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Abstract: The reliable and cost-effective condition monitoring of the bearings installed in water
pumps is a real challenge in the industry. This paper presents a novel strong feature selection and
extraction algorithm (SFSEA) to extract fault-related features from the instantaneous power spectrum
(IPS). The three features extracted from the IPS using the SFSEA are fed to an extreme gradient
boosting (XBG) classifier to reliably detect and classify the minor bearing faults. The experiments
performed on a lab-scale test setup demonstrated classification accuracy up to 100%, which is better
than the previously reported fault classification accuracies and indicates the effectiveness of the
proposed method.

Keywords: induction motors; stator current sensing; voltage measurement; instantaneous power
measurement; vibration measurement; feature selection

1. Introduction

Induction motors have a simple, cost-effective design and they are easy to manufacture.
These motors are designed to operate in tough environmental conditions. This feature
makes them reliable for complex industry operations [1,2]. The stator, rotor and bearings
are the main components of the induction motor. The performance of the motor is degraded
if a fault appears in any of these components. Severe defects can cause a breakdown of
the motor, which can create huge losses for the industry in terms of maintenance time,
production stops, material waste and delay in the scheduled delivery of products [3–8].
The continuous monitoring of the status of motor parts could give an early indication about
faults and provide an opportunity for the maintenance staff to assess the motor condition,
take corrective measures and plan maintenance activity along with the budget. Condition
monitoring of machines and systems is one of the core elements of Industry 4.0. Thanks
to the digital shadow, the current status of a motor in the form of voltage, current and
power or vibration could be virtually available everywhere for analysis and fault detection
purposes [9,10]. Induction motors are an important component of water pumps. Condition
monitoring of water pumps is very crucial to save maintenance costs and achieve the
production targets of the industry. Figure 1 indicates that 70% of the maintenance cost in
petrochemical plants is associated with centrifugal pumps [10]. The important elements
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of the centrifugal pump are shown in Figure 2. The majority of the water pumps suffer
burnout due to bearing faults. The bearing faults are the cause of 44% of motor breakdowns
in the industry [11] and, for this reason, the focus of this paper is on the diagnostics of
bearing failures. Bearings are designed to operate for long-running hours; however, they
might fail prematurely, mainly due to dirt, contamination, excessive loading, misalignment,
corrosion and lack of lubrication [12]. The most common and frequent types of bearing
fault reported in the literature are dents, fretting, spalling, scratches, improper fits and
holes in the raceways [11–15].
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The condition monitoring of the motor is performed through the acquisition of the data
from various sensors, such as vibration sensors (accelerometer, velocity meter, displace-
ment sensor), stator current sensors, voltage sensors, magnetic flux sensors, temperature
sensors and noise sensors [16]. The name of the condition monitoring technique is de-
cided based on the type of sensor used. Vibration analysis (VA) is a famous fault analysis
technique that has been researched and practiced in the industry for a long time. The
vibration information, mostly collected through accelerometers, can give information about
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the health of the motor [17,18]. The accuracy of the vibration analysis method is related to
the accuracy of the accelerometer installation on the motor bearing. Another issue with
vibration-based diagnostics is the high cost of accelerometers. Furthermore, some motors
in the plant are located in places where access to the motor for accelerometer installation is
nearly impossible [15–20]. Similarly, temperature analysis, noise analysis and flux analysis
techniques are invasive and involve high costs for the system development [21]. The motor
current analysis (MCA) technique is based on the analysis of the stator current, which is
measured using current sensors, and these sensors are installed in the connection box wire
terminal and thus do not require access to the motor. This feature makes MCA non-invasive
and it overcomes the limitations of the VA technique [22]. The MCA supervisor decides
about the health of the motor based on the amplitude of the two frequency components,
which are located around the fundamental component. However, the accuracy and re-
liability of the fault diagnostics through MCA are affected when the amplitudes of the
fault frequencies are suppressed by the high amplitude of the fundamental frequency [11].
The non-intrusive motor current analysis technique is quite inexpensive; however, its
reliability is affected by environment noise while detecting minor bearing faults. Reliable
fault detection and classification is a real challenge when using MCA. Researchers have
achieved classification accuracy of up to 89.26% using MCA with various machine learning
and deep learning tools.

The raw data obtained through sensors require further analysis to extract meaningful
information about the machine’s status [23]. Various signal processing methods, such as
fast Fourier transform (FFT), time-domain analysis and time-frequency analysis, have been
developed and widely used in the past to analyze fault-related features such as frequency
components, kurtosis, entropy and standard deviation [24,25]. The choice of the signal
processing technique is depended upon the type of fault diagnosis and the nature of the
fault features.

A lot of research has been conducted in the past on the diagnosis of holes or dents
in the bearing raceways and it has been shown that a small-sized hole (diameter < 1 mm)
can produce tinny amplitudes; it is thus a great challenge to reliably diagnose these small
faults [26–30]. Some studies have used noise filtration and threshold-based statistical
analysis algorithms to enhance the reliability of the small-sized hole diagnostics [26,27].
Although there is a huge literature available on the diagnostics of hole-type faults in the
bearing, very little research has been conducted on diagnosing the initial stage of these
faults that appears in the form of scratches [28]. The unexpected breakdowns of motors
in the industry could be reduced if the faults are diagnosed at the initial stage of their
occurrence so that proper preventive measures can be adopted. Thus, the incipient fault
diagnostics of bearings requires greater attention.

In the current decade, the use of artificial intelligence (AI) has been significantly
increased for the reliable diagnostics and classification of machine faults [29]. AI techniques
such as machine learning and deep learning can be trained to accomplish specific tasks by
processing a large amount of data and recognizing fault trends in them [30–32]. There are
various types of algorithms for machine learning and deep learning and the selection of the
algorithm is a challenging task. Several factors, such as reliability, accuracy and processing
time, should be considered to make the condition monitoring system compatible with the
industry requirements. The k-nearest neighbor algorithm was used in [33] to detect and
classify bearing faults and gear faults. Vibration analysis was used as a data collection
technique and time-domain features were extracted and utilized for fault classification.
The outer race fault size of 0.533 mm was studied; however, minor scratches diagnosis
was not in the scope of this work. The performance of the k-NN algorithm was tested on
various window sizes. The optimization of the model was performed through a genetic
algorithm. The authors concluded that the k-NN algorithm along with a GA could be a
reliable diagnostic tool for bearing condition monitoring. The support vector machine
(SVM) and multilayer perception (MLP) algorithms were used in [34] to analyze centrifugal
pump seal leakages. The authors used the accelerometer data collected from the installation
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site over four years. The SVM algorithm has been reported to achieve a maximum accuracy
of 98.1% and MLP has achieved an accuracy of 98.2%. The light neural network model has
been implemented on vibration signals collected from bearings and gears [35]. The authors
concluded that the performance of the light neural network is better than that of other
approaches. A comprehensive review of machine learning and deep learning techniques
has been provided in [36]. The advantages and limitations of k-NN, naive Bayes, SVM
and CNN algorithms are discussed and performance comparisons are also provided for
each method.

The aim of this study was to diagnose bearing faults of minor sizes using non-invasive
instantaneous power analysis (IPA) as a signal processing tool, SFSEA as a feature extraction
tool and XGB as a machine learning tool. Two types of faults were simulated in the bearing:
a type 1 fault is a hole of diameter 0.5 mm and a type 2 fault is a scratch of width 0.5 mm,
depth 0.5 mm and length 5 mm. These dimensions were selected to allow a fair comparison
of the proposed method with the benchmark paper [28], as this benchmark study used the
same dimensions. The contributions of this paper are:

• The harmonic identification using the IPA technique. The IPA provides an advantage
over conventional MCA by providing three harmonics related to fault analysis while
the MCA provides only two fault-related harmonics. This extra fault harmonic helps
to enhance the reliability and accuracy of the condition monitoring system.

• The design of an SFSEA for the feature extraction from the IPA data. The SFSEA
extracts strong features by eliminating those features whose amplitudes are dominated
by environment noise.

• The development of an XGB classifier to classify the bearing faults using the features
extracted through the SFSEA.

The rest of the paper is organized as follows. Section 2 describes the SFSEA. Section 3
provides the experiment procedures and Section 4 presents the results. Finally, Section 5
presents the conclusion of this study.

2. Feature Selection, Extraction and Detection Framework
2.1. Feature Calculations and SFSEA Framework

The instantaneous power spectrum was plotted in LabVIEW through the measured
voltage and current signals. The key reason to use the instantaneous power spectrum is that
it gives three harmonics related to the fault. One harmonic is located at the shaft rotational
frequency and two harmonics are located around the fundamental frequency. The tradi-
tional MCA technique provides only two harmonics for the fault analysis. The locations of
the fault-related features in the spectrum are shown in Table 1. The mathematical relations
used to calculate the locations of the fault features are described in Equations (1)–(3). In
Table 1, X1 represents the harmonic at the rotational frequency and X2, X3 represent two
sidebands around 100 Hz.

Fault Harmonics (X2, X3) =
∣∣∣2 × X f ± outer ring f ault harmonic

∣∣∣ (1)

Outer Ring Fault Harmonic (X1) = 0.4 × number o f balls × Xr (2)

Xr =
X f

2
(1 − slip) (3)

where X f is the fundamental frequency and Xr is the shaft rotational frequency.
After identifying the fault features in the instantaneous spectrum, the strong features

selection and extraction algorithm was deployed in the following steps:

• The frequency spectrum is plotted using an instantaneous power algorithm developed
in LabVIEW;

• The fault frequencies are identified using the mathematical model of the instanta-
neous power;

• The healthy bearing amplitudes are collected and saved as baseline data;
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• The faulty bearing amplitudes are collected and compared with the baseline data to
measure the amplitude difference (AD) (AD = measured amplitude value at character-
istic frequency − baseline amplitude value at the characteristic frequency);

• If the AD is zero, then it is an indication of a healthy bearing;
• If the AD is greater than zero, then it is an indication of the presence of a fault;
• Signature with an AD is greater than zero are finally compared with the statistical

threshold to eliminate the impact of the environment noise. Those signatures which
are greater than the threshold are selected as the strong features and are fed to the
XGB for the fault classification.

A flow chart of the SFSEA deployment is shown in Figure 3.
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Table 1. The location of fault features in the IPS under various shaft loads.

Shaft Load Shaft Speed (Revolutions per Minute)
The Locations of Fault Features in the Spectrum (Hz)

X1 X2 X3

0% 1490 79.4 20.6 179.4

50% 1452 77.4 22.6 177.4

100% 1400 74.6 25.4 174.6
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2.2. The Description of the Machine Learning Approaches

In general, there are two types of machine learning algorithms: supervised and
unsupervised. The target variables (TVs) in supervised algorithms are those that may be
predicted from a known set of independent variables. These variables are used to construct
the function and input maps to get the correct result and accomplish the target. They go
through a training process to improve their accuracy. The training procedure is repeated
before the model reaches optimal accuracy. Unsupervised algorithms, on the other hand,
do not have a TV and therefore they use the clustering strategy. The literature indicates
that supervised learning is adopted for machine fault classification. The SVM, k-NN and
CNN algorithms are the algorithms famous in condition monitoring applications.

2.2.1. Support Vector Machine (SVM)

The SVM algorithm is primarily used for classification and regression problems. The
margin and hyperplane are the fundamental parameters of the SVM algorithm. The margin
identifies the dataset vectors while the hyperplane divides the datasets and executes
the classification operation. The SVM algorithm classifies data by determining the best
hyperplane for maximizing the margin width between various classes. The overlapping
issue among various classes can be minimized by increasing the margin width. In general,
there are two forms of margins: soft margins and hard margins. In the present study, a soft
margin was used since the bearing fault diagnosis was a nonlinear classification problem.

Three parameters can affect the accuracy of the SVM algorithm. These parameters
are the kernel function, the threshold function and the cost parameter (C). The kernel
function’s primary purpose is to map the input at high-dimensional features, allowing for
nonlinear classification. The gamma parameter influences data classification in the RBF
kernel. The role of the threshold function is to develop the feature recognition ability. The
cost parameter balances the tradeoff between a smooth boundary state determination and
classification of the training points. When a large value is used as the cost parameter, low
bias and high variance may be obtained. The gamma parameter sets the sequence contrast
in relation to the expense function. Due to overfitting, the cost and gamma parameters
should not be too large, and they should not be too poor because of underfitting issues.
These parameters may be fine-tuned by choosing the right ranges of programming.

The training features are mostly used to determine the best hyperplane. Cross-
validation, re-sampling and matrix scan techniques aid in the automated selection of
cost and gamma parameter values during the diagnosis. In machine learning, cross-
validation assists in the preparation of the algorithm utilizing the right hyper-parameters.
Re-sampling is a collection of techniques for reconstructing reference data sets, such as
preparation and analyzing datasets. Grid quest is an iterative approach for finding the
right parameter value for a machine learning algorithm.

2.2.2. K-Nearest Neighbor (k-NN) Algorithm

The k-NN algorithm is a non-parametric and robust learning algorithm that can
be used to solve both classification and regression problems. Rather than studying the
discriminative function, this algorithm memorizes the testing datasets. By memorizing the
training sets, instance-based learning aids in the avoidance of errors. The non-parametric in
the model is not set in advance and differs depending on the sample size. The drawbacks of
k-NN include its huge memory footprint, long prediction period and excessive sensitivity
to irrelevant functionality.

k-NN uses the k-nearest training samples around the test results to conduct classifica-
tion of the data. k-NN is largely based on two factors: (1) a distance metric for measuring
the distance between two points and (2) the value of “k” for defining the number of neigh-
bors. The form of the judgment boundary is defined by the value of k. If one raises the
value of k in the neighbor selection, the boundary becomes smoother. Small k values
produce a hard boundary state technically, but they also result in a more stable match with
low bias and large variance.
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2.2.3. Convolutional Neural Network (CNN) Algorithm

The standard versions of deep learning are denoising auto-encoders, deep conviction
networks and convolutional neural networks (CNNs). CNNs are often used in the medical
field but seldom used for motor condition monitoring applications. CNNs are often referred
to as a form of machine learning, but they belong to the AI subclass. Both controlled and
unsupervised programs may be executed on the network. To put it another way, the
network is made up of several layers, each of which contains secret layers that are used
to train the input. A CNN was chosen from among the different architectures because of
advantages such as shift-variance, weight sharing, a high accuracy rate and data encoding.

3. Experimental Procedure

A current sensor (SCT-00-15) and a voltage sensor were used to collect the data from
the 2 HP induction motor. The bearing used in this study was a 6202-2z bearing. It had
eight balls located between the outer and inner rings. Two types of faults were simulated
in the bearing: a Type 1 fault was a hole of diameter 0.5 mm and a Type 2 fault was a scratch
of width 0.5 mm, depth 0.5 mm and length 5 mm. The data from the sensors were fed to
the LabVIEW software through the National Instruments NI PXIe 1082 interface. A photo
of the laboratory-scale test setup is shown in Figure 4 and simulated bearing faults are
shown in Figure 5.
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Figure 5. Fault types simulated in the bearing.

4. Results and Discussion

Plots of the IPA signals for no load (NL), medium load (ML) and full load (FL), for a
normal bearing and defective bearing (type 1 and type 2), are shown in Figures 6–8. The
frequencies are plotted on the X-axes and amplitudes are plotted on the Y-axes. In the
graphs, ”X” denotes the frequency and ”Y” denotes the amplitude at that frequency. The
normal bearing data was taken as the baseline data and any deviation of amplitudes from
the baseline data was considered as the presence of a fault. An amplitude difference (AD)
of 4 dB was recorded for the type 1 fault and of 8 dB for the type 2 fault under NL operation.
Similarly, ADs of 10 dB and 12 dB were found in the case of ML. Finally, ADs of 14 dB
and 16 dB were observed in the FL operation of the motor. A summary of the amplitude
calculations for various scenarios is given in Table 2.

The amplitude differences (were measured by analyzing the plots of the normal
bearing and defective bearing and they are listed in Table 2. The AD values were calculated
for each case to confirm the presence of the fault. The case where AD > 0 was considered as a
faulty case. The motor operates in the industrial environment and any noise level adversely
affects the signal amplitudes. This noise can create a false alarm. Thus, a threshold was
established and the amplitudes of the measured signal were compared with the threshold
value. Those signal features whose amplitudes were greater than the statistical threshold
were considered as strong features and rest of the features were considered as weak features.
The algorithm designed to accomplish this process was called the SFSEA.
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Figure 6. The NL plots for the (a) normal bearing, (b) type 1 defect and (c) type 2 defect.
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Figure 7. The ML plots for the defective bearing: (a) normal bearing, (b) type 1 defect and (c) type 2 defect.

Table 2. The identification of strong features and weak features through the SFSEA.

Load Normal Bearing
Amplitude (dB) Defect Class Defective Bearing

Amplitude (dB) AD (dB) Statistical
Threshold (dB) Comments

NL
−81.44
−80.54
−81.22

Type 1
−77.44
−76.39
−77.16

4
4.15
4.06

−73.9 dB

Weak features

Type 2
−73.55
−71.8
−72.6

7.89
8.7

8.62
Strong features

ML

−84.49

Type 1

−74.37 10.12

−73.9 dB

Weak feature

−84.77 −74.6 10.17 Weak feature

−79.42 −69.12 10.40 Strong feature

−84.49

Type 2

−72.1 12.40

−73.9 dB

Strong feature

−84.77 −72.95 11.82 Strong feature

−79.42 −67.72 11.7 Strong feature

FL

−84.55

Type 1

−70.35 14.20

−73.9 dB

Strong feature

−83.19 −70.09 13.10 Strong feature

−85.25 −71.07 14.18 Strong feature

−84.55

Type 2

−67.5 17.05

−73.9 dB

Strong feature

−83.19 −67.9 15.29 Strong feature

−85.25 −69.53 15.72 Strong feature
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5. Fault Classification Algorithm

The bearing features were extracted using the SFSEA and were fed to a machine
learning algorithm for the machine health classification. The extreme gradient boosting
(XGB) classifier was used as a machine learning algorithm to classify nine different classes
of machine health conditions. The XGB classifier is known for its fast execution speed
and high classification performance in several domains [37,38]. Therefore, it was used to
classify the machine’s health conditions. The nine classes were NL (no load with no defect),
NL1 (no load with type 1 defect), NL2 (no load with type 2 defect), ML (medium load with
no defect), ML1 (medium load with type 1 defect), ML2 (medium load with type 2 defect),
FL (full load with no defect), FL1 (full load with type 1 defect) and FL2 (full load with
type 2 defect). The three features used to classify were Y1 (amplitude in dB against first
frequency point, i.e., X1), Y2 (amplitude in dB against second frequency point, i.e., X2) and
Y3(amplitude in dB against third frequency point, i.e., X3). All these points (X1, Y1; X2, Y2;
X3, Y3) are shown in Figures 6–8. These classes and features are shown in Table 3.
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Table 3. Description of classes and features.

Classes Description of Classes Features Description of Features

NL No load with no defect

Y1 Amplitude in db against first
frequency point, i.e., X1

Y2 Amplitude in db against second
frequency point, i.e., X2

Y3 Amplitude in db against third
frequency point, i.e., X3

NL1 No load with type 1 defect

Y1 Amplitude in db against first
frequency point, i.e., X1

Y2 Amplitude in db against second
frequency point, i.e., X2

Y3 Amplitude in db against third
frequency point, i.e., X3

NL2 No load with type 2 defect

Y1 Amplitude in db against first
frequency point, i.e., X1

Y2 Amplitude in db against second
frequency point, i.e., X2

Y3 Amplitude in db against third
frequency point, i.e., X3

ML Medium load with no defect

Y1 Amplitude in db against first
frequency point, i.e., X1

Y2 Amplitude in db against second
frequency point, i.e., X2

Y3 Amplitude in db against third
frequency point, i.e., X3

ML1 Medium load with type 1 defect

Y1 Amplitude in db against first
frequency point, i.e., X1

Y2 Amplitude in db against second
frequency point, i.e., X2

Y3 Amplitude in db against third
frequency point, i.e., X3

ML2 Medium load with type 2 defect

Y1 Amplitude in db against first
frequency point, i.e., X1

Y2 Amplitude in db against second
frequency point, i.e., X2

Y3 Amplitude in db against third
frequency point, i.e., X3

FL Full load with no defect

Y1 Amplitude in db against first
frequency point, i.e., X1

Y2 Amplitude in db against second
frequency point, i.e., X2

Y3 Amplitude in db against third
frequency point, i.e., X3

FL1 Full load with type 1 defect

Y1 Amplitude in db against first
frequency point, i.e., X1

Y2 Amplitude in db against second
frequency point, i.e., X2

Y3 Amplitude in db against third
frequency point, i.e., X3

FL2 Full load with type 2 defect

Y1 Amplitude in db against first
frequency point, i.e., X1

Y2 Amplitude in db against second
frequency point, i.e., X2

Y3 Amplitude in db against third
frequency point, i.e., X3
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To identify the strength of each feature in classifying the machine health, seven
experiments were conducted, as shown in Table 4, using different feature combinations.
An 4 indicates when a feature was used to classify the nine machine health conditions and
an 8 indicates when the particular feature was not used for classification. For instance, in
E1, only the Y1 feature was used for classification while others were not used. Moreover,
in E7, all features were used to classify the machine health states. The dataset contained
640 samples of all classes. For cross-validation, a 70/30 train/test split was used, where 70%
of the data samples (448 samples) were used to train the XGB classifier and the remaining
30% (192 samples) were used to test and to compute the performance. The XGB parameters
were set as: max_depth = 50, min_child_weight = 1, n_estimators = 100, n_jobs = −1,
verbose = 1, learning_rate = 0.1. The experimentation was performed using the XGBboost
library for Python [39].

Table 4. Summary of the experiments conducted to find the strength of feature combinations in
classifying machine health.

Experiment (E)
Features Used

Accuracy, %
Y1 Y2 Y3

E1 4 8 8 96.57

E2 8 4 8 100

E3 8 8 4 99.69

E4 4 4 8 100

E5 4 8 4 100

E6 8 4 4 100

E7 4 4 4 100

The findings of the proposed XGB classifier using different experiments are presented
in Tables 4 and 5. It is quite evident from the results that almost all combinations achieved
performances of above 96% and most of the experiments (five out of seven) achieved
performances of 100%. One interesting fact is that the Y2 feature alone was able to classify
all the nine classes of machine health conditions with 100% performance, and Y1 and Y3
alone achieved performances of 96.57% and 99.69%, respectively. All the feature remaining
combinations achieved performances of 100% regardless of the number of features used.
The respective confusion matrices of the first four experiments are presented in Table 5.

These findings are quite encouraging and show the strength of the proposed SFSEA
for feature extraction and of the XGB-based machine learning model in classifying the nine
different machine health conditions. The analysis further emphasizes the fact that even a
single feature (Y2) is sufficient to achieve 100% performance in classifying all the different
health conditions.

The performances of the developed SFSEA and XGB algorithm were compared with
other published papers. The study [28] was chosen as a benchmark study as the authors
used a similar experimental framework, a similar number of samples and similar bearing
fault types. The authors of [28] compared the performances of the support vector ma-
chine algorithm, a k-nearest neighbor network and a convolutional neural network. They
reported classification accuracy of 83.04% for the SVM algorithm, 87.85% for the k-NN
network and 89.26% for the CNN. However, the techniques proposed in this paper using
SFSEA for feature extraction and XGB as the classifier achieved an accuracy of 100%. Thus,
the method proposed in this paper outperformed the SVM, k-NN and CNN algorithms.
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Table 5. Confusion matrices of selected experiments.
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6. Conclusions

The accurate and cost-effective fault detection of centrifugal water pumps has gained
great importance in modern industry and this paper therefore presented an intelligent
condition monitoring system for the fault diagnosis of water pump bearings. A mathemati-
cal framework to identify the fault harmonics in the IPS data was established, and then
a novel SFSEA was developed to extract the features from the IPS spectrum. Three fault
features identified in the spectrum were extracted and compared with the baseline data
to verify the amplitude difference. The fault feature amplitudes were compared with the
threshold to remove the impact of noise. An XGB classifier was developed to classify nine
health conditions of the water pump and it was found that the proposed method achieved
100% classification accuracy. The significance of the developed method is evident from the
performance comparison with other state-of-the-art techniques, namely the SVM, k-NN
and CNN algorithms.
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