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Abstract: Artificial Intelligence (AI) and Internet of Things (IoT) offer immense potential to transform
conventional healthcare systems. The IoT and AI enabled smart systems can play a key role in driving
the future of smart healthcare. Remote monitoring of critical and non-critical patients is one such field
which can leverage the benefits of IoT and machine learning techniques. While some work has been
done in developing paradigms to establish effective and reliable communications, there is still great
potential to utilize optimized IoT network and machine learning technique to improve the overall
performance of the communication systems, thus enabling fool-proof systems. This study develops
a novel IoT framework to offer ultra-reliable low latency communications to monitor post-surgery
patients. The work considers both critical and non-critical patients and is balanced between these to
offer optimal performance for the desired outcomes. In addition, machine learning based regression
analysis of patients’ sensory data is performed to obtain highly accurate predictions of the patients’
sensory data (patients’ vitals), which enables highly accurate virtual observers to predict the data
in case of communication failures. The performance analysis of the proposed IoT based vital signs
monitoring system for the post-surgery patients offers reduced delay and packet loss in comparison
to IEEE low latency deterministic networks. The gradient boosting regression analysis also gives a
highly accurate prediction for slow as well as rapidly varying sensors for vital sign monitoring.

Keywords: Internet of Things (IoT); machine learning (ML); Artificial Intelligence (AI); healthcare;
patient monitoring; human activity classification (HAC); obesity; ultra-reliable low latency communi-
cation (URLLC); gradient boosting regression; post-surgery recovery

1. Introduction

Over the past two years, the healthcare sector has been severely affected. The COVID-
19 outbreak has impaired the healthcare infrastructure and introduced many unthinkable
challenges to the present healthcare ecosystem. The high strain on the healthcare sector
has resulted in general degradation of overall healthcare services with the non-critical
departments being most influenced due to the focused utilization of limited resources
and qualified healthcare staff. One such aspect which has been most affected during the
COVID-19 outbreak is post-surgery care and therefore, needs drastic measures to restore
the healthcare standards. This is specifically needed in the less critical healthcare sectors
where the dire need of continuous monitoring is evident but cannot be ensured due to lack
of healthcare staff.

The aftercare in a post-surgery phase is an important aspect of any surgery. The
recovery of the patient depends on the effective execution of aftercare in the post-surgery
phase. Although the patients in some surgeries can leave hospital in 3 to 5 days, the return
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to normal activities may take much longer. For instance, in weight loss surgeries, the
patients can leave hospital within 1 to 3 days, but it takes 4 to 6 weeks to return to routine
life and even then, the patients are expected to follow a relatively strict routine of exercise
and maintain suitable eating habits [1,2]. The regular follow-up appointments may last
for two years [3]. Therefore, it is important to provide necessary care to the patients in the
post-surgery phase and allocate appropriate resources to support their healthy recovery.
Unfortunately, this puts an additional load on the already strained healthcare system.
Especially, in the COVID-19 pandemic, it is becoming difficult to allocate enough healthcare
staff to deal with all healthcare contingencies. It is also noteworthy that the added load on
healthcare services has delayed non-crucial surgeries, where most of the support has been
diverted to more life threating and critical cases.

While the healthcare services have suffered in the past few years due to COVID-19,
suitable technological interventions have also surfaced to mitigate the impact of such a
health crisis and limit its devastating effects on the healthcare infrastructure. New and
innovative technology solutions are needed to cope with the overwhelming load on the
healthcare sector. The use of machine learning techniques and Internet of Things (IoT) has
enabled smart healthcare systems to offer potential solutions to address surgery related
and aftercare problems.

This paper presents an IoT enabled and machine learning driven solution to monitor
the vitals of the critical patients while focusing on post-surgery patients. In post-surgery
patients monitoring of the cardiovascular systems, fluid and electrolyte balance, prevalence
and treatment of infection and excessive bleeding, functioning of main organs, deep vein
thrombosis, and anastomotic leak need to be monitored with high reliability and relatively
low latency. Therefore, the proposed framework focuses on IoT enabled ultra-reliable low
latency communications (URLLC) and machine learning based change in vitals prediction.
The main contributions of the work are as follows:

1. An IoT enabled URLLC framework is proposed which offers highly reliable near
real-time communication of the critical patients’ vitals. It also allows simultaneous
channel access for critical and non-critical patients and ensures prioritized access to
critical patients.

2. The paper also proposes to use a gradient boosting based regression algorithm capable
of predicting both slow and rapidly changing patient’s vitals. The proposed algorithm
serves as an additional layer of protection for critical patients, where in the event of
wireless communications failure, the ML algorithm will still be able to predict the
patient’s vitals, thus raising alarms even if the wireless channel faces intermittent
interference or sudden variations resulting in communication failure.

2. Literature Review

The IoT enabled remote monitoring and smart healthcare systems offer great potential
to cope with the challenges in healthcare services [4–6]. The IoT enabled smart systems
have applications in almost all aspects of healthcare and have the potential to resolve many
challenges and ease the load on healthcare workers and qualified medical staff. With the
help of IoT and machine intelligence, new and refined monitoring and diagnosis systems
can be developed. One of the many application areas where IoT offers new and innovative
solutions is post-surgery patient monitoring [7]. In most cases, patient monitoring is non-
critical in nature, apart from a few selective cases. At the same time, it is highly time and
resource consuming to offer suitable healthcare services to such patients [8]. IoT provides
the infrastructure to enable remote monitoring of such patients more effectively with less
resources. With the vitals from a patient taken every few seconds, and an alerting system
in place to detect any anomalies, IoT can provide a reliable and highly effective solution for
the post-surgery care and recovery of the patients.

The IoT serves as an excellent solution with great potential to accumulate data from
different sensors. However, there are certain limitations which need undue attention to
make the system reliable and infallible when dealing with patients. While there are several
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works which address some challenges in IoT to make them more suitable for healthcare
applications [9–12], these works suffer from many limitations in terms of resource allocation
and prioritization of vulnerable patient communications. One such limitation is the alloca-
tion of the appropriate channel resources to individual surgery patients to communicate
their vitals to the qualified staff with low latency and high reliability. It becomes more
challenging when the resource requirements from different surgery patients in a ward differ
from others and with some being more critical than others. Sangiah et al. [13] developed an
IoT system for resource allocation in healthcare using the whale optimization algorithm.
However, the system provided a generic solution for the resource allocation and did not
include a healthcare infrastructure as an application scenario. Similarly, Baker et al. [14]
proposed a system and used the ideology of naming everything as a resource, implemented
in the generic healthcare scenario. The analyzed features were capacity (computational,
consumed resources) and the resource allocation in terms of restriction (who can and
cannot use the resources). However, the work was not focused on an automatic resource
allocation mechanism and did not propose any in-hospital paradigm to enable priority
communication through monitoring the patients’ vital signs. The authors in [15] suggested
that service orchestration and service management are still challenging issues in healthcare
applications and services. Moreover, the existing systems do not possess the capability to
handle the requests and services required locally by the healthcare infrastructure. Another
challenge is that the existing systems [11,16,17] have mainly focused on generic healthcare
applications and focused little on developing IoT systems for post-surgery patients to
monitor their vital signs and recovery patterns. Post-surgery monitoring mainly involves
monitoring of the cardiovascular systems, regular functioning of the main organs, fluid
and electrolyte balance, prevalence and treatment of infection and excessive bleeding, deep
vein thrombosis, anastomotic leak, dietary requirements, and progression [18]. Therefore, a
suitable IoT framework is needed to enable communications from diverse surgery patients
in a timely fashion. It is also important that the proposed framework bears the potential to
cope with long-distance monitoring of the patients once they are discharged from hospital.

Considering the key challenges in monitoring surgery patients during short hospital-
based aftercare and extended monitoring in home environments, an IoT framework is
proposed which not only retains consideration of the reliability and latency aspects of
wireless communications but also provides a decision support system to enable quick
hassle-free decision making for the medical staff. The proposed work not only saves
time and medical resources but also offers more reliable and actionable information to
implement improved healthcare services for the speedy recovery of surgery patients.

The rest of the paper is organized as follows: A system model is presented in Section 2,
results and discussion are provided in Section 3. Finally, the concluding remarks are
displayed in Section 4.

3. System Model and Methods

Over the past few years, IoT has evolved to incorporate a plethora of technologies
including ubiquitous sensing, fog computing, big data, machine intelligence, decision
support systems, cyber physical systems, distributed systems, edge computing, diagnostic
systems, process automation, etc. Thus, the present day IoT enabled smart systems serve
as the convergence of key enabling technologies capable of handling diverse applications
with the desired precision and accuracy. With the rapidly increasing number of connected
devices, and the evolution of microelectromechanical systems, the availability of big data
and the ability of machine intelligence have enabled the emergence of true AI. The IoT
infrastructure necessary to sample the real-world with the communication of sensory data
whether it is the healthcare sector, industry, buildings or vehicles, is essential for sustainable
future developments. To meet the challenges of big data and collective intelligence, effective
IoT solutions play a significant role.
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The proposed IoT framework aims to provide Ultra-Reliable Low Latency Commu-
nication (URLLC) [19] in healthcare and mitigate uncertainty in critical communications.
Further details of the system parameters are covered in the subsequent discussion.

3.1. IoT Topology and Superframe Structure

In the proposed work, the communications from the sensor motes are established in
a cluster, where hierarchical architecture is assumed for reduced delays and scalability.
In each cluster, a star topology is formed, where communications from cluster nodes to
cluster-head (CH) are facilitated by time division multiple access (TDMA) based channel
segmentation. The cluster formation is initiated by the designated CH in setup mode,
where IoT devices/sensor nodes request affiliation to one of the available CHs based on
its geographic location and link quality. The selection of TDMA over more conventional
Carrier Sense Multiple Access, Collision Avoidance (CSMA/CA) is preferred to avoid
congestion in the network and enable guaranteed channel access in a specific timeslot
for the communicating node. Despite the use of TDMA as the multiple access technique,
suitable changes have been introduced to improve the overall accessibility of IoT devices
and prioritize critical information to maintain low latency communications within the
network. The communications from sensing nodes to CH takes place in a TDMA based
superframe of duration T. Each superframe is further divided into n timeslots each of
duration, t, where each timeslot allows communication from one sensor node. A control
channel is designated to manage the rescheduling of failed communications. The proposed
IoT infrastructure is presented in Figure 1, whereas the frequently used system parameters
are listed in Table 1. These parameters are used to evaluate the performance of the proposed
scheme in the MATLAB software.
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Table 1. Description of frequently used variables in the proposed IoT framework.

Parameters Variables Value

Total nodes in a cluster w 20–80
High Priority Nodes m 20, 40, 60

Time slots in a superframe n 20
Total High Priority Channels (HPC) Rs 1, 2, 3

Total Monitoring Communications Channels
(MCC) Ms 1, 2, 3

Superframe Duration T 10 ms
Timeslot Duration t ~60 µs

Maximum cluster-size cm 80
Probability of failed communication of a node p 0–0.25

Node communication failure probability for channel fC(i) pi
Control Channel Chcontrol 1

Communications/data Channel Chdata 1− k
Frequency channel space Fc -

Number of frequency channels used k 4
Average delay variation from specified interval

in IEEE low latency deterministic networks
(LLDN)

dLLDN -

Average delay variation from specified interval
in proposed scheme dRCC -

Radio Communication channels RCCa
Channel Number a

3.2. Multi-Channel Scenario and Communication Rescheduling

As presented in Figure 1, the proposed IoT framework makes use of the star topology
in which CH evaluates affiliation requests from the nodes to decide the node’s suitability to
associate with this cluster. Once the nodes are affiliated to the relevant clusters, each node
is issued a local id between 1 to w, where w represent the maximum nodes/motes within a
cluster. It is worth mentioning that while the cluster represented in the figure corresponds
to a single channel, a multi-channel scheme is introduced.

All the communication channels are distributed among HPC and MCC, where com-
munication on each channel uses the TDMA based scheme to avoid collisions and channel
reliability opposed to carrier sense multiple access (CSMA) schemes. In a single channel
scenario for IEEE low latency deterministic networks (LLDN), the probability of at least
one failed communication in a superframe is modelled using binomial distribution [20,21]
and can be expressed as

P(comm. f ailure) = n!
1!(n−1)! p(1− p)n−1 + n!

2!(n−2)! p2(1− p)n−2

+ . . . + n!
(n−1)!(n−(n−1))! pn−1(1− p)n−(n−1) + n!

(n)!(n−(n))! pn(1− p)n−n (1)

Taking into consideration the multi-channel scenario where each superframe commu-
nication at channel, fc(i) is assumed to be independent of superframe communication at
channel fc(j), where i 6= j the communication failure in any superframe is given by

P(Avg. comm. f ailure ) = ∑
fC(i)∈Fc

1
k
×
(

n

∑
x=1

(
n
x

)
px

i (1− pi)
n−x

)
(2)

where Fc is the number of frequency channels, k channels are used in the superframe and pi
is the communication failure probability for the channel fC(i). The average communication
failure is normalized with the number of channels which is k, as expressed in Equation (2).
All channel communications are synchronized, where a synchronization beacon is issued at
the start of every superframe. In addition, a control channel is also introduced, which allows
the IoT devices belonging to high priority/vulnerable patients/systems to either request
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communication resource or CH reschedules their retransmission as needed. However, a
more frequent practice, where the CH automatically reschedules communications of high
priority nodes, is considered for evaluation purposes.

The nodes communicating over HPC have higher priority compared to the nodes
communicating over MCC. In addition, the sensory data accumulated through the HPC
belong to critical/vulnerable patients which are time sensitive and need to be communi-
cated to CHs in regular intervals. A failure/delay in such communications can put the
critical patients at risk. Therefore, the deviation from regular delay intervals needs to be
maintained within certain thresholds.

Under normal circumstances the communications from TDMA based HPC and MCC
continue uninterruptedly. In case of failure in communication from one of the sensor nodes
in HPC, i.e., the high priority nodes, the CH reschedules a communication on MCC, where
failed communication is reattempted within the same superframe. The communication
failure of an HPC superframe can be expressed as

P(comm. f ailure in HPC super f rame)
= n!

1!(n−1)! n(1− n)n−1(p)
+ n!

2!(n−2)! p2(1

−p)n−2
[

2
∑

x=1

(
2
x

)
px(1

−p)2−x] + . . . + n!
(n−1)!(n−(n−1))! pn−1(1

−p)n−(n−1)
[

n−1
∑

x=1

(
n− 1

x

)
px(1− p)n−1−x

]
+ n!

(n)!(n−(n))! pn(1− p)n−n
[

m
∑

x=1

(
m
x

)
px(1− p)m−x

]
(3)

In the case of HPC less than or equal to MCC, i.e., Rs ≤ Ms, the above equation can be
approximated to

(comm. f ailure in RCC super f rame ∀ Rs ≤ Ms)

=
m
∑

y=1

[((
n
y

)
py(1− p)n−y

)( y
∑

x=1

(
z
x

)
px(1− p)z−x

)]
(4)

As expressed in Equations (3) and (4), binomial distribution is primarily used to
express the failures in the superframe communications. The communication rescheduling
allows a timely access to the channel, thus minimizing the average delay along with
improving system reliability.

Traditional applications accept a relatively high average variation from specified
delay intervals between two consecutive communications. However, in the case of critical
healthcare applications, deviation from a defined interval can severely elevate the health
risks in vulnerable patients and thus, limit the effectiveness of IoT enabled smart healthcare
over conventional systems. Therefore, the delay in the proposed scheme is modelled as the
average variation from the expected interval. In IEEE LLDN, the average deviation from
the mean delay in HPC can be approximated as

dLLDN =
n

∑
x=1

T ×
(

n
x

)
px(1− p)n−x (5)

In the proposed scheme the delay is minimized with rescheduling of the failed HPC
data communication. The average deviation in HPC superframe communications from the
specified delay time interval can be expressed as

dHPC = 2t×
n−2

∑
x=1

(
n− 2

x

)
px(1− p)n−2−x + 5t

n

∑
x=n−2

(
n
x

)
px(1− p)n−x (6)
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while the proposed IoT framework offers an improved performance in both delay and
reliability, it is still vulnerable to diverse channel fading and interference. Therefore, in the
following section, an AI based sensory data prediction system is modelled. Further details
on the performance of the proposed work can be seen in the results and discussion section.

3.3. Predictive Modelling of Vitals for Surgery Patients

Surgery patients are expected to be monitored over the course of recovery, whether
body sensors or other monitoring techniques are used. In this work, along with the
effective communication network to relay the patient’s vitals using body sensors and
IoT infrastructure, predictive analysis and modelling are also performed. In a particular
scenario, where the communication fails for a short period of time or excessive interference
develops which causes brief communication failure, the communication of vitals becomes
impossible. Therefore, to avoid such scenarios where the instantaneous communication
failure can obstruct the patients’ vitals to be delivered, a predictor is developed to counter
the issue. The predictor uses the existing trail of sensory data received from the IoT devices
to predict the future values of slow as well as rapidly varying sensors to generate the
appropriate response. The prediction algorithm runs on the CH and offers predictive
analysis of the sensory data of critical patients. Since the vital signatures (blood pressure,
temperature, oxygen levels, etc.) of a patient can vary quickly [22], it is important to
introduce machine learning techniques to predict the vitals (sensor values) and prioritize
the patients in case the values approach close to the threshold. This achieves two purposes:
(1) adaptive prediction of the vitals of a patient, thus ensuring continuous wellbeing, (2) a
redundant monitoring mechanism in case the IoT based solution fails to function for a
short duration or the wireless channel faces high interference and thus, higher than usual
packet loss.

To achieve the prediction, two different scenarios are considered, where the patients’
sensory data are varied both linearly and exponentially to emphasize the possibility of
slow change and rapid change in the patient’s condition. Further details on each of
the machine learning techniques used for the predictive analysis are presented in the
subsequent sections.

3.3.1. Sensory Dataset for Vital Sign Monitoring

One of the significant issues in developing intelligent systems for clinical healthcare is
the unavailability of the vital signs based sensory dataset and the clinical dataset recorded
from the patients during in-hospital treatment. Such scenarios require a longitudinal
study to follow up and monitor the pre-surgery and post-surgery vitals as in the quan-
titative dataset about the medical condition being treated, such as obesity in the case of
bariatric surgery. Tracking and monitoring of such clinical and sensory measures are vital
in predicting the recovery curve and rehabilitation progress. To run the pilot study, sig-
nificant resources (time, financial support, infrastructural support) and ethical approvals
are required from the healthcare providers. However, the development and acquisition of
healthcare data from such scenarios in a short period of time is infeasible. Therefore, we
generated synthetic sensory data simulating the real-life sensory traces/signals and tested
the performance of the machine learning algorithm as a proof of concept. The synthetic
data generated in this study are also not related to the accuracy of the data generation.
Rather the study focuses on the change in the vitals’ monitoring which can be slow or rapid
depending on patients’ health conditions. The aim is to justify that the proposed work can
predict rapidly changing data with high accuracy. Therefore, after this proof-of-concept
study, the aim is to develop a complete IoT based paradigm which can record and monitor
healthcare vitals in post-operative in-hospital scenarios.

3.3.2. Gradient Boosting Based Regression

To detect the vital sensory based indicators of patients, regression-based machine learn-
ing is used. In particular, this work developed an eXtreme Gradient Based (XGB) [23,24]
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regression model to monitor the vital signs. The XGB [25] is widely used in IoT based
healthcare applications to objectively quantify complex patterns from healthcare-based
sensors. The parameters used for XGB regression are as follows; booster = GB tree, min-
imum child weight = 1, maximum depth = 6, gamma = 0, subsample = 1, lambda = 1,
and alpha = 0. The XGB is implemented in Python. Further details on sensory data and
predictive analysis are covered in the results and discussion.

A 70/30 train and test split were used, i.e., 70% of the dataset was used to train the
XGB regressor model and the remaining 30% to test the model.

4. Results and Discussion

The performance of the proposed IoT framework is evaluated for the average delay
and the reliability of communications. Since the proposed scheme facilitates periodic
communications, delay and reliability are appropriate performance metrics for evaluation
of the scheme. Figure 2 presents the results across two y-axes, left and right. The left Y-axis
shows the average delay. The results presented in Figure 2 show that the proposed scheme
reduces the overall delay by a significant margin. The deviation from the specified delay
interval also lies within 1 ms in the case of the proposed IoT framework. In addition, the
number of failed communications per superframe in the case of IEEE LLDN [26] is much
higher compared to the proposed scheme. As a trade-off, in the proposed scheme, the
performance of the monitoring systems is sacrificed, which is an acceptable trade-off for a
mix of critical and non-critical applications.
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The proposed work shows notable improvements in terms of delay where the average
delay in the proposed work is significantly reduced compared to IEEE LLDN. The delay in
the proposed scheme (dRCC) is reduced to 1/5th compared to IEEE LLDN (as presented
in Figure 2), thus, providing a more efficient solution for critical health patients. In the
proposed scheme, the failures in critical communications are also reduced notably in
comparison to IEEE LLDN. The proposed scheme offers less failures ranging from 1% to
95% for different channel conditions. The overall improvement is depicted by bar graphs
presented in Figure 2. The improvements in both delay and communication reliability
are achieved at the cost of deteriorated performance in the monitoring communications
which are non-critical data communications and thus present no notable harm. The relaxed
deadlines in monitoring communications also reduce the impact of slight additional delays
added in the monitoring services.
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The proposed IoT framework although offers notable improvements in enabling
effective communications, however, it cannot remedy the communication failures occurring
due to intermittent interference. Therefore, it is equally important to leverage the use of
machine learning techniques to enable predictive analysis of the sensory data collected
from the patients using IoT. To evaluate the suitability of machine learning techniques
and to predict the changes in sensory data, both slow and fast changing sensory data are
considered. The performance of a gradient boosting regressor is evaluated for both linearly
and exponentially varying sensory data. Further details on the suitability of machine
learning algorithms are presented in subsequent paragraphs.

Figure 3 shows linearly changing sensory data. In periodically reported patient’s vitals
using IoT, at first relatively slow changing data were considered where the change from
normal sensory input to critical sensory input takes around 500 ms. In the IoT framework
with superframe duration of 10 ms, over 50 samples from the sensor are expected to
be communicated to the CH. Even if the wireless channel becomes highly unstable, the
proposed gradient boosting regression running at the CH manages to predict the values
with sufficient accuracy. In Figure 4, three series are presented, i.e., actual values or ground
truth labels, the predicted labels obtained through the XGB classifier, and the threshold.
The threshold presented identifies the critical threshold values for the sensor readings and
if exceeded represents the equivalence of medical emergency. It is to illustrate how quickly
the system will be able to detect/predict patients’ sensory traces violating the threshold.
The mean absolute error obtained for this scenario is 3.47.
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To investigate the suitability of the proposed machine learning algorithm further,
rapidly changing sensory data were also considered which are presented in Figures 5 and 6.
Here the sensory data are changing linearly as well, but the change from normal to critical
takes place in only 250 ms. In Figure 6, three series represent actual values, predicted labels
and the threshold values. The mean absolute error obtained for the scenario in Figure 6 is
5.04. As shown, in Figure 6, the XGB based regression algorithm also predicts this rapidly
changing sensory data very effectively.
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Finally, the exponentially changing sensory data are evaluated as presented in
Figures 7 and 8. While the fluctuation in the sensory data providing a patient’s vitals
changes rapidly from normal to critical, the XGB still manages to predict the data effectively.
The MAE obtained between the actual and predicted values (using XGB) for the scenario in
Figure 8 is 15.53. Since the sensory data change is simulated to be exponential in nature, the
change in sensory data from normal to critical only takes around 22 ms. However, as shown
in Figure 8, the predicted results are still very close to the actual values, thus enabling
an accurate prediction of a patient’s sensory data fluctuation. This not only enables early
prediction of any change in a patient’s health and vitals but also allows intermittent service
failure of IoT networks to be overcome. The evaluation of results for slow as well as rapidly
changing data also reveals that it is possible with the proposed regression algorithm to
track the changes accurately.
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5. Conclusions

This study developed a novel IoT and AI enabled solution to support remote mon-
itoring of critical and non-critical surgery patients. The proposed IoT based system for
healthcare applications offered ultra-reliable low latency communications (URLLC). In
comparison to IEEE LLDN, the proposed IoT based solution reduced the overall delay up
to 80%. In addition, the average delay was also kept within the desired limits for critical
healthcare patients. The overall packet reception rate was also improved in the proposed
work as compared to IEEE LLDN. The findings also suggest that the proposed XGB based
regression is capable of effectively monitoring and predicting the patients’ sensory data
(patients’ vital signs) in a normal as well as a critical situation. The results show that the
XGB based regression is capable of predicting high sensory data fluctuations (normal to
critical) within a short time window (<25 ms). Collectively, the proposed work also offers
the potential to address the challenge of intermittent interference causing communication
failures in short time frames, thus making the proposed system highly reliable.

The study comes with several limitations. The vital signs’ sensory dataset is generated
synthetic, and it would be interesting to see how the proposed IoT based model fits the
real-world monitoring of patients when collected in the clinical setting. The proposed
machine learning based vital signs detection in post-surgery patient monitoring is not
comparable with any previous studies as none of the existing works has developed the
scenario presented in this study to monitor postoperative patients in clinical settings
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through vital sensory traces and clinical measures. Future work should focus on the real-
world implementation of the proposed IoT framework and to explore vital physiological
sensory measures such as the electrocardiogram, electroencephalogram, respiratory sensors,
pulse oximetry, etc.

As a future prospect, this work can further be extended by interlinking the machine
learning based analysis of patients’ vitals to evaluate the criticality index, thus, providing an
extensive support system for condition monitoring and health analysis of surgery patients.
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