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ABSTRACT Internet of vehicles (IoVs) allows millions of vehicles to be connected and share information
for various purposes. The main applications of IoVs are traffic management, emergency messages delivery,
E-health, traffic, and temperature monitoring. On the other hand, IoVs lack in location awareness and
geographic distribution, which is critical for some IoVs applications such as smart traffic lights and
information sharing in vehicles. To support these topographies, fog computing was proposed as an
appealing and novel term, which was integrated with IoVs to extend storage, computation, and networking.
Unfortunately, it is also challenged with various security and privacy hazards, which is a serious concern of
smart cities. Therefore, we can formulate that Fog-assisted [oVs (Fa-IoVs), are challenged by security threats
during information dissemination among mobile nodes. These security threats of Fa-IoVs are considered as
anomalies which is a serious concern that needs to be addressed for smooth Fa-IoVs network communication.
Here, smooth communication refers to less risk of important data loss, delay, communication overhead, etc.
This research work aims to identify research gaps in the Fa-loVs network and present a deep learning-
based dynamic scheme named CAaDet (Convolutional autoencoder Aided anomaly detection) to detect
anomalies. CAaDet exploits convolutional layers with a customized autoencoder for useful feature extraction
and anomaly detection. Performance evaluation of the proposed scheme is done by using the F1-score metric
where experiments are carried out by exploiting a benchmark dataset named NSL-KDD. CAaDet also
observes the behavior of fog nodes and hidden neurons and selects the best match to reduce false alarms
and improve Fl-score. The proposed scheme achieved significant improvement over existing schemes for
anomaly detection. Identified research gaps in Fa-IoVs can give future directions to researchers and attract
more attention to this new era.

INDEX TERMS Fog computing, smooth communication, Internet of Vehicles, anomaly detection, fog-
assisted IoVs.

I. INTRODUCTION

The Internet of vehicles (IoVs) is a network that per-
mits mobile communication among vehicles. A conven-
tional VANET is rising into IoVs to meet the upcoming
requirements of an intelligent transportation system in the
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future [1], [2]. It is an emerging era that is the base
for traffic management, efficient traffic monitoring, mobile
sensing, parking alerts, audio/video streaming in vehicles,
and accident reporting [3]. Internet of vehicles is supported in
both areas, urban and rural. IoVs network allows communica-
tion among vehicle-to-vehicle (V2V), vehicle-to-grid (V2G),
vehicle-to-device (V2D), Vehicle to infrastructure (V2I), and
vice versa. [oVs are also used to provide E-health applications
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as mobile hospitals [2]. IoVs is an important constituent
of Intelligent Transportation Systems (ITS) to manage road
safety and related transportation services by saving data at
central online repositories for better decision-making [3],
[4]. Moreover, IoVs help to manage huge data transmission,
computation, and storage for users and owners [5], [6].

With the frequently growing rate of IoVs network, security
is a serious research concern of this era [3], [7]. Many
preventive measures have been taken to some extent to
halt these attacks. Security threat progression results in
poor network communication. In the IoVs network, message
congestion and its security during information dissemination
is a major issue in Vehicle communication [4], [8]. To deal
with the IoVs concerns, fog computing was introduced
for smooth communication [4], [9], [10]. Here, smooth
communication refers to no message congestion and limited
security threats.

The term “fog computing” was invented by Cisco organi-
zation in 2012 [12], [13]. Fog computing is the middle layer
between clients and the cloud [12]. It is not a replacement for
the cloud, but it is an enhancement of cloud computing which
is like the cloud and gives data computation, data storage,
and networking between end users and cloud servers. Cloud
computing follows centralized servers. When a network or
application needs a quick response from a central controller,
Cloud computing lack to provide immediate attention with
a short response time. The high distance between the cloud
and end devices increases the latency rate, which is directly
proportional to increase response time [14]. Furthermore,
cloud computing has limited mobility options and a high
workload due to a central server. High workload, latency, and
response time are considered limitations of cloud computing.
Furthermore, data congestion is also one serious concern of
cloud computing, the central nature of cloud computing may
lead to congestion and data loss [4], [15]. Fog computing is
an emerging domain that may enhance cloud features and
aims to resolve issues such as latency, mobility, and location
tracking and provide services to users [9], [12], [16]. Fog
computing computes data at the network edges by sharing
computation workload [14], [17]. Fog nodes act as local
servers where it computes given tasks. Fog servers are also
capable to process data at local servers and help to take timely
actions [15], [18]. Furthermore, Fog computing reduces
computation processes and user-related services and reduces
the burden of traditional cloud computing data centers [19].
Some basic characteristics of cloud and fog are stated in
Table 1.

Besides the fair factors of fog computing, it has also some
limitations that need to be explored. A major concern of
fog computing is security, due to local servers information
security is not guaranteed [12], [19], [20]. Fog nodes also
face security threats due to data computation on edges and the
mobile nature of nodes [13], [14], [21]. Specifically, security
constraint includes account hijacking, Daniel of Service
(DDOS), data breaches, and data loss [8], [14], [22], [23],
[24]. In DDOS users are prevented to use system resources
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TABLE 1. Comparison of cloud and fog computing.

Features Cloud Fog
Computing Computing

Geographic centralized decentralized

Nature

Response high Low

Time

Mobility limited high

Workload high low

Latency high low

Computation | high low

Cost

Security low high

Congestion High Low

while important information may have lost in data breaches
and data loss by natural disasters or any malware attack.
Therefore, need to improve the failure of local servers in fog
computing for smooth communication. Thousands of people
had been died due to traffic accidents [25], [26]. Secure Fog
computing can be used to connect vehicles for smooth and
secure communication and data transmission [6], [27]. This
research work will provide secure information dissemination
among vehicles by handling the limitations of fog computing.

Fog-assisted IoVs (Fa-IoVs) refer to various local services
over the vehicular network for the sake of load balancing and
cost reduction [17], [28]. Fa-IoVs involve many vehicles and
fog nodes to develop a network for smooth communication.
Fog nodes reduce congestion and IoVs security attack to
score smooth communication [4], [7]. Fog computing works
in a distributed manner on network edges [12]. For Fa-IoVs,
Fog computing is a central layer between IoVs and cloud
works through roadside units (RSU) [4], [28]. Fog computing
map fog nodes locally that help in load balancing, resource
management, and computation cost reduction in parallel to
cloud computing or only RSU’s involvement. Unfortunately,
local fog nodes on IoVs edges are threatened with security
issues, which is a critical challenge. Security issues of Fog-
assisted IoVs are considered as anomalies.

Anomaly is an outlier or deviated action over normal
behavior [29], [30]. Anomaly detection (AD) is a recent
way to detect security challenges or threats [31]. Basically,
AD is a way that can identify known and unknown threats by
observing a change in normal behavior. Anomaly detection
of fog-assisted IoVs network refers to “‘security concerns”
of fog computing [31], [32]. Security concerns of fog
computing may include authentication, data integrity, access
control, DDOS, and malware attacks [14], [33]. Before ML
and DL anomaly detection methods, researchers detect fog
computing security challenges by giving pattern-matching
algorithms to detect known threats [33], [34]. Existing
pattern matching or signature-based schemes were limited to
detecting known threats efficiently with the limitation of high
latency and limited accuracy [21], [32]. Deep learning-based
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anomaly detection is considered a better approach over
existing signature-based and shallow schemes [35], [36].
There are several machine learning and deep learning-based
algorithms introduced for anomaly detection for various
domains and datasets. Although ML and DL-based schemes
improved anomaly detection of fog computing threats but still
accuracy is limited for real networks such as the Fa-IoVs
network. Some other limitations need to be improved such
as a high rate of false alarms, and high execution time due to
the combination of various models [34], [37]. Therefore, it is
important to improve the anomaly detection rate and reduce
false alarms for the sake of smooth communication. Here,
smooth communication refers to the limited risk of important
data loss, delay, communication overhead, etc.

We present a deep learning-based scheme that significantly
improves anomaly detection for fog-assisted IoVs networks.
The main contributions of this work are the following:

o We explore the literature on anomaly or threats detection
in fog, IoVs, and Fog-assisted IoVs networks where
the focus is on the comparison of each existing scheme
based on the addressed problem, the accuracy level
of anomaly detection, limitation, and remarks of each
scheme.

o From the literature and comparison of the existing
schemes, we identify the main research gaps to formu-
late the problem.

« We present a deep learning-based scheme named convo-
lutional autoencoder-aided anomaly detection (CAaDet)
that follows convolutional layers with a customized
encoder-decoder structure for automatic feature extrac-
tion and then anomaly detection.

« In the comparison of existing schemes, CAaDet reduces
false alarms and improves the F1-score rate significantly
for anomaly detection. Indeed, less rate of false alarms
and anomaly detection improvement leads to smooth
communication.

o To improve the performance of the proposed scheme,
we also observe the behavior of fog nodes and hidden
neurons and chose the best match to get a better F1-
score.

The rest of the paper consists of six more sections. Section II.
reviewed existing related work and placed a ground for
problem formulation. Fog-assisted IoVs challenges and
Problem formulation is stated in Section III. Section IV
explained the preliminaries before the explanation of the
proposed methodology and the dataset. Result evaluation is
carried out in Section V, explaining how CAaDet outperforms
the existing approaches. Finally, the conclusion of this
research is stated in Section VI along with some future
directions.

Il. LITERATURE REVIEW

With the growing rate of population and vehicles, the
Internet of vehicles (IoVs) has become the most attention
gained topic for researchers. It aims to attain safety via
intelligent transportation systems by using different types
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of information. In the IoVs scenario, vehicles exchange
information directly for communication [2], [4]. The main
problem, in this case, is the distance between the two vehicles.
If it is shorter than the communication range, it provides a
successful connection. Network connectivity is a key issue
in enabling information transmission for communication [6].
To deal with the increasing number of connected vehicles,
fog computing smartly manages computing, storage, and
networking resources by working on the edges [17], [28].
Thus researchers go to the Fog-assisted vehicular network,
which takes moving vehicles as communication nodes
to establish better network connectivity [4]. Later, it is
highlighted that fog computing has issues with security and
failure of servers which needed to recover.

A. SECURITY THREATS IN IOVS NETWORK AND AI-BASED
INTRUSION DETECTION

In [49], authors performed a survey about security threats
to ToVs network and highlighted various security threats
such as Distributed Denial of Service (DDoS), black hole
attacks, gray hole, sinkhole, spamming, and man-in-the-
middle attacks. In the recent era, the IoVs network is an
attractive and highly explorable research domain. In [8], the
author detects the Distributed Denial Of service (DDOS)
attack in the IoVs network and provides a good path
for safe V2V communication. Its objective is to reduce
communication delays. The model creates the controlled
clusters and applies several limits-based analyses to identify
an attack, but still needing to ensure secure communication
over the network by controlling repeated transmission, may
lead to less communication loss. In [23], authors proposed a
deep neural network-based scheme to identify DDOS attacks
by implementing LSTM and autoencoder methods. This
scheme improves the accuracy rate of attack detection but has
some limitations that can be addressed in the future such as
the need to implement it in large real networks such as IoVs
networks. In [50], authors proposed an interesting way to
improve DDOS attack detection by implementing SVM and
KNN with the combination of C4.5 classifier but it increases
time cost that can be addressed in the future.

Authors in [40] presented five machine learning models:
Stochastic gradient drop Classifier (SGD) Classifier, Ridge
Classifier, Decision Tree Classifier, Random Forest Clas-
sifier, and Extra Tree Classifier to examine the intrusion
detection system to learn the best model to cope with
network attack detection. NSL-KDD data set was utilized
for result evaluation. The experimental findings reveal that
both the Random Forest Classifier and the Additional
Tree Classifier performed well, with the extra tree model
retaining excellent stability and accuracy while dealing with
challenging tasks. The limitation of [40] is its limited
anomaly detection accuracy rate which can be improved
using dynamic algorithms.

Authors, in [41], proposed a novel framework for anomaly
detection based on a five-layer autoencoder used for
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networks. A new data pre-processing approach is adopted that
filters out the damaged outliers from the input and removes
the skewness of the dataset. Afterward, an error function
reconstruction-based model is employed for anomaly detec-
tion in a network traffic domain. Limited anomaly detection
accuracy can be improved in the future.

In [43], research introduces a one-stage intrusion detec-
tion strategy that merges a one-dimensional convolutional
autoencoder (1D CAE) and a one-class support vector
machine (OCSVM) as a classifier together into a concurrent
optimization framework. A. Binbusayyis et al. shown the
result that the suggested strategy has the potential to serve as
a foundation for developing a successful Intrusion detection
system, but with limitation of high execution time.

In another study [44] a new approach is proposed for IDS
based on Principal Component Analysis (PCA) and Fuzzy
Clustering with K-Nearest Neighbour. The model consists of
two sections, one is responsible for the classification and the
other to check the robustness of the model that is evaluated
on an NSL-KDD dataset. Generally, the model prediction is
limited due to the high rate of false classification. In [51],
authors proposed a machine learning model based on SVM
to detect DDOS attacks. The performance of this scheme is
evaluated by using the NSL-KDD benchmark dataset with the
limitation of implementation in a real scenario such as the
IoVs network.

The study [45] proposed autoencoder-based feature recon-
struction for anomaly detection. The result presents a medium
level of anomaly detection with a high rate of computational
cost.

This study [46] proposed feature extraction utilizing a
basic autoencoder and SVM to characterize attacks on
intrusion detection systems. Moreover, performed experi-
ments achieved a medium level of detection for attacks.
Authors in [47], proposed that with various settings of
hyperparameters of stacked autoencoder algorithms, high
accuracy can be achieved for network intrusion detection
systems. Therefore, [46] and [47] require exploring dynamic
algorithms for real-time anomaly detection.

B. ANOMALY DETECTION IN FOG AND FOG-TO-THINGS
ENVIRONMENT
Cloud Security Alliance [14] has recognized twelve serious
security issues. These issues directly impact the distributed,
shared, and on-demand nature of cloud computing. Indeed,
distributed sharing is a key feature of fog computing.
Therefore, the Fog platform can also be affected by the
same threats. However, fog computing cannot be deemed to
be secure, since it still inherits various security risks from
cloud computing [9]. Unlike Cloud systems, there are no
standard security certifications and measures defined for Fog
computing. In addition, it could also be stated that a Fog
platform:

e Has relatively smaller computing resources due to this
nature, it would be difficult to execute a full suite of security
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solutions that can detect and prevent sophisticated, targeted,
and distributed attacks.

e Is an attractive target for cyber-criminals due to high
volumes of data throughput and the likelihood of being able
to acquire sensitive data from vehicles.

In [38], authors proposed a machine learning method
named One-Class Support Vector Machine (SVM) based
scheme to detect anomalies in a framework containing a
fog-enabled infrastructure. The fog-enabled infrastructure
offers improved computing resources for selecting the best
learning model and sample ratio. The results revealed that
the proposed optimal learning model attained medium-level
detection accuracy, but with the limitation of many false
alarms that may lead to misleading classification. In [39],
the authors presented a Genetic Algorithm Wrapper-Based
feature selection and Nave Bayes for Anomaly Detection
Model (GANBADM) in a Fog Environment that removes
immaterial features. GANBADM used the NSL-KDD dataset
for result evaluation. The limitation of GANBADM includes
high execution time cost due to the integration of two
methods. High execution time costs could be improved using
machine learning algorithms.

The study [21] developed a distributed deep learning
approach for detecting cyber-attacks in fog-to-things com-
puting based on stacked autoencoders. Deep models surpass
shallow models in terms of detection performance with
99.27%, a false alarm rate of 0.85%, and scalability. The
specific domain and the targeted dataset are its limitations.

Authors in [34], proposed an LSTM network for cyber-
attack detection in fog-to-things communication for the
distributed use case. The data set used for experiments
were ISCX and AWID for the detection of cyber-attacks.
The results reveal that the employed deep learning method
surpasses the traditional machine learning methods.

Another study [37] presented a method (Auto-IF) for
intrusion detection in the fog environment that is based
on a deep learning approach employing Autoencoder (AE)
and Isolation Forest (IF). Because fog devices are primarily
concerned with distinguishing attacks from regular packets.
The limitation of [37] is that the technique only focuses on the
binary classification of incoming packets with high execution
times.

In [32], the authors presented a network intrusion detection
system based on the Exact Greedy Boosting ensemble
approach to safeguard critical infrastructure from hazardous
activity detection that is rapid and precise in the fog-to-
things network. The developed scheme investigates traf-
fic flow monitoring in innovative IoT Intrusion Dataset
2020(I0TID20) network traffic by recognizing and categoriz-
ing attack types based on deviations from normal behavior.

In [52], the authors proposed the ES?A (Efficient and
Secure Service-Oriented Authentication) Scheme for the
security threat of fog-assisted 5G architecture in IoTs
environment that results in confidential data loss. ES?A is
based on the slice/service types of accessing services. The
privacy-preserving slice selection mechanism is introduced to
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preserve data. ES 24 guarantees secure access to service data
in fog cache and remote servers with low latency. But still
has limitations like the network is divided into three regions
which consume high energy and increases communication
costs. Fog slice still has network security threats due to on
edges.

In [10] the author presents a Privacy-preserving data
reporting and requesting (PARE) scheme for serious security
threats to fog computing of user privacy (e.g., data content,
preference). PARE is constructed by leveraging one-way
hash chains, marked mix-nets, and groups of fog nodes to
avoid security attacks. PARE reduces computational costs
and communication overhead. PARE has limitations such as
the hotspot area being considered. A group of fog nodes
may cause high delays and communication costs. Therefore,
it needs a smart solution to avoid network attacks of fog
computing and improve connection orientation.

C. FOG COMPUTING FOR ANOMALY DETECTION IN IOTS
SYSTEM

The study in [11] used the fog computing idea for DDoS
mitigation by distributing traffic monitoring and analysis
work locally. The presented technique is evaluated in
an industrial control system test platform, with the tests
evaluating the latency and rate for two types of DDoS attacks.
Here [11], false alarms are considered as limitations that can
be improved using customized algorithms. Future work can
be anomaly detection in the Fog- to -IoT network.

Another study [31] proposed a fog computing-based
hybrid anomaly mitigation system for IoT to enable quicker
and more accurate anomaly detection. The model was
composed of two modules, one used a signature-based and the
other employed anomaly-based detection approaches. The
signature-based module used a database of attack sources
(blacklisted IP addresses) to ensure faster detection of
attacks launched from a blacklisted IP address, whereas
the anomaly-based module employed an extreme gradient
boosting algorithm to accurately classify network traffic flow
as normal or abnormal. Using an IoT-based dataset, the
study assessed the performance of both modules in terms of
reaction time for the signature-based module and accuracy
in binary and multiclass classification for the anomaly-based
module. The result showed better performance for anomaly
detection. Finding anomaly detection for the fog-to-things in
the environment can be future work.

In this study [42] authors proposed a convolutional neural
(CNN) network-based approach for intrusion detection in
fog nodes for malicious users’ attacks on the network. CNN
model is based on sliding windows for the incoming traffic
on the nodes. The outcome was assessed using the NSL-KDD
dataset. The proposed technique of [42] can be explored in a
fog-to-things environment.

A data-driven intrusion detection scheme based on RSU is
proposed [28], [48] to evaluate the link load behaviors of the
Roadside Unit (RSU) in the IoV against different threats that
cause unusual variations in traffic flow but it takes more time
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to identify and inform cloud. Therefore, dynamic algorithms
can reduce the computational cost of external units such as
RSU in the future.

The fog-based identity authentication (FBIA) technique
proposed in [7] is divided into two layers: the security
authentication layer for cars outside the fog and the security
monitoring layer for the remaining vehicles. To perform real-
time security in the IoV, two-way authentication based on
the vehicle’s identification was implemented. In the IoV, the
FBIA scheme has higher authentication accuracy and better
adaptation. Here, needs to explore Fog-assisted IoVs in the
future.

IIl. EXISTING RESEARCH GAPS
This section concludes the literature review by stating the
existing Fa-IoVs challenges, to formulate the problem.

A. FA-loVs CHALLENGES

Fog-assisted IoVs is a novel term and provides several
opportunities but still, there are some limitations, a few of
which have been observed in the above lines. Some further
limitations are discussed below that need to be explored.

1) STRUCTURAL ISSUES

In Fog-assisted IoVs, edges based networks are used as
computing infrastructure. These components consist of
various processors that are general purpose, being chal-
lenged [53], [54]. Here, the selection of nodes (vehicles) and
resource configuration needs to be focused on, such as normal
vehicles looking for smart vehicles.

2) RESOURCE MANAGEMENT

In IoVs fog computing needs to manage resources to utilize
computation nodes and storage resources [13]. Nodes can
be vehicles, base stations, RSUs, and routers. Computation
nodes should be cheaper in cost for V2V communication
to send messages to nearby vehicles. Several protocols and
algorithms must be planned to detect idle resources and
utilize them efficiently among vehicles. However, future
research needs to explore new algorithms and techniques to
share resources among nodes efficiently.

3) DEPLOYMENT

Fog-assisted IoVs deployment for dynamic situations is
quite challenging because it is based on several fog nodes
or components. Fog nodes or components include servers,
routers, bridges, base stations, RSUs, and vehicles [28].

4) MOBILITY

Fog computing introduced mobility among vehicles by
using geography distribution concepts for known patterns
of vehicles. Mobility is a major challenge in vehicles and
other wireless networks [4], [28]. Mobility for random
patterns needs to be explored in future research work as it
is formulated.
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FIGURE 1. Issues of internet of vehicles (loVs).

5) SECURITY ASPECTS

Fog-assisted IoVs are considered weak in security
aspects [27]. Fog is based on a distributed concept,
therefore it’s difficult to manage security for several
servers, to authenticate the data on different gateways
[71, [52], Mobile information-centric-based techniques are
required to avoid security issues of vehicles [12]. Security
implementation is directly proportional to the QoS of fog,
it affects the services of fog [55]. So, it’s difficult to deal with
real-time applications like communication among IoVs. Fog
computing cannot decrypt the data while to maintain privacy
applications need encrypted data. In IoVs fog computing has
various security issues such as regarding data, virtualization,
network, virus, and monitoring [12], [53]. With time, it is
highlighted that fog computing is also not sufficient for
information dissemination among IoVs. It is needed to
resolve the security constraint of fog computing for IoVs.

B. PROBLEM FORMULATION

ToVs communication includes V2V, V2I, V2G, and V2D,
etc., where each node sends various types of information
packets to each other for various purposes as shown in Fig. 1.
IoVs communication purposes can be traffic monitoring,
accident reporting, crash prevention, and parking, etc. A bulk
of information packets at the same time can lead to congestion
that can result in packet loss and information duplication.
Similarly, IoV communication faces privacy hazards that can
lead to data leakage and packet loss.

In the last few years, IloV communication remains a serious
concern of the research community where fog computing
was proposed to resolve IoVs issues such as congestion,
workload, and privacy as illustrated in Fig. 1.

The term Fog computing with the internet of vehicle
networks gives the concept of Fog-assisted IoVs (Fa-IoVs).
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Fog-assisted IoVs are a distributed network of IoVs
communication. Unfortunately, fog nodes are also facing
various security hazards like DDOS attacks, malware, and
authentication attacks that can lead to fog node crashes, delay
in packet delivery and data loss as shown in Fig. 2. Security
of Fa-IoVs is an appealing research domain in this era.
From the above literature [5], [6], [7], [8], [9] it is
concluded that it is hard to disclose sensitive data during
transmission due to the Network security threats in Fog-
assisted IoVs (Fa-IoVs). Researchers have been working to
limit security threats for smooth communication. In this way,
data breaches and data loss can be avoided, and reduce road
accidents by transmitting emergency messages timely.
Suppose that there is an accident on the road-
side, where an accidental car is an abnormal vehicle
va <V surrounded by 5 nearby vehicles V =
{vi,v2,v3,v4,v5}Vv; € V transmitting 100 of emergency

packets P = {p1,p2,P3>--->Pm} }1?1 € Pwherem =
k=1

1,2,3...100 among 4 communication networks such as
V2D, V2V, V2G, V2I N = {D,V, G, I, R}. There are three
hops = {Hy, H2, H3}VYH; € H where i = 1,2, 3. In the first
hop, the transmitted number of packets is one hop [100 x
(5 x 4)] while the transmitted number of packets increases
in 2" and 3™ hop respectively as [100 x (5 x 4)?] and
[100 x (5 x 4)3] which can lead to data congestion and data
loss, delay, and message overhead. When there is a fog server
between IoVs’ communication, it will play a medium role.
When (5 x 4) packets reach the fog server no duplication
will be raised because the fog server is responsible for
packet delivery to nearby vehicles and servers by reducing
congestion, packet duplication, and workload.

From Table 2. Some limitations of Fa-IoVs security have
been identified such as:

« High rate of false alarms or misleading.

« High execution time

« Delay in communication

« Communication overhead
Unfortunately, when fog nodes are hacked or attacked by
malicious attackers it may lead to packet loss, redundancy,
delay, and communication overhead. Therefore, it is impor-
tant to detect attacks or anomalies in the Fa-IoVs network.

IV. MODEL SYNTHESIS

This research work follows various steps such as data prepro-
cessing, labeling, modeling testing, and result validation as
shown in Fig. 3. Proposed model CAaDet exploits a standard
collection of security threats database referred to as the NSL-
KDD dataset. CAaDet is an integration of convolutional
layers and autoencoder. CAaDet can perform 2 tasks such
as (i) Feature extraction (ii) Anomaly identification and
limiting false alarms. First task feature extraction is used
to extract meaningful data for model training and testing
instead of useless extensive data. The second module aims
to detect anomalies by passing a dataset to a convolutional
autoencoder.
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TABLE 2. Comparison between existing schemes.

Method Type | Problem addressed A | Limitation Remarks

One-class Support | ML Anomaly detection in Fog | M | High false alarm rate. Needs to improve the rate of

Vector Machine Environment misleading false alarms.

[38]

Genetic Algorithm | SS Anomaly discovery in High execution time Using ML computational time

+ Nave Bayes [39] Fog environment than ML could be saved.

DDOS mitigation SS DDosS attacks detection in | M | Limited threat detection | Requires DDoS mitigation in

scheme [11] Fog environment and high false alarms. the Fog- IoT network

Stacked DL Attack detection in the Results are limited to a | Evaluate different datasets and

autoencoder- fog-to-things environment specific dataset. conditions

Softmax [21]

Random forest ML Network intrusion M | Limited unknown threat | Dynamic algorithms are

[40] detection detection required.

LSTM [34] ML Distributed attack High rate of Needs more customized
detection in Fog-to things misclassification algorithms for scalability.

Autoencoder + DL cyber-attack detectionin | M | high execution time Needs an algorithm to

Isolation Forest Fog Environment improve the accuracy

[37]

Autoencoder-based | DL Network anomaly M | The limited anomaly Need to customize features

network anomaly detection detection rate and parameters

detection [41]

CNN [42] DL Network intrusion H | The specific type of Need to explore algorithm for
detection in Fog threats is targeted fog-to things

one-class support ML Network intrusion L | Limited rate of anomaly | Need to explore joint

vector machine [43] detection detection optimization framework

PCA + KNN [44] ML Network intrusion Limited accuracy Dynamic  approaches  are
detection required for better accuracy

Conditional DL Network security threats | M | Limited accuracy is | Improve imbalance class

Variational detection achieved classification

Autoencoder [45]

Autoencoder [46] ML Network anomaly | M | Less experimental data | Explore algorithms for large
detection is used and real datasets

Stacked- DL Network Intrusion | H | Limited dataset size Need to explore algorithm on a

Autoencoder [47] Detection real or large dataset.

CNN [48] DL anomaly Detection for | H | Involvement of external | Need dynamic algorithm to
Intelligent loVs devices e.g RSU reduce the computational cost

Fog-Based Identity | DL security authentication for | L | High rate of false alarms | Need to explore optimizing the

Authentication [7] IoVs using fog computing algorithm

Note. A represents Accuracy while ML, DL, L, M, and H represent Machine Learning, Deep Learning, Low,

Medium, and High respectively.

A. DATASET

The proposed scheme employs the benchmark dataset named
NSL-KDD, which is online available and can be easily
downloaded from the Kaggle site. This dataset is a reduced
version of the KDD cup’99 dataset. The KDD cup dataset
was collected at MIT Lincoln Lab in 1998; it has a
large amount of redundant data that might result in biased
outcomes [23], [51]. The NSL-KDD dataset is close to a
real environment, which is why very effective and used
for various research purposes [40], [41], [51]. NSL-KDD
consists of 125,973 training and 22543 testing samples.
Each packet of NSL-KDD consists of 41 features and label
classes to categorize the network traffic into normal or

19030

attack. The given dataset consists of two major categories:
normal and abnormal data packets as shown in Table 3 along
with training and testing vectors. Abnormal data packets
refer to attacks or malicious data. Furthermore, the given
dataset is divided into two sets for training and testing as
70 and 30 percent of the entire dataset respectively. The
training dataset consists of 50622 attacks and 53340 normal
cases while the testing dataset includes 26120 attacks and
18435 normal data as illustrated in Table 3. In each case,
labels and 41 attributes are defined to identify the attack
and normal data packet. The feature consists of symbolic,
continuous, and discrete variables, which is not appropriate
for the proposed model as CAadet is considering all dataset
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FIGURE 2. Security attacks in fog-assisted loVs environment.
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FIGURE 3. Flow diagram of proposed work.

features. Therefore, each feature has equal importance for the
model.

1) DATASET PREPROCESSING

To reduce the misclassification error of the proposed model,
the given dataset requires initial preprocessing before model
training.

Preprocessing of a given dataset consists of three steps.
Step 1: Identify and handle missing values of the dataset. Step
2: Data Encoding, One-hot encoder applied to categorical
data such as integer’s representation to extract binary
variables for each integer value. Step 3: Data Normalization,
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TABLE 3. Dataset categories and number of data packets in training and
testing datasets-70/30.

Dataset Training Testing
Category Dataset Dataset
Normal 53340 18435
Abnormal 50622 26120
(Attacks)

Total 103962 44555

after data encoding data normalization is applied to training
and testing datasets to achieve scaled data. Scaled data
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consists of all scaled features. Here, we performed normal-
ization by using 0 and 1 for mean and standard deviation
respectively.

Pseudo Code 1: Data Preprocessing

Input: Dataset DT

Output: Preprocessed Dataset = D

Step 1: DTU <FindMissingValues (DT)

Step 2: DTU jy <—ReplaceMissingValues (DTU, Mean)
Step 3: ED <Transforamtion(DTU py, OneHotEncoder)
Step 4: TrainData < Split(ED,80%),

TestData <Split(ED,20%)

Step 5: D < Feature Scaling (Normalization
(TrainData, TestData))

B. PRELIMINARIES

1) AUTOENCODER

Autoencoder (AE) is an Artificial Neural Network (ANN),
that consists of two main parts i.e. encoder and decoder
[35] [41], [47]. The encoder part of AE is responsible for
compressing input into a latent vector. The latent vector is the
least representation of data. A latent vector is also known as a
bottleneck. On the bottleneck layer, the Encoder compresses
input until it reaches the smallest feature representation. The
decoder’s job is to reconstruct output from a latent vector
and observe if it is like the input. To measure the decoder
performance, reconstruction error or reconstruction loss is
required to be calculated by using the constructed output and
original input [41].

AE follows backpropagation for training like other feed-
forward neural networks. The purpose of backpropagation
during training is to minimize Re. Minimum reconstruction
loss is an achievement of AE. The encoder function E
compresses the input data INP into X stated as X =
E(INP). The decoder D is responsible for regenerating the
given input as X’ = D(E (INP)). The purpose of AE is
to compute reconstruction errors. AE produces the output
similar to the input with little variation, this change is known
as reconstruction error.

There are several ways to compute Re such as mean
squared error, mean absolute error, smooth absolute error,
etc. Mean squared error (MSE) is one of the most useful
methods to compute the reconstruction error. MSE measures
the distance of a fitted line toward data points, it is calculated
as illustrated in (1).

1 k
MSE = % Zi:l (X; — le)z 1)
where
MSE = Mean Squared Error
K = Total number of data points
X; = Input values
X/ = Predicted input
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2) CONVOLUTIONAL NEURAL NETWORK
Convolutional Neural Network (CNN) is a deep learning
method used to analyze and process grid pattern-based
datasets [35]. Applications of CNN include image process-
ing, automatic feature extraction, and anomaly detection
[35], [36], [56]. CNN architecture consists of three basic
layers named input, hidden, and output layers. Typically,
the hidden layer consists of convolutional layers, pooling,
and connected layers. Convolutional layers are responsible to
transform input into feature maps and pass input to the next
layer. Convolutional layers extract features and learn patterns
efficiently. The job of pooling layers is to minimize the data
dimensions by integrating neuron outputs of the previous
cluster into a single neuron of the next layer. The last layer is
fully connected. Connected layers connect each neuron of one
layer to the neurons of another layer. Flattened input passes
through the connection layer to classify the data.

CNN is a layered neural network made of neurons [56].
Each neuron is calculated as a function f with input “Y” and
output ‘Z. The function f is expressed as in (2).

z® — (Y<k—1) W &=D 4 C(k—l)) )

where ‘w’ is the weight vector and c is the bias of the
neuron. A weight vector is a nonzero space of weights.
Weight is a parameter that represents the connection strength
of each neuron. In a neural network, each input is associated
with a weight parameter. Weight improves the sharpness
of the activation function. The weight parameter decides
how the quick activation function will initiate. ‘c’ is a bias
of the neuron, and act as a constant used to delay the
triggering of an activation function. In equation (1) function
f{-) is recognized as an activation function. There are various
activation function choices such as Rectified Linear Unit
(ReLU), sigmoid function, and hyperbolic tangent function,
etc. In a neural network, the activation function is responsible
for transforming weighted input into output.

Training of neural networks investigates the parameters
(i.e weight, bias) to develop a relationship between inputs
and outcomes. The neural network training phase follows the
backpropagation algorithm by using an already-defined loss
function. Mostly, the loss function for unique training data
packet (Y (LN P") is calculated in (3).

2

1
L(w.ey®, Pr) = 5 ey =P 3)

where j,, .Y ™ is output. For T number of data packets loss
function is calculated as in (4).

1 T
_ (n) pn
L(w,c)—n EnlL(w,c,Y ,P) 4)

CNN’s backpropagation algorithm finds out the optimal
outcome by reducing the loss function by using a gradient
descent approach. Gradient descent follows the partial
derivative which is denoted as BLOBZ((,?h). Here, Z((,Qh)
expresses the weights among the layers of the neural network.
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. K anomaly detection. Autoencoder architecture follows the
ool N S he A encoder and decoder respectively. The encoder includes three
NS S N R convolutional layers. Each convolutional layer is responsible
0.94 S Nzt to minimize the input dimension concerning stride size.
As an outcome, the convolutional layers turn into a latent
0.02 vector. To avoid the overfitting issue, we included dropout
g layers along the input and convolutional layers. Dropout
% 0.90 layers are used to handle regularization and prevent copying
L . . ..
) input as output. In fact, during training dropout layers
0.88 / drop some random neurons to avoid model overfitting. The
. ) CAadet decoder consists of three deconvolutional layers
08g| Mathods to reconstruct output from the latent vectors. The decoder
A R e outcome is compared with the input by computing the mean
0.84|__ CAadet absolute error (MAE) as in (6).
20 40 60 80 100 k
No.of Fog nodes in loVs Zi—l |Xl/ — Tli
MAE = —/—/—— 6)
K

FIGURE 5. Comparison of proposed and existing schemes based on
F1-Score concerning No. of Fog Nodes.

The parameter for each layer is updated as in (5).

O _ L0 dLo
Zicwy = Zgey = S0 ®)
(o)

where 1) = learning rate

C. PROPOSED SCHEME CAadet FOR FA-IoVs
This research aims to propose a deep learning-based anomaly
detection scheme for Fog-assisted internet of vehicles (Fa-
IoVs). We call the proposed scheme Convolutional autoen-
coder Aided anomaly detection (CAadet) to detect attacks
for Fa-IoVs environment as it is a major concern for network
security. In this section we present data on our proposed
scheme, CAadet consists of a convolutional neural network
and autoencoder.

Figure 4 illustrates the complete architecture of the
proposed scheme. CAadet follows a convolutional layers-
based autoencoder for automatic feature extraction and then
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where

MAE = Mean Absolute Error
X = Reconstructed output
T; = testing dataset input,
K = Total instances in the testing dataset

To label an instance as an ‘‘attack™, we used a threshold
value. If an instance has a reconstruction error greater than the
threshold, we label it as an “‘attack’, otherwise as “‘normal’.
We arrived at this threshold value based on the model loss
over training data and not on validation data.

To label a packet as “‘abnormal” we used a threshold
value. When this MAE is greater than a given threshold
value an anomaly count is increased in an otherwise normal
data packet. Observe that the threshold value is a critical
parameter. To achieve threshold value, MAE loss is observed
concerning real anomalous packets’ detection. The given
dataset consists of data packets as illustrated in (7).

For a given dataset

D, = {(a1, b1), (a2, by) ... (an, b1)} 7
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where

Dy = Data Packets

an = total number of packets
by =10, 1}

Each packet of D, may carry some important information.
Data packets of a given dataset are labeled into binary
classification. Normal packets of the dataset are labeled as
‘0’ while ‘1’ represents malicious packets. CAadet trains only
normal data packets, which is more practical for real-time.
For Fa-IoVs, it is important to identify normal or malicious
data packets in real time.

V. RESULT

A. EXPERIMENTAL SETUP

Several public datasets are available to evaluate security
threats. We opt NSL-KDD dataset for research evalua-
tion. NSL-KDD is a benchmark dataset that is famous
for cybersecurity research. The experiment is conducted
by a Deep learning-based approach named convolutional
autoencoder. The proposed model is chosen for automatic
feature extraction and to detect anomalies by using a decided
anomaly score which is explained below in this section.
In this work, we target the security threats of Fog-assisted
IoVs networks to ensure secure communication. Binary
classification of normal and abnormal packets is done.

B. PERFORMANCE METRICS
Result evaluation metrics follow four classifications of results
True Positive (TP), False Positive (FP), True Negative
(TN), and False Negative (FN). Suppose we have a dataset
consisting of normal and abnormal data packets. True and
false follows the correct and wrong classification of packets
respectively. TP means the model detected attacks (abnormal
packets successfully, FP means there was no abnormal
packet, but the model classified normal as abnormal,
TN presents normal packets are detected as normal while
FN means there were some abnormal packets that are
misclassified as normal packets.

We concluded this research by using well-renowned
evaluation parameters such as recall, precision, and F1-score
[31]. These metrics are described as follows:

1) RECALL (R)
Recall is a performance metric for machine learning classifi-
cation and pattern recognition-based problems. It is used to
measure model sensitivity. The recall represents the relevant
proportion of detected anomalous packets over the total
number of packets. R can be calculated as in (8).
TP
RecallR) = ———— ®)
(TP + FN)

2) PRECISION (P)
Precision is also a performance metric like a recall
to measure the performance for pattern recognition and
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Pseudo Code 2
Input: Matrix DY , output: 6
params (w,qx, qh) where: w : Weight between layers, gx
Encoder’s params, gh Decoder’s Params
initial Variables
h < null // vector for the hidden layer
D' < null /] Reconstructed D
L < null // vector for Loss Function
| < batch number
i <0
loop statement
While i< [ do
for [=1: number of layers [3]
Jor ks=1: kernalsize [4]
Jor f=1: No.of filters [16]
// Encoder function maps an input DY to hidden
representation h :

h = f(plil.w + pli] + gx)

//Decoder function maps hidden representation h
back to a reconstruction D' :

D' = g(plil.w" + plil + gx)

//For nonlinear reconstruction, the reconstruction loss is
general from cross-entropy

L = —Sum (x -log (D’) + (1 —x)
-log (1 —-D'))

/% For linear reconstruction, the reconstruction
loss is generally from the squared error: x/

L = Sum (D —D')?
0lil=L(D-D')
End
End

End
End While

classification-based problems. Precision represents the num-
ber of original packets among detected packets. A precision
metric is directly proportional to measuring the rate of false
alarms. False positive (FP) represents the rate of false alarms
over correct anomaly detection. False alarms are misleading
detections, which means when there is no threat, but the
system detects a threat and misleads the user. P can be
obtained as in (9).

TP
Precision (P) = m O]
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Pseudocode 3
Input: D= {NDP, ADP} where NDP= {np1, nps, ..
ADP= {apy, apa, ..., apy} and x > Y
Step 1: DY < Flatten (NDP)
Step 2: CovAutoMod < DY
Output: from step 2 0
Step 3: AC< 0
If (Loss> Th) then
AD<Yes
Increment AC
Else
AD < No
Endif
Out Put: AC

., NPy}

TABLE 4. Performance of the proposed model.

Metrics Result %
Recall 99
Precision 96
F1-Score 97.4

3) F1-SCORE: THE

F1-score is also a common performance metric. The F1-score
metric is a weighted average between recall and precision that
can be calculated as in (10).

Fo 2 X (Precision x Recall)
" (Precision + Recall)

(10)

C. PERFORMANCE EVALUATION

Performance evaluation is carried out based on a comparison
between the proposed scheme and existing schemes. From
existing schemes, two categories are targeted such as shallow-
based schemes and Al-based approaches.

The proposed scheme (CAaDet) follows the NSL-KDD
dataset as input and predicts results using a convolutional
autoencoder. Convolutional autoencoders first extract useful
features and then predict output against given input. To eval-
uate the result, an anomaly score is selected. Anomaly score
is a criterion to consider an anomaly i.e., when the Mean
absolute error (MAE) is greater than the threshold means an
anomaly is detected successfully as shown in (11). MAE is
calculated by using input and constructed output as shown
in (1). Threshold selection is done by performing multiple
experiments and observing the threshold on-ground truth.
Best performance is achieved by using the 0.19 threshold.

Anomalyscore = MAE > Threshold (11)

where MAE = Mean absolute error

Table 4. depicted the performance of the proposed scheme
to detect anomalies for Fog-assisted IoVs network. Recall
above 0.8 is considered excellent performance.
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TABLE 5. Comparison between proposed and existing standard
algorithms.

Serial Method F1-

No. Score

1. SVM 0.71

2 Random Forest 0.93

3. Decision Tree 0.92

4 Genetic Algorithm + 0.61
Naive bayes

S. Variational Autoencoder 0.86
Proposed Scheme 97.4

By using the above-mentioned evaluation metrics, we eval-
uated the proposed model and achieved better results in terms
of recall, precision, and Fl-score as shown in Table 4. For
Fa-IoVs anomaly detection, the recall, the precision, and the
F1-score of the proposed method are 99%, 96%, and 97.4%
respectively.

D. COMPARISON WITH OTHER ANOMALY DETECTION
METHODS

Anomaly detection has become the most trending and hot
topic in the recent era. Researchers are exploring machine
and deep learning algorithms for anomaly detection in
various fields such as anomaly detection for IoTs-based
networks is a serious concern. In this section, we compare
the proposed methods with other anomaly detection methods
using same the NSL-KDD dataset, where the evaluation
metric is accuracy. Table 5 is adapted from [39] and [43] to
compare with the proposed method.

We have compared the performance metric F1-score of the
proposed method with other methods (extracted from [39]
and [43]) using the same dataset to detect security threats
as shown in Table 5. The findings show that the proposed
scheme beats the other algorithms. Our deep learning-based
proposed model was evaluated using extracted deep patterns
from the training dataset. The scalability of the proposed
distributed anomaly detection scheme has been evaluated by
using many active nodes. A larger number of active nodes
results in larger distribution and help to improve the F1-
score rate as shown in Fig.5. This improvement in F1-score
could be the result of model and parameters sharing between
fog nodes. Being inference, parallel model training leads
to master node level aggregation that can help for better
learning in distributed environments such as Fog-assisted
IoVs network.

Figure 6 depicts the relationships between the number of
neurons and reconstruction error. The number of neurons in
hidden layers plays a vital role in building reconstruction
error. We observed that as the number of neurons increases
less reconstruction error is calculated which results in low
accuracy and F1-score.

Figure 7 shows the superior results of the proposed model
against similar existing approaches based on autoencoders.
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Three autoencoder-based anomaly detection methods with
the same dataset named NSL-KDD have opted for compar-
ison. First method SAE-DL [21] detect anomalies of Fog-
assisted IoTs, it follows a stacked autoencoder approach
while other two methods 5- layer-AE [37] and Auto-IF
[41] also detect security threats as intrusion detection. The
findings show that the proposed model outperforms the other
methods with F1-score of 97.4% while SAE-DL [21], Auto-
IF [37] 5- layer-AE [41] indicated an F1-score of 89%, 95%,
and 91% respectively.

To evaluate the performance of CAadet for Fa-IoVs,
an experiment is carried out to implement the proposed
model and two others selected methods on the same
machine. The two selected methods are based on a similar
approach to the proposed method. Then, the proposed
method is also compared with the existing results of
other schemes using the same dataset and having similar
objectives.
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VI. CONCLUSION

The Internet of vehicles (IoVs) is a more popular network
of this era. Over time, IoVs challenges have become a
focal point of research. Fog computing was one of the
suitable solutions for IoVs challenges to achieve smooth
communication by reducing the risk of congestion, security,
etc. Unfortunately, fog nodes are also challenged by security
threats due to their local and on-edge nature. We can refer Fog
and IoVs combination as Fog-assisted IoVs (Fa-IoVs) which
is a distributed network that allows communication among
vehicles such as V2V, V2I, V2D, etc. Applications of Fa-IoVs
include a safe navigation system, traffic guidance, crash pre-
vention, and intelligent vehicle control. Like fog computing,
Fa-IoVs are challenged by security threats which is a serious
concern for the smooth communication of the Fa-IoVs net-
work. We consider security threats as anomalies and proposed
a deep learning model for Fa-IoVs anomaly detection by
using a benchmark dataset named NSL-KDD. Convolutional
autoencoder has been deployed using customize parameter
settings against convolutional layers for feature engineering
and anomaly identification. Anomaly identification is done
by setting a threshold against reconstructed error. To evaluate
the performance of the proposed model “CAadet,” three
major comparisons are carried out: (a) Comparison with
similar existing schemes using the same dataset for anomaly
detection rate, (b) comparison with statistical and machine
learning models (extracted from existing work [39], [43]),
(¢) Comparison of fog nodes and reconstruction error to
achieve better F1-score. For comparison among proposed and
other schemes, performance metrics such as recall, precision,
and F1-score have been used. The experiments prove not only
the competence of the deep learning-based proposed model
over existing models but also highlighted the efficiency of
distributed learning optimization over fog nodes by scoring
a high Fl-score. We concluded that a deep learning-based
attack detection scheme for distributed Fa-IoVs networks
supported by fog nodes can help to improve the accuracy
rate of cyber-attack detection. Furthermore, efficient anomaly
detection leads to smooth communication by reducing delay,
data loss, and communication overhead. In the future, we will
investigate proposed approaches in different IoTs domains by
using different datasets and other deep learning models.
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