ξ(j)) = Nd+1((λ

(j))+k(j) , ν(j)) +Nd(ν
(j), (ξ(j))+k(j)). (3.2.6)

We can extend easily the previous argument to every component j < J of ξ.

Indeed, if j < J is a component of ξ then, by the total order of all addable and

removable nodes of a multipartition, all the nodes in such a component j of ξ are

above n and so in order to prove (3.2.6) we can use exactly the same argument

explained for component J , considering all the nodes in the component j, instead

of just the ones above n. Thus, we can conclude.

Corollary 3.2.24. Let λ be an r-multipartition. Let k = (k(1), . . . , k(r)) be an
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r-tuple of non-negative integers and d ∈ {0, . . . , e − 1} be the label of the new

inserted runner of λ+k such that (3.2.5) holds. If the last bead in runner d− 1 of

each component λ(j) is at most in position (cj − 1)e + d − 1 for all j = 1, . . . , r,

then
(
f
(m)
d (λ)

)+k
= F

(m)
d F

(m)
d+1(λ

+k).

Proof. This is immediate from Lemmas 3.2.21 and 3.2.23 and the description of

the action of f
(m)
i in Section 3.1.3.

3.2.5 Case r = 2

In this section we prove the so called ‘runner removal’ theorem for Ariki-Koike

algebras for r = 2. The reason why we study the case for r = 2 is that dealing

with multipartitions with only two components is easier, but at the same time it

gives a good idea of the strategy that will be followed in the next session where

we will deal with the general case (r ≥ 2).

In particular, we will compute canonical basis vectors Gs(µ) and, respectively,

Gs+(µ+k) in the Fock spaces Fs and, respectively Fs+ , rather than working with

the Ariki-Koike algebras directly.

From now on, we assume that r = 2.

Proposition 3.2.25. Let s = (s1, s2) ∈ I2 be a multicharge and µ = (∅, µ) ∈
P2. Let k(1), k(2) be non-negative integers such that k(2)−k(1) ≥ µ1+e−1. Write

k(1) = k
(1)
1 e+ k

(1)
2 with k

(1)
1 ≥ 0 and 0 ≤ k

(1)
2 ≤ e− 1. Denote by a+k = (a1, a2)

the multicharge associated to the multipartition (∅+k(1) , µ+k(2)). Then, setting

α = k(1) + a1 and β = k(1) − k
(1)
2 + a1

F
(k

(1)
1 )

α F
(k

(1)
1 )

α−1
. . .F

(k
(1)
1 )

β+1
G(k

(1)
1 −1)

β
G(k

(1)
1 −2)

β+1
. . .G(1)

β+k
(1)
1 −2

((∅, µ+k(2))) = (∅+k(1) , µ+k(2)).

where F
(k

(1)
1 )

α F
(k

(1)
1 )

α−1
. . .F

(k
(1)
1 )

β+1
only occur if α ̸= β.

Proof. Construct the truncated e-abacus configuration of the 2-multipartition

(∅, µ) consisting of n = (n1, n2) beads with nj ≡ sj mod e for j = 1, 2. Write

• n1 + k(1) = c1e+ d

• n2 + k(2) = c2e+ d

with 0 ≤ d ≤ e − 1. Construct now the truncated (e + 1)-abacus display of

the 2-multipartition (∅, µ+k(2)) with (n1 + c1, n2 + c2) beads. Notice that the

multicharge associated to this multipartition is a+k = (a1, a2) = (n1+c1, n2+c2).

We proceed now by induction on k(1). The induction hypothesis is the following.

If k = k1e + k2 with k1 ≥ 0 and 0 ≤ k2 ≤ e − 1 is a non-negative integer such

that k < k(1), then it holds that

F
(k1)
a . . .F

(k1)

b+1
G(k1−1)

b
. . .G(1)

b+k1−3
((∅, µ+k(2))) = (∅+k, µ+k(2)),
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where a = k + a1, b = k − k2 + a1, and F
(k1)
a . . .F

(k1)

b+1
only occur if a ̸= b.

If k(1) < e, then ∅+k(1) = ∅ by Proposition 3.2.7. So,

(∅+k(1) , µ+k(2)) = (∅, µ+k(2)).

Suppose k(1) ≥ e and write k(1) = k
(1)
1 e + k

(1)
2 with k

(1)
1 ≥ 1 and 0 ≤ k

(1)
2 ≤

e− 1. Then by Proposition 3.2.10 we have

F
(k

(1)
1 )

k(1)
F
(k

(1)
1 )

k(1)−1
. . .F

(k
(1)
1 )

k(1)−k
(1)
2 +1
G(k

(1)
1 −1)

k(1)−k
(1)
2

G(k
(1)
1 −2)

k(1)−k
(1)
2 +1

. . .G(1)
k(1)−k

(1)
2 +k

(1)
1 −2

(∅) = ∅+k(1) ,

where F
(k

(1)
1 )

k(1)
F
(k

(1)
1 )

k(1)−1
. . .F

(k
(1)
1 )

k(1)−k
(1)
2 +1

only occur if k
(1)
2 ̸= 0. Hence, we want to

apply this induction sequence to (∅, µ+k(2)) and show that the only resulting

multipartition is (∅+k(1) , µ+k(2)). The first fact that we need to consider when

we deal with multipartitions is the multicharge. Therefore, the residues involved

in the induction sequence need to be translated by the multicharge. So, the

induction sequence that we want to apply to (∅, µ+k(2)) is the following:

F
(k

(1)
1 )

α F
(k

(1)
1 )

α−1
. . .F

(k
(1)
1 )

β+1
G(k

(1)
1 −1)

β
G(k

(1)
1 −2)

β+1
. . .G(1)

β+k
(1)
1 −2

with α = k(1) + a1 and β = k(1) − k
(1)
2 + a1.

If k(1) = e, then by Proposition 3.2.7 ∅+e = ∅. So,

(∅+e, µ+k(2)) = (∅, µ+k(2)).

If k(1) > e, then for α ̸= β consider

F
(k

(1)
1 )

α F
(k

(1)
1 )

α−1
. . .F

(k
(1)
1 )

β+1
F
(k

(1)
1 −1)

β
F
(k

(1)
1 −1)

β−1
. . .F

(k
(1)
1 −1)

α+1
(∅+(k(1)−e−1), µ+k(2)); (3.2.7)

while for α = β consider

F
(k

(1)
1 −1)

α F
(k

(1)
1 −1)

α−1
. . .F

(k
(1)
1 −1)

α−e−1
F
(k

(1)
1 −2)

α+1
(∅+(k(1)−e−1), µ+k(2)). (3.2.8)

Notice that in (3.2.7) and (3.2.8) the number of induction operators F is exactly

e+ 1. Moreover, we have

α = k(1) + a1 = k(1) + n1 + c1 = c1e+ d+ c1 = c1(e+ 1) + d.

Thus α ≡ d mod (e+ 1). We now want to show that

(3.2.7) = (∅+k(1) , µ+k(2));

(3.2.8) = (∅+k(1) , µ+k(2)).
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However, note that in (3.2.7) and (3.2.8)

• the residues involved in the induction sequences are the same and in the

same order;

• the first operator is applied one time less than the last operator.

Hence, the argument we give in the following works exactly in the same way in

the two cases. So, we will show only that (3.2.7) = (∅+k(1) , µ+k(2)) because a

similar argument applies to prove that (3.2.8) = (∅+k(1) , µ+k(2)).

Showing that (3.2.7) = (∅+k(1) , µ+k(2)) is equivalent to showing that this

induction sequence is applied only to the first component of

(∅+(k(1)−e−1), µ+k(2)). Indeed, if this sequence acts only on the first component

we have (3.2.7) = (∅+k(1) , µ+k(2)) by Proposition 3.2.10. Recall that the action

of an induction operator F
(m)
i for m ≥ 1 on the abacus display of a

multipartition consists of moving m beads from runner i − 1 to an empty

position in runner i in some components. Suppose that this induction sequence

acts on both components of the multipartition (∅+(k(1)−e−1), µ+k(2)) and it does

not give 0. In particular, suppose that

• F
(pe+1)
α . . .F

(p1)

α+1
is the induction subsequence acting on µ+k(2) ,

• F
(qe+1)
α . . .F

(q1)

α+1
is the induction subsequence acting on ∅+(k(1)−e−1),

with qe+1 = k
(1)
1 − pe+1, q1 = k

(1)
1 − 1 − p1 and at least one pi ̸= 0. Since we

apply F
(p1)

α+1
to µ+k(2) , this means that we are moving p1 beads from runner d

to runner d + 1. By construction of µ+k(2) , this corresponds in terms of abacus

display in having p1 empty spaces in the runner d of µ+k(2) . The action of the

terms F
(pe)

α−1
. . .F

(p2)

α+2
involves moving beads from runner d + 1 to runner d + 2,

and then from runner d + 2 to runner d + 3, and so forth until we move beads

from runner d− 2 to runner d− 1. Let l be the level of the last bead of the new

inserted runner of µ+k(2) . There are now two cases to consider:

1. the beads moved by this induction in runner d− 1 are at most at level l;

2. one of the beads moved by this induction in runner d− 1 is at level l + 1.

Case 1. If the moved beads are at most at the same level of the last bead of

the new inserted runner of µ+k(2) , then the number of beads that the last induction

operator F
(pe+1)
α can move from runner d − 1 to runner d can be at most p1. If

not (i.e., pe+1 > p1), then the action of the induction subsequence of µ+k(2) is 0

because there are no enough gaps in runner d of F
(pe)

α−1
. . .F

(p2)

α+2
F
(p1)

α+1
(µ+k(2)) where

to move beads from runner d − 1 to runner d. In fact, the gaps in runner d of

F
(pe)

α−1
. . .F

(p2)

α+2
F
(p1)

α+1
(µ+k(2)) are p1. Indeed, the first operator F

(p1)

α+1
moves p1 beads

from runner d to runner d+ 1 of µ+k(2) . Also, the beads moved by F
(pe)

α−1
. . .F

(p2)

α+2
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in runner d− 1 are at most at level l and this is the level of the last bead in the

new inserted runner of µ+k(2) . Thus, we have pe+1 ≤ p1. Hence,

q1 = k
(1)
1 − 1− p1 ≤ k

(1)
1 − 1,

qe+1 = k
(1)
1 − pe+1 ≥ k

(1)
1 − p1 = q1 + 1.

We claim that the action of this induction sequence on ∅+(k(1)−e−1) is 0. If

qe+1 > q1 + 1, then we can conclude that F
(qe+1)
α . . .F

(q1)

α+1
(∅+(k(1)−e−1)) = 0 by

Lemma 3.2.12. If qe+1 = q1 + 1, by contradiction we assume that

F
(qe+1)
α . . .F

(q1)

α+1
(∅+(k(1)−e−1)) is non-zero. By Lemma 3.2.12 this means that

qe+1 = . . . = qe+2−k2 = k1 and qe+1−k2 = . . . = q1 = k1 − 1. However, this is a

contradiction because this would imply that pi = 0 for all i, while we are

assuming that at least one of the pi’s is non-zero. Therefore, we proved that the

induction sequence acts non-zero when all the induction operators are applied

to the first component of (∅+(k(1)−e−1), µ+k(2)). Hence, we can conclude in this

case.

Case 2. If one of the moved beads is at a higher level than the last bead of the

new inserted runner of µ+k(2) , then the number of beads that the last induction

operator F
(pe+1)
α can move from runner d−1 to runner d can be at most p1+1. If

not (i.e. pe+1 > p1+1), then the action of the induction subsequence of µ+k(2) is 0

because there are no enough gaps in runner d of F
(pe)

α−1
. . .F

(p2)

α+2
F
(p1)

α+1
(µ+k(2)) where

to move beads from runner d− 1 to runner d. In fact, the gaps in runner d until

level l of F
(pe)

α−1
. . .F

(p2)

α+2
F
(p1)

α+1
(µ+k(2)) are p1 because the first operator F

(p1)

α+1
moves

p1 beads from runner d to runner d+1 of µ+k(2) . Also, by the assumption of Case

2., there is a bead in runner d−1 at level l+1 of F
(pe)

α−1
. . .F

(p2)

α+2
F
(p1)

α+1
(µ+k(2)) with a

gap on its right. This is because l is the level of the last bead in the new inserted

runner of µ+k(2) . Thus, in total, there are at most p1+1 possible positions where

to move beads from runner d−1 to runner d in F
(pe)

α−1
. . .F

(p2)

α+2
F
(p1)

α+1
(µ+k(2)). Thus,

we have pe+1 ≤ p1 + 1. Hence,

q1 = k
(1)
1 − 1− p1 ≤ k

(1)
1 − 1,

qe+1 = k
(1)
1 − pe+1 ≥ k

(1)
1 − p1 − 1 = q1.

We claim that the action of this induction sequence on ∅+(k(1)−e−1) is 0. In order

to prove this, we deal with the following three cases separately:

a. qe+1 = q1;

b. qe+1 = q1 + 1;

c. qe+1 > q1 + 1.
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For cases b. and c. we can conclude as in Case 1. with analogous arguments. As

for case a., we need to be more cautious. In this case we have qe+1 = q1 and so

by Lemma 3.2.12 the induction subsequence acting on ∅+k(1)−e−1 is non-zero if

and only if

q1 = q2 = . . . = q
e+1−k

(1)
2

= q
e+2−k

(1)
2

= . . . = qe = qe+1.

We want to show that the induction subsequence acting on ∅+k(1)−e−1 acts as 0.

If q1 = q2 = . . . = q
e+1−k

(1)
2

= q
e+2−k

(1)
2

= . . . = qe = qe+1, then

p1 = . . . = pe+1−k2 = k
(1)
1 − q1 − 1,

pe+2−k2 = . . . = pe+1 = k
(1)
1 − qe+1 = k

(1)
1 − q1.

In this case we have no problem with the induction subsequence acting on

∅+k(1)−e−1, but the induction subsequence on µ+k(2) is the one that acts as 0.

We need again to distinguish two cases.

• If the first p1 beads moved from runner d to runner d+1 involve at least one

bead not in the last p1 positions of the new inserted runner, then the action

of the induction subsequence on µ+k(2) is 0. Indeed, the last induction

operator requires to move pe+1 beads from runner d− 1 to runner d, but in

runner d we have at most pe+1 − 1 = p1 empty positions.

• If the first p1 beads moved from runner d to runner d+1 are exactly in the

last p1 positions of the new inserted runner, then the action of the induction

subsequence on µ+k(2) is 0. Notice that our assumption k(2)−k(1) ≥ µ1+e−1
implies that the last bead of µ is at most at level c2−k(1)1 of the abacus of µ.

Indeed, the difference in height between the last bead of the new inserted

runner and the last bead of µ is given by c2−1−x where µ1+n1−1 = xe+i

for x ≥ 0 and 0 ≤ i ≤ e− 1 and so we get that

c2 − 1− x =
1

e
(k(2) + n2 − d)− 1− 1

e
(µ1 + n2 − 1− i)

=
1

e
(k(2) − µ1) +

1

e
(−d− e+ 1 + i)

≥ 1

e
(k(1) + e− 1) +

1

e
(−d− e+ 1 + i)

=
1

e
(k

(1)
1 e+ k

(1)
2 ) +

1

e
(−d− e+ 1 + i+ e− 1)

= k
(1)
1 +

1

e
(k

(1)
2 − d+ i)

> k
(1)
1 +

1

e
(−e)

= k
(1)
1 − 1.
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If the induction subsequence on µ+k(2) is 0 at some step before the last

induction operator then we are done. Suppose that we can apply all the

induction operators until the last one F
(pe+1)
α , and that we get something

non-zero. Then the action of this last operator is 0 because we do not have

enough beads in runner d− 1 to move to in runner d in the abacus display

of F
(pe)

α−1
. . .F

(p2)

α+2
F
(p1)

α+1
(µ+k(2)). In fact, the position (c2 − 1)(e+ 1) + (d− 1)

is empty since x < c2 − k
(1)
1 ≤ c2 − 1 and so there are only p1 = pe+1 − 1

addable nodes of residue d.

Therefore, we proved that the induction sequence acts non-zero when all the

induction operators are applied to the first component of (∅+(k(1)−e−1), µ+k(2))

also in this case.

So, we get that (3.2.7) = (∅+k(1) , µ+k(2)). By induction hypothesis we know

also that

(∅+(k(1)−e−1), µ+k(2)) = F
(k

(1)
1 −1)

α . . .F
(k

(1)
1 −1)

β+1
G(k

(1)
1 −2)

β
. . .G(1)

β+k
(1)
1 −3

((∅, µ+k(2))).

Hence, we can conclude.

The above proposition gives the following result about the canonical basis

coefficients of (∅, µ+k(2)) and (∅+k(1) , µ+k(2)).

Proposition 3.2.26. Let µ = (∅, µ) ∈ P2. Let k(1), k(2) be non-negative

integers such that k(2) − k(1) ≥ µ1 + e − 1. Let s+ ∈ (Z/((e + 1)Z))2. Suppose

that

Gs+

e+1((∅, µ+k(2))) =
∑
µ⊵λ

dλµ(q)(∅, λ+k(2))

where dλµ(q) ∈ qN[q]. Then

Gs+

e+1((∅+k(1) , µ+k(2))) =
∑
µ⊵λ

dλµ(q)(∅+k(1) , λ+k(2)).

Proof. Let s+ = (s1, s2) be a multicharge. Suppose that

Gs+
e+1((∅, µ+k(2))) =

∑
µ⊵λ dλµ(q)(∅, λ+k(2)) with dλµ(q) ∈ qN[q] for λ ̸= µ. We

want to apply the induction sequence from ∅ to ∅+k(1) given by Proposition

3.2.10 to Gs+
e+1((∅, µ+k(2))). In order to do this, as in Proposition 3.2.25, we

need to translate the residues involved in the induction by the corresponding

multicharge. So, writing k(1) = k
(1)
1 e + k

(1)
2 with k

(1)
1 ≥ 0 and 0 ≤ k

(1)
2 ≤ e − 1,

we want to apply the following induction sequence

F
(k

(1)
1 )

α F
(k

(1)
1 )

α−1
. . .F

(k
(1)
1 )

β+1
G(k

(1)
1 −1)

β
G(k

(1)
1 −2)

β+1
. . .G(1)

β+k
(1)
1 −2

(Gs
e+1(∅, µ+k(2))), (3.2.9)

where
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• α = k(1) + s1 and β = k(1) − k
(1)
2 + s1;

• F
(k

(1)
1 )

α F
(k

(1)
1 )

α−1
. . .F

(k
(1)
1 )

β+1
occur if α ̸= β.

In order to compute this action we note the following: µ1 ≥ λ1 for all the

partitions λ such that µ ⊵ λ. This implies that the hypotheses of Proposition

3.2.25 are satisfied by all the partitions λ such that µ ⊵ λ. Thus, we have

(3.2.9) =
∑
µ⊵λ

dλµ(q)F
(k

(1)
1 )

α F
(k

(1)
1 )

α−1
. . .F

(k
(1)
1 )

β+1
G(k

(1)
1 −1)

β
G(k

(1)
1 −2)

β+1
. . .G(1)

β+k
(1)
1 −2

((∅, λ+k(2)))

=
∑
µ⊵λ

dλµ(q)(∅+k(1) , λ+k(2)),

which is of the form (∅+k(1) , µ+k(2)) +
∑
µ ̸=λ

dλµ(q)(∅+k(1) , λ+k(2)). Hence, this

shows that Gs+
e+1((∅+k(1) , µ+k(2))) =

∑
µ⊵λ

dλµ(q)(∅+k(1) , λ+k(2)) by the uniqueness

of the canonical basis.

Write f
(ml)
il
· · · f (m1)

i1
with m1, . . . ,ml non-negative integers and i1, . . . , il ∈ I.

Fix d ∈ {0, . . . , e − 1}. Then define F to be the induction sequence obtained in

the following way: for all j = 1, . . . , l

• if ij ̸= d, replace f
(mj)
ij

with F
(mj)

g(ij)
;

• if ij = d, replace f
(mj)
d with F

(mj)
d F

(mj)
d+1 .

Proposition 3.2.27. Let µ = (µ(1), µ(2)) be an e-multiregular 2-multipartition

and let k = (k(1), k(2)) be a 2-tuple of non-negative integers such that k(2)−k(1) ≥
µ
(2)
1 + e−1. Let d ∈ {0, . . . , e−1} be the label of the new inserted runner of µ+k

such that (3.2.5) holds. Suppose that

f ·Gs
e((∅, µ(2))) =

∑
ν∈P2

gνν,

where gν ∈ Z[q, q−1] and f = f
(ml)
il
· · · f (m1)

i1
for some m1, . . . ,ml ∈ Z≥0 and

i1, . . . , il ∈ I is such that f ·∅ = µ(1) +
∑

µ(1)▷τ

tττ for tτ ∈ Z[q, q−1]. Then

F ·Gs+

e+1((∅+k(1) , µ(2)+k(2)

)) =
∑
ν∈P2

gνν
+k,

where F is defined as above.

Proof. By definition of +k we have that(
f ·Gs

e((∅, µ(2)))
)+k

=
∑
ν∈P2

gνν
+k.
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Moreover, we get that

(
f ·Gs

e((∅, µ(2)))
)+k

=

f ·
∑

µ(2)⊵λ

dλµ(2)(q)(∅, λ)

+k

= F ·
∑

µ(2)⊵λ

dλµ(2)(q)(∅+k(1) , λ+k(2)) by Cor. 3.2.20, 3.2.24

= F ·Gs+

e+1((∅+k(1) , µ(2)+k(2)

)) by Prop. 3.2.26

Hence, (
f ·Gs

e((∅, µ(2)))
)+k

= F ·Gs+

e+1((∅, µ(2))+k).

Thus, we can conclude

F ·Gs+

e+1((∅+k(1) , µ(2)+k(2)

) =
∑
ν∈P2

gνν
+k.

Theorem 3.2.28. Let µ = (µ(1), µ(2)) ∈ P2 is an e-multiregular multipartition

of n and s ∈ I2. Let k = (k(1), k(2)) with k(j) a non-negative integer for j = 1, 2

such that k(2) − k(1) ≥ µ
(2)
1 + e− 1. Then Gs+

e+1(µ
+k) = Gs

e(µ)
+k.

Proof. Suppose that µ = (µ(1), µ(2)) is an e-multiregular 2-multipartition. In

order to simplify the following notation we write µ instead of µ(2). Then by

Theorem 3.2.5 we have

Ge+1(µ
+k(2)) = Ge(µ)

+k(2) , (3.2.10)

since the condition k(2)−k(1) ≥ µ1+e−1 implies that k(2) ≥ µ1. More explicitly,

we have that

Ge(µ) = µ+
∑
µ▷λ

dλµ(q)λ,

then (3.2.10) implies that

Ge+1(µ
+k(2)) = µ+k(2) +

∑
µ▷λ

dλµ(q)λ
+k(2) .

Moreover, by Corollary 3.1.5 it holds that

Gs+

e+1((∅, µ+k(2))) = (∅, µ+k(2)) +
∑
µ▷λ

dλµ(q)(∅, λ+k(2)).
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By Proposition 3.2.26 we have that

Gs+

e+1((∅+k(1) , µ+k(2))) = (∅+k(1) , µ+k(2)) +
∑
µ▷λ

dλµ(q)(∅+k(1) , λ+k(2)).

Using the LLT algorithm on partitions, we can write G(s1)(µ(1)) as f · ∅ in the

Fock space F (s1), for some f ∈ U . Applying the induction sequence f to Gs
e((∅, µ))

we can write

f ·Gs
e((∅, µ)) =

∑
ν∈P2

gν(ν
(1), ν(2)). (3.2.11)

where gν ∈ Z[q, q−1] because f ·Gs
e((∅, µ)) ∈M⊗s and M⊗s is a U-submodule of

Fs. Performing step (c) of the LLT algorithm for multipartitions in [Fay10] we

get

f ·Gs
e((∅, µ))−

∑
µ▷σ

aσµ(q)G
s
e(σ) = Gs

e((µ
(1), µ)) (3.2.12)

where aσµ(q) ∈ Z[q + q−1].

Now consider the induction sequence F that is obtained translating the

induction sequence f from e to e+ 1. This means that for each i ∈ I

• if i ̸= d, we replace f
(m)
i with F

(m)
g(i),

• if i = d, we replace f
(m)
d with F

(m)
d F

(m)
d+1.

Then apply F to Gs+
e+1((∅+k(1) , µ+k(2))). By Proposition 3.2.27 we have

F ·Gs+

e+1((∅+k(1) , µ+k(2))) =
∑
ν∈P2

gν(ν
(1)+k(1)

, ν(2)
+k(2)

). (3.2.13)

We now consider (3.2.13) and since the coefficients occurring in the sum are

exactly the same of (3.2.11) we perform the following subtraction of terms

F ·Gs+

e+1((∅+k(1) , µ+k(2)))−
∑
µ▷σ

aσµ(q)G
s+

e+1(σ
+k). (3.2.14)

We proceed by induction on the dominance order. Suppose that Gs+
e+1(σ

+k) =

(Gs
e(σ))

+k for all σ = (σ(1), σ(2)) e-multiregular multipartition of n such that

σ ◁ µ. Then

(3.2.14) = F ·Gs+

e+1((∅+k(1) , µ+k(2)))−
∑
µ▷σ

aσµ(q)(G
s
e(σ))

+k. (3.2.15)

Since we are performing exactly the same operations of (3.2.12) and the starting

coefficients are the same in (3.2.11) and (3.2.13), by definition of +k we have

(3.2.15) = Gs
e(µ)

+k.
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Moreover, by uniqueness of the canonical basis of M⊗s+ we can state

(3.2.15) = Gs+

e+1((µ
(1)+k(1)

, µ+k(2))).

Hence,

Gs+

e+1(µ
+k) = Gs

e(µ)
+k.

3.2.6 Case r ≥ 2

In this section we generalise Theorem 3.2.28 for any r ≥ 2. The proof is essentially

the same, but we need to take in to account that now we have r ≥ 2 components

in each multipartition playing a role when we apply an induction operator f or F.

We start generalising the conditions on the non-negative integers k(1), . . . , k(r)

as follows. Let r ≥ 2. Let k(1), . . . , k(r) be non-negative integers such that

k(r) ≥ µ
(r)
1 , and;

k(j) − k(h) ≥ µ
(j)
1 + e− 1 +

j−1∑
t=h+1

|µ(t)| for all 1 ≤ h < j ≤ r. (3.2.16)

Proposition 3.2.29. Let s = (s1, . . . , sr) ∈ Ir be a multicharge and (∅,µ) =

(∅, µ(2), . . . , µ(r)) be a r-multipartition. Let (k(1),k) = (k(1), k(2) . . . , k(r)) be an

r-tuple of non-negative integers such that conditions (3.2.16) hold. Write k(1) =

k
(1)
1 e+k

(1)
2 with k

(1)
1 ≥ 0 and 0 ≤ k

(1)
2 ≤ e−1. Denote by a+(k(1),k) = (a1, . . . , ar)

the multicharge associated to the multipartition (∅+k(1) , µ(2)+k(2)
, . . . , µ(r)+k(r)

).

Then, setting α = k(1) + a1 and β = k(1) − k
(1)
2 + a1,

F
(k

(1)
1 )

α F
(k

(1)
1 )

α−1
. . .F

(k
(1)
1 )

β+1
G(k

(1)
1 −1)

β
G(k

(1)
1 −2)

β+1
. . .G(1)

β+k
(1)
1 −2

((∅,µ+k)) = (∅+k(1) ,µ+k).

where F
(k

(1)
1 )

α F
(k

(1)
1 )

α−1
. . .F

(k
(1)
1 )

β+1
occur if α ̸= β.

Proof. Construct the truncated e-abacus configuration of the r-multipartition

(∅,µ) consisting of n = (n1, . . . , nr) beads with nj ≡ sj mod e for all j. For

j = 1, . . . , r, write

nj + k(j) = cje+ d

with 0 ≤ d ≤ e − 1. Construct now the truncated (e + 1)-abacus display of

the r-multipartition (∅,µ+k) with (n1 + c1, . . . , nr + cr) beads. Notice that the

multicharge associated to this multipartition is a+(k(1),k) = (n1+ c1, . . . , nr+ cr).

Thus aj = nj + cj for 1 ≤ j ≤ r. We proceed now by induction on k(1) with the

following induction hypothesis. If k = k1e + k2 with k1 ≥ 0 and 0 ≤ k2 ≤ e − 1
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is a non-negative integer such that k < k(1), then it holds that

F
(k1)
a . . .F

(k1)

b+1
G(k1−1)

b
. . .G(1)

b+k1−3
((∅,µ+k)) = (∅+k,µ+k),

where a = k + a1, b = k − k2 + a1, and F
(k1)
a . . .F

(k1)

b+1
only occur if a ̸= b.

If k(1) < e, then ∅+k(1) = ∅ by Proposition 3.2.7. So,

(∅+k(1) ,µ+k) = (∅,µ+k).

Suppose k(1) ≥ e and write k(1) = k
(1)
1 e + k

(1)
2 with k

(1)
1 ≥ 1 and 0 ≤ k

(1)
2 ≤

e− 1. Then by Proposition 3.2.10 we have

F
(k

(1)
1 )

k(1)
F
(k

(1)
1 )

k(1)−1
. . .F

(k
(1)
1 )

k(1)−k
(1)
2 +1
G(k

(1)
1 −1)

k(1)−k
(1)
2

G(k
(1)
1 −2)

k(1)−k
(1)
2 +1

. . .G(1)
k(1)−k

(1)
2 +k

(1)
1 −2

(∅) = ∅+k(1) ,

where F
(k

(1)
1 )

k(1)
F
(k

(1)
1 )

k(1)−1
. . .F

(k
(1)
1 )

k(1)−k
(1)
2 +1

only occur if k
(1)
2 ̸= 0. Hence, we want to

apply this induction sequence to (∅,µ+k) and show that the only resulting

multipartition is (∅+k(1) ,µ+k). The first fact that we need to consider when we

deal with multipartitions is the multicharge. Therefore, the residues involved in

the induction sequence need to be translated by the multicharge. So, the

induction sequence that we want to apply to (∅,µ+k) is the following:

F
(k

(1)
1 )

α F
(k

(1)
1 )

α−1
. . .F

(k
(1)
1 )

β+1
G(k

(1)
1 −1)

β
G(k

(1)
1 −2)

β+1
. . .G(1)

β+k
(1)
1 −2

with α = k(1) + a1 and β = k(1) − k
(1)
2 + a1.

If k(1) = e, then by Proposition 3.2.7 ∅+e = ∅. So,

(∅+e, µ(2)+k(2)

, . . . , µ(r)+k(r)

) = (∅, µ(2)+k(2)

, . . . , µ(r)+k(r)

).

If k(1) > e, then for α ̸= β consider

F
(k

(1)
1 )

α F
(k

(1)
1 )

α−1
. . .F

(k
(1)
1 )

β+1
F
(k

(1)
1 −1)

β
F
(k

(1)
1 −1)

β−1
. . .F

(k
(1)
1 −1)

α+1
(∅+(k(1)−e−1),µ+k) (3.2.17)

while for α = β consider

F
(k

(1)
1 −1)

α F
(k

(1)
1 −1)

α−1
. . .F

(k
(1)
1 −1)

α−e−1
F
(k

(1)
1 −2)

α+1
(∅+(k(1)−e−1),µ+k). (3.2.18)

Notice that in (3.2.17) and in (3.2.18) the number of induction operators F
(a)
i is

exactly e+ 1. Moreover, we have

α = k(1) + a1 = k(1) + n1 + c1 = c1e+ d+ c1 = c1(e+ 1) + d.
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Thus α ≡ d mod (e+ 1). We want to show now that

(3.2.17) = (∅+k(1) ,µ+k);

(3.2.18) = (∅+k(1) ,µ+k).

However, note that in (3.2.17) and (3.2.18)

• the residues involved in the induction sequences are the same and in the

same order;

• the first operator is applied one time less than the last operator.

Hence, the argument we give in the following works exactly in the same way in

the two cases. So, we will show only that (3.2.17) = (∅+k(1) ,µ+k) because a

similar argument applies to prove that (3.2.18) = (∅+k(1) ,µ+k).

Showing that (3.2.17) = (∅+k(1) ,µ+k) is equivalent to showing that this

induction sequence is applied only to the first component of (∅+(k(1)−e−1),µ+k).

Indeed, if this sequence acts only on the first component we have

(3.2.17) = (∅+k(1) ,µ+k) by Proposition 3.2.10. Recall that the action of an

induction operator F
(a)
i for a ≥ 1 on the abacus display of a multipartition

consists of moving a beads from runner i− 1 to an empty position in runner i in

some components. Suppose that this induction sequence acts not only on the

first component of the multipartition (∅+(k(1)−e−1),µ+k) and it does not give 0.

In particular, suppose that

• F
(pe+1)
α . . .F

(p1)

α+1
is the induction subsequence acting on µ+k,

• F
(qe+1)
α . . .F

(q1)

α+1
is the induction subsequence acting on ∅+(k(1)−e−1),

with qe+1 = k
(1)
1 − pe+1, q1 = k

(1)
1 − 1 − p1 and at least one pi ̸= 0. Since we

apply F
(p1)

α+1
to µ+k, this means that we are moving p1 beads from runner d to

runner d + 1 in some components of µ+k. Call such components j1, . . . , jb. By

construction of µ+k, this corresponds in terms of abacus display to having p1

empty spaces in the runners d of components j1, . . . , jb of µ
+k. The action of the

terms F
(pe)

α−1
. . .F

(p2)

α+2
involves moving beads from runner d + 1 to runner d + 2,

and then from runner d + 2 to runner d + 3, and so forth until we move beads

from runner d − 2 to runner d − 1. For j ∈ {2, . . . , r}, let lj be the level of the

last bead of the new inserted runner in the component j of µ+k. There are now

two cases to consider:

1. the beads moved by this induction in runner d − 1 are at most at level lj

for all components j;

2. one of the beads moved by this induction in runner d− 1 is at level lj + 1

for some j.
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Case 1. If the moved beads are at most at the same level of the last bead of

each new inserted runner of µ+k, then the number of beads that the last induction

operator F
(pe+1)
α can move from runner d − 1 to runner d can be at most p1. If

not (i.e., pe+1 > p1), then the action of the induction subsequence of µ+k is 0

because there are no enough gaps in runner d of F
(pe)

α−1
. . .F

(p2)

α+2
F
(p1)

α+1
(µ+k) where

to move beads from runner d − 1 to runner d. In fact, the gaps in runner d of

F
(pe)

α−1
. . .F

(p2)

α+2
F
(p1)

α+1
(µ+k) are p1. Indeed, the first operator F

(p1)

α+1
moves p1 beads

from runner d to runner d + 1 of µ+k. Also, the beads moved by F
(pe)

α−1
. . .F

(p2)

α+2

in runner d− 1 are, for all j, at most at level lj , that is the level of the last bead

in the new inserted runner of component j of µ+k. Thus, we have pe+1 ≤ p1.

Hence,

q1 = k
(1)
1 − 1− p1 ≤ k

(1)
1 − 1,

qe+1 = k
(1)
1 − pe+1 ≥ k

(1)
1 − p1 = q1 + 1.

We claim that the action of this induction sequence on ∅+(k(1)−e−1) is 0. If

qe+1 > q1 + 1, then we can conclude that F
(qe+1)
α . . .F

(q1)

α+1
(∅+(k(1)−e−1)) = 0 by

Lemma 3.2.12. If qe+1 = q1 + 1, by contradiction we assume that

F
(qe+1)
α . . .F

(q1)

α+1
(∅+(k(1)−e−1)) is non-zero. By Lemma 3.2.12 this means that

qe+1 = . . . = qe+2−k2 = k1 and qe+1−k2 = . . . = q1 = k1 − 1. However, this is a

contradiction because this would imply that pi = 0 for all i, while we are

assuming that at least one of the pi’s is non-zero. Therefore, we proved that the

induction sequence acts non-zero when all the induction operators are applied

to the first component of (∅+(k(1)−e−1),µ+k). Hence we conclude in this case.

Case 2. If one of the moved beads is at a higher level than the last bead of

one of the new inserted runners of µ+k, then the number of beads that the last

induction operator F
(pe+1)
α can move from runner d−1 to runner d can be at most

p1+1. If not (i.e. pe+1 > p1+1), then the action of the induction subsequence of

µ+k is 0 because there are no enough gaps in runners d of F
(pe)

α−1
. . .F

(p2)

α+2
F
(p1)

α+1
(µ+k)

where to move pe+1 > p1 + 1 beads from runner d − 1 to runner d. In fact, the

total number of gaps in runner d of F
(pe)

α−1
. . .F

(p2)

α+2
F
(p1)

α+1
(µ+k) created by the first

operator F
(p1)

α+1
is p1. Also, by the assumption of Case 2., there is a component

J of F
(pe)

α−1
. . .F

(p2)

α+2
F
(p1)

α+1
(µ+k) with a bead in runner d − 1 at level lJ + 1 and

with a gap on its right. This is because lJ is the level of the last bead in the

new inserted runner of component J of µ+k. Thus, in total, there are at most

p1 + 1 possible positions where to move beads from runner d − 1 to runner d in
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F
(pe)

α−1
. . .F

(p2)

α+2
F
(p1)

α+1
(µ+k). Thus, we have pe+1 ≤ p1 + 1. Hence,

q1 = k
(1)
1 − 1− p1 ≤ k

(1)
1 − 1,

qe+1 = k
(1)
1 − pe+1 ≥ k

(1)
1 − p1 − 1 = q1.

We claim that the action of this induction sequence on ∅+(k(1)−e−1) is 0. In order

to prove this, we deal with the following three cases separately:

a. qe+1 = q1;

b. qe+1 = q1 + 1;

c. qe+1 > q1 + 1.

For cases b. and c. we can conclude as in Case 1. with analogous arguments. As

for case a., we need to be more cautious. In this case we have qe+1 = q1 and so

by Lemma 3.2.12 the induction subsequence acting on ∅+k(1)−e−1 is non-zero if

and only if

q1 = q2 = . . . = qx = qx+1 = . . . = qe = qe+1.

We want to show that the induction subsequence acting on ∅+k(1)−e−1 acts as 0.

If q1 = q2 = . . . = q
e+1−k

(1)
2

= q
e+2−k

(1)
2

= . . . = qe = qe+1, then

p1 = . . . = p
e+1−k

(1)
2

= k
(1)
1 − q1 − 1,

p
e+2−k

(1)
2

= . . . = pe+1 = k
(1)
1 − qe+1 = k

(1)
1 − q1.

In this case we have no problem with the induction subsequence acting on

∅+k(1)−e−1, but the induction subsequence on µ+k is the one that acts as 0. We

need again to distinguish two cases.

• If the first p1 beads moved from runner d to runner d + 1 involve at least

one bead not in the last p1 positions of the new inserted runner, then the

action of the induction subsequence on µ+k is 0. Indeed, the last induction

operator requires to move pe+1 beads from runner d− 1 to runner d, but in

runner d we have at most pe+1 − 1 = p1 empty positions.

• If the first p1 beads moved from runner d to runner d + 1 are exactly in

the last p1 positions of the new inserted runners of component J of µ+k,

then the action of the induction subsequence on µ+k is 0. Notice that our

assumption

k(j) − k(h) ≥ µ
(j)
1 +

j−1∑
t=h+1

|µ(t)|+ e− 1 for all 1 ≤ h < j ≤ r
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implies that the last bead of µ(J) is at most at level cJ − k
(1)
1 of the abacus

of µ(J). Indeed, the difference in height between the last bead of the new

inserted runner and the last bead of µ(J) is given by cJ − 1 − x where

µ
(J)
1 + nJ − 1 = xe+ i for x ≥ 0 and 0 ≤ i ≤ e− 1 and so we get that

cJ − 1− x =
1

e
(k(J) + nJ − d)− 1− 1

e
(µ

(J)
1 + nJ − 1− i)

=
1

e
(k(J) − µ

(J)
1 ) +

1

e
(−d− e+ 1 + i)

≥ 1

e
(k(1) +

J−1∑
t=2

|µ(t)|+ e− 1) +
1

e
(−d− e+ 1 + i)

≥ 1

e
(k(1) + e− 1) +

1

e
(−d− e+ 1 + i)

=
1

e
(k

(1)
1 e+ k

(1)
2 ) +

1

e
(−d− e+ 1 + i+ e− 1)

= k
(1)
1 +

1

e
(k

(1)
2 − d+ i)

> k
(1)
1 +

1

e
(−e)

= k
(1)
1 − 1.

If the induction subsequence on µ+k is 0 at some step before the last

induction operator then we are done. Suppose that we can apply all the

induction operators until the last one F
(pe+1)
ᾱ , and that we get something

non-zero. Then the action of this last operator is 0 because we do not

have enough beads in runner d − 1 to move in runner d in the abacus

display of F
(pe)

α−1
. . .F

(p2)

α+2
F
(p1)

α+1
(µ+k). In fact, the position

(cJ − 1)(e+ 1) + (d− 1) is empty since x < cJ − k
(1)
1 ≤ cJ − 1 and so there

are only pe+1 − 1 addable nodes of residue d.

Therefore, we proved that the induction sequence acts non-zero when all the

induction operators are applied to the first component of (∅+(k(1)−e−1),µ+k) also

in this case. So, we get that (3.2.17) = (∅+k(1) ,µ+k). By induction hypothesis

we know also that

(∅+(k(1)−e−1),µ+k) = F
(k

(1)
1 −1)

α . . .F
(k

(1)
1 −1)

β+1
G(k

(1)
1 −2)

β
. . .G(1)

β+k
(1)
1 −3

((∅,µ+k)).

Hence, we can conclude.

The above proposition gives the following result about the canonical basis

coefficients of (∅,µ+k) and (∅+k(1) ,µ+k).

Proposition 3.2.30. Let (∅,µ) = (∅, µ(2), . . . , µ(r)) be a r-multipartition and

(k(1),k) = (k(1), k(2) . . . , k(r)) be an r-tuple of non-negative integers such that
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conditions (3.2.16) hold. Let s+ ∈ (Z/(e+ 1)Z)r. Suppose that

Gs+

e+1((∅,µ+k)) =
∑
µ⊵λ

dλµ(q)(∅,λ+k)

where dλµ(q) ∈ qN[q] for λ ̸= µ. Then

Gs+

e+1((∅+k(1) ,µ+k)) =
∑
µ⊵λ

dλµ(q)(∅+k(1) ,λ+k).

Proof. Let s+ = (s1, . . . , sr) be a multicharge. Suppose that

Gs+
e+1((∅,µ+k)) =

∑
µ⊵λ dλµ(q)(∅,λ+k) with dλµ(q) ∈ qN[q] for λ ̸= µ. We

want to apply the induction sequence from ∅ to ∅+k(1) given by Proposition

3.2.10 to Gs+
e+1((∅,µ+k)). Hence, we want to use Proposition 3.2.29. So, writing

k(1) = k
(1)
1 e + k

(1)
2 with k

(1)
1 ≥ 0 and 0 ≤ k

(1)
2 ≤ e − 1, we want to apply the

following induction sequence

F
(k

(1)
1 )

α F
(k

(1)
1 )

α−1
. . .F

(k
(1)
1 )

β+1
G(k

(1)
1 −1)

β
G(k

(1)
1 −2)

β+1
. . .G(1)

β+k
(1)
1 −2

(Gs+

e+1(∅,µ+k)), (3.2.19)

where

• α = k(1) + s1 and β = k(1) − k
(1)
2 + s1;

• F
(k

(1)
1 )

α F
(k

(1)
1 )

α−1
. . .F

(k
(1)
1 )

β+1
occur if α ̸= β.

Our assumptions are exactly the hypotheses of Proposition 3.2.29. Thus, we

have

(3.2.19) =
∑
µ⊵λ

dλµ(q)F
(k

(1)
1 )

α F
(k

(1)
1 )

α−1
. . .F

(k
(1)
1 )

β+1
G(k

(1)
1 −1)

β
G(k

(1)
1 −2)

β+1
. . .G(1)

β+k
(1)
1 −2

((∅,λ+k))

=
∑
µ⊵λ

dλµ(q)(∅+k(1) ,λ+k),

which is of the form (∅+k(1) ,µ+k) +
∑
µ ̸=λ

dλµ(q)(∅+k(1) ,λ+k). Hence, this shows

that Gs+
e+1((∅+k(1) ,µ+k)) =

∑
µ⊵λ

dλµ(q)(∅+k(1) ,λ+k) by the uniqueness of the

canonical basis.

Write f
(hl)
il
· · · f(h1)

i1
with h1, . . . , hl non-negative integers and i1, . . . , il ∈ I. Fix

d ∈ {0, . . . , e − 1}. Then define F to be the induction sequence obtained in the

following way: for all j = 1, . . . , l

• if ij ̸= d, replace f
(hj)
ij

with F
(hj)

g(ij)
;

• if ij = d, replace f
(hj)
d with F

(hj)
d F

(hj)
d+1.
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Proposition 3.2.31. Let (∅,µ) = (∅, µ(2), . . . , µ(r)) be an e-multiregular r-

multipartition and (k(1),k) = (k(1), k(2) . . . , k(r)) be an r-tuple of non-negative

integers such that conditions (3.2.16) hold. Let d ∈ {0, . . . , e− 1} be the label of

the new inserted runner of (∅,µ)+(k(1),k) such that (3.2.5) holds. Suppose that

f ·Gs
e((∅,µ)) =

∑
ν∈Pr

gνν,

where gν ∈ Z[q, q−1] and f = f
(hl)
il
· · · f (h1)

i1
for some h1, . . . , hl ∈ Z≥0 and

i1, . . . , il ∈ I is such that f ·∅ = µ(1) +
∑

µ(1)▷τ

tττ for tτ ∈ Z[q, q−1]. Then

F ·Gs+

e+1((∅,µ)+(k(1),k)) =
∑
ν∈Pr

gνν
+(k(1),k),

where F is defined as above.

Proof. By definition of +k we have that

(f ·Gs
e((∅,µ)))+(k(1),k) =

∑
ν∈Pr

gνν
+(k(1),k).

Moreover, we get that

(f ·Gs
e((∅,µ)))+(k(1),k) =

f ·
∑
µ⊵λ

dλµ(q)(∅,λ)

+(k(1),k)

= F ·
∑
µ⊵λ

dλµ(q)(∅,λ)+(k(1),k) by Cor. 3.2.20, 3.2.24

= F ·Gs+

e+1((∅,µ)+(k(1),k)) by Prop. 3.2.30

Hence,

(f ·Gs
e((∅,µ)))+(k(1),k) = F ·Gs+

e+1((∅,µ)+(k(1),k)).

Thus, we can conclude

F ·Gs+

e+1((∅,µ)+(k(1),k)) =
∑
ν∈Pr

gνν
+(k(1),k).

Theorem 3.2.32. Let (µ(1),µ) = (µ(1), µ(2) . . . , µ(r)) ∈ Pr is an e-multiregular

multipartition of n and s = (s1, . . . , sr) ∈ Ir. Let (k(1),k) = (k(1), k(2) . . . , k(r))

with k(j) a non-negative integer for j = 1, . . . , r such that conditions (3.2.16)

hold. Then

Gs+

e+1((µ
(1),µ)+(k(1),k)) = Gs

e((µ
(1),µ))+(k(1),k).

Proof. Suppose that (µ(1),µ) = (µ(1), . . . , µ(r)) is an e-multiregular
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r-multipartition. We proceed by induction on the number r of components.

If r = 1, then (µ(1),µ) = µ and (k(1),k) = k, i.e., we are in the partition case.

Thus, by Theorem 3.2.5 we have

Ge+1(µ
+k) = Ge(µ)

+k,

since k ≥ µ1.

Suppose r > 1. By induction on r, we know that for an e-multiregular (r−1)-

multipartition µ

Gs+

e+1(µ
+k) = Gs

e(µ)
+k. (3.2.20)

More explicitly, we have that

Gs
e(µ) = µ+

∑
µ▷λ

dλµ(q)λ,

then (3.2.20) implies that

Gs+

e+1(µ
+k) = µ+k +

∑
µ▷λ

dλµ(q)λ
+k.

Now, we want to show that this is also true for the r-multipartition (µ(1),µ). By

Corollary 3.1.5 it holds that

Gs+

e+1((∅,µ+k)) = (∅,µ+k) +
∑
µ▷λ

dλµ(q)(∅,λ+k).

By Proposition 3.2.30 we have that

Gs+

e+1((∅+k(1) ,µ+k)) = (∅+k(1) ,µ+k) +
∑
µ▷λ

dλµ(q)(∅+k(1) ,λ+k).

Using the LLT algorithm on partitions, we can write G(s1)(µ(1)) as f·∅ in the Fock

space F (s1), for some f ∈ U . Applying the induction sequence f to Gs
e((∅,µ)) we

can write

f ·Gs
e((∅,µ)) =

∑
ν∈Pr

gνν, (3.2.21)

where gν ∈ Z[q, q−1] because f ·Gs
e((∅,µ)) ∈M⊗s and M⊗s is a U-submodule of

Fs. Performing step (c) of the LLT algorithm for multipartitions in [Fay10] we

get

f ·Gs
e((∅,µ))−

∑
(µ(1),µ)▷σ

aσµ(q)G
s
e(σ) = Gs

e((µ
(1),µ)) (3.2.22)

where aσµ(q) ∈ Z[q + q−1].

Now consider the induction sequence F that is obtained translating the

induction sequence f from e to e+ 1. This means that for each i ∈ I



Chapter 3: Full runner removal theorem for Ariki-Koike algebras 111

• if i ̸= d, we replace f
(h)
i with F

(h)
g(i),

• if i = d, we replace f
(h)
d with F

(h)
d F

(h)
d+1.

Then apply F to Gs+
e+1((∅+k(1) , µ+k(2))). By Proposition 3.2.31 we have

F ·Gs+

e+1((∅+k(1) ,µ+k)) =
∑
ν∈Pr

gνν
+(k(1),k). (3.2.23)

We now consider (3.2.23). Since the coefficients occurring in the sum are

exactly the same of (3.2.21), we perform the following subtraction of terms

F ·Gs+

e+1((∅+k(1) ,µ+k))−
∑

(µ(1),µ)▷σ

aσ(µ(1),µ)(q)G
s+

e+1(σ
+(k(1),k)). (3.2.24)

We proceed by induction on the dominance order. Suppose that

Gs+
e+1(σ

+(k(1),k)) = (Gs
e(σ))

+(k(1),k) for all σ ◁ (µ(1),µ). Then

(3.2.24) = F ·Gs+

e+1((∅+k(1) ,µ+k))−
∑

(µ(1),µ)▷σ

aσ(µ(1),µ)(q)(G
s
e(σ))

+(k(1),k).

(3.2.25)

Since we are performing exactly the same operations of (3.2.22) and the starting

coefficients are the same in (3.2.21) and (3.2.23), by definition of +k we have

(3.2.25) = Gs
e((µ

(1),µ))+(k(1),k).

Moreover, by uniqueness of the canonical basis of M⊗s+ we can state

(3.2.25) = Gs+

e+1((µ
(1)+k(1)

,µ+k)).

Hence,

Gs+

e+1((µ
(1),µ)+(k(1),k)) = Gs

e((µ
(1),µ))+(k(1),k).
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Final remarks

Three natural questions arise from this thesis.

A question one could ask after reading Chapter 2 is the following.

Question 4.1. Is there a graded version of Proposition 2.2.8?

As we stated in different paragraphs of this thesis without ever going into

much detail, in [BK09] Brundan and Kleshchev provide an explicit isomorphism

between certain cyclotomic quotients of KLR algebras and Ariki-Koike algebras.

This isomorphism allows us to use the Z-grading of KLR algebras on Ariki-

Koike algebras and then define and study the graded decomposition numbers

(see [BKW11]). Therefore, since Brundan and Kleshchev in [BK09] proved a

graded version of Ariki’s theorem (Theorem 3.1.3), we believe a graded version

of Proposition 2.2.8, as stated in the following, can be proved.

Conjecture 4.0.1. Fix i ∈ {0, 1, . . . , e − 1}. Suppose that in each component

of every r-multipartition that belongs to a block B of Hr,n there is no abacus

configuration of the type u in runners i− 1 and i. If λ,µ ∈ B then,

dλµ(q) = dΦi(λ)Φi(µ)(q)

where Φi swaps the runners i− 1 and i in each component of the abacus display

of a multipartition.

The next two questions arise from Chapter 3.

Question 4.2. Can Theorem 3.2.32 be extended to any multipartition µ?

We can express Theorem 3.2.32 in terms of q-decomposition numbers as

follows.

Theorem 4.0.2. Let µ = (µ(1), . . . , µ(r)) ∈ Pr be an e-multiregular

multipartition of n. Let k = (k(1), . . . , k(r)) with k(j) non-negative integer for

j = 1, . . . , r such that conditions (3.2.16) hold. Then

de+1
λ+kµ+k(q) = deλµ(q).

112
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Since the q-decomposition number deλµ(q) is defined even when µ is not e-

multiregular, it comes natural to wonder whether Theorem 4.0.2 holds also in

this more general case. However, the proof of a theorem including the non e-

multiregular case seems to require an ‘empty’ runner removal theorem for Ariki-

Koike algebras. This is for example the case for Iwahori-Hecke algebras (see

[Fay07a]). Therefore, the next question emerges naturally.

Question 4.3. Is a runner removal theorem with an empty runner instead of a

runner full of beads true for Ariki-Koike algebras?

There are different reasons why we think that this question should have a

positive answer. First of all, an empty runner removal theorem is established for

the Iwahori-Hecke algebras of the symmetric groups and the q-Schur algebras

by James and Mathas in [JM02]. Also, we have seen so far how much the

representation theory of Ariki-Koike algebras resambles the one of the

symmetric groups and how often results for the symmetric groups (or, the

Iwahori-Hecke algebras of the symmetric groups) can be extended to

Ariki-Koike algebras. Furthermore, all the examples we have examined with the

help of GAP confirmed our belief. An instance of them is the following.

Example 4.0.3. Let r = 2, e = 3, and write the set I = Z/3Z as {0, 1, 2}. Take
s = (2, 1). Consider µ = ((2, 1), (1)) and its 3-abacus display

0 1 2

{ { {{{
qqq qqq qqq

,

0 1 2

{ { {{

qqq qqq qqq
.

The canonical basis element Gs
3(((2, 1), (1))) is given by

Gs
3(((2, 1), (1))) = ((2, 1), (1)) + q((13), (1)) + q2((12), (12))

= µ+ qλ1 + q2λ2.
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Now, consider the multipartition with 4-abacus display

0 1 2 3

{ { {{{
qqq qqq qqq qqq

,

0 1 2 3

{ { {{

qqq qqq qqq qqq
,

that corresponds to the multipartition ((4, 2, 1), (2, 1)). Notice that the abacus

display of ((4, 2, 1), (2, 1)) is obtained from the 3-abacus display of µ by adding

a runner with no beads to the left of each runner 2 and relabelling the runners

in the usual way. Write µ+∅ for ((4, 2, 1), (2, 1)) and s+∅ for the corresponding

multicharge, that is (1, 0).

Now, we compute the canonical basis element for µ+∅. We get

Gs+∅
4 (((4, 2, 1), (2, 1))) = ((4, 2, 1), (2, 1)) + q((3, 22), (2, 1)) + q2((3, 2, 1), (22)).

Hence, we notice that

Gs+∅
4 (µ+∅) = µ+∅ + qλ+∅

1 + q2λ+∅
2 ,

where λ+∅
t for t ∈ {1, 2} is obtained from the 3-abacus display of λt by adding

a runner with no beads to the left of runner 2 in each component. Thus, in this

case we have that the q-decomposition numbers match up, that is for t ∈ {1, 2}

deλtµ(q) = de+1

λ+∅
t µ+∅(q).

Therefore, we conjecture that the following claim should hold.

Conjecture 4.0.4. Let λ,µ ∈ Pr be in a block B of Hr,n with µ e-multiregular.

Suppose that λ+∅ and µ+∅ are the multipartitions obtained from the e-abacus

display of λ and µ by adding an ‘empty’ runner in each of their components.

Then

deλµ(q) = de+1
λ+∅µ+∅(q).

However, the argument we used to prove the ‘full’ runner removal theorem

is most likely not adaptable in a straightforward way to the proof of the above

conjecture, because it heavily relies on the fact that the runner we add to each

component is long enough.

Moreover, for Iwahori-Hecke algebras (where one usually looks to take

inspiration to prove results for Ariki-Koike algebras), the proof of the ‘empty’
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runner removal theorem provided by James and Mathas in [JM02] makes use of

q-Schur algebras. They first show that certain decomposition numbers of the

q-Schur algebras SC,q(n) and SC,q′(m) are equal for specified m > n. Then,

since the decomposition matrix for the Iwahori-Hecke algebras HC,q(Sn) is a

submatrix of the decomposition matrix of SC,q(n), they deduce the analogous

result for the q-decomposition numbers for Iwahori-Hecke algebras.

Although q-Schur algebras are defined also for Ariki-Koike algebras, a proper

checking on how much of the proof for Iwahori-Hecke algebras can be extended

to the Ariki-Koike algebras case needs to be done. Some further work is therefore

required to adapt this proof for Ariki-Koike algebras.

Another interesting research direction is to interpret these equalities

between certain q-decomposition numbers of Ariki-Koike algebras as

consequences of Morita equivalences a la Chuang-Miyachi (see [CM10]). The

first step in this direction would be looking for “candidate” Morita equivalences.

Anyway, we haven’t explored this in depth enough to be able to provide any

suitable candidate.
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